1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28 #include <sys/zio.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zfs_context.h>
32 #include <sys/zap.h>
33 #include <sys/refcount.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43
44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45
46 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
47
48 uint64_t
zap_getflags(zap_t * zap)49 zap_getflags(zap_t *zap)
50 {
51 if (zap->zap_ismicro)
52 return (0);
53 return (zap_f_phys(zap)->zap_flags);
54 }
55
56 int
zap_hashbits(zap_t * zap)57 zap_hashbits(zap_t *zap)
58 {
59 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
60 return (48);
61 else
62 return (28);
63 }
64
65 uint32_t
zap_maxcd(zap_t * zap)66 zap_maxcd(zap_t *zap)
67 {
68 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
69 return ((1<<16)-1);
70 else
71 return (-1U);
72 }
73
74 static uint64_t
zap_hash(zap_name_t * zn)75 zap_hash(zap_name_t *zn)
76 {
77 zap_t *zap = zn->zn_zap;
78 uint64_t h = 0;
79
80 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
81 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
82 h = *(uint64_t *)zn->zn_key_orig;
83 } else {
84 h = zap->zap_salt;
85 ASSERT(h != 0);
86 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
87
88 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
89 int i;
90 const uint64_t *wp = zn->zn_key_norm;
91
92 ASSERT(zn->zn_key_intlen == 8);
93 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
94 int j;
95 uint64_t word = *wp;
96
97 for (j = 0; j < zn->zn_key_intlen; j++) {
98 h = (h >> 8) ^
99 zfs_crc64_table[(h ^ word) & 0xFF];
100 word >>= NBBY;
101 }
102 }
103 } else {
104 int i, len;
105 const uint8_t *cp = zn->zn_key_norm;
106
107 /*
108 * We previously stored the terminating null on
109 * disk, but didn't hash it, so we need to
110 * continue to not hash it. (The
111 * zn_key_*_numints includes the terminating
112 * null for non-binary keys.)
113 */
114 len = zn->zn_key_norm_numints - 1;
115
116 ASSERT(zn->zn_key_intlen == 1);
117 for (i = 0; i < len; cp++, i++) {
118 h = (h >> 8) ^
119 zfs_crc64_table[(h ^ *cp) & 0xFF];
120 }
121 }
122 }
123 /*
124 * Don't use all 64 bits, since we need some in the cookie for
125 * the collision differentiator. We MUST use the high bits,
126 * since those are the ones that we first pay attention to when
127 * chosing the bucket.
128 */
129 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
130
131 return (h);
132 }
133
134 static int
zap_normalize(zap_t * zap,const char * name,char * namenorm)135 zap_normalize(zap_t *zap, const char *name, char *namenorm)
136 {
137 size_t inlen, outlen;
138 int err;
139
140 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
141
142 inlen = strlen(name) + 1;
143 outlen = ZAP_MAXNAMELEN;
144
145 err = 0;
146 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
147 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
148 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
149
150 return (err);
151 }
152
153 boolean_t
zap_match(zap_name_t * zn,const char * matchname)154 zap_match(zap_name_t *zn, const char *matchname)
155 {
156 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
157
158 if (zn->zn_matchtype == MT_FIRST) {
159 char norm[ZAP_MAXNAMELEN];
160
161 if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
162 return (B_FALSE);
163
164 return (strcmp(zn->zn_key_norm, norm) == 0);
165 } else {
166 /* MT_BEST or MT_EXACT */
167 return (strcmp(zn->zn_key_orig, matchname) == 0);
168 }
169 }
170
171 void
zap_name_free(zap_name_t * zn)172 zap_name_free(zap_name_t *zn)
173 {
174 kmem_free(zn, sizeof (zap_name_t));
175 }
176
177 zap_name_t *
zap_name_alloc(zap_t * zap,const char * key,matchtype_t mt)178 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
179 {
180 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
181
182 zn->zn_zap = zap;
183 zn->zn_key_intlen = sizeof (*key);
184 zn->zn_key_orig = key;
185 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
186 zn->zn_matchtype = mt;
187 if (zap->zap_normflags) {
188 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
189 zap_name_free(zn);
190 return (NULL);
191 }
192 zn->zn_key_norm = zn->zn_normbuf;
193 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
194 } else {
195 if (mt != MT_EXACT) {
196 zap_name_free(zn);
197 return (NULL);
198 }
199 zn->zn_key_norm = zn->zn_key_orig;
200 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
201 }
202
203 zn->zn_hash = zap_hash(zn);
204 return (zn);
205 }
206
207 zap_name_t *
zap_name_alloc_uint64(zap_t * zap,const uint64_t * key,int numints)208 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
209 {
210 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
211
212 ASSERT(zap->zap_normflags == 0);
213 zn->zn_zap = zap;
214 zn->zn_key_intlen = sizeof (*key);
215 zn->zn_key_orig = zn->zn_key_norm = key;
216 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
217 zn->zn_matchtype = MT_EXACT;
218
219 zn->zn_hash = zap_hash(zn);
220 return (zn);
221 }
222
223 static void
mzap_byteswap(mzap_phys_t * buf,size_t size)224 mzap_byteswap(mzap_phys_t *buf, size_t size)
225 {
226 int i, max;
227 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
228 buf->mz_salt = BSWAP_64(buf->mz_salt);
229 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
230 max = (size / MZAP_ENT_LEN) - 1;
231 for (i = 0; i < max; i++) {
232 buf->mz_chunk[i].mze_value =
233 BSWAP_64(buf->mz_chunk[i].mze_value);
234 buf->mz_chunk[i].mze_cd =
235 BSWAP_32(buf->mz_chunk[i].mze_cd);
236 }
237 }
238
239 void
zap_byteswap(void * buf,size_t size)240 zap_byteswap(void *buf, size_t size)
241 {
242 uint64_t block_type;
243
244 block_type = *(uint64_t *)buf;
245
246 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
247 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
248 mzap_byteswap(buf, size);
249 } else {
250 fzap_byteswap(buf, size);
251 }
252 }
253
254 static int
mze_compare(const void * arg1,const void * arg2)255 mze_compare(const void *arg1, const void *arg2)
256 {
257 const mzap_ent_t *mze1 = arg1;
258 const mzap_ent_t *mze2 = arg2;
259
260 if (mze1->mze_hash > mze2->mze_hash)
261 return (+1);
262 if (mze1->mze_hash < mze2->mze_hash)
263 return (-1);
264 if (mze1->mze_cd > mze2->mze_cd)
265 return (+1);
266 if (mze1->mze_cd < mze2->mze_cd)
267 return (-1);
268 return (0);
269 }
270
271 static void
mze_insert(zap_t * zap,int chunkid,uint64_t hash)272 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
273 {
274 mzap_ent_t *mze;
275
276 ASSERT(zap->zap_ismicro);
277 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
278
279 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
280 mze->mze_chunkid = chunkid;
281 mze->mze_hash = hash;
282 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
283 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
284 avl_add(&zap->zap_m.zap_avl, mze);
285 }
286
287 static mzap_ent_t *
mze_find(zap_name_t * zn)288 mze_find(zap_name_t *zn)
289 {
290 mzap_ent_t mze_tofind;
291 mzap_ent_t *mze;
292 avl_index_t idx;
293 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
294
295 ASSERT(zn->zn_zap->zap_ismicro);
296 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
297
298 mze_tofind.mze_hash = zn->zn_hash;
299 mze_tofind.mze_cd = 0;
300
301 again:
302 mze = avl_find(avl, &mze_tofind, &idx);
303 if (mze == NULL)
304 mze = avl_nearest(avl, idx, AVL_AFTER);
305 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
306 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
307 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
308 return (mze);
309 }
310 if (zn->zn_matchtype == MT_BEST) {
311 zn->zn_matchtype = MT_FIRST;
312 goto again;
313 }
314 return (NULL);
315 }
316
317 static uint32_t
mze_find_unused_cd(zap_t * zap,uint64_t hash)318 mze_find_unused_cd(zap_t *zap, uint64_t hash)
319 {
320 mzap_ent_t mze_tofind;
321 mzap_ent_t *mze;
322 avl_index_t idx;
323 avl_tree_t *avl = &zap->zap_m.zap_avl;
324 uint32_t cd;
325
326 ASSERT(zap->zap_ismicro);
327 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
328
329 mze_tofind.mze_hash = hash;
330 mze_tofind.mze_cd = 0;
331
332 cd = 0;
333 for (mze = avl_find(avl, &mze_tofind, &idx);
334 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
335 if (mze->mze_cd != cd)
336 break;
337 cd++;
338 }
339
340 return (cd);
341 }
342
343 static void
mze_remove(zap_t * zap,mzap_ent_t * mze)344 mze_remove(zap_t *zap, mzap_ent_t *mze)
345 {
346 ASSERT(zap->zap_ismicro);
347 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
348
349 avl_remove(&zap->zap_m.zap_avl, mze);
350 kmem_free(mze, sizeof (mzap_ent_t));
351 }
352
353 static void
mze_destroy(zap_t * zap)354 mze_destroy(zap_t *zap)
355 {
356 mzap_ent_t *mze;
357 void *avlcookie = NULL;
358
359 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
360 kmem_free(mze, sizeof (mzap_ent_t));
361 avl_destroy(&zap->zap_m.zap_avl);
362 }
363
364 static zap_t *
mzap_open(objset_t * os,uint64_t obj,dmu_buf_t * db)365 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
366 {
367 zap_t *winner;
368 zap_t *zap;
369 int i;
370
371 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
372
373 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
374 rw_init(&zap->zap_rwlock, 0, 0, 0);
375 rw_enter(&zap->zap_rwlock, RW_WRITER);
376 zap->zap_objset = os;
377 zap->zap_object = obj;
378 zap->zap_dbuf = db;
379
380 if (*(uint64_t *)db->db_data != ZBT_MICRO) {
381 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
382 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
383 } else {
384 zap->zap_ismicro = TRUE;
385 }
386
387 /*
388 * Make sure that zap_ismicro is set before we let others see
389 * it, because zap_lockdir() checks zap_ismicro without the lock
390 * held.
391 */
392 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
393 winner = dmu_buf_set_user(db, &zap->zap_dbu);
394
395 if (winner != NULL) {
396 rw_exit(&zap->zap_rwlock);
397 rw_destroy(&zap->zap_rwlock);
398 if (!zap->zap_ismicro)
399 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
400 kmem_free(zap, sizeof (zap_t));
401 return (winner);
402 }
403
404 if (zap->zap_ismicro) {
405 zap->zap_salt = zap_m_phys(zap)->mz_salt;
406 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
407 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
408 avl_create(&zap->zap_m.zap_avl, mze_compare,
409 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
410
411 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
412 mzap_ent_phys_t *mze =
413 &zap_m_phys(zap)->mz_chunk[i];
414 if (mze->mze_name[0]) {
415 zap_name_t *zn;
416
417 zap->zap_m.zap_num_entries++;
418 zn = zap_name_alloc(zap, mze->mze_name,
419 MT_EXACT);
420 mze_insert(zap, i, zn->zn_hash);
421 zap_name_free(zn);
422 }
423 }
424 } else {
425 zap->zap_salt = zap_f_phys(zap)->zap_salt;
426 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
427
428 ASSERT3U(sizeof (struct zap_leaf_header), ==,
429 2*ZAP_LEAF_CHUNKSIZE);
430
431 /*
432 * The embedded pointer table should not overlap the
433 * other members.
434 */
435 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
436 &zap_f_phys(zap)->zap_salt);
437
438 /*
439 * The embedded pointer table should end at the end of
440 * the block
441 */
442 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
443 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
444 (uintptr_t)zap_f_phys(zap), ==,
445 zap->zap_dbuf->db_size);
446 }
447 rw_exit(&zap->zap_rwlock);
448 return (zap);
449 }
450
451 int
zap_lockdir(objset_t * os,uint64_t obj,dmu_tx_t * tx,krw_t lti,boolean_t fatreader,boolean_t adding,zap_t ** zapp)452 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
453 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
454 {
455 zap_t *zap;
456 dmu_buf_t *db;
457 krw_t lt;
458 int err;
459
460 *zapp = NULL;
461
462 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
463 if (err)
464 return (err);
465
466 #ifdef ZFS_DEBUG
467 {
468 dmu_object_info_t doi;
469 dmu_object_info_from_db(db, &doi);
470 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
471 }
472 #endif
473
474 zap = dmu_buf_get_user(db);
475 if (zap == NULL)
476 zap = mzap_open(os, obj, db);
477
478 /*
479 * We're checking zap_ismicro without the lock held, in order to
480 * tell what type of lock we want. Once we have some sort of
481 * lock, see if it really is the right type. In practice this
482 * can only be different if it was upgraded from micro to fat,
483 * and micro wanted WRITER but fat only needs READER.
484 */
485 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
486 rw_enter(&zap->zap_rwlock, lt);
487 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
488 /* it was upgraded, now we only need reader */
489 ASSERT(lt == RW_WRITER);
490 ASSERT(RW_READER ==
491 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
492 rw_downgrade(&zap->zap_rwlock);
493 lt = RW_READER;
494 }
495
496 zap->zap_objset = os;
497
498 if (lt == RW_WRITER)
499 dmu_buf_will_dirty(db, tx);
500
501 ASSERT3P(zap->zap_dbuf, ==, db);
502
503 ASSERT(!zap->zap_ismicro ||
504 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
505 if (zap->zap_ismicro && tx && adding &&
506 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
507 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
508 if (newsz > MZAP_MAX_BLKSZ) {
509 dprintf("upgrading obj %llu: num_entries=%u\n",
510 obj, zap->zap_m.zap_num_entries);
511 *zapp = zap;
512 return (mzap_upgrade(zapp, tx, 0));
513 }
514 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
515 ASSERT0(err);
516 zap->zap_m.zap_num_chunks =
517 db->db_size / MZAP_ENT_LEN - 1;
518 }
519
520 *zapp = zap;
521 return (0);
522 }
523
524 void
zap_unlockdir(zap_t * zap)525 zap_unlockdir(zap_t *zap)
526 {
527 rw_exit(&zap->zap_rwlock);
528 dmu_buf_rele(zap->zap_dbuf, NULL);
529 }
530
531 static int
mzap_upgrade(zap_t ** zapp,dmu_tx_t * tx,zap_flags_t flags)532 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
533 {
534 mzap_phys_t *mzp;
535 int i, sz, nchunks;
536 int err = 0;
537 zap_t *zap = *zapp;
538
539 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
540
541 sz = zap->zap_dbuf->db_size;
542 mzp = zio_buf_alloc(sz);
543 bcopy(zap->zap_dbuf->db_data, mzp, sz);
544 nchunks = zap->zap_m.zap_num_chunks;
545
546 if (!flags) {
547 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
548 1ULL << fzap_default_block_shift, 0, tx);
549 if (err) {
550 zio_buf_free(mzp, sz);
551 return (err);
552 }
553 }
554
555 dprintf("upgrading obj=%llu with %u chunks\n",
556 zap->zap_object, nchunks);
557 /* XXX destroy the avl later, so we can use the stored hash value */
558 mze_destroy(zap);
559
560 fzap_upgrade(zap, tx, flags);
561
562 for (i = 0; i < nchunks; i++) {
563 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
564 zap_name_t *zn;
565 if (mze->mze_name[0] == 0)
566 continue;
567 dprintf("adding %s=%llu\n",
568 mze->mze_name, mze->mze_value);
569 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
570 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
571 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
572 zap_name_free(zn);
573 if (err)
574 break;
575 }
576 zio_buf_free(mzp, sz);
577 *zapp = zap;
578 return (err);
579 }
580
581 void
mzap_create_impl(objset_t * os,uint64_t obj,int normflags,zap_flags_t flags,dmu_tx_t * tx)582 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
583 dmu_tx_t *tx)
584 {
585 dmu_buf_t *db;
586 mzap_phys_t *zp;
587
588 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
589
590 #ifdef ZFS_DEBUG
591 {
592 dmu_object_info_t doi;
593 dmu_object_info_from_db(db, &doi);
594 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
595 }
596 #endif
597
598 dmu_buf_will_dirty(db, tx);
599 zp = db->db_data;
600 zp->mz_block_type = ZBT_MICRO;
601 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
602 zp->mz_normflags = normflags;
603 dmu_buf_rele(db, FTAG);
604
605 if (flags != 0) {
606 zap_t *zap;
607 /* Only fat zap supports flags; upgrade immediately. */
608 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
609 B_FALSE, B_FALSE, &zap));
610 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
611 zap_unlockdir(zap);
612 }
613 }
614
615 int
zap_create_claim(objset_t * os,uint64_t obj,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)616 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
617 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
618 {
619 return (zap_create_claim_norm(os, obj,
620 0, ot, bonustype, bonuslen, tx));
621 }
622
623 int
zap_create_claim_norm(objset_t * os,uint64_t obj,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)624 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
625 dmu_object_type_t ot,
626 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
627 {
628 int err;
629
630 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
631 if (err != 0)
632 return (err);
633 mzap_create_impl(os, obj, normflags, 0, tx);
634 return (0);
635 }
636
637 uint64_t
zap_create(objset_t * os,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)638 zap_create(objset_t *os, dmu_object_type_t ot,
639 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
640 {
641 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
642 }
643
644 uint64_t
zap_create_norm(objset_t * os,int normflags,dmu_object_type_t ot,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)645 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
646 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
647 {
648 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
649
650 mzap_create_impl(os, obj, normflags, 0, tx);
651 return (obj);
652 }
653
654 uint64_t
zap_create_flags(objset_t * os,int normflags,zap_flags_t flags,dmu_object_type_t ot,int leaf_blockshift,int indirect_blockshift,dmu_object_type_t bonustype,int bonuslen,dmu_tx_t * tx)655 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
656 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
657 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
658 {
659 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
660
661 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
662 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
663 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
664 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
665
666 VERIFY(dmu_object_set_blocksize(os, obj,
667 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
668
669 mzap_create_impl(os, obj, normflags, flags, tx);
670 return (obj);
671 }
672
673 int
zap_destroy(objset_t * os,uint64_t zapobj,dmu_tx_t * tx)674 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
675 {
676 /*
677 * dmu_object_free will free the object number and free the
678 * data. Freeing the data will cause our pageout function to be
679 * called, which will destroy our data (zap_leaf_t's and zap_t).
680 */
681
682 return (dmu_object_free(os, zapobj, tx));
683 }
684
685 void
zap_evict_sync(void * dbu)686 zap_evict_sync(void *dbu)
687 {
688 zap_t *zap = dbu;
689
690 rw_destroy(&zap->zap_rwlock);
691
692 if (zap->zap_ismicro)
693 mze_destroy(zap);
694 else
695 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
696
697 kmem_free(zap, sizeof (zap_t));
698 }
699
700 int
zap_count(objset_t * os,uint64_t zapobj,uint64_t * count)701 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
702 {
703 zap_t *zap;
704 int err;
705
706 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
707 if (err)
708 return (err);
709 if (!zap->zap_ismicro) {
710 err = fzap_count(zap, count);
711 } else {
712 *count = zap->zap_m.zap_num_entries;
713 }
714 zap_unlockdir(zap);
715 return (err);
716 }
717
718 /*
719 * zn may be NULL; if not specified, it will be computed if needed.
720 * See also the comment above zap_entry_normalization_conflict().
721 */
722 static boolean_t
mzap_normalization_conflict(zap_t * zap,zap_name_t * zn,mzap_ent_t * mze)723 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
724 {
725 mzap_ent_t *other;
726 int direction = AVL_BEFORE;
727 boolean_t allocdzn = B_FALSE;
728
729 if (zap->zap_normflags == 0)
730 return (B_FALSE);
731
732 again:
733 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
734 other && other->mze_hash == mze->mze_hash;
735 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
736
737 if (zn == NULL) {
738 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
739 MT_FIRST);
740 allocdzn = B_TRUE;
741 }
742 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
743 if (allocdzn)
744 zap_name_free(zn);
745 return (B_TRUE);
746 }
747 }
748
749 if (direction == AVL_BEFORE) {
750 direction = AVL_AFTER;
751 goto again;
752 }
753
754 if (allocdzn)
755 zap_name_free(zn);
756 return (B_FALSE);
757 }
758
759 /*
760 * Routines for manipulating attributes.
761 */
762
763 int
zap_lookup(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf)764 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
765 uint64_t integer_size, uint64_t num_integers, void *buf)
766 {
767 return (zap_lookup_norm(os, zapobj, name, integer_size,
768 num_integers, buf, MT_EXACT, NULL, 0, NULL));
769 }
770
771 int
zap_lookup_norm(objset_t * os,uint64_t zapobj,const char * name,uint64_t integer_size,uint64_t num_integers,void * buf,matchtype_t mt,char * realname,int rn_len,boolean_t * ncp)772 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
773 uint64_t integer_size, uint64_t num_integers, void *buf,
774 matchtype_t mt, char *realname, int rn_len,
775 boolean_t *ncp)
776 {
777 zap_t *zap;
778 int err;
779 mzap_ent_t *mze;
780 zap_name_t *zn;
781
782 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
783 if (err)
784 return (err);
785 zn = zap_name_alloc(zap, name, mt);
786 if (zn == NULL) {
787 zap_unlockdir(zap);
788 return (SET_ERROR(ENOTSUP));
789 }
790
791 if (!zap->zap_ismicro) {
792 err = fzap_lookup(zn, integer_size, num_integers, buf,
793 realname, rn_len, ncp);
794 } else {
795 mze = mze_find(zn);
796 if (mze == NULL) {
797 err = SET_ERROR(ENOENT);
798 } else {
799 if (num_integers < 1) {
800 err = SET_ERROR(EOVERFLOW);
801 } else if (integer_size != 8) {
802 err = SET_ERROR(EINVAL);
803 } else {
804 *(uint64_t *)buf =
805 MZE_PHYS(zap, mze)->mze_value;
806 (void) strlcpy(realname,
807 MZE_PHYS(zap, mze)->mze_name, rn_len);
808 if (ncp) {
809 *ncp = mzap_normalization_conflict(zap,
810 zn, mze);
811 }
812 }
813 }
814 }
815 zap_name_free(zn);
816 zap_unlockdir(zap);
817 return (err);
818 }
819
820 int
zap_prefetch_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints)821 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
822 int key_numints)
823 {
824 zap_t *zap;
825 int err;
826 zap_name_t *zn;
827
828 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
829 if (err)
830 return (err);
831 zn = zap_name_alloc_uint64(zap, key, key_numints);
832 if (zn == NULL) {
833 zap_unlockdir(zap);
834 return (SET_ERROR(ENOTSUP));
835 }
836
837 fzap_prefetch(zn);
838 zap_name_free(zn);
839 zap_unlockdir(zap);
840 return (err);
841 }
842
843 int
zap_lookup_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t integer_size,uint64_t num_integers,void * buf)844 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
845 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
846 {
847 zap_t *zap;
848 int err;
849 zap_name_t *zn;
850
851 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
852 if (err)
853 return (err);
854 zn = zap_name_alloc_uint64(zap, key, key_numints);
855 if (zn == NULL) {
856 zap_unlockdir(zap);
857 return (SET_ERROR(ENOTSUP));
858 }
859
860 err = fzap_lookup(zn, integer_size, num_integers, buf,
861 NULL, 0, NULL);
862 zap_name_free(zn);
863 zap_unlockdir(zap);
864 return (err);
865 }
866
867 int
zap_contains(objset_t * os,uint64_t zapobj,const char * name)868 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
869 {
870 int err = zap_lookup_norm(os, zapobj, name, 0,
871 0, NULL, MT_EXACT, NULL, 0, NULL);
872 if (err == EOVERFLOW || err == EINVAL)
873 err = 0; /* found, but skipped reading the value */
874 return (err);
875 }
876
877 int
zap_length(objset_t * os,uint64_t zapobj,const char * name,uint64_t * integer_size,uint64_t * num_integers)878 zap_length(objset_t *os, uint64_t zapobj, const char *name,
879 uint64_t *integer_size, uint64_t *num_integers)
880 {
881 zap_t *zap;
882 int err;
883 mzap_ent_t *mze;
884 zap_name_t *zn;
885
886 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
887 if (err)
888 return (err);
889 zn = zap_name_alloc(zap, name, MT_EXACT);
890 if (zn == NULL) {
891 zap_unlockdir(zap);
892 return (SET_ERROR(ENOTSUP));
893 }
894 if (!zap->zap_ismicro) {
895 err = fzap_length(zn, integer_size, num_integers);
896 } else {
897 mze = mze_find(zn);
898 if (mze == NULL) {
899 err = SET_ERROR(ENOENT);
900 } else {
901 if (integer_size)
902 *integer_size = 8;
903 if (num_integers)
904 *num_integers = 1;
905 }
906 }
907 zap_name_free(zn);
908 zap_unlockdir(zap);
909 return (err);
910 }
911
912 int
zap_length_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,uint64_t * integer_size,uint64_t * num_integers)913 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
914 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
915 {
916 zap_t *zap;
917 int err;
918 zap_name_t *zn;
919
920 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
921 if (err)
922 return (err);
923 zn = zap_name_alloc_uint64(zap, key, key_numints);
924 if (zn == NULL) {
925 zap_unlockdir(zap);
926 return (SET_ERROR(ENOTSUP));
927 }
928 err = fzap_length(zn, integer_size, num_integers);
929 zap_name_free(zn);
930 zap_unlockdir(zap);
931 return (err);
932 }
933
934 static void
mzap_addent(zap_name_t * zn,uint64_t value)935 mzap_addent(zap_name_t *zn, uint64_t value)
936 {
937 int i;
938 zap_t *zap = zn->zn_zap;
939 int start = zap->zap_m.zap_alloc_next;
940 uint32_t cd;
941
942 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
943
944 #ifdef ZFS_DEBUG
945 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
946 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
947 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
948 }
949 #endif
950
951 cd = mze_find_unused_cd(zap, zn->zn_hash);
952 /* given the limited size of the microzap, this can't happen */
953 ASSERT(cd < zap_maxcd(zap));
954
955 again:
956 for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
957 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
958 if (mze->mze_name[0] == 0) {
959 mze->mze_value = value;
960 mze->mze_cd = cd;
961 (void) strcpy(mze->mze_name, zn->zn_key_orig);
962 zap->zap_m.zap_num_entries++;
963 zap->zap_m.zap_alloc_next = i+1;
964 if (zap->zap_m.zap_alloc_next ==
965 zap->zap_m.zap_num_chunks)
966 zap->zap_m.zap_alloc_next = 0;
967 mze_insert(zap, i, zn->zn_hash);
968 return;
969 }
970 }
971 if (start != 0) {
972 start = 0;
973 goto again;
974 }
975 ASSERT(!"out of entries!");
976 }
977
978 int
zap_add(objset_t * os,uint64_t zapobj,const char * key,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)979 zap_add(objset_t *os, uint64_t zapobj, const char *key,
980 int integer_size, uint64_t num_integers,
981 const void *val, dmu_tx_t *tx)
982 {
983 zap_t *zap;
984 int err;
985 mzap_ent_t *mze;
986 const uint64_t *intval = val;
987 zap_name_t *zn;
988
989 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
990 if (err)
991 return (err);
992 zn = zap_name_alloc(zap, key, MT_EXACT);
993 if (zn == NULL) {
994 zap_unlockdir(zap);
995 return (SET_ERROR(ENOTSUP));
996 }
997 if (!zap->zap_ismicro) {
998 err = fzap_add(zn, integer_size, num_integers, val, tx);
999 zap = zn->zn_zap; /* fzap_add() may change zap */
1000 } else if (integer_size != 8 || num_integers != 1 ||
1001 strlen(key) >= MZAP_NAME_LEN) {
1002 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1003 if (err == 0)
1004 err = fzap_add(zn, integer_size, num_integers, val, tx);
1005 zap = zn->zn_zap; /* fzap_add() may change zap */
1006 } else {
1007 mze = mze_find(zn);
1008 if (mze != NULL) {
1009 err = SET_ERROR(EEXIST);
1010 } else {
1011 mzap_addent(zn, *intval);
1012 }
1013 }
1014 ASSERT(zap == zn->zn_zap);
1015 zap_name_free(zn);
1016 if (zap != NULL) /* may be NULL if fzap_add() failed */
1017 zap_unlockdir(zap);
1018 return (err);
1019 }
1020
1021 int
zap_add_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1022 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1023 int key_numints, int integer_size, uint64_t num_integers,
1024 const void *val, dmu_tx_t *tx)
1025 {
1026 zap_t *zap;
1027 int err;
1028 zap_name_t *zn;
1029
1030 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1031 if (err)
1032 return (err);
1033 zn = zap_name_alloc_uint64(zap, key, key_numints);
1034 if (zn == NULL) {
1035 zap_unlockdir(zap);
1036 return (SET_ERROR(ENOTSUP));
1037 }
1038 err = fzap_add(zn, integer_size, num_integers, val, tx);
1039 zap = zn->zn_zap; /* fzap_add() may change zap */
1040 zap_name_free(zn);
1041 if (zap != NULL) /* may be NULL if fzap_add() failed */
1042 zap_unlockdir(zap);
1043 return (err);
1044 }
1045
1046 int
zap_update(objset_t * os,uint64_t zapobj,const char * name,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1047 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1048 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1049 {
1050 zap_t *zap;
1051 mzap_ent_t *mze;
1052 uint64_t oldval;
1053 const uint64_t *intval = val;
1054 zap_name_t *zn;
1055 int err;
1056
1057 #ifdef ZFS_DEBUG
1058 /*
1059 * If there is an old value, it shouldn't change across the
1060 * lockdir (eg, due to bprewrite's xlation).
1061 */
1062 if (integer_size == 8 && num_integers == 1)
1063 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1064 #endif
1065
1066 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1067 if (err)
1068 return (err);
1069 zn = zap_name_alloc(zap, name, MT_EXACT);
1070 if (zn == NULL) {
1071 zap_unlockdir(zap);
1072 return (SET_ERROR(ENOTSUP));
1073 }
1074 if (!zap->zap_ismicro) {
1075 err = fzap_update(zn, integer_size, num_integers, val, tx);
1076 zap = zn->zn_zap; /* fzap_update() may change zap */
1077 } else if (integer_size != 8 || num_integers != 1 ||
1078 strlen(name) >= MZAP_NAME_LEN) {
1079 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1080 zapobj, integer_size, num_integers, name);
1081 err = mzap_upgrade(&zn->zn_zap, tx, 0);
1082 if (err == 0)
1083 err = fzap_update(zn, integer_size, num_integers,
1084 val, tx);
1085 zap = zn->zn_zap; /* fzap_update() may change zap */
1086 } else {
1087 mze = mze_find(zn);
1088 if (mze != NULL) {
1089 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1090 MZE_PHYS(zap, mze)->mze_value = *intval;
1091 } else {
1092 mzap_addent(zn, *intval);
1093 }
1094 }
1095 ASSERT(zap == zn->zn_zap);
1096 zap_name_free(zn);
1097 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1098 zap_unlockdir(zap);
1099 return (err);
1100 }
1101
1102 int
zap_update_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,int integer_size,uint64_t num_integers,const void * val,dmu_tx_t * tx)1103 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1104 int key_numints,
1105 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1106 {
1107 zap_t *zap;
1108 zap_name_t *zn;
1109 int err;
1110
1111 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1112 if (err)
1113 return (err);
1114 zn = zap_name_alloc_uint64(zap, key, key_numints);
1115 if (zn == NULL) {
1116 zap_unlockdir(zap);
1117 return (SET_ERROR(ENOTSUP));
1118 }
1119 err = fzap_update(zn, integer_size, num_integers, val, tx);
1120 zap = zn->zn_zap; /* fzap_update() may change zap */
1121 zap_name_free(zn);
1122 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1123 zap_unlockdir(zap);
1124 return (err);
1125 }
1126
1127 int
zap_remove(objset_t * os,uint64_t zapobj,const char * name,dmu_tx_t * tx)1128 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1129 {
1130 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1131 }
1132
1133 int
zap_remove_norm(objset_t * os,uint64_t zapobj,const char * name,matchtype_t mt,dmu_tx_t * tx)1134 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1135 matchtype_t mt, dmu_tx_t *tx)
1136 {
1137 zap_t *zap;
1138 int err;
1139 mzap_ent_t *mze;
1140 zap_name_t *zn;
1141
1142 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1143 if (err)
1144 return (err);
1145 zn = zap_name_alloc(zap, name, mt);
1146 if (zn == NULL) {
1147 zap_unlockdir(zap);
1148 return (SET_ERROR(ENOTSUP));
1149 }
1150 if (!zap->zap_ismicro) {
1151 err = fzap_remove(zn, tx);
1152 } else {
1153 mze = mze_find(zn);
1154 if (mze == NULL) {
1155 err = SET_ERROR(ENOENT);
1156 } else {
1157 zap->zap_m.zap_num_entries--;
1158 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1159 sizeof (mzap_ent_phys_t));
1160 mze_remove(zap, mze);
1161 }
1162 }
1163 zap_name_free(zn);
1164 zap_unlockdir(zap);
1165 return (err);
1166 }
1167
1168 int
zap_remove_uint64(objset_t * os,uint64_t zapobj,const uint64_t * key,int key_numints,dmu_tx_t * tx)1169 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1170 int key_numints, dmu_tx_t *tx)
1171 {
1172 zap_t *zap;
1173 int err;
1174 zap_name_t *zn;
1175
1176 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1177 if (err)
1178 return (err);
1179 zn = zap_name_alloc_uint64(zap, key, key_numints);
1180 if (zn == NULL) {
1181 zap_unlockdir(zap);
1182 return (SET_ERROR(ENOTSUP));
1183 }
1184 err = fzap_remove(zn, tx);
1185 zap_name_free(zn);
1186 zap_unlockdir(zap);
1187 return (err);
1188 }
1189
1190 /*
1191 * Routines for iterating over the attributes.
1192 */
1193
1194 void
zap_cursor_init_serialized(zap_cursor_t * zc,objset_t * os,uint64_t zapobj,uint64_t serialized)1195 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1196 uint64_t serialized)
1197 {
1198 zc->zc_objset = os;
1199 zc->zc_zap = NULL;
1200 zc->zc_leaf = NULL;
1201 zc->zc_zapobj = zapobj;
1202 zc->zc_serialized = serialized;
1203 zc->zc_hash = 0;
1204 zc->zc_cd = 0;
1205 }
1206
1207 void
zap_cursor_init(zap_cursor_t * zc,objset_t * os,uint64_t zapobj)1208 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1209 {
1210 zap_cursor_init_serialized(zc, os, zapobj, 0);
1211 }
1212
1213 void
zap_cursor_fini(zap_cursor_t * zc)1214 zap_cursor_fini(zap_cursor_t *zc)
1215 {
1216 if (zc->zc_zap) {
1217 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1218 zap_unlockdir(zc->zc_zap);
1219 zc->zc_zap = NULL;
1220 }
1221 if (zc->zc_leaf) {
1222 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1223 zap_put_leaf(zc->zc_leaf);
1224 zc->zc_leaf = NULL;
1225 }
1226 zc->zc_objset = NULL;
1227 }
1228
1229 uint64_t
zap_cursor_serialize(zap_cursor_t * zc)1230 zap_cursor_serialize(zap_cursor_t *zc)
1231 {
1232 if (zc->zc_hash == -1ULL)
1233 return (-1ULL);
1234 if (zc->zc_zap == NULL)
1235 return (zc->zc_serialized);
1236 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1237 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1238
1239 /*
1240 * We want to keep the high 32 bits of the cursor zero if we can, so
1241 * that 32-bit programs can access this. So usually use a small
1242 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1243 * of the cursor.
1244 *
1245 * [ collision differentiator | zap_hashbits()-bit hash value ]
1246 */
1247 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1248 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1249 }
1250
1251 int
zap_cursor_retrieve(zap_cursor_t * zc,zap_attribute_t * za)1252 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1253 {
1254 int err;
1255 avl_index_t idx;
1256 mzap_ent_t mze_tofind;
1257 mzap_ent_t *mze;
1258
1259 if (zc->zc_hash == -1ULL)
1260 return (SET_ERROR(ENOENT));
1261
1262 if (zc->zc_zap == NULL) {
1263 int hb;
1264 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1265 RW_READER, TRUE, FALSE, &zc->zc_zap);
1266 if (err)
1267 return (err);
1268
1269 /*
1270 * To support zap_cursor_init_serialized, advance, retrieve,
1271 * we must add to the existing zc_cd, which may already
1272 * be 1 due to the zap_cursor_advance.
1273 */
1274 ASSERT(zc->zc_hash == 0);
1275 hb = zap_hashbits(zc->zc_zap);
1276 zc->zc_hash = zc->zc_serialized << (64 - hb);
1277 zc->zc_cd += zc->zc_serialized >> hb;
1278 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1279 zc->zc_cd = 0;
1280 } else {
1281 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1282 }
1283 if (!zc->zc_zap->zap_ismicro) {
1284 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1285 } else {
1286 mze_tofind.mze_hash = zc->zc_hash;
1287 mze_tofind.mze_cd = zc->zc_cd;
1288
1289 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1290 if (mze == NULL) {
1291 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1292 idx, AVL_AFTER);
1293 }
1294 if (mze) {
1295 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1296 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1297 za->za_normalization_conflict =
1298 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1299 za->za_integer_length = 8;
1300 za->za_num_integers = 1;
1301 za->za_first_integer = mzep->mze_value;
1302 (void) strcpy(za->za_name, mzep->mze_name);
1303 zc->zc_hash = mze->mze_hash;
1304 zc->zc_cd = mze->mze_cd;
1305 err = 0;
1306 } else {
1307 zc->zc_hash = -1ULL;
1308 err = SET_ERROR(ENOENT);
1309 }
1310 }
1311 rw_exit(&zc->zc_zap->zap_rwlock);
1312 return (err);
1313 }
1314
1315 void
zap_cursor_advance(zap_cursor_t * zc)1316 zap_cursor_advance(zap_cursor_t *zc)
1317 {
1318 if (zc->zc_hash == -1ULL)
1319 return;
1320 zc->zc_cd++;
1321 }
1322
1323 int
zap_get_stats(objset_t * os,uint64_t zapobj,zap_stats_t * zs)1324 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1325 {
1326 int err;
1327 zap_t *zap;
1328
1329 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1330 if (err)
1331 return (err);
1332
1333 bzero(zs, sizeof (zap_stats_t));
1334
1335 if (zap->zap_ismicro) {
1336 zs->zs_blocksize = zap->zap_dbuf->db_size;
1337 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1338 zs->zs_num_blocks = 1;
1339 } else {
1340 fzap_get_stats(zap, zs);
1341 }
1342 zap_unlockdir(zap);
1343 return (0);
1344 }
1345
1346 int
zap_count_write(objset_t * os,uint64_t zapobj,const char * name,int add,uint64_t * towrite,uint64_t * tooverwrite)1347 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1348 uint64_t *towrite, uint64_t *tooverwrite)
1349 {
1350 zap_t *zap;
1351 int err = 0;
1352
1353 /*
1354 * Since, we don't have a name, we cannot figure out which blocks will
1355 * be affected in this operation. So, account for the worst case :
1356 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1357 * - 4 new blocks written if adding:
1358 * - 2 blocks for possibly split leaves,
1359 * - 2 grown ptrtbl blocks
1360 *
1361 * This also accomodates the case where an add operation to a fairly
1362 * large microzap results in a promotion to fatzap.
1363 */
1364 if (name == NULL) {
1365 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1366 return (err);
1367 }
1368
1369 /*
1370 * We lock the zap with adding == FALSE. Because, if we pass
1371 * the actual value of add, it could trigger a mzap_upgrade().
1372 * At present we are just evaluating the possibility of this operation
1373 * and hence we donot want to trigger an upgrade.
1374 */
1375 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1376 if (err)
1377 return (err);
1378
1379 if (!zap->zap_ismicro) {
1380 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1381 if (zn) {
1382 err = fzap_count_write(zn, add, towrite,
1383 tooverwrite);
1384 zap_name_free(zn);
1385 } else {
1386 /*
1387 * We treat this case as similar to (name == NULL)
1388 */
1389 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1390 }
1391 } else {
1392 /*
1393 * We are here if (name != NULL) and this is a micro-zap.
1394 * We account for the header block depending on whether it
1395 * is freeable.
1396 *
1397 * Incase of an add-operation it is hard to find out
1398 * if this add will promote this microzap to fatzap.
1399 * Hence, we consider the worst case and account for the
1400 * blocks assuming this microzap would be promoted to a
1401 * fatzap.
1402 *
1403 * 1 block overwritten : header block
1404 * 4 new blocks written : 2 new split leaf, 2 grown
1405 * ptrtbl blocks
1406 */
1407 if (dmu_buf_freeable(zap->zap_dbuf))
1408 *tooverwrite += MZAP_MAX_BLKSZ;
1409 else
1410 *towrite += MZAP_MAX_BLKSZ;
1411
1412 if (add) {
1413 *towrite += 4 * MZAP_MAX_BLKSZ;
1414 }
1415 }
1416
1417 zap_unlockdir(zap);
1418 return (err);
1419 }
1420