xref: /linux/drivers/net/hyperv/netvsc_drv.c (revision 2c7e4a2663a1ab5a740c59c31991579b6b865a26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30 
31 #include <net/arp.h>
32 #include <net/netdev_lock.h>
33 #include <net/route.h>
34 #include <net/sock.h>
35 #include <net/pkt_sched.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 
39 #include "hyperv_net.h"
40 
41 #define RING_SIZE_MIN	64
42 
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45 
46 /* Macros to define the context of vf registration */
47 #define VF_REG_IN_PROBE		1
48 #define VF_REG_IN_NOTIFIER	2
49 
50 static unsigned int ring_size __ro_after_init = 128;
51 module_param(ring_size, uint, 0444);
52 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
53 unsigned int netvsc_ring_bytes __ro_after_init;
54 
55 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
56 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
57 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
58 				NETIF_MSG_TX_ERR;
59 
60 static int debug = -1;
61 module_param(debug, int, 0444);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63 
64 static LIST_HEAD(netvsc_dev_list);
65 
netvsc_change_rx_flags(struct net_device * net,int change)66 static void netvsc_change_rx_flags(struct net_device *net, int change)
67 {
68 	struct net_device_context *ndev_ctx = netdev_priv(net);
69 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
70 	int inc;
71 
72 	if (!vf_netdev)
73 		return;
74 
75 	if (change & IFF_PROMISC) {
76 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
77 		dev_set_promiscuity(vf_netdev, inc);
78 	}
79 
80 	if (change & IFF_ALLMULTI) {
81 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
82 		dev_set_allmulti(vf_netdev, inc);
83 	}
84 }
85 
netvsc_set_rx_mode(struct net_device * net)86 static void netvsc_set_rx_mode(struct net_device *net)
87 {
88 	struct net_device_context *ndev_ctx = netdev_priv(net);
89 	struct net_device *vf_netdev;
90 	struct netvsc_device *nvdev;
91 
92 	rcu_read_lock();
93 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
94 	if (vf_netdev) {
95 		dev_uc_sync(vf_netdev, net);
96 		dev_mc_sync(vf_netdev, net);
97 	}
98 
99 	nvdev = rcu_dereference(ndev_ctx->nvdev);
100 	if (nvdev)
101 		rndis_filter_update(nvdev);
102 	rcu_read_unlock();
103 }
104 
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)105 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
106 			     struct net_device *ndev)
107 {
108 	nvscdev->tx_disable = false;
109 	virt_wmb(); /* ensure queue wake up mechanism is on */
110 
111 	netif_tx_wake_all_queues(ndev);
112 }
113 
netvsc_open(struct net_device * net)114 static int netvsc_open(struct net_device *net)
115 {
116 	struct net_device_context *ndev_ctx = netdev_priv(net);
117 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
118 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
119 	struct rndis_device *rdev;
120 	int ret = 0;
121 
122 	netif_carrier_off(net);
123 
124 	/* Open up the device */
125 	ret = rndis_filter_open(nvdev);
126 	if (ret != 0) {
127 		netdev_err(net, "unable to open device (ret %d).\n", ret);
128 		return ret;
129 	}
130 
131 	rdev = nvdev->extension;
132 	if (!rdev->link_state) {
133 		netif_carrier_on(net);
134 		netvsc_tx_enable(nvdev, net);
135 	}
136 
137 	if (vf_netdev) {
138 		/* Setting synthetic device up transparently sets
139 		 * slave as up. If open fails, then slave will be
140 		 * still be offline (and not used).
141 		 */
142 		ret = dev_open(vf_netdev, NULL);
143 		if (ret)
144 			netdev_warn(net,
145 				    "unable to open slave: %s: %d\n",
146 				    vf_netdev->name, ret);
147 	}
148 	return 0;
149 }
150 
netvsc_wait_until_empty(struct netvsc_device * nvdev)151 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
152 {
153 	unsigned int retry = 0;
154 	int i;
155 
156 	/* Ensure pending bytes in ring are read */
157 	for (;;) {
158 		u32 aread = 0;
159 
160 		for (i = 0; i < nvdev->num_chn; i++) {
161 			struct vmbus_channel *chn
162 				= nvdev->chan_table[i].channel;
163 
164 			if (!chn)
165 				continue;
166 
167 			/* make sure receive not running now */
168 			napi_synchronize(&nvdev->chan_table[i].napi);
169 
170 			aread = hv_get_bytes_to_read(&chn->inbound);
171 			if (aread)
172 				break;
173 
174 			aread = hv_get_bytes_to_read(&chn->outbound);
175 			if (aread)
176 				break;
177 		}
178 
179 		if (aread == 0)
180 			return 0;
181 
182 		if (++retry > RETRY_MAX)
183 			return -ETIMEDOUT;
184 
185 		usleep_range(RETRY_US_LO, RETRY_US_HI);
186 	}
187 }
188 
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)189 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
190 			      struct net_device *ndev)
191 {
192 	if (nvscdev) {
193 		nvscdev->tx_disable = true;
194 		virt_wmb(); /* ensure txq will not wake up after stop */
195 	}
196 
197 	netif_tx_disable(ndev);
198 }
199 
netvsc_close(struct net_device * net)200 static int netvsc_close(struct net_device *net)
201 {
202 	struct net_device_context *net_device_ctx = netdev_priv(net);
203 	struct net_device *vf_netdev
204 		= rtnl_dereference(net_device_ctx->vf_netdev);
205 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
206 	int ret;
207 
208 	netvsc_tx_disable(nvdev, net);
209 
210 	/* No need to close rndis filter if it is removed already */
211 	if (!nvdev)
212 		return 0;
213 
214 	ret = rndis_filter_close(nvdev);
215 	if (ret != 0) {
216 		netdev_err(net, "unable to close device (ret %d).\n", ret);
217 		return ret;
218 	}
219 
220 	ret = netvsc_wait_until_empty(nvdev);
221 	if (ret)
222 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
223 
224 	if (vf_netdev)
225 		dev_close(vf_netdev);
226 
227 	return ret;
228 }
229 
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)230 static inline void *init_ppi_data(struct rndis_message *msg,
231 				  u32 ppi_size, u32 pkt_type)
232 {
233 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
234 	struct rndis_per_packet_info *ppi;
235 
236 	rndis_pkt->data_offset += ppi_size;
237 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
238 		+ rndis_pkt->per_pkt_info_len;
239 
240 	ppi->size = ppi_size;
241 	ppi->type = pkt_type;
242 	ppi->internal = 0;
243 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
244 
245 	rndis_pkt->per_pkt_info_len += ppi_size;
246 
247 	return ppi + 1;
248 }
249 
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)250 static inline int netvsc_get_tx_queue(struct net_device *ndev,
251 				      struct sk_buff *skb, int old_idx)
252 {
253 	const struct net_device_context *ndc = netdev_priv(ndev);
254 	struct sock *sk = skb->sk;
255 	int q_idx;
256 
257 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
258 			      (VRSS_SEND_TAB_SIZE - 1)];
259 
260 	/* If queue index changed record the new value */
261 	if (q_idx != old_idx &&
262 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
263 		sk_tx_queue_set(sk, q_idx);
264 
265 	return q_idx;
266 }
267 
268 /*
269  * Select queue for transmit.
270  *
271  * If a valid queue has already been assigned, then use that.
272  * Otherwise compute tx queue based on hash and the send table.
273  *
274  * This is basically similar to default (netdev_pick_tx) with the added step
275  * of using the host send_table when no other queue has been assigned.
276  *
277  * TODO support XPS - but get_xps_queue not exported
278  */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)279 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
280 {
281 	int q_idx = sk_tx_queue_get(skb->sk);
282 
283 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
284 		/* If forwarding a packet, we use the recorded queue when
285 		 * available for better cache locality.
286 		 */
287 		if (skb_rx_queue_recorded(skb))
288 			q_idx = skb_get_rx_queue(skb);
289 		else
290 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
291 	}
292 
293 	return q_idx;
294 }
295 
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)296 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
297 			       struct net_device *sb_dev)
298 {
299 	struct net_device_context *ndc = netdev_priv(ndev);
300 	struct net_device *vf_netdev;
301 	u16 txq;
302 
303 	rcu_read_lock();
304 	vf_netdev = rcu_dereference(ndc->vf_netdev);
305 	if (vf_netdev) {
306 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
307 
308 		if (vf_ops->ndo_select_queue)
309 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
310 		else
311 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
312 
313 		/* Record the queue selected by VF so that it can be
314 		 * used for common case where VF has more queues than
315 		 * the synthetic device.
316 		 */
317 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
318 	} else {
319 		txq = netvsc_pick_tx(ndev, skb);
320 	}
321 	rcu_read_unlock();
322 
323 	while (txq >= ndev->real_num_tx_queues)
324 		txq -= ndev->real_num_tx_queues;
325 
326 	return txq;
327 }
328 
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)329 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
330 			   struct hv_netvsc_packet *packet,
331 			   struct hv_page_buffer *pb)
332 {
333 	int frags = skb_shinfo(skb)->nr_frags;
334 	int i;
335 
336 	/* The packet is laid out thus:
337 	 * 1. hdr: RNDIS header and PPI
338 	 * 2. skb linear data
339 	 * 3. skb fragment data
340 	 */
341 
342 	pb[0].offset = offset_in_hvpage(hdr);
343 	pb[0].len = len;
344 	pb[0].pfn = virt_to_hvpfn(hdr);
345 	packet->rmsg_size = len;
346 
347 	pb[1].offset = offset_in_hvpage(skb->data);
348 	pb[1].len = skb_headlen(skb);
349 	pb[1].pfn = virt_to_hvpfn(skb->data);
350 
351 	for (i = 0; i < frags; i++) {
352 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
353 		struct hv_page_buffer *cur_pb = &pb[i + 2];
354 		u64 pfn = page_to_hvpfn(skb_frag_page(frag));
355 		u32 offset = skb_frag_off(frag);
356 
357 		cur_pb->offset = offset_in_hvpage(offset);
358 		cur_pb->len = skb_frag_size(frag);
359 		cur_pb->pfn = pfn + (offset >> HV_HYP_PAGE_SHIFT);
360 	}
361 	return frags + 2;
362 }
363 
count_skb_frag_slots(struct sk_buff * skb)364 static int count_skb_frag_slots(struct sk_buff *skb)
365 {
366 	int i, frags = skb_shinfo(skb)->nr_frags;
367 	int pages = 0;
368 
369 	for (i = 0; i < frags; i++) {
370 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
371 		unsigned long size = skb_frag_size(frag);
372 		unsigned long offset = skb_frag_off(frag);
373 
374 		/* Skip unused frames from start of page */
375 		offset &= ~HV_HYP_PAGE_MASK;
376 		pages += HVPFN_UP(offset + size);
377 	}
378 	return pages;
379 }
380 
netvsc_get_slots(struct sk_buff * skb)381 static int netvsc_get_slots(struct sk_buff *skb)
382 {
383 	char *data = skb->data;
384 	unsigned int offset = offset_in_hvpage(data);
385 	unsigned int len = skb_headlen(skb);
386 	int slots;
387 	int frag_slots;
388 
389 	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
390 	frag_slots = count_skb_frag_slots(skb);
391 	return slots + frag_slots;
392 }
393 
net_checksum_info(struct sk_buff * skb)394 static u32 net_checksum_info(struct sk_buff *skb)
395 {
396 	if (skb->protocol == htons(ETH_P_IP)) {
397 		struct iphdr *ip = ip_hdr(skb);
398 
399 		if (ip->protocol == IPPROTO_TCP)
400 			return TRANSPORT_INFO_IPV4_TCP;
401 		else if (ip->protocol == IPPROTO_UDP)
402 			return TRANSPORT_INFO_IPV4_UDP;
403 	} else {
404 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
405 
406 		if (ip6->nexthdr == IPPROTO_TCP)
407 			return TRANSPORT_INFO_IPV6_TCP;
408 		else if (ip6->nexthdr == IPPROTO_UDP)
409 			return TRANSPORT_INFO_IPV6_UDP;
410 	}
411 
412 	return TRANSPORT_INFO_NOT_IP;
413 }
414 
415 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)416 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
417 			  struct sk_buff *skb)
418 {
419 	struct net_device_context *ndev_ctx = netdev_priv(net);
420 	unsigned int len = skb->len;
421 	int rc;
422 
423 	skb->dev = vf_netdev;
424 	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
425 
426 	rc = dev_queue_xmit(skb);
427 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
428 		struct netvsc_vf_pcpu_stats *pcpu_stats
429 			= this_cpu_ptr(ndev_ctx->vf_stats);
430 
431 		u64_stats_update_begin(&pcpu_stats->syncp);
432 		pcpu_stats->tx_packets++;
433 		pcpu_stats->tx_bytes += len;
434 		u64_stats_update_end(&pcpu_stats->syncp);
435 	} else {
436 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
437 	}
438 
439 	return rc;
440 }
441 
netvsc_xmit(struct sk_buff * skb,struct net_device * net,bool xdp_tx)442 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
443 {
444 	struct net_device_context *net_device_ctx = netdev_priv(net);
445 	struct hv_netvsc_packet *packet = NULL;
446 	int ret;
447 	unsigned int num_data_pgs;
448 	struct rndis_message *rndis_msg;
449 	struct net_device *vf_netdev;
450 	u32 rndis_msg_size;
451 	u32 hash;
452 	struct hv_page_buffer pb[MAX_DATA_RANGES];
453 
454 	/* If VF is present and up then redirect packets to it.
455 	 * Skip the VF if it is marked down or has no carrier.
456 	 * If netpoll is in uses, then VF can not be used either.
457 	 */
458 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
459 	if (vf_netdev && netif_running(vf_netdev) &&
460 	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
461 	    net_device_ctx->data_path_is_vf)
462 		return netvsc_vf_xmit(net, vf_netdev, skb);
463 
464 	/* We will atmost need two pages to describe the rndis
465 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
466 	 * of pages in a single packet. If skb is scattered around
467 	 * more pages we try linearizing it.
468 	 */
469 
470 	num_data_pgs = netvsc_get_slots(skb) + 2;
471 
472 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
473 		++net_device_ctx->eth_stats.tx_scattered;
474 
475 		if (skb_linearize(skb))
476 			goto no_memory;
477 
478 		num_data_pgs = netvsc_get_slots(skb) + 2;
479 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
480 			++net_device_ctx->eth_stats.tx_too_big;
481 			goto drop;
482 		}
483 	}
484 
485 	/*
486 	 * Place the rndis header in the skb head room and
487 	 * the skb->cb will be used for hv_netvsc_packet
488 	 * structure.
489 	 */
490 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
491 	if (ret)
492 		goto no_memory;
493 
494 	/* Use the skb control buffer for building up the packet */
495 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
496 			sizeof_field(struct sk_buff, cb));
497 	packet = (struct hv_netvsc_packet *)skb->cb;
498 
499 	packet->q_idx = skb_get_queue_mapping(skb);
500 
501 	packet->total_data_buflen = skb->len;
502 	packet->total_bytes = skb->len;
503 	packet->total_packets = 1;
504 
505 	rndis_msg = (struct rndis_message *)skb->head;
506 
507 	/* Add the rndis header */
508 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
509 	rndis_msg->msg_len = packet->total_data_buflen;
510 
511 	rndis_msg->msg.pkt = (struct rndis_packet) {
512 		.data_offset = sizeof(struct rndis_packet),
513 		.data_len = packet->total_data_buflen,
514 		.per_pkt_info_offset = sizeof(struct rndis_packet),
515 	};
516 
517 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
518 
519 	hash = skb_get_hash_raw(skb);
520 	if (hash != 0 && net->real_num_tx_queues > 1) {
521 		u32 *hash_info;
522 
523 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
524 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
525 					  NBL_HASH_VALUE);
526 		*hash_info = hash;
527 	}
528 
529 	/* When using AF_PACKET we need to drop VLAN header from
530 	 * the frame and update the SKB to allow the HOST OS
531 	 * to transmit the 802.1Q packet
532 	 */
533 	if (skb->protocol == htons(ETH_P_8021Q)) {
534 		u16 vlan_tci;
535 
536 		skb_reset_mac_header(skb);
537 		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
538 			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
539 				++net_device_ctx->eth_stats.vlan_error;
540 				goto drop;
541 			}
542 
543 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
544 			/* Update the NDIS header pkt lengths */
545 			packet->total_data_buflen -= VLAN_HLEN;
546 			packet->total_bytes -= VLAN_HLEN;
547 			rndis_msg->msg_len = packet->total_data_buflen;
548 			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
549 		}
550 	}
551 
552 	if (skb_vlan_tag_present(skb)) {
553 		struct ndis_pkt_8021q_info *vlan;
554 
555 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
556 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
557 				     IEEE_8021Q_INFO);
558 
559 		vlan->value = 0;
560 		vlan->vlanid = skb_vlan_tag_get_id(skb);
561 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
562 		vlan->pri = skb_vlan_tag_get_prio(skb);
563 	}
564 
565 	if (skb_is_gso(skb)) {
566 		struct ndis_tcp_lso_info *lso_info;
567 
568 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
569 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
570 					 TCP_LARGESEND_PKTINFO);
571 
572 		lso_info->value = 0;
573 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
574 		if (skb->protocol == htons(ETH_P_IP)) {
575 			lso_info->lso_v2_transmit.ip_version =
576 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
577 			ip_hdr(skb)->tot_len = 0;
578 			ip_hdr(skb)->check = 0;
579 			tcp_hdr(skb)->check =
580 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
581 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
582 		} else {
583 			lso_info->lso_v2_transmit.ip_version =
584 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
585 			tcp_v6_gso_csum_prep(skb);
586 		}
587 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
588 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
589 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
590 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
591 			struct ndis_tcp_ip_checksum_info *csum_info;
592 
593 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
594 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
595 						  TCPIP_CHKSUM_PKTINFO);
596 
597 			csum_info->value = 0;
598 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
599 
600 			if (skb->protocol == htons(ETH_P_IP)) {
601 				csum_info->transmit.is_ipv4 = 1;
602 
603 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
604 					csum_info->transmit.tcp_checksum = 1;
605 				else
606 					csum_info->transmit.udp_checksum = 1;
607 			} else {
608 				csum_info->transmit.is_ipv6 = 1;
609 
610 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
611 					csum_info->transmit.tcp_checksum = 1;
612 				else
613 					csum_info->transmit.udp_checksum = 1;
614 			}
615 		} else {
616 			/* Can't do offload of this type of checksum */
617 			if (skb_checksum_help(skb))
618 				goto drop;
619 		}
620 	}
621 
622 	/* Start filling in the page buffers with the rndis hdr */
623 	rndis_msg->msg_len += rndis_msg_size;
624 	packet->total_data_buflen = rndis_msg->msg_len;
625 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
626 					       skb, packet, pb);
627 
628 	/* timestamp packet in software */
629 	skb_tx_timestamp(skb);
630 
631 	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
632 	if (likely(ret == 0))
633 		return NETDEV_TX_OK;
634 
635 	if (ret == -EAGAIN) {
636 		++net_device_ctx->eth_stats.tx_busy;
637 		return NETDEV_TX_BUSY;
638 	}
639 
640 	if (ret == -ENOSPC)
641 		++net_device_ctx->eth_stats.tx_no_space;
642 
643 drop:
644 	dev_kfree_skb_any(skb);
645 	net->stats.tx_dropped++;
646 
647 	return NETDEV_TX_OK;
648 
649 no_memory:
650 	++net_device_ctx->eth_stats.tx_no_memory;
651 	goto drop;
652 }
653 
netvsc_start_xmit(struct sk_buff * skb,struct net_device * ndev)654 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
655 				     struct net_device *ndev)
656 {
657 	return netvsc_xmit(skb, ndev, false);
658 }
659 
660 /*
661  * netvsc_linkstatus_callback - Link up/down notification
662  */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp,void * data,u32 data_buflen)663 void netvsc_linkstatus_callback(struct net_device *net,
664 				struct rndis_message *resp,
665 				void *data, u32 data_buflen)
666 {
667 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
668 	struct net_device_context *ndev_ctx = netdev_priv(net);
669 	struct netvsc_reconfig *event;
670 	unsigned long flags;
671 
672 	/* Ensure the packet is big enough to access its fields */
673 	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
674 		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
675 			   resp->msg_len);
676 		return;
677 	}
678 
679 	/* Copy the RNDIS indicate status into nvchan->recv_buf */
680 	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
681 
682 	/* Update the physical link speed when changing to another vSwitch */
683 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
684 		u32 speed;
685 
686 		/* Validate status_buf_offset and status_buflen.
687 		 *
688 		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
689 		 * for the status buffer field in resp->msg_len; perform the validation
690 		 * using data_buflen (>= resp->msg_len).
691 		 */
692 		if (indicate->status_buflen < sizeof(speed) ||
693 		    indicate->status_buf_offset < sizeof(*indicate) ||
694 		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
695 		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
696 				< indicate->status_buflen) {
697 			netdev_err(net, "invalid rndis_indicate_status packet\n");
698 			return;
699 		}
700 
701 		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
702 		ndev_ctx->speed = speed;
703 		return;
704 	}
705 
706 	/* Handle these link change statuses below */
707 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
708 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
709 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
710 		return;
711 
712 	if (net->reg_state != NETREG_REGISTERED)
713 		return;
714 
715 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
716 	if (!event)
717 		return;
718 	event->event = indicate->status;
719 
720 	spin_lock_irqsave(&ndev_ctx->lock, flags);
721 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
722 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
723 
724 	schedule_delayed_work(&ndev_ctx->dwork, 0);
725 }
726 
727 /* This function should only be called after skb_record_rx_queue() */
netvsc_xdp_xmit(struct sk_buff * skb,struct net_device * ndev)728 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
729 {
730 	int rc;
731 
732 	skb->queue_mapping = skb_get_rx_queue(skb);
733 	__skb_push(skb, ETH_HLEN);
734 
735 	rc = netvsc_xmit(skb, ndev, true);
736 
737 	if (dev_xmit_complete(rc))
738 		return;
739 
740 	dev_kfree_skb_any(skb);
741 	ndev->stats.tx_dropped++;
742 }
743 
netvsc_comp_ipcsum(struct sk_buff * skb)744 static void netvsc_comp_ipcsum(struct sk_buff *skb)
745 {
746 	struct iphdr *iph = (struct iphdr *)skb->data;
747 
748 	iph->check = 0;
749 	iph->check = ip_fast_csum(iph, iph->ihl);
750 }
751 
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan,struct xdp_buff * xdp)752 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
753 					     struct netvsc_channel *nvchan,
754 					     struct xdp_buff *xdp)
755 {
756 	struct napi_struct *napi = &nvchan->napi;
757 	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
758 	const struct ndis_tcp_ip_checksum_info *csum_info =
759 						&nvchan->rsc.csum_info;
760 	const u32 *hash_info = &nvchan->rsc.hash_info;
761 	u8 ppi_flags = nvchan->rsc.ppi_flags;
762 	struct sk_buff *skb;
763 	void *xbuf = xdp->data_hard_start;
764 	int i;
765 
766 	if (xbuf) {
767 		unsigned int hdroom = xdp->data - xdp->data_hard_start;
768 		unsigned int xlen = xdp->data_end - xdp->data;
769 		unsigned int frag_size = xdp->frame_sz;
770 
771 		skb = build_skb(xbuf, frag_size);
772 
773 		if (!skb) {
774 			__free_page(virt_to_page(xbuf));
775 			return NULL;
776 		}
777 
778 		skb_reserve(skb, hdroom);
779 		skb_put(skb, xlen);
780 		skb->dev = napi->dev;
781 	} else {
782 		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
783 
784 		if (!skb)
785 			return NULL;
786 
787 		/* Copy to skb. This copy is needed here since the memory
788 		 * pointed by hv_netvsc_packet cannot be deallocated.
789 		 */
790 		for (i = 0; i < nvchan->rsc.cnt; i++)
791 			skb_put_data(skb, nvchan->rsc.data[i],
792 				     nvchan->rsc.len[i]);
793 	}
794 
795 	skb->protocol = eth_type_trans(skb, net);
796 
797 	/* skb is already created with CHECKSUM_NONE */
798 	skb_checksum_none_assert(skb);
799 
800 	/* Incoming packets may have IP header checksum verified by the host.
801 	 * They may not have IP header checksum computed after coalescing.
802 	 * We compute it here if the flags are set, because on Linux, the IP
803 	 * checksum is always checked.
804 	 */
805 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
806 	    csum_info->receive.ip_checksum_succeeded &&
807 	    skb->protocol == htons(ETH_P_IP)) {
808 		/* Check that there is enough space to hold the IP header. */
809 		if (skb_headlen(skb) < sizeof(struct iphdr)) {
810 			kfree_skb(skb);
811 			return NULL;
812 		}
813 		netvsc_comp_ipcsum(skb);
814 	}
815 
816 	/* Do L4 checksum offload if enabled and present. */
817 	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
818 		if (csum_info->receive.tcp_checksum_succeeded ||
819 		    csum_info->receive.udp_checksum_succeeded)
820 			skb->ip_summed = CHECKSUM_UNNECESSARY;
821 	}
822 
823 	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
824 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
825 
826 	if (ppi_flags & NVSC_RSC_VLAN) {
827 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
828 			(vlan->cfi ? VLAN_CFI_MASK : 0);
829 
830 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
831 				       vlan_tci);
832 	}
833 
834 	return skb;
835 }
836 
837 /*
838  * netvsc_recv_callback -  Callback when we receive a packet from the
839  * "wire" on the specified device.
840  */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)841 int netvsc_recv_callback(struct net_device *net,
842 			 struct netvsc_device *net_device,
843 			 struct netvsc_channel *nvchan)
844 {
845 	struct net_device_context *net_device_ctx = netdev_priv(net);
846 	struct vmbus_channel *channel = nvchan->channel;
847 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
848 	struct sk_buff *skb;
849 	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
850 	struct xdp_buff xdp;
851 	u32 act;
852 
853 	if (net->reg_state != NETREG_REGISTERED)
854 		return NVSP_STAT_FAIL;
855 
856 	act = netvsc_run_xdp(net, nvchan, &xdp);
857 
858 	if (act == XDP_REDIRECT)
859 		return NVSP_STAT_SUCCESS;
860 
861 	if (act != XDP_PASS && act != XDP_TX) {
862 		u64_stats_update_begin(&rx_stats->syncp);
863 		rx_stats->xdp_drop++;
864 		u64_stats_update_end(&rx_stats->syncp);
865 
866 		return NVSP_STAT_SUCCESS; /* consumed by XDP */
867 	}
868 
869 	/* Allocate a skb - TODO direct I/O to pages? */
870 	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
871 
872 	if (unlikely(!skb)) {
873 		++net_device_ctx->eth_stats.rx_no_memory;
874 		return NVSP_STAT_FAIL;
875 	}
876 
877 	skb_record_rx_queue(skb, q_idx);
878 
879 	/*
880 	 * Even if injecting the packet, record the statistics
881 	 * on the synthetic device because modifying the VF device
882 	 * statistics will not work correctly.
883 	 */
884 	u64_stats_update_begin(&rx_stats->syncp);
885 	if (act == XDP_TX)
886 		rx_stats->xdp_tx++;
887 
888 	rx_stats->packets++;
889 	rx_stats->bytes += nvchan->rsc.pktlen;
890 
891 	if (skb->pkt_type == PACKET_BROADCAST)
892 		++rx_stats->broadcast;
893 	else if (skb->pkt_type == PACKET_MULTICAST)
894 		++rx_stats->multicast;
895 	u64_stats_update_end(&rx_stats->syncp);
896 
897 	if (act == XDP_TX) {
898 		netvsc_xdp_xmit(skb, net);
899 		return NVSP_STAT_SUCCESS;
900 	}
901 
902 	napi_gro_receive(&nvchan->napi, skb);
903 	return NVSP_STAT_SUCCESS;
904 }
905 
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)906 static void netvsc_get_drvinfo(struct net_device *net,
907 			       struct ethtool_drvinfo *info)
908 {
909 	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
910 	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
911 }
912 
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)913 static void netvsc_get_channels(struct net_device *net,
914 				struct ethtool_channels *channel)
915 {
916 	struct net_device_context *net_device_ctx = netdev_priv(net);
917 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
918 
919 	if (nvdev) {
920 		channel->max_combined	= nvdev->max_chn;
921 		channel->combined_count = nvdev->num_chn;
922 	}
923 }
924 
925 /* Alloc struct netvsc_device_info, and initialize it from either existing
926  * struct netvsc_device, or from default values.
927  */
928 static
netvsc_devinfo_get(struct netvsc_device * nvdev)929 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
930 {
931 	struct netvsc_device_info *dev_info;
932 	struct bpf_prog *prog;
933 
934 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
935 
936 	if (!dev_info)
937 		return NULL;
938 
939 	if (nvdev) {
940 		ASSERT_RTNL();
941 
942 		dev_info->num_chn = nvdev->num_chn;
943 		dev_info->send_sections = nvdev->send_section_cnt;
944 		dev_info->send_section_size = nvdev->send_section_size;
945 		dev_info->recv_sections = nvdev->recv_section_cnt;
946 		dev_info->recv_section_size = nvdev->recv_section_size;
947 
948 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
949 		       NETVSC_HASH_KEYLEN);
950 
951 		prog = netvsc_xdp_get(nvdev);
952 		if (prog) {
953 			bpf_prog_inc(prog);
954 			dev_info->bprog = prog;
955 		}
956 	} else {
957 		dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
958 					netif_get_num_default_rss_queues());
959 		dev_info->send_sections = NETVSC_DEFAULT_TX;
960 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
961 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
962 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
963 	}
964 
965 	return dev_info;
966 }
967 
968 /* Free struct netvsc_device_info */
netvsc_devinfo_put(struct netvsc_device_info * dev_info)969 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
970 {
971 	if (dev_info->bprog) {
972 		ASSERT_RTNL();
973 		bpf_prog_put(dev_info->bprog);
974 	}
975 
976 	kfree(dev_info);
977 }
978 
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)979 static int netvsc_detach(struct net_device *ndev,
980 			 struct netvsc_device *nvdev)
981 {
982 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
983 	struct hv_device *hdev = ndev_ctx->device_ctx;
984 	int ret;
985 
986 	/* Don't try continuing to try and setup sub channels */
987 	if (cancel_work_sync(&nvdev->subchan_work))
988 		nvdev->num_chn = 1;
989 
990 	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
991 
992 	/* If device was up (receiving) then shutdown */
993 	if (netif_running(ndev)) {
994 		netvsc_tx_disable(nvdev, ndev);
995 
996 		ret = rndis_filter_close(nvdev);
997 		if (ret) {
998 			netdev_err(ndev,
999 				   "unable to close device (ret %d).\n", ret);
1000 			return ret;
1001 		}
1002 
1003 		ret = netvsc_wait_until_empty(nvdev);
1004 		if (ret) {
1005 			netdev_err(ndev,
1006 				   "Ring buffer not empty after closing rndis\n");
1007 			return ret;
1008 		}
1009 	}
1010 
1011 	netif_device_detach(ndev);
1012 
1013 	rndis_filter_device_remove(hdev, nvdev);
1014 
1015 	return 0;
1016 }
1017 
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)1018 static int netvsc_attach(struct net_device *ndev,
1019 			 struct netvsc_device_info *dev_info)
1020 {
1021 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1022 	struct hv_device *hdev = ndev_ctx->device_ctx;
1023 	struct netvsc_device *nvdev;
1024 	struct rndis_device *rdev;
1025 	struct bpf_prog *prog;
1026 	int ret = 0;
1027 
1028 	nvdev = rndis_filter_device_add(hdev, dev_info);
1029 	if (IS_ERR(nvdev))
1030 		return PTR_ERR(nvdev);
1031 
1032 	if (nvdev->num_chn > 1) {
1033 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1034 
1035 		/* if unavailable, just proceed with one queue */
1036 		if (ret) {
1037 			nvdev->max_chn = 1;
1038 			nvdev->num_chn = 1;
1039 		}
1040 	}
1041 
1042 	prog = dev_info->bprog;
1043 	if (prog) {
1044 		bpf_prog_inc(prog);
1045 		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1046 		if (ret) {
1047 			bpf_prog_put(prog);
1048 			goto err1;
1049 		}
1050 	}
1051 
1052 	/* In any case device is now ready */
1053 	nvdev->tx_disable = false;
1054 	netif_device_attach(ndev);
1055 
1056 	/* Note: enable and attach happen when sub-channels setup */
1057 	netif_carrier_off(ndev);
1058 
1059 	if (netif_running(ndev)) {
1060 		ret = rndis_filter_open(nvdev);
1061 		if (ret)
1062 			goto err2;
1063 
1064 		rdev = nvdev->extension;
1065 		if (!rdev->link_state)
1066 			netif_carrier_on(ndev);
1067 	}
1068 
1069 	return 0;
1070 
1071 err2:
1072 	netif_device_detach(ndev);
1073 
1074 err1:
1075 	rndis_filter_device_remove(hdev, nvdev);
1076 
1077 	return ret;
1078 }
1079 
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1080 static int netvsc_set_channels(struct net_device *net,
1081 			       struct ethtool_channels *channels)
1082 {
1083 	struct net_device_context *net_device_ctx = netdev_priv(net);
1084 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1085 	unsigned int orig, count = channels->combined_count;
1086 	struct netvsc_device_info *device_info;
1087 	int ret;
1088 
1089 	/* We do not support separate count for rx, tx, or other */
1090 	if (count == 0 ||
1091 	    channels->rx_count || channels->tx_count || channels->other_count)
1092 		return -EINVAL;
1093 
1094 	if (!nvdev || nvdev->destroy)
1095 		return -ENODEV;
1096 
1097 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1098 		return -EINVAL;
1099 
1100 	if (count > nvdev->max_chn)
1101 		return -EINVAL;
1102 
1103 	orig = nvdev->num_chn;
1104 
1105 	device_info = netvsc_devinfo_get(nvdev);
1106 
1107 	if (!device_info)
1108 		return -ENOMEM;
1109 
1110 	device_info->num_chn = count;
1111 
1112 	ret = netvsc_detach(net, nvdev);
1113 	if (ret)
1114 		goto out;
1115 
1116 	ret = netvsc_attach(net, device_info);
1117 	if (ret) {
1118 		device_info->num_chn = orig;
1119 		if (netvsc_attach(net, device_info))
1120 			netdev_err(net, "restoring channel setting failed\n");
1121 	}
1122 
1123 out:
1124 	netvsc_devinfo_put(device_info);
1125 	return ret;
1126 }
1127 
netvsc_init_settings(struct net_device * dev)1128 static void netvsc_init_settings(struct net_device *dev)
1129 {
1130 	struct net_device_context *ndc = netdev_priv(dev);
1131 
1132 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1133 
1134 	ndc->speed = SPEED_UNKNOWN;
1135 	ndc->duplex = DUPLEX_FULL;
1136 
1137 	dev->features = NETIF_F_LRO;
1138 }
1139 
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1140 static int netvsc_get_link_ksettings(struct net_device *dev,
1141 				     struct ethtool_link_ksettings *cmd)
1142 {
1143 	struct net_device_context *ndc = netdev_priv(dev);
1144 	struct net_device *vf_netdev;
1145 
1146 	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1147 
1148 	if (vf_netdev)
1149 		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1150 
1151 	cmd->base.speed = ndc->speed;
1152 	cmd->base.duplex = ndc->duplex;
1153 	cmd->base.port = PORT_OTHER;
1154 
1155 	return 0;
1156 }
1157 
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1158 static int netvsc_set_link_ksettings(struct net_device *dev,
1159 				     const struct ethtool_link_ksettings *cmd)
1160 {
1161 	struct net_device_context *ndc = netdev_priv(dev);
1162 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1163 
1164 	if (vf_netdev) {
1165 		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1166 			return -EOPNOTSUPP;
1167 
1168 		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1169 								  cmd);
1170 	}
1171 
1172 	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1173 						  &ndc->speed, &ndc->duplex);
1174 }
1175 
netvsc_change_mtu(struct net_device * ndev,int mtu)1176 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1177 {
1178 	struct net_device_context *ndevctx = netdev_priv(ndev);
1179 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1180 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1181 	int orig_mtu = ndev->mtu;
1182 	struct netvsc_device_info *device_info;
1183 	int ret = 0;
1184 
1185 	if (!nvdev || nvdev->destroy)
1186 		return -ENODEV;
1187 
1188 	device_info = netvsc_devinfo_get(nvdev);
1189 
1190 	if (!device_info)
1191 		return -ENOMEM;
1192 
1193 	/* Change MTU of underlying VF netdev first. */
1194 	if (vf_netdev) {
1195 		ret = dev_set_mtu(vf_netdev, mtu);
1196 		if (ret)
1197 			goto out;
1198 	}
1199 
1200 	ret = netvsc_detach(ndev, nvdev);
1201 	if (ret)
1202 		goto rollback_vf;
1203 
1204 	WRITE_ONCE(ndev->mtu, mtu);
1205 
1206 	ret = netvsc_attach(ndev, device_info);
1207 	if (!ret)
1208 		goto out;
1209 
1210 	/* Attempt rollback to original MTU */
1211 	WRITE_ONCE(ndev->mtu, orig_mtu);
1212 
1213 	if (netvsc_attach(ndev, device_info))
1214 		netdev_err(ndev, "restoring mtu failed\n");
1215 rollback_vf:
1216 	if (vf_netdev)
1217 		dev_set_mtu(vf_netdev, orig_mtu);
1218 
1219 out:
1220 	netvsc_devinfo_put(device_info);
1221 	return ret;
1222 }
1223 
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1224 static void netvsc_get_vf_stats(struct net_device *net,
1225 				struct netvsc_vf_pcpu_stats *tot)
1226 {
1227 	struct net_device_context *ndev_ctx = netdev_priv(net);
1228 	int i;
1229 
1230 	memset(tot, 0, sizeof(*tot));
1231 
1232 	for_each_possible_cpu(i) {
1233 		const struct netvsc_vf_pcpu_stats *stats
1234 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1235 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1236 		unsigned int start;
1237 
1238 		do {
1239 			start = u64_stats_fetch_begin(&stats->syncp);
1240 			rx_packets = stats->rx_packets;
1241 			tx_packets = stats->tx_packets;
1242 			rx_bytes = stats->rx_bytes;
1243 			tx_bytes = stats->tx_bytes;
1244 		} while (u64_stats_fetch_retry(&stats->syncp, start));
1245 
1246 		tot->rx_packets += rx_packets;
1247 		tot->tx_packets += tx_packets;
1248 		tot->rx_bytes   += rx_bytes;
1249 		tot->tx_bytes   += tx_bytes;
1250 		tot->tx_dropped += stats->tx_dropped;
1251 	}
1252 }
1253 
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1254 static void netvsc_get_pcpu_stats(struct net_device *net,
1255 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1256 {
1257 	struct net_device_context *ndev_ctx = netdev_priv(net);
1258 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1259 	int i;
1260 
1261 	/* fetch percpu stats of vf */
1262 	for_each_possible_cpu(i) {
1263 		const struct netvsc_vf_pcpu_stats *stats =
1264 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1265 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1266 		unsigned int start;
1267 
1268 		do {
1269 			start = u64_stats_fetch_begin(&stats->syncp);
1270 			this_tot->vf_rx_packets = stats->rx_packets;
1271 			this_tot->vf_tx_packets = stats->tx_packets;
1272 			this_tot->vf_rx_bytes = stats->rx_bytes;
1273 			this_tot->vf_tx_bytes = stats->tx_bytes;
1274 		} while (u64_stats_fetch_retry(&stats->syncp, start));
1275 		this_tot->rx_packets = this_tot->vf_rx_packets;
1276 		this_tot->tx_packets = this_tot->vf_tx_packets;
1277 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1278 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1279 	}
1280 
1281 	/* fetch percpu stats of netvsc */
1282 	for (i = 0; i < nvdev->num_chn; i++) {
1283 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1284 		const struct netvsc_stats_tx *tx_stats;
1285 		const struct netvsc_stats_rx *rx_stats;
1286 		struct netvsc_ethtool_pcpu_stats *this_tot =
1287 			&pcpu_tot[nvchan->channel->target_cpu];
1288 		u64 packets, bytes;
1289 		unsigned int start;
1290 
1291 		tx_stats = &nvchan->tx_stats;
1292 		do {
1293 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1294 			packets = tx_stats->packets;
1295 			bytes = tx_stats->bytes;
1296 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1297 
1298 		this_tot->tx_bytes	+= bytes;
1299 		this_tot->tx_packets	+= packets;
1300 
1301 		rx_stats = &nvchan->rx_stats;
1302 		do {
1303 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1304 			packets = rx_stats->packets;
1305 			bytes = rx_stats->bytes;
1306 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1307 
1308 		this_tot->rx_bytes	+= bytes;
1309 		this_tot->rx_packets	+= packets;
1310 	}
1311 }
1312 
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1313 static void netvsc_get_stats64(struct net_device *net,
1314 			       struct rtnl_link_stats64 *t)
1315 {
1316 	struct net_device_context *ndev_ctx = netdev_priv(net);
1317 	struct netvsc_device *nvdev;
1318 	struct netvsc_vf_pcpu_stats vf_tot;
1319 	int i;
1320 
1321 	rcu_read_lock();
1322 
1323 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1324 	if (!nvdev)
1325 		goto out;
1326 
1327 	netdev_stats_to_stats64(t, &net->stats);
1328 
1329 	netvsc_get_vf_stats(net, &vf_tot);
1330 	t->rx_packets += vf_tot.rx_packets;
1331 	t->tx_packets += vf_tot.tx_packets;
1332 	t->rx_bytes   += vf_tot.rx_bytes;
1333 	t->tx_bytes   += vf_tot.tx_bytes;
1334 	t->tx_dropped += vf_tot.tx_dropped;
1335 
1336 	for (i = 0; i < nvdev->num_chn; i++) {
1337 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1338 		const struct netvsc_stats_tx *tx_stats;
1339 		const struct netvsc_stats_rx *rx_stats;
1340 		u64 packets, bytes, multicast;
1341 		unsigned int start;
1342 
1343 		tx_stats = &nvchan->tx_stats;
1344 		do {
1345 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1346 			packets = tx_stats->packets;
1347 			bytes = tx_stats->bytes;
1348 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1349 
1350 		t->tx_bytes	+= bytes;
1351 		t->tx_packets	+= packets;
1352 
1353 		rx_stats = &nvchan->rx_stats;
1354 		do {
1355 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1356 			packets = rx_stats->packets;
1357 			bytes = rx_stats->bytes;
1358 			multicast = rx_stats->multicast + rx_stats->broadcast;
1359 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1360 
1361 		t->rx_bytes	+= bytes;
1362 		t->rx_packets	+= packets;
1363 		t->multicast	+= multicast;
1364 	}
1365 out:
1366 	rcu_read_unlock();
1367 }
1368 
netvsc_set_mac_addr(struct net_device * ndev,void * p)1369 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1370 {
1371 	struct net_device_context *ndc = netdev_priv(ndev);
1372 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1373 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1374 	struct sockaddr_storage *addr = p;
1375 	int err;
1376 
1377 	err = eth_prepare_mac_addr_change(ndev, p);
1378 	if (err)
1379 		return err;
1380 
1381 	if (!nvdev)
1382 		return -ENODEV;
1383 
1384 	if (vf_netdev) {
1385 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1386 		if (err)
1387 			return err;
1388 	}
1389 
1390 	err = rndis_filter_set_device_mac(nvdev, addr->__data);
1391 	if (!err) {
1392 		eth_commit_mac_addr_change(ndev, p);
1393 	} else if (vf_netdev) {
1394 		/* rollback change on VF */
1395 		memcpy(addr->__data, ndev->dev_addr, ETH_ALEN);
1396 		dev_set_mac_address(vf_netdev, addr, NULL);
1397 	}
1398 
1399 	return err;
1400 }
1401 
1402 static const struct {
1403 	char name[ETH_GSTRING_LEN];
1404 	u16 offset;
1405 } netvsc_stats[] = {
1406 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1407 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1408 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1409 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1410 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1411 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1412 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1413 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1414 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1415 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1416 	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1417 }, pcpu_stats[] = {
1418 	{ "cpu%u_rx_packets",
1419 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1420 	{ "cpu%u_rx_bytes",
1421 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1422 	{ "cpu%u_tx_packets",
1423 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1424 	{ "cpu%u_tx_bytes",
1425 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1426 	{ "cpu%u_vf_rx_packets",
1427 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1428 	{ "cpu%u_vf_rx_bytes",
1429 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1430 	{ "cpu%u_vf_tx_packets",
1431 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1432 	{ "cpu%u_vf_tx_bytes",
1433 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1434 }, vf_stats[] = {
1435 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1436 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1437 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1438 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1439 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1440 };
1441 
1442 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1443 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1444 
1445 /* statistics per queue (rx/tx packets/bytes) */
1446 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1447 
1448 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1449 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1450 
netvsc_get_sset_count(struct net_device * dev,int string_set)1451 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1452 {
1453 	struct net_device_context *ndc = netdev_priv(dev);
1454 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1455 
1456 	if (!nvdev)
1457 		return -ENODEV;
1458 
1459 	switch (string_set) {
1460 	case ETH_SS_STATS:
1461 		return NETVSC_GLOBAL_STATS_LEN
1462 			+ NETVSC_VF_STATS_LEN
1463 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1464 			+ NETVSC_PCPU_STATS_LEN;
1465 	default:
1466 		return -EINVAL;
1467 	}
1468 }
1469 
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1470 static void netvsc_get_ethtool_stats(struct net_device *dev,
1471 				     struct ethtool_stats *stats, u64 *data)
1472 {
1473 	struct net_device_context *ndc = netdev_priv(dev);
1474 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1475 	const void *nds = &ndc->eth_stats;
1476 	const struct netvsc_stats_tx *tx_stats;
1477 	const struct netvsc_stats_rx *rx_stats;
1478 	struct netvsc_vf_pcpu_stats sum;
1479 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1480 	unsigned int start;
1481 	u64 packets, bytes;
1482 	u64 xdp_drop;
1483 	u64 xdp_redirect;
1484 	u64 xdp_tx;
1485 	u64 xdp_xmit;
1486 	int i, j, cpu;
1487 
1488 	if (!nvdev)
1489 		return;
1490 
1491 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1492 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1493 
1494 	netvsc_get_vf_stats(dev, &sum);
1495 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1496 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1497 
1498 	for (j = 0; j < nvdev->num_chn; j++) {
1499 		tx_stats = &nvdev->chan_table[j].tx_stats;
1500 
1501 		do {
1502 			start = u64_stats_fetch_begin(&tx_stats->syncp);
1503 			packets = tx_stats->packets;
1504 			bytes = tx_stats->bytes;
1505 			xdp_xmit = tx_stats->xdp_xmit;
1506 		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1507 		data[i++] = packets;
1508 		data[i++] = bytes;
1509 		data[i++] = xdp_xmit;
1510 
1511 		rx_stats = &nvdev->chan_table[j].rx_stats;
1512 		do {
1513 			start = u64_stats_fetch_begin(&rx_stats->syncp);
1514 			packets = rx_stats->packets;
1515 			bytes = rx_stats->bytes;
1516 			xdp_drop = rx_stats->xdp_drop;
1517 			xdp_redirect = rx_stats->xdp_redirect;
1518 			xdp_tx = rx_stats->xdp_tx;
1519 		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1520 		data[i++] = packets;
1521 		data[i++] = bytes;
1522 		data[i++] = xdp_drop;
1523 		data[i++] = xdp_redirect;
1524 		data[i++] = xdp_tx;
1525 	}
1526 
1527 	pcpu_sum = kvmalloc_array(nr_cpu_ids,
1528 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1529 				  GFP_KERNEL);
1530 	if (!pcpu_sum)
1531 		return;
1532 
1533 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1534 	for_each_present_cpu(cpu) {
1535 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1536 
1537 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1538 			data[i++] = *(u64 *)((void *)this_sum
1539 					     + pcpu_stats[j].offset);
1540 	}
1541 	kvfree(pcpu_sum);
1542 }
1543 
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1544 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1545 {
1546 	struct net_device_context *ndc = netdev_priv(dev);
1547 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1548 	u8 *p = data;
1549 	int i, cpu;
1550 
1551 	if (!nvdev)
1552 		return;
1553 
1554 	switch (stringset) {
1555 	case ETH_SS_STATS:
1556 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1557 			ethtool_puts(&p, netvsc_stats[i].name);
1558 
1559 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1560 			ethtool_puts(&p, vf_stats[i].name);
1561 
1562 		for (i = 0; i < nvdev->num_chn; i++) {
1563 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1564 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1565 			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1566 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1567 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1568 			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1569 			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1570 			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1571 		}
1572 
1573 		for_each_present_cpu(cpu) {
1574 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1575 				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1576 		}
1577 
1578 		break;
1579 	}
1580 }
1581 
1582 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1583 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1584 			 struct ethtool_rxnfc *info)
1585 {
1586 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1587 
1588 	info->data = RXH_IP_SRC | RXH_IP_DST;
1589 
1590 	switch (info->flow_type) {
1591 	case TCP_V4_FLOW:
1592 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1593 			info->data |= l4_flag;
1594 
1595 		break;
1596 
1597 	case TCP_V6_FLOW:
1598 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1599 			info->data |= l4_flag;
1600 
1601 		break;
1602 
1603 	case UDP_V4_FLOW:
1604 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1605 			info->data |= l4_flag;
1606 
1607 		break;
1608 
1609 	case UDP_V6_FLOW:
1610 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1611 			info->data |= l4_flag;
1612 
1613 		break;
1614 
1615 	case IPV4_FLOW:
1616 	case IPV6_FLOW:
1617 		break;
1618 	default:
1619 		info->data = 0;
1620 		break;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1627 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1628 		 u32 *rules)
1629 {
1630 	struct net_device_context *ndc = netdev_priv(dev);
1631 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1632 
1633 	if (!nvdev)
1634 		return -ENODEV;
1635 
1636 	switch (info->cmd) {
1637 	case ETHTOOL_GRXRINGS:
1638 		info->data = nvdev->num_chn;
1639 		return 0;
1640 
1641 	case ETHTOOL_GRXFH:
1642 		return netvsc_get_rss_hash_opts(ndc, info);
1643 	}
1644 	return -EOPNOTSUPP;
1645 }
1646 
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1647 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1648 				    struct ethtool_rxnfc *info)
1649 {
1650 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1651 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1652 		switch (info->flow_type) {
1653 		case TCP_V4_FLOW:
1654 			ndc->l4_hash |= HV_TCP4_L4HASH;
1655 			break;
1656 
1657 		case TCP_V6_FLOW:
1658 			ndc->l4_hash |= HV_TCP6_L4HASH;
1659 			break;
1660 
1661 		case UDP_V4_FLOW:
1662 			ndc->l4_hash |= HV_UDP4_L4HASH;
1663 			break;
1664 
1665 		case UDP_V6_FLOW:
1666 			ndc->l4_hash |= HV_UDP6_L4HASH;
1667 			break;
1668 
1669 		default:
1670 			return -EOPNOTSUPP;
1671 		}
1672 
1673 		return 0;
1674 	}
1675 
1676 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1677 		switch (info->flow_type) {
1678 		case TCP_V4_FLOW:
1679 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1680 			break;
1681 
1682 		case TCP_V6_FLOW:
1683 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1684 			break;
1685 
1686 		case UDP_V4_FLOW:
1687 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1688 			break;
1689 
1690 		case UDP_V6_FLOW:
1691 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1692 			break;
1693 
1694 		default:
1695 			return -EOPNOTSUPP;
1696 		}
1697 
1698 		return 0;
1699 	}
1700 
1701 	return -EOPNOTSUPP;
1702 }
1703 
1704 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1705 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1706 {
1707 	struct net_device_context *ndc = netdev_priv(ndev);
1708 
1709 	if (info->cmd == ETHTOOL_SRXFH)
1710 		return netvsc_set_rss_hash_opts(ndc, info);
1711 
1712 	return -EOPNOTSUPP;
1713 }
1714 
netvsc_get_rxfh_key_size(struct net_device * dev)1715 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1716 {
1717 	return NETVSC_HASH_KEYLEN;
1718 }
1719 
netvsc_rss_indir_size(struct net_device * dev)1720 static u32 netvsc_rss_indir_size(struct net_device *dev)
1721 {
1722 	struct net_device_context *ndc = netdev_priv(dev);
1723 
1724 	return ndc->rx_table_sz;
1725 }
1726 
netvsc_get_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh)1727 static int netvsc_get_rxfh(struct net_device *dev,
1728 			   struct ethtool_rxfh_param *rxfh)
1729 {
1730 	struct net_device_context *ndc = netdev_priv(dev);
1731 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1732 	struct rndis_device *rndis_dev;
1733 	int i;
1734 
1735 	if (!ndev)
1736 		return -ENODEV;
1737 
1738 	rxfh->hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1739 
1740 	rndis_dev = ndev->extension;
1741 	if (rxfh->indir) {
1742 		for (i = 0; i < ndc->rx_table_sz; i++)
1743 			rxfh->indir[i] = ndc->rx_table[i];
1744 	}
1745 
1746 	if (rxfh->key)
1747 		memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1748 
1749 	return 0;
1750 }
1751 
netvsc_set_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh,struct netlink_ext_ack * extack)1752 static int netvsc_set_rxfh(struct net_device *dev,
1753 			   struct ethtool_rxfh_param *rxfh,
1754 			   struct netlink_ext_ack *extack)
1755 {
1756 	struct net_device_context *ndc = netdev_priv(dev);
1757 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758 	struct rndis_device *rndis_dev;
1759 	u8 *key = rxfh->key;
1760 	int i;
1761 
1762 	if (!ndev)
1763 		return -ENODEV;
1764 
1765 	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1766 	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1767 		return -EOPNOTSUPP;
1768 
1769 	rndis_dev = ndev->extension;
1770 	if (rxfh->indir) {
1771 		for (i = 0; i < ndc->rx_table_sz; i++)
1772 			if (rxfh->indir[i] >= ndev->num_chn)
1773 				return -EINVAL;
1774 
1775 		for (i = 0; i < ndc->rx_table_sz; i++)
1776 			ndc->rx_table[i] = rxfh->indir[i];
1777 	}
1778 
1779 	if (!key) {
1780 		if (!rxfh->indir)
1781 			return 0;
1782 
1783 		key = rndis_dev->rss_key;
1784 	}
1785 
1786 	return rndis_filter_set_rss_param(rndis_dev, key);
1787 }
1788 
1789 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1790  * It does have pre-allocated receive area which is divided into sections.
1791  */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1792 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1793 				   struct ethtool_ringparam *ring)
1794 {
1795 	u32 max_buf_size;
1796 
1797 	ring->rx_pending = nvdev->recv_section_cnt;
1798 	ring->tx_pending = nvdev->send_section_cnt;
1799 
1800 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1801 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1802 	else
1803 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1804 
1805 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1806 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1807 		/ nvdev->send_section_size;
1808 }
1809 
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1810 static void netvsc_get_ringparam(struct net_device *ndev,
1811 				 struct ethtool_ringparam *ring,
1812 				 struct kernel_ethtool_ringparam *kernel_ring,
1813 				 struct netlink_ext_ack *extack)
1814 {
1815 	struct net_device_context *ndevctx = netdev_priv(ndev);
1816 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1817 
1818 	if (!nvdev)
1819 		return;
1820 
1821 	__netvsc_get_ringparam(nvdev, ring);
1822 }
1823 
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1824 static int netvsc_set_ringparam(struct net_device *ndev,
1825 				struct ethtool_ringparam *ring,
1826 				struct kernel_ethtool_ringparam *kernel_ring,
1827 				struct netlink_ext_ack *extack)
1828 {
1829 	struct net_device_context *ndevctx = netdev_priv(ndev);
1830 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1831 	struct netvsc_device_info *device_info;
1832 	struct ethtool_ringparam orig;
1833 	u32 new_tx, new_rx;
1834 	int ret = 0;
1835 
1836 	if (!nvdev || nvdev->destroy)
1837 		return -ENODEV;
1838 
1839 	memset(&orig, 0, sizeof(orig));
1840 	__netvsc_get_ringparam(nvdev, &orig);
1841 
1842 	new_tx = clamp_t(u32, ring->tx_pending,
1843 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1844 	new_rx = clamp_t(u32, ring->rx_pending,
1845 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1846 
1847 	if (new_tx == orig.tx_pending &&
1848 	    new_rx == orig.rx_pending)
1849 		return 0;	 /* no change */
1850 
1851 	device_info = netvsc_devinfo_get(nvdev);
1852 
1853 	if (!device_info)
1854 		return -ENOMEM;
1855 
1856 	device_info->send_sections = new_tx;
1857 	device_info->recv_sections = new_rx;
1858 
1859 	ret = netvsc_detach(ndev, nvdev);
1860 	if (ret)
1861 		goto out;
1862 
1863 	ret = netvsc_attach(ndev, device_info);
1864 	if (ret) {
1865 		device_info->send_sections = orig.tx_pending;
1866 		device_info->recv_sections = orig.rx_pending;
1867 
1868 		if (netvsc_attach(ndev, device_info))
1869 			netdev_err(ndev, "restoring ringparam failed");
1870 	}
1871 
1872 out:
1873 	netvsc_devinfo_put(device_info);
1874 	return ret;
1875 }
1876 
netvsc_fix_features(struct net_device * ndev,netdev_features_t features)1877 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1878 					     netdev_features_t features)
1879 {
1880 	struct net_device_context *ndevctx = netdev_priv(ndev);
1881 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1882 
1883 	if (!nvdev || nvdev->destroy)
1884 		return features;
1885 
1886 	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1887 		features ^= NETIF_F_LRO;
1888 		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1889 	}
1890 
1891 	return features;
1892 }
1893 
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1894 static int netvsc_set_features(struct net_device *ndev,
1895 			       netdev_features_t features)
1896 {
1897 	netdev_features_t change = features ^ ndev->features;
1898 	struct net_device_context *ndevctx = netdev_priv(ndev);
1899 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1900 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1901 	struct ndis_offload_params offloads;
1902 	int ret = 0;
1903 
1904 	if (!nvdev || nvdev->destroy)
1905 		return -ENODEV;
1906 
1907 	if (!(change & NETIF_F_LRO))
1908 		goto syncvf;
1909 
1910 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1911 
1912 	if (features & NETIF_F_LRO) {
1913 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1914 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1915 	} else {
1916 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1917 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1918 	}
1919 
1920 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1921 
1922 	if (ret) {
1923 		features ^= NETIF_F_LRO;
1924 		ndev->features = features;
1925 	}
1926 
1927 syncvf:
1928 	if (!vf_netdev)
1929 		return ret;
1930 
1931 	vf_netdev->wanted_features = features;
1932 	netdev_update_features(vf_netdev);
1933 
1934 	return ret;
1935 }
1936 
netvsc_get_regs_len(struct net_device * netdev)1937 static int netvsc_get_regs_len(struct net_device *netdev)
1938 {
1939 	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1940 }
1941 
netvsc_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1942 static void netvsc_get_regs(struct net_device *netdev,
1943 			    struct ethtool_regs *regs, void *p)
1944 {
1945 	struct net_device_context *ndc = netdev_priv(netdev);
1946 	u32 *regs_buff = p;
1947 
1948 	/* increase the version, if buffer format is changed. */
1949 	regs->version = 1;
1950 
1951 	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1952 }
1953 
netvsc_get_msglevel(struct net_device * ndev)1954 static u32 netvsc_get_msglevel(struct net_device *ndev)
1955 {
1956 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1957 
1958 	return ndev_ctx->msg_enable;
1959 }
1960 
netvsc_set_msglevel(struct net_device * ndev,u32 val)1961 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1962 {
1963 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1964 
1965 	ndev_ctx->msg_enable = val;
1966 }
1967 
1968 static const struct ethtool_ops ethtool_ops = {
1969 	.get_drvinfo	= netvsc_get_drvinfo,
1970 	.get_regs_len	= netvsc_get_regs_len,
1971 	.get_regs	= netvsc_get_regs,
1972 	.get_msglevel	= netvsc_get_msglevel,
1973 	.set_msglevel	= netvsc_set_msglevel,
1974 	.get_link	= ethtool_op_get_link,
1975 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1976 	.get_sset_count = netvsc_get_sset_count,
1977 	.get_strings	= netvsc_get_strings,
1978 	.get_channels   = netvsc_get_channels,
1979 	.set_channels   = netvsc_set_channels,
1980 	.get_ts_info	= ethtool_op_get_ts_info,
1981 	.get_rxnfc	= netvsc_get_rxnfc,
1982 	.set_rxnfc	= netvsc_set_rxnfc,
1983 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1984 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1985 	.get_rxfh	= netvsc_get_rxfh,
1986 	.set_rxfh	= netvsc_set_rxfh,
1987 	.get_link_ksettings = netvsc_get_link_ksettings,
1988 	.set_link_ksettings = netvsc_set_link_ksettings,
1989 	.get_ringparam	= netvsc_get_ringparam,
1990 	.set_ringparam	= netvsc_set_ringparam,
1991 };
1992 
1993 static const struct net_device_ops device_ops = {
1994 	.ndo_open =			netvsc_open,
1995 	.ndo_stop =			netvsc_close,
1996 	.ndo_start_xmit =		netvsc_start_xmit,
1997 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1998 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1999 	.ndo_fix_features =		netvsc_fix_features,
2000 	.ndo_set_features =		netvsc_set_features,
2001 	.ndo_change_mtu =		netvsc_change_mtu,
2002 	.ndo_validate_addr =		eth_validate_addr,
2003 	.ndo_set_mac_address =		netvsc_set_mac_addr,
2004 	.ndo_select_queue =		netvsc_select_queue,
2005 	.ndo_get_stats64 =		netvsc_get_stats64,
2006 	.ndo_bpf =			netvsc_bpf,
2007 	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2008 };
2009 
2010 /*
2011  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2012  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2013  * present send GARP packet to network peers with netif_notify_peers().
2014  */
netvsc_link_change(struct work_struct * w)2015 static void netvsc_link_change(struct work_struct *w)
2016 {
2017 	struct net_device_context *ndev_ctx =
2018 		container_of(w, struct net_device_context, dwork.work);
2019 	struct hv_device *device_obj = ndev_ctx->device_ctx;
2020 	struct net_device *net = hv_get_drvdata(device_obj);
2021 	unsigned long flags, next_reconfig, delay;
2022 	struct netvsc_reconfig *event = NULL;
2023 	struct netvsc_device *net_device;
2024 	struct rndis_device *rdev;
2025 	bool reschedule = false;
2026 
2027 	/* if changes are happening, comeback later */
2028 	if (!rtnl_trylock()) {
2029 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2030 		return;
2031 	}
2032 
2033 	net_device = rtnl_dereference(ndev_ctx->nvdev);
2034 	if (!net_device)
2035 		goto out_unlock;
2036 
2037 	rdev = net_device->extension;
2038 
2039 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2040 	if (time_is_after_jiffies(next_reconfig)) {
2041 		/* link_watch only sends one notification with current state
2042 		 * per second, avoid doing reconfig more frequently. Handle
2043 		 * wrap around.
2044 		 */
2045 		delay = next_reconfig - jiffies;
2046 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2047 		schedule_delayed_work(&ndev_ctx->dwork, delay);
2048 		goto out_unlock;
2049 	}
2050 	ndev_ctx->last_reconfig = jiffies;
2051 
2052 	spin_lock_irqsave(&ndev_ctx->lock, flags);
2053 	if (!list_empty(&ndev_ctx->reconfig_events)) {
2054 		event = list_first_entry(&ndev_ctx->reconfig_events,
2055 					 struct netvsc_reconfig, list);
2056 		list_del(&event->list);
2057 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2058 	}
2059 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2060 
2061 	if (!event)
2062 		goto out_unlock;
2063 
2064 	switch (event->event) {
2065 		/* Only the following events are possible due to the check in
2066 		 * netvsc_linkstatus_callback()
2067 		 */
2068 	case RNDIS_STATUS_MEDIA_CONNECT:
2069 		if (rdev->link_state) {
2070 			rdev->link_state = false;
2071 			netif_carrier_on(net);
2072 			netvsc_tx_enable(net_device, net);
2073 		} else {
2074 			__netdev_notify_peers(net);
2075 		}
2076 		kfree(event);
2077 		break;
2078 	case RNDIS_STATUS_MEDIA_DISCONNECT:
2079 		if (!rdev->link_state) {
2080 			rdev->link_state = true;
2081 			netif_carrier_off(net);
2082 			netvsc_tx_disable(net_device, net);
2083 		}
2084 		kfree(event);
2085 		break;
2086 	case RNDIS_STATUS_NETWORK_CHANGE:
2087 		/* Only makes sense if carrier is present */
2088 		if (!rdev->link_state) {
2089 			rdev->link_state = true;
2090 			netif_carrier_off(net);
2091 			netvsc_tx_disable(net_device, net);
2092 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2093 			spin_lock_irqsave(&ndev_ctx->lock, flags);
2094 			list_add(&event->list, &ndev_ctx->reconfig_events);
2095 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2096 			reschedule = true;
2097 		}
2098 		break;
2099 	}
2100 
2101 	rtnl_unlock();
2102 
2103 	/* link_watch only sends one notification with current state per
2104 	 * second, handle next reconfig event in 2 seconds.
2105 	 */
2106 	if (reschedule)
2107 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2108 
2109 	return;
2110 
2111 out_unlock:
2112 	rtnl_unlock();
2113 }
2114 
get_netvsc_byref(struct net_device * vf_netdev)2115 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2116 {
2117 	struct net_device_context *net_device_ctx;
2118 	struct net_device *dev;
2119 
2120 	dev = netdev_master_upper_dev_get(vf_netdev);
2121 	if (!dev || dev->netdev_ops != &device_ops)
2122 		return NULL;	/* not a netvsc device */
2123 
2124 	net_device_ctx = netdev_priv(dev);
2125 	if (!rtnl_dereference(net_device_ctx->nvdev))
2126 		return NULL;	/* device is removed */
2127 
2128 	return dev;
2129 }
2130 
2131 /* Called when VF is injecting data into network stack.
2132  * Change the associated network device from VF to netvsc.
2133  * note: already called with rcu_read_lock
2134  */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2135 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2136 {
2137 	struct sk_buff *skb = *pskb;
2138 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2139 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2140 	struct netvsc_vf_pcpu_stats *pcpu_stats
2141 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2142 
2143 	skb = skb_share_check(skb, GFP_ATOMIC);
2144 	if (unlikely(!skb))
2145 		return RX_HANDLER_CONSUMED;
2146 
2147 	*pskb = skb;
2148 
2149 	skb->dev = ndev;
2150 
2151 	u64_stats_update_begin(&pcpu_stats->syncp);
2152 	pcpu_stats->rx_packets++;
2153 	pcpu_stats->rx_bytes += skb->len;
2154 	u64_stats_update_end(&pcpu_stats->syncp);
2155 
2156 	return RX_HANDLER_ANOTHER;
2157 }
2158 
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev,int context)2159 static int netvsc_vf_join(struct net_device *vf_netdev,
2160 			  struct net_device *ndev, int context)
2161 {
2162 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2163 	int ret;
2164 
2165 	ret = netdev_rx_handler_register(vf_netdev,
2166 					 netvsc_vf_handle_frame, ndev);
2167 	if (ret != 0) {
2168 		netdev_err(vf_netdev,
2169 			   "can not register netvsc VF receive handler (err = %d)\n",
2170 			   ret);
2171 		goto rx_handler_failed;
2172 	}
2173 
2174 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2175 					   NULL, NULL, NULL);
2176 	if (ret != 0) {
2177 		netdev_err(vf_netdev,
2178 			   "can not set master device %s (err = %d)\n",
2179 			   ndev->name, ret);
2180 		goto upper_link_failed;
2181 	}
2182 
2183 	/* If this registration is called from probe context vf_takeover
2184 	 * is taken care of later in probe itself.
2185 	 */
2186 	if (context == VF_REG_IN_NOTIFIER)
2187 		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2188 
2189 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2190 
2191 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2192 	return 0;
2193 
2194 upper_link_failed:
2195 	netdev_rx_handler_unregister(vf_netdev);
2196 rx_handler_failed:
2197 	return ret;
2198 }
2199 
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2200 static void __netvsc_vf_setup(struct net_device *ndev,
2201 			      struct net_device *vf_netdev)
2202 {
2203 	int ret;
2204 
2205 	/* Align MTU of VF with master */
2206 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2207 	if (ret)
2208 		netdev_warn(vf_netdev,
2209 			    "unable to change mtu to %u\n", ndev->mtu);
2210 
2211 	/* set multicast etc flags on VF */
2212 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2213 
2214 	/* sync address list from ndev to VF */
2215 	netif_addr_lock_bh(ndev);
2216 	dev_uc_sync(vf_netdev, ndev);
2217 	dev_mc_sync(vf_netdev, ndev);
2218 	netif_addr_unlock_bh(ndev);
2219 
2220 	if (netif_running(ndev)) {
2221 		ret = dev_open(vf_netdev, NULL);
2222 		if (ret)
2223 			netdev_warn(vf_netdev,
2224 				    "unable to open: %d\n", ret);
2225 	}
2226 }
2227 
2228 /* Setup VF as slave of the synthetic device.
2229  * Runs in workqueue to avoid recursion in netlink callbacks.
2230  */
netvsc_vf_setup(struct work_struct * w)2231 static void netvsc_vf_setup(struct work_struct *w)
2232 {
2233 	struct net_device_context *ndev_ctx
2234 		= container_of(w, struct net_device_context, vf_takeover.work);
2235 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2236 	struct net_device *vf_netdev;
2237 
2238 	if (!rtnl_trylock()) {
2239 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2240 		return;
2241 	}
2242 
2243 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2244 	if (vf_netdev)
2245 		__netvsc_vf_setup(ndev, vf_netdev);
2246 
2247 	rtnl_unlock();
2248 }
2249 
2250 /* Find netvsc by VF serial number.
2251  * The PCI hyperv controller records the serial number as the slot kobj name.
2252  */
get_netvsc_byslot(const struct net_device * vf_netdev)2253 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2254 {
2255 	struct device *parent = vf_netdev->dev.parent;
2256 	struct net_device_context *ndev_ctx;
2257 	struct net_device *ndev;
2258 	struct pci_dev *pdev;
2259 	u32 serial;
2260 
2261 	if (!parent || !dev_is_pci(parent))
2262 		return NULL; /* not a PCI device */
2263 
2264 	pdev = to_pci_dev(parent);
2265 	if (!pdev->slot) {
2266 		netdev_notice(vf_netdev, "no PCI slot information\n");
2267 		return NULL;
2268 	}
2269 
2270 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2271 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2272 			      pci_slot_name(pdev->slot));
2273 		return NULL;
2274 	}
2275 
2276 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2277 		if (!ndev_ctx->vf_alloc)
2278 			continue;
2279 
2280 		if (ndev_ctx->vf_serial != serial)
2281 			continue;
2282 
2283 		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2284 		if (ndev->addr_len != vf_netdev->addr_len ||
2285 		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2286 			   ndev->addr_len) != 0)
2287 			continue;
2288 
2289 		return ndev;
2290 
2291 	}
2292 
2293 	/* Fallback path to check synthetic vf with help of mac addr.
2294 	 * Because this function can be called before vf_netdev is
2295 	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2296 	 * from dev_addr, also try to match to its dev_addr.
2297 	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2298 	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2299 	 */
2300 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2301 		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2302 		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2303 		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2304 			return ndev;
2305 	}
2306 
2307 	netdev_notice(vf_netdev,
2308 		      "no netdev found for vf serial:%u\n", serial);
2309 	return NULL;
2310 }
2311 
netvsc_prepare_bonding(struct net_device * vf_netdev)2312 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2313 {
2314 	struct net_device *ndev;
2315 
2316 	ndev = get_netvsc_byslot(vf_netdev);
2317 	if (!ndev)
2318 		return NOTIFY_DONE;
2319 
2320 	/* set slave flag before open to prevent IPv6 addrconf */
2321 	vf_netdev->flags |= IFF_SLAVE;
2322 	return NOTIFY_DONE;
2323 }
2324 
netvsc_register_vf(struct net_device * vf_netdev,int context)2325 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2326 {
2327 	struct net_device_context *net_device_ctx;
2328 	struct netvsc_device *netvsc_dev;
2329 	struct bpf_prog *prog;
2330 	struct net_device *ndev;
2331 	int ret;
2332 
2333 	if (vf_netdev->addr_len != ETH_ALEN)
2334 		return NOTIFY_DONE;
2335 
2336 	ndev = get_netvsc_byslot(vf_netdev);
2337 	if (!ndev)
2338 		return NOTIFY_DONE;
2339 
2340 	net_device_ctx = netdev_priv(ndev);
2341 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2342 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2343 		return NOTIFY_DONE;
2344 
2345 	/* if synthetic interface is a different namespace,
2346 	 * then move the VF to that namespace; join will be
2347 	 * done again in that context.
2348 	 */
2349 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2350 		ret = dev_change_net_namespace(vf_netdev,
2351 					       dev_net(ndev), "eth%d");
2352 		if (ret)
2353 			netdev_err(vf_netdev,
2354 				   "could not move to same namespace as %s: %d\n",
2355 				   ndev->name, ret);
2356 		else
2357 			netdev_info(vf_netdev,
2358 				    "VF moved to namespace with: %s\n",
2359 				    ndev->name);
2360 		return NOTIFY_DONE;
2361 	}
2362 
2363 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2364 
2365 	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2366 		return NOTIFY_DONE;
2367 
2368 	dev_hold(vf_netdev);
2369 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2370 
2371 	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2372 		ndev->needed_headroom = vf_netdev->needed_headroom;
2373 
2374 	vf_netdev->wanted_features = ndev->features;
2375 	netdev_update_features(vf_netdev);
2376 
2377 	prog = netvsc_xdp_get(netvsc_dev);
2378 	netvsc_vf_setxdp(vf_netdev, prog);
2379 
2380 	return NOTIFY_OK;
2381 }
2382 
2383 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2384  *
2385  * Typically a UP or DOWN event is followed by a CHANGE event, so
2386  * net_device_ctx->data_path_is_vf is used to cache the current data path
2387  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2388  * message.
2389  *
2390  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2391  * interface, there is only the CHANGE event and no UP or DOWN event.
2392  */
netvsc_vf_changed(struct net_device * vf_netdev,unsigned long event)2393 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2394 {
2395 	struct net_device_context *net_device_ctx;
2396 	struct netvsc_device *netvsc_dev;
2397 	struct net_device *ndev;
2398 	bool vf_is_up = false;
2399 	int ret;
2400 
2401 	if (event != NETDEV_GOING_DOWN)
2402 		vf_is_up = netif_running(vf_netdev);
2403 
2404 	ndev = get_netvsc_byref(vf_netdev);
2405 	if (!ndev)
2406 		return NOTIFY_DONE;
2407 
2408 	net_device_ctx = netdev_priv(ndev);
2409 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2410 	if (!netvsc_dev)
2411 		return NOTIFY_DONE;
2412 
2413 	if (net_device_ctx->data_path_is_vf == vf_is_up)
2414 		return NOTIFY_OK;
2415 
2416 	if (vf_is_up && !net_device_ctx->vf_alloc) {
2417 		netdev_info(ndev, "Waiting for the VF association from host\n");
2418 		wait_for_completion(&net_device_ctx->vf_add);
2419 	}
2420 
2421 	ret = netvsc_switch_datapath(ndev, vf_is_up);
2422 
2423 	if (ret) {
2424 		netdev_err(ndev,
2425 			   "Data path failed to switch %s VF: %s, err: %d\n",
2426 			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2427 		return NOTIFY_DONE;
2428 	} else {
2429 		netdev_info(ndev, "Data path switched %s VF: %s\n",
2430 			    vf_is_up ? "to" : "from", vf_netdev->name);
2431 
2432 		/* In Azure, when accelerated networking in enabled, other NICs
2433 		 * like MANA, MLX, are configured as a bonded nic with
2434 		 * Netvsc(failover) NIC. For bonded NICs, the min of the max
2435 		 * pkt aggregate size of the members is propagated in the stack.
2436 		 * In order to allow these NICs (MANA/MLX) to use up to
2437 		 * GSO_MAX_SIZE gso packet size, we need to allow Netvsc NIC to
2438 		 * also support this in the guest.
2439 		 * This value is only increased for netvsc NIC when datapath is
2440 		 * switched over to the VF
2441 		 */
2442 		if (vf_is_up)
2443 			netif_set_tso_max_size(ndev, vf_netdev->tso_max_size);
2444 		else
2445 			netif_set_tso_max_size(ndev, netvsc_dev->netvsc_gso_max_size);
2446 	}
2447 
2448 	return NOTIFY_OK;
2449 }
2450 
netvsc_unregister_vf(struct net_device * vf_netdev)2451 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2452 {
2453 	struct net_device *ndev;
2454 	struct net_device_context *net_device_ctx;
2455 
2456 	ndev = get_netvsc_byref(vf_netdev);
2457 	if (!ndev)
2458 		return NOTIFY_DONE;
2459 
2460 	net_device_ctx = netdev_priv(ndev);
2461 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2462 
2463 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2464 
2465 	reinit_completion(&net_device_ctx->vf_add);
2466 	netdev_rx_handler_unregister(vf_netdev);
2467 	netdev_upper_dev_unlink(vf_netdev, ndev);
2468 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2469 	dev_put(vf_netdev);
2470 
2471 	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2472 
2473 	return NOTIFY_OK;
2474 }
2475 
check_dev_is_matching_vf(struct net_device * event_ndev)2476 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2477 {
2478 	/* Skip NetVSC interfaces */
2479 	if (event_ndev->netdev_ops == &device_ops)
2480 		return -ENODEV;
2481 
2482 	/* Avoid non-Ethernet type devices */
2483 	if (event_ndev->type != ARPHRD_ETHER)
2484 		return -ENODEV;
2485 
2486 	/* Avoid Vlan dev with same MAC registering as VF */
2487 	if (is_vlan_dev(event_ndev))
2488 		return -ENODEV;
2489 
2490 	/* Avoid Bonding master dev with same MAC registering as VF */
2491 	if (netif_is_bond_master(event_ndev))
2492 		return -ENODEV;
2493 
2494 	return 0;
2495 }
2496 
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2497 static int netvsc_probe(struct hv_device *dev,
2498 			const struct hv_vmbus_device_id *dev_id)
2499 {
2500 	struct net_device *net = NULL, *vf_netdev;
2501 	struct net_device_context *net_device_ctx;
2502 	struct netvsc_device_info *device_info = NULL;
2503 	struct netvsc_device *nvdev;
2504 	int ret = -ENOMEM;
2505 
2506 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2507 				VRSS_CHANNEL_MAX);
2508 	if (!net)
2509 		goto no_net;
2510 
2511 	netif_carrier_off(net);
2512 
2513 	netvsc_init_settings(net);
2514 
2515 	net_device_ctx = netdev_priv(net);
2516 	net_device_ctx->device_ctx = dev;
2517 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2518 	if (netif_msg_probe(net_device_ctx))
2519 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2520 			   net_device_ctx->msg_enable);
2521 
2522 	hv_set_drvdata(dev, net);
2523 
2524 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2525 
2526 	init_completion(&net_device_ctx->vf_add);
2527 	spin_lock_init(&net_device_ctx->lock);
2528 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2529 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2530 
2531 	net_device_ctx->vf_stats
2532 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2533 	if (!net_device_ctx->vf_stats)
2534 		goto no_stats;
2535 
2536 	net->netdev_ops = &device_ops;
2537 	net->ethtool_ops = &ethtool_ops;
2538 	SET_NETDEV_DEV(net, &dev->device);
2539 	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2540 
2541 	/* We always need headroom for rndis header */
2542 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2543 
2544 	/* Initialize the number of queues to be 1, we may change it if more
2545 	 * channels are offered later.
2546 	 */
2547 	netif_set_real_num_tx_queues(net, 1);
2548 	netif_set_real_num_rx_queues(net, 1);
2549 
2550 	/* Notify the netvsc driver of the new device */
2551 	device_info = netvsc_devinfo_get(NULL);
2552 
2553 	if (!device_info) {
2554 		ret = -ENOMEM;
2555 		goto devinfo_failed;
2556 	}
2557 
2558 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2559 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2560 	 * all subchannels to show up, but that may not happen because
2561 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2562 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2563 	 * the device lock, so all the subchannels can't be processed --
2564 	 * finally netvsc_subchan_work() hangs forever.
2565 	 *
2566 	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2567 	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2568 	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2569 	 * earlier it may cause name based config failure.
2570 	 */
2571 	rtnl_lock();
2572 
2573 	nvdev = rndis_filter_device_add(dev, device_info);
2574 	if (IS_ERR(nvdev)) {
2575 		ret = PTR_ERR(nvdev);
2576 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2577 		goto rndis_failed;
2578 	}
2579 
2580 	eth_hw_addr_set(net, device_info->mac_adr);
2581 
2582 	if (nvdev->num_chn > 1)
2583 		schedule_work(&nvdev->subchan_work);
2584 
2585 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2586 	net->features = net->hw_features |
2587 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2588 		NETIF_F_HW_VLAN_CTAG_RX;
2589 	net->vlan_features = net->features;
2590 
2591 	netdev_lockdep_set_classes(net);
2592 
2593 	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2594 			    NETDEV_XDP_ACT_NDO_XMIT;
2595 
2596 	/* MTU range: 68 - 1500 or 65521 */
2597 	net->min_mtu = NETVSC_MTU_MIN;
2598 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2599 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2600 	else
2601 		net->max_mtu = ETH_DATA_LEN;
2602 
2603 	nvdev->tx_disable = false;
2604 
2605 	ret = register_netdevice(net);
2606 	if (ret != 0) {
2607 		pr_err("Unable to register netdev.\n");
2608 		goto register_failed;
2609 	}
2610 
2611 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2612 
2613 	/* When the hv_netvsc driver is unloaded and reloaded, the
2614 	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2615 	 * is complete. This is because register_netdevice_notifier() gets
2616 	 * registered before vmbus_driver_register() so that callback func
2617 	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2618 	 * So, in this section we try to register the matching vf device that
2619 	 * is present as a netdevice, knowing that its register call is not
2620 	 * processed in the netvsc_netdev_notifier(as probing is progress and
2621 	 * get_netvsc_byslot fails).
2622 	 */
2623 	for_each_netdev(dev_net(net), vf_netdev) {
2624 		ret = check_dev_is_matching_vf(vf_netdev);
2625 		if (ret != 0)
2626 			continue;
2627 
2628 		if (net != get_netvsc_byslot(vf_netdev))
2629 			continue;
2630 
2631 		netvsc_prepare_bonding(vf_netdev);
2632 		netdev_lock_ops(vf_netdev);
2633 		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2634 		netdev_unlock_ops(vf_netdev);
2635 		__netvsc_vf_setup(net, vf_netdev);
2636 		break;
2637 	}
2638 	rtnl_unlock();
2639 
2640 	netvsc_devinfo_put(device_info);
2641 	return 0;
2642 
2643 register_failed:
2644 	rndis_filter_device_remove(dev, nvdev);
2645 rndis_failed:
2646 	rtnl_unlock();
2647 	netvsc_devinfo_put(device_info);
2648 devinfo_failed:
2649 	free_percpu(net_device_ctx->vf_stats);
2650 no_stats:
2651 	hv_set_drvdata(dev, NULL);
2652 	free_netdev(net);
2653 no_net:
2654 	return ret;
2655 }
2656 
netvsc_remove(struct hv_device * dev)2657 static void netvsc_remove(struct hv_device *dev)
2658 {
2659 	struct net_device_context *ndev_ctx;
2660 	struct net_device *vf_netdev, *net;
2661 	struct netvsc_device *nvdev;
2662 
2663 	net = hv_get_drvdata(dev);
2664 	if (net == NULL) {
2665 		dev_err(&dev->device, "No net device to remove\n");
2666 		return;
2667 	}
2668 
2669 	ndev_ctx = netdev_priv(net);
2670 
2671 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2672 
2673 	rtnl_lock();
2674 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2675 	if (nvdev) {
2676 		cancel_work_sync(&nvdev->subchan_work);
2677 		netvsc_xdp_set(net, NULL, NULL, nvdev);
2678 	}
2679 
2680 	/*
2681 	 * Call to the vsc driver to let it know that the device is being
2682 	 * removed. Also blocks mtu and channel changes.
2683 	 */
2684 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2685 	if (vf_netdev)
2686 		netvsc_unregister_vf(vf_netdev);
2687 
2688 	if (nvdev)
2689 		rndis_filter_device_remove(dev, nvdev);
2690 
2691 	unregister_netdevice(net);
2692 	list_del(&ndev_ctx->list);
2693 
2694 	rtnl_unlock();
2695 
2696 	hv_set_drvdata(dev, NULL);
2697 
2698 	free_percpu(ndev_ctx->vf_stats);
2699 	free_netdev(net);
2700 }
2701 
netvsc_suspend(struct hv_device * dev)2702 static int netvsc_suspend(struct hv_device *dev)
2703 {
2704 	struct net_device_context *ndev_ctx;
2705 	struct netvsc_device *nvdev;
2706 	struct net_device *net;
2707 	int ret;
2708 
2709 	net = hv_get_drvdata(dev);
2710 
2711 	ndev_ctx = netdev_priv(net);
2712 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2713 
2714 	rtnl_lock();
2715 
2716 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2717 	if (nvdev == NULL) {
2718 		ret = -ENODEV;
2719 		goto out;
2720 	}
2721 
2722 	/* Save the current config info */
2723 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2724 	if (!ndev_ctx->saved_netvsc_dev_info) {
2725 		ret = -ENOMEM;
2726 		goto out;
2727 	}
2728 	ret = netvsc_detach(net, nvdev);
2729 out:
2730 	rtnl_unlock();
2731 
2732 	return ret;
2733 }
2734 
netvsc_resume(struct hv_device * dev)2735 static int netvsc_resume(struct hv_device *dev)
2736 {
2737 	struct net_device *net = hv_get_drvdata(dev);
2738 	struct net_device_context *net_device_ctx;
2739 	struct netvsc_device_info *device_info;
2740 	int ret;
2741 
2742 	rtnl_lock();
2743 
2744 	net_device_ctx = netdev_priv(net);
2745 
2746 	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2747 	 * channel. Later netvsc_netdev_event() will switch the data path to
2748 	 * the VF upon the UP or CHANGE event.
2749 	 */
2750 	net_device_ctx->data_path_is_vf = false;
2751 	device_info = net_device_ctx->saved_netvsc_dev_info;
2752 
2753 	ret = netvsc_attach(net, device_info);
2754 
2755 	netvsc_devinfo_put(device_info);
2756 	net_device_ctx->saved_netvsc_dev_info = NULL;
2757 
2758 	rtnl_unlock();
2759 
2760 	return ret;
2761 }
2762 static const struct hv_vmbus_device_id id_table[] = {
2763 	/* Network guid */
2764 	{ HV_NIC_GUID, },
2765 	{ },
2766 };
2767 
2768 MODULE_DEVICE_TABLE(vmbus, id_table);
2769 
2770 /* The one and only one */
2771 static struct  hv_driver netvsc_drv = {
2772 	.name = KBUILD_MODNAME,
2773 	.id_table = id_table,
2774 	.probe = netvsc_probe,
2775 	.remove = netvsc_remove,
2776 	.suspend = netvsc_suspend,
2777 	.resume = netvsc_resume,
2778 	.driver = {
2779 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2780 	},
2781 };
2782 
2783 /* Set VF's namespace same as the synthetic NIC */
netvsc_event_set_vf_ns(struct net_device * ndev)2784 static void netvsc_event_set_vf_ns(struct net_device *ndev)
2785 {
2786 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2787 	struct net_device *vf_netdev;
2788 	int ret;
2789 
2790 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2791 	if (!vf_netdev)
2792 		return;
2793 
2794 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2795 		ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2796 					       "eth%d");
2797 		if (ret)
2798 			netdev_err(vf_netdev,
2799 				   "Cannot move to same namespace as %s: %d\n",
2800 				   ndev->name, ret);
2801 		else
2802 			netdev_info(vf_netdev,
2803 				    "Moved VF to namespace with: %s\n",
2804 				    ndev->name);
2805 	}
2806 }
2807 
2808 /*
2809  * On Hyper-V, every VF interface is matched with a corresponding
2810  * synthetic interface. The synthetic interface is presented first
2811  * to the guest. When the corresponding VF instance is registered,
2812  * we will take care of switching the data path.
2813  */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2814 static int netvsc_netdev_event(struct notifier_block *this,
2815 			       unsigned long event, void *ptr)
2816 {
2817 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2818 	int ret = 0;
2819 
2820 	if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2821 		netvsc_event_set_vf_ns(event_dev);
2822 		return NOTIFY_DONE;
2823 	}
2824 
2825 	ret = check_dev_is_matching_vf(event_dev);
2826 	if (ret != 0)
2827 		return NOTIFY_DONE;
2828 
2829 	switch (event) {
2830 	case NETDEV_POST_INIT:
2831 		return netvsc_prepare_bonding(event_dev);
2832 	case NETDEV_REGISTER:
2833 		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2834 	case NETDEV_UNREGISTER:
2835 		return netvsc_unregister_vf(event_dev);
2836 	case NETDEV_UP:
2837 	case NETDEV_DOWN:
2838 	case NETDEV_CHANGE:
2839 	case NETDEV_GOING_DOWN:
2840 		return netvsc_vf_changed(event_dev, event);
2841 	default:
2842 		return NOTIFY_DONE;
2843 	}
2844 }
2845 
2846 static struct notifier_block netvsc_netdev_notifier = {
2847 	.notifier_call = netvsc_netdev_event,
2848 };
2849 
netvsc_drv_exit(void)2850 static void __exit netvsc_drv_exit(void)
2851 {
2852 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2853 	vmbus_driver_unregister(&netvsc_drv);
2854 }
2855 
netvsc_drv_init(void)2856 static int __init netvsc_drv_init(void)
2857 {
2858 	int ret;
2859 
2860 	if (ring_size < RING_SIZE_MIN) {
2861 		ring_size = RING_SIZE_MIN;
2862 		pr_info("Increased ring_size to %u (min allowed)\n",
2863 			ring_size);
2864 	}
2865 	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2866 
2867 	register_netdevice_notifier(&netvsc_netdev_notifier);
2868 
2869 	ret = vmbus_driver_register(&netvsc_drv);
2870 	if (ret)
2871 		goto err_vmbus_reg;
2872 
2873 	return 0;
2874 
2875 err_vmbus_reg:
2876 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2877 	return ret;
2878 }
2879 
2880 MODULE_LICENSE("GPL");
2881 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2882 
2883 module_init(netvsc_drv_init);
2884 module_exit(netvsc_drv_exit);
2885