1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2015, Joyent, Inc. All rights reserved.
29 */
30
31 /*
32 * Dump an elf file.
33 */
34 #include <stddef.h>
35 #include <sys/elf_386.h>
36 #include <sys/elf_amd64.h>
37 #include <sys/elf_SPARC.h>
38 #include <_libelf.h>
39 #include <dwarf.h>
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <errno.h>
43 #include <strings.h>
44 #include <debug.h>
45 #include <conv.h>
46 #include <msg.h>
47 #include <_elfdump.h>
48
49
50 /*
51 * VERSYM_STATE is used to maintain information about the VERSYM section
52 * in the object being analyzed. It is filled in by versions(), and used
53 * by init_symtbl_state() when displaying symbol information.
54 *
55 * There are three forms of symbol versioning known to us:
56 *
57 * 1) The original form, introduced with Solaris 2.5, in which
58 * the Versym contains indexes to Verdef records, and the
59 * Versym values for UNDEF symbols resolved by other objects
60 * are all set to 0.
61 * 2) The GNU form, which is backward compatible with the original
62 * Solaris form, but which adds several extensions:
63 * - The Versym also contains indexes to Verneed records, recording
64 * which object/version contributed the external symbol at
65 * link time. These indexes start with the next value following
66 * the final Verdef index. The index is written to the previously
67 * reserved vna_other field of the ELF Vernaux structure.
68 * - The top bit of the Versym value is no longer part of the index,
69 * but is used as a "hidden bit" to prevent binding to the symbol.
70 * - Multiple implementations of a given symbol, contained in varying
71 * versions are allowed, using special assembler pseudo ops,
72 * and encoded in the symbol name using '@' characters.
73 * 3) Modified Solaris form, in which we adopt the first GNU extension
74 * (Versym indexes to Verneed records), but not the others.
75 *
76 * elfdump can handle any of these cases. The presence of a DT_VERSYM
77 * dynamic element indicates a full GNU object. An object that lacks
78 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
79 * structures is a modified Solaris object. An object that has neither of
80 * these uses the original form.
81 *
82 * max_verndx contains the largest version index that can appear
83 * in a Versym entry. This can never be less than 1: In the case where
84 * there is no verdef/verneed sections, the [0] index is reserved
85 * for local symbols, and the [1] index for globals. If the original
86 * Solaris versioning rules are in effect and there is a verdef section,
87 * then max_verndex is the number of defined versions. If one of the
88 * other versioning forms is in effect, then:
89 * 1) If there is no verneed section, it is the same as for
90 * original Solaris versioning.
91 * 2) If there is a verneed section, the vna_other field of the
92 * Vernaux structs contain versions, and max_verndx is the
93 * largest such index.
94 *
95 * If gnu_full is True, the object uses the full GNU form of versioning.
96 * The value of the gnu_full field is based on the presence of
97 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
98 * Solaris ld does not.
99 *
100 * The gnu_needed field is True if the Versym contains indexes to
101 * Verneed records, as indicated by non-zero vna_other fields in the Verneed
102 * section. If gnu_full is True, then gnu_needed will always be true.
103 * However, gnu_needed can be true without gnu_full. This is the modified
104 * Solaris form.
105 */
106 typedef struct {
107 Cache *cache; /* Pointer to cache entry for VERSYM */
108 Versym *data; /* Pointer to versym array */
109 int gnu_full; /* True if object uses GNU versioning rules */
110 int gnu_needed; /* True if object uses VERSYM indexes for */
111 /* VERNEED (subset of gnu_full) */
112 int max_verndx; /* largest versym index value */
113 } VERSYM_STATE;
114
115 /*
116 * SYMTBL_STATE is used to maintain information about a single symbol
117 * table section, for use by the routines that display symbol information.
118 */
119 typedef struct {
120 const char *file; /* Name of file */
121 Ehdr *ehdr; /* ELF header for file */
122 Cache *cache; /* Cache of all section headers */
123 uchar_t osabi; /* OSABI to use */
124 Word shnum; /* # of sections in cache */
125 Cache *seccache; /* Cache of symbol table section hdr */
126 Word secndx; /* Index of symbol table section hdr */
127 const char *secname; /* Name of section */
128 uint_t flags; /* Command line option flags */
129 struct { /* Extended section index data */
130 int checked; /* TRUE if already checked for shxndx */
131 Word *data; /* NULL, or extended section index */
132 /* used for symbol table entries */
133 uint_t n; /* # items in shxndx.data */
134 } shxndx;
135 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
136 Sym *sym; /* Array of symbols */
137 Word symn; /* # of symbols */
138 } SYMTBL_STATE;
139
140 /*
141 * A variable of this type is used to track information related to
142 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
143 */
144 typedef struct {
145 Word frame_cnt; /* # .eh_frame sections seen */
146 Word frame_ndx; /* Section index of 1st .eh_frame */
147 Word hdr_cnt; /* # .eh_frame_hdr sections seen */
148 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */
149 uint64_t frame_ptr; /* Value of FramePtr field from first */
150 /* .eh_frame_hdr section */
151 uint64_t frame_base; /* Data addr of 1st .eh_frame */
152 } gnu_eh_state_t;
153
154 /*
155 * C++ .exception_ranges entries make use of the signed ptrdiff_t
156 * type to record self-relative pointer values. We need a type
157 * for this that is matched to the ELFCLASS being processed.
158 */
159 #if defined(_ELF64)
160 typedef int64_t PTRDIFF_T;
161 #else
162 typedef int32_t PTRDIFF_T;
163 #endif
164
165 /*
166 * The Sun C++ ABI uses this struct to define each .exception_ranges
167 * entry. From the ABI:
168 *
169 * The field ret_addr is a self relative pointer to the start of the address
170 * range. The name was chosen because in the current implementation the range
171 * typically starts at the return address for a call site.
172 *
173 * The field length is the difference, in bytes, between the pc of the last
174 * instruction covered by the exception range and the first. When only a
175 * single call site is represented without optimization, this will equal zero.
176 *
177 * The field handler_addr is a relative pointer which stores the difference
178 * between the start of the exception range and the address of all code to
179 * catch exceptions and perform the cleanup for stack unwinding.
180 *
181 * The field type_block is a relative pointer which stores the difference
182 * between the start of the exception range and the address of an array used
183 * for storing a list of the types of exceptions which can be caught within
184 * the exception range.
185 */
186 typedef struct {
187 PTRDIFF_T ret_addr;
188 Xword length;
189 PTRDIFF_T handler_addr;
190 PTRDIFF_T type_block;
191 Xword reserved;
192 } exception_range_entry;
193
194 /*
195 * Focal point for verifying symbol names.
196 */
197 static const char *
string(Cache * refsec,Word ndx,Cache * strsec,const char * file,Word name)198 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
199 {
200 /*
201 * If an error in this routine is due to a property of the string
202 * section, as opposed to a bad offset into the section (a property of
203 * the referencing section), then we will detect the same error on
204 * every call involving those sections. We use these static variables
205 * to retain the information needed to only issue each such error once.
206 */
207 static Cache *last_refsec; /* Last referencing section seen */
208 static int strsec_err; /* True if error issued */
209
210 const char *strs;
211 Word strn;
212
213 if (strsec->c_data == NULL)
214 return (NULL);
215
216 strs = (char *)strsec->c_data->d_buf;
217 strn = strsec->c_data->d_size;
218
219 /*
220 * We only print a diagnostic regarding a bad string table once per
221 * input section being processed. If the refsec has changed, reset
222 * our retained error state.
223 */
224 if (last_refsec != refsec) {
225 last_refsec = refsec;
226 strsec_err = 0;
227 }
228
229 /* Verify that strsec really is a string table */
230 if (strsec->c_shdr->sh_type != SHT_STRTAB) {
231 if (!strsec_err) {
232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
233 file, strsec->c_ndx, refsec->c_ndx);
234 strsec_err = 1;
235 }
236 return (MSG_INTL(MSG_STR_UNKNOWN));
237 }
238
239 /*
240 * Is the string table offset within range of the available strings?
241 */
242 if (name >= strn) {
243 /*
244 * Do we have a empty string table?
245 */
246 if (strs == NULL) {
247 if (!strsec_err) {
248 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
249 file, strsec->c_name);
250 strsec_err = 1;
251 }
252 } else {
253 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
254 file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
255 EC_WORD(name), EC_WORD(strn - 1));
256 }
257
258 /*
259 * Return the empty string so that the calling function can
260 * continue it's output diagnostics.
261 */
262 return (MSG_INTL(MSG_STR_UNKNOWN));
263 }
264 return (strs + name);
265 }
266
267 /*
268 * Relocations can reference section symbols and standard symbols. If the
269 * former, establish the section name.
270 */
271 static const char *
relsymname(Cache * cache,Cache * csec,Cache * strsec,Word symndx,Word symnum,Word relndx,Sym * syms,char * secstr,size_t secsz,const char * file)272 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
273 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
274 {
275 Sym *sym;
276 const char *name;
277
278 if (symndx >= symnum) {
279 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
280 file, EC_WORD(symndx), EC_WORD(relndx));
281 return (MSG_INTL(MSG_STR_UNKNOWN));
282 }
283
284 sym = (Sym *)(syms + symndx);
285 name = string(csec, symndx, strsec, file, sym->st_name);
286
287 /*
288 * If the symbol represents a section offset construct an appropriate
289 * string. Note, although section symbol table entries typically have
290 * a NULL name pointer, entries do exist that point into the string
291 * table to their own NULL strings.
292 */
293 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
294 ((sym->st_name == 0) || (*name == '\0'))) {
295 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
296 cache[sym->st_shndx].c_name);
297 return ((const char *)secstr);
298 }
299
300 return (name);
301 }
302
303 /*
304 * Focal point for establishing a string table section. Data such as the
305 * dynamic information simply points to a string table. Data such as
306 * relocations, reference a symbol table, which in turn is associated with a
307 * string table.
308 */
309 static int
stringtbl(Cache * cache,int symtab,Word ndx,Word shnum,const char * file,Word * symnum,Cache ** symsec,Cache ** strsec)310 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
311 Word *symnum, Cache **symsec, Cache **strsec)
312 {
313 Shdr *shdr = cache[ndx].c_shdr;
314
315 if (symtab) {
316 /*
317 * Validate the symbol table section.
318 */
319 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
320 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
321 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
322 return (0);
323 }
324 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
325 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
326 file, cache[ndx].c_name);
327 return (0);
328 }
329
330 /*
331 * Obtain, and verify the symbol table data.
332 */
333 if ((cache[ndx].c_data == NULL) ||
334 (cache[ndx].c_data->d_buf == NULL)) {
335 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
336 file, cache[ndx].c_name);
337 return (0);
338 }
339
340 /*
341 * Establish the string table index.
342 */
343 ndx = shdr->sh_link;
344 shdr = cache[ndx].c_shdr;
345
346 /*
347 * Return symbol table information.
348 */
349 if (symnum)
350 *symnum = (shdr->sh_size / shdr->sh_entsize);
351 if (symsec)
352 *symsec = &cache[ndx];
353 }
354
355 /*
356 * Validate the associated string table section.
357 */
358 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
359 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
360 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
361 return (0);
362 }
363
364 if (strsec)
365 *strsec = &cache[shdr->sh_link];
366
367 return (1);
368 }
369
370 /*
371 * Lookup a symbol and set Sym accordingly.
372 *
373 * entry:
374 * name - Name of symbol to lookup
375 * cache - Cache of all section headers
376 * shnum - # of sections in cache
377 * sym - Address of pointer to receive symbol
378 * target - NULL, or section to which the symbol must be associated.
379 * symtab - Symbol table to search for symbol
380 * file - Name of file
381 *
382 * exit:
383 * If the symbol is found, *sym is set to reference it, and True is
384 * returned. If target is non-NULL, the symbol must reference the given
385 * section --- otherwise the section is not checked.
386 *
387 * If no symbol is found, False is returned.
388 */
389 static int
symlookup(const char * name,Cache * cache,Word shnum,Sym ** sym,Cache * target,Cache * symtab,const char * file)390 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
391 Cache *target, Cache *symtab, const char *file)
392 {
393 Shdr *shdr;
394 Word symn, cnt;
395 Sym *syms;
396
397 if (symtab == 0)
398 return (0);
399
400 shdr = symtab->c_shdr;
401
402 /*
403 * Determine the symbol data and number.
404 */
405 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
406 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
407 file, symtab->c_name);
408 return (0);
409 }
410 if (symtab->c_data == NULL)
411 return (0);
412
413 /* LINTED */
414 symn = (Word)(shdr->sh_size / shdr->sh_entsize);
415 syms = (Sym *)symtab->c_data->d_buf;
416
417 /*
418 * Get the associated string table section.
419 */
420 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
421 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
422 file, symtab->c_name, EC_WORD(shdr->sh_link));
423 return (0);
424 }
425
426 /*
427 * Loop through the symbol table to find a match.
428 */
429 *sym = NULL;
430 for (cnt = 0; cnt < symn; syms++, cnt++) {
431 const char *symname;
432
433 symname = string(symtab, cnt, &cache[shdr->sh_link], file,
434 syms->st_name);
435
436 if (symname && (strcmp(name, symname) == 0) &&
437 ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
438 /*
439 * It is possible, though rare, for a local and
440 * global symbol of the same name to exist, each
441 * contributed by a different input object. If the
442 * symbol just found is local, remember it, but
443 * continue looking.
444 */
445 *sym = syms;
446 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
447 break;
448 }
449 }
450
451 return (*sym != NULL);
452 }
453
454 /*
455 * Print section headers.
456 */
457 static void
sections(const char * file,Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi)458 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
459 {
460 size_t seccnt;
461
462 for (seccnt = 1; seccnt < shnum; seccnt++) {
463 Cache *_cache = &cache[seccnt];
464 Shdr *shdr = _cache->c_shdr;
465 const char *secname = _cache->c_name;
466
467 /*
468 * Although numerous section header entries can be zero, it's
469 * usually a sign of trouble if the type is zero.
470 */
471 if (shdr->sh_type == 0) {
472 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
473 file, secname, EC_WORD(shdr->sh_type));
474 }
475
476 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
477 continue;
478
479 /*
480 * Identify any sections that are suspicious. A .got section
481 * shouldn't exist in a relocatable object.
482 */
483 if (ehdr->e_type == ET_REL) {
484 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
485 MSG_ELF_GOT_SIZE) == 0) {
486 (void) fprintf(stderr,
487 MSG_INTL(MSG_GOT_UNEXPECTED), file,
488 secname);
489 }
490 }
491
492 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
493 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
494 Elf_shdr(0, osabi, ehdr->e_machine, shdr);
495 }
496 }
497
498 /*
499 * Obtain a specified Phdr entry.
500 */
501 static Phdr *
getphdr(Word phnum,Word * type_arr,Word type_cnt,const char * file,Elf * elf)502 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
503 {
504 Word cnt, tcnt;
505 Phdr *phdr;
506
507 if ((phdr = elf_getphdr(elf)) == NULL) {
508 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
509 return (NULL);
510 }
511
512 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
513 for (tcnt = 0; tcnt < type_cnt; tcnt++) {
514 if (phdr->p_type == type_arr[tcnt])
515 return (phdr);
516 }
517 }
518 return (NULL);
519 }
520
521 /*
522 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
523 * sections.
524 *
525 * entry:
526 * cache - Cache of all section headers
527 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
528 * shnum - Total number of sections which exist
529 * uphdr - NULL, or unwind program header associated with
530 * the .eh_frame_hdr section.
531 * ehdr - ELF header for file
532 * eh_state - Data used across calls to this routine. The
533 * caller should zero it before the first call, and
534 * pass it on every call.
535 * osabi - OSABI to use in displaying information
536 * file - Name of file
537 * flags - Command line option flags
538 */
539 static void
unwind_eh_frame(Cache * cache,Word shndx,Word shnum,Phdr * uphdr,Ehdr * ehdr,gnu_eh_state_t * eh_state,uchar_t osabi,const char * file,uint_t flags)540 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
541 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
542 {
543 #if defined(_ELF64)
544 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64
545 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64
546 #else
547 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32
548 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32
549 #endif
550
551 Cache *_cache = &cache[shndx];
552 Shdr *shdr = _cache->c_shdr;
553 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf);
554 size_t datasize = _cache->c_data->d_size;
555 Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
556 uint64_t ndx, frame_ptr, fde_cnt, tabndx;
557 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
558 uint64_t initloc, initloc0 = 0;
559 uint64_t gotaddr = 0;
560 int cnt;
561
562 for (cnt = 1; cnt < shnum; cnt++) {
563 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
564 MSG_ELF_GOT_SIZE) == 0) {
565 gotaddr = cache[cnt].c_shdr->sh_addr;
566 break;
567 }
568 }
569
570 if ((data == NULL) || (datasize == 0)) {
571 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
572 file, _cache ->c_name);
573 return;
574 }
575
576 /*
577 * Is this a .eh_frame_hdr?
578 */
579 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
580 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
581 MSG_SCN_FRMHDR_SIZE) == 0)) {
582 /*
583 * There can only be a single .eh_frame_hdr.
584 * Flag duplicates.
585 */
586 if (++eh_state->hdr_cnt > 1)
587 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
588 file, EC_WORD(shndx), _cache->c_name);
589
590 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
591 ndx = 0;
592
593 vers = data[ndx++];
594 frame_ptr_enc = data[ndx++];
595 fde_cnt_enc = data[ndx++];
596 table_enc = data[ndx++];
597
598 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
599
600 switch (dwarf_ehe_extract(data, datasize, &ndx,
601 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE,
602 shdr->sh_addr, ndx, gotaddr)) {
603 case DW_OVERFLOW:
604 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
605 file, _cache->c_name);
606 return;
607 case DW_BAD_ENCODING:
608 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
609 file, _cache->c_name, frame_ptr_enc);
610 return;
611 case DW_SUCCESS:
612 break;
613 }
614 if (eh_state->hdr_cnt == 1) {
615 eh_state->hdr_ndx = shndx;
616 eh_state->frame_ptr = frame_ptr;
617 }
618
619 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
620 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
621 EC_XWORD(frame_ptr));
622
623 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt,
624 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx,
625 gotaddr)) {
626 case DW_OVERFLOW:
627 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
628 file, _cache->c_name);
629 return;
630 case DW_BAD_ENCODING:
631 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
632 file, _cache->c_name, fde_cnt_enc);
633 return;
634 case DW_SUCCESS:
635 break;
636 }
637
638 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
639 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
640 EC_XWORD(fde_cnt));
641 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
642 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
643 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
644 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
645
646 for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
647 uint64_t table;
648
649 switch (dwarf_ehe_extract(data, datasize, &ndx,
650 &initloc, table_enc, ehdr->e_ident, B_TRUE,
651 shdr->sh_addr, ndx, gotaddr)) {
652 case DW_OVERFLOW:
653 (void) fprintf(stderr,
654 MSG_INTL(MSG_ERR_DWOVRFLW), file,
655 _cache->c_name);
656 return;
657 case DW_BAD_ENCODING:
658 (void) fprintf(stderr,
659 MSG_INTL(MSG_ERR_DWBADENC), file,
660 _cache->c_name, table_enc);
661 return;
662 case DW_SUCCESS:
663 break;
664 }
665 if ((tabndx != 0) && (initloc0 > initloc))
666 (void) fprintf(stderr,
667 MSG_INTL(MSG_ERR_BADSORT), file,
668 _cache->c_name, EC_WORD(tabndx));
669 switch (dwarf_ehe_extract(data, datasize, &ndx, &table,
670 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
671 ndx, gotaddr)) {
672 case DW_OVERFLOW:
673 (void) fprintf(stderr,
674 MSG_INTL(MSG_ERR_DWOVRFLW), file,
675 _cache->c_name);
676 return;
677 case DW_BAD_ENCODING:
678 (void) fprintf(stderr,
679 MSG_INTL(MSG_ERR_DWBADENC), file,
680 _cache->c_name, table_enc);
681 return;
682 case DW_SUCCESS:
683 break;
684 }
685
686 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
687 EC_XWORD(initloc),
688 EC_XWORD(table));
689 initloc0 = initloc;
690 }
691 } else { /* Display the .eh_frame section */
692 eh_state->frame_cnt++;
693 if (eh_state->frame_cnt == 1) {
694 eh_state->frame_ndx = shndx;
695 eh_state->frame_base = shdr->sh_addr;
696 } else if ((eh_state->frame_cnt > 1) &&
697 (ehdr->e_type != ET_REL)) {
698 Conv_inv_buf_t inv_buf;
699
700 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
701 file, EC_WORD(shndx), _cache->c_name,
702 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
703 }
704 dump_eh_frame(file, _cache->c_name, data, datasize,
705 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr);
706 }
707
708 /*
709 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
710 * compare the header frame_ptr to the address of the actual frame
711 * section to ensure the link-editor got this right. Note, this
712 * diagnostic is only produced when unwind information is explicitly
713 * asked for, as shared objects built with an older ld(1) may reveal
714 * this inconsistency. Although an inconsistency, it doesn't seem to
715 * have any adverse effect on existing tools.
716 */
717 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
718 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
719 (eh_state->frame_ptr != eh_state->frame_base))
720 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
721 file, EC_WORD(eh_state->hdr_ndx),
722 cache[eh_state->hdr_ndx].c_name,
723 EC_XWORD(eh_state->frame_ptr),
724 EC_WORD(eh_state->frame_ndx),
725 cache[eh_state->frame_ndx].c_name,
726 EC_XWORD(eh_state->frame_base));
727 #undef MSG_UNW_BINSRTAB2
728 #undef MSG_UNW_BINSRTABENT
729 }
730
731 /*
732 * Convert a self relative pointer into an address. A self relative
733 * pointer adds the address where the pointer resides to the offset
734 * contained in the pointer. The benefit is that the value of the
735 * pointer does not require relocation.
736 *
737 * entry:
738 * base_addr - Address of the pointer.
739 * delta - Offset relative to base_addr giving desired address
740 *
741 * exit:
742 * The computed address is returned.
743 *
744 * note:
745 * base_addr is an unsigned value, while ret_addr is signed. This routine
746 * used explicit testing and casting to explicitly control type
747 * conversion, and ensure that we handle the maximum possible range.
748 */
749 static Addr
srelptr(Addr base_addr,PTRDIFF_T delta)750 srelptr(Addr base_addr, PTRDIFF_T delta)
751 {
752 if (delta < 0)
753 return (base_addr - (Addr) (-delta));
754
755 return (base_addr + (Addr) delta);
756 }
757
758 /*
759 * Byte swap a PTRDIFF_T value.
760 */
761 static PTRDIFF_T
swap_ptrdiff(PTRDIFF_T value)762 swap_ptrdiff(PTRDIFF_T value)
763 {
764 PTRDIFF_T r;
765 uchar_t *dst = (uchar_t *)&r;
766 uchar_t *src = (uchar_t *)&value;
767
768 UL_ASSIGN_BSWAP_XWORD(dst, src);
769 return (r);
770 }
771
772 /*
773 * Display exception_range_entry items from the .exception_ranges section
774 * of a Sun C++ object.
775 */
776 static void
unwind_exception_ranges(Cache * _cache,const char * file,int do_swap)777 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
778 {
779 /*
780 * Translate a PTRDIFF_T self-relative address field of
781 * an exception_range_entry struct into an address.
782 *
783 * entry:
784 * exc_addr - Address of base of exception_range_entry struct
785 * cur_ent - Pointer to data in the struct to be translated
786 *
787 * _f - Field of struct to be translated
788 */
789 #define SRELPTR(_f) \
790 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
791
792 #if defined(_ELF64)
793 #define MSG_EXR_TITLE MSG_EXR_TITLE_64
794 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64
795 #else
796 #define MSG_EXR_TITLE MSG_EXR_TITLE_32
797 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32
798 #endif
799
800 exception_range_entry scratch, *ent, *cur_ent = &scratch;
801 char index[MAXNDXSIZE];
802 Word i, nelts;
803 Addr addr, addr0 = 0, offset = 0;
804 Addr exc_addr = _cache->c_shdr->sh_addr;
805
806 dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
807 ent = (exception_range_entry *)(_cache->c_data->d_buf);
808 nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
809
810 for (i = 0; i < nelts; i++, ent++) {
811 if (do_swap) {
812 /*
813 * Copy byte swapped values into the scratch buffer.
814 * The reserved field is not used, so we skip it.
815 */
816 scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
817 scratch.length = BSWAP_XWORD(ent->length);
818 scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
819 scratch.type_block = swap_ptrdiff(ent->type_block);
820 } else {
821 cur_ent = ent;
822 }
823
824 /*
825 * The table is required to be sorted by the address
826 * derived from ret_addr, to allow binary searching. Ensure
827 * that addresses grow monotonically.
828 */
829 addr = SRELPTR(ret_addr);
830 if ((i != 0) && (addr0 > addr))
831 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
832 file, _cache->c_name, EC_WORD(i));
833
834 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
835 EC_XWORD(i));
836 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
837 EC_ADDR(addr), EC_ADDR(cur_ent->length),
838 EC_ADDR(SRELPTR(handler_addr)),
839 EC_ADDR(SRELPTR(type_block)));
840
841 addr0 = addr;
842 exc_addr += sizeof (exception_range_entry);
843 offset += sizeof (exception_range_entry);
844 }
845
846 #undef SRELPTR
847 #undef MSG_EXR_TITLE
848 #undef MSG_EXR_ENTRY
849 }
850
851 /*
852 * Display information from unwind/exception sections:
853 *
854 * - GNU/amd64 .eh_frame and .eh_frame_hdr
855 * - Sun C++ .exception_ranges
856 *
857 */
858 static void
unwind(Cache * cache,Word shnum,Word phnum,Ehdr * ehdr,uchar_t osabi,const char * file,Elf * elf,uint_t flags)859 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
860 const char *file, Elf *elf, uint_t flags)
861 {
862 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
863
864 Word cnt;
865 Phdr *uphdr = NULL;
866 gnu_eh_state_t eh_state;
867
868 /*
869 * Historical background: .eh_frame and .eh_frame_hdr sections
870 * come from the GNU compilers (particularly C++), and are used
871 * under all architectures. Their format is based on DWARF. When
872 * the amd64 ABI was defined, these sections were adopted wholesale
873 * from the existing practice.
874 *
875 * When amd64 support was added to Solaris, support for these
876 * sections was added, using the SHT_AMD64_UNWIND section type
877 * to identify them. At first, we ignored them in objects for
878 * non-amd64 targets, but later broadened our support to include
879 * other architectures in order to better support gcc-generated
880 * objects.
881 *
882 * .exception_ranges implement the same basic concepts, but
883 * were invented at Sun for the Sun C++ compiler.
884 *
885 * We match these sections by name, rather than section type,
886 * because they can come in as either SHT_AMD64_UNWIND, or as
887 * SHT_PROGBITS, and because the type isn't enough to determine
888 * how they should be interpreted.
889 */
890 /* Find the program header for .eh_frame_hdr if present */
891 if (phnum)
892 uphdr = getphdr(phnum, phdr_types,
893 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
894
895 /*
896 * eh_state is used to retain data used by unwind_eh_frame()
897 * across calls.
898 */
899 bzero(&eh_state, sizeof (eh_state));
900
901 for (cnt = 1; cnt < shnum; cnt++) {
902 Cache *_cache = &cache[cnt];
903 Shdr *shdr = _cache->c_shdr;
904 int is_exrange;
905
906 /*
907 * Skip sections of the wrong type. On amd64, they
908 * can be SHT_AMD64_UNWIND. On all platforms, they
909 * can be SHT_PROGBITS (including amd64, if using
910 * the GNU compilers).
911 *
912 * Skip anything other than these two types. The name
913 * test below will thin out the SHT_PROGBITS that don't apply.
914 */
915 if ((shdr->sh_type != SHT_PROGBITS) &&
916 (shdr->sh_type != SHT_AMD64_UNWIND))
917 continue;
918
919 /*
920 * Only sections with certain well known names are of interest.
921 * These are:
922 *
923 * .eh_frame - amd64/GNU-compiler unwind sections
924 * .eh_frame_hdr - Sorted table referencing .eh_frame
925 * .exception_ranges - Sun C++ unwind sections
926 *
927 * We do a prefix comparison, allowing for naming conventions
928 * like .eh_frame.foo, hence the use of strncmp() rather than
929 * strcmp(). This means that we only really need to test for
930 * .eh_frame, as it's a prefix of .eh_frame_hdr.
931 */
932 is_exrange = strncmp(_cache->c_name,
933 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
934 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
935 MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
936 continue;
937
938 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
939 continue;
940
941 if (_cache->c_data == NULL)
942 continue;
943
944 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
945 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
946
947 if (is_exrange)
948 unwind_exception_ranges(_cache, file,
949 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
950 else
951 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
952 &eh_state, osabi, file, flags);
953 }
954 }
955
956 /*
957 * Initialize a symbol table state structure
958 *
959 * entry:
960 * state - State structure to be initialized
961 * cache - Cache of all section headers
962 * shnum - # of sections in cache
963 * secndx - Index of symbol table section
964 * ehdr - ELF header for file
965 * versym - Information about versym section
966 * file - Name of file
967 * flags - Command line option flags
968 */
969 static int
init_symtbl_state(SYMTBL_STATE * state,Cache * cache,Word shnum,Word secndx,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)970 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
971 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
972 uint_t flags)
973 {
974 Shdr *shdr;
975
976 state->file = file;
977 state->ehdr = ehdr;
978 state->cache = cache;
979 state->osabi = osabi;
980 state->shnum = shnum;
981 state->seccache = &cache[secndx];
982 state->secndx = secndx;
983 state->secname = state->seccache->c_name;
984 state->flags = flags;
985 state->shxndx.checked = 0;
986 state->shxndx.data = NULL;
987 state->shxndx.n = 0;
988
989 shdr = state->seccache->c_shdr;
990
991 /*
992 * Check the symbol data and per-item size.
993 */
994 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
995 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
996 file, state->secname);
997 return (0);
998 }
999 if (state->seccache->c_data == NULL)
1000 return (0);
1001
1002 /* LINTED */
1003 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1004 state->sym = (Sym *)state->seccache->c_data->d_buf;
1005
1006 /*
1007 * Check associated string table section.
1008 */
1009 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1010 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1011 file, state->secname, EC_WORD(shdr->sh_link));
1012 return (0);
1013 }
1014
1015 /*
1016 * Determine if there is a associated Versym section
1017 * with this Symbol Table.
1018 */
1019 if (versym && versym->cache &&
1020 (versym->cache->c_shdr->sh_link == state->secndx))
1021 state->versym = versym;
1022 else
1023 state->versym = NULL;
1024
1025
1026 return (1);
1027 }
1028
1029 /*
1030 * Determine the extended section index used for symbol tables entries.
1031 */
1032 static void
symbols_getxindex(SYMTBL_STATE * state)1033 symbols_getxindex(SYMTBL_STATE *state)
1034 {
1035 uint_t symn;
1036 Word symcnt;
1037
1038 state->shxndx.checked = 1; /* Note that we've been called */
1039 for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1040 Cache *_cache = &state->cache[symcnt];
1041 Shdr *shdr = _cache->c_shdr;
1042
1043 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1044 (shdr->sh_link != state->secndx))
1045 continue;
1046
1047 if ((shdr->sh_entsize) &&
1048 /* LINTED */
1049 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1050 continue;
1051
1052 if (_cache->c_data == NULL)
1053 continue;
1054
1055 state->shxndx.data = _cache->c_data->d_buf;
1056 state->shxndx.n = symn;
1057 return;
1058 }
1059 }
1060
1061 /*
1062 * Produce a line of output for the given symbol
1063 *
1064 * entry:
1065 * state - Symbol table state
1066 * symndx - Index of symbol within the table
1067 * info - Value of st_info (indicates local/global range)
1068 * symndx_disp - Index to display. This may not be the same
1069 * as symndx if the display is relative to the logical
1070 * combination of the SUNW_ldynsym/dynsym tables.
1071 * sym - Symbol to display
1072 */
1073 static void
output_symbol(SYMTBL_STATE * state,Word symndx,Word info,Word disp_symndx,Sym * sym)1074 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1075 Sym *sym)
1076 {
1077 /*
1078 * Symbol types for which we check that the specified
1079 * address/size land inside the target section.
1080 */
1081 static const int addr_symtype[] = {
1082 0, /* STT_NOTYPE */
1083 1, /* STT_OBJECT */
1084 1, /* STT_FUNC */
1085 0, /* STT_SECTION */
1086 0, /* STT_FILE */
1087 1, /* STT_COMMON */
1088 0, /* STT_TLS */
1089 0, /* 7 */
1090 0, /* 8 */
1091 0, /* 9 */
1092 0, /* 10 */
1093 0, /* 11 */
1094 0, /* 12 */
1095 0, /* STT_SPARC_REGISTER */
1096 0, /* 14 */
1097 0, /* 15 */
1098 };
1099 #if STT_NUM != (STT_TLS + 1)
1100 #error "STT_NUM has grown. Update addr_symtype[]"
1101 #endif
1102
1103 char index[MAXNDXSIZE];
1104 const char *symname, *sec;
1105 Versym verndx;
1106 int gnuver;
1107 uchar_t type;
1108 Shdr *tshdr;
1109 Word shndx;
1110 Conv_inv_buf_t inv_buf;
1111
1112 /* Ensure symbol index is in range */
1113 if (symndx >= state->symn) {
1114 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1115 state->file, state->secname, EC_WORD(symndx));
1116 return;
1117 }
1118
1119 /*
1120 * If we are using extended symbol indexes, find the
1121 * corresponding SHN_SYMTAB_SHNDX table.
1122 */
1123 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1124 symbols_getxindex(state);
1125
1126 /* LINTED */
1127 symname = string(state->seccache, symndx,
1128 &state->cache[state->seccache->c_shdr->sh_link], state->file,
1129 sym->st_name);
1130
1131 tshdr = NULL;
1132 sec = NULL;
1133
1134 if (state->ehdr->e_type == ET_CORE) {
1135 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1136 } else if (state->flags & FLG_CTL_FAKESHDR) {
1137 /*
1138 * If we are using fake section headers derived from
1139 * the program headers, then the section indexes
1140 * in the symbols do not correspond to these headers.
1141 * The section names are not available, so all we can
1142 * do is to display them in numeric form.
1143 */
1144 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1145 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1146 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1147 (sym->st_shndx < state->shnum)) {
1148 shndx = sym->st_shndx;
1149 tshdr = state->cache[shndx].c_shdr;
1150 sec = state->cache[shndx].c_name;
1151 } else if (sym->st_shndx == SHN_XINDEX) {
1152 if (state->shxndx.data) {
1153 Word _shxndx;
1154
1155 if (symndx > state->shxndx.n) {
1156 (void) fprintf(stderr,
1157 MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1158 state->file, state->secname,
1159 EC_WORD(symndx));
1160 } else if ((_shxndx =
1161 state->shxndx.data[symndx]) > state->shnum) {
1162 (void) fprintf(stderr,
1163 MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1164 state->file, state->secname,
1165 EC_WORD(symndx), EC_WORD(_shxndx));
1166 } else {
1167 shndx = _shxndx;
1168 tshdr = state->cache[shndx].c_shdr;
1169 sec = state->cache[shndx].c_name;
1170 }
1171 } else {
1172 (void) fprintf(stderr,
1173 MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1174 state->file, state->secname, EC_WORD(symndx));
1175 }
1176 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1177 (sym->st_shndx >= state->shnum)) {
1178 (void) fprintf(stderr,
1179 MSG_INTL(MSG_ERR_BADSYM5), state->file,
1180 state->secname, EC_WORD(symndx),
1181 demangle(symname, state->flags), sym->st_shndx);
1182 }
1183
1184 /*
1185 * If versioning is available display the
1186 * version index. If not, then use 0.
1187 */
1188 if (state->versym) {
1189 Versym test_verndx;
1190
1191 verndx = test_verndx = state->versym->data[symndx];
1192 gnuver = state->versym->gnu_full;
1193
1194 /*
1195 * Check to see if this is a defined symbol with a
1196 * version index that is outside the valid range for
1197 * the file. The interpretation of this depends on
1198 * the style of versioning used by the object.
1199 *
1200 * Versions >= VER_NDX_LORESERVE have special meanings,
1201 * and are exempt from this checking.
1202 *
1203 * GNU style version indexes use the top bit of the
1204 * 16-bit index value (0x8000) as the "hidden bit".
1205 * We must mask off this bit in order to compare
1206 * the version against the maximum value.
1207 */
1208 if (gnuver)
1209 test_verndx &= ~0x8000;
1210
1211 if ((test_verndx > state->versym->max_verndx) &&
1212 (verndx < VER_NDX_LORESERVE))
1213 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1214 state->file, state->secname, EC_WORD(symndx),
1215 EC_HALF(test_verndx), state->versym->max_verndx);
1216 } else {
1217 verndx = 0;
1218 gnuver = 0;
1219 }
1220
1221 /*
1222 * Error checking for TLS.
1223 */
1224 type = ELF_ST_TYPE(sym->st_info);
1225 if (type == STT_TLS) {
1226 if (tshdr &&
1227 (sym->st_shndx != SHN_UNDEF) &&
1228 ((tshdr->sh_flags & SHF_TLS) == 0)) {
1229 (void) fprintf(stderr,
1230 MSG_INTL(MSG_ERR_BADSYM3), state->file,
1231 state->secname, EC_WORD(symndx),
1232 demangle(symname, state->flags));
1233 }
1234 } else if ((type != STT_SECTION) && sym->st_size &&
1235 tshdr && (tshdr->sh_flags & SHF_TLS)) {
1236 (void) fprintf(stderr,
1237 MSG_INTL(MSG_ERR_BADSYM4), state->file,
1238 state->secname, EC_WORD(symndx),
1239 demangle(symname, state->flags));
1240 }
1241
1242 /*
1243 * If a symbol with non-zero size has a type that
1244 * specifies an address, then make sure the location
1245 * it references is actually contained within the
1246 * section. UNDEF symbols don't count in this case,
1247 * so we ignore them.
1248 *
1249 * The meaning of the st_value field in a symbol
1250 * depends on the type of object. For a relocatable
1251 * object, it is the offset within the section.
1252 * For sharable objects, it is the offset relative to
1253 * the base of the object, and for other types, it is
1254 * the virtual address. To get an offset within the
1255 * section for non-ET_REL files, we subtract the
1256 * base address of the section.
1257 */
1258 if (addr_symtype[type] && (sym->st_size > 0) &&
1259 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1260 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1261 Word v = sym->st_value;
1262 if (state->ehdr->e_type != ET_REL)
1263 v -= tshdr->sh_addr;
1264 if (((v + sym->st_size) > tshdr->sh_size)) {
1265 (void) fprintf(stderr,
1266 MSG_INTL(MSG_ERR_BADSYM6), state->file,
1267 state->secname, EC_WORD(symndx),
1268 demangle(symname, state->flags),
1269 EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1270 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1271 }
1272 }
1273
1274 /*
1275 * A typical symbol table uses the sh_info field to indicate one greater
1276 * than the symbol table index of the last local symbol, STB_LOCAL.
1277 * Therefore, symbol indexes less than sh_info should have local
1278 * binding. Symbol indexes greater than, or equal to sh_info, should
1279 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero
1280 * value and size, as these symbols may be the result of an mcs(1)
1281 * section deletion.
1282 */
1283 if (info) {
1284 uchar_t bind = ELF_ST_BIND(sym->st_info);
1285
1286 if ((symndx < info) && (bind != STB_LOCAL)) {
1287 (void) fprintf(stderr,
1288 MSG_INTL(MSG_ERR_BADSYM7), state->file,
1289 state->secname, EC_WORD(symndx),
1290 demangle(symname, state->flags), EC_XWORD(info));
1291
1292 } else if ((symndx >= info) && (bind == STB_LOCAL) &&
1293 ((sym->st_shndx != SHN_UNDEF) ||
1294 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1295 (sym->st_size != 0) || (sym->st_value != 0))) {
1296 (void) fprintf(stderr,
1297 MSG_INTL(MSG_ERR_BADSYM8), state->file,
1298 state->secname, EC_WORD(symndx),
1299 demangle(symname, state->flags), EC_XWORD(info));
1300 }
1301 }
1302
1303 (void) snprintf(index, MAXNDXSIZE,
1304 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1305 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1306 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1307 }
1308
1309 /*
1310 * Process a SHT_SUNW_cap capabilities section.
1311 */
1312 static int
cap_section(const char * file,Cache * cache,Word shnum,Cache * ccache,uchar_t osabi,Ehdr * ehdr,uint_t flags)1313 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1314 uchar_t osabi, Ehdr *ehdr, uint_t flags)
1315 {
1316 SYMTBL_STATE state;
1317 Word cnum, capnum, nulls, symcaps;
1318 int descapndx, objcap, title;
1319 Cap *cap = (Cap *)ccache->c_data->d_buf;
1320 Shdr *cishdr, *cshdr = ccache->c_shdr;
1321 Cache *cicache, *strcache;
1322 Capinfo *capinfo = NULL;
1323 Word capinfonum;
1324 const char *strs = NULL;
1325 size_t strs_size;
1326
1327 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1328 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1329 file, ccache->c_name);
1330 return (0);
1331 }
1332
1333 /*
1334 * If this capabilities section is associated with symbols, then the
1335 * sh_link field points to the associated capabilities information
1336 * section. The sh_link field of the capabilities information section
1337 * points to the associated symbol table.
1338 */
1339 if (cshdr->sh_link) {
1340 Cache *scache;
1341 Shdr *sshdr;
1342
1343 /*
1344 * Validate that the sh_link field points to a capabilities
1345 * information section.
1346 */
1347 if (cshdr->sh_link >= shnum) {
1348 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1349 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1350 return (0);
1351 }
1352
1353 cicache = &cache[cshdr->sh_link];
1354 cishdr = cicache->c_shdr;
1355
1356 if (cishdr->sh_type != SHT_SUNW_capinfo) {
1357 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1358 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1359 return (0);
1360 }
1361
1362 capinfo = cicache->c_data->d_buf;
1363 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1364
1365 /*
1366 * Validate that the sh_link field of the capabilities
1367 * information section points to a valid symbol table.
1368 */
1369 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1370 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1371 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1372 return (0);
1373 }
1374 scache = &cache[cishdr->sh_link];
1375 sshdr = scache->c_shdr;
1376
1377 if ((sshdr->sh_type != SHT_SYMTAB) &&
1378 (sshdr->sh_type != SHT_DYNSYM)) {
1379 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1380 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1381 return (0);
1382 }
1383
1384 if (!init_symtbl_state(&state, cache, shnum,
1385 cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1386 return (0);
1387 }
1388
1389 /*
1390 * If this capabilities section contains capability string entries,
1391 * then determine the associated string table. Capabilities entries
1392 * that define names require that the capability section indicate
1393 * which string table to use via sh_info.
1394 */
1395 if (cshdr->sh_info) {
1396 Shdr *strshdr;
1397
1398 /*
1399 * Validate that the sh_info field points to a string table.
1400 */
1401 if (cshdr->sh_info >= shnum) {
1402 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1403 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1404 return (0);
1405 }
1406
1407 strcache = &cache[cshdr->sh_info];
1408 strshdr = strcache->c_shdr;
1409
1410 if (strshdr->sh_type != SHT_STRTAB) {
1411 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1412 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1413 return (0);
1414 }
1415 strs = (const char *)strcache->c_data->d_buf;
1416 strs_size = strcache->c_data->d_size;
1417 }
1418
1419 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1420 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1421
1422 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1423
1424 nulls = symcaps = 0;
1425 objcap = title = 1;
1426 descapndx = -1;
1427
1428 /*
1429 * Traverse the capabilities section printing each capability group.
1430 * The first capabilities group defines any object capabilities. Any
1431 * following groups define symbol capabilities. In the case where no
1432 * object capabilities exist, but symbol capabilities do, a single
1433 * CA_SUNW_NULL terminator for the object capabilities exists.
1434 */
1435 for (cnum = 0; cnum < capnum; cap++, cnum++) {
1436 if (cap->c_tag == CA_SUNW_NULL) {
1437 /*
1438 * A CA_SUNW_NULL tag terminates a capabilities group.
1439 * If the first capabilities tag is CA_SUNW_NULL, then
1440 * no object capabilities exist.
1441 */
1442 if ((nulls++ == 0) && (cnum == 0))
1443 objcap = 0;
1444 title = 1;
1445 } else {
1446 if (title) {
1447 if (nulls == 0) {
1448 /*
1449 * If this capabilities group represents
1450 * the object capabilities (i.e., no
1451 * CA_SUNW_NULL tag has been processed
1452 * yet), then display an object
1453 * capabilities title.
1454 */
1455 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1456 dbg_print(0,
1457 MSG_INTL(MSG_OBJ_CAP_TITLE));
1458 } else {
1459 /*
1460 * If this is a symbols capabilities
1461 * group (i.e., a CA_SUNW_NULL tag has
1462 * already be found that terminates
1463 * the object capabilities group), then
1464 * display a symbol capabilities title,
1465 * and retain this capabilities index
1466 * for later processing.
1467 */
1468 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1469 dbg_print(0,
1470 MSG_INTL(MSG_SYM_CAP_TITLE));
1471 descapndx = cnum;
1472 }
1473 Elf_cap_title(0);
1474 title = 0;
1475 }
1476
1477 /*
1478 * Print the capabilities data.
1479 *
1480 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1481 * entries require a string table, which should have
1482 * already been established.
1483 */
1484 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1485 (cap->c_tag == CA_SUNW_MACH) ||
1486 (cap->c_tag == CA_SUNW_ID))) {
1487 (void) fprintf(stderr,
1488 MSG_INTL(MSG_WARN_INVCAP4), file,
1489 EC_WORD(elf_ndxscn(ccache->c_scn)),
1490 ccache->c_name, EC_WORD(cshdr->sh_info));
1491 }
1492 Elf_cap_entry(0, cap, cnum, strs, strs_size,
1493 ehdr->e_machine);
1494 }
1495
1496 /*
1497 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1498 * group, determine the associated symbols.
1499 */
1500 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1501 (descapndx != -1)) {
1502 Capinfo *cip;
1503 Word inum;
1504
1505 symcaps++;
1506
1507 /*
1508 * Make sure we've discovered a SHT_SUNW_capinfo table.
1509 */
1510 if ((cip = capinfo) == NULL) {
1511 (void) fprintf(stderr,
1512 MSG_INTL(MSG_ERR_INVCAP), file,
1513 ccache->c_name, EC_WORD(cshdr->sh_link));
1514 return (0);
1515 }
1516
1517 /*
1518 * Determine what symbols reference this capabilities
1519 * group.
1520 */
1521 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1522 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1523 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1524
1525 for (inum = 1, cip++; inum < capinfonum;
1526 inum++, cip++) {
1527 Word gndx = (Word)ELF_C_GROUP(*cip);
1528
1529 if (gndx && (gndx == descapndx)) {
1530 output_symbol(&state, inum, 0,
1531 inum, state.sym + inum);
1532 }
1533 }
1534 descapndx = -1;
1535 continue;
1536 }
1537
1538 /*
1539 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1540 * object is suspicious as it has no effect.
1541 */
1542 if ((cap->c_tag == CA_SUNW_SF_1) &&
1543 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1544 (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1545 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1546 file, ccache->c_name);
1547 }
1548 }
1549
1550 /*
1551 * If this is a dynamic object, with symbol capabilities, then a
1552 * .SUNW_capchain section should exist. This section contains a chain
1553 * of symbol indexes for each capabilities family. This is the list
1554 * that is searched by ld.so.1 to determine the best capabilities
1555 * candidate.
1556 *
1557 * Note, more than one capabilities lead symbol can point to the same
1558 * family chain. For example, a weak/global pair of symbols can both
1559 * represent the same family of capabilities symbols. Therefore, to
1560 * display all possible families we traverse the capabilities
1561 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1562 * From these we determine the associated capabilities chain to inspect.
1563 */
1564 if (symcaps &&
1565 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1566 Capinfo *cip;
1567 Capchain *chain;
1568 Cache *chcache;
1569 Shdr *chshdr;
1570 Word chainnum, inum;
1571
1572 /*
1573 * Validate that the sh_info field of the capabilities
1574 * information section points to a capabilities chain section.
1575 */
1576 if (cishdr->sh_info >= shnum) {
1577 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1578 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1579 return (0);
1580 }
1581
1582 chcache = &cache[cishdr->sh_info];
1583 chshdr = chcache->c_shdr;
1584
1585 if (chshdr->sh_type != SHT_SUNW_capchain) {
1586 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1587 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1588 return (0);
1589 }
1590
1591 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1592 chain = (Capchain *)chcache->c_data->d_buf;
1593
1594 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1595 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1596
1597 /*
1598 * Traverse the capabilities information section looking for
1599 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1600 */
1601 cip = capinfo;
1602 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1603 const char *name;
1604 Sym *sym;
1605 Word sndx, cndx;
1606 Word gndx = (Word)ELF_C_GROUP(*cip);
1607
1608 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1609 continue;
1610
1611 /*
1612 * Determine the symbol that is associated with this
1613 * capability information entry, and use this to
1614 * identify this capability family.
1615 */
1616 sym = (Sym *)(state.sym + inum);
1617 name = string(cicache, inum, strcache, file,
1618 sym->st_name);
1619
1620 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1621 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1622 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1623
1624 cndx = (Word)ELF_C_SYM(*cip);
1625
1626 /*
1627 * Traverse this families chain and identify each
1628 * family member.
1629 */
1630 for (;;) {
1631 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1632
1633 if (cndx >= chainnum) {
1634 (void) fprintf(stderr,
1635 MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1636 cicache->c_name, EC_WORD(inum),
1637 EC_WORD(cndx));
1638 break;
1639 }
1640 if ((sndx = chain[cndx]) == 0)
1641 break;
1642
1643 /*
1644 * Determine this entries symbol reference.
1645 */
1646 if (sndx > state.symn) {
1647 (void) fprintf(stderr,
1648 MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1649 EC_WORD(sndx), chcache->c_name,
1650 EC_WORD(cndx));
1651 name = MSG_INTL(MSG_STR_UNKNOWN);
1652 } else {
1653 sym = (Sym *)(state.sym + sndx);
1654 name = string(chcache, sndx,
1655 strcache, file, sym->st_name);
1656 }
1657
1658 /*
1659 * Display the family member.
1660 */
1661 (void) snprintf(_chain, MAXNDXSIZE,
1662 MSG_ORIG(MSG_FMT_INTEGER), cndx);
1663 (void) snprintf(_symndx, MAXNDXSIZE,
1664 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1665 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1666 _chain, _symndx, demangle(name, flags));
1667
1668 cndx++;
1669 }
1670 }
1671 }
1672 return (objcap);
1673 }
1674
1675 /*
1676 * Print the capabilities.
1677 *
1678 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1679 * capabilities groups. The first group defines the object capabilities.
1680 * This group defines the minimum capability requirements of the entire
1681 * object file. If this is a dynamic object, this group should be associated
1682 * with a PT_SUNWCAP program header.
1683 *
1684 * Additional capabilities groups define the association of individual symbols
1685 * to specific capabilities.
1686 */
1687 static void
cap(const char * file,Cache * cache,Word shnum,Word phnum,Ehdr * ehdr,uchar_t osabi,Elf * elf,uint_t flags)1688 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1689 uchar_t osabi, Elf *elf, uint_t flags)
1690 {
1691 Word cnt;
1692 Shdr *cshdr = NULL;
1693 Cache *ccache;
1694 Off cphdr_off = 0;
1695 Xword cphdr_sz;
1696
1697 /*
1698 * Determine if a global capabilities header exists.
1699 */
1700 if (phnum) {
1701 Phdr *phdr;
1702
1703 if ((phdr = elf_getphdr(elf)) == NULL) {
1704 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1705 return;
1706 }
1707
1708 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1709 if (phdr->p_type == PT_SUNWCAP) {
1710 cphdr_off = phdr->p_offset;
1711 cphdr_sz = phdr->p_filesz;
1712 break;
1713 }
1714 }
1715 }
1716
1717 /*
1718 * Determine if a capabilities section exists.
1719 */
1720 for (cnt = 1; cnt < shnum; cnt++) {
1721 Cache *_cache = &cache[cnt];
1722 Shdr *shdr = _cache->c_shdr;
1723
1724 /*
1725 * Process any capabilities information.
1726 */
1727 if (shdr->sh_type == SHT_SUNW_cap) {
1728 if (cap_section(file, cache, shnum, _cache, osabi,
1729 ehdr, flags)) {
1730 /*
1731 * If this section defined an object capability
1732 * group, retain the section information for
1733 * program header validation.
1734 */
1735 ccache = _cache;
1736 cshdr = shdr;
1737 }
1738 continue;
1739 }
1740 }
1741
1742 if ((cshdr == NULL) && (cphdr_off == 0))
1743 return;
1744
1745 if (cphdr_off && (cshdr == NULL))
1746 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1747
1748 /*
1749 * If this object is an executable or shared object, and it provided
1750 * an object capabilities group, then the group should have an
1751 * accompanying PT_SUNWCAP program header.
1752 */
1753 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1754 if (cphdr_off == 0) {
1755 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1756 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1757 ccache->c_name);
1758 } else if ((cphdr_off != cshdr->sh_offset) ||
1759 (cphdr_sz != cshdr->sh_size)) {
1760 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1761 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1762 ccache->c_name);
1763 }
1764 }
1765 }
1766
1767 /*
1768 * Print the interpretor.
1769 */
1770 static void
interp(const char * file,Cache * cache,Word shnum,Word phnum,Elf * elf)1771 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1772 {
1773 static Word phdr_types[] = { PT_INTERP };
1774
1775
1776 Word cnt;
1777 Shdr *ishdr = NULL;
1778 Cache *icache;
1779 Off iphdr_off = 0;
1780 Xword iphdr_fsz;
1781
1782 /*
1783 * Determine if an interp header exists.
1784 */
1785 if (phnum) {
1786 Phdr *phdr;
1787
1788 phdr = getphdr(phnum, phdr_types,
1789 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1790 if (phdr != NULL) {
1791 iphdr_off = phdr->p_offset;
1792 iphdr_fsz = phdr->p_filesz;
1793 }
1794 }
1795
1796 if (iphdr_off == 0)
1797 return;
1798
1799 /*
1800 * Determine if an interp section exists.
1801 */
1802 for (cnt = 1; cnt < shnum; cnt++) {
1803 Cache *_cache = &cache[cnt];
1804 Shdr *shdr = _cache->c_shdr;
1805
1806 /*
1807 * Scan sections to find a section which contains the PT_INTERP
1808 * string. The target section can't be in a NOBITS section.
1809 */
1810 if ((shdr->sh_type == SHT_NOBITS) ||
1811 (iphdr_off < shdr->sh_offset) ||
1812 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1813 continue;
1814
1815 icache = _cache;
1816 ishdr = shdr;
1817 break;
1818 }
1819
1820 /*
1821 * Print the interpreter string based on the offset defined in the
1822 * program header, as this is the offset used by the kernel.
1823 */
1824 if (ishdr && icache->c_data) {
1825 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1826 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1827 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1828 (char *)icache->c_data->d_buf +
1829 (iphdr_off - ishdr->sh_offset));
1830 } else
1831 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1832
1833 /*
1834 * If there are any inconsistences between the program header and
1835 * section information, flag them.
1836 */
1837 if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1838 (iphdr_fsz != ishdr->sh_size))) {
1839 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1840 icache->c_name);
1841 }
1842 }
1843
1844 /*
1845 * Print the syminfo section.
1846 */
1847 static void
syminfo(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)1848 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1849 {
1850 Shdr *infoshdr;
1851 Syminfo *info;
1852 Sym *syms;
1853 Dyn *dyns;
1854 Word infonum, cnt, ndx, symnum, dynnum;
1855 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1856 Boolean *dynerr;
1857
1858 for (cnt = 1; cnt < shnum; cnt++) {
1859 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1860 infocache = &cache[cnt];
1861 break;
1862 }
1863 }
1864 if (infocache == NULL)
1865 return;
1866
1867 infoshdr = infocache->c_shdr;
1868 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1869 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1870 file, infocache->c_name);
1871 return;
1872 }
1873 if (infocache->c_data == NULL)
1874 return;
1875
1876 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1877 info = (Syminfo *)infocache->c_data->d_buf;
1878
1879 /*
1880 * If there is no associated dynamic section, determine if one
1881 * is needed, and if so issue a warning. If there is an
1882 * associated dynamic section, validate it and get the data buffer
1883 * for it.
1884 */
1885 dyns = NULL;
1886 dynnum = 0;
1887 if (infoshdr->sh_info == 0) {
1888 Syminfo *_info = info + 1;
1889
1890 for (ndx = 1; ndx < infonum; ndx++, _info++) {
1891 if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1892 continue;
1893
1894 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1895 (void) fprintf(stderr,
1896 MSG_INTL(MSG_ERR_BADSHINFO), file,
1897 infocache->c_name,
1898 EC_WORD(infoshdr->sh_info));
1899 }
1900 } else if ((infoshdr->sh_info >= shnum) ||
1901 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1902 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1903 file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1904 } else {
1905 dyncache = &cache[infoshdr->sh_info];
1906 if ((dyncache->c_data == NULL) ||
1907 ((dyns = dyncache->c_data->d_buf) == NULL)) {
1908 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1909 file, dyncache->c_name);
1910 }
1911 if (dyns != NULL) {
1912 dynnum = dyncache->c_shdr->sh_size /
1913 dyncache->c_shdr->sh_entsize;
1914
1915 /*
1916 * We validate the type of dynamic elements referenced
1917 * from the syminfo. This array is used report any
1918 * bad dynamic entries.
1919 */
1920 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1921 NULL) {
1922 int err = errno;
1923 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1924 file, strerror(err));
1925 return;
1926 }
1927 }
1928 }
1929
1930 /*
1931 * Get the data buffer for the associated symbol table and string table.
1932 */
1933 if (stringtbl(cache, 1, cnt, shnum, file,
1934 &symnum, &symsec, &strsec) == 0)
1935 return;
1936
1937 syms = symsec->c_data->d_buf;
1938
1939 /*
1940 * Loop through the syminfo entries.
1941 */
1942 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1943 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1944 Elf_syminfo_title(0);
1945
1946 for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1947 Sym *sym;
1948 const char *needed, *name;
1949 Word expect_dt;
1950 Word boundto = info->si_boundto;
1951
1952 if ((info->si_flags == 0) && (boundto == 0))
1953 continue;
1954
1955 sym = &syms[ndx];
1956 name = string(infocache, ndx, strsec, file, sym->st_name);
1957
1958 /* Is si_boundto set to one of the reserved values? */
1959 if (boundto >= SYMINFO_BT_LOWRESERVE) {
1960 Elf_syminfo_entry(0, ndx, info, name, NULL);
1961 continue;
1962 }
1963
1964 /*
1965 * si_boundto is referencing a dynamic section. If we don't
1966 * have one, an error was already issued above, so it suffices
1967 * to display an empty string. If we are out of bounds, then
1968 * report that and then display an empty string.
1969 */
1970 if ((dyns == NULL) || (boundto >= dynnum)) {
1971 if (dyns != NULL)
1972 (void) fprintf(stderr,
1973 MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1974 infocache->c_ndx, infocache->c_name,
1975 EC_WORD(ndx), EC_WORD(dynnum - 1),
1976 EC_WORD(boundto));
1977 Elf_syminfo_entry(0, ndx, info, name,
1978 MSG_ORIG(MSG_STR_EMPTY));
1979 continue;
1980 }
1981
1982 /*
1983 * The si_boundto reference expects a specific dynamic element
1984 * type at the given index. The dynamic element is always a
1985 * string that gives an object name. The specific type depends
1986 * on the si_flags present. Ensure that we've got the right
1987 * type.
1988 */
1989 if (info->si_flags & SYMINFO_FLG_FILTER)
1990 expect_dt = DT_SUNW_FILTER;
1991 else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
1992 expect_dt = DT_SUNW_AUXILIARY;
1993 else if (info->si_flags & (SYMINFO_FLG_DIRECT |
1994 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
1995 expect_dt = DT_NEEDED;
1996 else
1997 expect_dt = DT_NULL; /* means we ignore the type */
1998
1999 if ((dyns[boundto].d_tag != expect_dt) &&
2000 (expect_dt != DT_NULL)) {
2001 Conv_inv_buf_t buf1, buf2;
2002
2003 /* Only complain about each dynamic element once */
2004 if (!dynerr[boundto]) {
2005 (void) fprintf(stderr,
2006 MSG_INTL(MSG_ERR_BADSIDYNTAG),
2007 file, infocache->c_ndx, infocache->c_name,
2008 EC_WORD(ndx), dyncache->c_ndx,
2009 dyncache->c_name, EC_WORD(boundto),
2010 conv_dyn_tag(expect_dt, osabi,
2011 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
2012 conv_dyn_tag(dyns[boundto].d_tag, osabi,
2013 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
2014 dynerr[boundto] = TRUE;
2015 }
2016 }
2017
2018 /*
2019 * Whether or not the DT item we're pointing at is
2020 * of the right type, if it's a type we recognize as
2021 * providing a string, go ahead and show it. Otherwise
2022 * an empty string.
2023 */
2024 switch (dyns[boundto].d_tag) {
2025 case DT_NEEDED:
2026 case DT_SONAME:
2027 case DT_RPATH:
2028 case DT_RUNPATH:
2029 case DT_CONFIG:
2030 case DT_DEPAUDIT:
2031 case DT_USED:
2032 case DT_AUDIT:
2033 case DT_SUNW_AUXILIARY:
2034 case DT_SUNW_FILTER:
2035 case DT_FILTER:
2036 case DT_AUXILIARY:
2037 needed = string(infocache, boundto,
2038 strsec, file, dyns[boundto].d_un.d_val);
2039 break;
2040 default:
2041 needed = MSG_ORIG(MSG_STR_EMPTY);
2042 }
2043 Elf_syminfo_entry(0, ndx, info, name, needed);
2044 }
2045 if (dyns != NULL)
2046 free(dynerr);
2047 }
2048
2049 /*
2050 * Print version definition section entries.
2051 */
2052 static void
version_def(Verdef * vdf,Word vdf_num,Cache * vcache,Cache * scache,const char * file)2053 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
2054 const char *file)
2055 {
2056 Word cnt;
2057 char index[MAXNDXSIZE];
2058
2059 Elf_ver_def_title(0);
2060
2061 for (cnt = 1; cnt <= vdf_num; cnt++,
2062 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2063 Conv_ver_flags_buf_t ver_flags_buf;
2064 const char *name, *dep;
2065 Half vcnt = vdf->vd_cnt - 1;
2066 Half ndx = vdf->vd_ndx;
2067 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2068
2069 /*
2070 * Obtain the name and first dependency (if any).
2071 */
2072 name = string(vcache, cnt, scache, file, vdap->vda_name);
2073 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2074 if (vcnt)
2075 dep = string(vcache, cnt, scache, file, vdap->vda_name);
2076 else
2077 dep = MSG_ORIG(MSG_STR_EMPTY);
2078
2079 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2080 EC_XWORD(ndx));
2081 Elf_ver_line_1(0, index, name, dep,
2082 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2083
2084 /*
2085 * Print any additional dependencies.
2086 */
2087 if (vcnt) {
2088 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2089 for (vcnt--; vcnt; vcnt--,
2090 vdap = (Verdaux *)((uintptr_t)vdap +
2091 vdap->vda_next)) {
2092 dep = string(vcache, cnt, scache, file,
2093 vdap->vda_name);
2094 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2095 }
2096 }
2097 }
2098 }
2099
2100 /*
2101 * Print version needed section entries.
2102 *
2103 * entry:
2104 * vnd - Address of verneed data
2105 * vnd_num - # of Verneed entries
2106 * vcache - Cache of verneed section being processed
2107 * scache - Cache of associated string table section
2108 * file - Name of object being processed.
2109 * versym - Information about versym section
2110 *
2111 * exit:
2112 * The versions have been printed. If GNU style versioning
2113 * is in effect, versym->max_verndx has been updated to
2114 * contain the largest version index seen.
2115 *
2116 * note:
2117 * The versym section of an object that follows the original
2118 * Solaris versioning rules only contains indexes into the verdef
2119 * section. Symbols defined in other objects (UNDEF) are given
2120 * a version of 0, indicating that they are not defined by
2121 * this file, and the Verneed entries do not have associated version
2122 * indexes. For these reasons, we do not display a version index
2123 * for original-style Verneed sections.
2124 *
2125 * The GNU versioning extensions alter this: Symbols defined in other
2126 * objects receive a version index in the range above those defined
2127 * by the Verdef section, and the vna_other field of the Vernaux
2128 * structs inside the Verneed section contain the version index for
2129 * that item. We therefore display the index when showing the
2130 * contents of a GNU style Verneed section. You should not
2131 * necessarily expect these indexes to appear in sorted
2132 * order --- it seems that the GNU ld assigns the versions as
2133 * symbols are encountered during linking, and then the results
2134 * are assembled into the Verneed section afterwards.
2135 */
2136 static void
version_need(Verneed * vnd,Word vnd_num,Cache * vcache,Cache * scache,const char * file,VERSYM_STATE * versym)2137 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2138 const char *file, VERSYM_STATE *versym)
2139 {
2140 Word cnt;
2141 char index[MAXNDXSIZE];
2142 const char *index_str;
2143
2144 Elf_ver_need_title(0, versym->gnu_needed);
2145
2146 for (cnt = 1; cnt <= vnd_num; cnt++,
2147 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2148 Conv_ver_flags_buf_t ver_flags_buf;
2149 const char *name, *dep;
2150 Half vcnt = vnd->vn_cnt;
2151 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2152
2153 /*
2154 * Obtain the name of the needed file and the version name
2155 * within it that we're dependent on. Note that the count
2156 * should be at least one, otherwise this is a pretty bogus
2157 * entry.
2158 */
2159 name = string(vcache, cnt, scache, file, vnd->vn_file);
2160 if (vcnt)
2161 dep = string(vcache, cnt, scache, file, vnap->vna_name);
2162 else
2163 dep = MSG_INTL(MSG_STR_NULL);
2164
2165 if (vnap->vna_other == 0) { /* Traditional form */
2166 index_str = MSG_ORIG(MSG_STR_EMPTY);
2167 } else { /* GNU form */
2168 index_str = index;
2169 /* Format the version index value */
2170 (void) snprintf(index, MAXNDXSIZE,
2171 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2172 if (vnap->vna_other > versym->max_verndx)
2173 versym->max_verndx = vnap->vna_other;
2174 }
2175 Elf_ver_line_1(0, index_str, name, dep,
2176 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2177
2178 /*
2179 * Print any additional version dependencies.
2180 */
2181 if (vcnt) {
2182 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2183 for (vcnt--; vcnt; vcnt--,
2184 vnap = (Vernaux *)((uintptr_t)vnap +
2185 vnap->vna_next)) {
2186 dep = string(vcache, cnt, scache, file,
2187 vnap->vna_name);
2188 if (vnap->vna_other > 0) {
2189 /* Format the next index value */
2190 (void) snprintf(index, MAXNDXSIZE,
2191 MSG_ORIG(MSG_FMT_INDEX),
2192 EC_XWORD(vnap->vna_other));
2193 Elf_ver_line_1(0, index,
2194 MSG_ORIG(MSG_STR_EMPTY), dep,
2195 conv_ver_flags(vnap->vna_flags,
2196 0, &ver_flags_buf));
2197 if (vnap->vna_other >
2198 versym->max_verndx)
2199 versym->max_verndx =
2200 vnap->vna_other;
2201 } else {
2202 Elf_ver_line_3(0,
2203 MSG_ORIG(MSG_STR_EMPTY), dep,
2204 conv_ver_flags(vnap->vna_flags,
2205 0, &ver_flags_buf));
2206 }
2207 }
2208 }
2209 }
2210 }
2211
2212 /*
2213 * Examine the Verneed section for information related to GNU
2214 * style Versym indexing:
2215 * - A non-zero vna_other field indicates that Versym indexes can
2216 * reference Verneed records.
2217 * - If the object uses GNU style Versym indexing, the
2218 * maximum index value is needed to detect bad Versym entries.
2219 *
2220 * entry:
2221 * vnd - Address of verneed data
2222 * vnd_num - # of Verneed entries
2223 * versym - Information about versym section
2224 *
2225 * exit:
2226 * If a non-zero vna_other field is seen, versym->gnu_needed is set.
2227 *
2228 * versym->max_verndx has been updated to contain the largest
2229 * version index seen.
2230 */
2231 static void
update_gnu_verndx(Verneed * vnd,Word vnd_num,VERSYM_STATE * versym)2232 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2233 {
2234 Word cnt;
2235
2236 for (cnt = 1; cnt <= vnd_num; cnt++,
2237 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2238 Half vcnt = vnd->vn_cnt;
2239 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2240
2241 /*
2242 * A non-zero value of vna_other indicates that this
2243 * object references VERNEED items from the VERSYM
2244 * array.
2245 */
2246 if (vnap->vna_other != 0) {
2247 versym->gnu_needed = 1;
2248 if (vnap->vna_other > versym->max_verndx)
2249 versym->max_verndx = vnap->vna_other;
2250 }
2251
2252 /*
2253 * Check any additional version dependencies.
2254 */
2255 if (vcnt) {
2256 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2257 for (vcnt--; vcnt; vcnt--,
2258 vnap = (Vernaux *)((uintptr_t)vnap +
2259 vnap->vna_next)) {
2260 if (vnap->vna_other == 0)
2261 continue;
2262
2263 versym->gnu_needed = 1;
2264 if (vnap->vna_other > versym->max_verndx)
2265 versym->max_verndx = vnap->vna_other;
2266 }
2267 }
2268 }
2269 }
2270
2271 /*
2272 * Display version section information if the flags require it.
2273 * Return version information needed by other output.
2274 *
2275 * entry:
2276 * cache - Cache of all section headers
2277 * shnum - # of sections in cache
2278 * file - Name of file
2279 * flags - Command line option flags
2280 * versym - VERSYM_STATE block to be filled in.
2281 */
2282 static void
versions(Cache * cache,Word shnum,const char * file,uint_t flags,VERSYM_STATE * versym)2283 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2284 VERSYM_STATE *versym)
2285 {
2286 GElf_Word cnt;
2287 Cache *verdef_cache = NULL, *verneed_cache = NULL;
2288
2289
2290 /* Gather information about the version sections */
2291 versym->max_verndx = 1;
2292 for (cnt = 1; cnt < shnum; cnt++) {
2293 Cache *_cache = &cache[cnt];
2294 Shdr *shdr = _cache->c_shdr;
2295 Dyn *dyn;
2296 ulong_t numdyn;
2297
2298 switch (shdr->sh_type) {
2299 case SHT_DYNAMIC:
2300 /*
2301 * The GNU ld puts a DT_VERSYM entry in the dynamic
2302 * section so that the runtime linker can use it to
2303 * implement their versioning rules. They allow multiple
2304 * incompatible functions with the same name to exist
2305 * in different versions. The Solaris ld does not
2306 * support this mechanism, and as such, does not
2307 * produce DT_VERSYM. We use this fact to determine
2308 * which ld produced this object, and how to interpret
2309 * the version values.
2310 */
2311 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2312 (_cache->c_data == NULL))
2313 continue;
2314 numdyn = shdr->sh_size / shdr->sh_entsize;
2315 dyn = (Dyn *)_cache->c_data->d_buf;
2316 for (; numdyn-- > 0; dyn++)
2317 if (dyn->d_tag == DT_VERSYM) {
2318 versym->gnu_full =
2319 versym->gnu_needed = 1;
2320 break;
2321 }
2322 break;
2323
2324 case SHT_SUNW_versym:
2325 /* Record data address for later symbol processing */
2326 if (_cache->c_data != NULL) {
2327 versym->cache = _cache;
2328 versym->data = _cache->c_data->d_buf;
2329 continue;
2330 }
2331 break;
2332
2333 case SHT_SUNW_verdef:
2334 case SHT_SUNW_verneed:
2335 /*
2336 * Ensure the data is non-NULL and the number
2337 * of items is non-zero. Otherwise, we don't
2338 * understand the section, and will not use it.
2339 */
2340 if ((_cache->c_data == NULL) ||
2341 (_cache->c_data->d_buf == NULL)) {
2342 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2343 file, _cache->c_name);
2344 continue;
2345 }
2346 if (shdr->sh_info == 0) {
2347 (void) fprintf(stderr,
2348 MSG_INTL(MSG_ERR_BADSHINFO),
2349 file, _cache->c_name,
2350 EC_WORD(shdr->sh_info));
2351 continue;
2352 }
2353
2354 /* Make sure the string table index is in range */
2355 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2356 (void) fprintf(stderr,
2357 MSG_INTL(MSG_ERR_BADSHLINK), file,
2358 _cache->c_name, EC_WORD(shdr->sh_link));
2359 continue;
2360 }
2361
2362 /*
2363 * The section is usable. Save the cache entry.
2364 */
2365 if (shdr->sh_type == SHT_SUNW_verdef) {
2366 verdef_cache = _cache;
2367 /*
2368 * Under Solaris rules, if there is a verdef
2369 * section, the max versym index is number
2370 * of version definitions it supplies.
2371 */
2372 versym->max_verndx = shdr->sh_info;
2373 } else {
2374 verneed_cache = _cache;
2375 }
2376 break;
2377 }
2378 }
2379
2380 /*
2381 * If there is a Verneed section, examine it for information
2382 * related to GNU style versioning.
2383 */
2384 if (verneed_cache != NULL)
2385 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2386 verneed_cache->c_shdr->sh_info, versym);
2387
2388 /*
2389 * Now that all the information is available, display the
2390 * Verdef and Verneed section contents, if requested.
2391 */
2392 if ((flags & FLG_SHOW_VERSIONS) == 0)
2393 return;
2394 if (verdef_cache != NULL) {
2395 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2396 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2397 verdef_cache->c_name);
2398 version_def((Verdef *)verdef_cache->c_data->d_buf,
2399 verdef_cache->c_shdr->sh_info, verdef_cache,
2400 &cache[verdef_cache->c_shdr->sh_link], file);
2401 }
2402 if (verneed_cache != NULL) {
2403 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2404 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2405 verneed_cache->c_name);
2406 /*
2407 * If GNU versioning applies to this object, version_need()
2408 * will update versym->max_verndx, and it is not
2409 * necessary to call update_gnu_verndx().
2410 */
2411 version_need((Verneed *)verneed_cache->c_data->d_buf,
2412 verneed_cache->c_shdr->sh_info, verneed_cache,
2413 &cache[verneed_cache->c_shdr->sh_link], file, versym);
2414 }
2415 }
2416
2417 /*
2418 * Search for and process any symbol tables.
2419 */
2420 void
symbols(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)2421 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2422 VERSYM_STATE *versym, const char *file, uint_t flags)
2423 {
2424 SYMTBL_STATE state;
2425 Cache *_cache;
2426 Word secndx;
2427
2428 for (secndx = 1; secndx < shnum; secndx++) {
2429 Word symcnt;
2430 Shdr *shdr;
2431
2432 _cache = &cache[secndx];
2433 shdr = _cache->c_shdr;
2434
2435 if ((shdr->sh_type != SHT_SYMTAB) &&
2436 (shdr->sh_type != SHT_DYNSYM) &&
2437 ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2438 (osabi != ELFOSABI_SOLARIS)))
2439 continue;
2440 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2441 continue;
2442
2443 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2444 osabi, versym, file, flags))
2445 continue;
2446 /*
2447 * Loop through the symbol tables entries.
2448 */
2449 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2450 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2451 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2452
2453 for (symcnt = 0; symcnt < state.symn; symcnt++)
2454 output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2455 state.sym + symcnt);
2456 }
2457 }
2458
2459 /*
2460 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2461 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2462 */
2463 static void
sunw_sort(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,VERSYM_STATE * versym,const char * file,uint_t flags)2464 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2465 VERSYM_STATE *versym, const char *file, uint_t flags)
2466 {
2467 SYMTBL_STATE ldynsym_state, dynsym_state;
2468 Cache *sortcache, *symcache;
2469 Shdr *sortshdr, *symshdr;
2470 Word sortsecndx, symsecndx;
2471 Word ldynsym_cnt;
2472 Word *ndx;
2473 Word ndxn;
2474 int output_cnt = 0;
2475 Conv_inv_buf_t inv_buf;
2476
2477 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2478
2479 sortcache = &cache[sortsecndx];
2480 sortshdr = sortcache->c_shdr;
2481
2482 if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2483 (sortshdr->sh_type != SHT_SUNW_tlssort))
2484 continue;
2485 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2486 sortshdr->sh_type))
2487 continue;
2488
2489 /*
2490 * If the section references a SUNW_ldynsym, then we
2491 * expect to see the associated .dynsym immediately
2492 * following. If it references a .dynsym, there is no
2493 * SUNW_ldynsym. If it is any other type, then we don't
2494 * know what to do with it.
2495 */
2496 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2497 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2498 file, sortcache->c_name,
2499 EC_WORD(sortshdr->sh_link));
2500 continue;
2501 }
2502 symcache = &cache[sortshdr->sh_link];
2503 symshdr = symcache->c_shdr;
2504 symsecndx = sortshdr->sh_link;
2505 ldynsym_cnt = 0;
2506 switch (symshdr->sh_type) {
2507 case SHT_SUNW_LDYNSYM:
2508 if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2509 symsecndx, ehdr, osabi, versym, file, flags))
2510 continue;
2511 ldynsym_cnt = ldynsym_state.symn;
2512 /*
2513 * We know that the dynsym follows immediately
2514 * after the SUNW_ldynsym, and so, should be at
2515 * (sortshdr->sh_link + 1). However, elfdump is a
2516 * diagnostic tool, so we do the full paranoid
2517 * search instead.
2518 */
2519 for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2520 symcache = &cache[symsecndx];
2521 symshdr = symcache->c_shdr;
2522 if (symshdr->sh_type == SHT_DYNSYM)
2523 break;
2524 }
2525 if (symsecndx >= shnum) { /* Dynsym not found! */
2526 (void) fprintf(stderr,
2527 MSG_INTL(MSG_ERR_NODYNSYM),
2528 file, sortcache->c_name);
2529 continue;
2530 }
2531 /* Fallthrough to process associated dynsym */
2532 /* FALLTHROUGH */
2533 case SHT_DYNSYM:
2534 if (!init_symtbl_state(&dynsym_state, cache, shnum,
2535 symsecndx, ehdr, osabi, versym, file, flags))
2536 continue;
2537 break;
2538 default:
2539 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2540 file, sortcache->c_name,
2541 conv_sec_type(osabi, ehdr->e_machine,
2542 symshdr->sh_type, 0, &inv_buf));
2543 continue;
2544 }
2545
2546 /*
2547 * Output header
2548 */
2549 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2550 if (ldynsym_cnt > 0) {
2551 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2552 sortcache->c_name, ldynsym_state.secname,
2553 dynsym_state.secname);
2554 /*
2555 * The data for .SUNW_ldynsym and dynsym sections
2556 * is supposed to be adjacent with SUNW_ldynsym coming
2557 * first. Check, and issue a warning if it isn't so.
2558 */
2559 if (((ldynsym_state.sym + ldynsym_state.symn)
2560 != dynsym_state.sym) &&
2561 ((flags & FLG_CTL_FAKESHDR) == 0))
2562 (void) fprintf(stderr,
2563 MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2564 ldynsym_state.secname,
2565 dynsym_state.secname);
2566 } else {
2567 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2568 sortcache->c_name, dynsym_state.secname);
2569 }
2570 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2571
2572 /* If not first one, insert a line of white space */
2573 if (output_cnt++ > 0)
2574 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2575
2576 /*
2577 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2578 * symbol indices. Iterate over the array entries,
2579 * dispaying the referenced symbols.
2580 */
2581 ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2582 ndx = (Word *)sortcache->c_data->d_buf;
2583 for (; ndxn-- > 0; ndx++) {
2584 if (*ndx >= ldynsym_cnt) {
2585 Word sec_ndx = *ndx - ldynsym_cnt;
2586
2587 output_symbol(&dynsym_state, sec_ndx, 0,
2588 *ndx, dynsym_state.sym + sec_ndx);
2589 } else {
2590 output_symbol(&ldynsym_state, *ndx, 0,
2591 *ndx, ldynsym_state.sym + *ndx);
2592 }
2593 }
2594 }
2595 }
2596
2597 /*
2598 * Search for and process any relocation sections.
2599 */
2600 static void
reloc(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)2601 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2602 {
2603 Word cnt;
2604
2605 for (cnt = 1; cnt < shnum; cnt++) {
2606 Word type, symnum;
2607 Xword relndx, relnum, relsize;
2608 void *rels;
2609 Sym *syms;
2610 Cache *symsec, *strsec;
2611 Cache *_cache = &cache[cnt];
2612 Shdr *shdr = _cache->c_shdr;
2613 char *relname = _cache->c_name;
2614 Conv_inv_buf_t inv_buf;
2615
2616 if (((type = shdr->sh_type) != SHT_RELA) &&
2617 (type != SHT_REL))
2618 continue;
2619 if (!match(MATCH_F_ALL, relname, cnt, type))
2620 continue;
2621
2622 /*
2623 * Decide entry size.
2624 */
2625 if (((relsize = shdr->sh_entsize) == 0) ||
2626 (relsize > shdr->sh_size)) {
2627 if (type == SHT_RELA)
2628 relsize = sizeof (Rela);
2629 else
2630 relsize = sizeof (Rel);
2631 }
2632
2633 /*
2634 * Determine the number of relocations available.
2635 */
2636 if (shdr->sh_size == 0) {
2637 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2638 file, relname);
2639 continue;
2640 }
2641 if (_cache->c_data == NULL)
2642 continue;
2643
2644 rels = _cache->c_data->d_buf;
2645 relnum = shdr->sh_size / relsize;
2646
2647 /*
2648 * Get the data buffer for the associated symbol table and
2649 * string table.
2650 */
2651 if (stringtbl(cache, 1, cnt, shnum, file,
2652 &symnum, &symsec, &strsec) == 0)
2653 continue;
2654
2655 syms = symsec->c_data->d_buf;
2656
2657 /*
2658 * Loop through the relocation entries.
2659 */
2660 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2661 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2662 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2663
2664 for (relndx = 0; relndx < relnum; relndx++,
2665 rels = (void *)((char *)rels + relsize)) {
2666 Half mach = ehdr->e_machine;
2667 char section[BUFSIZ];
2668 const char *symname;
2669 Word symndx, reltype;
2670 Rela *rela;
2671 Rel *rel;
2672
2673 /*
2674 * Unravel the relocation and determine the symbol with
2675 * which this relocation is associated.
2676 */
2677 if (type == SHT_RELA) {
2678 rela = (Rela *)rels;
2679 symndx = ELF_R_SYM(rela->r_info);
2680 reltype = ELF_R_TYPE(rela->r_info, mach);
2681 } else {
2682 rel = (Rel *)rels;
2683 symndx = ELF_R_SYM(rel->r_info);
2684 reltype = ELF_R_TYPE(rel->r_info, mach);
2685 }
2686
2687 symname = relsymname(cache, _cache, strsec, symndx,
2688 symnum, relndx, syms, section, BUFSIZ, file);
2689
2690 /*
2691 * A zero symbol index is only valid for a few
2692 * relocations.
2693 */
2694 if (symndx == 0) {
2695 int badrel = 0;
2696
2697 if ((mach == EM_SPARC) ||
2698 (mach == EM_SPARC32PLUS) ||
2699 (mach == EM_SPARCV9)) {
2700 if ((reltype != R_SPARC_NONE) &&
2701 (reltype != R_SPARC_REGISTER) &&
2702 (reltype != R_SPARC_RELATIVE))
2703 badrel++;
2704 } else if (mach == EM_386) {
2705 if ((reltype != R_386_NONE) &&
2706 (reltype != R_386_RELATIVE))
2707 badrel++;
2708 } else if (mach == EM_AMD64) {
2709 if ((reltype != R_AMD64_NONE) &&
2710 (reltype != R_AMD64_RELATIVE))
2711 badrel++;
2712 }
2713
2714 if (badrel) {
2715 (void) fprintf(stderr,
2716 MSG_INTL(MSG_ERR_BADREL1), file,
2717 conv_reloc_type(mach, reltype,
2718 0, &inv_buf));
2719 }
2720 }
2721
2722 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2723 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2724 rels, relname, symname, 0);
2725 }
2726 }
2727 }
2728
2729
2730 /*
2731 * This value controls which test dyn_test() performs.
2732 */
2733 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2734
2735 /*
2736 * Used by dynamic() to compare the value of a dynamic element against
2737 * the starting address of the section it references.
2738 *
2739 * entry:
2740 * test_type - Specify which dyn item is being tested.
2741 * sh_type - SHT_* type value for required section.
2742 * sec_cache - Cache entry for section, or NULL if the object lacks
2743 * a section of this type.
2744 * dyn - Dyn entry to be tested
2745 * dynsec_cnt - # of dynamic section being examined. The first
2746 * dynamic section is 1, the next is 2, and so on...
2747 * ehdr - ELF header for file
2748 * file - Name of file
2749 */
2750 static void
dyn_test(dyn_test_t test_type,Word sh_type,Cache * sec_cache,Dyn * dyn,Word dynsec_cnt,Ehdr * ehdr,uchar_t osabi,const char * file)2751 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2752 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2753 {
2754 Conv_inv_buf_t buf1, buf2;
2755
2756 /*
2757 * These tests are based around the implicit assumption that
2758 * there is only one dynamic section in an object, and also only
2759 * one of the sections it references. We have therefore gathered
2760 * all of the necessary information to test this in a single pass
2761 * over the section headers, which is very efficient. We are not
2762 * aware of any case where more than one dynamic section would
2763 * be meaningful in an ELF object, so this is a reasonable solution.
2764 *
2765 * To test multiple dynamic sections correctly would be more
2766 * expensive in code and time. We would have to build a data structure
2767 * containing all the dynamic elements. Then, we would use the address
2768 * to locate the section it references and ensure the section is of
2769 * the right type and that the address in the dynamic element is
2770 * to the start of the section. Then, we could check the size and
2771 * entsize values against those same sections. This is O(n^2), and
2772 * also complicated.
2773 *
2774 * In the highly unlikely case that there is more than one dynamic
2775 * section, we only test the first one, and simply allow the values
2776 * of the subsequent one to be displayed unchallenged.
2777 */
2778 if (dynsec_cnt != 1)
2779 return;
2780
2781 /*
2782 * A DT_ item that references a section address should always find
2783 * the section in the file.
2784 */
2785 if (sec_cache == NULL) {
2786 const char *name;
2787
2788 /*
2789 * Supply section names instead of section types for
2790 * things that reference progbits so that the error
2791 * message will make more sense.
2792 */
2793 switch (dyn->d_tag) {
2794 case DT_INIT:
2795 name = MSG_ORIG(MSG_ELF_INIT);
2796 break;
2797 case DT_FINI:
2798 name = MSG_ORIG(MSG_ELF_FINI);
2799 break;
2800 default:
2801 name = conv_sec_type(osabi, ehdr->e_machine,
2802 sh_type, 0, &buf1);
2803 break;
2804 }
2805 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2806 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2807 CONV_FMT_ALT_CF, &buf2));
2808 return;
2809 }
2810
2811
2812 switch (test_type) {
2813 case DYN_TEST_ADDR:
2814 /* The section address should match the DT_ item value */
2815 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2816 (void) fprintf(stderr,
2817 MSG_INTL(MSG_ERR_DYNBADADDR), file,
2818 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2819 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2820 sec_cache->c_ndx, sec_cache->c_name,
2821 EC_ADDR(sec_cache->c_shdr->sh_addr));
2822 break;
2823
2824 case DYN_TEST_SIZE:
2825 /* The section size should match the DT_ item value */
2826 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2827 (void) fprintf(stderr,
2828 MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2829 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2830 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2831 sec_cache->c_ndx, sec_cache->c_name,
2832 EC_XWORD(sec_cache->c_shdr->sh_size));
2833 break;
2834
2835 case DYN_TEST_ENTSIZE:
2836 /* The sh_entsize value should match the DT_ item value */
2837 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2838 (void) fprintf(stderr,
2839 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2840 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2841 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2842 sec_cache->c_ndx, sec_cache->c_name,
2843 EC_XWORD(sec_cache->c_shdr->sh_entsize));
2844 break;
2845 }
2846 }
2847
2848 /*
2849 * There are some DT_ entries that have corresponding symbols
2850 * (e.g. DT_INIT and _init). It is expected that these items will
2851 * both have the same value if both are present. This routine
2852 * examines the well known symbol tables for such symbols and
2853 * issues warnings for any that don't match.
2854 *
2855 * entry:
2856 * dyn - Dyn entry to be tested
2857 * symname - Name of symbol that corresponds to dyn
2858 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2859 * target_cache - Section the symname section is expected to be
2860 * associated with.
2861 * cache - Cache of all section headers
2862 * shnum - # of sections in cache
2863 * ehdr - ELF header for file
2864 * osabi - OSABI to apply when interpreting object
2865 * file - Name of file
2866 */
2867 static void
dyn_symtest(Dyn * dyn,const char * symname,Cache * symtab_cache,Cache * dynsym_cache,Cache * ldynsym_cache,Cache * target_cache,Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)2868 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2869 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2870 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2871 {
2872 Conv_inv_buf_t buf;
2873 int i;
2874 Sym *sym;
2875 Cache *_cache;
2876
2877 for (i = 0; i < 3; i++) {
2878 switch (i) {
2879 case 0:
2880 _cache = symtab_cache;
2881 break;
2882 case 1:
2883 _cache = dynsym_cache;
2884 break;
2885 case 2:
2886 _cache = ldynsym_cache;
2887 break;
2888 }
2889
2890 if ((_cache != NULL) &&
2891 symlookup(symname, cache, shnum, &sym, target_cache,
2892 _cache, file) && (sym->st_value != dyn->d_un.d_val))
2893 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2894 file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2895 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2896 symname, EC_ADDR(sym->st_value));
2897 }
2898 }
2899
2900 /*
2901 * Search for and process a .dynamic section.
2902 */
2903 static void
dynamic(Cache * cache,Word shnum,Ehdr * ehdr,uchar_t osabi,const char * file)2904 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2905 {
2906 struct {
2907 Cache *symtab;
2908 Cache *dynstr;
2909 Cache *dynsym;
2910 Cache *hash;
2911 Cache *fini;
2912 Cache *fini_array;
2913 Cache *init;
2914 Cache *init_array;
2915 Cache *preinit_array;
2916 Cache *rel;
2917 Cache *rela;
2918 Cache *sunw_cap;
2919 Cache *sunw_capinfo;
2920 Cache *sunw_capchain;
2921 Cache *sunw_ldynsym;
2922 Cache *sunw_move;
2923 Cache *sunw_syminfo;
2924 Cache *sunw_symsort;
2925 Cache *sunw_tlssort;
2926 Cache *sunw_verdef;
2927 Cache *sunw_verneed;
2928 Cache *sunw_versym;
2929 } sec;
2930 Word dynsec_ndx;
2931 Word dynsec_num;
2932 int dynsec_cnt;
2933 Word cnt;
2934 int osabi_solaris = osabi == ELFOSABI_SOLARIS;
2935
2936 /*
2937 * Make a pass over all the sections, gathering section information
2938 * we'll need below.
2939 */
2940 dynsec_num = 0;
2941 bzero(&sec, sizeof (sec));
2942 for (cnt = 1; cnt < shnum; cnt++) {
2943 Cache *_cache = &cache[cnt];
2944
2945 switch (_cache->c_shdr->sh_type) {
2946 case SHT_DYNAMIC:
2947 if (dynsec_num == 0) {
2948 dynsec_ndx = cnt;
2949
2950 /* Does it have a valid string table? */
2951 (void) stringtbl(cache, 0, cnt, shnum, file,
2952 0, 0, &sec.dynstr);
2953 }
2954 dynsec_num++;
2955 break;
2956
2957
2958 case SHT_PROGBITS:
2959 /*
2960 * We want to detect the .init and .fini sections,
2961 * if present. These are SHT_PROGBITS, so all we
2962 * have to go on is the section name. Normally comparing
2963 * names is a bad idea, but there are some special
2964 * names (i.e. .init/.fini/.interp) that are very
2965 * difficult to use in any other context, and for
2966 * these symbols, we do the heuristic match.
2967 */
2968 if (strcmp(_cache->c_name,
2969 MSG_ORIG(MSG_ELF_INIT)) == 0) {
2970 if (sec.init == NULL)
2971 sec.init = _cache;
2972 } else if (strcmp(_cache->c_name,
2973 MSG_ORIG(MSG_ELF_FINI)) == 0) {
2974 if (sec.fini == NULL)
2975 sec.fini = _cache;
2976 }
2977 break;
2978
2979 case SHT_REL:
2980 /*
2981 * We want the SHT_REL section with the lowest
2982 * offset. The linker gathers them together,
2983 * and puts the address of the first one
2984 * into the DT_REL dynamic element.
2985 */
2986 if ((sec.rel == NULL) ||
2987 (_cache->c_shdr->sh_offset <
2988 sec.rel->c_shdr->sh_offset))
2989 sec.rel = _cache;
2990 break;
2991
2992 case SHT_RELA:
2993 /* RELA is handled just like RELA above */
2994 if ((sec.rela == NULL) ||
2995 (_cache->c_shdr->sh_offset <
2996 sec.rela->c_shdr->sh_offset))
2997 sec.rela = _cache;
2998 break;
2999
3000 /*
3001 * The GRAB macro is used for the simple case in which
3002 * we simply grab the first section of the desired type.
3003 */
3004 #define GRAB(_sec_type, _sec_field) \
3005 case _sec_type: \
3006 if (sec._sec_field == NULL) \
3007 sec._sec_field = _cache; \
3008 break
3009 GRAB(SHT_SYMTAB, symtab);
3010 GRAB(SHT_DYNSYM, dynsym);
3011 GRAB(SHT_FINI_ARRAY, fini_array);
3012 GRAB(SHT_HASH, hash);
3013 GRAB(SHT_INIT_ARRAY, init_array);
3014 GRAB(SHT_SUNW_move, sunw_move);
3015 GRAB(SHT_PREINIT_ARRAY, preinit_array);
3016 GRAB(SHT_SUNW_cap, sunw_cap);
3017 GRAB(SHT_SUNW_capinfo, sunw_capinfo);
3018 GRAB(SHT_SUNW_capchain, sunw_capchain);
3019 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3020 GRAB(SHT_SUNW_syminfo, sunw_syminfo);
3021 GRAB(SHT_SUNW_symsort, sunw_symsort);
3022 GRAB(SHT_SUNW_tlssort, sunw_tlssort);
3023 GRAB(SHT_SUNW_verdef, sunw_verdef);
3024 GRAB(SHT_SUNW_verneed, sunw_verneed);
3025 GRAB(SHT_SUNW_versym, sunw_versym);
3026 #undef GRAB
3027 }
3028 }
3029
3030 /*
3031 * If no dynamic section, return immediately. If more than one
3032 * dynamic section, then something odd is going on and an error
3033 * is in order, but then continue on and display them all.
3034 */
3035 if (dynsec_num == 0)
3036 return;
3037 if (dynsec_num > 1)
3038 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
3039 file, EC_WORD(dynsec_num));
3040
3041
3042 dynsec_cnt = 0;
3043 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
3044 cnt++) {
3045 Dyn *dyn;
3046 ulong_t numdyn;
3047 int ndx, end_ndx;
3048 Cache *_cache = &cache[cnt], *strsec;
3049 Shdr *shdr = _cache->c_shdr;
3050 int dumped = 0;
3051
3052 if (shdr->sh_type != SHT_DYNAMIC)
3053 continue;
3054 dynsec_cnt++;
3055
3056 /*
3057 * Verify the associated string table section.
3058 */
3059 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
3060 continue;
3061
3062 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3063 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3064 file, _cache->c_name);
3065 continue;
3066 }
3067 if (_cache->c_data == NULL)
3068 continue;
3069
3070 numdyn = shdr->sh_size / shdr->sh_entsize;
3071 dyn = (Dyn *)_cache->c_data->d_buf;
3072
3073 /*
3074 * We expect the REL/RELA entries to reference the reloc
3075 * section with the lowest address. However, this is
3076 * not true for dumped objects. Detect if this object has
3077 * been dumped so that we can skip the reloc address test
3078 * in that case.
3079 */
3080 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3081 if (dyn->d_tag == DT_FLAGS_1) {
3082 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3083 break;
3084 }
3085 }
3086 dyn = (Dyn *)_cache->c_data->d_buf;
3087
3088 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3089 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3090
3091 Elf_dyn_title(0);
3092
3093 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3094 union {
3095 Conv_inv_buf_t inv;
3096 Conv_dyn_flag_buf_t flag;
3097 Conv_dyn_flag1_buf_t flag1;
3098 Conv_dyn_posflag1_buf_t posflag1;
3099 Conv_dyn_feature1_buf_t feature1;
3100 } c_buf;
3101 const char *name = NULL;
3102
3103 /*
3104 * Print the information numerically, and if possible
3105 * as a string. If a string is available, name is
3106 * set to reference it.
3107 *
3108 * Also, take this opportunity to sanity check
3109 * the values of DT elements. In the code above,
3110 * we gathered information on sections that are
3111 * referenced by the dynamic section. Here, we
3112 * compare the attributes of those sections to
3113 * the DT_ items that reference them and report
3114 * on inconsistencies.
3115 *
3116 * Things not currently tested that could be improved
3117 * in later revisions include:
3118 * - We don't check PLT or GOT related items
3119 * - We don't handle computing the lengths of
3120 * relocation arrays. To handle this
3121 * requires examining data that spans
3122 * across sections, in a contiguous span
3123 * within a single segment.
3124 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be
3125 * verified without parsing the sections.
3126 * - We don't handle DT_SUNW_SYMSZ, which would
3127 * be the sum of the lengths of .dynsym and
3128 * .SUNW_ldynsym
3129 * - DT_SUNW_STRPAD can't be verified other than
3130 * to check that it's not larger than
3131 * the string table.
3132 * - Some items come in "all or none" clusters
3133 * that give an address, element size,
3134 * and data length in bytes. We don't
3135 * verify that there are no missing items
3136 * in such groups.
3137 */
3138 switch (dyn->d_tag) {
3139 case DT_NULL:
3140 /*
3141 * Special case: DT_NULLs can come in groups
3142 * that we prefer to reduce to a single line.
3143 */
3144 end_ndx = ndx;
3145 while ((end_ndx < (numdyn - 1)) &&
3146 ((dyn + 1)->d_tag == DT_NULL)) {
3147 dyn++;
3148 end_ndx++;
3149 }
3150 Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3151 ndx = end_ndx;
3152 continue;
3153
3154 /*
3155 * String items all reference the dynstr. The string()
3156 * function does the necessary sanity checking.
3157 */
3158 case DT_NEEDED:
3159 case DT_SONAME:
3160 case DT_FILTER:
3161 case DT_AUXILIARY:
3162 case DT_CONFIG:
3163 case DT_RPATH:
3164 case DT_RUNPATH:
3165 case DT_USED:
3166 case DT_DEPAUDIT:
3167 case DT_AUDIT:
3168 name = string(_cache, ndx, strsec,
3169 file, dyn->d_un.d_ptr);
3170 break;
3171
3172 case DT_SUNW_AUXILIARY:
3173 case DT_SUNW_FILTER:
3174 if (osabi_solaris)
3175 name = string(_cache, ndx, strsec,
3176 file, dyn->d_un.d_ptr);
3177 break;
3178
3179 case DT_FLAGS:
3180 name = conv_dyn_flag(dyn->d_un.d_val,
3181 0, &c_buf.flag);
3182 break;
3183 case DT_FLAGS_1:
3184 name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3185 &c_buf.flag1);
3186 break;
3187 case DT_POSFLAG_1:
3188 name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3189 &c_buf.posflag1);
3190 break;
3191 case DT_FEATURE_1:
3192 name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3193 &c_buf.feature1);
3194 break;
3195 case DT_DEPRECATED_SPARC_REGISTER:
3196 name = MSG_INTL(MSG_STR_DEPRECATED);
3197 break;
3198
3199 case DT_SUNW_LDMACH:
3200 if (!osabi_solaris)
3201 break;
3202 name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3203 0, &c_buf.inv);
3204 break;
3205
3206 /*
3207 * Cases below this point are strictly sanity checking,
3208 * and do not generate a name string. The TEST_ macros
3209 * are used to hide the boiler plate arguments neeeded
3210 * by dyn_test().
3211 */
3212 #define TEST_ADDR(_sh_type, _sec_field) \
3213 dyn_test(DYN_TEST_ADDR, _sh_type, \
3214 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3215 osabi, file)
3216 #define TEST_SIZE(_sh_type, _sec_field) \
3217 dyn_test(DYN_TEST_SIZE, _sh_type, \
3218 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3219 osabi, file)
3220 #define TEST_ENTSIZE(_sh_type, _sec_field) \
3221 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3222 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3223 osabi, file)
3224
3225 case DT_FINI:
3226 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3227 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3228 sec.fini, cache, shnum, ehdr, osabi, file);
3229 TEST_ADDR(SHT_PROGBITS, fini);
3230 break;
3231
3232 case DT_FINI_ARRAY:
3233 TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3234 break;
3235
3236 case DT_FINI_ARRAYSZ:
3237 TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3238 break;
3239
3240 case DT_HASH:
3241 TEST_ADDR(SHT_HASH, hash);
3242 break;
3243
3244 case DT_INIT:
3245 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3246 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3247 sec.init, cache, shnum, ehdr, osabi, file);
3248 TEST_ADDR(SHT_PROGBITS, init);
3249 break;
3250
3251 case DT_INIT_ARRAY:
3252 TEST_ADDR(SHT_INIT_ARRAY, init_array);
3253 break;
3254
3255 case DT_INIT_ARRAYSZ:
3256 TEST_SIZE(SHT_INIT_ARRAY, init_array);
3257 break;
3258
3259 case DT_MOVEENT:
3260 TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3261 break;
3262
3263 case DT_MOVESZ:
3264 TEST_SIZE(SHT_SUNW_move, sunw_move);
3265 break;
3266
3267 case DT_MOVETAB:
3268 TEST_ADDR(SHT_SUNW_move, sunw_move);
3269 break;
3270
3271 case DT_PREINIT_ARRAY:
3272 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3273 break;
3274
3275 case DT_PREINIT_ARRAYSZ:
3276 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3277 break;
3278
3279 case DT_REL:
3280 if (!dumped)
3281 TEST_ADDR(SHT_REL, rel);
3282 break;
3283
3284 case DT_RELENT:
3285 TEST_ENTSIZE(SHT_REL, rel);
3286 break;
3287
3288 case DT_RELA:
3289 if (!dumped)
3290 TEST_ADDR(SHT_RELA, rela);
3291 break;
3292
3293 case DT_RELAENT:
3294 TEST_ENTSIZE(SHT_RELA, rela);
3295 break;
3296
3297 case DT_STRTAB:
3298 TEST_ADDR(SHT_STRTAB, dynstr);
3299 break;
3300
3301 case DT_STRSZ:
3302 TEST_SIZE(SHT_STRTAB, dynstr);
3303 break;
3304
3305 case DT_SUNW_CAP:
3306 if (osabi_solaris)
3307 TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3308 break;
3309
3310 case DT_SUNW_CAPINFO:
3311 if (osabi_solaris)
3312 TEST_ADDR(SHT_SUNW_capinfo,
3313 sunw_capinfo);
3314 break;
3315
3316 case DT_SUNW_CAPCHAIN:
3317 if (osabi_solaris)
3318 TEST_ADDR(SHT_SUNW_capchain,
3319 sunw_capchain);
3320 break;
3321
3322 case DT_SUNW_SYMTAB:
3323 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3324 break;
3325
3326 case DT_SYMENT:
3327 TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3328 break;
3329
3330 case DT_SYMINENT:
3331 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3332 break;
3333
3334 case DT_SYMINFO:
3335 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3336 break;
3337
3338 case DT_SYMINSZ:
3339 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3340 break;
3341
3342 case DT_SYMTAB:
3343 TEST_ADDR(SHT_DYNSYM, dynsym);
3344 break;
3345
3346 case DT_SUNW_SORTENT:
3347 /*
3348 * This entry is related to both the symsort and
3349 * tlssort sections.
3350 */
3351 if (osabi_solaris) {
3352 int test_tls =
3353 (sec.sunw_tlssort != NULL);
3354 int test_sym =
3355 (sec.sunw_symsort != NULL) ||
3356 !test_tls;
3357 if (test_sym)
3358 TEST_ENTSIZE(SHT_SUNW_symsort,
3359 sunw_symsort);
3360 if (test_tls)
3361 TEST_ENTSIZE(SHT_SUNW_tlssort,
3362 sunw_tlssort);
3363 }
3364 break;
3365
3366
3367 case DT_SUNW_SYMSORT:
3368 if (osabi_solaris)
3369 TEST_ADDR(SHT_SUNW_symsort,
3370 sunw_symsort);
3371 break;
3372
3373 case DT_SUNW_SYMSORTSZ:
3374 if (osabi_solaris)
3375 TEST_SIZE(SHT_SUNW_symsort,
3376 sunw_symsort);
3377 break;
3378
3379 case DT_SUNW_TLSSORT:
3380 if (osabi_solaris)
3381 TEST_ADDR(SHT_SUNW_tlssort,
3382 sunw_tlssort);
3383 break;
3384
3385 case DT_SUNW_TLSSORTSZ:
3386 if (osabi_solaris)
3387 TEST_SIZE(SHT_SUNW_tlssort,
3388 sunw_tlssort);
3389 break;
3390
3391 case DT_VERDEF:
3392 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3393 break;
3394
3395 case DT_VERNEED:
3396 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3397 break;
3398
3399 case DT_VERSYM:
3400 TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3401 break;
3402 #undef TEST_ADDR
3403 #undef TEST_SIZE
3404 #undef TEST_ENTSIZE
3405 }
3406
3407 if (name == NULL)
3408 name = MSG_ORIG(MSG_STR_EMPTY);
3409 Elf_dyn_entry(0, dyn, ndx, name,
3410 osabi, ehdr->e_machine);
3411 }
3412 }
3413 }
3414
3415 /*
3416 * Search for and process a MOVE section.
3417 */
3418 static void
move(Cache * cache,Word shnum,const char * file,uint_t flags)3419 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3420 {
3421 Word cnt;
3422 const char *fmt = NULL;
3423
3424 for (cnt = 1; cnt < shnum; cnt++) {
3425 Word movenum, symnum, ndx;
3426 Sym *syms;
3427 Cache *_cache = &cache[cnt];
3428 Shdr *shdr = _cache->c_shdr;
3429 Cache *symsec, *strsec;
3430 Move *move;
3431
3432 if (shdr->sh_type != SHT_SUNW_move)
3433 continue;
3434 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3435 continue;
3436
3437 /*
3438 * Determine the move data and number.
3439 */
3440 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3441 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3442 file, _cache->c_name);
3443 continue;
3444 }
3445 if (_cache->c_data == NULL)
3446 continue;
3447
3448 move = (Move *)_cache->c_data->d_buf;
3449 movenum = shdr->sh_size / shdr->sh_entsize;
3450
3451 /*
3452 * Get the data buffer for the associated symbol table and
3453 * string table.
3454 */
3455 if (stringtbl(cache, 1, cnt, shnum, file,
3456 &symnum, &symsec, &strsec) == 0)
3457 return;
3458
3459 syms = (Sym *)symsec->c_data->d_buf;
3460
3461 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3462 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3463 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3464
3465 if (fmt == NULL)
3466 fmt = MSG_INTL(MSG_MOVE_ENTRY);
3467
3468 for (ndx = 0; ndx < movenum; move++, ndx++) {
3469 const char *symname;
3470 char index[MAXNDXSIZE], section[BUFSIZ];
3471 Word symndx, shndx;
3472 Sym *sym;
3473
3474 /*
3475 * Check for null entries
3476 */
3477 if ((move->m_info == 0) && (move->m_value == 0) &&
3478 (move->m_poffset == 0) && (move->m_repeat == 0) &&
3479 (move->m_stride == 0)) {
3480 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3481 EC_XWORD(move->m_poffset), 0, 0, 0,
3482 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3483 continue;
3484 }
3485 if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3486 (symndx >= symnum)) {
3487 (void) fprintf(stderr,
3488 MSG_INTL(MSG_ERR_BADMINFO), file,
3489 _cache->c_name, EC_XWORD(move->m_info));
3490
3491 (void) snprintf(index, MAXNDXSIZE,
3492 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3493 dbg_print(0, fmt, index,
3494 EC_XWORD(move->m_poffset),
3495 ELF_M_SIZE(move->m_info), move->m_repeat,
3496 move->m_stride, move->m_value,
3497 MSG_INTL(MSG_STR_UNKNOWN));
3498 continue;
3499 }
3500
3501 symname = relsymname(cache, _cache, strsec,
3502 symndx, symnum, ndx, syms, section, BUFSIZ, file);
3503 sym = (Sym *)(syms + symndx);
3504
3505 /*
3506 * Additional sanity check.
3507 */
3508 shndx = sym->st_shndx;
3509 if (!((shndx == SHN_COMMON) ||
3510 (((shndx >= 1) && (shndx <= shnum)) &&
3511 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3512 (void) fprintf(stderr,
3513 MSG_INTL(MSG_ERR_BADSYM2), file,
3514 _cache->c_name, EC_WORD(symndx),
3515 demangle(symname, flags));
3516 }
3517
3518 (void) snprintf(index, MAXNDXSIZE,
3519 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3520 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3521 ELF_M_SIZE(move->m_info), move->m_repeat,
3522 move->m_stride, move->m_value,
3523 demangle(symname, flags));
3524 }
3525 }
3526 }
3527
3528 /*
3529 * parse_note_t is used to track the state used by parse_note_entry()
3530 * between calls, and also to return the results of each call.
3531 */
3532 typedef struct {
3533 /* pns_ fields track progress through the data */
3534 const char *pns_file; /* File name */
3535 Cache *pns_cache; /* Note section cache entry */
3536 size_t pns_size; /* # unprocessed data bytes */
3537 Word *pns_data; /* # to next unused data byte */
3538
3539 /* pn_ fields return the results for a single call */
3540 Word pn_namesz; /* Value of note namesz field */
3541 Word pn_descsz; /* Value of note descsz field */
3542 Word pn_type; /* Value of note type field */
3543 const char *pn_name; /* if (namesz > 0) ptr to name bytes */
3544 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */
3545 } parse_note_t;
3546
3547 /*
3548 * Extract the various sub-parts of a note entry, and advance the
3549 * data pointer past it.
3550 *
3551 * entry:
3552 * The state pns_ fields contain current values for the Note section
3553 *
3554 * exit:
3555 * On success, True (1) is returned, the state pns_ fields have been
3556 * advanced to point at the start of the next entry, and the information
3557 * for the recovered note entry is found in the state pn_ fields.
3558 *
3559 * On failure, False (0) is returned. The values contained in state
3560 * are undefined.
3561 */
3562 static int
parse_note_entry(parse_note_t * state)3563 parse_note_entry(parse_note_t *state)
3564 {
3565 size_t pad, noteoff;
3566
3567 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3568 /*
3569 * Make sure we can at least reference the 3 initial entries
3570 * (4-byte words) of the note information block.
3571 */
3572 if (state->pns_size >= (sizeof (Word) * 3)) {
3573 state->pns_size -= (sizeof (Word) * 3);
3574 } else {
3575 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3576 state->pns_file, state->pns_cache->c_name,
3577 EC_WORD(noteoff));
3578 return (0);
3579 }
3580
3581 /*
3582 * Make sure any specified name string can be referenced.
3583 */
3584 if ((state->pn_namesz = *state->pns_data++) != 0) {
3585 if (state->pns_size >= state->pn_namesz) {
3586 state->pns_size -= state->pn_namesz;
3587 } else {
3588 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3589 state->pns_file, state->pns_cache->c_name,
3590 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3591 return (0);
3592 }
3593 }
3594
3595 /*
3596 * Make sure any specified descriptor can be referenced.
3597 */
3598 if ((state->pn_descsz = *state->pns_data++) != 0) {
3599 /*
3600 * If namesz isn't a 4-byte multiple, account for any
3601 * padding that must exist before the descriptor.
3602 */
3603 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3604 pad = sizeof (Word) - pad;
3605 state->pns_size -= pad;
3606 }
3607 if (state->pns_size >= state->pn_descsz) {
3608 state->pns_size -= state->pn_descsz;
3609 } else {
3610 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3611 state->pns_file, state->pns_cache->c_name,
3612 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3613 return (0);
3614 }
3615 }
3616
3617 state->pn_type = *state->pns_data++;
3618
3619 /* Name */
3620 if (state->pn_namesz) {
3621 state->pn_name = (char *)state->pns_data;
3622 pad = (state->pn_namesz +
3623 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3624 /* LINTED */
3625 state->pns_data = (Word *)(state->pn_name + pad);
3626 }
3627
3628 /*
3629 * If multiple information blocks exist within a .note section
3630 * account for any padding that must exist before the next
3631 * information block.
3632 */
3633 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3634 pad = sizeof (Word) - pad;
3635 if (state->pns_size > pad)
3636 state->pns_size -= pad;
3637 }
3638
3639 /* Data */
3640 if (state->pn_descsz) {
3641 state->pn_desc = (const char *)state->pns_data;
3642 /* LINTED */
3643 state->pns_data = (Word *)(state->pn_desc +
3644 state->pn_descsz + pad);
3645 }
3646
3647 return (1);
3648 }
3649
3650 /*
3651 * Callback function for use with conv_str_to_c_literal() below.
3652 */
3653 /*ARGSUSED2*/
3654 static void
c_literal_cb(const void * ptr,size_t size,void * uvalue)3655 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3656 {
3657 (void) fwrite(ptr, size, 1, stdout);
3658 }
3659
3660 /*
3661 * Traverse a note section analyzing each note information block.
3662 * The data buffers size is used to validate references before they are made,
3663 * and is decremented as each element is processed.
3664 */
3665 void
note_entry(Cache * cache,Word * data,size_t size,Ehdr * ehdr,const char * file)3666 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3667 {
3668 int cnt = 0;
3669 int is_corenote;
3670 int do_swap;
3671 Conv_inv_buf_t inv_buf;
3672 parse_note_t pnstate;
3673
3674 pnstate.pns_file = file;
3675 pnstate.pns_cache = cache;
3676 pnstate.pns_size = size;
3677 pnstate.pns_data = data;
3678 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3679
3680 /*
3681 * Print out a single `note' information block.
3682 */
3683 while (pnstate.pns_size > 0) {
3684
3685 if (parse_note_entry(&pnstate) == 0)
3686 return;
3687
3688 /*
3689 * Is this a Solaris core note? Such notes all have
3690 * the name "CORE".
3691 */
3692 is_corenote = (ehdr->e_type == ET_CORE) &&
3693 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3694 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3695 MSG_STR_CORE_SIZE + 1) == 0);
3696
3697 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3698 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3699 cnt++;
3700 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3701 EC_WORD(pnstate.pn_namesz));
3702 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3703 EC_WORD(pnstate.pn_descsz));
3704
3705 if (is_corenote)
3706 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3707 conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3708 else
3709 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3710 EC_WORD(pnstate.pn_type));
3711 if (pnstate.pn_namesz) {
3712 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3713 /*
3714 * The name string can contain embedded 'null'
3715 * bytes and/or unprintable characters. Also,
3716 * the final NULL is documented in the ELF ABI
3717 * as being included in the namesz. So, display
3718 * the name using C literal string notation, and
3719 * include the terminating NULL in the output.
3720 * We don't show surrounding double quotes, as
3721 * that implies the termination that we are showing
3722 * explicitly.
3723 */
3724 (void) fwrite(MSG_ORIG(MSG_STR_8SP),
3725 MSG_STR_8SP_SIZE, 1, stdout);
3726 conv_str_to_c_literal(pnstate.pn_name,
3727 pnstate.pn_namesz, c_literal_cb, NULL);
3728 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3729 }
3730
3731 if (pnstate.pn_descsz) {
3732 int hexdump = 1;
3733
3734 /*
3735 * If this is a core note, let the corenote()
3736 * function handle it.
3737 */
3738 if (is_corenote) {
3739 /* We only issue the bad arch error once */
3740 static int badnote_done = 0;
3741 corenote_ret_t corenote_ret;
3742
3743 corenote_ret = corenote(ehdr->e_machine,
3744 do_swap, pnstate.pn_type, pnstate.pn_desc,
3745 pnstate.pn_descsz);
3746 switch (corenote_ret) {
3747 case CORENOTE_R_OK_DUMP:
3748 hexdump = 1;
3749 break;
3750 case CORENOTE_R_OK:
3751 hexdump = 0;
3752 break;
3753 case CORENOTE_R_BADDATA:
3754 (void) fprintf(stderr,
3755 MSG_INTL(MSG_NOTE_BADCOREDATA),
3756 file);
3757 break;
3758 case CORENOTE_R_BADARCH:
3759 if (badnote_done)
3760 break;
3761 (void) fprintf(stderr,
3762 MSG_INTL(MSG_NOTE_BADCOREARCH),
3763 file,
3764 conv_ehdr_mach(ehdr->e_machine,
3765 0, &inv_buf));
3766 break;
3767 case CORENOTE_R_BADTYPE:
3768 (void) fprintf(stderr,
3769 MSG_INTL(MSG_NOTE_BADCORETYPE),
3770 file,
3771 EC_WORD(pnstate.pn_type));
3772 break;
3773
3774 }
3775 }
3776
3777 /*
3778 * The default thing when we don't understand
3779 * the note data is to display it as hex bytes.
3780 */
3781 if (hexdump) {
3782 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3783 dump_hex_bytes(pnstate.pn_desc,
3784 pnstate.pn_descsz, 8, 4, 4);
3785 }
3786 }
3787 }
3788 }
3789
3790 /*
3791 * Search for and process .note sections.
3792 *
3793 * Returns the number of note sections seen.
3794 */
3795 static Word
note(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)3796 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3797 {
3798 Word cnt, note_cnt = 0;
3799
3800 /*
3801 * Otherwise look for any .note sections.
3802 */
3803 for (cnt = 1; cnt < shnum; cnt++) {
3804 Cache *_cache = &cache[cnt];
3805 Shdr *shdr = _cache->c_shdr;
3806
3807 if (shdr->sh_type != SHT_NOTE)
3808 continue;
3809 note_cnt++;
3810 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3811 continue;
3812
3813 /*
3814 * As these sections are often hand rolled, make sure they're
3815 * properly aligned before proceeding, and issue an error
3816 * as necessary.
3817 *
3818 * Note that we will continue on to display the note even
3819 * if it has bad alignment. We can do this safely, because
3820 * libelf knows the alignment required for SHT_NOTE, and
3821 * takes steps to deliver a properly aligned buffer to us
3822 * even if the actual file is misaligned.
3823 */
3824 if (shdr->sh_offset & (sizeof (Word) - 1))
3825 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3826 file, _cache->c_name);
3827
3828 if (_cache->c_data == NULL)
3829 continue;
3830
3831 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3832 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3833 note_entry(_cache, (Word *)_cache->c_data->d_buf,
3834 /* LINTED */
3835 (Word)_cache->c_data->d_size, ehdr, file);
3836 }
3837
3838 return (note_cnt);
3839 }
3840
3841 /*
3842 * The Linux Standard Base defines a special note named .note.ABI-tag
3843 * that is used to maintain Linux ABI information. Presence of this section
3844 * is a strong indication that the object should be considered to be
3845 * ELFOSABI_LINUX.
3846 *
3847 * This function returns True (1) if such a note is seen, and False (0)
3848 * otherwise.
3849 */
3850 static int
has_linux_abi_note(Cache * cache,Word shnum,const char * file)3851 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3852 {
3853 Word cnt;
3854
3855 for (cnt = 1; cnt < shnum; cnt++) {
3856 parse_note_t pnstate;
3857 Cache *_cache = &cache[cnt];
3858 Shdr *shdr = _cache->c_shdr;
3859
3860 /*
3861 * Section must be SHT_NOTE, must have the name
3862 * .note.ABI-tag, and must have data.
3863 */
3864 if ((shdr->sh_type != SHT_NOTE) ||
3865 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3866 _cache->c_name) != 0) || (_cache->c_data == NULL))
3867 continue;
3868
3869 pnstate.pns_file = file;
3870 pnstate.pns_cache = _cache;
3871 pnstate.pns_size = _cache->c_data->d_size;
3872 pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3873
3874 while (pnstate.pns_size > 0) {
3875 Word *w;
3876
3877 if (parse_note_entry(&pnstate) == 0)
3878 break;
3879
3880 /*
3881 * The type must be 1, and the name must be "GNU".
3882 * The descsz must be at least 16 bytes.
3883 */
3884 if ((pnstate.pn_type != 1) ||
3885 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3886 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3887 MSG_STR_CORE_SIZE + 1) != 0) ||
3888 (pnstate.pn_descsz < 16))
3889 continue;
3890
3891 /*
3892 * desc contains 4 32-bit fields. Field 0 must be 0,
3893 * indicating Linux. The second, third, and fourth
3894 * fields represent the earliest Linux kernel
3895 * version compatible with this object.
3896 */
3897 /*LINTED*/
3898 w = (Word *) pnstate.pn_desc;
3899 if (*w == 0)
3900 return (1);
3901 }
3902 }
3903
3904 return (0);
3905 }
3906
3907 /*
3908 * Determine an individual hash entry. This may be the initial hash entry,
3909 * or an associated chain entry.
3910 */
3911 static void
hash_entry(Cache * refsec,Cache * strsec,const char * hsecname,Word hashndx,Word symndx,Word symn,Sym * syms,const char * file,ulong_t bkts,uint_t flags,int chain)3912 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3913 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3914 uint_t flags, int chain)
3915 {
3916 Sym *sym;
3917 const char *symname, *str;
3918 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3919 ulong_t nbkt, nhash;
3920
3921 if (symndx > symn) {
3922 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3923 EC_WORD(symndx), EC_WORD(hashndx));
3924 symname = MSG_INTL(MSG_STR_UNKNOWN);
3925 } else {
3926 sym = (Sym *)(syms + symndx);
3927 symname = string(refsec, symndx, strsec, file, sym->st_name);
3928 }
3929
3930 if (chain == 0) {
3931 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3932 hashndx);
3933 str = (const char *)_bucket;
3934 } else
3935 str = MSG_ORIG(MSG_STR_EMPTY);
3936
3937 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3938 EC_WORD(symndx));
3939 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3940 demangle(symname, flags));
3941
3942 /*
3943 * Determine if this string is in the correct bucket.
3944 */
3945 nhash = elf_hash(symname);
3946 nbkt = nhash % bkts;
3947
3948 if (nbkt != hashndx) {
3949 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3950 hsecname, symname, EC_WORD(hashndx), nbkt);
3951 }
3952 }
3953
3954 #define MAXCOUNT 500
3955
3956 static void
hash(Cache * cache,Word shnum,const char * file,uint_t flags)3957 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3958 {
3959 static int count[MAXCOUNT];
3960 Word cnt;
3961 ulong_t ndx, bkts;
3962 char number[MAXNDXSIZE];
3963
3964 for (cnt = 1; cnt < shnum; cnt++) {
3965 uint_t *hash, *chain;
3966 Cache *_cache = &cache[cnt];
3967 Shdr *sshdr, *hshdr = _cache->c_shdr;
3968 char *ssecname, *hsecname = _cache->c_name;
3969 Sym *syms;
3970 Word symn;
3971
3972 if (hshdr->sh_type != SHT_HASH)
3973 continue;
3974
3975 /*
3976 * Determine the hash table data and size.
3977 */
3978 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3979 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3980 file, hsecname);
3981 continue;
3982 }
3983 if (_cache->c_data == NULL)
3984 continue;
3985
3986 hash = (uint_t *)_cache->c_data->d_buf;
3987 bkts = *hash;
3988 chain = hash + 2 + bkts;
3989 hash += 2;
3990
3991 /*
3992 * Get the data buffer for the associated symbol table.
3993 */
3994 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3995 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3996 file, hsecname, EC_WORD(hshdr->sh_link));
3997 continue;
3998 }
3999
4000 _cache = &cache[hshdr->sh_link];
4001 ssecname = _cache->c_name;
4002
4003 if (_cache->c_data == NULL)
4004 continue;
4005
4006 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
4007 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4008 file, ssecname);
4009 continue;
4010 }
4011
4012 sshdr = _cache->c_shdr;
4013 /* LINTED */
4014 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
4015
4016 /*
4017 * Get the associated string table section.
4018 */
4019 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
4020 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4021 file, ssecname, EC_WORD(sshdr->sh_link));
4022 continue;
4023 }
4024
4025 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4026 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
4027 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
4028
4029 /*
4030 * Loop through the hash buckets, printing the appropriate
4031 * symbols.
4032 */
4033 for (ndx = 0; ndx < bkts; ndx++, hash++) {
4034 Word _ndx, _cnt;
4035
4036 if (*hash == 0) {
4037 count[0]++;
4038 continue;
4039 }
4040
4041 hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
4042 ndx, *hash, symn, syms, file, bkts, flags, 0);
4043
4044 /*
4045 * Determine if any other symbols are chained to this
4046 * bucket.
4047 */
4048 _ndx = chain[*hash];
4049 _cnt = 1;
4050 while (_ndx) {
4051 hash_entry(_cache, &cache[sshdr->sh_link],
4052 hsecname, ndx, _ndx, symn, syms, file,
4053 bkts, flags, 1);
4054 _ndx = chain[_ndx];
4055 _cnt++;
4056 }
4057
4058 if (_cnt >= MAXCOUNT) {
4059 (void) fprintf(stderr,
4060 MSG_INTL(MSG_HASH_OVERFLW), file,
4061 _cache->c_name, EC_WORD(ndx),
4062 EC_WORD(_cnt));
4063 } else
4064 count[_cnt]++;
4065 }
4066 break;
4067 }
4068
4069 /*
4070 * Print out the count information.
4071 */
4072 bkts = cnt = 0;
4073 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4074
4075 for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4076 Word _cnt;
4077
4078 if ((_cnt = count[ndx]) == 0)
4079 continue;
4080
4081 (void) snprintf(number, MAXNDXSIZE,
4082 MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4083 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4084 EC_WORD(ndx));
4085 bkts += _cnt;
4086 cnt += (Word)(ndx * _cnt);
4087 }
4088 if (cnt) {
4089 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4090 bkts);
4091 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4092 EC_WORD(cnt));
4093 }
4094 }
4095
4096 static void
group(Cache * cache,Word shnum,const char * file,uint_t flags)4097 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4098 {
4099 Word scnt;
4100
4101 for (scnt = 1; scnt < shnum; scnt++) {
4102 Cache *_cache = &cache[scnt];
4103 Shdr *shdr = _cache->c_shdr;
4104 Word *grpdata, gcnt, grpcnt, symnum, unknown;
4105 Cache *symsec, *strsec;
4106 Sym *syms, *sym;
4107 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4108 const char *grpnam;
4109
4110 if (shdr->sh_type != SHT_GROUP)
4111 continue;
4112 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4113 continue;
4114 if ((_cache->c_data == NULL) ||
4115 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4116 continue;
4117 grpcnt = shdr->sh_size / sizeof (Word);
4118
4119 /*
4120 * Get the data buffer for the associated symbol table and
4121 * string table.
4122 */
4123 if (stringtbl(cache, 1, scnt, shnum, file,
4124 &symnum, &symsec, &strsec) == 0)
4125 return;
4126
4127 syms = symsec->c_data->d_buf;
4128
4129 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4130 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4131 dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4132
4133 /*
4134 * The first element of the group defines the group. The
4135 * associated symbol is defined by the sh_link field.
4136 */
4137 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4138 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4139 file, _cache->c_name, EC_WORD(shdr->sh_info));
4140 return;
4141 }
4142
4143 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4144 if (grpdata[0] & GRP_COMDAT) {
4145 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4146 }
4147 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4148 size_t len = strlen(flgstrbuf);
4149
4150 (void) snprintf(&flgstrbuf[len],
4151 (MSG_GRP_COMDAT_SIZE + 10 - len),
4152 MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4153 }
4154 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4155 sym = (Sym *)(syms + shdr->sh_info);
4156
4157 /*
4158 * The GNU assembler can use section symbols as the signature
4159 * symbol as described by this comment in the gold linker
4160 * (found via google):
4161 *
4162 * It seems that some versions of gas will create a
4163 * section group associated with a section symbol, and
4164 * then fail to give a name to the section symbol. In
4165 * such a case, use the name of the section.
4166 *
4167 * In order to support such objects, we do the same.
4168 */
4169 grpnam = string(_cache, 0, strsec, file, sym->st_name);
4170 if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4171 (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4172 grpnam = cache[sym->st_shndx].c_name;
4173
4174 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4175 demangle(grpnam, flags));
4176
4177 for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4178 char index[MAXNDXSIZE];
4179 const char *name;
4180
4181 (void) snprintf(index, MAXNDXSIZE,
4182 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4183
4184 if (grpdata[gcnt] >= shnum)
4185 name = MSG_INTL(MSG_GRP_INVALSCN);
4186 else
4187 name = cache[grpdata[gcnt]].c_name;
4188
4189 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4190 EC_XWORD(grpdata[gcnt]));
4191 }
4192 }
4193 }
4194
4195 static void
got(Cache * cache,Word shnum,Ehdr * ehdr,const char * file)4196 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4197 {
4198 Cache *gotcache = NULL, *symtab = NULL;
4199 Addr gotbgn, gotend;
4200 Shdr *gotshdr;
4201 Word cnt, gotents, gotndx;
4202 size_t gentsize;
4203 Got_info *gottable;
4204 char *gotdata;
4205 Sym *gotsym;
4206 Xword gotsymaddr;
4207 uint_t sys_encoding;
4208
4209 /*
4210 * First, find the got.
4211 */
4212 for (cnt = 1; cnt < shnum; cnt++) {
4213 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4214 MSG_ELF_GOT_SIZE) == 0) {
4215 gotcache = &cache[cnt];
4216 break;
4217 }
4218 }
4219 if (gotcache == NULL)
4220 return;
4221
4222 /*
4223 * A got section within a relocatable object is suspicious.
4224 */
4225 if (ehdr->e_type == ET_REL) {
4226 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4227 gotcache->c_name);
4228 }
4229
4230 gotshdr = gotcache->c_shdr;
4231 if (gotshdr->sh_size == 0) {
4232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4233 file, gotcache->c_name);
4234 return;
4235 }
4236
4237 gotbgn = gotshdr->sh_addr;
4238 gotend = gotbgn + gotshdr->sh_size;
4239
4240 /*
4241 * Some architectures don't properly set the sh_entsize for the GOT
4242 * table. If it's not set, default to a size of a pointer.
4243 */
4244 if ((gentsize = gotshdr->sh_entsize) == 0)
4245 gentsize = sizeof (Xword);
4246
4247 if (gotcache->c_data == NULL)
4248 return;
4249
4250 /* LINTED */
4251 gotents = (Word)(gotshdr->sh_size / gentsize);
4252 gotdata = gotcache->c_data->d_buf;
4253
4254 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4255 int err = errno;
4256 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4257 strerror(err));
4258 return;
4259 }
4260
4261 /*
4262 * Now we scan through all the sections looking for any relocations
4263 * that may be against the GOT. Since these may not be isolated to a
4264 * .rel[a].got section we check them all.
4265 * While scanning sections save the symbol table entry (a symtab
4266 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4267 */
4268 for (cnt = 1; cnt < shnum; cnt++) {
4269 Word type, symnum;
4270 Xword relndx, relnum, relsize;
4271 void *rels;
4272 Sym *syms;
4273 Cache *symsec, *strsec;
4274 Cache *_cache = &cache[cnt];
4275 Shdr *shdr;
4276
4277 shdr = _cache->c_shdr;
4278 type = shdr->sh_type;
4279
4280 if ((symtab == 0) && (type == SHT_DYNSYM)) {
4281 symtab = _cache;
4282 continue;
4283 }
4284 if (type == SHT_SYMTAB) {
4285 symtab = _cache;
4286 continue;
4287 }
4288 if ((type != SHT_RELA) && (type != SHT_REL))
4289 continue;
4290
4291 /*
4292 * Decide entry size.
4293 */
4294 if (((relsize = shdr->sh_entsize) == 0) ||
4295 (relsize > shdr->sh_size)) {
4296 if (type == SHT_RELA)
4297 relsize = sizeof (Rela);
4298 else
4299 relsize = sizeof (Rel);
4300 }
4301
4302 /*
4303 * Determine the number of relocations available.
4304 */
4305 if (shdr->sh_size == 0) {
4306 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4307 file, _cache->c_name);
4308 continue;
4309 }
4310 if (_cache->c_data == NULL)
4311 continue;
4312
4313 rels = _cache->c_data->d_buf;
4314 relnum = shdr->sh_size / relsize;
4315
4316 /*
4317 * Get the data buffer for the associated symbol table and
4318 * string table.
4319 */
4320 if (stringtbl(cache, 1, cnt, shnum, file,
4321 &symnum, &symsec, &strsec) == 0)
4322 continue;
4323
4324 syms = symsec->c_data->d_buf;
4325
4326 /*
4327 * Loop through the relocation entries.
4328 */
4329 for (relndx = 0; relndx < relnum; relndx++,
4330 rels = (void *)((char *)rels + relsize)) {
4331 char section[BUFSIZ];
4332 Addr offset;
4333 Got_info *gip;
4334 Word symndx, reltype;
4335 Rela *rela;
4336 Rel *rel;
4337
4338 /*
4339 * Unravel the relocation.
4340 */
4341 if (type == SHT_RELA) {
4342 rela = (Rela *)rels;
4343 symndx = ELF_R_SYM(rela->r_info);
4344 reltype = ELF_R_TYPE(rela->r_info,
4345 ehdr->e_machine);
4346 offset = rela->r_offset;
4347 } else {
4348 rel = (Rel *)rels;
4349 symndx = ELF_R_SYM(rel->r_info);
4350 reltype = ELF_R_TYPE(rel->r_info,
4351 ehdr->e_machine);
4352 offset = rel->r_offset;
4353 }
4354
4355 /*
4356 * Only pay attention to relocations against the GOT.
4357 */
4358 if ((offset < gotbgn) || (offset >= gotend))
4359 continue;
4360
4361 /* LINTED */
4362 gotndx = (Word)((offset - gotbgn) /
4363 gotshdr->sh_entsize);
4364 gip = &gottable[gotndx];
4365
4366 if (gip->g_reltype != 0) {
4367 (void) fprintf(stderr,
4368 MSG_INTL(MSG_GOT_MULTIPLE), file,
4369 EC_WORD(gotndx), EC_ADDR(offset));
4370 continue;
4371 }
4372
4373 if (symndx)
4374 gip->g_symname = relsymname(cache, _cache,
4375 strsec, symndx, symnum, relndx, syms,
4376 section, BUFSIZ, file);
4377 gip->g_reltype = reltype;
4378 gip->g_rel = rels;
4379 }
4380 }
4381
4382 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4383 symtab, file))
4384 gotsymaddr = gotsym->st_value;
4385 else
4386 gotsymaddr = gotbgn;
4387
4388 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4389 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4390 Elf_got_title(0);
4391
4392 sys_encoding = _elf_sys_encoding();
4393 for (gotndx = 0; gotndx < gotents; gotndx++) {
4394 Got_info *gip;
4395 Sword gindex;
4396 Addr gaddr;
4397 Xword gotentry;
4398
4399 gip = &gottable[gotndx];
4400
4401 gaddr = gotbgn + (gotndx * gentsize);
4402 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4403
4404 if (gentsize == sizeof (Word))
4405 /* LINTED */
4406 gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4407 else
4408 /* LINTED */
4409 gotentry = *((Xword *)(gotdata) + gotndx);
4410
4411 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4412 ehdr->e_ident[EI_DATA], sys_encoding,
4413 gip->g_reltype, gip->g_rel, gip->g_symname);
4414 }
4415 free(gottable);
4416 }
4417
4418 void
checksum(Elf * elf)4419 checksum(Elf *elf)
4420 {
4421 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4422 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4423 }
4424
4425 /*
4426 * This variable is used by regular() to communicate the address of
4427 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4428 * the qsort() interface does not include a userdata argument by which
4429 * such arbitrary data can be passed, so we are stuck using global data.
4430 */
4431 static Cache *sort_shdr_ndx_arr_cache;
4432
4433
4434 /*
4435 * Used with qsort() to sort the section indices so that they can be
4436 * used to access the section headers in order of increasing data offset.
4437 *
4438 * entry:
4439 * sort_shdr_ndx_arr_cache - Contains address of
4440 * section header cache.
4441 * v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4442 *
4443 * exit:
4444 * Returns -1 (less than), 0 (equal) or 1 (greater than).
4445 */
4446 static int
sort_shdr_ndx_arr(const void * v1,const void * v2)4447 sort_shdr_ndx_arr(const void *v1, const void *v2)
4448 {
4449 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4450 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4451
4452 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4453 return (-1);
4454
4455 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4456 return (1);
4457
4458 return (0);
4459 }
4460
4461
4462 static int
shdr_cache(const char * file,Elf * elf,Ehdr * ehdr,size_t shstrndx,size_t shnum,Cache ** cache_ret,Word flags)4463 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4464 size_t shnum, Cache **cache_ret, Word flags)
4465 {
4466 Elf_Scn *scn;
4467 Elf_Data *data;
4468 size_t ndx;
4469 Shdr *nameshdr;
4470 char *names = NULL;
4471 Cache *cache, *_cache;
4472 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
4473
4474
4475 /*
4476 * Obtain the .shstrtab data buffer to provide the required section
4477 * name strings.
4478 */
4479 if (shstrndx == SHN_UNDEF) {
4480 /*
4481 * It is rare, but legal, for an object to lack a
4482 * header string table section.
4483 */
4484 names = NULL;
4485 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4486 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4487 failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4488 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4489 EC_XWORD(shstrndx));
4490
4491 } else if ((data = elf_getdata(scn, NULL)) == NULL) {
4492 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4493 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4494 EC_XWORD(shstrndx));
4495
4496 } else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4497 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4498 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4499 EC_WORD(elf_ndxscn(scn)));
4500
4501 } else if ((names = data->d_buf) == NULL)
4502 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4503
4504 /*
4505 * Allocate a cache to maintain a descriptor for each section.
4506 */
4507 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4508 int err = errno;
4509 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4510 file, strerror(err));
4511 return (0);
4512 }
4513
4514 *cache = cache_init;
4515 _cache = cache;
4516 _cache++;
4517
4518 /*
4519 * Allocate an array that will hold the section index for
4520 * each section that has data in the ELF file:
4521 *
4522 * - Is not a NOBITS section
4523 * - Data has non-zero length
4524 *
4525 * Note that shnum is an upper bound on the size required. It
4526 * is likely that we won't use a few of these array elements.
4527 * Allocating a modest amount of extra memory in this case means
4528 * that we can avoid an extra loop to count the number of needed
4529 * items, and can fill this array immediately in the first loop
4530 * below.
4531 */
4532 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4533 int err = errno;
4534 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4535 file, strerror(err));
4536 return (0);
4537 }
4538 shdr_ndx_arr_cnt = 0;
4539
4540 /*
4541 * Traverse the sections of the file. This gathering of data is
4542 * carried out in two passes. First, the section headers are captured
4543 * and the section header names are evaluated. A verification pass is
4544 * then carried out over the section information. Files have been
4545 * known to exhibit overlapping (and hence erroneous) section header
4546 * information.
4547 *
4548 * Finally, the data for each section is obtained. This processing is
4549 * carried out after section verification because should any section
4550 * header overlap occur, and a file needs translating (ie. xlate'ing
4551 * information from a non-native architecture file), then the process
4552 * of translation can corrupt the section header information. Of
4553 * course, if there is any section overlap, the data related to the
4554 * sections is going to be compromised. However, it is the translation
4555 * of this data that has caused problems with elfdump()'s ability to
4556 * extract the data.
4557 */
4558 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4559 ndx++, _cache++) {
4560 char scnndxnm[100];
4561
4562 _cache->c_ndx = ndx;
4563 _cache->c_scn = scn;
4564
4565 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4566 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4567 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4568 EC_WORD(elf_ndxscn(scn)));
4569 }
4570
4571 /*
4572 * If this section has data in the file, include it in
4573 * the array of sections to check for address overlap.
4574 */
4575 if ((_cache->c_shdr->sh_size != 0) &&
4576 (_cache->c_shdr->sh_type != SHT_NOBITS))
4577 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4578
4579 /*
4580 * If a shstrtab exists, assign the section name.
4581 */
4582 if (names && _cache->c_shdr) {
4583 if (_cache->c_shdr->sh_name &&
4584 /* LINTED */
4585 (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4586 const char *symname;
4587 char *secname;
4588
4589 secname = names + _cache->c_shdr->sh_name;
4590
4591 /*
4592 * A SUN naming convention employs a "%" within
4593 * a section name to indicate a section/symbol
4594 * name. This originated from the compilers
4595 * -xF option, that places functions into their
4596 * own sections. This convention (which has no
4597 * formal standard) has also been followed for
4598 * COMDAT sections. To demangle the symbol
4599 * name, the name must be separated from the
4600 * section name.
4601 */
4602 if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4603 ((symname = strchr(secname, '%')) == NULL))
4604 _cache->c_name = secname;
4605 else {
4606 size_t secsz = ++symname - secname;
4607 size_t strsz;
4608
4609 symname = demangle(symname, flags);
4610 strsz = secsz + strlen(symname) + 1;
4611
4612 if ((_cache->c_name =
4613 malloc(strsz)) == NULL) {
4614 int err = errno;
4615 (void) fprintf(stderr,
4616 MSG_INTL(MSG_ERR_MALLOC),
4617 file, strerror(err));
4618 return (0);
4619 }
4620 (void) snprintf(_cache->c_name, strsz,
4621 MSG_ORIG(MSG_FMT_SECSYM),
4622 EC_WORD(secsz), secname, symname);
4623 }
4624
4625 continue;
4626 }
4627
4628 /*
4629 * Generate an error if the section name index is zero
4630 * or exceeds the shstrtab data. Fall through to
4631 * fabricate a section name.
4632 */
4633 if ((_cache->c_shdr->sh_name == 0) ||
4634 /* LINTED */
4635 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4636 (void) fprintf(stderr,
4637 MSG_INTL(MSG_ERR_BADSHNAME), file,
4638 EC_WORD(ndx),
4639 EC_XWORD(_cache->c_shdr->sh_name));
4640 }
4641 }
4642
4643 /*
4644 * If there exists no shstrtab data, or a section header has no
4645 * name (an invalid index of 0), then compose a name for the
4646 * section.
4647 */
4648 (void) snprintf(scnndxnm, sizeof (scnndxnm),
4649 MSG_INTL(MSG_FMT_SCNNDX), ndx);
4650
4651 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4652 int err = errno;
4653 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4654 file, strerror(err));
4655 return (0);
4656 }
4657 (void) strcpy(_cache->c_name, scnndxnm);
4658 }
4659
4660 /*
4661 * Having collected all the sections, validate their address range.
4662 * Cases have existed where the section information has been invalid.
4663 * This can lead to all sorts of other, hard to diagnose errors, as
4664 * each section is processed individually (ie. with elf_getdata()).
4665 * Here, we carry out some address comparisons to catch a family of
4666 * overlapping memory issues we have observed (likely, there are others
4667 * that we have yet to discover).
4668 *
4669 * Note, should any memory overlap occur, obtaining any additional
4670 * data from the file is questionable. However, it might still be
4671 * possible to inspect the ELF header, Programs headers, or individual
4672 * sections, so rather than bailing on an error condition, continue
4673 * processing to see if any data can be salvaged.
4674 */
4675 if (shdr_ndx_arr_cnt > 1) {
4676 sort_shdr_ndx_arr_cache = cache;
4677 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4678 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4679 }
4680 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4681 Cache *_cache = cache + shdr_ndx_arr[ndx];
4682 Shdr *shdr = _cache->c_shdr;
4683 Off bgn1, bgn = shdr->sh_offset;
4684 Off end1, end = shdr->sh_offset + shdr->sh_size;
4685 size_t ndx1;
4686
4687 /*
4688 * Check the section against all following ones, reporting
4689 * any overlaps. Since we've sorted the sections by offset,
4690 * we can stop after the first comparison that fails. There
4691 * are no overlaps in a properly formed ELF file, in which
4692 * case this algorithm runs in O(n) time. This will degenerate
4693 * to O(n^2) for a completely broken file. Such a file is
4694 * (1) highly unlikely, and (2) unusable, so it is reasonable
4695 * for the analysis to take longer.
4696 */
4697 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4698 Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
4699 Shdr *shdr1 = _cache1->c_shdr;
4700
4701 bgn1 = shdr1->sh_offset;
4702 end1 = shdr1->sh_offset + shdr1->sh_size;
4703
4704 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4705 ((bgn1 < end) && (end1 >= end))) {
4706 (void) fprintf(stderr,
4707 MSG_INTL(MSG_ERR_SECMEMOVER), file,
4708 EC_WORD(elf_ndxscn(_cache->c_scn)),
4709 _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4710 EC_WORD(elf_ndxscn(_cache1->c_scn)),
4711 _cache1->c_name, EC_OFF(bgn1),
4712 EC_OFF(end1));
4713 } else { /* No overlap, so can stop */
4714 break;
4715 }
4716 }
4717
4718 /*
4719 * In addition to checking for sections overlapping
4720 * each other (done above), we should also make sure
4721 * the section doesn't overlap the section header array.
4722 */
4723 bgn1 = ehdr->e_shoff;
4724 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4725
4726 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4727 ((bgn1 < end) && (end1 >= end))) {
4728 (void) fprintf(stderr,
4729 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4730 EC_OFF(end1),
4731 EC_WORD(elf_ndxscn(_cache->c_scn)),
4732 _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4733 }
4734 }
4735
4736 /*
4737 * Obtain the data for each section.
4738 */
4739 for (ndx = 1; ndx < shnum; ndx++) {
4740 Cache *_cache = &cache[ndx];
4741 Elf_Scn *scn = _cache->c_scn;
4742
4743 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4744 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4745 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4746 EC_WORD(elf_ndxscn(scn)));
4747 }
4748
4749 /*
4750 * If a string table, verify that it has NULL first and
4751 * final bytes.
4752 */
4753 if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4754 (_cache->c_data != NULL) &&
4755 (_cache->c_data->d_buf != NULL) &&
4756 (_cache->c_data->d_size > 0)) {
4757 const char *s = _cache->c_data->d_buf;
4758
4759 if ((*s != '\0') ||
4760 (*(s + _cache->c_data->d_size - 1) != '\0'))
4761 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4762 file, _cache->c_name);
4763 }
4764 }
4765
4766 return (1);
4767 }
4768
4769
4770
4771 /*
4772 * Generate a cache of section headers and related information
4773 * for use by the rest of elfdump. If requested (or the file
4774 * contains no section headers), we generate a fake set of
4775 * headers from the information accessible from the program headers.
4776 * Otherwise, we use the real section headers contained in the file.
4777 */
4778 static int
create_cache(const char * file,int fd,Elf * elf,Ehdr * ehdr,Cache ** cache,size_t shstrndx,size_t * shnum,uint_t * flags)4779 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4780 size_t shstrndx, size_t *shnum, uint_t *flags)
4781 {
4782 /*
4783 * If there are no section headers, then resort to synthesizing
4784 * section headers from the program headers. This is normally
4785 * only done by explicit request, but in this case there's no
4786 * reason not to go ahead, since the alternative is simply to quit.
4787 */
4788 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4789 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4790 *flags |= FLG_CTL_FAKESHDR;
4791 }
4792
4793 if (*flags & FLG_CTL_FAKESHDR) {
4794 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4795 return (0);
4796 } else {
4797 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4798 cache, *flags) == 0)
4799 return (0);
4800 }
4801
4802 return (1);
4803 }
4804
4805 int
regular(const char * file,int fd,Elf * elf,uint_t flags,const char * wname,int wfd,uchar_t osabi)4806 regular(const char *file, int fd, Elf *elf, uint_t flags,
4807 const char *wname, int wfd, uchar_t osabi)
4808 {
4809 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4810 Elf_Scn *scn;
4811 Ehdr *ehdr;
4812 size_t ndx, shstrndx, shnum, phnum;
4813 Shdr *shdr;
4814 Cache *cache;
4815 VERSYM_STATE versym = { 0 };
4816 int ret = 0;
4817 int addr_align;
4818
4819 if ((ehdr = elf_getehdr(elf)) == NULL) {
4820 failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4821 return (ret);
4822 }
4823
4824 if (elf_getshdrnum(elf, &shnum) == -1) {
4825 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4826 return (ret);
4827 }
4828
4829 if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4830 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4831 return (ret);
4832 }
4833
4834 if (elf_getphdrnum(elf, &phnum) == -1) {
4835 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4836 return (ret);
4837 }
4838 /*
4839 * If the user requested section headers derived from the
4840 * program headers (-P option) and this file doesn't have
4841 * any program headers (i.e. ET_REL), then we can't do it.
4842 */
4843 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4844 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4845 return (ret);
4846 }
4847
4848
4849 if ((scn = elf_getscn(elf, 0)) != NULL) {
4850 if ((shdr = elf_getshdr(scn)) == NULL) {
4851 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4852 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4853 return (ret);
4854 }
4855 } else
4856 shdr = NULL;
4857
4858 /*
4859 * Print the elf header.
4860 */
4861 if (flags & FLG_SHOW_EHDR)
4862 Elf_ehdr(0, ehdr, shdr);
4863
4864 /*
4865 * If the section headers or program headers have inadequate
4866 * alignment for the class of object, print a warning. libelf
4867 * can handle such files, but programs that use them can crash
4868 * when they dereference unaligned items.
4869 *
4870 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4871 * allows access to data types smaller than 128-bits to be on
4872 * word alignment.
4873 */
4874 if (ehdr->e_machine == EM_AMD64)
4875 addr_align = sizeof (Word);
4876 else
4877 addr_align = sizeof (Addr);
4878
4879 if (ehdr->e_phoff & (addr_align - 1))
4880 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4881 if (ehdr->e_shoff & (addr_align - 1))
4882 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4883
4884
4885 /*
4886 * Determine the Operating System ABI (osabi) we will use to
4887 * interpret the object.
4888 */
4889 if (flags & FLG_CTL_OSABI) {
4890 /*
4891 * If the user explicitly specifies '-O none', we need
4892 * to display a completely generic view of the file.
4893 * However, libconv is written to assume that ELFOSABI_NONE
4894 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4895 * effect, we use an osabi that libconv has no knowledge of.
4896 */
4897 if (osabi == ELFOSABI_NONE)
4898 osabi = ELFOSABI_UNKNOWN4;
4899 } else {
4900 /* Determine osabi from file */
4901 osabi = ehdr->e_ident[EI_OSABI];
4902 if (osabi == ELFOSABI_NONE) {
4903 /*
4904 * Chicken/Egg scenario:
4905 *
4906 * Ideally, we wait to create the section header cache
4907 * until after the program headers are printed. If we
4908 * only output program headers, we can skip building
4909 * the cache entirely.
4910 *
4911 * Proper interpretation of program headers requires
4912 * the osabi, which is supposed to be in the ELF header.
4913 * However, many systems (Solaris and Linux included)
4914 * have a history of setting the osabi to the generic
4915 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4916 * in such cases, but would like to check the object
4917 * to see if it has a Linux .note.ABI-tag section,
4918 * which implies ELFOSABI_LINUX. This requires a
4919 * section header cache.
4920 *
4921 * To break the cycle, we create section headers now
4922 * if osabi is ELFOSABI_NONE, and later otherwise.
4923 * If it succeeds, we use them, if not, we defer
4924 * exiting until after the program headers are out.
4925 */
4926 if (create_cache(file, fd, elf, ehdr, &cache,
4927 shstrndx, &shnum, &flags) == 0) {
4928 cache_state = CACHE_FAIL;
4929 } else {
4930 cache_state = CACHE_OK;
4931 if (has_linux_abi_note(cache, shnum, file)) {
4932 Conv_inv_buf_t ibuf1, ibuf2;
4933
4934 (void) fprintf(stderr,
4935 MSG_INTL(MSG_INFO_LINUXOSABI), file,
4936 conv_ehdr_osabi(osabi, 0, &ibuf1),
4937 conv_ehdr_osabi(ELFOSABI_LINUX,
4938 0, &ibuf2));
4939 osabi = ELFOSABI_LINUX;
4940 }
4941 }
4942 }
4943 /*
4944 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4945 * Mapping NONE to SOLARIS simplifies the required test.
4946 */
4947 if (osabi == ELFOSABI_NONE)
4948 osabi = ELFOSABI_SOLARIS;
4949 }
4950
4951 /*
4952 * Print the program headers.
4953 */
4954 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4955 Phdr *phdr;
4956
4957 if ((phdr = elf_getphdr(elf)) == NULL) {
4958 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4959 return (ret);
4960 }
4961
4962 for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4963 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4964 NULL, ndx, phdr->p_type))
4965 continue;
4966
4967 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4968 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4969 Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4970 }
4971 }
4972
4973 /*
4974 * If we have flag bits set that explicitly require a show or calc
4975 * operation, but none of them require the section headers, then
4976 * we are done and can return now.
4977 */
4978 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4979 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4980 return (ret);
4981
4982 /*
4983 * Everything from this point on requires section headers.
4984 * If we have no section headers, there is no reason to continue.
4985 *
4986 * If we tried above to create the section header cache and failed,
4987 * it is time to exit. Otherwise, create it if needed.
4988 */
4989 switch (cache_state) {
4990 case CACHE_NEEDED:
4991 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4992 &shnum, &flags) == 0)
4993 return (ret);
4994 break;
4995 case CACHE_OK:
4996 break;
4997 case CACHE_FAIL:
4998 return (ret);
4999 }
5000 if (shnum <= 1)
5001 goto done;
5002
5003 /*
5004 * If -w was specified, find and write out the section(s) data.
5005 */
5006 if (wfd) {
5007 for (ndx = 1; ndx < shnum; ndx++) {
5008 Cache *_cache = &cache[ndx];
5009
5010 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5011 ndx, _cache->c_shdr->sh_type) &&
5012 _cache->c_data && _cache->c_data->d_buf) {
5013 if (write(wfd, _cache->c_data->d_buf,
5014 _cache->c_data->d_size) !=
5015 _cache->c_data->d_size) {
5016 int err = errno;
5017 (void) fprintf(stderr,
5018 MSG_INTL(MSG_ERR_WRITE), wname,
5019 strerror(err));
5020 /*
5021 * Return an exit status of 1, because
5022 * the failure is not related to the
5023 * ELF file, but by system resources.
5024 */
5025 ret = 1;
5026 goto done;
5027 }
5028 }
5029 }
5030 }
5031
5032 /*
5033 * If we have no flag bits set that explicitly require a show or calc
5034 * operation, but match options (-I, -N, -T) were used, then run
5035 * through the section headers and see if we can't deduce show flags
5036 * from the match options given.
5037 *
5038 * We don't do this if -w was specified, because (-I, -N, -T) used
5039 * with -w in lieu of some other option is supposed to be quiet.
5040 */
5041 if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
5042 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
5043 for (ndx = 1; ndx < shnum; ndx++) {
5044 Cache *_cache = &cache[ndx];
5045
5046 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5047 ndx, _cache->c_shdr->sh_type))
5048 continue;
5049
5050 switch (_cache->c_shdr->sh_type) {
5051 case SHT_PROGBITS:
5052 /*
5053 * Heuristic time: It is usually bad form
5054 * to assume the meaning/format of a PROGBITS
5055 * section based on its name. However, there
5056 * are ABI mandated exceptions. Check for
5057 * these special names.
5058 */
5059
5060 /* The ELF ABI specifies .interp and .got */
5061 if (strcmp(_cache->c_name,
5062 MSG_ORIG(MSG_ELF_INTERP)) == 0) {
5063 flags |= FLG_SHOW_INTERP;
5064 break;
5065 }
5066 if (strcmp(_cache->c_name,
5067 MSG_ORIG(MSG_ELF_GOT)) == 0) {
5068 flags |= FLG_SHOW_GOT;
5069 break;
5070 }
5071 /*
5072 * The GNU compilers, and amd64 ABI, define
5073 * .eh_frame and .eh_frame_hdr. The Sun
5074 * C++ ABI defines .exception_ranges.
5075 */
5076 if ((strncmp(_cache->c_name,
5077 MSG_ORIG(MSG_SCN_FRM),
5078 MSG_SCN_FRM_SIZE) == 0) ||
5079 (strncmp(_cache->c_name,
5080 MSG_ORIG(MSG_SCN_EXRANGE),
5081 MSG_SCN_EXRANGE_SIZE) == 0)) {
5082 flags |= FLG_SHOW_UNWIND;
5083 break;
5084 }
5085 break;
5086
5087 case SHT_SYMTAB:
5088 case SHT_DYNSYM:
5089 case SHT_SUNW_LDYNSYM:
5090 case SHT_SUNW_versym:
5091 case SHT_SYMTAB_SHNDX:
5092 flags |= FLG_SHOW_SYMBOLS;
5093 break;
5094
5095 case SHT_RELA:
5096 case SHT_REL:
5097 flags |= FLG_SHOW_RELOC;
5098 break;
5099
5100 case SHT_HASH:
5101 flags |= FLG_SHOW_HASH;
5102 break;
5103
5104 case SHT_DYNAMIC:
5105 flags |= FLG_SHOW_DYNAMIC;
5106 break;
5107
5108 case SHT_NOTE:
5109 flags |= FLG_SHOW_NOTE;
5110 break;
5111
5112 case SHT_GROUP:
5113 flags |= FLG_SHOW_GROUP;
5114 break;
5115
5116 case SHT_SUNW_symsort:
5117 case SHT_SUNW_tlssort:
5118 flags |= FLG_SHOW_SORT;
5119 break;
5120
5121 case SHT_SUNW_cap:
5122 flags |= FLG_SHOW_CAP;
5123 break;
5124
5125 case SHT_SUNW_move:
5126 flags |= FLG_SHOW_MOVE;
5127 break;
5128
5129 case SHT_SUNW_syminfo:
5130 flags |= FLG_SHOW_SYMINFO;
5131 break;
5132
5133 case SHT_SUNW_verdef:
5134 case SHT_SUNW_verneed:
5135 flags |= FLG_SHOW_VERSIONS;
5136 break;
5137
5138 case SHT_AMD64_UNWIND:
5139 flags |= FLG_SHOW_UNWIND;
5140 break;
5141 }
5142 }
5143 }
5144
5145
5146 if (flags & FLG_SHOW_SHDR)
5147 sections(file, cache, shnum, ehdr, osabi);
5148
5149 if (flags & FLG_SHOW_INTERP)
5150 interp(file, cache, shnum, phnum, elf);
5151
5152 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5153 versions(cache, shnum, file, flags, &versym);
5154
5155 if (flags & FLG_SHOW_SYMBOLS)
5156 symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5157
5158 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5159 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5160
5161 if (flags & FLG_SHOW_HASH)
5162 hash(cache, shnum, file, flags);
5163
5164 if (flags & FLG_SHOW_GOT)
5165 got(cache, shnum, ehdr, file);
5166
5167 if (flags & FLG_SHOW_GROUP)
5168 group(cache, shnum, file, flags);
5169
5170 if (flags & FLG_SHOW_SYMINFO)
5171 syminfo(cache, shnum, ehdr, osabi, file);
5172
5173 if (flags & FLG_SHOW_RELOC)
5174 reloc(cache, shnum, ehdr, file);
5175
5176 if (flags & FLG_SHOW_DYNAMIC)
5177 dynamic(cache, shnum, ehdr, osabi, file);
5178
5179 if (flags & FLG_SHOW_NOTE) {
5180 Word note_cnt;
5181 size_t note_shnum;
5182 Cache *note_cache;
5183
5184 note_cnt = note(cache, shnum, ehdr, file);
5185
5186 /*
5187 * Solaris core files have section headers, but these
5188 * headers do not include SHT_NOTE sections that reference
5189 * the core note sections. This means that note() won't
5190 * find the core notes. Fake section headers (-P option)
5191 * recover these sections, but it is inconvenient to require
5192 * users to specify -P in this situation. If the following
5193 * are all true:
5194 *
5195 * - No note sections were found
5196 * - This is a core file
5197 * - We are not already using fake section headers
5198 *
5199 * then we will automatically generate fake section headers
5200 * and then process them in a second call to note().
5201 */
5202 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5203 !(flags & FLG_CTL_FAKESHDR) &&
5204 (fake_shdr_cache(file, fd, elf, ehdr,
5205 ¬e_cache, ¬e_shnum) != 0)) {
5206 (void) note(note_cache, note_shnum, ehdr, file);
5207 fake_shdr_cache_free(note_cache, note_shnum);
5208 }
5209 }
5210
5211 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5212 move(cache, shnum, file, flags);
5213
5214 if (flags & FLG_CALC_CHECKSUM)
5215 checksum(elf);
5216
5217 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5218 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5219
5220 if ((flags & FLG_SHOW_UNWIND) &&
5221 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5222 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5223
5224
5225 /* Release the memory used to cache section headers */
5226 done:
5227 if (flags & FLG_CTL_FAKESHDR)
5228 fake_shdr_cache_free(cache, shnum);
5229 else
5230 free(cache);
5231
5232 return (ret);
5233 }
5234