1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993, 1995
5 * The Regents of the University of California.
6 * Copyright (c) 2007-2009 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105
106 #include <netipsec/ipsec_support.h>
107
108 #include <security/mac/mac_framework.h>
109
110 #define INPCBLBGROUP_SIZMIN 8
111 #define INPCBLBGROUP_SIZMAX 256
112
113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */
114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */
115
116 /*
117 * These configure the range of local port addresses assigned to
118 * "unspecified" outgoing connections/packets/whatever.
119 */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
126
127 /*
128 * Reserved ports accessible only to root. There are significant
129 * security considerations that must be accounted for when changing these,
130 * but the security benefits can be great. Please be careful.
131 */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137
138 #ifdef INET
139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 struct in_addr faddr, u_int fport_arg,
141 struct in_addr laddr, u_int lport_arg,
142 int lookupflags, uint8_t numa_domain, int fib);
143
144 #define RANGECHK(var, min, max) \
145 if ((var) < (min)) { (var) = (min); } \
146 else if ((var) > (max)) { (var) = (max); }
147
148 static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 int error;
152
153 error = sysctl_handle_int(oidp, arg1, arg2, req);
154 if (error == 0) {
155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 }
162 return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169 "IP Ports");
170
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174 "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178 "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182 "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186 "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190 "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194 "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 &VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212 "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214 &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216 &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218 &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220 &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222 &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224
225 #endif /* INET */
226
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
in_pcbhashseed_init(void)229 in_pcbhashseed_init(void)
230 {
231
232 V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235 in_pcbhashseed_init, NULL);
236
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244
245 static void in_pcbremhash(struct inpcb *);
246
247 /*
248 * in_pcb.c: manage the Protocol Control Blocks.
249 *
250 * NOTE: It is assumed that most of these functions will be called with
251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252 * functions often modify hash chains or addresses in pcbs.
253 */
254
255 static struct inpcblbgroup *
in_pcblbgroup_alloc(struct ucred * cred,u_char vflag,uint16_t port,const union in_dependaddr * addr,int size,uint8_t numa_domain,int fib)256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257 const union in_dependaddr *addr, int size, uint8_t numa_domain, int fib)
258 {
259 struct inpcblbgroup *grp;
260 size_t bytes;
261
262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 if (grp == NULL)
265 return (NULL);
266 LIST_INIT(&grp->il_pending);
267 grp->il_cred = crhold(cred);
268 grp->il_vflag = vflag;
269 grp->il_lport = port;
270 grp->il_numa_domain = numa_domain;
271 grp->il_fibnum = fib;
272 grp->il_dependladdr = *addr;
273 grp->il_inpsiz = size;
274 return (grp);
275 }
276
277 static void
in_pcblbgroup_free_deferred(epoch_context_t ctx)278 in_pcblbgroup_free_deferred(epoch_context_t ctx)
279 {
280 struct inpcblbgroup *grp;
281
282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
283 crfree(grp->il_cred);
284 free(grp, M_PCB);
285 }
286
287 static void
in_pcblbgroup_free(struct inpcblbgroup * grp)288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 KASSERT(LIST_EMPTY(&grp->il_pending),
291 ("local group %p still has pending inps", grp));
292
293 CK_LIST_REMOVE(grp, il_list);
294 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
295 }
296
297 static struct inpcblbgroup *
in_pcblbgroup_find(struct inpcb * inp)298 in_pcblbgroup_find(struct inpcb *inp)
299 {
300 struct inpcbinfo *pcbinfo;
301 struct inpcblbgroup *grp;
302 struct inpcblbgrouphead *hdr;
303
304 INP_LOCK_ASSERT(inp);
305
306 pcbinfo = inp->inp_pcbinfo;
307 INP_HASH_LOCK_ASSERT(pcbinfo);
308
309 hdr = &pcbinfo->ipi_lbgrouphashbase[
310 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
311 CK_LIST_FOREACH(grp, hdr, il_list) {
312 struct inpcb *inp1;
313
314 for (unsigned int i = 0; i < grp->il_inpcnt; i++) {
315 if (inp == grp->il_inp[i])
316 goto found;
317 }
318 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
319 if (inp == inp1)
320 goto found;
321 }
322 }
323 found:
324 return (grp);
325 }
326
327 static void
in_pcblbgroup_insert(struct inpcblbgroup * grp,struct inpcb * inp)328 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
329 {
330 KASSERT(grp->il_inpcnt < grp->il_inpsiz,
331 ("invalid local group size %d and count %d", grp->il_inpsiz,
332 grp->il_inpcnt));
333 INP_WLOCK_ASSERT(inp);
334
335 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp &&
336 !SOLISTENING(inp->inp_socket)) {
337 /*
338 * If this is a TCP socket, it should not be visible to lbgroup
339 * lookups until listen() has been called.
340 */
341 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list);
342 grp->il_pendcnt++;
343 } else {
344 grp->il_inp[grp->il_inpcnt] = inp;
345
346 /*
347 * Synchronize with in_pcblookup_lbgroup(): make sure that we
348 * don't expose a null slot to the lookup path.
349 */
350 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
351 }
352
353 inp->inp_flags |= INP_INLBGROUP;
354 }
355
356 static struct inpcblbgroup *
in_pcblbgroup_resize(struct inpcblbgrouphead * hdr,struct inpcblbgroup * old_grp,int size)357 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
358 struct inpcblbgroup *old_grp, int size)
359 {
360 struct inpcblbgroup *grp;
361 int i;
362
363 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
364 old_grp->il_lport, &old_grp->il_dependladdr, size,
365 old_grp->il_numa_domain, old_grp->il_fibnum);
366 if (grp == NULL)
367 return (NULL);
368
369 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
370 ("invalid new local group size %d and old local group count %d",
371 grp->il_inpsiz, old_grp->il_inpcnt));
372
373 for (i = 0; i < old_grp->il_inpcnt; ++i)
374 grp->il_inp[i] = old_grp->il_inp[i];
375 grp->il_inpcnt = old_grp->il_inpcnt;
376 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
377 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb,
378 inp_lbgroup_list);
379 grp->il_pendcnt = old_grp->il_pendcnt;
380 old_grp->il_pendcnt = 0;
381 in_pcblbgroup_free(old_grp);
382 return (grp);
383 }
384
385 /*
386 * Add PCB to load balance group for SO_REUSEPORT_LB option.
387 */
388 static int
in_pcbinslbgrouphash(struct inpcb * inp,uint8_t numa_domain)389 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
390 {
391 const static struct timeval interval = { 60, 0 };
392 static struct timeval lastprint;
393 struct inpcbinfo *pcbinfo;
394 struct inpcblbgrouphead *hdr;
395 struct inpcblbgroup *grp;
396 uint32_t idx;
397 int fib;
398
399 pcbinfo = inp->inp_pcbinfo;
400
401 INP_WLOCK_ASSERT(inp);
402 INP_HASH_WLOCK_ASSERT(pcbinfo);
403
404 fib = (inp->inp_flags & INP_BOUNDFIB) != 0 ?
405 inp->inp_inc.inc_fibnum : RT_ALL_FIBS;
406
407 #ifdef INET6
408 /*
409 * Don't allow IPv4 mapped INET6 wild socket.
410 */
411 if ((inp->inp_vflag & INP_IPV4) &&
412 inp->inp_laddr.s_addr == INADDR_ANY &&
413 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
414 return (0);
415 }
416 #endif
417
418 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
419 hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
420 CK_LIST_FOREACH(grp, hdr, il_list) {
421 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
422 grp->il_vflag == inp->inp_vflag &&
423 grp->il_lport == inp->inp_lport &&
424 grp->il_numa_domain == numa_domain &&
425 grp->il_fibnum == fib &&
426 memcmp(&grp->il_dependladdr,
427 &inp->inp_inc.inc_ie.ie_dependladdr,
428 sizeof(grp->il_dependladdr)) == 0) {
429 break;
430 }
431 }
432 if (grp == NULL) {
433 /* Create new load balance group. */
434 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
435 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
436 INPCBLBGROUP_SIZMIN, numa_domain, fib);
437 if (grp == NULL)
438 return (ENOMEM);
439 in_pcblbgroup_insert(grp, inp);
440 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
441 } else if (grp->il_inpcnt + grp->il_pendcnt == grp->il_inpsiz) {
442 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
443 if (ratecheck(&lastprint, &interval))
444 printf("lb group port %d, limit reached\n",
445 ntohs(grp->il_lport));
446 return (0);
447 }
448
449 /* Expand this local group. */
450 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
451 if (grp == NULL)
452 return (ENOMEM);
453 in_pcblbgroup_insert(grp, inp);
454 } else {
455 in_pcblbgroup_insert(grp, inp);
456 }
457 return (0);
458 }
459
460 /*
461 * Remove PCB from load balance group.
462 */
463 static void
in_pcbremlbgrouphash(struct inpcb * inp)464 in_pcbremlbgrouphash(struct inpcb *inp)
465 {
466 struct inpcbinfo *pcbinfo;
467 struct inpcblbgrouphead *hdr;
468 struct inpcblbgroup *grp;
469 struct inpcb *inp1;
470 int i;
471
472 pcbinfo = inp->inp_pcbinfo;
473
474 INP_WLOCK_ASSERT(inp);
475 MPASS(inp->inp_flags & INP_INLBGROUP);
476 INP_HASH_WLOCK_ASSERT(pcbinfo);
477
478 hdr = &pcbinfo->ipi_lbgrouphashbase[
479 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
480 CK_LIST_FOREACH(grp, hdr, il_list) {
481 for (i = 0; i < grp->il_inpcnt; ++i) {
482 if (grp->il_inp[i] != inp)
483 continue;
484
485 if (grp->il_inpcnt == 1 &&
486 LIST_EMPTY(&grp->il_pending)) {
487 /* We are the last, free this local group. */
488 in_pcblbgroup_free(grp);
489 } else {
490 grp->il_inp[i] =
491 grp->il_inp[grp->il_inpcnt - 1];
492
493 /*
494 * Synchronize with in_pcblookup_lbgroup().
495 */
496 atomic_store_rel_int(&grp->il_inpcnt,
497 grp->il_inpcnt - 1);
498 }
499 inp->inp_flags &= ~INP_INLBGROUP;
500 return;
501 }
502 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
503 if (inp == inp1) {
504 LIST_REMOVE(inp, inp_lbgroup_list);
505 grp->il_pendcnt--;
506 inp->inp_flags &= ~INP_INLBGROUP;
507 return;
508 }
509 }
510 }
511 __assert_unreachable();
512 }
513
514 int
in_pcblbgroup_numa(struct inpcb * inp,int arg)515 in_pcblbgroup_numa(struct inpcb *inp, int arg)
516 {
517 struct inpcbinfo *pcbinfo;
518 int error;
519 uint8_t numa_domain;
520
521 switch (arg) {
522 case TCP_REUSPORT_LB_NUMA_NODOM:
523 numa_domain = M_NODOM;
524 break;
525 case TCP_REUSPORT_LB_NUMA_CURDOM:
526 numa_domain = PCPU_GET(domain);
527 break;
528 default:
529 if (arg < 0 || arg >= vm_ndomains)
530 return (EINVAL);
531 numa_domain = arg;
532 }
533
534 pcbinfo = inp->inp_pcbinfo;
535 INP_WLOCK_ASSERT(inp);
536 INP_HASH_WLOCK(pcbinfo);
537 if (in_pcblbgroup_find(inp) != NULL) {
538 /* Remove it from the old group. */
539 in_pcbremlbgrouphash(inp);
540 /* Add it to the new group based on numa domain. */
541 in_pcbinslbgrouphash(inp, numa_domain);
542 error = 0;
543 } else {
544 error = ENOENT;
545 }
546 INP_HASH_WUNLOCK(pcbinfo);
547 return (error);
548 }
549
550 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
551 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
552
553 /*
554 * Initialize an inpcbinfo - a per-VNET instance of connections db.
555 */
556 void
in_pcbinfo_init(struct inpcbinfo * pcbinfo,struct inpcbstorage * pcbstor,u_int hash_nelements,u_int porthash_nelements)557 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
558 u_int hash_nelements, u_int porthash_nelements)
559 {
560
561 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
562 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
563 NULL, MTX_DEF);
564 #ifdef VIMAGE
565 pcbinfo->ipi_vnet = curvnet;
566 #endif
567 CK_LIST_INIT(&pcbinfo->ipi_listhead);
568 pcbinfo->ipi_count = 0;
569 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
570 &pcbinfo->ipi_hashmask);
571 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
572 &pcbinfo->ipi_hashmask);
573 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
574 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
575 &pcbinfo->ipi_porthashmask);
576 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
577 &pcbinfo->ipi_lbgrouphashmask);
578 pcbinfo->ipi_zone = pcbstor->ips_zone;
579 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
580 }
581
582 /*
583 * Destroy an inpcbinfo.
584 */
585 void
in_pcbinfo_destroy(struct inpcbinfo * pcbinfo)586 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
587 {
588
589 KASSERT(pcbinfo->ipi_count == 0,
590 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
591
592 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
593 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
594 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
595 pcbinfo->ipi_porthashmask);
596 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
597 pcbinfo->ipi_lbgrouphashmask);
598 mtx_destroy(&pcbinfo->ipi_hash_lock);
599 mtx_destroy(&pcbinfo->ipi_lock);
600 }
601
602 /*
603 * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
604 */
605 static void inpcb_fini(void *, int);
606 void
in_pcbstorage_init(void * arg)607 in_pcbstorage_init(void *arg)
608 {
609 struct inpcbstorage *pcbstor = arg;
610
611 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
612 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
613 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
614 }
615
616 /*
617 * Destroy a pcbstorage - used by unloadable protocols.
618 */
619 void
in_pcbstorage_destroy(void * arg)620 in_pcbstorage_destroy(void *arg)
621 {
622 struct inpcbstorage *pcbstor = arg;
623
624 uma_zdestroy(pcbstor->ips_zone);
625 }
626
627 /*
628 * Allocate a PCB and associate it with the socket.
629 * On success return with the PCB locked.
630 */
631 int
in_pcballoc(struct socket * so,struct inpcbinfo * pcbinfo)632 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
633 {
634 struct inpcb *inp;
635 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
636 int error;
637 #endif
638
639 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
640 if (inp == NULL)
641 return (ENOBUFS);
642 bzero(&inp->inp_start_zero, inp_zero_size);
643 #ifdef NUMA
644 inp->inp_numa_domain = M_NODOM;
645 #endif
646 inp->inp_pcbinfo = pcbinfo;
647 inp->inp_socket = so;
648 inp->inp_cred = crhold(so->so_cred);
649 inp->inp_inc.inc_fibnum = so->so_fibnum;
650 #ifdef MAC
651 error = mac_inpcb_init(inp, M_NOWAIT);
652 if (error != 0)
653 goto out;
654 mac_inpcb_create(so, inp);
655 #endif
656 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
657 error = ipsec_init_pcbpolicy(inp);
658 if (error != 0) {
659 #ifdef MAC
660 mac_inpcb_destroy(inp);
661 #endif
662 goto out;
663 }
664 #endif /*IPSEC*/
665 #ifdef INET6
666 if (INP_SOCKAF(so) == AF_INET6) {
667 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
668 if (V_ip6_v6only)
669 inp->inp_flags |= IN6P_IPV6_V6ONLY;
670 #ifdef INET
671 else
672 inp->inp_vflag |= INP_IPV4;
673 #endif
674 if (V_ip6_auto_flowlabel)
675 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
676 inp->in6p_hops = -1; /* use kernel default */
677 }
678 #endif
679 #if defined(INET) && defined(INET6)
680 else
681 #endif
682 #ifdef INET
683 inp->inp_vflag |= INP_IPV4;
684 #endif
685 inp->inp_smr = SMR_SEQ_INVALID;
686
687 /*
688 * Routes in inpcb's can cache L2 as well; they are guaranteed
689 * to be cleaned up.
690 */
691 inp->inp_route.ro_flags = RT_LLE_CACHE;
692 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */
693 INP_WLOCK(inp);
694 INP_INFO_WLOCK(pcbinfo);
695 pcbinfo->ipi_count++;
696 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
697 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
698 INP_INFO_WUNLOCK(pcbinfo);
699 so->so_pcb = inp;
700
701 return (0);
702
703 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
704 out:
705 crfree(inp->inp_cred);
706 #ifdef INVARIANTS
707 inp->inp_cred = NULL;
708 #endif
709 uma_zfree_smr(pcbinfo->ipi_zone, inp);
710 return (error);
711 #endif
712 }
713
714 #ifdef INET
715 int
in_pcbbind(struct inpcb * inp,struct sockaddr_in * sin,int flags,struct ucred * cred)716 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, int flags,
717 struct ucred *cred)
718 {
719 int anonport, error;
720
721 KASSERT(sin == NULL || sin->sin_family == AF_INET,
722 ("%s: invalid address family for %p", __func__, sin));
723 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
724 ("%s: invalid address length for %p", __func__, sin));
725 INP_WLOCK_ASSERT(inp);
726 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
727
728 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
729 return (EINVAL);
730 anonport = sin == NULL || sin->sin_port == 0;
731 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
732 &inp->inp_lport, flags, cred);
733 if (error)
734 return (error);
735 if (__predict_false((error = in_pcbinshash(inp)) != 0)) {
736 MPASS(inp->inp_socket->so_options & SO_REUSEPORT_LB);
737 inp->inp_laddr.s_addr = INADDR_ANY;
738 inp->inp_lport = 0;
739 inp->inp_flags &= ~INP_BOUNDFIB;
740 return (error);
741 }
742 if (anonport)
743 inp->inp_flags |= INP_ANONPORT;
744 return (0);
745 }
746 #endif
747
748 #if defined(INET) || defined(INET6)
749 /*
750 * Assign a local port like in_pcb_lport(), but also used with connect()
751 * and a foreign address and port. If fsa is non-NULL, choose a local port
752 * that is unused with those, otherwise one that is completely unused.
753 * lsa can be NULL for IPv6.
754 */
755 int
in_pcb_lport_dest(const struct inpcb * inp,struct sockaddr * lsa,u_short * lportp,struct sockaddr * fsa,u_short fport,struct ucred * cred,int lookupflags)756 in_pcb_lport_dest(const struct inpcb *inp, struct sockaddr *lsa,
757 u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred,
758 int lookupflags)
759 {
760 struct inpcbinfo *pcbinfo;
761 struct inpcb *tmpinp;
762 unsigned short *lastport;
763 int count, error;
764 u_short aux, first, last, lport;
765 #ifdef INET
766 struct in_addr laddr, faddr;
767 #endif
768 #ifdef INET6
769 struct in6_addr *laddr6, *faddr6;
770 #endif
771
772 pcbinfo = inp->inp_pcbinfo;
773
774 /*
775 * Because no actual state changes occur here, a global write lock on
776 * the pcbinfo isn't required.
777 */
778 INP_LOCK_ASSERT(inp);
779 INP_HASH_LOCK_ASSERT(pcbinfo);
780
781 if (inp->inp_flags & INP_HIGHPORT) {
782 first = V_ipport_hifirstauto; /* sysctl */
783 last = V_ipport_hilastauto;
784 lastport = &pcbinfo->ipi_lasthi;
785 } else if (inp->inp_flags & INP_LOWPORT) {
786 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
787 if (error)
788 return (error);
789 first = V_ipport_lowfirstauto; /* 1023 */
790 last = V_ipport_lowlastauto; /* 600 */
791 lastport = &pcbinfo->ipi_lastlow;
792 } else {
793 first = V_ipport_firstauto; /* sysctl */
794 last = V_ipport_lastauto;
795 lastport = &pcbinfo->ipi_lastport;
796 }
797
798 /*
799 * Instead of having two loops further down counting up or down
800 * make sure that first is always <= last and go with only one
801 * code path implementing all logic.
802 */
803 if (first > last) {
804 aux = first;
805 first = last;
806 last = aux;
807 }
808
809 #ifdef INET
810 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */
811 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
812 if (lsa != NULL)
813 laddr = ((struct sockaddr_in *)lsa)->sin_addr;
814 if (fsa != NULL)
815 faddr = ((struct sockaddr_in *)fsa)->sin_addr;
816 }
817 #endif
818 #ifdef INET6
819 laddr6 = NULL;
820 if ((inp->inp_vflag & INP_IPV6) != 0) {
821 if (lsa != NULL)
822 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
823 if (fsa != NULL)
824 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
825 }
826 #endif
827
828 tmpinp = NULL;
829 lport = *lportp;
830
831 if (V_ipport_randomized)
832 *lastport = first + (arc4random() % (last - first));
833
834 count = last - first;
835
836 do {
837 if (count-- < 0) /* completely used? */
838 return (EADDRNOTAVAIL);
839 ++*lastport;
840 if (*lastport < first || *lastport > last)
841 *lastport = first;
842 lport = htons(*lastport);
843
844 if (fsa != NULL) {
845 #ifdef INET
846 if (lsa->sa_family == AF_INET) {
847 tmpinp = in_pcblookup_hash_locked(pcbinfo,
848 faddr, fport, laddr, lport, lookupflags,
849 M_NODOM, RT_ALL_FIBS);
850 }
851 #endif
852 #ifdef INET6
853 if (lsa->sa_family == AF_INET6) {
854 tmpinp = in6_pcblookup_hash_locked(pcbinfo,
855 faddr6, fport, laddr6, lport, lookupflags,
856 M_NODOM, RT_ALL_FIBS);
857 }
858 #endif
859 } else {
860 #ifdef INET6
861 if ((inp->inp_vflag & INP_IPV6) != 0) {
862 tmpinp = in6_pcblookup_local(pcbinfo,
863 &inp->in6p_laddr, lport, RT_ALL_FIBS,
864 lookupflags, cred);
865 #ifdef INET
866 if (tmpinp == NULL &&
867 (inp->inp_vflag & INP_IPV4))
868 tmpinp = in_pcblookup_local(pcbinfo,
869 laddr, lport, RT_ALL_FIBS,
870 lookupflags, cred);
871 #endif
872 }
873 #endif
874 #if defined(INET) && defined(INET6)
875 else
876 #endif
877 #ifdef INET
878 tmpinp = in_pcblookup_local(pcbinfo, laddr,
879 lport, RT_ALL_FIBS, lookupflags, cred);
880 #endif
881 }
882 } while (tmpinp != NULL);
883
884 *lportp = lport;
885
886 return (0);
887 }
888
889 /*
890 * Select a local port (number) to use.
891 */
892 int
in_pcb_lport(struct inpcb * inp,struct in_addr * laddrp,u_short * lportp,struct ucred * cred,int lookupflags)893 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
894 struct ucred *cred, int lookupflags)
895 {
896 struct sockaddr_in laddr;
897
898 if (laddrp) {
899 bzero(&laddr, sizeof(laddr));
900 laddr.sin_family = AF_INET;
901 laddr.sin_addr = *laddrp;
902 }
903 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
904 NULL, lportp, NULL, 0, cred, lookupflags));
905 }
906 #endif /* INET || INET6 */
907
908 #ifdef INET
909 /*
910 * Determine whether the inpcb can be bound to the specified address/port tuple.
911 */
912 static int
in_pcbbind_avail(struct inpcb * inp,const struct in_addr laddr,const u_short lport,const int fib,int sooptions,int lookupflags,struct ucred * cred)913 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
914 const u_short lport, const int fib, int sooptions, int lookupflags,
915 struct ucred *cred)
916 {
917 int reuseport, reuseport_lb;
918
919 INP_LOCK_ASSERT(inp);
920 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
921
922 reuseport = (sooptions & SO_REUSEPORT);
923 reuseport_lb = (sooptions & SO_REUSEPORT_LB);
924
925 if (IN_MULTICAST(ntohl(laddr.s_addr))) {
926 /*
927 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
928 * allow complete duplication of binding if
929 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
930 * and a multicast address is bound on both
931 * new and duplicated sockets.
932 */
933 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
934 reuseport = SO_REUSEADDR | SO_REUSEPORT;
935 /*
936 * XXX: How to deal with SO_REUSEPORT_LB here?
937 * Treat same as SO_REUSEPORT for now.
938 */
939 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
940 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
941 } else if (!in_nullhost(laddr)) {
942 struct sockaddr_in sin;
943
944 memset(&sin, 0, sizeof(sin));
945 sin.sin_family = AF_INET;
946 sin.sin_len = sizeof(sin);
947 sin.sin_addr = laddr;
948
949 /*
950 * Is the address a local IP address?
951 * If INP_BINDANY is set, then the socket may be bound
952 * to any endpoint address, local or not.
953 */
954 if ((inp->inp_flags & INP_BINDANY) == 0 &&
955 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
956 return (EADDRNOTAVAIL);
957 }
958
959 if (lport != 0) {
960 struct inpcb *t;
961
962 if (ntohs(lport) <= V_ipport_reservedhigh &&
963 ntohs(lport) >= V_ipport_reservedlow &&
964 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
965 return (EACCES);
966
967 if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
968 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
969 /*
970 * If a socket owned by a different user is already
971 * bound to this port, fail. In particular, SO_REUSE*
972 * can only be used to share a port among sockets owned
973 * by the same user.
974 *
975 * However, we can share a port with a connected socket
976 * which has a unique 4-tuple.
977 */
978 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
979 RT_ALL_FIBS, INPLOOKUP_WILDCARD, cred);
980 if (t != NULL &&
981 (inp->inp_socket->so_type != SOCK_STREAM ||
982 in_nullhost(t->inp_faddr)) &&
983 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
984 return (EADDRINUSE);
985 }
986 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, fib,
987 lookupflags, cred);
988 if (t != NULL && ((reuseport | reuseport_lb) &
989 t->inp_socket->so_options) == 0) {
990 #ifdef INET6
991 if (!in_nullhost(laddr) ||
992 !in_nullhost(t->inp_laddr) ||
993 (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
994 (t->inp_vflag & INP_IPV6PROTO) == 0)
995 #endif
996 return (EADDRINUSE);
997 }
998 }
999 return (0);
1000 }
1001
1002 /*
1003 * Set up a bind operation on a PCB, performing port allocation
1004 * as required, but do not actually modify the PCB. Callers can
1005 * either complete the bind by setting inp_laddr/inp_lport and
1006 * calling in_pcbinshash(), or they can just use the resulting
1007 * port and address to authorise the sending of a once-off packet.
1008 *
1009 * On error, the values of *laddrp and *lportp are not changed.
1010 */
1011 int
in_pcbbind_setup(struct inpcb * inp,struct sockaddr_in * sin,in_addr_t * laddrp,u_short * lportp,int flags,struct ucred * cred)1012 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
1013 u_short *lportp, int flags, struct ucred *cred)
1014 {
1015 struct socket *so = inp->inp_socket;
1016 struct in_addr laddr;
1017 u_short lport = 0;
1018 int error, fib, lookupflags, sooptions;
1019
1020 /*
1021 * No state changes, so read locks are sufficient here.
1022 */
1023 INP_LOCK_ASSERT(inp);
1024 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1025
1026 laddr.s_addr = *laddrp;
1027 if (sin != NULL && laddr.s_addr != INADDR_ANY)
1028 return (EINVAL);
1029
1030 lookupflags = 0;
1031 sooptions = atomic_load_int(&so->so_options);
1032 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
1033 lookupflags = INPLOOKUP_WILDCARD;
1034 if (sin == NULL) {
1035 if ((error = prison_local_ip4(cred, &laddr)) != 0)
1036 return (error);
1037 } else {
1038 KASSERT(sin->sin_family == AF_INET,
1039 ("%s: invalid family for address %p", __func__, sin));
1040 KASSERT(sin->sin_len == sizeof(*sin),
1041 ("%s: invalid length for address %p", __func__, sin));
1042
1043 error = prison_local_ip4(cred, &sin->sin_addr);
1044 if (error)
1045 return (error);
1046 if (sin->sin_port != *lportp) {
1047 /* Don't allow the port to change. */
1048 if (*lportp != 0)
1049 return (EINVAL);
1050 lport = sin->sin_port;
1051 }
1052 laddr = sin->sin_addr;
1053
1054 fib = (flags & INPBIND_FIB) != 0 ? inp->inp_inc.inc_fibnum :
1055 RT_ALL_FIBS;
1056
1057 /* See if this address/port combo is available. */
1058 error = in_pcbbind_avail(inp, laddr, lport, fib, sooptions,
1059 lookupflags, cred);
1060 if (error != 0)
1061 return (error);
1062 }
1063 if (*lportp != 0)
1064 lport = *lportp;
1065 if (lport == 0) {
1066 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1067 if (error != 0)
1068 return (error);
1069 }
1070 *laddrp = laddr.s_addr;
1071 *lportp = lport;
1072 if ((flags & INPBIND_FIB) != 0)
1073 inp->inp_flags |= INP_BOUNDFIB;
1074 return (0);
1075 }
1076
1077 /*
1078 * Connect from a socket to a specified address.
1079 * Both address and port must be specified in argument sin.
1080 * If don't have a local address for this socket yet,
1081 * then pick one.
1082 */
1083 int
in_pcbconnect(struct inpcb * inp,struct sockaddr_in * sin,struct ucred * cred)1084 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1085 {
1086 struct in_addr laddr, faddr;
1087 u_short lport;
1088 int error;
1089 bool anonport;
1090
1091 INP_WLOCK_ASSERT(inp);
1092 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1093 KASSERT(in_nullhost(inp->inp_faddr),
1094 ("%s: inp is already connected", __func__));
1095 KASSERT(sin->sin_family == AF_INET,
1096 ("%s: invalid address family for %p", __func__, sin));
1097 KASSERT(sin->sin_len == sizeof(*sin),
1098 ("%s: invalid address length for %p", __func__, sin));
1099
1100 if (sin->sin_port == 0)
1101 return (EADDRNOTAVAIL);
1102
1103 anonport = (inp->inp_lport == 0);
1104
1105 if (__predict_false(in_broadcast(sin->sin_addr))) {
1106 if (!V_connect_inaddr_wild || CK_STAILQ_EMPTY(&V_in_ifaddrhead))
1107 return (ENETUNREACH);
1108 /*
1109 * If the destination address is INADDR_ANY, use the primary
1110 * local address. If the supplied address is INADDR_BROADCAST,
1111 * and the primary interface supports broadcast, choose the
1112 * broadcast address for that interface.
1113 */
1114 if (in_nullhost(sin->sin_addr)) {
1115 faddr =
1116 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1117 if ((error = prison_get_ip4(cred, &faddr)) != 0)
1118 return (error);
1119 } else if (sin->sin_addr.s_addr == INADDR_BROADCAST) {
1120 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags
1121 & IFF_BROADCAST)
1122 faddr = satosin(&CK_STAILQ_FIRST(
1123 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1124 else
1125 faddr = sin->sin_addr;
1126 }
1127 } else
1128 faddr = sin->sin_addr;
1129
1130 if (in_nullhost(inp->inp_laddr)) {
1131 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1132 /*
1133 * If the destination address is multicast and an outgoing
1134 * interface has been set as a multicast option, prefer the
1135 * address of that interface as our source address.
1136 */
1137 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1138 inp->inp_moptions != NULL &&
1139 inp->inp_moptions->imo_multicast_ifp != NULL) {
1140 struct ifnet *ifp =
1141 inp->inp_moptions->imo_multicast_ifp;
1142 struct in_ifaddr *ia;
1143
1144 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1145 if (ia->ia_ifp == ifp &&
1146 prison_check_ip4(cred,
1147 &ia->ia_addr.sin_addr) == 0)
1148 break;
1149 }
1150 if (ia == NULL)
1151 return (EADDRNOTAVAIL);
1152 laddr = ia->ia_addr.sin_addr;
1153 error = 0;
1154 }
1155 if (error)
1156 return (error);
1157 } else
1158 laddr = inp->inp_laddr;
1159
1160 if (anonport) {
1161 struct sockaddr_in lsin = {
1162 .sin_family = AF_INET,
1163 .sin_addr = laddr,
1164 };
1165 struct sockaddr_in fsin = {
1166 .sin_family = AF_INET,
1167 .sin_addr = faddr,
1168 };
1169
1170 error = in_pcb_lport_dest(inp, (struct sockaddr *)&lsin,
1171 &lport, (struct sockaddr *)&fsin, sin->sin_port, cred,
1172 INPLOOKUP_WILDCARD);
1173 if (error)
1174 return (error);
1175 } else if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1176 sin->sin_port, laddr, inp->inp_lport, 0, M_NODOM, RT_ALL_FIBS) !=
1177 NULL)
1178 return (EADDRINUSE);
1179 else
1180 lport = inp->inp_lport;
1181
1182 MPASS(!in_nullhost(inp->inp_laddr) || inp->inp_lport != 0 ||
1183 !(inp->inp_flags & INP_INHASHLIST));
1184
1185 inp->inp_faddr = faddr;
1186 inp->inp_fport = sin->sin_port;
1187 inp->inp_laddr = laddr;
1188 inp->inp_lport = lport;
1189
1190 if ((inp->inp_flags & INP_INHASHLIST) == 0) {
1191 error = in_pcbinshash(inp);
1192 MPASS(error == 0);
1193 } else
1194 in_pcbrehash(inp);
1195 #ifdef ROUTE_MPATH
1196 if (CALC_FLOWID_OUTBOUND) {
1197 uint32_t hash_val, hash_type;
1198
1199 hash_val = fib4_calc_software_hash(inp->inp_laddr,
1200 inp->inp_faddr, 0, sin->sin_port,
1201 inp->inp_socket->so_proto->pr_protocol, &hash_type);
1202
1203 inp->inp_flowid = hash_val;
1204 inp->inp_flowtype = hash_type;
1205 }
1206 #endif
1207 if (anonport)
1208 inp->inp_flags |= INP_ANONPORT;
1209 return (0);
1210 }
1211
1212 /*
1213 * Do proper source address selection on an unbound socket in case
1214 * of connect. Take jails into account as well.
1215 */
1216 int
in_pcbladdr(const struct inpcb * inp,struct in_addr * faddr,struct in_addr * laddr,struct ucred * cred)1217 in_pcbladdr(const struct inpcb *inp, struct in_addr *faddr,
1218 struct in_addr *laddr, struct ucred *cred)
1219 {
1220 struct ifaddr *ifa;
1221 struct sockaddr *sa;
1222 struct sockaddr_in *sin, dst;
1223 struct nhop_object *nh;
1224 int error;
1225
1226 NET_EPOCH_ASSERT();
1227 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1228
1229 /*
1230 * Bypass source address selection and use the primary jail IP
1231 * if requested.
1232 */
1233 if (!prison_saddrsel_ip4(cred, laddr))
1234 return (0);
1235
1236 error = 0;
1237
1238 nh = NULL;
1239 bzero(&dst, sizeof(dst));
1240 sin = &dst;
1241 sin->sin_family = AF_INET;
1242 sin->sin_len = sizeof(struct sockaddr_in);
1243 sin->sin_addr.s_addr = faddr->s_addr;
1244
1245 /*
1246 * If route is known our src addr is taken from the i/f,
1247 * else punt.
1248 *
1249 * Find out route to destination.
1250 */
1251 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1252 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1253 0, NHR_NONE, 0);
1254
1255 /*
1256 * If we found a route, use the address corresponding to
1257 * the outgoing interface.
1258 *
1259 * Otherwise assume faddr is reachable on a directly connected
1260 * network and try to find a corresponding interface to take
1261 * the source address from.
1262 */
1263 if (nh == NULL || nh->nh_ifp == NULL) {
1264 struct in_ifaddr *ia;
1265 struct ifnet *ifp;
1266
1267 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1268 inp->inp_socket->so_fibnum));
1269 if (ia == NULL) {
1270 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1271 inp->inp_socket->so_fibnum));
1272 }
1273 if (ia == NULL) {
1274 error = ENETUNREACH;
1275 goto done;
1276 }
1277
1278 if (!prison_flag(cred, PR_IP4)) {
1279 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1280 goto done;
1281 }
1282
1283 ifp = ia->ia_ifp;
1284 ia = NULL;
1285 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1286 sa = ifa->ifa_addr;
1287 if (sa->sa_family != AF_INET)
1288 continue;
1289 sin = (struct sockaddr_in *)sa;
1290 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1291 ia = (struct in_ifaddr *)ifa;
1292 break;
1293 }
1294 }
1295 if (ia != NULL) {
1296 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1297 goto done;
1298 }
1299
1300 /* 3. As a last resort return the 'default' jail address. */
1301 error = prison_get_ip4(cred, laddr);
1302 goto done;
1303 }
1304
1305 /*
1306 * If the outgoing interface on the route found is not
1307 * a loopback interface, use the address from that interface.
1308 * In case of jails do those three steps:
1309 * 1. check if the interface address belongs to the jail. If so use it.
1310 * 2. check if we have any address on the outgoing interface
1311 * belonging to this jail. If so use it.
1312 * 3. as a last resort return the 'default' jail address.
1313 */
1314 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1315 struct in_ifaddr *ia;
1316 struct ifnet *ifp;
1317
1318 /* If not jailed, use the default returned. */
1319 if (!prison_flag(cred, PR_IP4)) {
1320 ia = (struct in_ifaddr *)nh->nh_ifa;
1321 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1322 goto done;
1323 }
1324
1325 /* Jailed. */
1326 /* 1. Check if the iface address belongs to the jail. */
1327 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1328 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1329 ia = (struct in_ifaddr *)nh->nh_ifa;
1330 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1331 goto done;
1332 }
1333
1334 /*
1335 * 2. Check if we have any address on the outgoing interface
1336 * belonging to this jail.
1337 */
1338 ia = NULL;
1339 ifp = nh->nh_ifp;
1340 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1341 sa = ifa->ifa_addr;
1342 if (sa->sa_family != AF_INET)
1343 continue;
1344 sin = (struct sockaddr_in *)sa;
1345 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1346 ia = (struct in_ifaddr *)ifa;
1347 break;
1348 }
1349 }
1350 if (ia != NULL) {
1351 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1352 goto done;
1353 }
1354
1355 /* 3. As a last resort return the 'default' jail address. */
1356 error = prison_get_ip4(cred, laddr);
1357 goto done;
1358 }
1359
1360 /*
1361 * The outgoing interface is marked with 'loopback net', so a route
1362 * to ourselves is here.
1363 * Try to find the interface of the destination address and then
1364 * take the address from there. That interface is not necessarily
1365 * a loopback interface.
1366 * In case of jails, check that it is an address of the jail
1367 * and if we cannot find, fall back to the 'default' jail address.
1368 */
1369 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1370 struct in_ifaddr *ia;
1371
1372 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1373 inp->inp_socket->so_fibnum));
1374 if (ia == NULL)
1375 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1376 inp->inp_socket->so_fibnum));
1377 if (ia == NULL)
1378 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1379
1380 if (!prison_flag(cred, PR_IP4)) {
1381 if (ia == NULL) {
1382 error = ENETUNREACH;
1383 goto done;
1384 }
1385 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1386 goto done;
1387 }
1388
1389 /* Jailed. */
1390 if (ia != NULL) {
1391 struct ifnet *ifp;
1392
1393 ifp = ia->ia_ifp;
1394 ia = NULL;
1395 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1396 sa = ifa->ifa_addr;
1397 if (sa->sa_family != AF_INET)
1398 continue;
1399 sin = (struct sockaddr_in *)sa;
1400 if (prison_check_ip4(cred,
1401 &sin->sin_addr) == 0) {
1402 ia = (struct in_ifaddr *)ifa;
1403 break;
1404 }
1405 }
1406 if (ia != NULL) {
1407 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1408 goto done;
1409 }
1410 }
1411
1412 /* 3. As a last resort return the 'default' jail address. */
1413 error = prison_get_ip4(cred, laddr);
1414 goto done;
1415 }
1416
1417 done:
1418 if (error == 0 && laddr->s_addr == INADDR_ANY)
1419 return (EHOSTUNREACH);
1420 return (error);
1421 }
1422
1423 void
in_pcbdisconnect(struct inpcb * inp)1424 in_pcbdisconnect(struct inpcb *inp)
1425 {
1426
1427 INP_WLOCK_ASSERT(inp);
1428 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1429 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1430 ("%s: inp %p was already disconnected", __func__, inp));
1431
1432 in_pcbremhash_locked(inp);
1433
1434 /* See the comment in in_pcbinshash(). */
1435 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1436 inp->inp_laddr.s_addr = INADDR_ANY;
1437 inp->inp_faddr.s_addr = INADDR_ANY;
1438 inp->inp_fport = 0;
1439 }
1440 #endif /* INET */
1441
1442 void
in_pcblisten(struct inpcb * inp)1443 in_pcblisten(struct inpcb *inp)
1444 {
1445 struct inpcblbgroup *grp;
1446
1447 INP_WLOCK_ASSERT(inp);
1448
1449 if ((inp->inp_flags & INP_INLBGROUP) != 0) {
1450 struct inpcbinfo *pcbinfo;
1451
1452 pcbinfo = inp->inp_pcbinfo;
1453 INP_HASH_WLOCK(pcbinfo);
1454 grp = in_pcblbgroup_find(inp);
1455 LIST_REMOVE(inp, inp_lbgroup_list);
1456 grp->il_pendcnt--;
1457 in_pcblbgroup_insert(grp, inp);
1458 INP_HASH_WUNLOCK(pcbinfo);
1459 }
1460 }
1461
1462 /*
1463 * inpcb hash lookups are protected by SMR section.
1464 *
1465 * Once desired pcb has been found, switching from SMR section to a pcb
1466 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1467 * here because SMR is a critical section.
1468 * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1469 */
1470 void
inp_lock(struct inpcb * inp,const inp_lookup_t lock)1471 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1472 {
1473
1474 lock == INPLOOKUP_RLOCKPCB ?
1475 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1476 }
1477
1478 void
inp_unlock(struct inpcb * inp,const inp_lookup_t lock)1479 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1480 {
1481
1482 lock == INPLOOKUP_RLOCKPCB ?
1483 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1484 }
1485
1486 int
inp_trylock(struct inpcb * inp,const inp_lookup_t lock)1487 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1488 {
1489
1490 return (lock == INPLOOKUP_RLOCKPCB ?
1491 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1492 }
1493
1494 static inline bool
_inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock,const int ignflags)1495 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1496 {
1497
1498 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1499 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1500
1501 if (__predict_true(inp_trylock(inp, lock))) {
1502 if (__predict_false(inp->inp_flags & ignflags)) {
1503 smr_exit(inp->inp_pcbinfo->ipi_smr);
1504 inp_unlock(inp, lock);
1505 return (false);
1506 }
1507 smr_exit(inp->inp_pcbinfo->ipi_smr);
1508 return (true);
1509 }
1510
1511 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1512 smr_exit(inp->inp_pcbinfo->ipi_smr);
1513 inp_lock(inp, lock);
1514 if (__predict_false(in_pcbrele(inp, lock)))
1515 return (false);
1516 /*
1517 * inp acquired through refcount & lock for sure didn't went
1518 * through uma_zfree(). However, it may have already went
1519 * through in_pcbfree() and has another reference, that
1520 * prevented its release by our in_pcbrele().
1521 */
1522 if (__predict_false(inp->inp_flags & ignflags)) {
1523 inp_unlock(inp, lock);
1524 return (false);
1525 }
1526 return (true);
1527 } else {
1528 smr_exit(inp->inp_pcbinfo->ipi_smr);
1529 return (false);
1530 }
1531 }
1532
1533 bool
inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock)1534 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1535 {
1536
1537 /*
1538 * in_pcblookup() family of functions ignore not only freed entries,
1539 * that may be found due to lockless access to the hash, but dropped
1540 * entries, too.
1541 */
1542 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1543 }
1544
1545 /*
1546 * inp_next() - inpcb hash/list traversal iterator
1547 *
1548 * Requires initialized struct inpcb_iterator for context.
1549 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1550 *
1551 * - Iterator can have either write-lock or read-lock semantics, that can not
1552 * be changed later.
1553 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1554 * a single hash slot. Note: only rip_input() does the latter.
1555 * - Iterator may have optional bool matching function. The matching function
1556 * will be executed for each inpcb in the SMR context, so it can not acquire
1557 * locks and can safely access only immutable fields of inpcb.
1558 *
1559 * A fresh initialized iterator has NULL inpcb in its context and that
1560 * means that inp_next() call would return the very first inpcb on the list
1561 * locked with desired semantic. In all following calls the context pointer
1562 * shall hold the current inpcb pointer. The KPI user is not supposed to
1563 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL
1564 * and write NULL to its context. After end of traversal an iterator can be
1565 * reused.
1566 *
1567 * List traversals have the following features/constraints:
1568 * - New entries won't be seen, as they are always added to the head of a list.
1569 * - Removed entries won't stop traversal as long as they are not added to
1570 * a different list. This is violated by in_pcbrehash().
1571 */
1572 #define II_LIST_FIRST(ipi, hash) \
1573 (((hash) == INP_ALL_LIST) ? \
1574 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \
1575 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1576 #define II_LIST_NEXT(inp, hash) \
1577 (((hash) == INP_ALL_LIST) ? \
1578 CK_LIST_NEXT((inp), inp_list) : \
1579 CK_LIST_NEXT((inp), inp_hash_exact))
1580 #define II_LOCK_ASSERT(inp, lock) \
1581 rw_assert(&(inp)->inp_lock, \
1582 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED )
1583 struct inpcb *
inp_next(struct inpcb_iterator * ii)1584 inp_next(struct inpcb_iterator *ii)
1585 {
1586 const struct inpcbinfo *ipi = ii->ipi;
1587 inp_match_t *match = ii->match;
1588 void *ctx = ii->ctx;
1589 inp_lookup_t lock = ii->lock;
1590 int hash = ii->hash;
1591 struct inpcb *inp;
1592
1593 if (ii->inp == NULL) { /* First call. */
1594 smr_enter(ipi->ipi_smr);
1595 /* This is unrolled CK_LIST_FOREACH(). */
1596 for (inp = II_LIST_FIRST(ipi, hash);
1597 inp != NULL;
1598 inp = II_LIST_NEXT(inp, hash)) {
1599 if (match != NULL && (match)(inp, ctx) == false)
1600 continue;
1601 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1602 break;
1603 else {
1604 smr_enter(ipi->ipi_smr);
1605 MPASS(inp != II_LIST_FIRST(ipi, hash));
1606 inp = II_LIST_FIRST(ipi, hash);
1607 if (inp == NULL)
1608 break;
1609 }
1610 }
1611
1612 if (inp == NULL)
1613 smr_exit(ipi->ipi_smr);
1614 else
1615 ii->inp = inp;
1616
1617 return (inp);
1618 }
1619
1620 /* Not a first call. */
1621 smr_enter(ipi->ipi_smr);
1622 restart:
1623 inp = ii->inp;
1624 II_LOCK_ASSERT(inp, lock);
1625 next:
1626 inp = II_LIST_NEXT(inp, hash);
1627 if (inp == NULL) {
1628 smr_exit(ipi->ipi_smr);
1629 goto found;
1630 }
1631
1632 if (match != NULL && (match)(inp, ctx) == false)
1633 goto next;
1634
1635 if (__predict_true(inp_trylock(inp, lock))) {
1636 if (__predict_false(inp->inp_flags & INP_FREED)) {
1637 /*
1638 * Entries are never inserted in middle of a list, thus
1639 * as long as we are in SMR, we can continue traversal.
1640 * Jump to 'restart' should yield in the same result,
1641 * but could produce unnecessary looping. Could this
1642 * looping be unbound?
1643 */
1644 inp_unlock(inp, lock);
1645 goto next;
1646 } else {
1647 smr_exit(ipi->ipi_smr);
1648 goto found;
1649 }
1650 }
1651
1652 /*
1653 * Can't obtain lock immediately, thus going hard. Once we exit the
1654 * SMR section we can no longer jump to 'next', and our only stable
1655 * anchoring point is ii->inp, which we keep locked for this case, so
1656 * we jump to 'restart'.
1657 */
1658 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1659 smr_exit(ipi->ipi_smr);
1660 inp_lock(inp, lock);
1661 if (__predict_false(in_pcbrele(inp, lock))) {
1662 smr_enter(ipi->ipi_smr);
1663 goto restart;
1664 }
1665 /*
1666 * See comment in inp_smr_lock().
1667 */
1668 if (__predict_false(inp->inp_flags & INP_FREED)) {
1669 inp_unlock(inp, lock);
1670 smr_enter(ipi->ipi_smr);
1671 goto restart;
1672 }
1673 } else
1674 goto next;
1675
1676 found:
1677 inp_unlock(ii->inp, lock);
1678 ii->inp = inp;
1679
1680 return (ii->inp);
1681 }
1682
1683 /*
1684 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1685 * stability of an inpcb pointer despite the inpcb lock being released or
1686 * SMR section exited.
1687 *
1688 * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1689 */
1690 void
in_pcbref(struct inpcb * inp)1691 in_pcbref(struct inpcb *inp)
1692 {
1693 u_int old __diagused;
1694
1695 old = refcount_acquire(&inp->inp_refcount);
1696 KASSERT(old > 0, ("%s: refcount 0", __func__));
1697 }
1698
1699 /*
1700 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1701 * freeing the pcb, if the reference was very last.
1702 */
1703 bool
in_pcbrele_rlocked(struct inpcb * inp)1704 in_pcbrele_rlocked(struct inpcb *inp)
1705 {
1706
1707 INP_RLOCK_ASSERT(inp);
1708
1709 if (!refcount_release(&inp->inp_refcount))
1710 return (false);
1711
1712 MPASS(inp->inp_flags & INP_FREED);
1713 MPASS(inp->inp_socket == NULL);
1714 crfree(inp->inp_cred);
1715 #ifdef INVARIANTS
1716 inp->inp_cred = NULL;
1717 #endif
1718 INP_RUNLOCK(inp);
1719 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1720 return (true);
1721 }
1722
1723 bool
in_pcbrele_wlocked(struct inpcb * inp)1724 in_pcbrele_wlocked(struct inpcb *inp)
1725 {
1726
1727 INP_WLOCK_ASSERT(inp);
1728
1729 if (!refcount_release(&inp->inp_refcount))
1730 return (false);
1731
1732 MPASS(inp->inp_flags & INP_FREED);
1733 MPASS(inp->inp_socket == NULL);
1734 crfree(inp->inp_cred);
1735 #ifdef INVARIANTS
1736 inp->inp_cred = NULL;
1737 #endif
1738 INP_WUNLOCK(inp);
1739 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1740 return (true);
1741 }
1742
1743 bool
in_pcbrele(struct inpcb * inp,const inp_lookup_t lock)1744 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1745 {
1746
1747 return (lock == INPLOOKUP_RLOCKPCB ?
1748 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1749 }
1750
1751 /*
1752 * Unconditionally schedule an inpcb to be freed by decrementing its
1753 * reference count, which should occur only after the inpcb has been detached
1754 * from its socket. If another thread holds a temporary reference (acquired
1755 * using in_pcbref()) then the free is deferred until that reference is
1756 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1757 * Almost all work, including removal from global lists, is done in this
1758 * context, where the pcbinfo lock is held.
1759 */
1760 void
in_pcbfree(struct inpcb * inp)1761 in_pcbfree(struct inpcb *inp)
1762 {
1763 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1764 #ifdef INET
1765 struct ip_moptions *imo;
1766 #endif
1767 #ifdef INET6
1768 struct ip6_moptions *im6o;
1769 #endif
1770
1771 INP_WLOCK_ASSERT(inp);
1772 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1773 KASSERT((inp->inp_flags & INP_FREED) == 0,
1774 ("%s: called twice for pcb %p", __func__, inp));
1775
1776 /*
1777 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1778 * from the hash without acquiring inpcb lock, they rely on the hash
1779 * lock, thus in_pcbremhash() should be the first action.
1780 */
1781 if (inp->inp_flags & INP_INHASHLIST)
1782 in_pcbremhash(inp);
1783 INP_INFO_WLOCK(pcbinfo);
1784 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1785 pcbinfo->ipi_count--;
1786 CK_LIST_REMOVE(inp, inp_list);
1787 INP_INFO_WUNLOCK(pcbinfo);
1788
1789 #ifdef RATELIMIT
1790 if (inp->inp_snd_tag != NULL)
1791 in_pcbdetach_txrtlmt(inp);
1792 #endif
1793 inp->inp_flags |= INP_FREED;
1794 inp->inp_socket->so_pcb = NULL;
1795 inp->inp_socket = NULL;
1796
1797 RO_INVALIDATE_CACHE(&inp->inp_route);
1798 #ifdef MAC
1799 mac_inpcb_destroy(inp);
1800 #endif
1801 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1802 if (inp->inp_sp != NULL)
1803 ipsec_delete_pcbpolicy(inp);
1804 #endif
1805 #ifdef INET
1806 if (inp->inp_options)
1807 (void)m_free(inp->inp_options);
1808 DEBUG_POISON_POINTER(inp->inp_options);
1809 imo = inp->inp_moptions;
1810 DEBUG_POISON_POINTER(inp->inp_moptions);
1811 #endif
1812 #ifdef INET6
1813 if (inp->inp_vflag & INP_IPV6PROTO) {
1814 ip6_freepcbopts(inp->in6p_outputopts);
1815 DEBUG_POISON_POINTER(inp->in6p_outputopts);
1816 im6o = inp->in6p_moptions;
1817 DEBUG_POISON_POINTER(inp->in6p_moptions);
1818 } else
1819 im6o = NULL;
1820 #endif
1821
1822 if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1823 INP_WUNLOCK(inp);
1824 }
1825 #ifdef INET6
1826 ip6_freemoptions(im6o);
1827 #endif
1828 #ifdef INET
1829 inp_freemoptions(imo);
1830 #endif
1831 }
1832
1833 /*
1834 * Different protocols initialize their inpcbs differently - giving
1835 * different name to the lock. But they all are disposed the same.
1836 */
1837 static void
inpcb_fini(void * mem,int size)1838 inpcb_fini(void *mem, int size)
1839 {
1840 struct inpcb *inp = mem;
1841
1842 INP_LOCK_DESTROY(inp);
1843 }
1844
1845 /*
1846 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1847 * port reservation, and preventing it from being returned by inpcb lookups.
1848 *
1849 * It is used by TCP to mark an inpcb as unused and avoid future packet
1850 * delivery or event notification when a socket remains open but TCP has
1851 * closed. This might occur as a result of a shutdown()-initiated TCP close
1852 * or a RST on the wire, and allows the port binding to be reused while still
1853 * maintaining the invariant that so_pcb always points to a valid inpcb until
1854 * in_pcbdetach().
1855 *
1856 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1857 * in_pcbpurgeif0()?
1858 */
1859 void
in_pcbdrop(struct inpcb * inp)1860 in_pcbdrop(struct inpcb *inp)
1861 {
1862
1863 INP_WLOCK_ASSERT(inp);
1864
1865 inp->inp_flags |= INP_DROPPED;
1866 if (inp->inp_flags & INP_INHASHLIST)
1867 in_pcbremhash(inp);
1868 }
1869
1870 #ifdef INET
1871 /*
1872 * Common routines to return the socket addresses associated with inpcbs.
1873 */
1874 int
in_getsockaddr(struct socket * so,struct sockaddr * sa)1875 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1876 {
1877 struct inpcb *inp;
1878
1879 inp = sotoinpcb(so);
1880 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1881
1882 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1883 .sin_len = sizeof(struct sockaddr_in),
1884 .sin_family = AF_INET,
1885 .sin_port = inp->inp_lport,
1886 .sin_addr = inp->inp_laddr,
1887 };
1888
1889 return (0);
1890 }
1891
1892 int
in_getpeeraddr(struct socket * so,struct sockaddr * sa)1893 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1894 {
1895 struct inpcb *inp;
1896
1897 inp = sotoinpcb(so);
1898 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1899
1900 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1901 .sin_len = sizeof(struct sockaddr_in),
1902 .sin_family = AF_INET,
1903 .sin_port = inp->inp_fport,
1904 .sin_addr = inp->inp_faddr,
1905 };
1906
1907 return (0);
1908 }
1909
1910 static bool
inp_v4_multi_match(const struct inpcb * inp,void * v __unused)1911 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1912 {
1913
1914 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1915 return (true);
1916 else
1917 return (false);
1918 }
1919
1920 void
in_pcbpurgeif0(struct inpcbinfo * pcbinfo,struct ifnet * ifp)1921 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1922 {
1923 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1924 inp_v4_multi_match, NULL);
1925 struct inpcb *inp;
1926 struct in_multi *inm;
1927 struct in_mfilter *imf;
1928 struct ip_moptions *imo;
1929
1930 IN_MULTI_LOCK_ASSERT();
1931
1932 while ((inp = inp_next(&inpi)) != NULL) {
1933 INP_WLOCK_ASSERT(inp);
1934
1935 imo = inp->inp_moptions;
1936 /*
1937 * Unselect the outgoing interface if it is being
1938 * detached.
1939 */
1940 if (imo->imo_multicast_ifp == ifp)
1941 imo->imo_multicast_ifp = NULL;
1942
1943 /*
1944 * Drop multicast group membership if we joined
1945 * through the interface being detached.
1946 *
1947 * XXX This can all be deferred to an epoch_call
1948 */
1949 restart:
1950 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1951 if ((inm = imf->imf_inm) == NULL)
1952 continue;
1953 if (inm->inm_ifp != ifp)
1954 continue;
1955 ip_mfilter_remove(&imo->imo_head, imf);
1956 in_leavegroup_locked(inm, NULL);
1957 ip_mfilter_free(imf);
1958 goto restart;
1959 }
1960 }
1961 }
1962
1963 /*
1964 * Lookup a PCB based on the local address and port. Caller must hold the
1965 * hash lock. No inpcb locks or references are acquired.
1966 */
1967 #define INP_LOOKUP_MAPPED_PCB_COST 3
1968 struct inpcb *
in_pcblookup_local(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,int lookupflags,struct ucred * cred)1969 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1970 u_short lport, int fib, int lookupflags, struct ucred *cred)
1971 {
1972 struct inpcb *inp;
1973 #ifdef INET6
1974 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1975 #else
1976 int matchwild = 3;
1977 #endif
1978 int wildcard;
1979
1980 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1981 ("%s: invalid lookup flags %d", __func__, lookupflags));
1982 KASSERT(fib == RT_ALL_FIBS || (fib >= 0 && fib < V_rt_numfibs),
1983 ("%s: invalid fib %d", __func__, fib));
1984
1985 INP_HASH_LOCK_ASSERT(pcbinfo);
1986
1987 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1988 struct inpcbhead *head;
1989 /*
1990 * Look for an unconnected (wildcard foreign addr) PCB that
1991 * matches the local address and port we're looking for.
1992 */
1993 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1994 pcbinfo->ipi_hashmask)];
1995 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1996 #ifdef INET6
1997 /* XXX inp locking */
1998 if ((inp->inp_vflag & INP_IPV4) == 0)
1999 continue;
2000 #endif
2001 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2002 inp->inp_laddr.s_addr == laddr.s_addr &&
2003 inp->inp_lport == lport && (fib == RT_ALL_FIBS ||
2004 inp->inp_inc.inc_fibnum == fib)) {
2005 /*
2006 * Found?
2007 */
2008 if (prison_equal_ip4(cred->cr_prison,
2009 inp->inp_cred->cr_prison))
2010 return (inp);
2011 }
2012 }
2013 /*
2014 * Not found.
2015 */
2016 return (NULL);
2017 } else {
2018 struct inpcbhead *porthash;
2019 struct inpcb *match = NULL;
2020
2021 /*
2022 * Port is in use by one or more PCBs. Look for best
2023 * fit.
2024 */
2025 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2026 pcbinfo->ipi_porthashmask)];
2027 CK_LIST_FOREACH(inp, porthash, inp_portlist) {
2028 if (inp->inp_lport != lport)
2029 continue;
2030 if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2031 cred->cr_prison))
2032 continue;
2033 if (fib != RT_ALL_FIBS &&
2034 inp->inp_inc.inc_fibnum != fib)
2035 continue;
2036 wildcard = 0;
2037 #ifdef INET6
2038 /* XXX inp locking */
2039 if ((inp->inp_vflag & INP_IPV4) == 0)
2040 continue;
2041 /*
2042 * We never select the PCB that has INP_IPV6 flag and
2043 * is bound to :: if we have another PCB which is bound
2044 * to 0.0.0.0. If a PCB has the INP_IPV6 flag, then we
2045 * set its cost higher than IPv4 only PCBs.
2046 *
2047 * Note that the case only happens when a socket is
2048 * bound to ::, under the condition that the use of the
2049 * mapped address is allowed.
2050 */
2051 if ((inp->inp_vflag & INP_IPV6) != 0)
2052 wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2053 #endif
2054 if (inp->inp_faddr.s_addr != INADDR_ANY)
2055 wildcard++;
2056 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2057 if (laddr.s_addr == INADDR_ANY)
2058 wildcard++;
2059 else if (inp->inp_laddr.s_addr != laddr.s_addr)
2060 continue;
2061 } else {
2062 if (laddr.s_addr != INADDR_ANY)
2063 wildcard++;
2064 }
2065 if (wildcard < matchwild) {
2066 match = inp;
2067 matchwild = wildcard;
2068 if (matchwild == 0)
2069 break;
2070 }
2071 }
2072 return (match);
2073 }
2074 }
2075 #undef INP_LOOKUP_MAPPED_PCB_COST
2076
2077 static bool
in_pcblookup_lb_match(const struct inpcblbgroup * grp,int domain,int fib)2078 in_pcblookup_lb_match(const struct inpcblbgroup *grp, int domain, int fib)
2079 {
2080 return ((domain == M_NODOM || domain == grp->il_numa_domain) &&
2081 (fib == RT_ALL_FIBS || fib == grp->il_fibnum));
2082 }
2083
2084 static struct inpcb *
in_pcblookup_lbgroup(const struct inpcbinfo * pcbinfo,const struct in_addr * faddr,uint16_t fport,const struct in_addr * laddr,uint16_t lport,int domain,int fib)2085 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2086 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2087 uint16_t lport, int domain, int fib)
2088 {
2089 const struct inpcblbgrouphead *hdr;
2090 struct inpcblbgroup *grp;
2091 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2092 struct inpcb *inp;
2093 u_int count;
2094
2095 INP_HASH_LOCK_ASSERT(pcbinfo);
2096 NET_EPOCH_ASSERT();
2097
2098 hdr = &pcbinfo->ipi_lbgrouphashbase[
2099 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2100
2101 /*
2102 * Search for an LB group match based on the following criteria:
2103 * - prefer jailed groups to non-jailed groups
2104 * - prefer exact source address matches to wildcard matches
2105 * - prefer groups bound to the specified NUMA domain
2106 */
2107 jail_exact = jail_wild = local_exact = local_wild = NULL;
2108 CK_LIST_FOREACH(grp, hdr, il_list) {
2109 bool injail;
2110
2111 #ifdef INET6
2112 if (!(grp->il_vflag & INP_IPV4))
2113 continue;
2114 #endif
2115 if (grp->il_lport != lport)
2116 continue;
2117
2118 injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2119 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2120 laddr) != 0)
2121 continue;
2122
2123 if (grp->il_laddr.s_addr == laddr->s_addr) {
2124 if (injail) {
2125 jail_exact = grp;
2126 if (in_pcblookup_lb_match(grp, domain, fib))
2127 /* This is a perfect match. */
2128 goto out;
2129 } else if (local_exact == NULL ||
2130 in_pcblookup_lb_match(grp, domain, fib)) {
2131 local_exact = grp;
2132 }
2133 } else if (grp->il_laddr.s_addr == INADDR_ANY) {
2134 if (injail) {
2135 if (jail_wild == NULL ||
2136 in_pcblookup_lb_match(grp, domain, fib))
2137 jail_wild = grp;
2138 } else if (local_wild == NULL ||
2139 in_pcblookup_lb_match(grp, domain, fib)) {
2140 local_wild = grp;
2141 }
2142 }
2143 }
2144
2145 if (jail_exact != NULL)
2146 grp = jail_exact;
2147 else if (jail_wild != NULL)
2148 grp = jail_wild;
2149 else if (local_exact != NULL)
2150 grp = local_exact;
2151 else
2152 grp = local_wild;
2153 if (grp == NULL)
2154 return (NULL);
2155
2156 out:
2157 /*
2158 * Synchronize with in_pcblbgroup_insert().
2159 */
2160 count = atomic_load_acq_int(&grp->il_inpcnt);
2161 if (count == 0)
2162 return (NULL);
2163 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2164 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2165 return (inp);
2166 }
2167
2168 static bool
in_pcblookup_exact_match(const struct inpcb * inp,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2169 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2170 u_short fport, struct in_addr laddr, u_short lport)
2171 {
2172 #ifdef INET6
2173 /* XXX inp locking */
2174 if ((inp->inp_vflag & INP_IPV4) == 0)
2175 return (false);
2176 #endif
2177 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2178 inp->inp_laddr.s_addr == laddr.s_addr &&
2179 inp->inp_fport == fport &&
2180 inp->inp_lport == lport)
2181 return (true);
2182 return (false);
2183 }
2184
2185 static struct inpcb *
in_pcblookup_hash_exact(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2186 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2187 u_short fport, struct in_addr laddr, u_short lport)
2188 {
2189 struct inpcbhead *head;
2190 struct inpcb *inp;
2191
2192 INP_HASH_LOCK_ASSERT(pcbinfo);
2193
2194 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2195 pcbinfo->ipi_hashmask)];
2196 CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2197 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2198 return (inp);
2199 }
2200 return (NULL);
2201 }
2202
2203 typedef enum {
2204 INPLOOKUP_MATCH_NONE = 0,
2205 INPLOOKUP_MATCH_WILD = 1,
2206 INPLOOKUP_MATCH_LADDR = 2,
2207 } inp_lookup_match_t;
2208
2209 static inp_lookup_match_t
in_pcblookup_wild_match(const struct inpcb * inp,struct in_addr laddr,u_short lport,int fib)2210 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2211 u_short lport, int fib)
2212 {
2213 #ifdef INET6
2214 /* XXX inp locking */
2215 if ((inp->inp_vflag & INP_IPV4) == 0)
2216 return (INPLOOKUP_MATCH_NONE);
2217 #endif
2218 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2219 return (INPLOOKUP_MATCH_NONE);
2220 if (fib != RT_ALL_FIBS && inp->inp_inc.inc_fibnum != fib)
2221 return (INPLOOKUP_MATCH_NONE);
2222 if (inp->inp_laddr.s_addr == INADDR_ANY)
2223 return (INPLOOKUP_MATCH_WILD);
2224 if (inp->inp_laddr.s_addr == laddr.s_addr)
2225 return (INPLOOKUP_MATCH_LADDR);
2226 return (INPLOOKUP_MATCH_NONE);
2227 }
2228
2229 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1)
2230
2231 static struct inpcb *
in_pcblookup_hash_wild_smr(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,const inp_lookup_t lockflags)2232 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2233 u_short lport, int fib, const inp_lookup_t lockflags)
2234 {
2235 struct inpcbhead *head;
2236 struct inpcb *inp;
2237
2238 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2239 ("%s: not in SMR read section", __func__));
2240
2241 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2242 pcbinfo->ipi_hashmask)];
2243 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2244 inp_lookup_match_t match;
2245
2246 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2247 if (match == INPLOOKUP_MATCH_NONE)
2248 continue;
2249
2250 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2251 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2252 if (match != INPLOOKUP_MATCH_NONE &&
2253 prison_check_ip4_locked(inp->inp_cred->cr_prison,
2254 &laddr) == 0)
2255 return (inp);
2256 inp_unlock(inp, lockflags);
2257 }
2258
2259 /*
2260 * The matching socket disappeared out from under us. Fall back
2261 * to a serialized lookup.
2262 */
2263 return (INP_LOOKUP_AGAIN);
2264 }
2265 return (NULL);
2266 }
2267
2268 static struct inpcb *
in_pcblookup_hash_wild_locked(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib)2269 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2270 u_short lport, int fib)
2271 {
2272 struct inpcbhead *head;
2273 struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2274 #ifdef INET6
2275 struct inpcb *local_wild_mapped;
2276 #endif
2277
2278 INP_HASH_LOCK_ASSERT(pcbinfo);
2279
2280 /*
2281 * Order of socket selection - we always prefer jails.
2282 * 1. jailed, non-wild.
2283 * 2. jailed, wild.
2284 * 3. non-jailed, non-wild.
2285 * 4. non-jailed, wild.
2286 */
2287 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2288 pcbinfo->ipi_hashmask)];
2289 local_wild = local_exact = jail_wild = NULL;
2290 #ifdef INET6
2291 local_wild_mapped = NULL;
2292 #endif
2293 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2294 inp_lookup_match_t match;
2295 bool injail;
2296
2297 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2298 if (match == INPLOOKUP_MATCH_NONE)
2299 continue;
2300
2301 injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2302 if (injail) {
2303 if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2304 &laddr) != 0)
2305 continue;
2306 } else {
2307 if (local_exact != NULL)
2308 continue;
2309 }
2310
2311 if (match == INPLOOKUP_MATCH_LADDR) {
2312 if (injail)
2313 return (inp);
2314 local_exact = inp;
2315 } else {
2316 #ifdef INET6
2317 /* XXX inp locking, NULL check */
2318 if (inp->inp_vflag & INP_IPV6PROTO)
2319 local_wild_mapped = inp;
2320 else
2321 #endif
2322 if (injail)
2323 jail_wild = inp;
2324 else
2325 local_wild = inp;
2326 }
2327 }
2328 if (jail_wild != NULL)
2329 return (jail_wild);
2330 if (local_exact != NULL)
2331 return (local_exact);
2332 if (local_wild != NULL)
2333 return (local_wild);
2334 #ifdef INET6
2335 if (local_wild_mapped != NULL)
2336 return (local_wild_mapped);
2337 #endif
2338 return (NULL);
2339 }
2340
2341 /*
2342 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes
2343 * that the caller has either locked the hash list, which usually happens
2344 * for bind(2) operations, or is in SMR section, which happens when sorting
2345 * out incoming packets.
2346 */
2347 static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2348 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2349 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2350 uint8_t numa_domain, int fib)
2351 {
2352 struct inpcb *inp;
2353 const u_short fport = fport_arg, lport = lport_arg;
2354
2355 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD | INPLOOKUP_FIB)) == 0,
2356 ("%s: invalid lookup flags %d", __func__, lookupflags));
2357 KASSERT(faddr.s_addr != INADDR_ANY,
2358 ("%s: invalid foreign address", __func__));
2359 KASSERT(laddr.s_addr != INADDR_ANY,
2360 ("%s: invalid local address", __func__));
2361 INP_HASH_WLOCK_ASSERT(pcbinfo);
2362
2363 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2364 if (inp != NULL)
2365 return (inp);
2366
2367 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2368 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2369 &laddr, lport, numa_domain, fib);
2370 if (inp == NULL) {
2371 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2372 lport, fib);
2373 }
2374 }
2375
2376 return (inp);
2377 }
2378
2379 static struct inpcb *
in_pcblookup_hash(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,uint8_t numa_domain,int fib)2380 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2381 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2382 uint8_t numa_domain, int fib)
2383 {
2384 struct inpcb *inp;
2385 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2386
2387 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2388 ("%s: LOCKPCB not set", __func__));
2389
2390 INP_HASH_WLOCK(pcbinfo);
2391 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2392 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain, fib);
2393 if (inp != NULL && !inp_trylock(inp, lockflags)) {
2394 in_pcbref(inp);
2395 INP_HASH_WUNLOCK(pcbinfo);
2396 inp_lock(inp, lockflags);
2397 if (in_pcbrele(inp, lockflags))
2398 /* XXX-MJ or retry until we get a negative match? */
2399 inp = NULL;
2400 } else {
2401 INP_HASH_WUNLOCK(pcbinfo);
2402 }
2403 return (inp);
2404 }
2405
2406 static struct inpcb *
in_pcblookup_hash_smr(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2407 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2408 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2409 uint8_t numa_domain, int fib)
2410 {
2411 struct inpcb *inp;
2412 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2413 const u_short fport = fport_arg, lport = lport_arg;
2414
2415 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2416 ("%s: invalid lookup flags %d", __func__, lookupflags));
2417 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2418 ("%s: LOCKPCB not set", __func__));
2419
2420 smr_enter(pcbinfo->ipi_smr);
2421 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2422 if (inp != NULL) {
2423 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2424 /*
2425 * Revalidate the 4-tuple, the socket could have been
2426 * disconnected.
2427 */
2428 if (__predict_true(in_pcblookup_exact_match(inp,
2429 faddr, fport, laddr, lport)))
2430 return (inp);
2431 inp_unlock(inp, lockflags);
2432 }
2433
2434 /*
2435 * We failed to lock the inpcb, or its connection state changed
2436 * out from under us. Fall back to a precise search.
2437 */
2438 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2439 lookupflags, numa_domain, fib));
2440 }
2441
2442 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2443 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2444 &laddr, lport, numa_domain, fib);
2445 if (inp != NULL) {
2446 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2447 if (__predict_true(in_pcblookup_wild_match(inp,
2448 laddr, lport, fib) != INPLOOKUP_MATCH_NONE))
2449 return (inp);
2450 inp_unlock(inp, lockflags);
2451 }
2452 inp = INP_LOOKUP_AGAIN;
2453 } else {
2454 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2455 fib, lockflags);
2456 }
2457 if (inp == INP_LOOKUP_AGAIN) {
2458 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2459 lport, lookupflags, numa_domain, fib));
2460 }
2461 }
2462
2463 if (inp == NULL)
2464 smr_exit(pcbinfo->ipi_smr);
2465
2466 return (inp);
2467 }
2468
2469 /*
2470 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2471 * from which a pre-calculated hash value may be extracted.
2472 */
2473 struct inpcb *
in_pcblookup(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp)2474 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2475 struct in_addr laddr, u_int lport, int lookupflags,
2476 struct ifnet *ifp)
2477 {
2478 int fib;
2479
2480 fib = (lookupflags & INPLOOKUP_FIB) ? if_getfib(ifp) : RT_ALL_FIBS;
2481 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2482 lookupflags, M_NODOM, fib));
2483 }
2484
2485 struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp __unused,struct mbuf * m)2486 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2487 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2488 struct ifnet *ifp __unused, struct mbuf *m)
2489 {
2490 int fib;
2491
2492 M_ASSERTPKTHDR(m);
2493 fib = (lookupflags & INPLOOKUP_FIB) ? M_GETFIB(m) : RT_ALL_FIBS;
2494 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2495 lookupflags, m->m_pkthdr.numa_domain, fib));
2496 }
2497 #endif /* INET */
2498
2499 static bool
in_pcbjailed(const struct inpcb * inp,unsigned int flag)2500 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2501 {
2502 return (prison_flag(inp->inp_cred, flag) != 0);
2503 }
2504
2505 /*
2506 * Insert the PCB into a hash chain using ordering rules which ensure that
2507 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2508 *
2509 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2510 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs
2511 * always appear last no matter whether they are jailed.
2512 */
2513 static void
_in_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2514 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2515 {
2516 struct inpcb *last;
2517 bool bound, injail;
2518
2519 INP_LOCK_ASSERT(inp);
2520 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2521
2522 last = NULL;
2523 bound = inp->inp_laddr.s_addr != INADDR_ANY;
2524 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2525 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2526 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2527 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2528 return;
2529 }
2530 }
2531 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2532 return;
2533 }
2534
2535 injail = in_pcbjailed(inp, PR_IP4);
2536 if (!injail) {
2537 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2538 if (!in_pcbjailed(last, PR_IP4))
2539 break;
2540 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2541 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2542 return;
2543 }
2544 }
2545 } else if (!CK_LIST_EMPTY(pcbhash) &&
2546 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2547 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2548 return;
2549 }
2550 if (!bound) {
2551 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2552 if (last->inp_laddr.s_addr == INADDR_ANY)
2553 break;
2554 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2555 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2556 return;
2557 }
2558 }
2559 }
2560 if (last == NULL)
2561 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2562 else
2563 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2564 }
2565
2566 #ifdef INET6
2567 /*
2568 * See the comment above _in_pcbinshash_wild().
2569 */
2570 static void
_in6_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2571 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2572 {
2573 struct inpcb *last;
2574 bool bound, injail;
2575
2576 INP_LOCK_ASSERT(inp);
2577 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2578
2579 last = NULL;
2580 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2581 injail = in_pcbjailed(inp, PR_IP6);
2582 if (!injail) {
2583 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2584 if (!in_pcbjailed(last, PR_IP6))
2585 break;
2586 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2587 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2588 return;
2589 }
2590 }
2591 } else if (!CK_LIST_EMPTY(pcbhash) &&
2592 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2593 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2594 return;
2595 }
2596 if (!bound) {
2597 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2598 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2599 break;
2600 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2601 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2602 return;
2603 }
2604 }
2605 }
2606 if (last == NULL)
2607 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2608 else
2609 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2610 }
2611 #endif
2612
2613 /*
2614 * Insert PCB onto various hash lists.
2615 *
2616 * With normal sockets this function shall not fail, so it could return void.
2617 * But for SO_REUSEPORT_LB it may need to allocate memory with locks held,
2618 * that's the only condition when it can fail.
2619 */
2620 int
in_pcbinshash(struct inpcb * inp)2621 in_pcbinshash(struct inpcb *inp)
2622 {
2623 struct inpcbhead *pcbhash, *pcbporthash;
2624 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2625 uint32_t hash;
2626 bool connected;
2627
2628 INP_WLOCK_ASSERT(inp);
2629 INP_HASH_WLOCK_ASSERT(pcbinfo);
2630 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2631 ("in_pcbinshash: INP_INHASHLIST"));
2632
2633 #ifdef INET6
2634 if (inp->inp_vflag & INP_IPV6) {
2635 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2636 inp->inp_fport, pcbinfo->ipi_hashmask);
2637 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2638 } else
2639 #endif
2640 {
2641 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2642 inp->inp_fport, pcbinfo->ipi_hashmask);
2643 connected = !in_nullhost(inp->inp_faddr);
2644 }
2645
2646 if (connected)
2647 pcbhash = &pcbinfo->ipi_hash_exact[hash];
2648 else
2649 pcbhash = &pcbinfo->ipi_hash_wild[hash];
2650
2651 pcbporthash = &pcbinfo->ipi_porthashbase[
2652 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2653
2654 /*
2655 * Add entry to load balance group.
2656 * Only do this if SO_REUSEPORT_LB is set.
2657 */
2658 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2659 int error = in_pcbinslbgrouphash(inp, M_NODOM);
2660 if (error != 0)
2661 return (error);
2662 }
2663
2664 /*
2665 * The PCB may have been disconnected in the past. Before we can safely
2666 * make it visible in the hash table, we must wait for all readers which
2667 * may be traversing this PCB to finish.
2668 */
2669 if (inp->inp_smr != SMR_SEQ_INVALID) {
2670 smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2671 inp->inp_smr = SMR_SEQ_INVALID;
2672 }
2673
2674 if (connected)
2675 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2676 else {
2677 #ifdef INET6
2678 if ((inp->inp_vflag & INP_IPV6) != 0)
2679 _in6_pcbinshash_wild(pcbhash, inp);
2680 else
2681 #endif
2682 _in_pcbinshash_wild(pcbhash, inp);
2683 }
2684 CK_LIST_INSERT_HEAD(pcbporthash, inp, inp_portlist);
2685 inp->inp_flags |= INP_INHASHLIST;
2686
2687 return (0);
2688 }
2689
2690 void
in_pcbremhash_locked(struct inpcb * inp)2691 in_pcbremhash_locked(struct inpcb *inp)
2692 {
2693
2694 INP_WLOCK_ASSERT(inp);
2695 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2696 MPASS(inp->inp_flags & INP_INHASHLIST);
2697
2698 if ((inp->inp_flags & INP_INLBGROUP) != 0)
2699 in_pcbremlbgrouphash(inp);
2700 #ifdef INET6
2701 if (inp->inp_vflag & INP_IPV6) {
2702 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2703 CK_LIST_REMOVE(inp, inp_hash_wild);
2704 else
2705 CK_LIST_REMOVE(inp, inp_hash_exact);
2706 } else
2707 #endif
2708 {
2709 if (in_nullhost(inp->inp_faddr))
2710 CK_LIST_REMOVE(inp, inp_hash_wild);
2711 else
2712 CK_LIST_REMOVE(inp, inp_hash_exact);
2713 }
2714 CK_LIST_REMOVE(inp, inp_portlist);
2715 inp->inp_flags &= ~INP_INHASHLIST;
2716 }
2717
2718 static void
in_pcbremhash(struct inpcb * inp)2719 in_pcbremhash(struct inpcb *inp)
2720 {
2721 INP_HASH_WLOCK(inp->inp_pcbinfo);
2722 in_pcbremhash_locked(inp);
2723 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2724 }
2725
2726 /*
2727 * Move PCB to the proper hash bucket when { faddr, fport } have been
2728 * changed. NOTE: This does not handle the case of the lport changing (the
2729 * hashed port list would have to be updated as well), so the lport must
2730 * not change after in_pcbinshash() has been called.
2731 */
2732 void
in_pcbrehash(struct inpcb * inp)2733 in_pcbrehash(struct inpcb *inp)
2734 {
2735 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2736 struct inpcbhead *head;
2737 uint32_t hash;
2738 bool connected;
2739
2740 INP_WLOCK_ASSERT(inp);
2741 INP_HASH_WLOCK_ASSERT(pcbinfo);
2742 KASSERT(inp->inp_flags & INP_INHASHLIST,
2743 ("%s: !INP_INHASHLIST", __func__));
2744 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2745 ("%s: inp was disconnected", __func__));
2746
2747 #ifdef INET6
2748 if (inp->inp_vflag & INP_IPV6) {
2749 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2750 inp->inp_fport, pcbinfo->ipi_hashmask);
2751 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2752 } else
2753 #endif
2754 {
2755 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2756 inp->inp_fport, pcbinfo->ipi_hashmask);
2757 connected = !in_nullhost(inp->inp_faddr);
2758 }
2759
2760 /*
2761 * When rehashing, the caller must ensure that either the new or the old
2762 * foreign address was unspecified.
2763 */
2764 if (connected)
2765 CK_LIST_REMOVE(inp, inp_hash_wild);
2766 else
2767 CK_LIST_REMOVE(inp, inp_hash_exact);
2768
2769 if (connected) {
2770 head = &pcbinfo->ipi_hash_exact[hash];
2771 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2772 } else {
2773 head = &pcbinfo->ipi_hash_wild[hash];
2774 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2775 }
2776 }
2777
2778 /*
2779 * Check for alternatives when higher level complains
2780 * about service problems. For now, invalidate cached
2781 * routing information. If the route was created dynamically
2782 * (by a redirect), time to try a default gateway again.
2783 */
2784 void
in_losing(struct inpcb * inp)2785 in_losing(struct inpcb *inp)
2786 {
2787
2788 RO_INVALIDATE_CACHE(&inp->inp_route);
2789 return;
2790 }
2791
2792 /*
2793 * A set label operation has occurred at the socket layer, propagate the
2794 * label change into the in_pcb for the socket.
2795 */
2796 void
in_pcbsosetlabel(struct socket * so)2797 in_pcbsosetlabel(struct socket *so)
2798 {
2799 #ifdef MAC
2800 struct inpcb *inp;
2801
2802 inp = sotoinpcb(so);
2803 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2804
2805 INP_WLOCK(inp);
2806 SOCK_LOCK(so);
2807 mac_inpcb_sosetlabel(so, inp);
2808 SOCK_UNLOCK(so);
2809 INP_WUNLOCK(inp);
2810 #endif
2811 }
2812
2813 void
inp_wlock(struct inpcb * inp)2814 inp_wlock(struct inpcb *inp)
2815 {
2816
2817 INP_WLOCK(inp);
2818 }
2819
2820 void
inp_wunlock(struct inpcb * inp)2821 inp_wunlock(struct inpcb *inp)
2822 {
2823
2824 INP_WUNLOCK(inp);
2825 }
2826
2827 void
inp_rlock(struct inpcb * inp)2828 inp_rlock(struct inpcb *inp)
2829 {
2830
2831 INP_RLOCK(inp);
2832 }
2833
2834 void
inp_runlock(struct inpcb * inp)2835 inp_runlock(struct inpcb *inp)
2836 {
2837
2838 INP_RUNLOCK(inp);
2839 }
2840
2841 #ifdef INVARIANT_SUPPORT
2842 void
inp_lock_assert(struct inpcb * inp)2843 inp_lock_assert(struct inpcb *inp)
2844 {
2845
2846 INP_WLOCK_ASSERT(inp);
2847 }
2848
2849 void
inp_unlock_assert(struct inpcb * inp)2850 inp_unlock_assert(struct inpcb *inp)
2851 {
2852
2853 INP_UNLOCK_ASSERT(inp);
2854 }
2855 #endif
2856
2857 void
inp_apply_all(struct inpcbinfo * pcbinfo,void (* func)(struct inpcb *,void *),void * arg)2858 inp_apply_all(struct inpcbinfo *pcbinfo,
2859 void (*func)(struct inpcb *, void *), void *arg)
2860 {
2861 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2862 INPLOOKUP_WLOCKPCB);
2863 struct inpcb *inp;
2864
2865 while ((inp = inp_next(&inpi)) != NULL)
2866 func(inp, arg);
2867 }
2868
2869 struct socket *
inp_inpcbtosocket(struct inpcb * inp)2870 inp_inpcbtosocket(struct inpcb *inp)
2871 {
2872
2873 INP_WLOCK_ASSERT(inp);
2874 return (inp->inp_socket);
2875 }
2876
2877 void
inp_4tuple_get(struct inpcb * inp,uint32_t * laddr,uint16_t * lp,uint32_t * faddr,uint16_t * fp)2878 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2879 uint32_t *faddr, uint16_t *fp)
2880 {
2881
2882 INP_LOCK_ASSERT(inp);
2883 *laddr = inp->inp_laddr.s_addr;
2884 *faddr = inp->inp_faddr.s_addr;
2885 *lp = inp->inp_lport;
2886 *fp = inp->inp_fport;
2887 }
2888
2889 /*
2890 * Create an external-format (``xinpcb'') structure using the information in
2891 * the kernel-format in_pcb structure pointed to by inp. This is done to
2892 * reduce the spew of irrelevant information over this interface, to isolate
2893 * user code from changes in the kernel structure, and potentially to provide
2894 * information-hiding if we decide that some of this information should be
2895 * hidden from users.
2896 */
2897 void
in_pcbtoxinpcb(const struct inpcb * inp,struct xinpcb * xi)2898 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2899 {
2900
2901 bzero(xi, sizeof(*xi));
2902 xi->xi_len = sizeof(struct xinpcb);
2903 if (inp->inp_socket)
2904 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2905 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2906 xi->inp_gencnt = inp->inp_gencnt;
2907 xi->inp_flow = inp->inp_flow;
2908 xi->inp_flowid = inp->inp_flowid;
2909 xi->inp_flowtype = inp->inp_flowtype;
2910 xi->inp_flags = inp->inp_flags;
2911 xi->inp_flags2 = inp->inp_flags2;
2912 xi->in6p_cksum = inp->in6p_cksum;
2913 xi->in6p_hops = inp->in6p_hops;
2914 xi->inp_ip_tos = inp->inp_ip_tos;
2915 xi->inp_vflag = inp->inp_vflag;
2916 xi->inp_ip_ttl = inp->inp_ip_ttl;
2917 xi->inp_ip_p = inp->inp_ip_p;
2918 xi->inp_ip_minttl = inp->inp_ip_minttl;
2919 }
2920
2921 int
sysctl_setsockopt(SYSCTL_HANDLER_ARGS,struct inpcbinfo * pcbinfo,int (* ctloutput_set)(struct inpcb *,struct sockopt *))2922 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2923 int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2924 {
2925 struct sockopt sopt;
2926 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2927 INPLOOKUP_WLOCKPCB);
2928 struct inpcb *inp;
2929 struct sockopt_parameters *params;
2930 struct socket *so;
2931 int error;
2932 char buf[1024];
2933
2934 if (req->oldptr != NULL || req->oldlen != 0)
2935 return (EINVAL);
2936 if (req->newptr == NULL)
2937 return (EPERM);
2938 if (req->newlen > sizeof(buf))
2939 return (ENOMEM);
2940 error = SYSCTL_IN(req, buf, req->newlen);
2941 if (error != 0)
2942 return (error);
2943 if (req->newlen < sizeof(struct sockopt_parameters))
2944 return (EINVAL);
2945 params = (struct sockopt_parameters *)buf;
2946 sopt.sopt_level = params->sop_level;
2947 sopt.sopt_name = params->sop_optname;
2948 sopt.sopt_dir = SOPT_SET;
2949 sopt.sopt_val = params->sop_optval;
2950 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2951 sopt.sopt_td = NULL;
2952 #ifdef INET6
2953 if (params->sop_inc.inc_flags & INC_ISIPV6) {
2954 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr))
2955 params->sop_inc.inc6_laddr.s6_addr16[1] =
2956 htons(params->sop_inc.inc6_zoneid & 0xffff);
2957 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr))
2958 params->sop_inc.inc6_faddr.s6_addr16[1] =
2959 htons(params->sop_inc.inc6_zoneid & 0xffff);
2960 }
2961 #endif
2962 if (params->sop_inc.inc_lport != htons(0) &&
2963 params->sop_inc.inc_fport != htons(0)) {
2964 #ifdef INET6
2965 if (params->sop_inc.inc_flags & INC_ISIPV6)
2966 inpi.hash = INP6_PCBHASH(
2967 ¶ms->sop_inc.inc6_faddr,
2968 params->sop_inc.inc_lport,
2969 params->sop_inc.inc_fport,
2970 pcbinfo->ipi_hashmask);
2971 else
2972 #endif
2973 inpi.hash = INP_PCBHASH(
2974 ¶ms->sop_inc.inc_faddr,
2975 params->sop_inc.inc_lport,
2976 params->sop_inc.inc_fport,
2977 pcbinfo->ipi_hashmask);
2978 }
2979 while ((inp = inp_next(&inpi)) != NULL)
2980 if (inp->inp_gencnt == params->sop_id) {
2981 if (inp->inp_flags & INP_DROPPED) {
2982 INP_WUNLOCK(inp);
2983 return (ECONNRESET);
2984 }
2985 so = inp->inp_socket;
2986 KASSERT(so != NULL, ("inp_socket == NULL"));
2987 soref(so);
2988 if (params->sop_level == SOL_SOCKET) {
2989 INP_WUNLOCK(inp);
2990 error = sosetopt(so, &sopt);
2991 } else
2992 error = (*ctloutput_set)(inp, &sopt);
2993 sorele(so);
2994 break;
2995 }
2996 if (inp == NULL)
2997 error = ESRCH;
2998 return (error);
2999 }
3000
3001 #ifdef DDB
3002 static void
db_print_indent(int indent)3003 db_print_indent(int indent)
3004 {
3005 int i;
3006
3007 for (i = 0; i < indent; i++)
3008 db_printf(" ");
3009 }
3010
3011 static void
db_print_inconninfo(struct in_conninfo * inc,const char * name,int indent)3012 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3013 {
3014 char faddr_str[48], laddr_str[48];
3015
3016 db_print_indent(indent);
3017 db_printf("%s at %p\n", name, inc);
3018
3019 indent += 2;
3020
3021 #ifdef INET6
3022 if (inc->inc_flags & INC_ISIPV6) {
3023 /* IPv6. */
3024 ip6_sprintf(laddr_str, &inc->inc6_laddr);
3025 ip6_sprintf(faddr_str, &inc->inc6_faddr);
3026 } else
3027 #endif
3028 {
3029 /* IPv4. */
3030 inet_ntoa_r(inc->inc_laddr, laddr_str);
3031 inet_ntoa_r(inc->inc_faddr, faddr_str);
3032 }
3033 db_print_indent(indent);
3034 db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
3035 ntohs(inc->inc_lport));
3036 db_print_indent(indent);
3037 db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
3038 ntohs(inc->inc_fport));
3039 }
3040
3041 static void
db_print_inpflags(int inp_flags)3042 db_print_inpflags(int inp_flags)
3043 {
3044 int comma;
3045
3046 comma = 0;
3047 if (inp_flags & INP_RECVOPTS) {
3048 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3049 comma = 1;
3050 }
3051 if (inp_flags & INP_RECVRETOPTS) {
3052 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3053 comma = 1;
3054 }
3055 if (inp_flags & INP_RECVDSTADDR) {
3056 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3057 comma = 1;
3058 }
3059 if (inp_flags & INP_ORIGDSTADDR) {
3060 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3061 comma = 1;
3062 }
3063 if (inp_flags & INP_HDRINCL) {
3064 db_printf("%sINP_HDRINCL", comma ? ", " : "");
3065 comma = 1;
3066 }
3067 if (inp_flags & INP_HIGHPORT) {
3068 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3069 comma = 1;
3070 }
3071 if (inp_flags & INP_LOWPORT) {
3072 db_printf("%sINP_LOWPORT", comma ? ", " : "");
3073 comma = 1;
3074 }
3075 if (inp_flags & INP_ANONPORT) {
3076 db_printf("%sINP_ANONPORT", comma ? ", " : "");
3077 comma = 1;
3078 }
3079 if (inp_flags & INP_RECVIF) {
3080 db_printf("%sINP_RECVIF", comma ? ", " : "");
3081 comma = 1;
3082 }
3083 if (inp_flags & INP_MTUDISC) {
3084 db_printf("%sINP_MTUDISC", comma ? ", " : "");
3085 comma = 1;
3086 }
3087 if (inp_flags & INP_RECVTTL) {
3088 db_printf("%sINP_RECVTTL", comma ? ", " : "");
3089 comma = 1;
3090 }
3091 if (inp_flags & INP_DONTFRAG) {
3092 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3093 comma = 1;
3094 }
3095 if (inp_flags & INP_RECVTOS) {
3096 db_printf("%sINP_RECVTOS", comma ? ", " : "");
3097 comma = 1;
3098 }
3099 if (inp_flags & IN6P_IPV6_V6ONLY) {
3100 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3101 comma = 1;
3102 }
3103 if (inp_flags & IN6P_PKTINFO) {
3104 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3105 comma = 1;
3106 }
3107 if (inp_flags & IN6P_HOPLIMIT) {
3108 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3109 comma = 1;
3110 }
3111 if (inp_flags & IN6P_HOPOPTS) {
3112 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3113 comma = 1;
3114 }
3115 if (inp_flags & IN6P_DSTOPTS) {
3116 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3117 comma = 1;
3118 }
3119 if (inp_flags & IN6P_RTHDR) {
3120 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3121 comma = 1;
3122 }
3123 if (inp_flags & IN6P_RTHDRDSTOPTS) {
3124 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3125 comma = 1;
3126 }
3127 if (inp_flags & IN6P_TCLASS) {
3128 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3129 comma = 1;
3130 }
3131 if (inp_flags & IN6P_AUTOFLOWLABEL) {
3132 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3133 comma = 1;
3134 }
3135 if (inp_flags & INP_ONESBCAST) {
3136 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3137 comma = 1;
3138 }
3139 if (inp_flags & INP_DROPPED) {
3140 db_printf("%sINP_DROPPED", comma ? ", " : "");
3141 comma = 1;
3142 }
3143 if (inp_flags & INP_SOCKREF) {
3144 db_printf("%sINP_SOCKREF", comma ? ", " : "");
3145 comma = 1;
3146 }
3147 if (inp_flags & IN6P_RFC2292) {
3148 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3149 comma = 1;
3150 }
3151 if (inp_flags & IN6P_MTU) {
3152 db_printf("IN6P_MTU%s", comma ? ", " : "");
3153 comma = 1;
3154 }
3155 }
3156
3157 static void
db_print_inpvflag(u_char inp_vflag)3158 db_print_inpvflag(u_char inp_vflag)
3159 {
3160 int comma;
3161
3162 comma = 0;
3163 if (inp_vflag & INP_IPV4) {
3164 db_printf("%sINP_IPV4", comma ? ", " : "");
3165 comma = 1;
3166 }
3167 if (inp_vflag & INP_IPV6) {
3168 db_printf("%sINP_IPV6", comma ? ", " : "");
3169 comma = 1;
3170 }
3171 if (inp_vflag & INP_IPV6PROTO) {
3172 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3173 comma = 1;
3174 }
3175 }
3176
3177 static void
db_print_inpcb(struct inpcb * inp,const char * name,int indent)3178 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3179 {
3180
3181 db_print_indent(indent);
3182 db_printf("%s at %p\n", name, inp);
3183
3184 indent += 2;
3185
3186 db_print_indent(indent);
3187 db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3188
3189 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3190
3191 db_print_indent(indent);
3192 db_printf("inp_label: %p inp_flags: 0x%x (",
3193 inp->inp_label, inp->inp_flags);
3194 db_print_inpflags(inp->inp_flags);
3195 db_printf(")\n");
3196
3197 db_print_indent(indent);
3198 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
3199 inp->inp_vflag);
3200 db_print_inpvflag(inp->inp_vflag);
3201 db_printf(")\n");
3202
3203 db_print_indent(indent);
3204 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
3205 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3206
3207 db_print_indent(indent);
3208 #ifdef INET6
3209 if (inp->inp_vflag & INP_IPV6) {
3210 db_printf("in6p_options: %p in6p_outputopts: %p "
3211 "in6p_moptions: %p\n", inp->in6p_options,
3212 inp->in6p_outputopts, inp->in6p_moptions);
3213 db_printf("in6p_icmp6filt: %p in6p_cksum %d "
3214 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3215 inp->in6p_hops);
3216 } else
3217 #endif
3218 {
3219 db_printf("inp_ip_tos: %d inp_ip_options: %p "
3220 "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3221 inp->inp_options, inp->inp_moptions);
3222 }
3223
3224 db_print_indent(indent);
3225 db_printf("inp_gencnt: %ju\n", (uintmax_t)inp->inp_gencnt);
3226 }
3227
DB_SHOW_COMMAND(inpcb,db_show_inpcb)3228 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3229 {
3230 struct inpcb *inp;
3231
3232 if (!have_addr) {
3233 db_printf("usage: show inpcb <addr>\n");
3234 return;
3235 }
3236 inp = (struct inpcb *)addr;
3237
3238 db_print_inpcb(inp, "inpcb", 0);
3239 }
3240 #endif /* DDB */
3241
3242 #ifdef RATELIMIT
3243 /*
3244 * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3245 * if any.
3246 */
3247 int
in_pcbmodify_txrtlmt(struct inpcb * inp,uint32_t max_pacing_rate)3248 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3249 {
3250 union if_snd_tag_modify_params params = {
3251 .rate_limit.max_rate = max_pacing_rate,
3252 .rate_limit.flags = M_NOWAIT,
3253 };
3254 struct m_snd_tag *mst;
3255 int error;
3256
3257 mst = inp->inp_snd_tag;
3258 if (mst == NULL)
3259 return (EINVAL);
3260
3261 if (mst->sw->snd_tag_modify == NULL) {
3262 error = EOPNOTSUPP;
3263 } else {
3264 error = mst->sw->snd_tag_modify(mst, ¶ms);
3265 }
3266 return (error);
3267 }
3268
3269 /*
3270 * Query existing TX rate limit based on the existing
3271 * "inp->inp_snd_tag", if any.
3272 */
3273 int
in_pcbquery_txrtlmt(struct inpcb * inp,uint32_t * p_max_pacing_rate)3274 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3275 {
3276 union if_snd_tag_query_params params = { };
3277 struct m_snd_tag *mst;
3278 int error;
3279
3280 mst = inp->inp_snd_tag;
3281 if (mst == NULL)
3282 return (EINVAL);
3283
3284 if (mst->sw->snd_tag_query == NULL) {
3285 error = EOPNOTSUPP;
3286 } else {
3287 error = mst->sw->snd_tag_query(mst, ¶ms);
3288 if (error == 0 && p_max_pacing_rate != NULL)
3289 *p_max_pacing_rate = params.rate_limit.max_rate;
3290 }
3291 return (error);
3292 }
3293
3294 /*
3295 * Query existing TX queue level based on the existing
3296 * "inp->inp_snd_tag", if any.
3297 */
3298 int
in_pcbquery_txrlevel(struct inpcb * inp,uint32_t * p_txqueue_level)3299 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3300 {
3301 union if_snd_tag_query_params params = { };
3302 struct m_snd_tag *mst;
3303 int error;
3304
3305 mst = inp->inp_snd_tag;
3306 if (mst == NULL)
3307 return (EINVAL);
3308
3309 if (mst->sw->snd_tag_query == NULL)
3310 return (EOPNOTSUPP);
3311
3312 error = mst->sw->snd_tag_query(mst, ¶ms);
3313 if (error == 0 && p_txqueue_level != NULL)
3314 *p_txqueue_level = params.rate_limit.queue_level;
3315 return (error);
3316 }
3317
3318 /*
3319 * Allocate a new TX rate limit send tag from the network interface
3320 * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3321 */
3322 int
in_pcbattach_txrtlmt(struct inpcb * inp,struct ifnet * ifp,uint32_t flowtype,uint32_t flowid,uint32_t max_pacing_rate,struct m_snd_tag ** st)3323 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3324 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3325
3326 {
3327 union if_snd_tag_alloc_params params = {
3328 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3329 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3330 .rate_limit.hdr.flowid = flowid,
3331 .rate_limit.hdr.flowtype = flowtype,
3332 .rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3333 .rate_limit.max_rate = max_pacing_rate,
3334 .rate_limit.flags = M_NOWAIT,
3335 };
3336 int error;
3337
3338 INP_WLOCK_ASSERT(inp);
3339
3340 /*
3341 * If there is already a send tag, or the INP is being torn
3342 * down, allocating a new send tag is not allowed. Else send
3343 * tags may leak.
3344 */
3345 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3346 return (EINVAL);
3347
3348 error = m_snd_tag_alloc(ifp, ¶ms, st);
3349 #ifdef INET
3350 if (error == 0) {
3351 counter_u64_add(rate_limit_set_ok, 1);
3352 counter_u64_add(rate_limit_active, 1);
3353 } else if (error != EOPNOTSUPP)
3354 counter_u64_add(rate_limit_alloc_fail, 1);
3355 #endif
3356 return (error);
3357 }
3358
3359 void
in_pcbdetach_tag(struct m_snd_tag * mst)3360 in_pcbdetach_tag(struct m_snd_tag *mst)
3361 {
3362
3363 m_snd_tag_rele(mst);
3364 #ifdef INET
3365 counter_u64_add(rate_limit_active, -1);
3366 #endif
3367 }
3368
3369 /*
3370 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3371 * if any:
3372 */
3373 void
in_pcbdetach_txrtlmt(struct inpcb * inp)3374 in_pcbdetach_txrtlmt(struct inpcb *inp)
3375 {
3376 struct m_snd_tag *mst;
3377
3378 INP_WLOCK_ASSERT(inp);
3379
3380 mst = inp->inp_snd_tag;
3381 inp->inp_snd_tag = NULL;
3382
3383 if (mst == NULL)
3384 return;
3385
3386 m_snd_tag_rele(mst);
3387 #ifdef INET
3388 counter_u64_add(rate_limit_active, -1);
3389 #endif
3390 }
3391
3392 int
in_pcboutput_txrtlmt_locked(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb,uint32_t max_pacing_rate)3393 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3394 {
3395 int error;
3396
3397 /*
3398 * If the existing send tag is for the wrong interface due to
3399 * a route change, first drop the existing tag. Set the
3400 * CHANGED flag so that we will keep trying to allocate a new
3401 * tag if we fail to allocate one this time.
3402 */
3403 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3404 in_pcbdetach_txrtlmt(inp);
3405 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3406 }
3407
3408 /*
3409 * NOTE: When attaching to a network interface a reference is
3410 * made to ensure the network interface doesn't go away until
3411 * all ratelimit connections are gone. The network interface
3412 * pointers compared below represent valid network interfaces,
3413 * except when comparing towards NULL.
3414 */
3415 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3416 error = 0;
3417 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3418 if (inp->inp_snd_tag != NULL)
3419 in_pcbdetach_txrtlmt(inp);
3420 error = 0;
3421 } else if (inp->inp_snd_tag == NULL) {
3422 /*
3423 * In order to utilize packet pacing with RSS, we need
3424 * to wait until there is a valid RSS hash before we
3425 * can proceed:
3426 */
3427 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3428 error = EAGAIN;
3429 } else {
3430 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3431 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3432 }
3433 } else {
3434 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3435 }
3436 if (error == 0 || error == EOPNOTSUPP)
3437 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3438
3439 return (error);
3440 }
3441
3442 /*
3443 * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3444 * is set in the fast path and will attach/detach/modify the TX rate
3445 * limit send tag based on the socket's so_max_pacing_rate value.
3446 */
3447 void
in_pcboutput_txrtlmt(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb)3448 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3449 {
3450 struct socket *socket;
3451 uint32_t max_pacing_rate;
3452 bool did_upgrade;
3453
3454 if (inp == NULL)
3455 return;
3456
3457 socket = inp->inp_socket;
3458 if (socket == NULL)
3459 return;
3460
3461 if (!INP_WLOCKED(inp)) {
3462 /*
3463 * NOTE: If the write locking fails, we need to bail
3464 * out and use the non-ratelimited ring for the
3465 * transmit until there is a new chance to get the
3466 * write lock.
3467 */
3468 if (!INP_TRY_UPGRADE(inp))
3469 return;
3470 did_upgrade = 1;
3471 } else {
3472 did_upgrade = 0;
3473 }
3474
3475 /*
3476 * NOTE: The so_max_pacing_rate value is read unlocked,
3477 * because atomic updates are not required since the variable
3478 * is checked at every mbuf we send. It is assumed that the
3479 * variable read itself will be atomic.
3480 */
3481 max_pacing_rate = socket->so_max_pacing_rate;
3482
3483 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3484
3485 if (did_upgrade)
3486 INP_DOWNGRADE(inp);
3487 }
3488
3489 /*
3490 * Track route changes for TX rate limiting.
3491 */
3492 void
in_pcboutput_eagain(struct inpcb * inp)3493 in_pcboutput_eagain(struct inpcb *inp)
3494 {
3495 bool did_upgrade;
3496
3497 if (inp == NULL)
3498 return;
3499
3500 if (inp->inp_snd_tag == NULL)
3501 return;
3502
3503 if (!INP_WLOCKED(inp)) {
3504 /*
3505 * NOTE: If the write locking fails, we need to bail
3506 * out and use the non-ratelimited ring for the
3507 * transmit until there is a new chance to get the
3508 * write lock.
3509 */
3510 if (!INP_TRY_UPGRADE(inp))
3511 return;
3512 did_upgrade = 1;
3513 } else {
3514 did_upgrade = 0;
3515 }
3516
3517 /* detach rate limiting */
3518 in_pcbdetach_txrtlmt(inp);
3519
3520 /* make sure new mbuf send tag allocation is made */
3521 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3522
3523 if (did_upgrade)
3524 INP_DOWNGRADE(inp);
3525 }
3526
3527 #ifdef INET
3528 static void
rl_init(void * st)3529 rl_init(void *st)
3530 {
3531 rate_limit_new = counter_u64_alloc(M_WAITOK);
3532 rate_limit_chg = counter_u64_alloc(M_WAITOK);
3533 rate_limit_active = counter_u64_alloc(M_WAITOK);
3534 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3535 rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3536 }
3537
3538 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3539 #endif
3540 #endif /* RATELIMIT */
3541