1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993, 1995
5 * The Regents of the University of California.
6 * Copyright (c) 2007-2009 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105
106 #include <netipsec/ipsec_support.h>
107
108 #include <security/mac/mac_framework.h>
109
110 #define INPCBLBGROUP_SIZMIN 8
111 #define INPCBLBGROUP_SIZMAX 256
112
113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */
114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */
115
116 /*
117 * These configure the range of local port addresses assigned to
118 * "unspecified" outgoing connections/packets/whatever.
119 */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
126
127 /*
128 * Reserved ports accessible only to root. There are significant
129 * security considerations that must be accounted for when changing these,
130 * but the security benefits can be great. Please be careful.
131 */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137
138 #ifdef INET
139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 struct in_addr faddr, u_int fport_arg,
141 struct in_addr laddr, u_int lport_arg,
142 int lookupflags, uint8_t numa_domain, int fib);
143
144 #define RANGECHK(var, min, max) \
145 if ((var) < (min)) { (var) = (min); } \
146 else if ((var) > (max)) { (var) = (max); }
147
148 static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 int error;
152
153 error = sysctl_handle_int(oidp, arg1, arg2, req);
154 if (error == 0) {
155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 }
162 return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169 "IP Ports");
170
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174 "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178 "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182 "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186 "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190 "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194 "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 &VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212 "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214 &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216 &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218 &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220 &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222 &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224
225 #endif /* INET */
226
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
in_pcbhashseed_init(void)229 in_pcbhashseed_init(void)
230 {
231
232 V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235 in_pcbhashseed_init, NULL);
236
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244
245 static void in_pcbremhash(struct inpcb *);
246
247 /*
248 * in_pcb.c: manage the Protocol Control Blocks.
249 *
250 * NOTE: It is assumed that most of these functions will be called with
251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252 * functions often modify hash chains or addresses in pcbs.
253 */
254
255 static struct inpcblbgroup *
in_pcblbgroup_alloc(struct ucred * cred,u_char vflag,uint16_t port,const union in_dependaddr * addr,int size,uint8_t numa_domain,int fib)256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257 const union in_dependaddr *addr, int size, uint8_t numa_domain, int fib)
258 {
259 struct inpcblbgroup *grp;
260 size_t bytes;
261
262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 if (grp == NULL)
265 return (NULL);
266 LIST_INIT(&grp->il_pending);
267 grp->il_cred = crhold(cred);
268 grp->il_vflag = vflag;
269 grp->il_lport = port;
270 grp->il_numa_domain = numa_domain;
271 grp->il_fibnum = fib;
272 grp->il_dependladdr = *addr;
273 grp->il_inpsiz = size;
274 return (grp);
275 }
276
277 static void
in_pcblbgroup_free_deferred(epoch_context_t ctx)278 in_pcblbgroup_free_deferred(epoch_context_t ctx)
279 {
280 struct inpcblbgroup *grp;
281
282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
283 crfree(grp->il_cred);
284 free(grp, M_PCB);
285 }
286
287 static void
in_pcblbgroup_free(struct inpcblbgroup * grp)288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 KASSERT(LIST_EMPTY(&grp->il_pending),
291 ("local group %p still has pending inps", grp));
292
293 CK_LIST_REMOVE(grp, il_list);
294 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
295 }
296
297 static struct inpcblbgroup *
in_pcblbgroup_find(struct inpcb * inp)298 in_pcblbgroup_find(struct inpcb *inp)
299 {
300 struct inpcbinfo *pcbinfo;
301 struct inpcblbgroup *grp;
302 struct inpcblbgrouphead *hdr;
303
304 INP_LOCK_ASSERT(inp);
305
306 pcbinfo = inp->inp_pcbinfo;
307 INP_HASH_LOCK_ASSERT(pcbinfo);
308
309 hdr = &pcbinfo->ipi_lbgrouphashbase[
310 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
311 CK_LIST_FOREACH(grp, hdr, il_list) {
312 struct inpcb *inp1;
313
314 for (unsigned int i = 0; i < grp->il_inpcnt; i++) {
315 if (inp == grp->il_inp[i])
316 goto found;
317 }
318 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
319 if (inp == inp1)
320 goto found;
321 }
322 }
323 found:
324 return (grp);
325 }
326
327 static void
in_pcblbgroup_insert(struct inpcblbgroup * grp,struct inpcb * inp)328 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
329 {
330 KASSERT(grp->il_inpcnt < grp->il_inpsiz,
331 ("invalid local group size %d and count %d", grp->il_inpsiz,
332 grp->il_inpcnt));
333 INP_WLOCK_ASSERT(inp);
334
335 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp &&
336 !SOLISTENING(inp->inp_socket)) {
337 /*
338 * If this is a TCP socket, it should not be visible to lbgroup
339 * lookups until listen() has been called.
340 */
341 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list);
342 grp->il_pendcnt++;
343 } else {
344 grp->il_inp[grp->il_inpcnt] = inp;
345
346 /*
347 * Synchronize with in_pcblookup_lbgroup(): make sure that we
348 * don't expose a null slot to the lookup path.
349 */
350 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
351 }
352
353 inp->inp_flags |= INP_INLBGROUP;
354 }
355
356 static struct inpcblbgroup *
in_pcblbgroup_resize(struct inpcblbgrouphead * hdr,struct inpcblbgroup * old_grp,int size)357 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
358 struct inpcblbgroup *old_grp, int size)
359 {
360 struct inpcblbgroup *grp;
361 int i;
362
363 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
364 old_grp->il_lport, &old_grp->il_dependladdr, size,
365 old_grp->il_numa_domain, old_grp->il_fibnum);
366 if (grp == NULL)
367 return (NULL);
368
369 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
370 ("invalid new local group size %d and old local group count %d",
371 grp->il_inpsiz, old_grp->il_inpcnt));
372
373 for (i = 0; i < old_grp->il_inpcnt; ++i)
374 grp->il_inp[i] = old_grp->il_inp[i];
375 grp->il_inpcnt = old_grp->il_inpcnt;
376 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
377 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb,
378 inp_lbgroup_list);
379 grp->il_pendcnt = old_grp->il_pendcnt;
380 old_grp->il_pendcnt = 0;
381 in_pcblbgroup_free(old_grp);
382 return (grp);
383 }
384
385 /*
386 * Add PCB to load balance group for SO_REUSEPORT_LB option.
387 */
388 static int
in_pcbinslbgrouphash(struct inpcb * inp,uint8_t numa_domain)389 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
390 {
391 const static struct timeval interval = { 60, 0 };
392 static struct timeval lastprint;
393 struct inpcbinfo *pcbinfo;
394 struct inpcblbgrouphead *hdr;
395 struct inpcblbgroup *grp;
396 uint32_t idx;
397 int fib;
398
399 pcbinfo = inp->inp_pcbinfo;
400
401 INP_WLOCK_ASSERT(inp);
402 INP_HASH_WLOCK_ASSERT(pcbinfo);
403
404 fib = (inp->inp_flags & INP_BOUNDFIB) != 0 ?
405 inp->inp_inc.inc_fibnum : RT_ALL_FIBS;
406
407 #ifdef INET6
408 /*
409 * Don't allow IPv4 mapped INET6 wild socket.
410 */
411 if ((inp->inp_vflag & INP_IPV4) &&
412 inp->inp_laddr.s_addr == INADDR_ANY &&
413 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
414 return (0);
415 }
416 #endif
417
418 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
419 hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
420 CK_LIST_FOREACH(grp, hdr, il_list) {
421 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
422 grp->il_vflag == inp->inp_vflag &&
423 grp->il_lport == inp->inp_lport &&
424 grp->il_numa_domain == numa_domain &&
425 grp->il_fibnum == fib &&
426 memcmp(&grp->il_dependladdr,
427 &inp->inp_inc.inc_ie.ie_dependladdr,
428 sizeof(grp->il_dependladdr)) == 0) {
429 break;
430 }
431 }
432 if (grp == NULL) {
433 /* Create new load balance group. */
434 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
435 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
436 INPCBLBGROUP_SIZMIN, numa_domain, fib);
437 if (grp == NULL)
438 return (ENOMEM);
439 in_pcblbgroup_insert(grp, inp);
440 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
441 } else if (grp->il_inpcnt + grp->il_pendcnt == grp->il_inpsiz) {
442 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
443 if (ratecheck(&lastprint, &interval))
444 printf("lb group port %d, limit reached\n",
445 ntohs(grp->il_lport));
446 return (0);
447 }
448
449 /* Expand this local group. */
450 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
451 if (grp == NULL)
452 return (ENOMEM);
453 in_pcblbgroup_insert(grp, inp);
454 } else {
455 in_pcblbgroup_insert(grp, inp);
456 }
457 return (0);
458 }
459
460 /*
461 * Remove PCB from load balance group.
462 */
463 static void
in_pcbremlbgrouphash(struct inpcb * inp)464 in_pcbremlbgrouphash(struct inpcb *inp)
465 {
466 struct inpcbinfo *pcbinfo;
467 struct inpcblbgrouphead *hdr;
468 struct inpcblbgroup *grp;
469 struct inpcb *inp1;
470 int i;
471
472 pcbinfo = inp->inp_pcbinfo;
473
474 INP_WLOCK_ASSERT(inp);
475 MPASS(inp->inp_flags & INP_INLBGROUP);
476 INP_HASH_WLOCK_ASSERT(pcbinfo);
477
478 hdr = &pcbinfo->ipi_lbgrouphashbase[
479 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
480 CK_LIST_FOREACH(grp, hdr, il_list) {
481 for (i = 0; i < grp->il_inpcnt; ++i) {
482 if (grp->il_inp[i] != inp)
483 continue;
484
485 if (grp->il_inpcnt == 1 &&
486 LIST_EMPTY(&grp->il_pending)) {
487 /* We are the last, free this local group. */
488 in_pcblbgroup_free(grp);
489 } else {
490 grp->il_inp[i] =
491 grp->il_inp[grp->il_inpcnt - 1];
492
493 /*
494 * Synchronize with in_pcblookup_lbgroup().
495 */
496 atomic_store_rel_int(&grp->il_inpcnt,
497 grp->il_inpcnt - 1);
498 }
499 inp->inp_flags &= ~INP_INLBGROUP;
500 return;
501 }
502 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
503 if (inp == inp1) {
504 LIST_REMOVE(inp, inp_lbgroup_list);
505 grp->il_pendcnt--;
506 inp->inp_flags &= ~INP_INLBGROUP;
507 return;
508 }
509 }
510 }
511 __assert_unreachable();
512 }
513
514 int
in_pcblbgroup_numa(struct inpcb * inp,int arg)515 in_pcblbgroup_numa(struct inpcb *inp, int arg)
516 {
517 struct inpcbinfo *pcbinfo;
518 int error;
519 uint8_t numa_domain;
520
521 switch (arg) {
522 case TCP_REUSPORT_LB_NUMA_NODOM:
523 numa_domain = M_NODOM;
524 break;
525 case TCP_REUSPORT_LB_NUMA_CURDOM:
526 numa_domain = PCPU_GET(domain);
527 break;
528 default:
529 if (arg < 0 || arg >= vm_ndomains)
530 return (EINVAL);
531 numa_domain = arg;
532 }
533
534 pcbinfo = inp->inp_pcbinfo;
535 INP_WLOCK_ASSERT(inp);
536 INP_HASH_WLOCK(pcbinfo);
537 if (in_pcblbgroup_find(inp) != NULL) {
538 /* Remove it from the old group. */
539 in_pcbremlbgrouphash(inp);
540 /* Add it to the new group based on numa domain. */
541 in_pcbinslbgrouphash(inp, numa_domain);
542 error = 0;
543 } else {
544 error = ENOENT;
545 }
546 INP_HASH_WUNLOCK(pcbinfo);
547 return (error);
548 }
549
550 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
551 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
552
553 /*
554 * Initialize an inpcbinfo - a per-VNET instance of connections db.
555 */
556 void
in_pcbinfo_init(struct inpcbinfo * pcbinfo,struct inpcbstorage * pcbstor,u_int hash_nelements,u_int porthash_nelements)557 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
558 u_int hash_nelements, u_int porthash_nelements)
559 {
560
561 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
562 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
563 NULL, MTX_DEF);
564 #ifdef VIMAGE
565 pcbinfo->ipi_vnet = curvnet;
566 #endif
567 CK_LIST_INIT(&pcbinfo->ipi_listhead);
568 pcbinfo->ipi_count = 0;
569 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
570 &pcbinfo->ipi_hashmask);
571 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
572 &pcbinfo->ipi_hashmask);
573 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
574 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
575 &pcbinfo->ipi_porthashmask);
576 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
577 &pcbinfo->ipi_lbgrouphashmask);
578 pcbinfo->ipi_zone = pcbstor->ips_zone;
579 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
580 }
581
582 /*
583 * Destroy an inpcbinfo.
584 */
585 void
in_pcbinfo_destroy(struct inpcbinfo * pcbinfo)586 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
587 {
588
589 KASSERT(pcbinfo->ipi_count == 0,
590 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
591
592 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
593 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
594 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
595 pcbinfo->ipi_porthashmask);
596 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
597 pcbinfo->ipi_lbgrouphashmask);
598 mtx_destroy(&pcbinfo->ipi_hash_lock);
599 mtx_destroy(&pcbinfo->ipi_lock);
600 }
601
602 /*
603 * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
604 */
605 static void inpcb_fini(void *, int);
606 void
in_pcbstorage_init(void * arg)607 in_pcbstorage_init(void *arg)
608 {
609 struct inpcbstorage *pcbstor = arg;
610
611 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
612 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
613 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
614 }
615
616 /*
617 * Destroy a pcbstorage - used by unloadable protocols.
618 */
619 void
in_pcbstorage_destroy(void * arg)620 in_pcbstorage_destroy(void *arg)
621 {
622 struct inpcbstorage *pcbstor = arg;
623
624 uma_zdestroy(pcbstor->ips_zone);
625 }
626
627 /*
628 * Allocate a PCB and associate it with the socket.
629 * On success return with the PCB locked.
630 */
631 int
in_pcballoc(struct socket * so,struct inpcbinfo * pcbinfo)632 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
633 {
634 struct inpcb *inp;
635 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
636 int error;
637 #endif
638
639 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
640 if (inp == NULL)
641 return (ENOBUFS);
642 bzero(&inp->inp_start_zero, inp_zero_size);
643 #ifdef NUMA
644 inp->inp_numa_domain = M_NODOM;
645 #endif
646 inp->inp_pcbinfo = pcbinfo;
647 inp->inp_socket = so;
648 inp->inp_cred = crhold(so->so_cred);
649 inp->inp_inc.inc_fibnum = so->so_fibnum;
650 #ifdef MAC
651 error = mac_inpcb_init(inp, M_NOWAIT);
652 if (error != 0)
653 goto out;
654 mac_inpcb_create(so, inp);
655 #endif
656 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
657 error = ipsec_init_pcbpolicy(inp);
658 if (error != 0) {
659 #ifdef MAC
660 mac_inpcb_destroy(inp);
661 #endif
662 goto out;
663 }
664 #endif /*IPSEC*/
665 #ifdef INET6
666 if (INP_SOCKAF(so) == AF_INET6) {
667 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
668 if (V_ip6_v6only)
669 inp->inp_flags |= IN6P_IPV6_V6ONLY;
670 #ifdef INET
671 else
672 inp->inp_vflag |= INP_IPV4;
673 #endif
674 if (V_ip6_auto_flowlabel)
675 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
676 inp->in6p_hops = -1; /* use kernel default */
677 }
678 #endif
679 #if defined(INET) && defined(INET6)
680 else
681 #endif
682 #ifdef INET
683 inp->inp_vflag |= INP_IPV4;
684 #endif
685 inp->inp_smr = SMR_SEQ_INVALID;
686
687 /*
688 * Routes in inpcb's can cache L2 as well; they are guaranteed
689 * to be cleaned up.
690 */
691 inp->inp_route.ro_flags = RT_LLE_CACHE;
692 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */
693 INP_WLOCK(inp);
694 INP_INFO_WLOCK(pcbinfo);
695 pcbinfo->ipi_count++;
696 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
697 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
698 INP_INFO_WUNLOCK(pcbinfo);
699 so->so_pcb = inp;
700
701 return (0);
702
703 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
704 out:
705 crfree(inp->inp_cred);
706 #ifdef INVARIANTS
707 inp->inp_cred = NULL;
708 #endif
709 uma_zfree_smr(pcbinfo->ipi_zone, inp);
710 return (error);
711 #endif
712 }
713
714 #ifdef INET
715 int
in_pcbbind(struct inpcb * inp,struct sockaddr_in * sin,int flags,struct ucred * cred)716 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, int flags,
717 struct ucred *cred)
718 {
719 int anonport, error;
720
721 KASSERT(sin == NULL || sin->sin_family == AF_INET,
722 ("%s: invalid address family for %p", __func__, sin));
723 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
724 ("%s: invalid address length for %p", __func__, sin));
725 INP_WLOCK_ASSERT(inp);
726 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
727
728 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
729 return (EINVAL);
730 anonport = sin == NULL || sin->sin_port == 0;
731 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
732 &inp->inp_lport, flags, cred);
733 if (error)
734 return (error);
735 if (__predict_false((error = in_pcbinshash(inp)) != 0)) {
736 MPASS(inp->inp_socket->so_options & SO_REUSEPORT_LB);
737 inp->inp_laddr.s_addr = INADDR_ANY;
738 inp->inp_lport = 0;
739 inp->inp_flags &= ~INP_BOUNDFIB;
740 return (error);
741 }
742 if (anonport)
743 inp->inp_flags |= INP_ANONPORT;
744 return (0);
745 }
746 #endif
747
748 #if defined(INET) || defined(INET6)
749 /*
750 * Assign a local port like in_pcb_lport(), but also used with connect()
751 * and a foreign address and port. If fsa is non-NULL, choose a local port
752 * that is unused with those, otherwise one that is completely unused.
753 * lsa can be NULL for IPv6.
754 */
755 int
in_pcb_lport_dest(const struct inpcb * inp,struct sockaddr * lsa,u_short * lportp,struct sockaddr * fsa,u_short fport,struct ucred * cred,int lookupflags)756 in_pcb_lport_dest(const struct inpcb *inp, struct sockaddr *lsa,
757 u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred,
758 int lookupflags)
759 {
760 struct inpcbinfo *pcbinfo;
761 struct inpcb *tmpinp;
762 unsigned short *lastport;
763 int count, error;
764 u_short aux, first, last, lport;
765 #ifdef INET
766 struct in_addr laddr, faddr;
767 #endif
768 #ifdef INET6
769 struct in6_addr *laddr6, *faddr6;
770 #endif
771
772 pcbinfo = inp->inp_pcbinfo;
773
774 /*
775 * Because no actual state changes occur here, a global write lock on
776 * the pcbinfo isn't required.
777 */
778 INP_LOCK_ASSERT(inp);
779 INP_HASH_LOCK_ASSERT(pcbinfo);
780
781 if (inp->inp_flags & INP_HIGHPORT) {
782 first = V_ipport_hifirstauto; /* sysctl */
783 last = V_ipport_hilastauto;
784 lastport = &pcbinfo->ipi_lasthi;
785 } else if (inp->inp_flags & INP_LOWPORT) {
786 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
787 if (error)
788 return (error);
789 first = V_ipport_lowfirstauto; /* 1023 */
790 last = V_ipport_lowlastauto; /* 600 */
791 lastport = &pcbinfo->ipi_lastlow;
792 } else {
793 first = V_ipport_firstauto; /* sysctl */
794 last = V_ipport_lastauto;
795 lastport = &pcbinfo->ipi_lastport;
796 }
797
798 /*
799 * Instead of having two loops further down counting up or down
800 * make sure that first is always <= last and go with only one
801 * code path implementing all logic.
802 */
803 if (first > last) {
804 aux = first;
805 first = last;
806 last = aux;
807 }
808
809 #ifdef INET
810 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */
811 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
812 if (lsa != NULL)
813 laddr = ((struct sockaddr_in *)lsa)->sin_addr;
814 if (fsa != NULL)
815 faddr = ((struct sockaddr_in *)fsa)->sin_addr;
816 }
817 #endif
818 #ifdef INET6
819 laddr6 = NULL;
820 if ((inp->inp_vflag & INP_IPV6) != 0) {
821 if (lsa != NULL)
822 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
823 if (fsa != NULL)
824 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
825 }
826 #endif
827
828 tmpinp = NULL;
829
830 if (V_ipport_randomized)
831 *lastport = first + (arc4random() % (last - first));
832
833 count = last - first;
834
835 do {
836 if (count-- < 0) /* completely used? */
837 return (EADDRNOTAVAIL);
838 ++*lastport;
839 if (*lastport < first || *lastport > last)
840 *lastport = first;
841 lport = htons(*lastport);
842
843 if (fsa != NULL) {
844 #ifdef INET
845 if (lsa->sa_family == AF_INET) {
846 tmpinp = in_pcblookup_hash_locked(pcbinfo,
847 faddr, fport, laddr, lport, lookupflags,
848 M_NODOM, RT_ALL_FIBS);
849 }
850 #endif
851 #ifdef INET6
852 if (lsa->sa_family == AF_INET6) {
853 tmpinp = in6_pcblookup_hash_locked(pcbinfo,
854 faddr6, fport, laddr6, lport, lookupflags,
855 M_NODOM, RT_ALL_FIBS);
856 }
857 #endif
858 } else {
859 #ifdef INET6
860 if ((inp->inp_vflag & INP_IPV6) != 0) {
861 tmpinp = in6_pcblookup_local(pcbinfo,
862 &inp->in6p_laddr, lport, RT_ALL_FIBS,
863 lookupflags, cred);
864 #ifdef INET
865 if (tmpinp == NULL &&
866 (inp->inp_vflag & INP_IPV4))
867 tmpinp = in_pcblookup_local(pcbinfo,
868 laddr, lport, RT_ALL_FIBS,
869 lookupflags, cred);
870 #endif
871 }
872 #endif
873 #if defined(INET) && defined(INET6)
874 else
875 #endif
876 #ifdef INET
877 tmpinp = in_pcblookup_local(pcbinfo, laddr,
878 lport, RT_ALL_FIBS, lookupflags, cred);
879 #endif
880 }
881 } while (tmpinp != NULL);
882
883 *lportp = lport;
884
885 return (0);
886 }
887
888 /*
889 * Select a local port (number) to use.
890 */
891 int
in_pcb_lport(struct inpcb * inp,struct in_addr * laddrp,u_short * lportp,struct ucred * cred,int lookupflags)892 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
893 struct ucred *cred, int lookupflags)
894 {
895 struct sockaddr_in laddr;
896
897 if (laddrp) {
898 bzero(&laddr, sizeof(laddr));
899 laddr.sin_family = AF_INET;
900 laddr.sin_addr = *laddrp;
901 }
902 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
903 NULL, lportp, NULL, 0, cred, lookupflags));
904 }
905 #endif /* INET || INET6 */
906
907 #ifdef INET
908 /*
909 * Determine whether the inpcb can be bound to the specified address/port tuple.
910 */
911 static int
in_pcbbind_avail(struct inpcb * inp,const struct in_addr laddr,const u_short lport,const int fib,int sooptions,int lookupflags,struct ucred * cred)912 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
913 const u_short lport, const int fib, int sooptions, int lookupflags,
914 struct ucred *cred)
915 {
916 int reuseport, reuseport_lb;
917
918 INP_LOCK_ASSERT(inp);
919 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
920
921 reuseport = (sooptions & SO_REUSEPORT);
922 reuseport_lb = (sooptions & SO_REUSEPORT_LB);
923
924 if (IN_MULTICAST(ntohl(laddr.s_addr))) {
925 /*
926 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
927 * allow complete duplication of binding if
928 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
929 * and a multicast address is bound on both
930 * new and duplicated sockets.
931 */
932 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
933 reuseport = SO_REUSEADDR | SO_REUSEPORT;
934 /*
935 * XXX: How to deal with SO_REUSEPORT_LB here?
936 * Treat same as SO_REUSEPORT for now.
937 */
938 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
939 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
940 } else if (!in_nullhost(laddr)) {
941 struct sockaddr_in sin;
942
943 memset(&sin, 0, sizeof(sin));
944 sin.sin_family = AF_INET;
945 sin.sin_len = sizeof(sin);
946 sin.sin_addr = laddr;
947
948 /*
949 * Is the address a local IP address?
950 * If INP_BINDANY is set, then the socket may be bound
951 * to any endpoint address, local or not.
952 */
953 if ((inp->inp_flags & INP_BINDANY) == 0 &&
954 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
955 return (EADDRNOTAVAIL);
956 }
957
958 if (lport != 0) {
959 struct inpcb *t;
960
961 if (ntohs(lport) <= V_ipport_reservedhigh &&
962 ntohs(lport) >= V_ipport_reservedlow &&
963 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
964 return (EACCES);
965
966 if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
967 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
968 /*
969 * If a socket owned by a different user is already
970 * bound to this port, fail. In particular, SO_REUSE*
971 * can only be used to share a port among sockets owned
972 * by the same user.
973 *
974 * However, we can share a port with a connected socket
975 * which has a unique 4-tuple.
976 */
977 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
978 RT_ALL_FIBS, INPLOOKUP_WILDCARD, cred);
979 if (t != NULL &&
980 (inp->inp_socket->so_type != SOCK_STREAM ||
981 in_nullhost(t->inp_faddr)) &&
982 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
983 return (EADDRINUSE);
984 }
985 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, fib,
986 lookupflags, cred);
987 if (t != NULL && ((reuseport | reuseport_lb) &
988 t->inp_socket->so_options) == 0) {
989 #ifdef INET6
990 if (!in_nullhost(laddr) ||
991 !in_nullhost(t->inp_laddr) ||
992 (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
993 (t->inp_vflag & INP_IPV6PROTO) == 0)
994 #endif
995 return (EADDRINUSE);
996 }
997 }
998 return (0);
999 }
1000
1001 /*
1002 * Set up a bind operation on a PCB, performing port allocation
1003 * as required, but do not actually modify the PCB. Callers can
1004 * either complete the bind by setting inp_laddr/inp_lport and
1005 * calling in_pcbinshash(), or they can just use the resulting
1006 * port and address to authorise the sending of a once-off packet.
1007 *
1008 * On error, the values of *laddrp and *lportp are not changed.
1009 */
1010 int
in_pcbbind_setup(struct inpcb * inp,struct sockaddr_in * sin,in_addr_t * laddrp,u_short * lportp,int flags,struct ucred * cred)1011 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
1012 u_short *lportp, int flags, struct ucred *cred)
1013 {
1014 struct socket *so = inp->inp_socket;
1015 struct in_addr laddr;
1016 u_short lport = 0;
1017 int error, fib, lookupflags, sooptions;
1018
1019 /*
1020 * No state changes, so read locks are sufficient here.
1021 */
1022 INP_LOCK_ASSERT(inp);
1023 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1024
1025 laddr.s_addr = *laddrp;
1026 if (sin != NULL && laddr.s_addr != INADDR_ANY)
1027 return (EINVAL);
1028
1029 lookupflags = 0;
1030 sooptions = atomic_load_int(&so->so_options);
1031 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
1032 lookupflags = INPLOOKUP_WILDCARD;
1033 if (sin == NULL) {
1034 if ((error = prison_local_ip4(cred, &laddr)) != 0)
1035 return (error);
1036 } else {
1037 KASSERT(sin->sin_family == AF_INET,
1038 ("%s: invalid family for address %p", __func__, sin));
1039 KASSERT(sin->sin_len == sizeof(*sin),
1040 ("%s: invalid length for address %p", __func__, sin));
1041
1042 error = prison_local_ip4(cred, &sin->sin_addr);
1043 if (error)
1044 return (error);
1045 if (sin->sin_port != *lportp) {
1046 /* Don't allow the port to change. */
1047 if (*lportp != 0)
1048 return (EINVAL);
1049 lport = sin->sin_port;
1050 }
1051 laddr = sin->sin_addr;
1052
1053 fib = (flags & INPBIND_FIB) != 0 ? inp->inp_inc.inc_fibnum :
1054 RT_ALL_FIBS;
1055
1056 /* See if this address/port combo is available. */
1057 error = in_pcbbind_avail(inp, laddr, lport, fib, sooptions,
1058 lookupflags, cred);
1059 if (error != 0)
1060 return (error);
1061 }
1062 if (*lportp != 0)
1063 lport = *lportp;
1064 if (lport == 0) {
1065 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1066 if (error != 0)
1067 return (error);
1068 }
1069 *laddrp = laddr.s_addr;
1070 *lportp = lport;
1071 if ((flags & INPBIND_FIB) != 0)
1072 inp->inp_flags |= INP_BOUNDFIB;
1073 return (0);
1074 }
1075
1076 /*
1077 * Connect from a socket to a specified address.
1078 * Both address and port must be specified in argument sin.
1079 * If don't have a local address for this socket yet,
1080 * then pick one.
1081 */
1082 int
in_pcbconnect(struct inpcb * inp,struct sockaddr_in * sin,struct ucred * cred)1083 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1084 {
1085 struct in_addr laddr, faddr;
1086 u_short lport;
1087 int error;
1088 bool anonport;
1089
1090 INP_WLOCK_ASSERT(inp);
1091 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1092 KASSERT(in_nullhost(inp->inp_faddr),
1093 ("%s: inp is already connected", __func__));
1094 KASSERT(sin->sin_family == AF_INET,
1095 ("%s: invalid address family for %p", __func__, sin));
1096 KASSERT(sin->sin_len == sizeof(*sin),
1097 ("%s: invalid address length for %p", __func__, sin));
1098
1099 if (sin->sin_port == 0)
1100 return (EADDRNOTAVAIL);
1101
1102 anonport = (inp->inp_lport == 0);
1103
1104 if (__predict_false(in_broadcast(sin->sin_addr))) {
1105 if (!V_connect_inaddr_wild || CK_STAILQ_EMPTY(&V_in_ifaddrhead))
1106 return (ENETUNREACH);
1107 /*
1108 * If the destination address is INADDR_ANY, use the primary
1109 * local address. If the supplied address is INADDR_BROADCAST,
1110 * and the primary interface supports broadcast, choose the
1111 * broadcast address for that interface.
1112 */
1113 if (in_nullhost(sin->sin_addr)) {
1114 faddr =
1115 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1116 if ((error = prison_get_ip4(cred, &faddr)) != 0)
1117 return (error);
1118 } else if (sin->sin_addr.s_addr == INADDR_BROADCAST &&
1119 CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags
1120 & IFF_BROADCAST) {
1121 faddr = satosin(&CK_STAILQ_FIRST(
1122 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1123 } else
1124 faddr = sin->sin_addr;
1125 } else
1126 faddr = sin->sin_addr;
1127
1128 if (in_nullhost(inp->inp_laddr)) {
1129 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1130 /*
1131 * If the destination address is multicast and an outgoing
1132 * interface has been set as a multicast option, prefer the
1133 * address of that interface as our source address.
1134 */
1135 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1136 inp->inp_moptions != NULL &&
1137 inp->inp_moptions->imo_multicast_ifp != NULL) {
1138 struct ifnet *ifp =
1139 inp->inp_moptions->imo_multicast_ifp;
1140 struct in_ifaddr *ia;
1141
1142 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1143 if (ia->ia_ifp == ifp &&
1144 prison_check_ip4(cred,
1145 &ia->ia_addr.sin_addr) == 0)
1146 break;
1147 }
1148 if (ia == NULL)
1149 return (EADDRNOTAVAIL);
1150 laddr = ia->ia_addr.sin_addr;
1151 error = 0;
1152 }
1153 if (error)
1154 return (error);
1155 } else
1156 laddr = inp->inp_laddr;
1157
1158 if (anonport) {
1159 struct sockaddr_in lsin = {
1160 .sin_family = AF_INET,
1161 .sin_addr = laddr,
1162 };
1163 struct sockaddr_in fsin = {
1164 .sin_family = AF_INET,
1165 .sin_addr = faddr,
1166 };
1167
1168 error = in_pcb_lport_dest(inp, (struct sockaddr *)&lsin,
1169 &lport, (struct sockaddr *)&fsin, sin->sin_port, cred,
1170 INPLOOKUP_WILDCARD);
1171 if (error)
1172 return (error);
1173 } else if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1174 sin->sin_port, laddr, inp->inp_lport, 0, M_NODOM, RT_ALL_FIBS) !=
1175 NULL)
1176 return (EADDRINUSE);
1177 else
1178 lport = inp->inp_lport;
1179
1180 MPASS(!in_nullhost(inp->inp_laddr) || inp->inp_lport != 0 ||
1181 !(inp->inp_flags & INP_INHASHLIST));
1182
1183 inp->inp_faddr = faddr;
1184 inp->inp_fport = sin->sin_port;
1185 inp->inp_laddr = laddr;
1186 inp->inp_lport = lport;
1187
1188 if ((inp->inp_flags & INP_INHASHLIST) == 0) {
1189 error = in_pcbinshash(inp);
1190 MPASS(error == 0);
1191 } else
1192 in_pcbrehash(inp);
1193 #ifdef ROUTE_MPATH
1194 if (CALC_FLOWID_OUTBOUND) {
1195 uint32_t hash_val, hash_type;
1196
1197 hash_val = fib4_calc_software_hash(inp->inp_laddr,
1198 inp->inp_faddr, 0, sin->sin_port,
1199 inp->inp_socket->so_proto->pr_protocol, &hash_type);
1200
1201 inp->inp_flowid = hash_val;
1202 inp->inp_flowtype = hash_type;
1203 }
1204 #endif
1205 if (anonport)
1206 inp->inp_flags |= INP_ANONPORT;
1207 return (0);
1208 }
1209
1210 /*
1211 * Do proper source address selection on an unbound socket in case
1212 * of connect. Take jails into account as well.
1213 */
1214 int
in_pcbladdr(const struct inpcb * inp,struct in_addr * faddr,struct in_addr * laddr,struct ucred * cred)1215 in_pcbladdr(const struct inpcb *inp, struct in_addr *faddr,
1216 struct in_addr *laddr, struct ucred *cred)
1217 {
1218 struct ifaddr *ifa;
1219 struct sockaddr *sa;
1220 struct sockaddr_in *sin, dst;
1221 struct nhop_object *nh;
1222 int error;
1223
1224 NET_EPOCH_ASSERT();
1225 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1226
1227 /*
1228 * Bypass source address selection and use the primary jail IP
1229 * if requested.
1230 */
1231 if (!prison_saddrsel_ip4(cred, laddr))
1232 return (0);
1233
1234 error = 0;
1235
1236 nh = NULL;
1237 bzero(&dst, sizeof(dst));
1238 sin = &dst;
1239 sin->sin_family = AF_INET;
1240 sin->sin_len = sizeof(struct sockaddr_in);
1241 sin->sin_addr.s_addr = faddr->s_addr;
1242
1243 /*
1244 * If route is known our src addr is taken from the i/f,
1245 * else punt.
1246 *
1247 * Find out route to destination.
1248 */
1249 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1250 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1251 0, NHR_NONE, 0);
1252
1253 /*
1254 * If we found a route, use the address corresponding to
1255 * the outgoing interface.
1256 *
1257 * Otherwise assume faddr is reachable on a directly connected
1258 * network and try to find a corresponding interface to take
1259 * the source address from.
1260 */
1261 if (nh == NULL || nh->nh_ifp == NULL) {
1262 struct in_ifaddr *ia;
1263 struct ifnet *ifp;
1264
1265 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1266 inp->inp_socket->so_fibnum));
1267 if (ia == NULL) {
1268 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1269 inp->inp_socket->so_fibnum));
1270 }
1271 if (ia == NULL) {
1272 error = ENETUNREACH;
1273 goto done;
1274 }
1275
1276 if (!prison_flag(cred, PR_IP4)) {
1277 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1278 goto done;
1279 }
1280
1281 ifp = ia->ia_ifp;
1282 ia = NULL;
1283 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1284 sa = ifa->ifa_addr;
1285 if (sa->sa_family != AF_INET)
1286 continue;
1287 sin = (struct sockaddr_in *)sa;
1288 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1289 ia = (struct in_ifaddr *)ifa;
1290 break;
1291 }
1292 }
1293 if (ia != NULL) {
1294 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1295 goto done;
1296 }
1297
1298 /* 3. As a last resort return the 'default' jail address. */
1299 error = prison_get_ip4(cred, laddr);
1300 goto done;
1301 }
1302
1303 /*
1304 * If the outgoing interface on the route found is not
1305 * a loopback interface, use the address from that interface.
1306 * In case of jails do those three steps:
1307 * 1. check if the interface address belongs to the jail. If so use it.
1308 * 2. check if we have any address on the outgoing interface
1309 * belonging to this jail. If so use it.
1310 * 3. as a last resort return the 'default' jail address.
1311 */
1312 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1313 struct in_ifaddr *ia;
1314 struct ifnet *ifp;
1315
1316 /* If not jailed, use the default returned. */
1317 if (!prison_flag(cred, PR_IP4)) {
1318 ia = (struct in_ifaddr *)nh->nh_ifa;
1319 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1320 goto done;
1321 }
1322
1323 /* Jailed. */
1324 /* 1. Check if the iface address belongs to the jail. */
1325 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1326 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1327 ia = (struct in_ifaddr *)nh->nh_ifa;
1328 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1329 goto done;
1330 }
1331
1332 /*
1333 * 2. Check if we have any address on the outgoing interface
1334 * belonging to this jail.
1335 */
1336 ia = NULL;
1337 ifp = nh->nh_ifp;
1338 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1339 sa = ifa->ifa_addr;
1340 if (sa->sa_family != AF_INET)
1341 continue;
1342 sin = (struct sockaddr_in *)sa;
1343 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1344 ia = (struct in_ifaddr *)ifa;
1345 break;
1346 }
1347 }
1348 if (ia != NULL) {
1349 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1350 goto done;
1351 }
1352
1353 /* 3. As a last resort return the 'default' jail address. */
1354 error = prison_get_ip4(cred, laddr);
1355 goto done;
1356 }
1357
1358 /*
1359 * The outgoing interface is marked with 'loopback net', so a route
1360 * to ourselves is here.
1361 * Try to find the interface of the destination address and then
1362 * take the address from there. That interface is not necessarily
1363 * a loopback interface.
1364 * In case of jails, check that it is an address of the jail
1365 * and if we cannot find, fall back to the 'default' jail address.
1366 */
1367 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1368 struct in_ifaddr *ia;
1369
1370 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1371 inp->inp_socket->so_fibnum));
1372 if (ia == NULL)
1373 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1374 inp->inp_socket->so_fibnum));
1375 if (ia == NULL)
1376 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1377
1378 if (!prison_flag(cred, PR_IP4)) {
1379 if (ia == NULL) {
1380 error = ENETUNREACH;
1381 goto done;
1382 }
1383 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1384 goto done;
1385 }
1386
1387 /* Jailed. */
1388 if (ia != NULL) {
1389 struct ifnet *ifp;
1390
1391 ifp = ia->ia_ifp;
1392 ia = NULL;
1393 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1394 sa = ifa->ifa_addr;
1395 if (sa->sa_family != AF_INET)
1396 continue;
1397 sin = (struct sockaddr_in *)sa;
1398 if (prison_check_ip4(cred,
1399 &sin->sin_addr) == 0) {
1400 ia = (struct in_ifaddr *)ifa;
1401 break;
1402 }
1403 }
1404 if (ia != NULL) {
1405 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1406 goto done;
1407 }
1408 }
1409
1410 /* 3. As a last resort return the 'default' jail address. */
1411 error = prison_get_ip4(cred, laddr);
1412 goto done;
1413 }
1414
1415 done:
1416 if (error == 0 && laddr->s_addr == INADDR_ANY)
1417 return (EHOSTUNREACH);
1418 return (error);
1419 }
1420
1421 void
in_pcbdisconnect(struct inpcb * inp)1422 in_pcbdisconnect(struct inpcb *inp)
1423 {
1424
1425 INP_WLOCK_ASSERT(inp);
1426 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1427 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1428 ("%s: inp %p was already disconnected", __func__, inp));
1429
1430 in_pcbremhash_locked(inp);
1431
1432 /* See the comment in in_pcbinshash(). */
1433 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1434 inp->inp_laddr.s_addr = INADDR_ANY;
1435 inp->inp_faddr.s_addr = INADDR_ANY;
1436 inp->inp_fport = 0;
1437 }
1438 #endif /* INET */
1439
1440 void
in_pcblisten(struct inpcb * inp)1441 in_pcblisten(struct inpcb *inp)
1442 {
1443 struct inpcblbgroup *grp;
1444
1445 INP_WLOCK_ASSERT(inp);
1446
1447 if ((inp->inp_flags & INP_INLBGROUP) != 0) {
1448 struct inpcbinfo *pcbinfo;
1449
1450 pcbinfo = inp->inp_pcbinfo;
1451 INP_HASH_WLOCK(pcbinfo);
1452 grp = in_pcblbgroup_find(inp);
1453 LIST_REMOVE(inp, inp_lbgroup_list);
1454 grp->il_pendcnt--;
1455 in_pcblbgroup_insert(grp, inp);
1456 INP_HASH_WUNLOCK(pcbinfo);
1457 }
1458 }
1459
1460 /*
1461 * inpcb hash lookups are protected by SMR section.
1462 *
1463 * Once desired pcb has been found, switching from SMR section to a pcb
1464 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1465 * here because SMR is a critical section.
1466 * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1467 */
1468 void
inp_lock(struct inpcb * inp,const inp_lookup_t lock)1469 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1470 {
1471
1472 lock == INPLOOKUP_RLOCKPCB ?
1473 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1474 }
1475
1476 void
inp_unlock(struct inpcb * inp,const inp_lookup_t lock)1477 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1478 {
1479
1480 lock == INPLOOKUP_RLOCKPCB ?
1481 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1482 }
1483
1484 int
inp_trylock(struct inpcb * inp,const inp_lookup_t lock)1485 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1486 {
1487
1488 return (lock == INPLOOKUP_RLOCKPCB ?
1489 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1490 }
1491
1492 static inline bool
_inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock,const int ignflags)1493 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1494 {
1495
1496 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1497 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1498
1499 if (__predict_true(inp_trylock(inp, lock))) {
1500 if (__predict_false(inp->inp_flags & ignflags)) {
1501 smr_exit(inp->inp_pcbinfo->ipi_smr);
1502 inp_unlock(inp, lock);
1503 return (false);
1504 }
1505 smr_exit(inp->inp_pcbinfo->ipi_smr);
1506 return (true);
1507 }
1508
1509 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1510 smr_exit(inp->inp_pcbinfo->ipi_smr);
1511 inp_lock(inp, lock);
1512 if (__predict_false(in_pcbrele(inp, lock)))
1513 return (false);
1514 /*
1515 * inp acquired through refcount & lock for sure didn't went
1516 * through uma_zfree(). However, it may have already went
1517 * through in_pcbfree() and has another reference, that
1518 * prevented its release by our in_pcbrele().
1519 */
1520 if (__predict_false(inp->inp_flags & ignflags)) {
1521 inp_unlock(inp, lock);
1522 return (false);
1523 }
1524 return (true);
1525 } else {
1526 smr_exit(inp->inp_pcbinfo->ipi_smr);
1527 return (false);
1528 }
1529 }
1530
1531 bool
inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock)1532 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1533 {
1534
1535 /*
1536 * in_pcblookup() family of functions ignore not only freed entries,
1537 * that may be found due to lockless access to the hash, but dropped
1538 * entries, too.
1539 */
1540 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1541 }
1542
1543 /*
1544 * inp_next() - inpcb hash/list traversal iterator
1545 *
1546 * Requires initialized struct inpcb_iterator for context.
1547 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1548 *
1549 * - Iterator can have either write-lock or read-lock semantics, that can not
1550 * be changed later.
1551 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1552 * a single hash slot. Note: only rip_input() does the latter.
1553 * - Iterator may have optional bool matching function. The matching function
1554 * will be executed for each inpcb in the SMR context, so it can not acquire
1555 * locks and can safely access only immutable fields of inpcb.
1556 *
1557 * A fresh initialized iterator has NULL inpcb in its context and that
1558 * means that inp_next() call would return the very first inpcb on the list
1559 * locked with desired semantic. In all following calls the context pointer
1560 * shall hold the current inpcb pointer. The KPI user is not supposed to
1561 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL
1562 * and write NULL to its context. After end of traversal an iterator can be
1563 * reused.
1564 *
1565 * List traversals have the following features/constraints:
1566 * - New entries won't be seen, as they are always added to the head of a list.
1567 * - Removed entries won't stop traversal as long as they are not added to
1568 * a different list. This is violated by in_pcbrehash().
1569 */
1570 #define II_LIST_FIRST(ipi, hash) \
1571 (((hash) == INP_ALL_LIST) ? \
1572 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \
1573 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1574 #define II_LIST_NEXT(inp, hash) \
1575 (((hash) == INP_ALL_LIST) ? \
1576 CK_LIST_NEXT((inp), inp_list) : \
1577 CK_LIST_NEXT((inp), inp_hash_exact))
1578 #define II_LOCK_ASSERT(inp, lock) \
1579 rw_assert(&(inp)->inp_lock, \
1580 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED )
1581 struct inpcb *
inp_next(struct inpcb_iterator * ii)1582 inp_next(struct inpcb_iterator *ii)
1583 {
1584 const struct inpcbinfo *ipi = ii->ipi;
1585 inp_match_t *match = ii->match;
1586 void *ctx = ii->ctx;
1587 inp_lookup_t lock = ii->lock;
1588 int hash = ii->hash;
1589 struct inpcb *inp;
1590
1591 if (ii->inp == NULL) { /* First call. */
1592 smr_enter(ipi->ipi_smr);
1593 /* This is unrolled CK_LIST_FOREACH(). */
1594 for (inp = II_LIST_FIRST(ipi, hash);
1595 inp != NULL;
1596 inp = II_LIST_NEXT(inp, hash)) {
1597 if (match != NULL && (match)(inp, ctx) == false)
1598 continue;
1599 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1600 break;
1601 else {
1602 smr_enter(ipi->ipi_smr);
1603 MPASS(inp != II_LIST_FIRST(ipi, hash));
1604 inp = II_LIST_FIRST(ipi, hash);
1605 if (inp == NULL)
1606 break;
1607 }
1608 }
1609
1610 if (inp == NULL)
1611 smr_exit(ipi->ipi_smr);
1612 else
1613 ii->inp = inp;
1614
1615 return (inp);
1616 }
1617
1618 /* Not a first call. */
1619 smr_enter(ipi->ipi_smr);
1620 restart:
1621 inp = ii->inp;
1622 II_LOCK_ASSERT(inp, lock);
1623 next:
1624 inp = II_LIST_NEXT(inp, hash);
1625 if (inp == NULL) {
1626 smr_exit(ipi->ipi_smr);
1627 goto found;
1628 }
1629
1630 if (match != NULL && (match)(inp, ctx) == false)
1631 goto next;
1632
1633 if (__predict_true(inp_trylock(inp, lock))) {
1634 if (__predict_false(inp->inp_flags & INP_FREED)) {
1635 /*
1636 * Entries are never inserted in middle of a list, thus
1637 * as long as we are in SMR, we can continue traversal.
1638 * Jump to 'restart' should yield in the same result,
1639 * but could produce unnecessary looping. Could this
1640 * looping be unbound?
1641 */
1642 inp_unlock(inp, lock);
1643 goto next;
1644 } else {
1645 smr_exit(ipi->ipi_smr);
1646 goto found;
1647 }
1648 }
1649
1650 /*
1651 * Can't obtain lock immediately, thus going hard. Once we exit the
1652 * SMR section we can no longer jump to 'next', and our only stable
1653 * anchoring point is ii->inp, which we keep locked for this case, so
1654 * we jump to 'restart'.
1655 */
1656 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1657 smr_exit(ipi->ipi_smr);
1658 inp_lock(inp, lock);
1659 if (__predict_false(in_pcbrele(inp, lock))) {
1660 smr_enter(ipi->ipi_smr);
1661 goto restart;
1662 }
1663 /*
1664 * See comment in inp_smr_lock().
1665 */
1666 if (__predict_false(inp->inp_flags & INP_FREED)) {
1667 inp_unlock(inp, lock);
1668 smr_enter(ipi->ipi_smr);
1669 goto restart;
1670 }
1671 } else
1672 goto next;
1673
1674 found:
1675 inp_unlock(ii->inp, lock);
1676 ii->inp = inp;
1677
1678 return (ii->inp);
1679 }
1680
1681 /*
1682 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1683 * stability of an inpcb pointer despite the inpcb lock being released or
1684 * SMR section exited.
1685 *
1686 * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1687 */
1688 void
in_pcbref(struct inpcb * inp)1689 in_pcbref(struct inpcb *inp)
1690 {
1691 u_int old __diagused;
1692
1693 old = refcount_acquire(&inp->inp_refcount);
1694 KASSERT(old > 0, ("%s: refcount 0", __func__));
1695 }
1696
1697 /*
1698 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1699 * freeing the pcb, if the reference was very last.
1700 */
1701 bool
in_pcbrele_rlocked(struct inpcb * inp)1702 in_pcbrele_rlocked(struct inpcb *inp)
1703 {
1704
1705 INP_RLOCK_ASSERT(inp);
1706
1707 if (!refcount_release(&inp->inp_refcount))
1708 return (false);
1709
1710 MPASS(inp->inp_flags & INP_FREED);
1711 MPASS(inp->inp_socket == NULL);
1712 crfree(inp->inp_cred);
1713 #ifdef INVARIANTS
1714 inp->inp_cred = NULL;
1715 #endif
1716 INP_RUNLOCK(inp);
1717 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1718 return (true);
1719 }
1720
1721 bool
in_pcbrele_wlocked(struct inpcb * inp)1722 in_pcbrele_wlocked(struct inpcb *inp)
1723 {
1724
1725 INP_WLOCK_ASSERT(inp);
1726
1727 if (!refcount_release(&inp->inp_refcount))
1728 return (false);
1729
1730 MPASS(inp->inp_flags & INP_FREED);
1731 MPASS(inp->inp_socket == NULL);
1732 crfree(inp->inp_cred);
1733 #ifdef INVARIANTS
1734 inp->inp_cred = NULL;
1735 #endif
1736 INP_WUNLOCK(inp);
1737 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1738 return (true);
1739 }
1740
1741 bool
in_pcbrele(struct inpcb * inp,const inp_lookup_t lock)1742 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1743 {
1744
1745 return (lock == INPLOOKUP_RLOCKPCB ?
1746 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1747 }
1748
1749 /*
1750 * Unconditionally schedule an inpcb to be freed by decrementing its
1751 * reference count, which should occur only after the inpcb has been detached
1752 * from its socket. If another thread holds a temporary reference (acquired
1753 * using in_pcbref()) then the free is deferred until that reference is
1754 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1755 * Almost all work, including removal from global lists, is done in this
1756 * context, where the pcbinfo lock is held.
1757 */
1758 void
in_pcbfree(struct inpcb * inp)1759 in_pcbfree(struct inpcb *inp)
1760 {
1761 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1762 #ifdef INET
1763 struct ip_moptions *imo;
1764 #endif
1765 #ifdef INET6
1766 struct ip6_moptions *im6o;
1767 #endif
1768
1769 INP_WLOCK_ASSERT(inp);
1770 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1771 KASSERT((inp->inp_flags & INP_FREED) == 0,
1772 ("%s: called twice for pcb %p", __func__, inp));
1773
1774 /*
1775 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1776 * from the hash without acquiring inpcb lock, they rely on the hash
1777 * lock, thus in_pcbremhash() should be the first action.
1778 */
1779 if (inp->inp_flags & INP_INHASHLIST)
1780 in_pcbremhash(inp);
1781 INP_INFO_WLOCK(pcbinfo);
1782 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1783 pcbinfo->ipi_count--;
1784 CK_LIST_REMOVE(inp, inp_list);
1785 INP_INFO_WUNLOCK(pcbinfo);
1786
1787 #ifdef RATELIMIT
1788 if (inp->inp_snd_tag != NULL)
1789 in_pcbdetach_txrtlmt(inp);
1790 #endif
1791 inp->inp_flags |= INP_FREED;
1792 inp->inp_socket->so_pcb = NULL;
1793 inp->inp_socket = NULL;
1794
1795 RO_INVALIDATE_CACHE(&inp->inp_route);
1796 #ifdef MAC
1797 mac_inpcb_destroy(inp);
1798 #endif
1799 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1800 if (inp->inp_sp != NULL)
1801 ipsec_delete_pcbpolicy(inp);
1802 #endif
1803 #ifdef INET
1804 if (inp->inp_options)
1805 (void)m_free(inp->inp_options);
1806 DEBUG_POISON_POINTER(inp->inp_options);
1807 imo = inp->inp_moptions;
1808 DEBUG_POISON_POINTER(inp->inp_moptions);
1809 #endif
1810 #ifdef INET6
1811 if (inp->inp_vflag & INP_IPV6PROTO) {
1812 ip6_freepcbopts(inp->in6p_outputopts);
1813 DEBUG_POISON_POINTER(inp->in6p_outputopts);
1814 im6o = inp->in6p_moptions;
1815 DEBUG_POISON_POINTER(inp->in6p_moptions);
1816 } else
1817 im6o = NULL;
1818 #endif
1819
1820 if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1821 INP_WUNLOCK(inp);
1822 }
1823 #ifdef INET6
1824 ip6_freemoptions(im6o);
1825 #endif
1826 #ifdef INET
1827 inp_freemoptions(imo);
1828 #endif
1829 }
1830
1831 /*
1832 * Different protocols initialize their inpcbs differently - giving
1833 * different name to the lock. But they all are disposed the same.
1834 */
1835 static void
inpcb_fini(void * mem,int size)1836 inpcb_fini(void *mem, int size)
1837 {
1838 struct inpcb *inp = mem;
1839
1840 INP_LOCK_DESTROY(inp);
1841 }
1842
1843 /*
1844 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1845 * port reservation, and preventing it from being returned by inpcb lookups.
1846 *
1847 * It is used by TCP to mark an inpcb as unused and avoid future packet
1848 * delivery or event notification when a socket remains open but TCP has
1849 * closed. This might occur as a result of a shutdown()-initiated TCP close
1850 * or a RST on the wire, and allows the port binding to be reused while still
1851 * maintaining the invariant that so_pcb always points to a valid inpcb until
1852 * in_pcbdetach().
1853 *
1854 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1855 * in_pcbpurgeif0()?
1856 */
1857 void
in_pcbdrop(struct inpcb * inp)1858 in_pcbdrop(struct inpcb *inp)
1859 {
1860
1861 INP_WLOCK_ASSERT(inp);
1862
1863 inp->inp_flags |= INP_DROPPED;
1864 if (inp->inp_flags & INP_INHASHLIST)
1865 in_pcbremhash(inp);
1866 }
1867
1868 #ifdef INET
1869 /*
1870 * Common routines to return the socket addresses associated with inpcbs.
1871 */
1872 int
in_getsockaddr(struct socket * so,struct sockaddr * sa)1873 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1874 {
1875 struct inpcb *inp;
1876
1877 inp = sotoinpcb(so);
1878 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1879
1880 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1881 .sin_len = sizeof(struct sockaddr_in),
1882 .sin_family = AF_INET,
1883 .sin_port = inp->inp_lport,
1884 .sin_addr = inp->inp_laddr,
1885 };
1886
1887 return (0);
1888 }
1889
1890 int
in_getpeeraddr(struct socket * so,struct sockaddr * sa)1891 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1892 {
1893 struct inpcb *inp;
1894
1895 inp = sotoinpcb(so);
1896 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1897
1898 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1899 .sin_len = sizeof(struct sockaddr_in),
1900 .sin_family = AF_INET,
1901 .sin_port = inp->inp_fport,
1902 .sin_addr = inp->inp_faddr,
1903 };
1904
1905 return (0);
1906 }
1907
1908 static bool
inp_v4_multi_match(const struct inpcb * inp,void * v __unused)1909 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1910 {
1911
1912 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1913 return (true);
1914 else
1915 return (false);
1916 }
1917
1918 void
in_pcbpurgeif0(struct inpcbinfo * pcbinfo,struct ifnet * ifp)1919 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1920 {
1921 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1922 inp_v4_multi_match, NULL);
1923 struct inpcb *inp;
1924 struct in_multi *inm;
1925 struct in_mfilter *imf;
1926 struct ip_moptions *imo;
1927
1928 IN_MULTI_LOCK_ASSERT();
1929
1930 while ((inp = inp_next(&inpi)) != NULL) {
1931 INP_WLOCK_ASSERT(inp);
1932
1933 imo = inp->inp_moptions;
1934 /*
1935 * Unselect the outgoing interface if it is being
1936 * detached.
1937 */
1938 if (imo->imo_multicast_ifp == ifp)
1939 imo->imo_multicast_ifp = NULL;
1940
1941 /*
1942 * Drop multicast group membership if we joined
1943 * through the interface being detached.
1944 *
1945 * XXX This can all be deferred to an epoch_call
1946 */
1947 restart:
1948 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1949 if ((inm = imf->imf_inm) == NULL)
1950 continue;
1951 if (inm->inm_ifp != ifp)
1952 continue;
1953 ip_mfilter_remove(&imo->imo_head, imf);
1954 in_leavegroup_locked(inm, NULL);
1955 ip_mfilter_free(imf);
1956 goto restart;
1957 }
1958 }
1959 }
1960
1961 /*
1962 * Lookup a PCB based on the local address and port. Caller must hold the
1963 * hash lock. No inpcb locks or references are acquired.
1964 */
1965 #define INP_LOOKUP_MAPPED_PCB_COST 3
1966 struct inpcb *
in_pcblookup_local(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,int lookupflags,struct ucred * cred)1967 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1968 u_short lport, int fib, int lookupflags, struct ucred *cred)
1969 {
1970 struct inpcb *inp;
1971 #ifdef INET6
1972 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1973 #else
1974 int matchwild = 3;
1975 #endif
1976 int wildcard;
1977
1978 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1979 ("%s: invalid lookup flags %d", __func__, lookupflags));
1980 KASSERT(fib == RT_ALL_FIBS || (fib >= 0 && fib < V_rt_numfibs),
1981 ("%s: invalid fib %d", __func__, fib));
1982
1983 INP_HASH_LOCK_ASSERT(pcbinfo);
1984
1985 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1986 struct inpcbhead *head;
1987 /*
1988 * Look for an unconnected (wildcard foreign addr) PCB that
1989 * matches the local address and port we're looking for.
1990 */
1991 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1992 pcbinfo->ipi_hashmask)];
1993 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1994 #ifdef INET6
1995 /* XXX inp locking */
1996 if ((inp->inp_vflag & INP_IPV4) == 0)
1997 continue;
1998 #endif
1999 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2000 inp->inp_laddr.s_addr == laddr.s_addr &&
2001 inp->inp_lport == lport && (fib == RT_ALL_FIBS ||
2002 inp->inp_inc.inc_fibnum == fib)) {
2003 /*
2004 * Found?
2005 */
2006 if (prison_equal_ip4(cred->cr_prison,
2007 inp->inp_cred->cr_prison))
2008 return (inp);
2009 }
2010 }
2011 /*
2012 * Not found.
2013 */
2014 return (NULL);
2015 } else {
2016 struct inpcbhead *porthash;
2017 struct inpcb *match = NULL;
2018
2019 /*
2020 * Port is in use by one or more PCBs. Look for best
2021 * fit.
2022 */
2023 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2024 pcbinfo->ipi_porthashmask)];
2025 CK_LIST_FOREACH(inp, porthash, inp_portlist) {
2026 if (inp->inp_lport != lport)
2027 continue;
2028 if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2029 cred->cr_prison))
2030 continue;
2031 if (fib != RT_ALL_FIBS &&
2032 inp->inp_inc.inc_fibnum != fib)
2033 continue;
2034 wildcard = 0;
2035 #ifdef INET6
2036 /* XXX inp locking */
2037 if ((inp->inp_vflag & INP_IPV4) == 0)
2038 continue;
2039 /*
2040 * We never select the PCB that has INP_IPV6 flag and
2041 * is bound to :: if we have another PCB which is bound
2042 * to 0.0.0.0. If a PCB has the INP_IPV6 flag, then we
2043 * set its cost higher than IPv4 only PCBs.
2044 *
2045 * Note that the case only happens when a socket is
2046 * bound to ::, under the condition that the use of the
2047 * mapped address is allowed.
2048 */
2049 if ((inp->inp_vflag & INP_IPV6) != 0)
2050 wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2051 #endif
2052 if (inp->inp_faddr.s_addr != INADDR_ANY)
2053 wildcard++;
2054 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2055 if (laddr.s_addr == INADDR_ANY)
2056 wildcard++;
2057 else if (inp->inp_laddr.s_addr != laddr.s_addr)
2058 continue;
2059 } else {
2060 if (laddr.s_addr != INADDR_ANY)
2061 wildcard++;
2062 }
2063 if (wildcard < matchwild) {
2064 match = inp;
2065 matchwild = wildcard;
2066 if (matchwild == 0)
2067 break;
2068 }
2069 }
2070 return (match);
2071 }
2072 }
2073 #undef INP_LOOKUP_MAPPED_PCB_COST
2074
2075 static bool
in_pcblookup_lb_match(const struct inpcblbgroup * grp,int domain,int fib)2076 in_pcblookup_lb_match(const struct inpcblbgroup *grp, int domain, int fib)
2077 {
2078 return ((domain == M_NODOM || domain == grp->il_numa_domain) &&
2079 (fib == RT_ALL_FIBS || fib == grp->il_fibnum));
2080 }
2081
2082 static struct inpcb *
in_pcblookup_lbgroup(const struct inpcbinfo * pcbinfo,const struct in_addr * faddr,uint16_t fport,const struct in_addr * laddr,uint16_t lport,int domain,int fib)2083 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2084 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2085 uint16_t lport, int domain, int fib)
2086 {
2087 const struct inpcblbgrouphead *hdr;
2088 struct inpcblbgroup *grp;
2089 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2090 struct inpcb *inp;
2091 u_int count;
2092
2093 INP_HASH_LOCK_ASSERT(pcbinfo);
2094 NET_EPOCH_ASSERT();
2095
2096 hdr = &pcbinfo->ipi_lbgrouphashbase[
2097 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2098
2099 /*
2100 * Search for an LB group match based on the following criteria:
2101 * - prefer jailed groups to non-jailed groups
2102 * - prefer exact source address matches to wildcard matches
2103 * - prefer groups bound to the specified NUMA domain
2104 */
2105 jail_exact = jail_wild = local_exact = local_wild = NULL;
2106 CK_LIST_FOREACH(grp, hdr, il_list) {
2107 bool injail;
2108
2109 #ifdef INET6
2110 if (!(grp->il_vflag & INP_IPV4))
2111 continue;
2112 #endif
2113 if (grp->il_lport != lport)
2114 continue;
2115
2116 injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2117 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2118 laddr) != 0)
2119 continue;
2120
2121 if (grp->il_laddr.s_addr == laddr->s_addr) {
2122 if (injail) {
2123 jail_exact = grp;
2124 if (in_pcblookup_lb_match(grp, domain, fib))
2125 /* This is a perfect match. */
2126 goto out;
2127 } else if (local_exact == NULL ||
2128 in_pcblookup_lb_match(grp, domain, fib)) {
2129 local_exact = grp;
2130 }
2131 } else if (grp->il_laddr.s_addr == INADDR_ANY) {
2132 if (injail) {
2133 if (jail_wild == NULL ||
2134 in_pcblookup_lb_match(grp, domain, fib))
2135 jail_wild = grp;
2136 } else if (local_wild == NULL ||
2137 in_pcblookup_lb_match(grp, domain, fib)) {
2138 local_wild = grp;
2139 }
2140 }
2141 }
2142
2143 if (jail_exact != NULL)
2144 grp = jail_exact;
2145 else if (jail_wild != NULL)
2146 grp = jail_wild;
2147 else if (local_exact != NULL)
2148 grp = local_exact;
2149 else
2150 grp = local_wild;
2151 if (grp == NULL)
2152 return (NULL);
2153
2154 out:
2155 /*
2156 * Synchronize with in_pcblbgroup_insert().
2157 */
2158 count = atomic_load_acq_int(&grp->il_inpcnt);
2159 if (count == 0)
2160 return (NULL);
2161 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2162 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2163 return (inp);
2164 }
2165
2166 static bool
in_pcblookup_exact_match(const struct inpcb * inp,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2167 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2168 u_short fport, struct in_addr laddr, u_short lport)
2169 {
2170 #ifdef INET6
2171 /* XXX inp locking */
2172 if ((inp->inp_vflag & INP_IPV4) == 0)
2173 return (false);
2174 #endif
2175 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2176 inp->inp_laddr.s_addr == laddr.s_addr &&
2177 inp->inp_fport == fport &&
2178 inp->inp_lport == lport)
2179 return (true);
2180 return (false);
2181 }
2182
2183 static struct inpcb *
in_pcblookup_hash_exact(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2184 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2185 u_short fport, struct in_addr laddr, u_short lport)
2186 {
2187 struct inpcbhead *head;
2188 struct inpcb *inp;
2189
2190 INP_HASH_LOCK_ASSERT(pcbinfo);
2191
2192 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2193 pcbinfo->ipi_hashmask)];
2194 CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2195 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2196 return (inp);
2197 }
2198 return (NULL);
2199 }
2200
2201 typedef enum {
2202 INPLOOKUP_MATCH_NONE = 0,
2203 INPLOOKUP_MATCH_WILD = 1,
2204 INPLOOKUP_MATCH_LADDR = 2,
2205 } inp_lookup_match_t;
2206
2207 static inp_lookup_match_t
in_pcblookup_wild_match(const struct inpcb * inp,struct in_addr laddr,u_short lport,int fib)2208 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2209 u_short lport, int fib)
2210 {
2211 #ifdef INET6
2212 /* XXX inp locking */
2213 if ((inp->inp_vflag & INP_IPV4) == 0)
2214 return (INPLOOKUP_MATCH_NONE);
2215 #endif
2216 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2217 return (INPLOOKUP_MATCH_NONE);
2218 if (fib != RT_ALL_FIBS && inp->inp_inc.inc_fibnum != fib)
2219 return (INPLOOKUP_MATCH_NONE);
2220 if (inp->inp_laddr.s_addr == INADDR_ANY)
2221 return (INPLOOKUP_MATCH_WILD);
2222 if (inp->inp_laddr.s_addr == laddr.s_addr)
2223 return (INPLOOKUP_MATCH_LADDR);
2224 return (INPLOOKUP_MATCH_NONE);
2225 }
2226
2227 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1)
2228
2229 static struct inpcb *
in_pcblookup_hash_wild_smr(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib,const inp_lookup_t lockflags)2230 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2231 u_short lport, int fib, const inp_lookup_t lockflags)
2232 {
2233 struct inpcbhead *head;
2234 struct inpcb *inp;
2235
2236 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2237 ("%s: not in SMR read section", __func__));
2238
2239 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2240 pcbinfo->ipi_hashmask)];
2241 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2242 inp_lookup_match_t match;
2243
2244 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2245 if (match == INPLOOKUP_MATCH_NONE)
2246 continue;
2247
2248 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2249 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2250 if (match != INPLOOKUP_MATCH_NONE &&
2251 prison_check_ip4_locked(inp->inp_cred->cr_prison,
2252 &laddr) == 0)
2253 return (inp);
2254 inp_unlock(inp, lockflags);
2255 }
2256
2257 /*
2258 * The matching socket disappeared out from under us. Fall back
2259 * to a serialized lookup.
2260 */
2261 return (INP_LOOKUP_AGAIN);
2262 }
2263 return (NULL);
2264 }
2265
2266 static struct inpcb *
in_pcblookup_hash_wild_locked(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int fib)2267 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2268 u_short lport, int fib)
2269 {
2270 struct inpcbhead *head;
2271 struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2272 #ifdef INET6
2273 struct inpcb *local_wild_mapped;
2274 #endif
2275
2276 INP_HASH_LOCK_ASSERT(pcbinfo);
2277
2278 /*
2279 * Order of socket selection - we always prefer jails.
2280 * 1. jailed, non-wild.
2281 * 2. jailed, wild.
2282 * 3. non-jailed, non-wild.
2283 * 4. non-jailed, wild.
2284 */
2285 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2286 pcbinfo->ipi_hashmask)];
2287 local_wild = local_exact = jail_wild = NULL;
2288 #ifdef INET6
2289 local_wild_mapped = NULL;
2290 #endif
2291 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2292 inp_lookup_match_t match;
2293 bool injail;
2294
2295 match = in_pcblookup_wild_match(inp, laddr, lport, fib);
2296 if (match == INPLOOKUP_MATCH_NONE)
2297 continue;
2298
2299 injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2300 if (injail) {
2301 if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2302 &laddr) != 0)
2303 continue;
2304 } else {
2305 if (local_exact != NULL)
2306 continue;
2307 }
2308
2309 if (match == INPLOOKUP_MATCH_LADDR) {
2310 if (injail)
2311 return (inp);
2312 local_exact = inp;
2313 } else {
2314 #ifdef INET6
2315 /* XXX inp locking, NULL check */
2316 if (inp->inp_vflag & INP_IPV6PROTO)
2317 local_wild_mapped = inp;
2318 else
2319 #endif
2320 if (injail)
2321 jail_wild = inp;
2322 else
2323 local_wild = inp;
2324 }
2325 }
2326 if (jail_wild != NULL)
2327 return (jail_wild);
2328 if (local_exact != NULL)
2329 return (local_exact);
2330 if (local_wild != NULL)
2331 return (local_wild);
2332 #ifdef INET6
2333 if (local_wild_mapped != NULL)
2334 return (local_wild_mapped);
2335 #endif
2336 return (NULL);
2337 }
2338
2339 /*
2340 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes
2341 * that the caller has either locked the hash list, which usually happens
2342 * for bind(2) operations, or is in SMR section, which happens when sorting
2343 * out incoming packets.
2344 */
2345 static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2346 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2347 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2348 uint8_t numa_domain, int fib)
2349 {
2350 struct inpcb *inp;
2351 const u_short fport = fport_arg, lport = lport_arg;
2352
2353 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD | INPLOOKUP_FIB)) == 0,
2354 ("%s: invalid lookup flags %d", __func__, lookupflags));
2355 KASSERT(faddr.s_addr != INADDR_ANY,
2356 ("%s: invalid foreign address", __func__));
2357 KASSERT(laddr.s_addr != INADDR_ANY,
2358 ("%s: invalid local address", __func__));
2359 INP_HASH_WLOCK_ASSERT(pcbinfo);
2360
2361 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2362 if (inp != NULL)
2363 return (inp);
2364
2365 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2366 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2367 &laddr, lport, numa_domain, fib);
2368 if (inp == NULL) {
2369 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2370 lport, fib);
2371 }
2372 }
2373
2374 return (inp);
2375 }
2376
2377 static struct inpcb *
in_pcblookup_hash(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,uint8_t numa_domain,int fib)2378 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2379 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2380 uint8_t numa_domain, int fib)
2381 {
2382 struct inpcb *inp;
2383 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2384
2385 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2386 ("%s: LOCKPCB not set", __func__));
2387
2388 INP_HASH_WLOCK(pcbinfo);
2389 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2390 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain, fib);
2391 if (inp != NULL && !inp_trylock(inp, lockflags)) {
2392 in_pcbref(inp);
2393 INP_HASH_WUNLOCK(pcbinfo);
2394 inp_lock(inp, lockflags);
2395 if (in_pcbrele(inp, lockflags))
2396 /* XXX-MJ or retry until we get a negative match? */
2397 inp = NULL;
2398 } else {
2399 INP_HASH_WUNLOCK(pcbinfo);
2400 }
2401 return (inp);
2402 }
2403
2404 static struct inpcb *
in_pcblookup_hash_smr(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain,int fib)2405 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2406 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2407 uint8_t numa_domain, int fib)
2408 {
2409 struct inpcb *inp;
2410 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2411 const u_short fport = fport_arg, lport = lport_arg;
2412
2413 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2414 ("%s: invalid lookup flags %d", __func__, lookupflags));
2415 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2416 ("%s: LOCKPCB not set", __func__));
2417
2418 smr_enter(pcbinfo->ipi_smr);
2419 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2420 if (inp != NULL) {
2421 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2422 /*
2423 * Revalidate the 4-tuple, the socket could have been
2424 * disconnected.
2425 */
2426 if (__predict_true(in_pcblookup_exact_match(inp,
2427 faddr, fport, laddr, lport)))
2428 return (inp);
2429 inp_unlock(inp, lockflags);
2430 }
2431
2432 /*
2433 * We failed to lock the inpcb, or its connection state changed
2434 * out from under us. Fall back to a precise search.
2435 */
2436 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2437 lookupflags, numa_domain, fib));
2438 }
2439
2440 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2441 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2442 &laddr, lport, numa_domain, fib);
2443 if (inp != NULL) {
2444 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2445 if (__predict_true(in_pcblookup_wild_match(inp,
2446 laddr, lport, fib) != INPLOOKUP_MATCH_NONE))
2447 return (inp);
2448 inp_unlock(inp, lockflags);
2449 }
2450 inp = INP_LOOKUP_AGAIN;
2451 } else {
2452 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2453 fib, lockflags);
2454 }
2455 if (inp == INP_LOOKUP_AGAIN) {
2456 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2457 lport, lookupflags, numa_domain, fib));
2458 }
2459 }
2460
2461 if (inp == NULL)
2462 smr_exit(pcbinfo->ipi_smr);
2463
2464 return (inp);
2465 }
2466
2467 /*
2468 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2469 * from which a pre-calculated hash value may be extracted.
2470 */
2471 struct inpcb *
in_pcblookup(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp)2472 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2473 struct in_addr laddr, u_int lport, int lookupflags,
2474 struct ifnet *ifp)
2475 {
2476 int fib;
2477
2478 fib = (lookupflags & INPLOOKUP_FIB) ? if_getfib(ifp) : RT_ALL_FIBS;
2479 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2480 lookupflags, M_NODOM, fib));
2481 }
2482
2483 struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp __unused,struct mbuf * m)2484 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2485 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2486 struct ifnet *ifp __unused, struct mbuf *m)
2487 {
2488 int fib;
2489
2490 M_ASSERTPKTHDR(m);
2491 fib = (lookupflags & INPLOOKUP_FIB) ? M_GETFIB(m) : RT_ALL_FIBS;
2492 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2493 lookupflags, m->m_pkthdr.numa_domain, fib));
2494 }
2495 #endif /* INET */
2496
2497 static bool
in_pcbjailed(const struct inpcb * inp,unsigned int flag)2498 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2499 {
2500 return (prison_flag(inp->inp_cred, flag) != 0);
2501 }
2502
2503 /*
2504 * Insert the PCB into a hash chain using ordering rules which ensure that
2505 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2506 *
2507 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2508 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs
2509 * always appear last no matter whether they are jailed.
2510 */
2511 static void
_in_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2512 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2513 {
2514 struct inpcb *last;
2515 bool bound, injail;
2516
2517 INP_LOCK_ASSERT(inp);
2518 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2519
2520 last = NULL;
2521 bound = inp->inp_laddr.s_addr != INADDR_ANY;
2522 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2523 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2524 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2525 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2526 return;
2527 }
2528 }
2529 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2530 return;
2531 }
2532
2533 injail = in_pcbjailed(inp, PR_IP4);
2534 if (!injail) {
2535 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2536 if (!in_pcbjailed(last, PR_IP4))
2537 break;
2538 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2539 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2540 return;
2541 }
2542 }
2543 } else if (!CK_LIST_EMPTY(pcbhash) &&
2544 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2545 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2546 return;
2547 }
2548 if (!bound) {
2549 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2550 if (last->inp_laddr.s_addr == INADDR_ANY)
2551 break;
2552 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2553 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2554 return;
2555 }
2556 }
2557 }
2558 if (last == NULL)
2559 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2560 else
2561 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2562 }
2563
2564 #ifdef INET6
2565 /*
2566 * See the comment above _in_pcbinshash_wild().
2567 */
2568 static void
_in6_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2569 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2570 {
2571 struct inpcb *last;
2572 bool bound, injail;
2573
2574 INP_LOCK_ASSERT(inp);
2575 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2576
2577 last = NULL;
2578 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2579 injail = in_pcbjailed(inp, PR_IP6);
2580 if (!injail) {
2581 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2582 if (!in_pcbjailed(last, PR_IP6))
2583 break;
2584 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2585 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2586 return;
2587 }
2588 }
2589 } else if (!CK_LIST_EMPTY(pcbhash) &&
2590 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2591 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2592 return;
2593 }
2594 if (!bound) {
2595 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2596 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2597 break;
2598 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2599 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2600 return;
2601 }
2602 }
2603 }
2604 if (last == NULL)
2605 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2606 else
2607 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2608 }
2609 #endif
2610
2611 /*
2612 * Insert PCB onto various hash lists.
2613 *
2614 * With normal sockets this function shall not fail, so it could return void.
2615 * But for SO_REUSEPORT_LB it may need to allocate memory with locks held,
2616 * that's the only condition when it can fail.
2617 */
2618 int
in_pcbinshash(struct inpcb * inp)2619 in_pcbinshash(struct inpcb *inp)
2620 {
2621 struct inpcbhead *pcbhash, *pcbporthash;
2622 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2623 uint32_t hash;
2624 bool connected;
2625
2626 INP_WLOCK_ASSERT(inp);
2627 INP_HASH_WLOCK_ASSERT(pcbinfo);
2628 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2629 ("in_pcbinshash: INP_INHASHLIST"));
2630
2631 #ifdef INET6
2632 if (inp->inp_vflag & INP_IPV6) {
2633 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2634 inp->inp_fport, pcbinfo->ipi_hashmask);
2635 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2636 } else
2637 #endif
2638 {
2639 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2640 inp->inp_fport, pcbinfo->ipi_hashmask);
2641 connected = !in_nullhost(inp->inp_faddr);
2642 }
2643
2644 if (connected)
2645 pcbhash = &pcbinfo->ipi_hash_exact[hash];
2646 else
2647 pcbhash = &pcbinfo->ipi_hash_wild[hash];
2648
2649 pcbporthash = &pcbinfo->ipi_porthashbase[
2650 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2651
2652 /*
2653 * Add entry to load balance group.
2654 * Only do this if SO_REUSEPORT_LB is set.
2655 */
2656 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2657 int error = in_pcbinslbgrouphash(inp, M_NODOM);
2658 if (error != 0)
2659 return (error);
2660 }
2661
2662 /*
2663 * The PCB may have been disconnected in the past. Before we can safely
2664 * make it visible in the hash table, we must wait for all readers which
2665 * may be traversing this PCB to finish.
2666 */
2667 if (inp->inp_smr != SMR_SEQ_INVALID) {
2668 smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2669 inp->inp_smr = SMR_SEQ_INVALID;
2670 }
2671
2672 if (connected)
2673 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2674 else {
2675 #ifdef INET6
2676 if ((inp->inp_vflag & INP_IPV6) != 0)
2677 _in6_pcbinshash_wild(pcbhash, inp);
2678 else
2679 #endif
2680 _in_pcbinshash_wild(pcbhash, inp);
2681 }
2682 CK_LIST_INSERT_HEAD(pcbporthash, inp, inp_portlist);
2683 inp->inp_flags |= INP_INHASHLIST;
2684
2685 return (0);
2686 }
2687
2688 void
in_pcbremhash_locked(struct inpcb * inp)2689 in_pcbremhash_locked(struct inpcb *inp)
2690 {
2691
2692 INP_WLOCK_ASSERT(inp);
2693 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2694 MPASS(inp->inp_flags & INP_INHASHLIST);
2695
2696 if ((inp->inp_flags & INP_INLBGROUP) != 0)
2697 in_pcbremlbgrouphash(inp);
2698 #ifdef INET6
2699 if (inp->inp_vflag & INP_IPV6) {
2700 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2701 CK_LIST_REMOVE(inp, inp_hash_wild);
2702 else
2703 CK_LIST_REMOVE(inp, inp_hash_exact);
2704 } else
2705 #endif
2706 {
2707 if (in_nullhost(inp->inp_faddr))
2708 CK_LIST_REMOVE(inp, inp_hash_wild);
2709 else
2710 CK_LIST_REMOVE(inp, inp_hash_exact);
2711 }
2712 CK_LIST_REMOVE(inp, inp_portlist);
2713 inp->inp_flags &= ~INP_INHASHLIST;
2714 }
2715
2716 static void
in_pcbremhash(struct inpcb * inp)2717 in_pcbremhash(struct inpcb *inp)
2718 {
2719 INP_HASH_WLOCK(inp->inp_pcbinfo);
2720 in_pcbremhash_locked(inp);
2721 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2722 }
2723
2724 /*
2725 * Move PCB to the proper hash bucket when { faddr, fport } have been
2726 * changed. NOTE: This does not handle the case of the lport changing (the
2727 * hashed port list would have to be updated as well), so the lport must
2728 * not change after in_pcbinshash() has been called.
2729 */
2730 void
in_pcbrehash(struct inpcb * inp)2731 in_pcbrehash(struct inpcb *inp)
2732 {
2733 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2734 struct inpcbhead *head;
2735 uint32_t hash;
2736 bool connected;
2737
2738 INP_WLOCK_ASSERT(inp);
2739 INP_HASH_WLOCK_ASSERT(pcbinfo);
2740 KASSERT(inp->inp_flags & INP_INHASHLIST,
2741 ("%s: !INP_INHASHLIST", __func__));
2742 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2743 ("%s: inp was disconnected", __func__));
2744
2745 #ifdef INET6
2746 if (inp->inp_vflag & INP_IPV6) {
2747 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2748 inp->inp_fport, pcbinfo->ipi_hashmask);
2749 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2750 } else
2751 #endif
2752 {
2753 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2754 inp->inp_fport, pcbinfo->ipi_hashmask);
2755 connected = !in_nullhost(inp->inp_faddr);
2756 }
2757
2758 /*
2759 * When rehashing, the caller must ensure that either the new or the old
2760 * foreign address was unspecified.
2761 */
2762 if (connected)
2763 CK_LIST_REMOVE(inp, inp_hash_wild);
2764 else
2765 CK_LIST_REMOVE(inp, inp_hash_exact);
2766
2767 if (connected) {
2768 head = &pcbinfo->ipi_hash_exact[hash];
2769 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2770 } else {
2771 head = &pcbinfo->ipi_hash_wild[hash];
2772 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2773 }
2774 }
2775
2776 /*
2777 * Check for alternatives when higher level complains
2778 * about service problems. For now, invalidate cached
2779 * routing information. If the route was created dynamically
2780 * (by a redirect), time to try a default gateway again.
2781 */
2782 void
in_losing(struct inpcb * inp)2783 in_losing(struct inpcb *inp)
2784 {
2785
2786 RO_INVALIDATE_CACHE(&inp->inp_route);
2787 return;
2788 }
2789
2790 /*
2791 * A set label operation has occurred at the socket layer, propagate the
2792 * label change into the in_pcb for the socket.
2793 */
2794 void
in_pcbsosetlabel(struct socket * so)2795 in_pcbsosetlabel(struct socket *so)
2796 {
2797 #ifdef MAC
2798 struct inpcb *inp;
2799
2800 inp = sotoinpcb(so);
2801 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2802
2803 INP_WLOCK(inp);
2804 SOCK_LOCK(so);
2805 mac_inpcb_sosetlabel(so, inp);
2806 SOCK_UNLOCK(so);
2807 INP_WUNLOCK(inp);
2808 #endif
2809 }
2810
2811 void
inp_wlock(struct inpcb * inp)2812 inp_wlock(struct inpcb *inp)
2813 {
2814
2815 INP_WLOCK(inp);
2816 }
2817
2818 void
inp_wunlock(struct inpcb * inp)2819 inp_wunlock(struct inpcb *inp)
2820 {
2821
2822 INP_WUNLOCK(inp);
2823 }
2824
2825 void
inp_rlock(struct inpcb * inp)2826 inp_rlock(struct inpcb *inp)
2827 {
2828
2829 INP_RLOCK(inp);
2830 }
2831
2832 void
inp_runlock(struct inpcb * inp)2833 inp_runlock(struct inpcb *inp)
2834 {
2835
2836 INP_RUNLOCK(inp);
2837 }
2838
2839 #ifdef INVARIANT_SUPPORT
2840 void
inp_lock_assert(struct inpcb * inp)2841 inp_lock_assert(struct inpcb *inp)
2842 {
2843
2844 INP_WLOCK_ASSERT(inp);
2845 }
2846
2847 void
inp_unlock_assert(struct inpcb * inp)2848 inp_unlock_assert(struct inpcb *inp)
2849 {
2850
2851 INP_UNLOCK_ASSERT(inp);
2852 }
2853 #endif
2854
2855 void
inp_apply_all(struct inpcbinfo * pcbinfo,void (* func)(struct inpcb *,void *),void * arg)2856 inp_apply_all(struct inpcbinfo *pcbinfo,
2857 void (*func)(struct inpcb *, void *), void *arg)
2858 {
2859 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2860 INPLOOKUP_WLOCKPCB);
2861 struct inpcb *inp;
2862
2863 while ((inp = inp_next(&inpi)) != NULL)
2864 func(inp, arg);
2865 }
2866
2867 struct socket *
inp_inpcbtosocket(struct inpcb * inp)2868 inp_inpcbtosocket(struct inpcb *inp)
2869 {
2870
2871 INP_WLOCK_ASSERT(inp);
2872 return (inp->inp_socket);
2873 }
2874
2875 void
inp_4tuple_get(struct inpcb * inp,uint32_t * laddr,uint16_t * lp,uint32_t * faddr,uint16_t * fp)2876 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2877 uint32_t *faddr, uint16_t *fp)
2878 {
2879
2880 INP_LOCK_ASSERT(inp);
2881 *laddr = inp->inp_laddr.s_addr;
2882 *faddr = inp->inp_faddr.s_addr;
2883 *lp = inp->inp_lport;
2884 *fp = inp->inp_fport;
2885 }
2886
2887 /*
2888 * Create an external-format (``xinpcb'') structure using the information in
2889 * the kernel-format in_pcb structure pointed to by inp. This is done to
2890 * reduce the spew of irrelevant information over this interface, to isolate
2891 * user code from changes in the kernel structure, and potentially to provide
2892 * information-hiding if we decide that some of this information should be
2893 * hidden from users.
2894 */
2895 void
in_pcbtoxinpcb(const struct inpcb * inp,struct xinpcb * xi)2896 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2897 {
2898
2899 bzero(xi, sizeof(*xi));
2900 xi->xi_len = sizeof(struct xinpcb);
2901 if (inp->inp_socket)
2902 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2903 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2904 xi->inp_gencnt = inp->inp_gencnt;
2905 xi->inp_flow = inp->inp_flow;
2906 xi->inp_flowid = inp->inp_flowid;
2907 xi->inp_flowtype = inp->inp_flowtype;
2908 xi->inp_flags = inp->inp_flags;
2909 xi->inp_flags2 = inp->inp_flags2;
2910 xi->in6p_cksum = inp->in6p_cksum;
2911 xi->in6p_hops = inp->in6p_hops;
2912 xi->inp_ip_tos = inp->inp_ip_tos;
2913 xi->inp_vflag = inp->inp_vflag;
2914 xi->inp_ip_ttl = inp->inp_ip_ttl;
2915 xi->inp_ip_p = inp->inp_ip_p;
2916 xi->inp_ip_minttl = inp->inp_ip_minttl;
2917 }
2918
2919 int
sysctl_setsockopt(SYSCTL_HANDLER_ARGS,struct inpcbinfo * pcbinfo,int (* ctloutput_set)(struct inpcb *,struct sockopt *))2920 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2921 int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2922 {
2923 struct sockopt sopt;
2924 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2925 INPLOOKUP_WLOCKPCB);
2926 struct inpcb *inp;
2927 struct sockopt_parameters *params;
2928 struct socket *so;
2929 int error;
2930 char buf[1024];
2931
2932 if (req->oldptr != NULL || req->oldlen != 0)
2933 return (EINVAL);
2934 if (req->newptr == NULL)
2935 return (EPERM);
2936 if (req->newlen > sizeof(buf))
2937 return (ENOMEM);
2938 error = SYSCTL_IN(req, buf, req->newlen);
2939 if (error != 0)
2940 return (error);
2941 if (req->newlen < sizeof(struct sockopt_parameters))
2942 return (EINVAL);
2943 params = (struct sockopt_parameters *)buf;
2944 sopt.sopt_level = params->sop_level;
2945 sopt.sopt_name = params->sop_optname;
2946 sopt.sopt_dir = SOPT_SET;
2947 sopt.sopt_val = params->sop_optval;
2948 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2949 sopt.sopt_td = NULL;
2950 #ifdef INET6
2951 if (params->sop_inc.inc_flags & INC_ISIPV6) {
2952 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr))
2953 params->sop_inc.inc6_laddr.s6_addr16[1] =
2954 htons(params->sop_inc.inc6_zoneid & 0xffff);
2955 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr))
2956 params->sop_inc.inc6_faddr.s6_addr16[1] =
2957 htons(params->sop_inc.inc6_zoneid & 0xffff);
2958 }
2959 #endif
2960 if (params->sop_inc.inc_lport != htons(0) &&
2961 params->sop_inc.inc_fport != htons(0)) {
2962 #ifdef INET6
2963 if (params->sop_inc.inc_flags & INC_ISIPV6)
2964 inpi.hash = INP6_PCBHASH(
2965 ¶ms->sop_inc.inc6_faddr,
2966 params->sop_inc.inc_lport,
2967 params->sop_inc.inc_fport,
2968 pcbinfo->ipi_hashmask);
2969 else
2970 #endif
2971 inpi.hash = INP_PCBHASH(
2972 ¶ms->sop_inc.inc_faddr,
2973 params->sop_inc.inc_lport,
2974 params->sop_inc.inc_fport,
2975 pcbinfo->ipi_hashmask);
2976 }
2977 while ((inp = inp_next(&inpi)) != NULL)
2978 if (inp->inp_gencnt == params->sop_id) {
2979 if (inp->inp_flags & INP_DROPPED) {
2980 INP_WUNLOCK(inp);
2981 return (ECONNRESET);
2982 }
2983 so = inp->inp_socket;
2984 KASSERT(so != NULL, ("inp_socket == NULL"));
2985 soref(so);
2986 if (params->sop_level == SOL_SOCKET) {
2987 INP_WUNLOCK(inp);
2988 error = sosetopt(so, &sopt);
2989 } else
2990 error = (*ctloutput_set)(inp, &sopt);
2991 sorele(so);
2992 break;
2993 }
2994 if (inp == NULL)
2995 error = ESRCH;
2996 return (error);
2997 }
2998
2999 #ifdef DDB
3000 static void
db_print_indent(int indent)3001 db_print_indent(int indent)
3002 {
3003 int i;
3004
3005 for (i = 0; i < indent; i++)
3006 db_printf(" ");
3007 }
3008
3009 static void
db_print_inconninfo(struct in_conninfo * inc,const char * name,int indent)3010 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3011 {
3012 char faddr_str[48], laddr_str[48];
3013
3014 db_print_indent(indent);
3015 db_printf("%s at %p\n", name, inc);
3016
3017 indent += 2;
3018
3019 #ifdef INET6
3020 if (inc->inc_flags & INC_ISIPV6) {
3021 /* IPv6. */
3022 ip6_sprintf(laddr_str, &inc->inc6_laddr);
3023 ip6_sprintf(faddr_str, &inc->inc6_faddr);
3024 } else
3025 #endif
3026 {
3027 /* IPv4. */
3028 inet_ntoa_r(inc->inc_laddr, laddr_str);
3029 inet_ntoa_r(inc->inc_faddr, faddr_str);
3030 }
3031 db_print_indent(indent);
3032 db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
3033 ntohs(inc->inc_lport));
3034 db_print_indent(indent);
3035 db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
3036 ntohs(inc->inc_fport));
3037 }
3038
3039 static void
db_print_inpflags(int inp_flags)3040 db_print_inpflags(int inp_flags)
3041 {
3042 int comma;
3043
3044 comma = 0;
3045 if (inp_flags & INP_RECVOPTS) {
3046 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3047 comma = 1;
3048 }
3049 if (inp_flags & INP_RECVRETOPTS) {
3050 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3051 comma = 1;
3052 }
3053 if (inp_flags & INP_RECVDSTADDR) {
3054 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3055 comma = 1;
3056 }
3057 if (inp_flags & INP_ORIGDSTADDR) {
3058 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3059 comma = 1;
3060 }
3061 if (inp_flags & INP_HDRINCL) {
3062 db_printf("%sINP_HDRINCL", comma ? ", " : "");
3063 comma = 1;
3064 }
3065 if (inp_flags & INP_HIGHPORT) {
3066 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3067 comma = 1;
3068 }
3069 if (inp_flags & INP_LOWPORT) {
3070 db_printf("%sINP_LOWPORT", comma ? ", " : "");
3071 comma = 1;
3072 }
3073 if (inp_flags & INP_ANONPORT) {
3074 db_printf("%sINP_ANONPORT", comma ? ", " : "");
3075 comma = 1;
3076 }
3077 if (inp_flags & INP_RECVIF) {
3078 db_printf("%sINP_RECVIF", comma ? ", " : "");
3079 comma = 1;
3080 }
3081 if (inp_flags & INP_MTUDISC) {
3082 db_printf("%sINP_MTUDISC", comma ? ", " : "");
3083 comma = 1;
3084 }
3085 if (inp_flags & INP_RECVTTL) {
3086 db_printf("%sINP_RECVTTL", comma ? ", " : "");
3087 comma = 1;
3088 }
3089 if (inp_flags & INP_DONTFRAG) {
3090 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3091 comma = 1;
3092 }
3093 if (inp_flags & INP_RECVTOS) {
3094 db_printf("%sINP_RECVTOS", comma ? ", " : "");
3095 comma = 1;
3096 }
3097 if (inp_flags & IN6P_IPV6_V6ONLY) {
3098 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3099 comma = 1;
3100 }
3101 if (inp_flags & IN6P_PKTINFO) {
3102 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3103 comma = 1;
3104 }
3105 if (inp_flags & IN6P_HOPLIMIT) {
3106 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3107 comma = 1;
3108 }
3109 if (inp_flags & IN6P_HOPOPTS) {
3110 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3111 comma = 1;
3112 }
3113 if (inp_flags & IN6P_DSTOPTS) {
3114 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3115 comma = 1;
3116 }
3117 if (inp_flags & IN6P_RTHDR) {
3118 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3119 comma = 1;
3120 }
3121 if (inp_flags & IN6P_RTHDRDSTOPTS) {
3122 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3123 comma = 1;
3124 }
3125 if (inp_flags & IN6P_TCLASS) {
3126 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3127 comma = 1;
3128 }
3129 if (inp_flags & IN6P_AUTOFLOWLABEL) {
3130 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3131 comma = 1;
3132 }
3133 if (inp_flags & INP_ONESBCAST) {
3134 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3135 comma = 1;
3136 }
3137 if (inp_flags & INP_DROPPED) {
3138 db_printf("%sINP_DROPPED", comma ? ", " : "");
3139 comma = 1;
3140 }
3141 if (inp_flags & INP_SOCKREF) {
3142 db_printf("%sINP_SOCKREF", comma ? ", " : "");
3143 comma = 1;
3144 }
3145 if (inp_flags & IN6P_RFC2292) {
3146 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3147 comma = 1;
3148 }
3149 if (inp_flags & IN6P_MTU) {
3150 db_printf("IN6P_MTU%s", comma ? ", " : "");
3151 comma = 1;
3152 }
3153 }
3154
3155 static void
db_print_inpvflag(u_char inp_vflag)3156 db_print_inpvflag(u_char inp_vflag)
3157 {
3158 int comma;
3159
3160 comma = 0;
3161 if (inp_vflag & INP_IPV4) {
3162 db_printf("%sINP_IPV4", comma ? ", " : "");
3163 comma = 1;
3164 }
3165 if (inp_vflag & INP_IPV6) {
3166 db_printf("%sINP_IPV6", comma ? ", " : "");
3167 comma = 1;
3168 }
3169 if (inp_vflag & INP_IPV6PROTO) {
3170 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3171 comma = 1;
3172 }
3173 }
3174
3175 static void
db_print_inpcb(struct inpcb * inp,const char * name,int indent)3176 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3177 {
3178
3179 db_print_indent(indent);
3180 db_printf("%s at %p\n", name, inp);
3181
3182 indent += 2;
3183
3184 db_print_indent(indent);
3185 db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3186
3187 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3188
3189 db_print_indent(indent);
3190 db_printf("inp_label: %p inp_flags: 0x%x (",
3191 inp->inp_label, inp->inp_flags);
3192 db_print_inpflags(inp->inp_flags);
3193 db_printf(")\n");
3194
3195 db_print_indent(indent);
3196 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
3197 inp->inp_vflag);
3198 db_print_inpvflag(inp->inp_vflag);
3199 db_printf(")\n");
3200
3201 db_print_indent(indent);
3202 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
3203 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3204
3205 db_print_indent(indent);
3206 #ifdef INET6
3207 if (inp->inp_vflag & INP_IPV6) {
3208 db_printf("in6p_options: %p in6p_outputopts: %p "
3209 "in6p_moptions: %p\n", inp->in6p_options,
3210 inp->in6p_outputopts, inp->in6p_moptions);
3211 db_printf("in6p_icmp6filt: %p in6p_cksum %d "
3212 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3213 inp->in6p_hops);
3214 } else
3215 #endif
3216 {
3217 db_printf("inp_ip_tos: %d inp_ip_options: %p "
3218 "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3219 inp->inp_options, inp->inp_moptions);
3220 }
3221
3222 db_print_indent(indent);
3223 db_printf("inp_gencnt: %ju\n", (uintmax_t)inp->inp_gencnt);
3224 }
3225
DB_SHOW_COMMAND(inpcb,db_show_inpcb)3226 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3227 {
3228 struct inpcb *inp;
3229
3230 if (!have_addr) {
3231 db_printf("usage: show inpcb <addr>\n");
3232 return;
3233 }
3234 inp = (struct inpcb *)addr;
3235
3236 db_print_inpcb(inp, "inpcb", 0);
3237 }
3238 #endif /* DDB */
3239
3240 #ifdef RATELIMIT
3241 /*
3242 * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3243 * if any.
3244 */
3245 int
in_pcbmodify_txrtlmt(struct inpcb * inp,uint32_t max_pacing_rate)3246 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3247 {
3248 union if_snd_tag_modify_params params = {
3249 .rate_limit.max_rate = max_pacing_rate,
3250 .rate_limit.flags = M_NOWAIT,
3251 };
3252 struct m_snd_tag *mst;
3253 int error;
3254
3255 mst = inp->inp_snd_tag;
3256 if (mst == NULL)
3257 return (EINVAL);
3258
3259 if (mst->sw->snd_tag_modify == NULL) {
3260 error = EOPNOTSUPP;
3261 } else {
3262 error = mst->sw->snd_tag_modify(mst, ¶ms);
3263 }
3264 return (error);
3265 }
3266
3267 /*
3268 * Query existing TX rate limit based on the existing
3269 * "inp->inp_snd_tag", if any.
3270 */
3271 int
in_pcbquery_txrtlmt(struct inpcb * inp,uint32_t * p_max_pacing_rate)3272 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3273 {
3274 union if_snd_tag_query_params params = { };
3275 struct m_snd_tag *mst;
3276 int error;
3277
3278 mst = inp->inp_snd_tag;
3279 if (mst == NULL)
3280 return (EINVAL);
3281
3282 if (mst->sw->snd_tag_query == NULL) {
3283 error = EOPNOTSUPP;
3284 } else {
3285 error = mst->sw->snd_tag_query(mst, ¶ms);
3286 if (error == 0 && p_max_pacing_rate != NULL)
3287 *p_max_pacing_rate = params.rate_limit.max_rate;
3288 }
3289 return (error);
3290 }
3291
3292 /*
3293 * Query existing TX queue level based on the existing
3294 * "inp->inp_snd_tag", if any.
3295 */
3296 int
in_pcbquery_txrlevel(struct inpcb * inp,uint32_t * p_txqueue_level)3297 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3298 {
3299 union if_snd_tag_query_params params = { };
3300 struct m_snd_tag *mst;
3301 int error;
3302
3303 mst = inp->inp_snd_tag;
3304 if (mst == NULL)
3305 return (EINVAL);
3306
3307 if (mst->sw->snd_tag_query == NULL)
3308 return (EOPNOTSUPP);
3309
3310 error = mst->sw->snd_tag_query(mst, ¶ms);
3311 if (error == 0 && p_txqueue_level != NULL)
3312 *p_txqueue_level = params.rate_limit.queue_level;
3313 return (error);
3314 }
3315
3316 /*
3317 * Allocate a new TX rate limit send tag from the network interface
3318 * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3319 */
3320 int
in_pcbattach_txrtlmt(struct inpcb * inp,struct ifnet * ifp,uint32_t flowtype,uint32_t flowid,uint32_t max_pacing_rate,struct m_snd_tag ** st)3321 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3322 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3323
3324 {
3325 union if_snd_tag_alloc_params params = {
3326 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3327 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3328 .rate_limit.hdr.flowid = flowid,
3329 .rate_limit.hdr.flowtype = flowtype,
3330 .rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3331 .rate_limit.max_rate = max_pacing_rate,
3332 .rate_limit.flags = M_NOWAIT,
3333 };
3334 int error;
3335
3336 INP_WLOCK_ASSERT(inp);
3337
3338 /*
3339 * If there is already a send tag, or the INP is being torn
3340 * down, allocating a new send tag is not allowed. Else send
3341 * tags may leak.
3342 */
3343 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3344 return (EINVAL);
3345
3346 error = m_snd_tag_alloc(ifp, ¶ms, st);
3347 #ifdef INET
3348 if (error == 0) {
3349 counter_u64_add(rate_limit_set_ok, 1);
3350 counter_u64_add(rate_limit_active, 1);
3351 } else if (error != EOPNOTSUPP)
3352 counter_u64_add(rate_limit_alloc_fail, 1);
3353 #endif
3354 return (error);
3355 }
3356
3357 void
in_pcbdetach_tag(struct m_snd_tag * mst)3358 in_pcbdetach_tag(struct m_snd_tag *mst)
3359 {
3360
3361 m_snd_tag_rele(mst);
3362 #ifdef INET
3363 counter_u64_add(rate_limit_active, -1);
3364 #endif
3365 }
3366
3367 /*
3368 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3369 * if any:
3370 */
3371 void
in_pcbdetach_txrtlmt(struct inpcb * inp)3372 in_pcbdetach_txrtlmt(struct inpcb *inp)
3373 {
3374 struct m_snd_tag *mst;
3375
3376 INP_WLOCK_ASSERT(inp);
3377
3378 mst = inp->inp_snd_tag;
3379 inp->inp_snd_tag = NULL;
3380
3381 if (mst == NULL)
3382 return;
3383
3384 m_snd_tag_rele(mst);
3385 #ifdef INET
3386 counter_u64_add(rate_limit_active, -1);
3387 #endif
3388 }
3389
3390 int
in_pcboutput_txrtlmt_locked(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb,uint32_t max_pacing_rate)3391 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3392 {
3393 int error;
3394
3395 /*
3396 * If the existing send tag is for the wrong interface due to
3397 * a route change, first drop the existing tag. Set the
3398 * CHANGED flag so that we will keep trying to allocate a new
3399 * tag if we fail to allocate one this time.
3400 */
3401 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3402 in_pcbdetach_txrtlmt(inp);
3403 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3404 }
3405
3406 /*
3407 * NOTE: When attaching to a network interface a reference is
3408 * made to ensure the network interface doesn't go away until
3409 * all ratelimit connections are gone. The network interface
3410 * pointers compared below represent valid network interfaces,
3411 * except when comparing towards NULL.
3412 */
3413 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3414 error = 0;
3415 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3416 if (inp->inp_snd_tag != NULL)
3417 in_pcbdetach_txrtlmt(inp);
3418 error = 0;
3419 } else if (inp->inp_snd_tag == NULL) {
3420 /*
3421 * In order to utilize packet pacing with RSS, we need
3422 * to wait until there is a valid RSS hash before we
3423 * can proceed:
3424 */
3425 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3426 error = EAGAIN;
3427 } else {
3428 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3429 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3430 }
3431 } else {
3432 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3433 }
3434 if (error == 0 || error == EOPNOTSUPP)
3435 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3436
3437 return (error);
3438 }
3439
3440 /*
3441 * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3442 * is set in the fast path and will attach/detach/modify the TX rate
3443 * limit send tag based on the socket's so_max_pacing_rate value.
3444 */
3445 void
in_pcboutput_txrtlmt(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb)3446 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3447 {
3448 struct socket *socket;
3449 uint32_t max_pacing_rate;
3450 bool did_upgrade;
3451
3452 if (inp == NULL)
3453 return;
3454
3455 socket = inp->inp_socket;
3456 if (socket == NULL)
3457 return;
3458
3459 if (!INP_WLOCKED(inp)) {
3460 /*
3461 * NOTE: If the write locking fails, we need to bail
3462 * out and use the non-ratelimited ring for the
3463 * transmit until there is a new chance to get the
3464 * write lock.
3465 */
3466 if (!INP_TRY_UPGRADE(inp))
3467 return;
3468 did_upgrade = 1;
3469 } else {
3470 did_upgrade = 0;
3471 }
3472
3473 /*
3474 * NOTE: The so_max_pacing_rate value is read unlocked,
3475 * because atomic updates are not required since the variable
3476 * is checked at every mbuf we send. It is assumed that the
3477 * variable read itself will be atomic.
3478 */
3479 max_pacing_rate = socket->so_max_pacing_rate;
3480
3481 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3482
3483 if (did_upgrade)
3484 INP_DOWNGRADE(inp);
3485 }
3486
3487 /*
3488 * Track route changes for TX rate limiting.
3489 */
3490 void
in_pcboutput_eagain(struct inpcb * inp)3491 in_pcboutput_eagain(struct inpcb *inp)
3492 {
3493 bool did_upgrade;
3494
3495 if (inp == NULL)
3496 return;
3497
3498 if (inp->inp_snd_tag == NULL)
3499 return;
3500
3501 if (!INP_WLOCKED(inp)) {
3502 /*
3503 * NOTE: If the write locking fails, we need to bail
3504 * out and use the non-ratelimited ring for the
3505 * transmit until there is a new chance to get the
3506 * write lock.
3507 */
3508 if (!INP_TRY_UPGRADE(inp))
3509 return;
3510 did_upgrade = 1;
3511 } else {
3512 did_upgrade = 0;
3513 }
3514
3515 /* detach rate limiting */
3516 in_pcbdetach_txrtlmt(inp);
3517
3518 /* make sure new mbuf send tag allocation is made */
3519 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3520
3521 if (did_upgrade)
3522 INP_DOWNGRADE(inp);
3523 }
3524
3525 #ifdef INET
3526 static void
rl_init(void * st)3527 rl_init(void *st)
3528 {
3529 rate_limit_new = counter_u64_alloc(M_WAITOK);
3530 rate_limit_chg = counter_u64_alloc(M_WAITOK);
3531 rate_limit_active = counter_u64_alloc(M_WAITOK);
3532 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3533 rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3534 }
3535
3536 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3537 #endif
3538 #endif /* RATELIMIT */
3539