1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993, 1995
5 * The Regents of the University of California.
6 * Copyright (c) 2007-2009 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105
106 #include <netipsec/ipsec_support.h>
107
108 #include <security/mac/mac_framework.h>
109
110 #define INPCBLBGROUP_SIZMIN 8
111 #define INPCBLBGROUP_SIZMAX 256
112
113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */
114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */
115
116 /*
117 * These configure the range of local port addresses assigned to
118 * "unspecified" outgoing connections/packets/whatever.
119 */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
126
127 /*
128 * Reserved ports accessible only to root. There are significant
129 * security considerations that must be accounted for when changing these,
130 * but the security benefits can be great. Please be careful.
131 */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137
138 #ifdef INET
139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 struct in_addr faddr, u_int fport_arg,
141 struct in_addr laddr, u_int lport_arg,
142 int lookupflags, uint8_t numa_domain);
143
144 #define RANGECHK(var, min, max) \
145 if ((var) < (min)) { (var) = (min); } \
146 else if ((var) > (max)) { (var) = (max); }
147
148 static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 int error;
152
153 error = sysctl_handle_int(oidp, arg1, arg2, req);
154 if (error == 0) {
155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 }
162 return (error);
163 }
164
165 #undef RANGECHK
166
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169 "IP Ports");
170
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174 "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178 "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182 "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186 "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190 "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194 "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 &VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 CTLFLAG_VNET | CTLFLAG_RW,
202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212 "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214 &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216 &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218 &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220 &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222 &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224
225 #endif /* INET */
226
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
in_pcbhashseed_init(void)229 in_pcbhashseed_init(void)
230 {
231
232 V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235 in_pcbhashseed_init, NULL);
236
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244
245 static void in_pcbremhash(struct inpcb *);
246
247 /*
248 * in_pcb.c: manage the Protocol Control Blocks.
249 *
250 * NOTE: It is assumed that most of these functions will be called with
251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252 * functions often modify hash chains or addresses in pcbs.
253 */
254
255 static struct inpcblbgroup *
in_pcblbgroup_alloc(struct ucred * cred,u_char vflag,uint16_t port,const union in_dependaddr * addr,int size,uint8_t numa_domain)256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257 const union in_dependaddr *addr, int size, uint8_t numa_domain)
258 {
259 struct inpcblbgroup *grp;
260 size_t bytes;
261
262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 if (grp == NULL)
265 return (NULL);
266 LIST_INIT(&grp->il_pending);
267 grp->il_cred = crhold(cred);
268 grp->il_vflag = vflag;
269 grp->il_lport = port;
270 grp->il_numa_domain = numa_domain;
271 grp->il_dependladdr = *addr;
272 grp->il_inpsiz = size;
273 return (grp);
274 }
275
276 static void
in_pcblbgroup_free_deferred(epoch_context_t ctx)277 in_pcblbgroup_free_deferred(epoch_context_t ctx)
278 {
279 struct inpcblbgroup *grp;
280
281 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
282 crfree(grp->il_cred);
283 free(grp, M_PCB);
284 }
285
286 static void
in_pcblbgroup_free(struct inpcblbgroup * grp)287 in_pcblbgroup_free(struct inpcblbgroup *grp)
288 {
289 KASSERT(LIST_EMPTY(&grp->il_pending),
290 ("local group %p still has pending inps", grp));
291
292 CK_LIST_REMOVE(grp, il_list);
293 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
294 }
295
296 static struct inpcblbgroup *
in_pcblbgroup_find(struct inpcb * inp)297 in_pcblbgroup_find(struct inpcb *inp)
298 {
299 struct inpcbinfo *pcbinfo;
300 struct inpcblbgroup *grp;
301 struct inpcblbgrouphead *hdr;
302
303 INP_LOCK_ASSERT(inp);
304
305 pcbinfo = inp->inp_pcbinfo;
306 INP_HASH_LOCK_ASSERT(pcbinfo);
307
308 hdr = &pcbinfo->ipi_lbgrouphashbase[
309 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
310 CK_LIST_FOREACH(grp, hdr, il_list) {
311 struct inpcb *inp1;
312
313 for (unsigned int i = 0; i < grp->il_inpcnt; i++) {
314 if (inp == grp->il_inp[i])
315 goto found;
316 }
317 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
318 if (inp == inp1)
319 goto found;
320 }
321 }
322 found:
323 return (grp);
324 }
325
326 static void
in_pcblbgroup_insert(struct inpcblbgroup * grp,struct inpcb * inp)327 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
328 {
329 KASSERT(grp->il_inpcnt < grp->il_inpsiz,
330 ("invalid local group size %d and count %d", grp->il_inpsiz,
331 grp->il_inpcnt));
332 INP_WLOCK_ASSERT(inp);
333
334 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp &&
335 !SOLISTENING(inp->inp_socket)) {
336 /*
337 * If this is a TCP socket, it should not be visible to lbgroup
338 * lookups until listen() has been called.
339 */
340 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list);
341 } else {
342 grp->il_inp[grp->il_inpcnt] = inp;
343
344 /*
345 * Synchronize with in_pcblookup_lbgroup(): make sure that we
346 * don't expose a null slot to the lookup path.
347 */
348 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
349 }
350
351 inp->inp_flags |= INP_INLBGROUP;
352 }
353
354 static struct inpcblbgroup *
in_pcblbgroup_resize(struct inpcblbgrouphead * hdr,struct inpcblbgroup * old_grp,int size)355 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
356 struct inpcblbgroup *old_grp, int size)
357 {
358 struct inpcblbgroup *grp;
359 int i;
360
361 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
362 old_grp->il_lport, &old_grp->il_dependladdr, size,
363 old_grp->il_numa_domain);
364 if (grp == NULL)
365 return (NULL);
366
367 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
368 ("invalid new local group size %d and old local group count %d",
369 grp->il_inpsiz, old_grp->il_inpcnt));
370
371 for (i = 0; i < old_grp->il_inpcnt; ++i)
372 grp->il_inp[i] = old_grp->il_inp[i];
373 grp->il_inpcnt = old_grp->il_inpcnt;
374 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
375 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb,
376 inp_lbgroup_list);
377 in_pcblbgroup_free(old_grp);
378 return (grp);
379 }
380
381 /*
382 * Add PCB to load balance group for SO_REUSEPORT_LB option.
383 */
384 static int
in_pcbinslbgrouphash(struct inpcb * inp,uint8_t numa_domain)385 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
386 {
387 const static struct timeval interval = { 60, 0 };
388 static struct timeval lastprint;
389 struct inpcbinfo *pcbinfo;
390 struct inpcblbgrouphead *hdr;
391 struct inpcblbgroup *grp;
392 uint32_t idx;
393
394 pcbinfo = inp->inp_pcbinfo;
395
396 INP_WLOCK_ASSERT(inp);
397 INP_HASH_WLOCK_ASSERT(pcbinfo);
398
399 #ifdef INET6
400 /*
401 * Don't allow IPv4 mapped INET6 wild socket.
402 */
403 if ((inp->inp_vflag & INP_IPV4) &&
404 inp->inp_laddr.s_addr == INADDR_ANY &&
405 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
406 return (0);
407 }
408 #endif
409
410 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
411 hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
412 CK_LIST_FOREACH(grp, hdr, il_list) {
413 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
414 grp->il_vflag == inp->inp_vflag &&
415 grp->il_lport == inp->inp_lport &&
416 grp->il_numa_domain == numa_domain &&
417 memcmp(&grp->il_dependladdr,
418 &inp->inp_inc.inc_ie.ie_dependladdr,
419 sizeof(grp->il_dependladdr)) == 0) {
420 break;
421 }
422 }
423 if (grp == NULL) {
424 /* Create new load balance group. */
425 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
426 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
427 INPCBLBGROUP_SIZMIN, numa_domain);
428 if (grp == NULL)
429 return (ENOBUFS);
430 in_pcblbgroup_insert(grp, inp);
431 CK_LIST_INSERT_HEAD(hdr, grp, il_list);
432 } else if (grp->il_inpcnt == grp->il_inpsiz) {
433 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
434 if (ratecheck(&lastprint, &interval))
435 printf("lb group port %d, limit reached\n",
436 ntohs(grp->il_lport));
437 return (0);
438 }
439
440 /* Expand this local group. */
441 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
442 if (grp == NULL)
443 return (ENOBUFS);
444 in_pcblbgroup_insert(grp, inp);
445 } else {
446 in_pcblbgroup_insert(grp, inp);
447 }
448 return (0);
449 }
450
451 /*
452 * Remove PCB from load balance group.
453 */
454 static void
in_pcbremlbgrouphash(struct inpcb * inp)455 in_pcbremlbgrouphash(struct inpcb *inp)
456 {
457 struct inpcbinfo *pcbinfo;
458 struct inpcblbgrouphead *hdr;
459 struct inpcblbgroup *grp;
460 struct inpcb *inp1;
461 int i;
462
463 pcbinfo = inp->inp_pcbinfo;
464
465 INP_WLOCK_ASSERT(inp);
466 MPASS(inp->inp_flags & INP_INLBGROUP);
467 INP_HASH_WLOCK_ASSERT(pcbinfo);
468
469 hdr = &pcbinfo->ipi_lbgrouphashbase[
470 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
471 CK_LIST_FOREACH(grp, hdr, il_list) {
472 for (i = 0; i < grp->il_inpcnt; ++i) {
473 if (grp->il_inp[i] != inp)
474 continue;
475
476 if (grp->il_inpcnt == 1 &&
477 LIST_EMPTY(&grp->il_pending)) {
478 /* We are the last, free this local group. */
479 in_pcblbgroup_free(grp);
480 } else {
481 grp->il_inp[i] =
482 grp->il_inp[grp->il_inpcnt - 1];
483
484 /*
485 * Synchronize with in_pcblookup_lbgroup().
486 */
487 atomic_store_rel_int(&grp->il_inpcnt,
488 grp->il_inpcnt - 1);
489 }
490 inp->inp_flags &= ~INP_INLBGROUP;
491 return;
492 }
493 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) {
494 if (inp == inp1) {
495 LIST_REMOVE(inp, inp_lbgroup_list);
496 inp->inp_flags &= ~INP_INLBGROUP;
497 return;
498 }
499 }
500 }
501 __assert_unreachable();
502 }
503
504 int
in_pcblbgroup_numa(struct inpcb * inp,int arg)505 in_pcblbgroup_numa(struct inpcb *inp, int arg)
506 {
507 struct inpcbinfo *pcbinfo;
508 int error;
509 uint8_t numa_domain;
510
511 switch (arg) {
512 case TCP_REUSPORT_LB_NUMA_NODOM:
513 numa_domain = M_NODOM;
514 break;
515 case TCP_REUSPORT_LB_NUMA_CURDOM:
516 numa_domain = PCPU_GET(domain);
517 break;
518 default:
519 if (arg < 0 || arg >= vm_ndomains)
520 return (EINVAL);
521 numa_domain = arg;
522 }
523
524 pcbinfo = inp->inp_pcbinfo;
525 INP_WLOCK_ASSERT(inp);
526 INP_HASH_WLOCK(pcbinfo);
527 if (in_pcblbgroup_find(inp) != NULL) {
528 /* Remove it from the old group. */
529 in_pcbremlbgrouphash(inp);
530 /* Add it to the new group based on numa domain. */
531 in_pcbinslbgrouphash(inp, numa_domain);
532 error = 0;
533 } else {
534 error = ENOENT;
535 }
536 INP_HASH_WUNLOCK(pcbinfo);
537 return (error);
538 }
539
540 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
541 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
542
543 /*
544 * Initialize an inpcbinfo - a per-VNET instance of connections db.
545 */
546 void
in_pcbinfo_init(struct inpcbinfo * pcbinfo,struct inpcbstorage * pcbstor,u_int hash_nelements,u_int porthash_nelements)547 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
548 u_int hash_nelements, u_int porthash_nelements)
549 {
550
551 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
552 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
553 NULL, MTX_DEF);
554 #ifdef VIMAGE
555 pcbinfo->ipi_vnet = curvnet;
556 #endif
557 CK_LIST_INIT(&pcbinfo->ipi_listhead);
558 pcbinfo->ipi_count = 0;
559 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
560 &pcbinfo->ipi_hashmask);
561 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
562 &pcbinfo->ipi_hashmask);
563 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
564 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
565 &pcbinfo->ipi_porthashmask);
566 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
567 &pcbinfo->ipi_lbgrouphashmask);
568 pcbinfo->ipi_zone = pcbstor->ips_zone;
569 pcbinfo->ipi_portzone = pcbstor->ips_portzone;
570 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
571 }
572
573 /*
574 * Destroy an inpcbinfo.
575 */
576 void
in_pcbinfo_destroy(struct inpcbinfo * pcbinfo)577 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
578 {
579
580 KASSERT(pcbinfo->ipi_count == 0,
581 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
582
583 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
584 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
585 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
586 pcbinfo->ipi_porthashmask);
587 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
588 pcbinfo->ipi_lbgrouphashmask);
589 mtx_destroy(&pcbinfo->ipi_hash_lock);
590 mtx_destroy(&pcbinfo->ipi_lock);
591 }
592
593 /*
594 * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
595 */
596 static void inpcb_fini(void *, int);
597 void
in_pcbstorage_init(void * arg)598 in_pcbstorage_init(void *arg)
599 {
600 struct inpcbstorage *pcbstor = arg;
601
602 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
603 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
604 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
605 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
606 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
607 uma_zone_set_smr(pcbstor->ips_portzone,
608 uma_zone_get_smr(pcbstor->ips_zone));
609 }
610
611 /*
612 * Destroy a pcbstorage - used by unloadable protocols.
613 */
614 void
in_pcbstorage_destroy(void * arg)615 in_pcbstorage_destroy(void *arg)
616 {
617 struct inpcbstorage *pcbstor = arg;
618
619 uma_zdestroy(pcbstor->ips_zone);
620 uma_zdestroy(pcbstor->ips_portzone);
621 }
622
623 /*
624 * Allocate a PCB and associate it with the socket.
625 * On success return with the PCB locked.
626 */
627 int
in_pcballoc(struct socket * so,struct inpcbinfo * pcbinfo)628 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
629 {
630 struct inpcb *inp;
631 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
632 int error;
633 #endif
634
635 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
636 if (inp == NULL)
637 return (ENOBUFS);
638 bzero(&inp->inp_start_zero, inp_zero_size);
639 #ifdef NUMA
640 inp->inp_numa_domain = M_NODOM;
641 #endif
642 inp->inp_pcbinfo = pcbinfo;
643 inp->inp_socket = so;
644 inp->inp_cred = crhold(so->so_cred);
645 inp->inp_inc.inc_fibnum = so->so_fibnum;
646 #ifdef MAC
647 error = mac_inpcb_init(inp, M_NOWAIT);
648 if (error != 0)
649 goto out;
650 mac_inpcb_create(so, inp);
651 #endif
652 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
653 error = ipsec_init_pcbpolicy(inp);
654 if (error != 0) {
655 #ifdef MAC
656 mac_inpcb_destroy(inp);
657 #endif
658 goto out;
659 }
660 #endif /*IPSEC*/
661 #ifdef INET6
662 if (INP_SOCKAF(so) == AF_INET6) {
663 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
664 if (V_ip6_v6only)
665 inp->inp_flags |= IN6P_IPV6_V6ONLY;
666 #ifdef INET
667 else
668 inp->inp_vflag |= INP_IPV4;
669 #endif
670 if (V_ip6_auto_flowlabel)
671 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
672 inp->in6p_hops = -1; /* use kernel default */
673 }
674 #endif
675 #if defined(INET) && defined(INET6)
676 else
677 #endif
678 #ifdef INET
679 inp->inp_vflag |= INP_IPV4;
680 #endif
681 inp->inp_smr = SMR_SEQ_INVALID;
682
683 /*
684 * Routes in inpcb's can cache L2 as well; they are guaranteed
685 * to be cleaned up.
686 */
687 inp->inp_route.ro_flags = RT_LLE_CACHE;
688 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */
689 INP_WLOCK(inp);
690 INP_INFO_WLOCK(pcbinfo);
691 pcbinfo->ipi_count++;
692 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
693 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
694 INP_INFO_WUNLOCK(pcbinfo);
695 so->so_pcb = inp;
696
697 return (0);
698
699 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
700 out:
701 crfree(inp->inp_cred);
702 #ifdef INVARIANTS
703 inp->inp_cred = NULL;
704 #endif
705 uma_zfree_smr(pcbinfo->ipi_zone, inp);
706 return (error);
707 #endif
708 }
709
710 #ifdef INET
711 int
in_pcbbind(struct inpcb * inp,struct sockaddr_in * sin,struct ucred * cred)712 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
713 {
714 int anonport, error;
715
716 KASSERT(sin == NULL || sin->sin_family == AF_INET,
717 ("%s: invalid address family for %p", __func__, sin));
718 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
719 ("%s: invalid address length for %p", __func__, sin));
720 INP_WLOCK_ASSERT(inp);
721 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
722
723 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
724 return (EINVAL);
725 anonport = sin == NULL || sin->sin_port == 0;
726 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
727 &inp->inp_lport, cred);
728 if (error)
729 return (error);
730 if (in_pcbinshash(inp) != 0) {
731 inp->inp_laddr.s_addr = INADDR_ANY;
732 inp->inp_lport = 0;
733 return (EAGAIN);
734 }
735 if (anonport)
736 inp->inp_flags |= INP_ANONPORT;
737 return (0);
738 }
739 #endif
740
741 #if defined(INET) || defined(INET6)
742 /*
743 * Assign a local port like in_pcb_lport(), but also used with connect()
744 * and a foreign address and port. If fsa is non-NULL, choose a local port
745 * that is unused with those, otherwise one that is completely unused.
746 * lsa can be NULL for IPv6.
747 */
748 int
in_pcb_lport_dest(struct inpcb * inp,struct sockaddr * lsa,u_short * lportp,struct sockaddr * fsa,u_short fport,struct ucred * cred,int lookupflags)749 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
750 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
751 {
752 struct inpcbinfo *pcbinfo;
753 struct inpcb *tmpinp;
754 unsigned short *lastport;
755 int count, error;
756 u_short aux, first, last, lport;
757 #ifdef INET
758 struct in_addr laddr, faddr;
759 #endif
760 #ifdef INET6
761 struct in6_addr *laddr6, *faddr6;
762 #endif
763
764 pcbinfo = inp->inp_pcbinfo;
765
766 /*
767 * Because no actual state changes occur here, a global write lock on
768 * the pcbinfo isn't required.
769 */
770 INP_LOCK_ASSERT(inp);
771 INP_HASH_LOCK_ASSERT(pcbinfo);
772
773 if (inp->inp_flags & INP_HIGHPORT) {
774 first = V_ipport_hifirstauto; /* sysctl */
775 last = V_ipport_hilastauto;
776 lastport = &pcbinfo->ipi_lasthi;
777 } else if (inp->inp_flags & INP_LOWPORT) {
778 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
779 if (error)
780 return (error);
781 first = V_ipport_lowfirstauto; /* 1023 */
782 last = V_ipport_lowlastauto; /* 600 */
783 lastport = &pcbinfo->ipi_lastlow;
784 } else {
785 first = V_ipport_firstauto; /* sysctl */
786 last = V_ipport_lastauto;
787 lastport = &pcbinfo->ipi_lastport;
788 }
789
790 /*
791 * Instead of having two loops further down counting up or down
792 * make sure that first is always <= last and go with only one
793 * code path implementing all logic.
794 */
795 if (first > last) {
796 aux = first;
797 first = last;
798 last = aux;
799 }
800
801 #ifdef INET
802 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */
803 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
804 if (lsa != NULL)
805 laddr = ((struct sockaddr_in *)lsa)->sin_addr;
806 if (fsa != NULL)
807 faddr = ((struct sockaddr_in *)fsa)->sin_addr;
808 }
809 #endif
810 #ifdef INET6
811 laddr6 = NULL;
812 if ((inp->inp_vflag & INP_IPV6) != 0) {
813 if (lsa != NULL)
814 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
815 if (fsa != NULL)
816 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
817 }
818 #endif
819
820 tmpinp = NULL;
821 lport = *lportp;
822
823 if (V_ipport_randomized)
824 *lastport = first + (arc4random() % (last - first));
825
826 count = last - first;
827
828 do {
829 if (count-- < 0) /* completely used? */
830 return (EADDRNOTAVAIL);
831 ++*lastport;
832 if (*lastport < first || *lastport > last)
833 *lastport = first;
834 lport = htons(*lastport);
835
836 if (fsa != NULL) {
837 #ifdef INET
838 if (lsa->sa_family == AF_INET) {
839 tmpinp = in_pcblookup_hash_locked(pcbinfo,
840 faddr, fport, laddr, lport, lookupflags,
841 M_NODOM);
842 }
843 #endif
844 #ifdef INET6
845 if (lsa->sa_family == AF_INET6) {
846 tmpinp = in6_pcblookup_hash_locked(pcbinfo,
847 faddr6, fport, laddr6, lport, lookupflags,
848 M_NODOM);
849 }
850 #endif
851 } else {
852 #ifdef INET6
853 if ((inp->inp_vflag & INP_IPV6) != 0) {
854 tmpinp = in6_pcblookup_local(pcbinfo,
855 &inp->in6p_laddr, lport, lookupflags, cred);
856 #ifdef INET
857 if (tmpinp == NULL &&
858 (inp->inp_vflag & INP_IPV4))
859 tmpinp = in_pcblookup_local(pcbinfo,
860 laddr, lport, lookupflags, cred);
861 #endif
862 }
863 #endif
864 #if defined(INET) && defined(INET6)
865 else
866 #endif
867 #ifdef INET
868 tmpinp = in_pcblookup_local(pcbinfo, laddr,
869 lport, lookupflags, cred);
870 #endif
871 }
872 } while (tmpinp != NULL);
873
874 *lportp = lport;
875
876 return (0);
877 }
878
879 /*
880 * Select a local port (number) to use.
881 */
882 int
in_pcb_lport(struct inpcb * inp,struct in_addr * laddrp,u_short * lportp,struct ucred * cred,int lookupflags)883 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
884 struct ucred *cred, int lookupflags)
885 {
886 struct sockaddr_in laddr;
887
888 if (laddrp) {
889 bzero(&laddr, sizeof(laddr));
890 laddr.sin_family = AF_INET;
891 laddr.sin_addr = *laddrp;
892 }
893 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
894 NULL, lportp, NULL, 0, cred, lookupflags));
895 }
896 #endif /* INET || INET6 */
897
898 #ifdef INET
899 /*
900 * Determine whether the inpcb can be bound to the specified address/port tuple.
901 */
902 static int
in_pcbbind_avail(struct inpcb * inp,const struct in_addr laddr,const u_short lport,int sooptions,int lookupflags,struct ucred * cred)903 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
904 const u_short lport, int sooptions, int lookupflags, struct ucred *cred)
905 {
906 int reuseport, reuseport_lb;
907
908 INP_LOCK_ASSERT(inp);
909 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
910
911 reuseport = (sooptions & SO_REUSEPORT);
912 reuseport_lb = (sooptions & SO_REUSEPORT_LB);
913
914 if (IN_MULTICAST(ntohl(laddr.s_addr))) {
915 /*
916 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
917 * allow complete duplication of binding if
918 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
919 * and a multicast address is bound on both
920 * new and duplicated sockets.
921 */
922 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
923 reuseport = SO_REUSEADDR | SO_REUSEPORT;
924 /*
925 * XXX: How to deal with SO_REUSEPORT_LB here?
926 * Treat same as SO_REUSEPORT for now.
927 */
928 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
929 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
930 } else if (!in_nullhost(laddr)) {
931 struct sockaddr_in sin;
932
933 memset(&sin, 0, sizeof(sin));
934 sin.sin_family = AF_INET;
935 sin.sin_len = sizeof(sin);
936 sin.sin_addr = laddr;
937
938 /*
939 * Is the address a local IP address?
940 * If INP_BINDANY is set, then the socket may be bound
941 * to any endpoint address, local or not.
942 */
943 if ((inp->inp_flags & INP_BINDANY) == 0 &&
944 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
945 return (EADDRNOTAVAIL);
946 }
947
948 if (lport != 0) {
949 struct inpcb *t;
950
951 if (ntohs(lport) <= V_ipport_reservedhigh &&
952 ntohs(lport) >= V_ipport_reservedlow &&
953 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
954 return (EACCES);
955
956 if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
957 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
958 /*
959 * If a socket owned by a different user is already
960 * bound to this port, fail. In particular, SO_REUSE*
961 * can only be used to share a port among sockets owned
962 * by the same user.
963 *
964 * However, we can share a port with a connected socket
965 * which has a unique 4-tuple.
966 */
967 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
968 INPLOOKUP_WILDCARD, cred);
969 if (t != NULL &&
970 (inp->inp_socket->so_type != SOCK_STREAM ||
971 in_nullhost(t->inp_faddr)) &&
972 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
973 return (EADDRINUSE);
974 }
975 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
976 lookupflags, cred);
977 if (t != NULL && ((reuseport | reuseport_lb) &
978 t->inp_socket->so_options) == 0) {
979 #ifdef INET6
980 if (!in_nullhost(laddr) ||
981 !in_nullhost(t->inp_laddr) ||
982 (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
983 (t->inp_vflag & INP_IPV6PROTO) == 0)
984 #endif
985 return (EADDRINUSE);
986 }
987 }
988 return (0);
989 }
990
991 /*
992 * Set up a bind operation on a PCB, performing port allocation
993 * as required, but do not actually modify the PCB. Callers can
994 * either complete the bind by setting inp_laddr/inp_lport and
995 * calling in_pcbinshash(), or they can just use the resulting
996 * port and address to authorise the sending of a once-off packet.
997 *
998 * On error, the values of *laddrp and *lportp are not changed.
999 */
1000 int
in_pcbbind_setup(struct inpcb * inp,struct sockaddr_in * sin,in_addr_t * laddrp,u_short * lportp,struct ucred * cred)1001 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
1002 u_short *lportp, struct ucred *cred)
1003 {
1004 struct socket *so = inp->inp_socket;
1005 struct in_addr laddr;
1006 u_short lport = 0;
1007 int lookupflags, sooptions;
1008 int error;
1009
1010 /*
1011 * No state changes, so read locks are sufficient here.
1012 */
1013 INP_LOCK_ASSERT(inp);
1014 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1015
1016 laddr.s_addr = *laddrp;
1017 if (sin != NULL && laddr.s_addr != INADDR_ANY)
1018 return (EINVAL);
1019
1020 lookupflags = 0;
1021 sooptions = atomic_load_int(&so->so_options);
1022 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
1023 lookupflags = INPLOOKUP_WILDCARD;
1024 if (sin == NULL) {
1025 if ((error = prison_local_ip4(cred, &laddr)) != 0)
1026 return (error);
1027 } else {
1028 KASSERT(sin->sin_family == AF_INET,
1029 ("%s: invalid family for address %p", __func__, sin));
1030 KASSERT(sin->sin_len == sizeof(*sin),
1031 ("%s: invalid length for address %p", __func__, sin));
1032
1033 error = prison_local_ip4(cred, &sin->sin_addr);
1034 if (error)
1035 return (error);
1036 if (sin->sin_port != *lportp) {
1037 /* Don't allow the port to change. */
1038 if (*lportp != 0)
1039 return (EINVAL);
1040 lport = sin->sin_port;
1041 }
1042 laddr = sin->sin_addr;
1043
1044 /* See if this address/port combo is available. */
1045 error = in_pcbbind_avail(inp, laddr, lport, sooptions,
1046 lookupflags, cred);
1047 if (error != 0)
1048 return (error);
1049 }
1050 if (*lportp != 0)
1051 lport = *lportp;
1052 if (lport == 0) {
1053 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1054 if (error != 0)
1055 return (error);
1056 }
1057 *laddrp = laddr.s_addr;
1058 *lportp = lport;
1059 return (0);
1060 }
1061
1062 /*
1063 * Connect from a socket to a specified address.
1064 * Both address and port must be specified in argument sin.
1065 * If don't have a local address for this socket yet,
1066 * then pick one.
1067 */
1068 int
in_pcbconnect(struct inpcb * inp,struct sockaddr_in * sin,struct ucred * cred)1069 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1070 {
1071 u_short lport, fport;
1072 in_addr_t laddr, faddr;
1073 int anonport, error;
1074
1075 INP_WLOCK_ASSERT(inp);
1076 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1077 KASSERT(in_nullhost(inp->inp_faddr),
1078 ("%s: inp is already connected", __func__));
1079
1080 lport = inp->inp_lport;
1081 laddr = inp->inp_laddr.s_addr;
1082 anonport = (lport == 0);
1083 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1084 cred);
1085 if (error)
1086 return (error);
1087
1088 inp->inp_faddr.s_addr = faddr;
1089 inp->inp_fport = fport;
1090
1091 /* Do the initial binding of the local address if required. */
1092 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1093 inp->inp_lport = lport;
1094 inp->inp_laddr.s_addr = laddr;
1095 if (in_pcbinshash(inp) != 0) {
1096 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1097 INADDR_ANY;
1098 inp->inp_lport = inp->inp_fport = 0;
1099 return (EAGAIN);
1100 }
1101 } else {
1102 inp->inp_lport = lport;
1103 inp->inp_laddr.s_addr = laddr;
1104 if ((inp->inp_flags & INP_INHASHLIST) != 0)
1105 in_pcbrehash(inp);
1106 else
1107 in_pcbinshash(inp);
1108 }
1109
1110 if (anonport)
1111 inp->inp_flags |= INP_ANONPORT;
1112 return (0);
1113 }
1114
1115 /*
1116 * Do proper source address selection on an unbound socket in case
1117 * of connect. Take jails into account as well.
1118 */
1119 int
in_pcbladdr(struct inpcb * inp,struct in_addr * faddr,struct in_addr * laddr,struct ucred * cred)1120 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1121 struct ucred *cred)
1122 {
1123 struct ifaddr *ifa;
1124 struct sockaddr *sa;
1125 struct sockaddr_in *sin, dst;
1126 struct nhop_object *nh;
1127 int error;
1128
1129 NET_EPOCH_ASSERT();
1130 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1131
1132 /*
1133 * Bypass source address selection and use the primary jail IP
1134 * if requested.
1135 */
1136 if (!prison_saddrsel_ip4(cred, laddr))
1137 return (0);
1138
1139 error = 0;
1140
1141 nh = NULL;
1142 bzero(&dst, sizeof(dst));
1143 sin = &dst;
1144 sin->sin_family = AF_INET;
1145 sin->sin_len = sizeof(struct sockaddr_in);
1146 sin->sin_addr.s_addr = faddr->s_addr;
1147
1148 /*
1149 * If route is known our src addr is taken from the i/f,
1150 * else punt.
1151 *
1152 * Find out route to destination.
1153 */
1154 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1155 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1156 0, NHR_NONE, 0);
1157
1158 /*
1159 * If we found a route, use the address corresponding to
1160 * the outgoing interface.
1161 *
1162 * Otherwise assume faddr is reachable on a directly connected
1163 * network and try to find a corresponding interface to take
1164 * the source address from.
1165 */
1166 if (nh == NULL || nh->nh_ifp == NULL) {
1167 struct in_ifaddr *ia;
1168 struct ifnet *ifp;
1169
1170 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1171 inp->inp_socket->so_fibnum));
1172 if (ia == NULL) {
1173 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1174 inp->inp_socket->so_fibnum));
1175 }
1176 if (ia == NULL) {
1177 error = ENETUNREACH;
1178 goto done;
1179 }
1180
1181 if (!prison_flag(cred, PR_IP4)) {
1182 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1183 goto done;
1184 }
1185
1186 ifp = ia->ia_ifp;
1187 ia = NULL;
1188 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1189 sa = ifa->ifa_addr;
1190 if (sa->sa_family != AF_INET)
1191 continue;
1192 sin = (struct sockaddr_in *)sa;
1193 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1194 ia = (struct in_ifaddr *)ifa;
1195 break;
1196 }
1197 }
1198 if (ia != NULL) {
1199 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1200 goto done;
1201 }
1202
1203 /* 3. As a last resort return the 'default' jail address. */
1204 error = prison_get_ip4(cred, laddr);
1205 goto done;
1206 }
1207
1208 /*
1209 * If the outgoing interface on the route found is not
1210 * a loopback interface, use the address from that interface.
1211 * In case of jails do those three steps:
1212 * 1. check if the interface address belongs to the jail. If so use it.
1213 * 2. check if we have any address on the outgoing interface
1214 * belonging to this jail. If so use it.
1215 * 3. as a last resort return the 'default' jail address.
1216 */
1217 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1218 struct in_ifaddr *ia;
1219 struct ifnet *ifp;
1220
1221 /* If not jailed, use the default returned. */
1222 if (!prison_flag(cred, PR_IP4)) {
1223 ia = (struct in_ifaddr *)nh->nh_ifa;
1224 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1225 goto done;
1226 }
1227
1228 /* Jailed. */
1229 /* 1. Check if the iface address belongs to the jail. */
1230 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1231 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1232 ia = (struct in_ifaddr *)nh->nh_ifa;
1233 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1234 goto done;
1235 }
1236
1237 /*
1238 * 2. Check if we have any address on the outgoing interface
1239 * belonging to this jail.
1240 */
1241 ia = NULL;
1242 ifp = nh->nh_ifp;
1243 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1244 sa = ifa->ifa_addr;
1245 if (sa->sa_family != AF_INET)
1246 continue;
1247 sin = (struct sockaddr_in *)sa;
1248 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1249 ia = (struct in_ifaddr *)ifa;
1250 break;
1251 }
1252 }
1253 if (ia != NULL) {
1254 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1255 goto done;
1256 }
1257
1258 /* 3. As a last resort return the 'default' jail address. */
1259 error = prison_get_ip4(cred, laddr);
1260 goto done;
1261 }
1262
1263 /*
1264 * The outgoing interface is marked with 'loopback net', so a route
1265 * to ourselves is here.
1266 * Try to find the interface of the destination address and then
1267 * take the address from there. That interface is not necessarily
1268 * a loopback interface.
1269 * In case of jails, check that it is an address of the jail
1270 * and if we cannot find, fall back to the 'default' jail address.
1271 */
1272 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1273 struct in_ifaddr *ia;
1274
1275 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1276 inp->inp_socket->so_fibnum));
1277 if (ia == NULL)
1278 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1279 inp->inp_socket->so_fibnum));
1280 if (ia == NULL)
1281 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1282
1283 if (!prison_flag(cred, PR_IP4)) {
1284 if (ia == NULL) {
1285 error = ENETUNREACH;
1286 goto done;
1287 }
1288 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1289 goto done;
1290 }
1291
1292 /* Jailed. */
1293 if (ia != NULL) {
1294 struct ifnet *ifp;
1295
1296 ifp = ia->ia_ifp;
1297 ia = NULL;
1298 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1299 sa = ifa->ifa_addr;
1300 if (sa->sa_family != AF_INET)
1301 continue;
1302 sin = (struct sockaddr_in *)sa;
1303 if (prison_check_ip4(cred,
1304 &sin->sin_addr) == 0) {
1305 ia = (struct in_ifaddr *)ifa;
1306 break;
1307 }
1308 }
1309 if (ia != NULL) {
1310 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1311 goto done;
1312 }
1313 }
1314
1315 /* 3. As a last resort return the 'default' jail address. */
1316 error = prison_get_ip4(cred, laddr);
1317 goto done;
1318 }
1319
1320 done:
1321 if (error == 0 && laddr->s_addr == INADDR_ANY)
1322 return (EHOSTUNREACH);
1323 return (error);
1324 }
1325
1326 /*
1327 * Set up for a connect from a socket to the specified address.
1328 * On entry, *laddrp and *lportp should contain the current local
1329 * address and port for the PCB; these are updated to the values
1330 * that should be placed in inp_laddr and inp_lport to complete
1331 * the connect.
1332 *
1333 * On success, *faddrp and *fportp will be set to the remote address
1334 * and port. These are not updated in the error case.
1335 */
1336 int
in_pcbconnect_setup(struct inpcb * inp,struct sockaddr_in * sin,in_addr_t * laddrp,u_short * lportp,in_addr_t * faddrp,u_short * fportp,struct ucred * cred)1337 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1338 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1339 struct ucred *cred)
1340 {
1341 struct in_ifaddr *ia;
1342 struct in_addr laddr, faddr;
1343 u_short lport, fport;
1344 int error;
1345
1346 KASSERT(sin->sin_family == AF_INET,
1347 ("%s: invalid address family for %p", __func__, sin));
1348 KASSERT(sin->sin_len == sizeof(*sin),
1349 ("%s: invalid address length for %p", __func__, sin));
1350
1351 /*
1352 * Because a global state change doesn't actually occur here, a read
1353 * lock is sufficient.
1354 */
1355 NET_EPOCH_ASSERT();
1356 INP_LOCK_ASSERT(inp);
1357 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1358
1359 if (sin->sin_port == 0)
1360 return (EADDRNOTAVAIL);
1361 laddr.s_addr = *laddrp;
1362 lport = *lportp;
1363 faddr = sin->sin_addr;
1364 fport = sin->sin_port;
1365 #ifdef ROUTE_MPATH
1366 if (CALC_FLOWID_OUTBOUND) {
1367 uint32_t hash_val, hash_type;
1368
1369 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1370 inp->inp_socket->so_proto->pr_protocol, &hash_type);
1371
1372 inp->inp_flowid = hash_val;
1373 inp->inp_flowtype = hash_type;
1374 }
1375 #endif
1376 if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1377 /*
1378 * If the destination address is INADDR_ANY,
1379 * use the primary local address.
1380 * If the supplied address is INADDR_BROADCAST,
1381 * and the primary interface supports broadcast,
1382 * choose the broadcast address for that interface.
1383 */
1384 if (faddr.s_addr == INADDR_ANY) {
1385 faddr =
1386 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1387 if ((error = prison_get_ip4(cred, &faddr)) != 0)
1388 return (error);
1389 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1390 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1391 IFF_BROADCAST)
1392 faddr = satosin(&CK_STAILQ_FIRST(
1393 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1394 }
1395 } else if (faddr.s_addr == INADDR_ANY) {
1396 return (ENETUNREACH);
1397 }
1398 if (laddr.s_addr == INADDR_ANY) {
1399 error = in_pcbladdr(inp, &faddr, &laddr, cred);
1400 /*
1401 * If the destination address is multicast and an outgoing
1402 * interface has been set as a multicast option, prefer the
1403 * address of that interface as our source address.
1404 */
1405 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1406 inp->inp_moptions != NULL) {
1407 struct ip_moptions *imo;
1408 struct ifnet *ifp;
1409
1410 imo = inp->inp_moptions;
1411 if (imo->imo_multicast_ifp != NULL) {
1412 ifp = imo->imo_multicast_ifp;
1413 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1414 if (ia->ia_ifp == ifp &&
1415 prison_check_ip4(cred,
1416 &ia->ia_addr.sin_addr) == 0)
1417 break;
1418 }
1419 if (ia == NULL)
1420 error = EADDRNOTAVAIL;
1421 else {
1422 laddr = ia->ia_addr.sin_addr;
1423 error = 0;
1424 }
1425 }
1426 }
1427 if (error)
1428 return (error);
1429 }
1430
1431 if (lport != 0) {
1432 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1433 fport, laddr, lport, 0, M_NODOM) != NULL)
1434 return (EADDRINUSE);
1435 } else {
1436 struct sockaddr_in lsin, fsin;
1437
1438 bzero(&lsin, sizeof(lsin));
1439 bzero(&fsin, sizeof(fsin));
1440 lsin.sin_family = AF_INET;
1441 lsin.sin_addr = laddr;
1442 fsin.sin_family = AF_INET;
1443 fsin.sin_addr = faddr;
1444 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1445 &lport, (struct sockaddr *)& fsin, fport, cred,
1446 INPLOOKUP_WILDCARD);
1447 if (error)
1448 return (error);
1449 }
1450 *laddrp = laddr.s_addr;
1451 *lportp = lport;
1452 *faddrp = faddr.s_addr;
1453 *fportp = fport;
1454 return (0);
1455 }
1456
1457 void
in_pcbdisconnect(struct inpcb * inp)1458 in_pcbdisconnect(struct inpcb *inp)
1459 {
1460
1461 INP_WLOCK_ASSERT(inp);
1462 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1463 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1464 ("%s: inp %p was already disconnected", __func__, inp));
1465
1466 in_pcbremhash_locked(inp);
1467
1468 /* See the comment in in_pcbinshash(). */
1469 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1470 inp->inp_laddr.s_addr = INADDR_ANY;
1471 inp->inp_faddr.s_addr = INADDR_ANY;
1472 inp->inp_fport = 0;
1473 }
1474 #endif /* INET */
1475
1476 void
in_pcblisten(struct inpcb * inp)1477 in_pcblisten(struct inpcb *inp)
1478 {
1479 struct inpcblbgroup *grp;
1480
1481 INP_WLOCK_ASSERT(inp);
1482
1483 if ((inp->inp_flags & INP_INLBGROUP) != 0) {
1484 struct inpcbinfo *pcbinfo;
1485
1486 pcbinfo = inp->inp_pcbinfo;
1487 INP_HASH_WLOCK(pcbinfo);
1488 grp = in_pcblbgroup_find(inp);
1489 LIST_REMOVE(inp, inp_lbgroup_list);
1490 in_pcblbgroup_insert(grp, inp);
1491 INP_HASH_WUNLOCK(pcbinfo);
1492 }
1493 }
1494
1495 /*
1496 * inpcb hash lookups are protected by SMR section.
1497 *
1498 * Once desired pcb has been found, switching from SMR section to a pcb
1499 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1500 * here because SMR is a critical section.
1501 * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1502 */
1503 void
inp_lock(struct inpcb * inp,const inp_lookup_t lock)1504 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1505 {
1506
1507 lock == INPLOOKUP_RLOCKPCB ?
1508 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1509 }
1510
1511 void
inp_unlock(struct inpcb * inp,const inp_lookup_t lock)1512 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1513 {
1514
1515 lock == INPLOOKUP_RLOCKPCB ?
1516 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1517 }
1518
1519 int
inp_trylock(struct inpcb * inp,const inp_lookup_t lock)1520 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1521 {
1522
1523 return (lock == INPLOOKUP_RLOCKPCB ?
1524 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1525 }
1526
1527 static inline bool
_inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock,const int ignflags)1528 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1529 {
1530
1531 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1532 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1533
1534 if (__predict_true(inp_trylock(inp, lock))) {
1535 if (__predict_false(inp->inp_flags & ignflags)) {
1536 smr_exit(inp->inp_pcbinfo->ipi_smr);
1537 inp_unlock(inp, lock);
1538 return (false);
1539 }
1540 smr_exit(inp->inp_pcbinfo->ipi_smr);
1541 return (true);
1542 }
1543
1544 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1545 smr_exit(inp->inp_pcbinfo->ipi_smr);
1546 inp_lock(inp, lock);
1547 if (__predict_false(in_pcbrele(inp, lock)))
1548 return (false);
1549 /*
1550 * inp acquired through refcount & lock for sure didn't went
1551 * through uma_zfree(). However, it may have already went
1552 * through in_pcbfree() and has another reference, that
1553 * prevented its release by our in_pcbrele().
1554 */
1555 if (__predict_false(inp->inp_flags & ignflags)) {
1556 inp_unlock(inp, lock);
1557 return (false);
1558 }
1559 return (true);
1560 } else {
1561 smr_exit(inp->inp_pcbinfo->ipi_smr);
1562 return (false);
1563 }
1564 }
1565
1566 bool
inp_smr_lock(struct inpcb * inp,const inp_lookup_t lock)1567 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1568 {
1569
1570 /*
1571 * in_pcblookup() family of functions ignore not only freed entries,
1572 * that may be found due to lockless access to the hash, but dropped
1573 * entries, too.
1574 */
1575 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1576 }
1577
1578 /*
1579 * inp_next() - inpcb hash/list traversal iterator
1580 *
1581 * Requires initialized struct inpcb_iterator for context.
1582 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1583 *
1584 * - Iterator can have either write-lock or read-lock semantics, that can not
1585 * be changed later.
1586 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1587 * a single hash slot. Note: only rip_input() does the latter.
1588 * - Iterator may have optional bool matching function. The matching function
1589 * will be executed for each inpcb in the SMR context, so it can not acquire
1590 * locks and can safely access only immutable fields of inpcb.
1591 *
1592 * A fresh initialized iterator has NULL inpcb in its context and that
1593 * means that inp_next() call would return the very first inpcb on the list
1594 * locked with desired semantic. In all following calls the context pointer
1595 * shall hold the current inpcb pointer. The KPI user is not supposed to
1596 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL
1597 * and write NULL to its context. After end of traversal an iterator can be
1598 * reused.
1599 *
1600 * List traversals have the following features/constraints:
1601 * - New entries won't be seen, as they are always added to the head of a list.
1602 * - Removed entries won't stop traversal as long as they are not added to
1603 * a different list. This is violated by in_pcbrehash().
1604 */
1605 #define II_LIST_FIRST(ipi, hash) \
1606 (((hash) == INP_ALL_LIST) ? \
1607 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \
1608 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1609 #define II_LIST_NEXT(inp, hash) \
1610 (((hash) == INP_ALL_LIST) ? \
1611 CK_LIST_NEXT((inp), inp_list) : \
1612 CK_LIST_NEXT((inp), inp_hash_exact))
1613 #define II_LOCK_ASSERT(inp, lock) \
1614 rw_assert(&(inp)->inp_lock, \
1615 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED )
1616 struct inpcb *
inp_next(struct inpcb_iterator * ii)1617 inp_next(struct inpcb_iterator *ii)
1618 {
1619 const struct inpcbinfo *ipi = ii->ipi;
1620 inp_match_t *match = ii->match;
1621 void *ctx = ii->ctx;
1622 inp_lookup_t lock = ii->lock;
1623 int hash = ii->hash;
1624 struct inpcb *inp;
1625
1626 if (ii->inp == NULL) { /* First call. */
1627 smr_enter(ipi->ipi_smr);
1628 /* This is unrolled CK_LIST_FOREACH(). */
1629 for (inp = II_LIST_FIRST(ipi, hash);
1630 inp != NULL;
1631 inp = II_LIST_NEXT(inp, hash)) {
1632 if (match != NULL && (match)(inp, ctx) == false)
1633 continue;
1634 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1635 break;
1636 else {
1637 smr_enter(ipi->ipi_smr);
1638 MPASS(inp != II_LIST_FIRST(ipi, hash));
1639 inp = II_LIST_FIRST(ipi, hash);
1640 if (inp == NULL)
1641 break;
1642 }
1643 }
1644
1645 if (inp == NULL)
1646 smr_exit(ipi->ipi_smr);
1647 else
1648 ii->inp = inp;
1649
1650 return (inp);
1651 }
1652
1653 /* Not a first call. */
1654 smr_enter(ipi->ipi_smr);
1655 restart:
1656 inp = ii->inp;
1657 II_LOCK_ASSERT(inp, lock);
1658 next:
1659 inp = II_LIST_NEXT(inp, hash);
1660 if (inp == NULL) {
1661 smr_exit(ipi->ipi_smr);
1662 goto found;
1663 }
1664
1665 if (match != NULL && (match)(inp, ctx) == false)
1666 goto next;
1667
1668 if (__predict_true(inp_trylock(inp, lock))) {
1669 if (__predict_false(inp->inp_flags & INP_FREED)) {
1670 /*
1671 * Entries are never inserted in middle of a list, thus
1672 * as long as we are in SMR, we can continue traversal.
1673 * Jump to 'restart' should yield in the same result,
1674 * but could produce unnecessary looping. Could this
1675 * looping be unbound?
1676 */
1677 inp_unlock(inp, lock);
1678 goto next;
1679 } else {
1680 smr_exit(ipi->ipi_smr);
1681 goto found;
1682 }
1683 }
1684
1685 /*
1686 * Can't obtain lock immediately, thus going hard. Once we exit the
1687 * SMR section we can no longer jump to 'next', and our only stable
1688 * anchoring point is ii->inp, which we keep locked for this case, so
1689 * we jump to 'restart'.
1690 */
1691 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1692 smr_exit(ipi->ipi_smr);
1693 inp_lock(inp, lock);
1694 if (__predict_false(in_pcbrele(inp, lock))) {
1695 smr_enter(ipi->ipi_smr);
1696 goto restart;
1697 }
1698 /*
1699 * See comment in inp_smr_lock().
1700 */
1701 if (__predict_false(inp->inp_flags & INP_FREED)) {
1702 inp_unlock(inp, lock);
1703 smr_enter(ipi->ipi_smr);
1704 goto restart;
1705 }
1706 } else
1707 goto next;
1708
1709 found:
1710 inp_unlock(ii->inp, lock);
1711 ii->inp = inp;
1712
1713 return (ii->inp);
1714 }
1715
1716 /*
1717 * in_pcbref() bumps the reference count on an inpcb in order to maintain
1718 * stability of an inpcb pointer despite the inpcb lock being released or
1719 * SMR section exited.
1720 *
1721 * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1722 */
1723 void
in_pcbref(struct inpcb * inp)1724 in_pcbref(struct inpcb *inp)
1725 {
1726 u_int old __diagused;
1727
1728 old = refcount_acquire(&inp->inp_refcount);
1729 KASSERT(old > 0, ("%s: refcount 0", __func__));
1730 }
1731
1732 /*
1733 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1734 * freeing the pcb, if the reference was very last.
1735 */
1736 bool
in_pcbrele_rlocked(struct inpcb * inp)1737 in_pcbrele_rlocked(struct inpcb *inp)
1738 {
1739
1740 INP_RLOCK_ASSERT(inp);
1741
1742 if (!refcount_release(&inp->inp_refcount))
1743 return (false);
1744
1745 MPASS(inp->inp_flags & INP_FREED);
1746 MPASS(inp->inp_socket == NULL);
1747 crfree(inp->inp_cred);
1748 #ifdef INVARIANTS
1749 inp->inp_cred = NULL;
1750 #endif
1751 INP_RUNLOCK(inp);
1752 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1753 return (true);
1754 }
1755
1756 bool
in_pcbrele_wlocked(struct inpcb * inp)1757 in_pcbrele_wlocked(struct inpcb *inp)
1758 {
1759
1760 INP_WLOCK_ASSERT(inp);
1761
1762 if (!refcount_release(&inp->inp_refcount))
1763 return (false);
1764
1765 MPASS(inp->inp_flags & INP_FREED);
1766 MPASS(inp->inp_socket == NULL);
1767 crfree(inp->inp_cred);
1768 #ifdef INVARIANTS
1769 inp->inp_cred = NULL;
1770 #endif
1771 INP_WUNLOCK(inp);
1772 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1773 return (true);
1774 }
1775
1776 bool
in_pcbrele(struct inpcb * inp,const inp_lookup_t lock)1777 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1778 {
1779
1780 return (lock == INPLOOKUP_RLOCKPCB ?
1781 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1782 }
1783
1784 /*
1785 * Unconditionally schedule an inpcb to be freed by decrementing its
1786 * reference count, which should occur only after the inpcb has been detached
1787 * from its socket. If another thread holds a temporary reference (acquired
1788 * using in_pcbref()) then the free is deferred until that reference is
1789 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1790 * Almost all work, including removal from global lists, is done in this
1791 * context, where the pcbinfo lock is held.
1792 */
1793 void
in_pcbfree(struct inpcb * inp)1794 in_pcbfree(struct inpcb *inp)
1795 {
1796 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1797 #ifdef INET
1798 struct ip_moptions *imo;
1799 #endif
1800 #ifdef INET6
1801 struct ip6_moptions *im6o;
1802 #endif
1803
1804 INP_WLOCK_ASSERT(inp);
1805 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1806 KASSERT((inp->inp_flags & INP_FREED) == 0,
1807 ("%s: called twice for pcb %p", __func__, inp));
1808
1809 /*
1810 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1811 * from the hash without acquiring inpcb lock, they rely on the hash
1812 * lock, thus in_pcbremhash() should be the first action.
1813 */
1814 if (inp->inp_flags & INP_INHASHLIST)
1815 in_pcbremhash(inp);
1816 INP_INFO_WLOCK(pcbinfo);
1817 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1818 pcbinfo->ipi_count--;
1819 CK_LIST_REMOVE(inp, inp_list);
1820 INP_INFO_WUNLOCK(pcbinfo);
1821
1822 #ifdef RATELIMIT
1823 if (inp->inp_snd_tag != NULL)
1824 in_pcbdetach_txrtlmt(inp);
1825 #endif
1826 inp->inp_flags |= INP_FREED;
1827 inp->inp_socket->so_pcb = NULL;
1828 inp->inp_socket = NULL;
1829
1830 RO_INVALIDATE_CACHE(&inp->inp_route);
1831 #ifdef MAC
1832 mac_inpcb_destroy(inp);
1833 #endif
1834 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1835 if (inp->inp_sp != NULL)
1836 ipsec_delete_pcbpolicy(inp);
1837 #endif
1838 #ifdef INET
1839 if (inp->inp_options)
1840 (void)m_free(inp->inp_options);
1841 DEBUG_POISON_POINTER(inp->inp_options);
1842 imo = inp->inp_moptions;
1843 DEBUG_POISON_POINTER(inp->inp_moptions);
1844 #endif
1845 #ifdef INET6
1846 if (inp->inp_vflag & INP_IPV6PROTO) {
1847 ip6_freepcbopts(inp->in6p_outputopts);
1848 DEBUG_POISON_POINTER(inp->in6p_outputopts);
1849 im6o = inp->in6p_moptions;
1850 DEBUG_POISON_POINTER(inp->in6p_moptions);
1851 } else
1852 im6o = NULL;
1853 #endif
1854
1855 if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1856 INP_WUNLOCK(inp);
1857 }
1858 #ifdef INET6
1859 ip6_freemoptions(im6o);
1860 #endif
1861 #ifdef INET
1862 inp_freemoptions(imo);
1863 #endif
1864 }
1865
1866 /*
1867 * Different protocols initialize their inpcbs differently - giving
1868 * different name to the lock. But they all are disposed the same.
1869 */
1870 static void
inpcb_fini(void * mem,int size)1871 inpcb_fini(void *mem, int size)
1872 {
1873 struct inpcb *inp = mem;
1874
1875 INP_LOCK_DESTROY(inp);
1876 }
1877
1878 /*
1879 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1880 * port reservation, and preventing it from being returned by inpcb lookups.
1881 *
1882 * It is used by TCP to mark an inpcb as unused and avoid future packet
1883 * delivery or event notification when a socket remains open but TCP has
1884 * closed. This might occur as a result of a shutdown()-initiated TCP close
1885 * or a RST on the wire, and allows the port binding to be reused while still
1886 * maintaining the invariant that so_pcb always points to a valid inpcb until
1887 * in_pcbdetach().
1888 *
1889 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1890 * in_pcbpurgeif0()?
1891 */
1892 void
in_pcbdrop(struct inpcb * inp)1893 in_pcbdrop(struct inpcb *inp)
1894 {
1895
1896 INP_WLOCK_ASSERT(inp);
1897
1898 inp->inp_flags |= INP_DROPPED;
1899 if (inp->inp_flags & INP_INHASHLIST)
1900 in_pcbremhash(inp);
1901 }
1902
1903 #ifdef INET
1904 /*
1905 * Common routines to return the socket addresses associated with inpcbs.
1906 */
1907 int
in_getsockaddr(struct socket * so,struct sockaddr * sa)1908 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1909 {
1910 struct inpcb *inp;
1911
1912 inp = sotoinpcb(so);
1913 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1914
1915 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1916 .sin_len = sizeof(struct sockaddr_in),
1917 .sin_family = AF_INET,
1918 .sin_port = inp->inp_lport,
1919 .sin_addr = inp->inp_laddr,
1920 };
1921
1922 return (0);
1923 }
1924
1925 int
in_getpeeraddr(struct socket * so,struct sockaddr * sa)1926 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1927 {
1928 struct inpcb *inp;
1929
1930 inp = sotoinpcb(so);
1931 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1932
1933 *(struct sockaddr_in *)sa = (struct sockaddr_in ){
1934 .sin_len = sizeof(struct sockaddr_in),
1935 .sin_family = AF_INET,
1936 .sin_port = inp->inp_fport,
1937 .sin_addr = inp->inp_faddr,
1938 };
1939
1940 return (0);
1941 }
1942
1943 static bool
inp_v4_multi_match(const struct inpcb * inp,void * v __unused)1944 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1945 {
1946
1947 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1948 return (true);
1949 else
1950 return (false);
1951 }
1952
1953 void
in_pcbpurgeif0(struct inpcbinfo * pcbinfo,struct ifnet * ifp)1954 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1955 {
1956 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1957 inp_v4_multi_match, NULL);
1958 struct inpcb *inp;
1959 struct in_multi *inm;
1960 struct in_mfilter *imf;
1961 struct ip_moptions *imo;
1962
1963 IN_MULTI_LOCK_ASSERT();
1964
1965 while ((inp = inp_next(&inpi)) != NULL) {
1966 INP_WLOCK_ASSERT(inp);
1967
1968 imo = inp->inp_moptions;
1969 /*
1970 * Unselect the outgoing interface if it is being
1971 * detached.
1972 */
1973 if (imo->imo_multicast_ifp == ifp)
1974 imo->imo_multicast_ifp = NULL;
1975
1976 /*
1977 * Drop multicast group membership if we joined
1978 * through the interface being detached.
1979 *
1980 * XXX This can all be deferred to an epoch_call
1981 */
1982 restart:
1983 IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1984 if ((inm = imf->imf_inm) == NULL)
1985 continue;
1986 if (inm->inm_ifp != ifp)
1987 continue;
1988 ip_mfilter_remove(&imo->imo_head, imf);
1989 in_leavegroup_locked(inm, NULL);
1990 ip_mfilter_free(imf);
1991 goto restart;
1992 }
1993 }
1994 }
1995
1996 /*
1997 * Lookup a PCB based on the local address and port. Caller must hold the
1998 * hash lock. No inpcb locks or references are acquired.
1999 */
2000 #define INP_LOOKUP_MAPPED_PCB_COST 3
2001 struct inpcb *
in_pcblookup_local(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,int lookupflags,struct ucred * cred)2002 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2003 u_short lport, int lookupflags, struct ucred *cred)
2004 {
2005 struct inpcb *inp;
2006 #ifdef INET6
2007 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
2008 #else
2009 int matchwild = 3;
2010 #endif
2011 int wildcard;
2012
2013 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2014 ("%s: invalid lookup flags %d", __func__, lookupflags));
2015 INP_HASH_LOCK_ASSERT(pcbinfo);
2016
2017 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
2018 struct inpcbhead *head;
2019 /*
2020 * Look for an unconnected (wildcard foreign addr) PCB that
2021 * matches the local address and port we're looking for.
2022 */
2023 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2024 pcbinfo->ipi_hashmask)];
2025 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2026 #ifdef INET6
2027 /* XXX inp locking */
2028 if ((inp->inp_vflag & INP_IPV4) == 0)
2029 continue;
2030 #endif
2031 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2032 inp->inp_laddr.s_addr == laddr.s_addr &&
2033 inp->inp_lport == lport) {
2034 /*
2035 * Found?
2036 */
2037 if (prison_equal_ip4(cred->cr_prison,
2038 inp->inp_cred->cr_prison))
2039 return (inp);
2040 }
2041 }
2042 /*
2043 * Not found.
2044 */
2045 return (NULL);
2046 } else {
2047 struct inpcbporthead *porthash;
2048 struct inpcbport *phd;
2049 struct inpcb *match = NULL;
2050 /*
2051 * Best fit PCB lookup.
2052 *
2053 * First see if this local port is in use by looking on the
2054 * port hash list.
2055 */
2056 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2057 pcbinfo->ipi_porthashmask)];
2058 CK_LIST_FOREACH(phd, porthash, phd_hash) {
2059 if (phd->phd_port == lport)
2060 break;
2061 }
2062 if (phd != NULL) {
2063 /*
2064 * Port is in use by one or more PCBs. Look for best
2065 * fit.
2066 */
2067 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2068 wildcard = 0;
2069 if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2070 cred->cr_prison))
2071 continue;
2072 #ifdef INET6
2073 /* XXX inp locking */
2074 if ((inp->inp_vflag & INP_IPV4) == 0)
2075 continue;
2076 /*
2077 * We never select the PCB that has
2078 * INP_IPV6 flag and is bound to :: if
2079 * we have another PCB which is bound
2080 * to 0.0.0.0. If a PCB has the
2081 * INP_IPV6 flag, then we set its cost
2082 * higher than IPv4 only PCBs.
2083 *
2084 * Note that the case only happens
2085 * when a socket is bound to ::, under
2086 * the condition that the use of the
2087 * mapped address is allowed.
2088 */
2089 if ((inp->inp_vflag & INP_IPV6) != 0)
2090 wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2091 #endif
2092 if (inp->inp_faddr.s_addr != INADDR_ANY)
2093 wildcard++;
2094 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2095 if (laddr.s_addr == INADDR_ANY)
2096 wildcard++;
2097 else if (inp->inp_laddr.s_addr != laddr.s_addr)
2098 continue;
2099 } else {
2100 if (laddr.s_addr != INADDR_ANY)
2101 wildcard++;
2102 }
2103 if (wildcard < matchwild) {
2104 match = inp;
2105 matchwild = wildcard;
2106 if (matchwild == 0)
2107 break;
2108 }
2109 }
2110 }
2111 return (match);
2112 }
2113 }
2114 #undef INP_LOOKUP_MAPPED_PCB_COST
2115
2116 static bool
in_pcblookup_lb_numa_match(const struct inpcblbgroup * grp,int domain)2117 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2118 {
2119 return (domain == M_NODOM || domain == grp->il_numa_domain);
2120 }
2121
2122 static struct inpcb *
in_pcblookup_lbgroup(const struct inpcbinfo * pcbinfo,const struct in_addr * faddr,uint16_t fport,const struct in_addr * laddr,uint16_t lport,int domain)2123 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2124 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2125 uint16_t lport, int domain)
2126 {
2127 const struct inpcblbgrouphead *hdr;
2128 struct inpcblbgroup *grp;
2129 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2130 struct inpcb *inp;
2131 u_int count;
2132
2133 INP_HASH_LOCK_ASSERT(pcbinfo);
2134 NET_EPOCH_ASSERT();
2135
2136 hdr = &pcbinfo->ipi_lbgrouphashbase[
2137 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2138
2139 /*
2140 * Search for an LB group match based on the following criteria:
2141 * - prefer jailed groups to non-jailed groups
2142 * - prefer exact source address matches to wildcard matches
2143 * - prefer groups bound to the specified NUMA domain
2144 */
2145 jail_exact = jail_wild = local_exact = local_wild = NULL;
2146 CK_LIST_FOREACH(grp, hdr, il_list) {
2147 bool injail;
2148
2149 #ifdef INET6
2150 if (!(grp->il_vflag & INP_IPV4))
2151 continue;
2152 #endif
2153 if (grp->il_lport != lport)
2154 continue;
2155
2156 injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2157 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2158 laddr) != 0)
2159 continue;
2160
2161 if (grp->il_laddr.s_addr == laddr->s_addr) {
2162 if (injail) {
2163 jail_exact = grp;
2164 if (in_pcblookup_lb_numa_match(grp, domain))
2165 /* This is a perfect match. */
2166 goto out;
2167 } else if (local_exact == NULL ||
2168 in_pcblookup_lb_numa_match(grp, domain)) {
2169 local_exact = grp;
2170 }
2171 } else if (grp->il_laddr.s_addr == INADDR_ANY) {
2172 if (injail) {
2173 if (jail_wild == NULL ||
2174 in_pcblookup_lb_numa_match(grp, domain))
2175 jail_wild = grp;
2176 } else if (local_wild == NULL ||
2177 in_pcblookup_lb_numa_match(grp, domain)) {
2178 local_wild = grp;
2179 }
2180 }
2181 }
2182
2183 if (jail_exact != NULL)
2184 grp = jail_exact;
2185 else if (jail_wild != NULL)
2186 grp = jail_wild;
2187 else if (local_exact != NULL)
2188 grp = local_exact;
2189 else
2190 grp = local_wild;
2191 if (grp == NULL)
2192 return (NULL);
2193
2194 out:
2195 /*
2196 * Synchronize with in_pcblbgroup_insert().
2197 */
2198 count = atomic_load_acq_int(&grp->il_inpcnt);
2199 if (count == 0)
2200 return (NULL);
2201 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2202 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2203 return (inp);
2204 }
2205
2206 static bool
in_pcblookup_exact_match(const struct inpcb * inp,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2207 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2208 u_short fport, struct in_addr laddr, u_short lport)
2209 {
2210 #ifdef INET6
2211 /* XXX inp locking */
2212 if ((inp->inp_vflag & INP_IPV4) == 0)
2213 return (false);
2214 #endif
2215 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2216 inp->inp_laddr.s_addr == laddr.s_addr &&
2217 inp->inp_fport == fport &&
2218 inp->inp_lport == lport)
2219 return (true);
2220 return (false);
2221 }
2222
2223 static struct inpcb *
in_pcblookup_hash_exact(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_short fport,struct in_addr laddr,u_short lport)2224 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2225 u_short fport, struct in_addr laddr, u_short lport)
2226 {
2227 struct inpcbhead *head;
2228 struct inpcb *inp;
2229
2230 INP_HASH_LOCK_ASSERT(pcbinfo);
2231
2232 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2233 pcbinfo->ipi_hashmask)];
2234 CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2235 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2236 return (inp);
2237 }
2238 return (NULL);
2239 }
2240
2241 typedef enum {
2242 INPLOOKUP_MATCH_NONE = 0,
2243 INPLOOKUP_MATCH_WILD = 1,
2244 INPLOOKUP_MATCH_LADDR = 2,
2245 } inp_lookup_match_t;
2246
2247 static inp_lookup_match_t
in_pcblookup_wild_match(const struct inpcb * inp,struct in_addr laddr,u_short lport)2248 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2249 u_short lport)
2250 {
2251 #ifdef INET6
2252 /* XXX inp locking */
2253 if ((inp->inp_vflag & INP_IPV4) == 0)
2254 return (INPLOOKUP_MATCH_NONE);
2255 #endif
2256 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2257 return (INPLOOKUP_MATCH_NONE);
2258 if (inp->inp_laddr.s_addr == INADDR_ANY)
2259 return (INPLOOKUP_MATCH_WILD);
2260 if (inp->inp_laddr.s_addr == laddr.s_addr)
2261 return (INPLOOKUP_MATCH_LADDR);
2262 return (INPLOOKUP_MATCH_NONE);
2263 }
2264
2265 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1)
2266
2267 static struct inpcb *
in_pcblookup_hash_wild_smr(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport,const inp_lookup_t lockflags)2268 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2269 u_short lport, const inp_lookup_t lockflags)
2270 {
2271 struct inpcbhead *head;
2272 struct inpcb *inp;
2273
2274 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2275 ("%s: not in SMR read section", __func__));
2276
2277 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2278 pcbinfo->ipi_hashmask)];
2279 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2280 inp_lookup_match_t match;
2281
2282 match = in_pcblookup_wild_match(inp, laddr, lport);
2283 if (match == INPLOOKUP_MATCH_NONE)
2284 continue;
2285
2286 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2287 match = in_pcblookup_wild_match(inp, laddr, lport);
2288 if (match != INPLOOKUP_MATCH_NONE &&
2289 prison_check_ip4_locked(inp->inp_cred->cr_prison,
2290 &laddr) == 0)
2291 return (inp);
2292 inp_unlock(inp, lockflags);
2293 }
2294
2295 /*
2296 * The matching socket disappeared out from under us. Fall back
2297 * to a serialized lookup.
2298 */
2299 return (INP_LOOKUP_AGAIN);
2300 }
2301 return (NULL);
2302 }
2303
2304 static struct inpcb *
in_pcblookup_hash_wild_locked(struct inpcbinfo * pcbinfo,struct in_addr laddr,u_short lport)2305 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2306 u_short lport)
2307 {
2308 struct inpcbhead *head;
2309 struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2310 #ifdef INET6
2311 struct inpcb *local_wild_mapped;
2312 #endif
2313
2314 INP_HASH_LOCK_ASSERT(pcbinfo);
2315
2316 /*
2317 * Order of socket selection - we always prefer jails.
2318 * 1. jailed, non-wild.
2319 * 2. jailed, wild.
2320 * 3. non-jailed, non-wild.
2321 * 4. non-jailed, wild.
2322 */
2323 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2324 pcbinfo->ipi_hashmask)];
2325 local_wild = local_exact = jail_wild = NULL;
2326 #ifdef INET6
2327 local_wild_mapped = NULL;
2328 #endif
2329 CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2330 inp_lookup_match_t match;
2331 bool injail;
2332
2333 match = in_pcblookup_wild_match(inp, laddr, lport);
2334 if (match == INPLOOKUP_MATCH_NONE)
2335 continue;
2336
2337 injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2338 if (injail) {
2339 if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2340 &laddr) != 0)
2341 continue;
2342 } else {
2343 if (local_exact != NULL)
2344 continue;
2345 }
2346
2347 if (match == INPLOOKUP_MATCH_LADDR) {
2348 if (injail)
2349 return (inp);
2350 local_exact = inp;
2351 } else {
2352 #ifdef INET6
2353 /* XXX inp locking, NULL check */
2354 if (inp->inp_vflag & INP_IPV6PROTO)
2355 local_wild_mapped = inp;
2356 else
2357 #endif
2358 if (injail)
2359 jail_wild = inp;
2360 else
2361 local_wild = inp;
2362 }
2363 }
2364 if (jail_wild != NULL)
2365 return (jail_wild);
2366 if (local_exact != NULL)
2367 return (local_exact);
2368 if (local_wild != NULL)
2369 return (local_wild);
2370 #ifdef INET6
2371 if (local_wild_mapped != NULL)
2372 return (local_wild_mapped);
2373 #endif
2374 return (NULL);
2375 }
2376
2377 /*
2378 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes
2379 * that the caller has either locked the hash list, which usually happens
2380 * for bind(2) operations, or is in SMR section, which happens when sorting
2381 * out incoming packets.
2382 */
2383 static struct inpcb *
in_pcblookup_hash_locked(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain)2384 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2385 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2386 uint8_t numa_domain)
2387 {
2388 struct inpcb *inp;
2389 const u_short fport = fport_arg, lport = lport_arg;
2390
2391 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2392 ("%s: invalid lookup flags %d", __func__, lookupflags));
2393 KASSERT(faddr.s_addr != INADDR_ANY,
2394 ("%s: invalid foreign address", __func__));
2395 KASSERT(laddr.s_addr != INADDR_ANY,
2396 ("%s: invalid local address", __func__));
2397 INP_HASH_WLOCK_ASSERT(pcbinfo);
2398
2399 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2400 if (inp != NULL)
2401 return (inp);
2402
2403 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2404 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2405 &laddr, lport, numa_domain);
2406 if (inp == NULL) {
2407 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2408 lport);
2409 }
2410 }
2411
2412 return (inp);
2413 }
2414
2415 static struct inpcb *
in_pcblookup_hash(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,uint8_t numa_domain)2416 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2417 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2418 uint8_t numa_domain)
2419 {
2420 struct inpcb *inp;
2421 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2422
2423 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2424 ("%s: LOCKPCB not set", __func__));
2425
2426 INP_HASH_WLOCK(pcbinfo);
2427 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2428 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2429 if (inp != NULL && !inp_trylock(inp, lockflags)) {
2430 in_pcbref(inp);
2431 INP_HASH_WUNLOCK(pcbinfo);
2432 inp_lock(inp, lockflags);
2433 if (in_pcbrele(inp, lockflags))
2434 /* XXX-MJ or retry until we get a negative match? */
2435 inp = NULL;
2436 } else {
2437 INP_HASH_WUNLOCK(pcbinfo);
2438 }
2439 return (inp);
2440 }
2441
2442 static struct inpcb *
in_pcblookup_hash_smr(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport_arg,struct in_addr laddr,u_int lport_arg,int lookupflags,uint8_t numa_domain)2443 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2444 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2445 uint8_t numa_domain)
2446 {
2447 struct inpcb *inp;
2448 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2449 const u_short fport = fport_arg, lport = lport_arg;
2450
2451 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2452 ("%s: invalid lookup flags %d", __func__, lookupflags));
2453 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2454 ("%s: LOCKPCB not set", __func__));
2455
2456 smr_enter(pcbinfo->ipi_smr);
2457 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2458 if (inp != NULL) {
2459 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2460 /*
2461 * Revalidate the 4-tuple, the socket could have been
2462 * disconnected.
2463 */
2464 if (__predict_true(in_pcblookup_exact_match(inp,
2465 faddr, fport, laddr, lport)))
2466 return (inp);
2467 inp_unlock(inp, lockflags);
2468 }
2469
2470 /*
2471 * We failed to lock the inpcb, or its connection state changed
2472 * out from under us. Fall back to a precise search.
2473 */
2474 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2475 lookupflags, numa_domain));
2476 }
2477
2478 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2479 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2480 &laddr, lport, numa_domain);
2481 if (inp != NULL) {
2482 if (__predict_true(inp_smr_lock(inp, lockflags))) {
2483 if (__predict_true(in_pcblookup_wild_match(inp,
2484 laddr, lport) != INPLOOKUP_MATCH_NONE))
2485 return (inp);
2486 inp_unlock(inp, lockflags);
2487 }
2488 inp = INP_LOOKUP_AGAIN;
2489 } else {
2490 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2491 lockflags);
2492 }
2493 if (inp == INP_LOOKUP_AGAIN) {
2494 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2495 lport, lookupflags, numa_domain));
2496 }
2497 }
2498
2499 if (inp == NULL)
2500 smr_exit(pcbinfo->ipi_smr);
2501
2502 return (inp);
2503 }
2504
2505 /*
2506 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2507 * from which a pre-calculated hash value may be extracted.
2508 */
2509 struct inpcb *
in_pcblookup(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp __unused)2510 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2511 struct in_addr laddr, u_int lport, int lookupflags,
2512 struct ifnet *ifp __unused)
2513 {
2514 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2515 lookupflags, M_NODOM));
2516 }
2517
2518 struct inpcb *
in_pcblookup_mbuf(struct inpcbinfo * pcbinfo,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,int lookupflags,struct ifnet * ifp __unused,struct mbuf * m)2519 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2520 u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2521 struct ifnet *ifp __unused, struct mbuf *m)
2522 {
2523 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2524 lookupflags, m->m_pkthdr.numa_domain));
2525 }
2526 #endif /* INET */
2527
2528 static bool
in_pcbjailed(const struct inpcb * inp,unsigned int flag)2529 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2530 {
2531 return (prison_flag(inp->inp_cred, flag) != 0);
2532 }
2533
2534 /*
2535 * Insert the PCB into a hash chain using ordering rules which ensure that
2536 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2537 *
2538 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2539 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs
2540 * always appear last no matter whether they are jailed.
2541 */
2542 static void
_in_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2543 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2544 {
2545 struct inpcb *last;
2546 bool bound, injail;
2547
2548 INP_LOCK_ASSERT(inp);
2549 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2550
2551 last = NULL;
2552 bound = inp->inp_laddr.s_addr != INADDR_ANY;
2553 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2554 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2555 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2556 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2557 return;
2558 }
2559 }
2560 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2561 return;
2562 }
2563
2564 injail = in_pcbjailed(inp, PR_IP4);
2565 if (!injail) {
2566 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2567 if (!in_pcbjailed(last, PR_IP4))
2568 break;
2569 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2570 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2571 return;
2572 }
2573 }
2574 } else if (!CK_LIST_EMPTY(pcbhash) &&
2575 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2576 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2577 return;
2578 }
2579 if (!bound) {
2580 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2581 if (last->inp_laddr.s_addr == INADDR_ANY)
2582 break;
2583 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2584 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2585 return;
2586 }
2587 }
2588 }
2589 if (last == NULL)
2590 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2591 else
2592 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2593 }
2594
2595 #ifdef INET6
2596 /*
2597 * See the comment above _in_pcbinshash_wild().
2598 */
2599 static void
_in6_pcbinshash_wild(struct inpcbhead * pcbhash,struct inpcb * inp)2600 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2601 {
2602 struct inpcb *last;
2603 bool bound, injail;
2604
2605 INP_LOCK_ASSERT(inp);
2606 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2607
2608 last = NULL;
2609 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2610 injail = in_pcbjailed(inp, PR_IP6);
2611 if (!injail) {
2612 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2613 if (!in_pcbjailed(last, PR_IP6))
2614 break;
2615 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2616 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2617 return;
2618 }
2619 }
2620 } else if (!CK_LIST_EMPTY(pcbhash) &&
2621 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2622 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2623 return;
2624 }
2625 if (!bound) {
2626 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2627 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2628 break;
2629 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2630 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2631 return;
2632 }
2633 }
2634 }
2635 if (last == NULL)
2636 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2637 else
2638 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2639 }
2640 #endif
2641
2642 /*
2643 * Insert PCB onto various hash lists.
2644 */
2645 int
in_pcbinshash(struct inpcb * inp)2646 in_pcbinshash(struct inpcb *inp)
2647 {
2648 struct inpcbhead *pcbhash;
2649 struct inpcbporthead *pcbporthash;
2650 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2651 struct inpcbport *phd;
2652 uint32_t hash;
2653 bool connected;
2654
2655 INP_WLOCK_ASSERT(inp);
2656 INP_HASH_WLOCK_ASSERT(pcbinfo);
2657 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2658 ("in_pcbinshash: INP_INHASHLIST"));
2659
2660 #ifdef INET6
2661 if (inp->inp_vflag & INP_IPV6) {
2662 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2663 inp->inp_fport, pcbinfo->ipi_hashmask);
2664 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2665 } else
2666 #endif
2667 {
2668 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2669 inp->inp_fport, pcbinfo->ipi_hashmask);
2670 connected = !in_nullhost(inp->inp_faddr);
2671 }
2672
2673 if (connected)
2674 pcbhash = &pcbinfo->ipi_hash_exact[hash];
2675 else
2676 pcbhash = &pcbinfo->ipi_hash_wild[hash];
2677
2678 pcbporthash = &pcbinfo->ipi_porthashbase[
2679 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2680
2681 /*
2682 * Add entry to load balance group.
2683 * Only do this if SO_REUSEPORT_LB is set.
2684 */
2685 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2686 int error = in_pcbinslbgrouphash(inp, M_NODOM);
2687 if (error != 0)
2688 return (error);
2689 }
2690
2691 /*
2692 * Go through port list and look for a head for this lport.
2693 */
2694 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2695 if (phd->phd_port == inp->inp_lport)
2696 break;
2697 }
2698
2699 /*
2700 * If none exists, malloc one and tack it on.
2701 */
2702 if (phd == NULL) {
2703 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2704 if (phd == NULL) {
2705 if ((inp->inp_flags & INP_INLBGROUP) != 0)
2706 in_pcbremlbgrouphash(inp);
2707 return (ENOMEM);
2708 }
2709 phd->phd_port = inp->inp_lport;
2710 CK_LIST_INIT(&phd->phd_pcblist);
2711 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2712 }
2713 inp->inp_phd = phd;
2714 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2715
2716 /*
2717 * The PCB may have been disconnected in the past. Before we can safely
2718 * make it visible in the hash table, we must wait for all readers which
2719 * may be traversing this PCB to finish.
2720 */
2721 if (inp->inp_smr != SMR_SEQ_INVALID) {
2722 smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2723 inp->inp_smr = SMR_SEQ_INVALID;
2724 }
2725
2726 if (connected)
2727 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2728 else {
2729 #ifdef INET6
2730 if ((inp->inp_vflag & INP_IPV6) != 0)
2731 _in6_pcbinshash_wild(pcbhash, inp);
2732 else
2733 #endif
2734 _in_pcbinshash_wild(pcbhash, inp);
2735 }
2736 inp->inp_flags |= INP_INHASHLIST;
2737
2738 return (0);
2739 }
2740
2741 void
in_pcbremhash_locked(struct inpcb * inp)2742 in_pcbremhash_locked(struct inpcb *inp)
2743 {
2744 struct inpcbport *phd = inp->inp_phd;
2745
2746 INP_WLOCK_ASSERT(inp);
2747 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2748 MPASS(inp->inp_flags & INP_INHASHLIST);
2749
2750 if ((inp->inp_flags & INP_INLBGROUP) != 0)
2751 in_pcbremlbgrouphash(inp);
2752 #ifdef INET6
2753 if (inp->inp_vflag & INP_IPV6) {
2754 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2755 CK_LIST_REMOVE(inp, inp_hash_wild);
2756 else
2757 CK_LIST_REMOVE(inp, inp_hash_exact);
2758 } else
2759 #endif
2760 {
2761 if (in_nullhost(inp->inp_faddr))
2762 CK_LIST_REMOVE(inp, inp_hash_wild);
2763 else
2764 CK_LIST_REMOVE(inp, inp_hash_exact);
2765 }
2766 CK_LIST_REMOVE(inp, inp_portlist);
2767 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2768 CK_LIST_REMOVE(phd, phd_hash);
2769 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2770 }
2771 inp->inp_flags &= ~INP_INHASHLIST;
2772 }
2773
2774 static void
in_pcbremhash(struct inpcb * inp)2775 in_pcbremhash(struct inpcb *inp)
2776 {
2777 INP_HASH_WLOCK(inp->inp_pcbinfo);
2778 in_pcbremhash_locked(inp);
2779 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2780 }
2781
2782 /*
2783 * Move PCB to the proper hash bucket when { faddr, fport } have been
2784 * changed. NOTE: This does not handle the case of the lport changing (the
2785 * hashed port list would have to be updated as well), so the lport must
2786 * not change after in_pcbinshash() has been called.
2787 */
2788 void
in_pcbrehash(struct inpcb * inp)2789 in_pcbrehash(struct inpcb *inp)
2790 {
2791 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2792 struct inpcbhead *head;
2793 uint32_t hash;
2794 bool connected;
2795
2796 INP_WLOCK_ASSERT(inp);
2797 INP_HASH_WLOCK_ASSERT(pcbinfo);
2798 KASSERT(inp->inp_flags & INP_INHASHLIST,
2799 ("%s: !INP_INHASHLIST", __func__));
2800 KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2801 ("%s: inp was disconnected", __func__));
2802
2803 #ifdef INET6
2804 if (inp->inp_vflag & INP_IPV6) {
2805 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2806 inp->inp_fport, pcbinfo->ipi_hashmask);
2807 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2808 } else
2809 #endif
2810 {
2811 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2812 inp->inp_fport, pcbinfo->ipi_hashmask);
2813 connected = !in_nullhost(inp->inp_faddr);
2814 }
2815
2816 /*
2817 * When rehashing, the caller must ensure that either the new or the old
2818 * foreign address was unspecified.
2819 */
2820 if (connected)
2821 CK_LIST_REMOVE(inp, inp_hash_wild);
2822 else
2823 CK_LIST_REMOVE(inp, inp_hash_exact);
2824
2825 if (connected) {
2826 head = &pcbinfo->ipi_hash_exact[hash];
2827 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2828 } else {
2829 head = &pcbinfo->ipi_hash_wild[hash];
2830 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2831 }
2832 }
2833
2834 /*
2835 * Check for alternatives when higher level complains
2836 * about service problems. For now, invalidate cached
2837 * routing information. If the route was created dynamically
2838 * (by a redirect), time to try a default gateway again.
2839 */
2840 void
in_losing(struct inpcb * inp)2841 in_losing(struct inpcb *inp)
2842 {
2843
2844 RO_INVALIDATE_CACHE(&inp->inp_route);
2845 return;
2846 }
2847
2848 /*
2849 * A set label operation has occurred at the socket layer, propagate the
2850 * label change into the in_pcb for the socket.
2851 */
2852 void
in_pcbsosetlabel(struct socket * so)2853 in_pcbsosetlabel(struct socket *so)
2854 {
2855 #ifdef MAC
2856 struct inpcb *inp;
2857
2858 inp = sotoinpcb(so);
2859 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2860
2861 INP_WLOCK(inp);
2862 SOCK_LOCK(so);
2863 mac_inpcb_sosetlabel(so, inp);
2864 SOCK_UNLOCK(so);
2865 INP_WUNLOCK(inp);
2866 #endif
2867 }
2868
2869 void
inp_wlock(struct inpcb * inp)2870 inp_wlock(struct inpcb *inp)
2871 {
2872
2873 INP_WLOCK(inp);
2874 }
2875
2876 void
inp_wunlock(struct inpcb * inp)2877 inp_wunlock(struct inpcb *inp)
2878 {
2879
2880 INP_WUNLOCK(inp);
2881 }
2882
2883 void
inp_rlock(struct inpcb * inp)2884 inp_rlock(struct inpcb *inp)
2885 {
2886
2887 INP_RLOCK(inp);
2888 }
2889
2890 void
inp_runlock(struct inpcb * inp)2891 inp_runlock(struct inpcb *inp)
2892 {
2893
2894 INP_RUNLOCK(inp);
2895 }
2896
2897 #ifdef INVARIANT_SUPPORT
2898 void
inp_lock_assert(struct inpcb * inp)2899 inp_lock_assert(struct inpcb *inp)
2900 {
2901
2902 INP_WLOCK_ASSERT(inp);
2903 }
2904
2905 void
inp_unlock_assert(struct inpcb * inp)2906 inp_unlock_assert(struct inpcb *inp)
2907 {
2908
2909 INP_UNLOCK_ASSERT(inp);
2910 }
2911 #endif
2912
2913 void
inp_apply_all(struct inpcbinfo * pcbinfo,void (* func)(struct inpcb *,void *),void * arg)2914 inp_apply_all(struct inpcbinfo *pcbinfo,
2915 void (*func)(struct inpcb *, void *), void *arg)
2916 {
2917 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2918 INPLOOKUP_WLOCKPCB);
2919 struct inpcb *inp;
2920
2921 while ((inp = inp_next(&inpi)) != NULL)
2922 func(inp, arg);
2923 }
2924
2925 struct socket *
inp_inpcbtosocket(struct inpcb * inp)2926 inp_inpcbtosocket(struct inpcb *inp)
2927 {
2928
2929 INP_WLOCK_ASSERT(inp);
2930 return (inp->inp_socket);
2931 }
2932
2933 void
inp_4tuple_get(struct inpcb * inp,uint32_t * laddr,uint16_t * lp,uint32_t * faddr,uint16_t * fp)2934 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2935 uint32_t *faddr, uint16_t *fp)
2936 {
2937
2938 INP_LOCK_ASSERT(inp);
2939 *laddr = inp->inp_laddr.s_addr;
2940 *faddr = inp->inp_faddr.s_addr;
2941 *lp = inp->inp_lport;
2942 *fp = inp->inp_fport;
2943 }
2944
2945 /*
2946 * Create an external-format (``xinpcb'') structure using the information in
2947 * the kernel-format in_pcb structure pointed to by inp. This is done to
2948 * reduce the spew of irrelevant information over this interface, to isolate
2949 * user code from changes in the kernel structure, and potentially to provide
2950 * information-hiding if we decide that some of this information should be
2951 * hidden from users.
2952 */
2953 void
in_pcbtoxinpcb(const struct inpcb * inp,struct xinpcb * xi)2954 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2955 {
2956
2957 bzero(xi, sizeof(*xi));
2958 xi->xi_len = sizeof(struct xinpcb);
2959 if (inp->inp_socket)
2960 sotoxsocket(inp->inp_socket, &xi->xi_socket);
2961 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2962 xi->inp_gencnt = inp->inp_gencnt;
2963 xi->inp_flow = inp->inp_flow;
2964 xi->inp_flowid = inp->inp_flowid;
2965 xi->inp_flowtype = inp->inp_flowtype;
2966 xi->inp_flags = inp->inp_flags;
2967 xi->inp_flags2 = inp->inp_flags2;
2968 xi->in6p_cksum = inp->in6p_cksum;
2969 xi->in6p_hops = inp->in6p_hops;
2970 xi->inp_ip_tos = inp->inp_ip_tos;
2971 xi->inp_vflag = inp->inp_vflag;
2972 xi->inp_ip_ttl = inp->inp_ip_ttl;
2973 xi->inp_ip_p = inp->inp_ip_p;
2974 xi->inp_ip_minttl = inp->inp_ip_minttl;
2975 }
2976
2977 int
sysctl_setsockopt(SYSCTL_HANDLER_ARGS,struct inpcbinfo * pcbinfo,int (* ctloutput_set)(struct inpcb *,struct sockopt *))2978 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2979 int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2980 {
2981 struct sockopt sopt;
2982 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2983 INPLOOKUP_WLOCKPCB);
2984 struct inpcb *inp;
2985 struct sockopt_parameters *params;
2986 struct socket *so;
2987 int error;
2988 char buf[1024];
2989
2990 if (req->oldptr != NULL || req->oldlen != 0)
2991 return (EINVAL);
2992 if (req->newptr == NULL)
2993 return (EPERM);
2994 if (req->newlen > sizeof(buf))
2995 return (ENOMEM);
2996 error = SYSCTL_IN(req, buf, req->newlen);
2997 if (error != 0)
2998 return (error);
2999 if (req->newlen < sizeof(struct sockopt_parameters))
3000 return (EINVAL);
3001 params = (struct sockopt_parameters *)buf;
3002 sopt.sopt_level = params->sop_level;
3003 sopt.sopt_name = params->sop_optname;
3004 sopt.sopt_dir = SOPT_SET;
3005 sopt.sopt_val = params->sop_optval;
3006 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
3007 sopt.sopt_td = NULL;
3008 #ifdef INET6
3009 if (params->sop_inc.inc_flags & INC_ISIPV6) {
3010 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr))
3011 params->sop_inc.inc6_laddr.s6_addr16[1] =
3012 htons(params->sop_inc.inc6_zoneid & 0xffff);
3013 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr))
3014 params->sop_inc.inc6_faddr.s6_addr16[1] =
3015 htons(params->sop_inc.inc6_zoneid & 0xffff);
3016 }
3017 #endif
3018 if (params->sop_inc.inc_lport != htons(0) &&
3019 params->sop_inc.inc_fport != htons(0)) {
3020 #ifdef INET6
3021 if (params->sop_inc.inc_flags & INC_ISIPV6)
3022 inpi.hash = INP6_PCBHASH(
3023 ¶ms->sop_inc.inc6_faddr,
3024 params->sop_inc.inc_lport,
3025 params->sop_inc.inc_fport,
3026 pcbinfo->ipi_hashmask);
3027 else
3028 #endif
3029 inpi.hash = INP_PCBHASH(
3030 ¶ms->sop_inc.inc_faddr,
3031 params->sop_inc.inc_lport,
3032 params->sop_inc.inc_fport,
3033 pcbinfo->ipi_hashmask);
3034 }
3035 while ((inp = inp_next(&inpi)) != NULL)
3036 if (inp->inp_gencnt == params->sop_id) {
3037 if (inp->inp_flags & INP_DROPPED) {
3038 INP_WUNLOCK(inp);
3039 return (ECONNRESET);
3040 }
3041 so = inp->inp_socket;
3042 KASSERT(so != NULL, ("inp_socket == NULL"));
3043 soref(so);
3044 if (params->sop_level == SOL_SOCKET) {
3045 INP_WUNLOCK(inp);
3046 error = sosetopt(so, &sopt);
3047 } else
3048 error = (*ctloutput_set)(inp, &sopt);
3049 sorele(so);
3050 break;
3051 }
3052 if (inp == NULL)
3053 error = ESRCH;
3054 return (error);
3055 }
3056
3057 #ifdef DDB
3058 static void
db_print_indent(int indent)3059 db_print_indent(int indent)
3060 {
3061 int i;
3062
3063 for (i = 0; i < indent; i++)
3064 db_printf(" ");
3065 }
3066
3067 static void
db_print_inconninfo(struct in_conninfo * inc,const char * name,int indent)3068 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3069 {
3070 char faddr_str[48], laddr_str[48];
3071
3072 db_print_indent(indent);
3073 db_printf("%s at %p\n", name, inc);
3074
3075 indent += 2;
3076
3077 #ifdef INET6
3078 if (inc->inc_flags & INC_ISIPV6) {
3079 /* IPv6. */
3080 ip6_sprintf(laddr_str, &inc->inc6_laddr);
3081 ip6_sprintf(faddr_str, &inc->inc6_faddr);
3082 } else
3083 #endif
3084 {
3085 /* IPv4. */
3086 inet_ntoa_r(inc->inc_laddr, laddr_str);
3087 inet_ntoa_r(inc->inc_faddr, faddr_str);
3088 }
3089 db_print_indent(indent);
3090 db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
3091 ntohs(inc->inc_lport));
3092 db_print_indent(indent);
3093 db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
3094 ntohs(inc->inc_fport));
3095 }
3096
3097 static void
db_print_inpflags(int inp_flags)3098 db_print_inpflags(int inp_flags)
3099 {
3100 int comma;
3101
3102 comma = 0;
3103 if (inp_flags & INP_RECVOPTS) {
3104 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3105 comma = 1;
3106 }
3107 if (inp_flags & INP_RECVRETOPTS) {
3108 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3109 comma = 1;
3110 }
3111 if (inp_flags & INP_RECVDSTADDR) {
3112 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3113 comma = 1;
3114 }
3115 if (inp_flags & INP_ORIGDSTADDR) {
3116 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3117 comma = 1;
3118 }
3119 if (inp_flags & INP_HDRINCL) {
3120 db_printf("%sINP_HDRINCL", comma ? ", " : "");
3121 comma = 1;
3122 }
3123 if (inp_flags & INP_HIGHPORT) {
3124 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3125 comma = 1;
3126 }
3127 if (inp_flags & INP_LOWPORT) {
3128 db_printf("%sINP_LOWPORT", comma ? ", " : "");
3129 comma = 1;
3130 }
3131 if (inp_flags & INP_ANONPORT) {
3132 db_printf("%sINP_ANONPORT", comma ? ", " : "");
3133 comma = 1;
3134 }
3135 if (inp_flags & INP_RECVIF) {
3136 db_printf("%sINP_RECVIF", comma ? ", " : "");
3137 comma = 1;
3138 }
3139 if (inp_flags & INP_MTUDISC) {
3140 db_printf("%sINP_MTUDISC", comma ? ", " : "");
3141 comma = 1;
3142 }
3143 if (inp_flags & INP_RECVTTL) {
3144 db_printf("%sINP_RECVTTL", comma ? ", " : "");
3145 comma = 1;
3146 }
3147 if (inp_flags & INP_DONTFRAG) {
3148 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3149 comma = 1;
3150 }
3151 if (inp_flags & INP_RECVTOS) {
3152 db_printf("%sINP_RECVTOS", comma ? ", " : "");
3153 comma = 1;
3154 }
3155 if (inp_flags & IN6P_IPV6_V6ONLY) {
3156 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3157 comma = 1;
3158 }
3159 if (inp_flags & IN6P_PKTINFO) {
3160 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3161 comma = 1;
3162 }
3163 if (inp_flags & IN6P_HOPLIMIT) {
3164 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3165 comma = 1;
3166 }
3167 if (inp_flags & IN6P_HOPOPTS) {
3168 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3169 comma = 1;
3170 }
3171 if (inp_flags & IN6P_DSTOPTS) {
3172 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3173 comma = 1;
3174 }
3175 if (inp_flags & IN6P_RTHDR) {
3176 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3177 comma = 1;
3178 }
3179 if (inp_flags & IN6P_RTHDRDSTOPTS) {
3180 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3181 comma = 1;
3182 }
3183 if (inp_flags & IN6P_TCLASS) {
3184 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3185 comma = 1;
3186 }
3187 if (inp_flags & IN6P_AUTOFLOWLABEL) {
3188 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3189 comma = 1;
3190 }
3191 if (inp_flags & INP_ONESBCAST) {
3192 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3193 comma = 1;
3194 }
3195 if (inp_flags & INP_DROPPED) {
3196 db_printf("%sINP_DROPPED", comma ? ", " : "");
3197 comma = 1;
3198 }
3199 if (inp_flags & INP_SOCKREF) {
3200 db_printf("%sINP_SOCKREF", comma ? ", " : "");
3201 comma = 1;
3202 }
3203 if (inp_flags & IN6P_RFC2292) {
3204 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3205 comma = 1;
3206 }
3207 if (inp_flags & IN6P_MTU) {
3208 db_printf("IN6P_MTU%s", comma ? ", " : "");
3209 comma = 1;
3210 }
3211 }
3212
3213 static void
db_print_inpvflag(u_char inp_vflag)3214 db_print_inpvflag(u_char inp_vflag)
3215 {
3216 int comma;
3217
3218 comma = 0;
3219 if (inp_vflag & INP_IPV4) {
3220 db_printf("%sINP_IPV4", comma ? ", " : "");
3221 comma = 1;
3222 }
3223 if (inp_vflag & INP_IPV6) {
3224 db_printf("%sINP_IPV6", comma ? ", " : "");
3225 comma = 1;
3226 }
3227 if (inp_vflag & INP_IPV6PROTO) {
3228 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3229 comma = 1;
3230 }
3231 }
3232
3233 static void
db_print_inpcb(struct inpcb * inp,const char * name,int indent)3234 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3235 {
3236
3237 db_print_indent(indent);
3238 db_printf("%s at %p\n", name, inp);
3239
3240 indent += 2;
3241
3242 db_print_indent(indent);
3243 db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3244
3245 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3246
3247 db_print_indent(indent);
3248 db_printf("inp_label: %p inp_flags: 0x%x (",
3249 inp->inp_label, inp->inp_flags);
3250 db_print_inpflags(inp->inp_flags);
3251 db_printf(")\n");
3252
3253 db_print_indent(indent);
3254 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
3255 inp->inp_vflag);
3256 db_print_inpvflag(inp->inp_vflag);
3257 db_printf(")\n");
3258
3259 db_print_indent(indent);
3260 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
3261 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3262
3263 db_print_indent(indent);
3264 #ifdef INET6
3265 if (inp->inp_vflag & INP_IPV6) {
3266 db_printf("in6p_options: %p in6p_outputopts: %p "
3267 "in6p_moptions: %p\n", inp->in6p_options,
3268 inp->in6p_outputopts, inp->in6p_moptions);
3269 db_printf("in6p_icmp6filt: %p in6p_cksum %d "
3270 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3271 inp->in6p_hops);
3272 } else
3273 #endif
3274 {
3275 db_printf("inp_ip_tos: %d inp_ip_options: %p "
3276 "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3277 inp->inp_options, inp->inp_moptions);
3278 }
3279
3280 db_print_indent(indent);
3281 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
3282 (uintmax_t)inp->inp_gencnt);
3283 }
3284
DB_SHOW_COMMAND(inpcb,db_show_inpcb)3285 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3286 {
3287 struct inpcb *inp;
3288
3289 if (!have_addr) {
3290 db_printf("usage: show inpcb <addr>\n");
3291 return;
3292 }
3293 inp = (struct inpcb *)addr;
3294
3295 db_print_inpcb(inp, "inpcb", 0);
3296 }
3297 #endif /* DDB */
3298
3299 #ifdef RATELIMIT
3300 /*
3301 * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3302 * if any.
3303 */
3304 int
in_pcbmodify_txrtlmt(struct inpcb * inp,uint32_t max_pacing_rate)3305 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3306 {
3307 union if_snd_tag_modify_params params = {
3308 .rate_limit.max_rate = max_pacing_rate,
3309 .rate_limit.flags = M_NOWAIT,
3310 };
3311 struct m_snd_tag *mst;
3312 int error;
3313
3314 mst = inp->inp_snd_tag;
3315 if (mst == NULL)
3316 return (EINVAL);
3317
3318 if (mst->sw->snd_tag_modify == NULL) {
3319 error = EOPNOTSUPP;
3320 } else {
3321 error = mst->sw->snd_tag_modify(mst, ¶ms);
3322 }
3323 return (error);
3324 }
3325
3326 /*
3327 * Query existing TX rate limit based on the existing
3328 * "inp->inp_snd_tag", if any.
3329 */
3330 int
in_pcbquery_txrtlmt(struct inpcb * inp,uint32_t * p_max_pacing_rate)3331 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3332 {
3333 union if_snd_tag_query_params params = { };
3334 struct m_snd_tag *mst;
3335 int error;
3336
3337 mst = inp->inp_snd_tag;
3338 if (mst == NULL)
3339 return (EINVAL);
3340
3341 if (mst->sw->snd_tag_query == NULL) {
3342 error = EOPNOTSUPP;
3343 } else {
3344 error = mst->sw->snd_tag_query(mst, ¶ms);
3345 if (error == 0 && p_max_pacing_rate != NULL)
3346 *p_max_pacing_rate = params.rate_limit.max_rate;
3347 }
3348 return (error);
3349 }
3350
3351 /*
3352 * Query existing TX queue level based on the existing
3353 * "inp->inp_snd_tag", if any.
3354 */
3355 int
in_pcbquery_txrlevel(struct inpcb * inp,uint32_t * p_txqueue_level)3356 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3357 {
3358 union if_snd_tag_query_params params = { };
3359 struct m_snd_tag *mst;
3360 int error;
3361
3362 mst = inp->inp_snd_tag;
3363 if (mst == NULL)
3364 return (EINVAL);
3365
3366 if (mst->sw->snd_tag_query == NULL)
3367 return (EOPNOTSUPP);
3368
3369 error = mst->sw->snd_tag_query(mst, ¶ms);
3370 if (error == 0 && p_txqueue_level != NULL)
3371 *p_txqueue_level = params.rate_limit.queue_level;
3372 return (error);
3373 }
3374
3375 /*
3376 * Allocate a new TX rate limit send tag from the network interface
3377 * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3378 */
3379 int
in_pcbattach_txrtlmt(struct inpcb * inp,struct ifnet * ifp,uint32_t flowtype,uint32_t flowid,uint32_t max_pacing_rate,struct m_snd_tag ** st)3380 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3381 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3382
3383 {
3384 union if_snd_tag_alloc_params params = {
3385 .rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3386 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3387 .rate_limit.hdr.flowid = flowid,
3388 .rate_limit.hdr.flowtype = flowtype,
3389 .rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3390 .rate_limit.max_rate = max_pacing_rate,
3391 .rate_limit.flags = M_NOWAIT,
3392 };
3393 int error;
3394
3395 INP_WLOCK_ASSERT(inp);
3396
3397 /*
3398 * If there is already a send tag, or the INP is being torn
3399 * down, allocating a new send tag is not allowed. Else send
3400 * tags may leak.
3401 */
3402 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3403 return (EINVAL);
3404
3405 error = m_snd_tag_alloc(ifp, ¶ms, st);
3406 #ifdef INET
3407 if (error == 0) {
3408 counter_u64_add(rate_limit_set_ok, 1);
3409 counter_u64_add(rate_limit_active, 1);
3410 } else if (error != EOPNOTSUPP)
3411 counter_u64_add(rate_limit_alloc_fail, 1);
3412 #endif
3413 return (error);
3414 }
3415
3416 void
in_pcbdetach_tag(struct m_snd_tag * mst)3417 in_pcbdetach_tag(struct m_snd_tag *mst)
3418 {
3419
3420 m_snd_tag_rele(mst);
3421 #ifdef INET
3422 counter_u64_add(rate_limit_active, -1);
3423 #endif
3424 }
3425
3426 /*
3427 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3428 * if any:
3429 */
3430 void
in_pcbdetach_txrtlmt(struct inpcb * inp)3431 in_pcbdetach_txrtlmt(struct inpcb *inp)
3432 {
3433 struct m_snd_tag *mst;
3434
3435 INP_WLOCK_ASSERT(inp);
3436
3437 mst = inp->inp_snd_tag;
3438 inp->inp_snd_tag = NULL;
3439
3440 if (mst == NULL)
3441 return;
3442
3443 m_snd_tag_rele(mst);
3444 #ifdef INET
3445 counter_u64_add(rate_limit_active, -1);
3446 #endif
3447 }
3448
3449 int
in_pcboutput_txrtlmt_locked(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb,uint32_t max_pacing_rate)3450 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3451 {
3452 int error;
3453
3454 /*
3455 * If the existing send tag is for the wrong interface due to
3456 * a route change, first drop the existing tag. Set the
3457 * CHANGED flag so that we will keep trying to allocate a new
3458 * tag if we fail to allocate one this time.
3459 */
3460 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3461 in_pcbdetach_txrtlmt(inp);
3462 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3463 }
3464
3465 /*
3466 * NOTE: When attaching to a network interface a reference is
3467 * made to ensure the network interface doesn't go away until
3468 * all ratelimit connections are gone. The network interface
3469 * pointers compared below represent valid network interfaces,
3470 * except when comparing towards NULL.
3471 */
3472 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3473 error = 0;
3474 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3475 if (inp->inp_snd_tag != NULL)
3476 in_pcbdetach_txrtlmt(inp);
3477 error = 0;
3478 } else if (inp->inp_snd_tag == NULL) {
3479 /*
3480 * In order to utilize packet pacing with RSS, we need
3481 * to wait until there is a valid RSS hash before we
3482 * can proceed:
3483 */
3484 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3485 error = EAGAIN;
3486 } else {
3487 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3488 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3489 }
3490 } else {
3491 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3492 }
3493 if (error == 0 || error == EOPNOTSUPP)
3494 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3495
3496 return (error);
3497 }
3498
3499 /*
3500 * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3501 * is set in the fast path and will attach/detach/modify the TX rate
3502 * limit send tag based on the socket's so_max_pacing_rate value.
3503 */
3504 void
in_pcboutput_txrtlmt(struct inpcb * inp,struct ifnet * ifp,struct mbuf * mb)3505 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3506 {
3507 struct socket *socket;
3508 uint32_t max_pacing_rate;
3509 bool did_upgrade;
3510
3511 if (inp == NULL)
3512 return;
3513
3514 socket = inp->inp_socket;
3515 if (socket == NULL)
3516 return;
3517
3518 if (!INP_WLOCKED(inp)) {
3519 /*
3520 * NOTE: If the write locking fails, we need to bail
3521 * out and use the non-ratelimited ring for the
3522 * transmit until there is a new chance to get the
3523 * write lock.
3524 */
3525 if (!INP_TRY_UPGRADE(inp))
3526 return;
3527 did_upgrade = 1;
3528 } else {
3529 did_upgrade = 0;
3530 }
3531
3532 /*
3533 * NOTE: The so_max_pacing_rate value is read unlocked,
3534 * because atomic updates are not required since the variable
3535 * is checked at every mbuf we send. It is assumed that the
3536 * variable read itself will be atomic.
3537 */
3538 max_pacing_rate = socket->so_max_pacing_rate;
3539
3540 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3541
3542 if (did_upgrade)
3543 INP_DOWNGRADE(inp);
3544 }
3545
3546 /*
3547 * Track route changes for TX rate limiting.
3548 */
3549 void
in_pcboutput_eagain(struct inpcb * inp)3550 in_pcboutput_eagain(struct inpcb *inp)
3551 {
3552 bool did_upgrade;
3553
3554 if (inp == NULL)
3555 return;
3556
3557 if (inp->inp_snd_tag == NULL)
3558 return;
3559
3560 if (!INP_WLOCKED(inp)) {
3561 /*
3562 * NOTE: If the write locking fails, we need to bail
3563 * out and use the non-ratelimited ring for the
3564 * transmit until there is a new chance to get the
3565 * write lock.
3566 */
3567 if (!INP_TRY_UPGRADE(inp))
3568 return;
3569 did_upgrade = 1;
3570 } else {
3571 did_upgrade = 0;
3572 }
3573
3574 /* detach rate limiting */
3575 in_pcbdetach_txrtlmt(inp);
3576
3577 /* make sure new mbuf send tag allocation is made */
3578 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3579
3580 if (did_upgrade)
3581 INP_DOWNGRADE(inp);
3582 }
3583
3584 #ifdef INET
3585 static void
rl_init(void * st)3586 rl_init(void *st)
3587 {
3588 rate_limit_new = counter_u64_alloc(M_WAITOK);
3589 rate_limit_chg = counter_u64_alloc(M_WAITOK);
3590 rate_limit_active = counter_u64_alloc(M_WAITOK);
3591 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3592 rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3593 }
3594
3595 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3596 #endif
3597 #endif /* RATELIMIT */
3598