1 2 #pragma ident "%Z%%M% %I% %E% SMI" 3 4 /* 5 ** 2001 September 15 6 ** 7 ** The author disclaims copyright to this source code. In place of 8 ** a legal notice, here is a blessing: 9 ** 10 ** May you do good and not evil. 11 ** May you find forgiveness for yourself and forgive others. 12 ** May you share freely, never taking more than you give. 13 ** 14 ************************************************************************* 15 ** Internal interface definitions for SQLite. 16 ** 17 ** @(#) $Id: sqliteInt.h,v 1.220.2.1 2004/07/15 13:37:05 drh Exp $ 18 */ 19 #include "config.h" 20 #include "sqlite.h" 21 #include "hash.h" 22 #include "parse.h" 23 #include "btree.h" 24 #include <stdio.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <assert.h> 28 29 /* 30 ** The maximum number of in-memory pages to use for the main database 31 ** table and for temporary tables. 32 */ 33 #define MAX_PAGES 2000 34 #define TEMP_PAGES 500 35 36 /* 37 ** If the following macro is set to 1, then NULL values are considered 38 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT 39 ** compound queries. No other SQL database engine (among those tested) 40 ** works this way except for OCELOT. But the SQL92 spec implies that 41 ** this is how things should work. 42 ** 43 ** If the following macro is set to 0, then NULLs are indistinct for 44 ** SELECT DISTINCT and for UNION. 45 */ 46 #define NULL_ALWAYS_DISTINCT 0 47 48 /* 49 ** If the following macro is set to 1, then NULL values are considered 50 ** distinct when determining whether or not two entries are the same 51 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 52 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 53 ** is the way things are suppose to work. 54 ** 55 ** If the following macro is set to 0, the NULLs are indistinct for 56 ** a UNIQUE index. In this mode, you can only have a single NULL entry 57 ** for a column declared UNIQUE. This is the way Informix and SQL Server 58 ** work. 59 */ 60 #define NULL_DISTINCT_FOR_UNIQUE 1 61 62 /* 63 ** The maximum number of attached databases. This must be at least 2 64 ** in order to support the main database file (0) and the file used to 65 ** hold temporary tables (1). And it must be less than 256 because 66 ** an unsigned character is used to stored the database index. 67 */ 68 #define MAX_ATTACHED 10 69 70 /* 71 ** The next macro is used to determine where TEMP tables and indices 72 ** are stored. Possible values: 73 ** 74 ** 0 Always use a temporary files 75 ** 1 Use a file unless overridden by "PRAGMA temp_store" 76 ** 2 Use memory unless overridden by "PRAGMA temp_store" 77 ** 3 Always use memory 78 */ 79 #ifndef TEMP_STORE 80 # define TEMP_STORE 1 81 #endif 82 83 /* 84 ** When building SQLite for embedded systems where memory is scarce, 85 ** you can define one or more of the following macros to omit extra 86 ** features of the library and thus keep the size of the library to 87 ** a minimum. 88 */ 89 /* #define SQLITE_OMIT_AUTHORIZATION 1 */ 90 /* #define SQLITE_OMIT_INMEMORYDB 1 */ 91 /* #define SQLITE_OMIT_VACUUM 1 */ 92 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ 93 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ 94 95 /* 96 ** Integers of known sizes. These typedefs might change for architectures 97 ** where the sizes very. Preprocessor macros are available so that the 98 ** types can be conveniently redefined at compile-type. Like this: 99 ** 100 ** cc '-DUINTPTR_TYPE=long long int' ... 101 */ 102 #ifndef UINT32_TYPE 103 # define UINT32_TYPE unsigned int 104 #endif 105 #ifndef UINT16_TYPE 106 # define UINT16_TYPE unsigned short int 107 #endif 108 #ifndef INT16_TYPE 109 # define INT16_TYPE short int 110 #endif 111 #ifndef UINT8_TYPE 112 # define UINT8_TYPE unsigned char 113 #endif 114 #ifndef INT8_TYPE 115 # define INT8_TYPE signed char 116 #endif 117 #ifndef INTPTR_TYPE 118 # if SQLITE_PTR_SZ==4 119 # define INTPTR_TYPE int 120 # else 121 # define INTPTR_TYPE long long 122 # endif 123 #endif 124 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 125 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 126 typedef INT16_TYPE i16; /* 2-byte signed integer */ 127 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 128 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 129 typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ 130 typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */ 131 132 /* 133 ** Defer sourcing vdbe.h until after the "u8" typedef is defined. 134 */ 135 #include "vdbe.h" 136 137 /* 138 ** Most C compilers these days recognize "long double", don't they? 139 ** Just in case we encounter one that does not, we will create a macro 140 ** for long double so that it can be easily changed to just "double". 141 */ 142 #ifndef LONGDOUBLE_TYPE 143 # define LONGDOUBLE_TYPE long double 144 #endif 145 146 /* 147 ** This macro casts a pointer to an integer. Useful for doing 148 ** pointer arithmetic. 149 */ 150 #define Addr(X) ((uptr)X) 151 152 /* 153 ** The maximum number of bytes of data that can be put into a single 154 ** row of a single table. The upper bound on this limit is 16777215 155 ** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB 156 ** here because the overflow page chain is inefficient for really big 157 ** records and we want to discourage people from thinking that 158 ** multi-megabyte records are OK. If your needs are different, you can 159 ** change this define and recompile to increase or decrease the record 160 ** size. 161 ** 162 ** The 16777198 is computed as follows: 238 bytes of payload on the 163 ** original pages plus 16448 overflow pages each holding 1020 bytes of 164 ** data. 165 */ 166 #define MAX_BYTES_PER_ROW 1048576 167 /* #define MAX_BYTES_PER_ROW 16777198 */ 168 169 /* 170 ** If memory allocation problems are found, recompile with 171 ** 172 ** -DMEMORY_DEBUG=1 173 ** 174 ** to enable some sanity checking on malloc() and free(). To 175 ** check for memory leaks, recompile with 176 ** 177 ** -DMEMORY_DEBUG=2 178 ** 179 ** and a line of text will be written to standard error for 180 ** each malloc() and free(). This output can be analyzed 181 ** by an AWK script to determine if there are any leaks. 182 */ 183 #ifdef MEMORY_DEBUG 184 # define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__) 185 # define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__) 186 # define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) 187 # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) 188 # define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) 189 # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) 190 void sqliteStrRealloc(char**); 191 #else 192 # define sqliteRealloc_(X,Y) sqliteRealloc(X,Y) 193 # define sqliteStrRealloc(X) 194 #endif 195 196 /* 197 ** This variable gets set if malloc() ever fails. After it gets set, 198 ** the SQLite library shuts down permanently. 199 */ 200 extern int sqlite_malloc_failed; 201 202 /* 203 ** The following global variables are used for testing and debugging 204 ** only. They only work if MEMORY_DEBUG is defined. 205 */ 206 #ifdef MEMORY_DEBUG 207 extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ 208 extern int sqlite_nFree; /* Number of sqliteFree() calls */ 209 extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 210 #endif 211 212 /* 213 ** Name of the master database table. The master database table 214 ** is a special table that holds the names and attributes of all 215 ** user tables and indices. 216 */ 217 #define MASTER_NAME "sqlite_master" 218 #define TEMP_MASTER_NAME "sqlite_temp_master" 219 220 /* 221 ** The name of the schema table. 222 */ 223 #define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME) 224 225 /* 226 ** A convenience macro that returns the number of elements in 227 ** an array. 228 */ 229 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 230 231 /* 232 ** Forward references to structures 233 */ 234 typedef struct Column Column; 235 typedef struct Table Table; 236 typedef struct Index Index; 237 typedef struct Instruction Instruction; 238 typedef struct Expr Expr; 239 typedef struct ExprList ExprList; 240 typedef struct Parse Parse; 241 typedef struct Token Token; 242 typedef struct IdList IdList; 243 typedef struct SrcList SrcList; 244 typedef struct WhereInfo WhereInfo; 245 typedef struct WhereLevel WhereLevel; 246 typedef struct Select Select; 247 typedef struct AggExpr AggExpr; 248 typedef struct FuncDef FuncDef; 249 typedef struct Trigger Trigger; 250 typedef struct TriggerStep TriggerStep; 251 typedef struct TriggerStack TriggerStack; 252 typedef struct FKey FKey; 253 typedef struct Db Db; 254 typedef struct AuthContext AuthContext; 255 256 /* 257 ** Each database file to be accessed by the system is an instance 258 ** of the following structure. There are normally two of these structures 259 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 260 ** aDb[1] is the database file used to hold temporary tables. Additional 261 ** databases may be attached. 262 */ 263 struct Db { 264 char *zName; /* Name of this database */ 265 Btree *pBt; /* The B*Tree structure for this database file */ 266 int schema_cookie; /* Database schema version number for this file */ 267 Hash tblHash; /* All tables indexed by name */ 268 Hash idxHash; /* All (named) indices indexed by name */ 269 Hash trigHash; /* All triggers indexed by name */ 270 Hash aFKey; /* Foreign keys indexed by to-table */ 271 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 272 u16 flags; /* Flags associated with this database */ 273 void *pAux; /* Auxiliary data. Usually NULL */ 274 void (*xFreeAux)(void*); /* Routine to free pAux */ 275 }; 276 277 /* 278 ** These macros can be used to test, set, or clear bits in the 279 ** Db.flags field. 280 */ 281 #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) 282 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) 283 #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) 284 #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) 285 286 /* 287 ** Allowed values for the DB.flags field. 288 ** 289 ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint 290 ** opcode is emitted for a database. This prevents multiple occurances 291 ** of those opcodes for the same database in the same program. Similarly, 292 ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted, 293 ** and prevents duplicate OP_VerifyCookies from taking up space and slowing 294 ** down execution. 295 ** 296 ** The DB_SchemaLoaded flag is set after the database schema has been 297 ** read into internal hash tables. 298 ** 299 ** DB_UnresetViews means that one or more views have column names that 300 ** have been filled out. If the schema changes, these column names might 301 ** changes and so the view will need to be reset. 302 */ 303 #define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */ 304 #define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */ 305 #define DB_SchemaLoaded 0x0004 /* The schema has been loaded */ 306 #define DB_UnresetViews 0x0008 /* Some views have defined column names */ 307 308 309 /* 310 ** Each database is an instance of the following structure. 311 ** 312 ** The sqlite.file_format is initialized by the database file 313 ** and helps determines how the data in the database file is 314 ** represented. This field allows newer versions of the library 315 ** to read and write older databases. The various file formats 316 ** are as follows: 317 ** 318 ** file_format==1 Version 2.1.0. 319 ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY. 320 ** file_format==3 Version 2.6.0. Fix empty-string index bug. 321 ** file_format==4 Version 2.7.0. Add support for separate numeric and 322 ** text datatypes. 323 ** 324 ** The sqlite.temp_store determines where temporary database files 325 ** are stored. If 1, then a file is created to hold those tables. If 326 ** 2, then they are held in memory. 0 means use the default value in 327 ** the TEMP_STORE macro. 328 ** 329 ** The sqlite.lastRowid records the last insert rowid generated by an 330 ** insert statement. Inserts on views do not affect its value. Each 331 ** trigger has its own context, so that lastRowid can be updated inside 332 ** triggers as usual. The previous value will be restored once the trigger 333 ** exits. Upon entering a before or instead of trigger, lastRowid is no 334 ** longer (since after version 2.8.12) reset to -1. 335 ** 336 ** The sqlite.nChange does not count changes within triggers and keeps no 337 ** context. It is reset at start of sqlite_exec. 338 ** The sqlite.lsChange represents the number of changes made by the last 339 ** insert, update, or delete statement. It remains constant throughout the 340 ** length of a statement and is then updated by OP_SetCounts. It keeps a 341 ** context stack just like lastRowid so that the count of changes 342 ** within a trigger is not seen outside the trigger. Changes to views do not 343 ** affect the value of lsChange. 344 ** The sqlite.csChange keeps track of the number of current changes (since 345 ** the last statement) and is used to update sqlite_lsChange. 346 */ 347 struct sqlite { 348 int nDb; /* Number of backends currently in use */ 349 Db *aDb; /* All backends */ 350 Db aDbStatic[2]; /* Static space for the 2 default backends */ 351 int flags; /* Miscellanous flags. See below */ 352 u8 file_format; /* What file format version is this database? */ 353 u8 safety_level; /* How aggressive at synching data to disk */ 354 u8 want_to_close; /* Close after all VDBEs are deallocated */ 355 u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */ 356 u8 onError; /* Default conflict algorithm */ 357 int next_cookie; /* Next value of aDb[0].schema_cookie */ 358 int cache_size; /* Number of pages to use in the cache */ 359 int nTable; /* Number of tables in the database */ 360 void *pBusyArg; /* 1st Argument to the busy callback */ 361 int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ 362 void *pCommitArg; /* Argument to xCommitCallback() */ 363 int (*xCommitCallback)(void*);/* Invoked at every commit. */ 364 Hash aFunc; /* All functions that can be in SQL exprs */ 365 int lastRowid; /* ROWID of most recent insert (see above) */ 366 int priorNewRowid; /* Last randomly generated ROWID */ 367 int magic; /* Magic number for detect library misuse */ 368 int nChange; /* Number of rows changed (see above) */ 369 int lsChange; /* Last statement change count (see above) */ 370 int csChange; /* Current statement change count (see above) */ 371 struct sqliteInitInfo { /* Information used during initialization */ 372 int iDb; /* When back is being initialized */ 373 int newTnum; /* Rootpage of table being initialized */ 374 u8 busy; /* TRUE if currently initializing */ 375 } init; 376 struct Vdbe *pVdbe; /* List of active virtual machines */ 377 void (*xTrace)(void*,const char*); /* Trace function */ 378 void *pTraceArg; /* Argument to the trace function */ 379 #ifndef SQLITE_OMIT_AUTHORIZATION 380 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 381 /* Access authorization function */ 382 void *pAuthArg; /* 1st argument to the access auth function */ 383 #endif 384 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 385 int (*xProgress)(void *); /* The progress callback */ 386 void *pProgressArg; /* Argument to the progress callback */ 387 int nProgressOps; /* Number of opcodes for progress callback */ 388 #endif 389 }; 390 391 /* 392 ** Possible values for the sqlite.flags and or Db.flags fields. 393 ** 394 ** On sqlite.flags, the SQLITE_InTrans value means that we have 395 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 396 ** transaction is active on that particular database file. 397 */ 398 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 399 #define SQLITE_Initialized 0x00000002 /* True after initialization */ 400 #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ 401 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 402 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 403 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 404 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 405 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 406 /* DELETE, or UPDATE and return */ 407 /* the count using a callback. */ 408 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 409 /* result set is empty */ 410 #define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */ 411 /* in 4th argument of callback */ 412 413 /* 414 ** Possible values for the sqlite.magic field. 415 ** The numbers are obtained at random and have no special meaning, other 416 ** than being distinct from one another. 417 */ 418 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 419 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 420 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 421 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 422 423 /* 424 ** Each SQL function is defined by an instance of the following 425 ** structure. A pointer to this structure is stored in the sqlite.aFunc 426 ** hash table. When multiple functions have the same name, the hash table 427 ** points to a linked list of these structures. 428 */ 429 struct FuncDef { 430 void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */ 431 void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */ 432 void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */ 433 signed char nArg; /* Number of arguments. -1 means unlimited */ 434 signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */ 435 /* -2=TEXT. -3=SQLITE_ARGS */ 436 u8 includeTypes; /* Add datatypes to args of xFunc and xStep */ 437 void *pUserData; /* User data parameter */ 438 FuncDef *pNext; /* Next function with same name */ 439 }; 440 441 /* 442 ** information about each column of an SQL table is held in an instance 443 ** of this structure. 444 */ 445 struct Column { 446 char *zName; /* Name of this column */ 447 char *zDflt; /* Default value of this column */ 448 char *zType; /* Data type for this column */ 449 u8 notNull; /* True if there is a NOT NULL constraint */ 450 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 451 u8 sortOrder; /* Some combination of SQLITE_SO_... values */ 452 u8 dottedName; /* True if zName contains a "." character */ 453 }; 454 455 /* 456 ** The allowed sort orders. 457 ** 458 ** The TEXT and NUM values use bits that do not overlap with DESC and ASC. 459 ** That way the two can be combined into a single number. 460 */ 461 #define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ 462 #define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ 463 #define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */ 464 #define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ 465 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 466 #define SQLITE_SO_DESC 1 /* Sort in descending order */ 467 #define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ 468 469 /* 470 ** Each SQL table is represented in memory by an instance of the 471 ** following structure. 472 ** 473 ** Table.zName is the name of the table. The case of the original 474 ** CREATE TABLE statement is stored, but case is not significant for 475 ** comparisons. 476 ** 477 ** Table.nCol is the number of columns in this table. Table.aCol is a 478 ** pointer to an array of Column structures, one for each column. 479 ** 480 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 481 ** the column that is that key. Otherwise Table.iPKey is negative. Note 482 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 483 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 484 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 485 ** is generated for each row of the table. Table.hasPrimKey is true if 486 ** the table has any PRIMARY KEY, INTEGER or otherwise. 487 ** 488 ** Table.tnum is the page number for the root BTree page of the table in the 489 ** database file. If Table.iDb is the index of the database table backend 490 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 491 ** holds temporary tables and indices. If Table.isTransient 492 ** is true, then the table is stored in a file that is automatically deleted 493 ** when the VDBE cursor to the table is closed. In this case Table.tnum 494 ** refers VDBE cursor number that holds the table open, not to the root 495 ** page number. Transient tables are used to hold the results of a 496 ** sub-query that appears instead of a real table name in the FROM clause 497 ** of a SELECT statement. 498 */ 499 struct Table { 500 char *zName; /* Name of the table */ 501 int nCol; /* Number of columns in this table */ 502 Column *aCol; /* Information about each column */ 503 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 504 Index *pIndex; /* List of SQL indexes on this table. */ 505 int tnum; /* Root BTree node for this table (see note above) */ 506 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 507 u8 readOnly; /* True if this table should not be written by the user */ 508 u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ 509 u8 isTransient; /* True if automatically deleted when VDBE finishes */ 510 u8 hasPrimKey; /* True if there exists a primary key */ 511 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 512 Trigger *pTrigger; /* List of SQL triggers on this table */ 513 FKey *pFKey; /* Linked list of all foreign keys in this table */ 514 }; 515 516 /* 517 ** Each foreign key constraint is an instance of the following structure. 518 ** 519 ** A foreign key is associated with two tables. The "from" table is 520 ** the table that contains the REFERENCES clause that creates the foreign 521 ** key. The "to" table is the table that is named in the REFERENCES clause. 522 ** Consider this example: 523 ** 524 ** CREATE TABLE ex1( 525 ** a INTEGER PRIMARY KEY, 526 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 527 ** ); 528 ** 529 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 530 ** 531 ** Each REFERENCES clause generates an instance of the following structure 532 ** which is attached to the from-table. The to-table need not exist when 533 ** the from-table is created. The existance of the to-table is not checked 534 ** until an attempt is made to insert data into the from-table. 535 ** 536 ** The sqlite.aFKey hash table stores pointers to this structure 537 ** given the name of a to-table. For each to-table, all foreign keys 538 ** associated with that table are on a linked list using the FKey.pNextTo 539 ** field. 540 */ 541 struct FKey { 542 Table *pFrom; /* The table that constains the REFERENCES clause */ 543 FKey *pNextFrom; /* Next foreign key in pFrom */ 544 char *zTo; /* Name of table that the key points to */ 545 FKey *pNextTo; /* Next foreign key that points to zTo */ 546 int nCol; /* Number of columns in this key */ 547 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 548 int iFrom; /* Index of column in pFrom */ 549 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 550 } *aCol; /* One entry for each of nCol column s */ 551 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 552 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 553 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 554 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 555 }; 556 557 /* 558 ** SQLite supports many different ways to resolve a contraint 559 ** error. ROLLBACK processing means that a constraint violation 560 ** causes the operation in process to fail and for the current transaction 561 ** to be rolled back. ABORT processing means the operation in process 562 ** fails and any prior changes from that one operation are backed out, 563 ** but the transaction is not rolled back. FAIL processing means that 564 ** the operation in progress stops and returns an error code. But prior 565 ** changes due to the same operation are not backed out and no rollback 566 ** occurs. IGNORE means that the particular row that caused the constraint 567 ** error is not inserted or updated. Processing continues and no error 568 ** is returned. REPLACE means that preexisting database rows that caused 569 ** a UNIQUE constraint violation are removed so that the new insert or 570 ** update can proceed. Processing continues and no error is reported. 571 ** 572 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 573 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 574 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 575 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 576 ** referenced table row is propagated into the row that holds the 577 ** foreign key. 578 ** 579 ** The following symbolic values are used to record which type 580 ** of action to take. 581 */ 582 #define OE_None 0 /* There is no constraint to check */ 583 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 584 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 585 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 586 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 587 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 588 589 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 590 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 591 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 592 #define OE_Cascade 9 /* Cascade the changes */ 593 594 #define OE_Default 99 /* Do whatever the default action is */ 595 596 /* 597 ** Each SQL index is represented in memory by an 598 ** instance of the following structure. 599 ** 600 ** The columns of the table that are to be indexed are described 601 ** by the aiColumn[] field of this structure. For example, suppose 602 ** we have the following table and index: 603 ** 604 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 605 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 606 ** 607 ** In the Table structure describing Ex1, nCol==3 because there are 608 ** three columns in the table. In the Index structure describing 609 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 610 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 611 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 612 ** The second column to be indexed (c1) has an index of 0 in 613 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 614 ** 615 ** The Index.onError field determines whether or not the indexed columns 616 ** must be unique and what to do if they are not. When Index.onError=OE_None, 617 ** it means this is not a unique index. Otherwise it is a unique index 618 ** and the value of Index.onError indicate the which conflict resolution 619 ** algorithm to employ whenever an attempt is made to insert a non-unique 620 ** element. 621 */ 622 struct Index { 623 char *zName; /* Name of this index */ 624 int nColumn; /* Number of columns in the table used by this index */ 625 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 626 Table *pTable; /* The SQL table being indexed */ 627 int tnum; /* Page containing root of this index in database file */ 628 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 629 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 630 u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ 631 Index *pNext; /* The next index associated with the same table */ 632 }; 633 634 /* 635 ** Each token coming out of the lexer is an instance of 636 ** this structure. Tokens are also used as part of an expression. 637 ** 638 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 639 ** may contain random values. Do not make any assuptions about Token.dyn 640 ** and Token.n when Token.z==0. 641 */ 642 struct Token { 643 const char *z; /* Text of the token. Not NULL-terminated! */ 644 unsigned dyn : 1; /* True for malloced memory, false for static */ 645 unsigned n : 31; /* Number of characters in this token */ 646 }; 647 648 /* 649 ** Each node of an expression in the parse tree is an instance 650 ** of this structure. 651 ** 652 ** Expr.op is the opcode. The integer parser token codes are reused 653 ** as opcodes here. For example, the parser defines TK_GE to be an integer 654 ** code representing the ">=" operator. This same integer code is reused 655 ** to represent the greater-than-or-equal-to operator in the expression 656 ** tree. 657 ** 658 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 659 ** of argument if the expression is a function. 660 ** 661 ** Expr.token is the operator token for this node. For some expressions 662 ** that have subexpressions, Expr.token can be the complete text that gave 663 ** rise to the Expr. In the latter case, the token is marked as being 664 ** a compound token. 665 ** 666 ** An expression of the form ID or ID.ID refers to a column in a table. 667 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 668 ** the integer cursor number of a VDBE cursor pointing to that table and 669 ** Expr.iColumn is the column number for the specific column. If the 670 ** expression is used as a result in an aggregate SELECT, then the 671 ** value is also stored in the Expr.iAgg column in the aggregate so that 672 ** it can be accessed after all aggregates are computed. 673 ** 674 ** If the expression is a function, the Expr.iTable is an integer code 675 ** representing which function. If the expression is an unbound variable 676 ** marker (a question mark character '?' in the original SQL) then the 677 ** Expr.iTable holds the index number for that variable. 678 ** 679 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 680 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 681 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 682 ** operand. 683 */ 684 struct Expr { 685 u8 op; /* Operation performed by this node */ 686 u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */ 687 u8 iDb; /* Database referenced by this expression */ 688 u8 flags; /* Various flags. See below */ 689 Expr *pLeft, *pRight; /* Left and right subnodes */ 690 ExprList *pList; /* A list of expressions used as function arguments 691 ** or in "<expr> IN (<expr-list)" */ 692 Token token; /* An operand token */ 693 Token span; /* Complete text of the expression */ 694 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 695 ** iColumn-th field of the iTable-th table. */ 696 int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull 697 ** result from the iAgg-th element of the aggregator */ 698 Select *pSelect; /* When the expression is a sub-select. Also the 699 ** right side of "<expr> IN (<select>)" */ 700 }; 701 702 /* 703 ** The following are the meanings of bits in the Expr.flags field. 704 */ 705 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 706 707 /* 708 ** These macros can be used to test, set, or clear bits in the 709 ** Expr.flags field. 710 */ 711 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 712 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 713 #define ExprSetProperty(E,P) (E)->flags|=(P) 714 #define ExprClearProperty(E,P) (E)->flags&=~(P) 715 716 /* 717 ** A list of expressions. Each expression may optionally have a 718 ** name. An expr/name combination can be used in several ways, such 719 ** as the list of "expr AS ID" fields following a "SELECT" or in the 720 ** list of "ID = expr" items in an UPDATE. A list of expressions can 721 ** also be used as the argument to a function, in which case the a.zName 722 ** field is not used. 723 */ 724 struct ExprList { 725 int nExpr; /* Number of expressions on the list */ 726 int nAlloc; /* Number of entries allocated below */ 727 struct ExprList_item { 728 Expr *pExpr; /* The list of expressions */ 729 char *zName; /* Token associated with this expression */ 730 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 731 u8 isAgg; /* True if this is an aggregate like count(*) */ 732 u8 done; /* A flag to indicate when processing is finished */ 733 } *a; /* One entry for each expression */ 734 }; 735 736 /* 737 ** An instance of this structure can hold a simple list of identifiers, 738 ** such as the list "a,b,c" in the following statements: 739 ** 740 ** INSERT INTO t(a,b,c) VALUES ...; 741 ** CREATE INDEX idx ON t(a,b,c); 742 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 743 ** 744 ** The IdList.a.idx field is used when the IdList represents the list of 745 ** column names after a table name in an INSERT statement. In the statement 746 ** 747 ** INSERT INTO t(a,b,c) ... 748 ** 749 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 750 */ 751 struct IdList { 752 int nId; /* Number of identifiers on the list */ 753 int nAlloc; /* Number of entries allocated for a[] below */ 754 struct IdList_item { 755 char *zName; /* Name of the identifier */ 756 int idx; /* Index in some Table.aCol[] of a column named zName */ 757 } *a; 758 }; 759 760 /* 761 ** The following structure describes the FROM clause of a SELECT statement. 762 ** Each table or subquery in the FROM clause is a separate element of 763 ** the SrcList.a[] array. 764 ** 765 ** With the addition of multiple database support, the following structure 766 ** can also be used to describe a particular table such as the table that 767 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 768 ** such a table must be a simple name: ID. But in SQLite, the table can 769 ** now be identified by a database name, a dot, then the table name: ID.ID. 770 */ 771 struct SrcList { 772 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 773 i16 nAlloc; /* Number of entries allocated in a[] below */ 774 struct SrcList_item { 775 char *zDatabase; /* Name of database holding this table */ 776 char *zName; /* Name of the table */ 777 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 778 Table *pTab; /* An SQL table corresponding to zName */ 779 Select *pSelect; /* A SELECT statement used in place of a table name */ 780 int jointype; /* Type of join between this table and the next */ 781 int iCursor; /* The VDBE cursor number used to access this table */ 782 Expr *pOn; /* The ON clause of a join */ 783 IdList *pUsing; /* The USING clause of a join */ 784 } a[1]; /* One entry for each identifier on the list */ 785 }; 786 787 /* 788 ** Permitted values of the SrcList.a.jointype field 789 */ 790 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 791 #define JT_NATURAL 0x0002 /* True for a "natural" join */ 792 #define JT_LEFT 0x0004 /* Left outer join */ 793 #define JT_RIGHT 0x0008 /* Right outer join */ 794 #define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ 795 #define JT_ERROR 0x0020 /* unknown or unsupported join type */ 796 797 /* 798 ** For each nested loop in a WHERE clause implementation, the WhereInfo 799 ** structure contains a single instance of this structure. This structure 800 ** is intended to be private the the where.c module and should not be 801 ** access or modified by other modules. 802 */ 803 struct WhereLevel { 804 int iMem; /* Memory cell used by this level */ 805 Index *pIdx; /* Index used */ 806 int iCur; /* Cursor number used for this index */ 807 int score; /* How well this indexed scored */ 808 int brk; /* Jump here to break out of the loop */ 809 int cont; /* Jump here to continue with the next loop cycle */ 810 int op, p1, p2; /* Opcode used to terminate the loop */ 811 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 812 int top; /* First instruction of interior of the loop */ 813 int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ 814 int bRev; /* Do the scan in the reverse direction */ 815 }; 816 817 /* 818 ** The WHERE clause processing routine has two halves. The 819 ** first part does the start of the WHERE loop and the second 820 ** half does the tail of the WHERE loop. An instance of 821 ** this structure is returned by the first half and passed 822 ** into the second half to give some continuity. 823 */ 824 struct WhereInfo { 825 Parse *pParse; 826 SrcList *pTabList; /* List of tables in the join */ 827 int iContinue; /* Jump here to continue with next record */ 828 int iBreak; /* Jump here to break out of the loop */ 829 int nLevel; /* Number of nested loop */ 830 int savedNTab; /* Value of pParse->nTab before WhereBegin() */ 831 int peakNTab; /* Value of pParse->nTab after WhereBegin() */ 832 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 833 }; 834 835 /* 836 ** An instance of the following structure contains all information 837 ** needed to generate code for a single SELECT statement. 838 ** 839 ** The zSelect field is used when the Select structure must be persistent. 840 ** Normally, the expression tree points to tokens in the original input 841 ** string that encodes the select. But if the Select structure must live 842 ** longer than its input string (for example when it is used to describe 843 ** a VIEW) we have to make a copy of the input string so that the nodes 844 ** of the expression tree will have something to point to. zSelect is used 845 ** to hold that copy. 846 ** 847 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 848 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 849 ** limit and nOffset to the value of the offset (or 0 if there is not 850 ** offset). But later on, nLimit and nOffset become the memory locations 851 ** in the VDBE that record the limit and offset counters. 852 */ 853 struct Select { 854 ExprList *pEList; /* The fields of the result */ 855 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 856 u8 isDistinct; /* True if the DISTINCT keyword is present */ 857 SrcList *pSrc; /* The FROM clause */ 858 Expr *pWhere; /* The WHERE clause */ 859 ExprList *pGroupBy; /* The GROUP BY clause */ 860 Expr *pHaving; /* The HAVING clause */ 861 ExprList *pOrderBy; /* The ORDER BY clause */ 862 Select *pPrior; /* Prior select in a compound select statement */ 863 int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */ 864 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 865 char *zSelect; /* Complete text of the SELECT command */ 866 }; 867 868 /* 869 ** The results of a select can be distributed in several ways. 870 */ 871 #define SRT_Callback 1 /* Invoke a callback with each row of result */ 872 #define SRT_Mem 2 /* Store result in a memory cell */ 873 #define SRT_Set 3 /* Store result as unique keys in a table */ 874 #define SRT_Union 5 /* Store result as keys in a table */ 875 #define SRT_Except 6 /* Remove result from a UNION table */ 876 #define SRT_Table 7 /* Store result as data with a unique key */ 877 #define SRT_TempTable 8 /* Store result in a trasient table */ 878 #define SRT_Discard 9 /* Do not save the results anywhere */ 879 #define SRT_Sorter 10 /* Store results in the sorter */ 880 #define SRT_Subroutine 11 /* Call a subroutine to handle results */ 881 882 /* 883 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") 884 ** we have to do some additional analysis of expressions. An instance 885 ** of the following structure holds information about a single subexpression 886 ** somewhere in the SELECT statement. An array of these structures holds 887 ** all the information we need to generate code for aggregate 888 ** expressions. 889 ** 890 ** Note that when analyzing a SELECT containing aggregates, both 891 ** non-aggregate field variables and aggregate functions are stored 892 ** in the AggExpr array of the Parser structure. 893 ** 894 ** The pExpr field points to an expression that is part of either the 895 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY 896 ** clause. The expression will be freed when those clauses are cleaned 897 ** up. Do not try to delete the expression attached to AggExpr.pExpr. 898 ** 899 ** If AggExpr.pExpr==0, that means the expression is "count(*)". 900 */ 901 struct AggExpr { 902 int isAgg; /* if TRUE contains an aggregate function */ 903 Expr *pExpr; /* The expression */ 904 FuncDef *pFunc; /* Information about the aggregate function */ 905 }; 906 907 /* 908 ** An SQL parser context. A copy of this structure is passed through 909 ** the parser and down into all the parser action routine in order to 910 ** carry around information that is global to the entire parse. 911 */ 912 struct Parse { 913 sqlite *db; /* The main database structure */ 914 int rc; /* Return code from execution */ 915 char *zErrMsg; /* An error message */ 916 Token sErrToken; /* The token at which the error occurred */ 917 Token sFirstToken; /* The first token parsed */ 918 Token sLastToken; /* The last token parsed */ 919 const char *zTail; /* All SQL text past the last semicolon parsed */ 920 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 921 Vdbe *pVdbe; /* An engine for executing database bytecode */ 922 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 923 u8 explain; /* True if the EXPLAIN flag is found on the query */ 924 u8 nameClash; /* A permanent table name clashes with temp table name */ 925 u8 useAgg; /* If true, extract field values from the aggregator 926 ** while generating expressions. Normally false */ 927 int nErr; /* Number of errors seen */ 928 int nTab; /* Number of previously allocated VDBE cursors */ 929 int nMem; /* Number of memory cells used so far */ 930 int nSet; /* Number of sets used so far */ 931 int nAgg; /* Number of aggregate expressions */ 932 int nVar; /* Number of '?' variables seen in the SQL so far */ 933 AggExpr *aAgg; /* An array of aggregate expressions */ 934 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 935 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 936 TriggerStack *trigStack; /* Trigger actions being coded */ 937 }; 938 939 /* 940 ** An instance of the following structure can be declared on a stack and used 941 ** to save the Parse.zAuthContext value so that it can be restored later. 942 */ 943 struct AuthContext { 944 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 945 Parse *pParse; /* The Parse structure */ 946 }; 947 948 /* 949 ** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete 950 */ 951 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 952 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 953 #define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */ 954 955 /* 956 * Each trigger present in the database schema is stored as an instance of 957 * struct Trigger. 958 * 959 * Pointers to instances of struct Trigger are stored in two ways. 960 * 1. In the "trigHash" hash table (part of the sqlite* that represents the 961 * database). This allows Trigger structures to be retrieved by name. 962 * 2. All triggers associated with a single table form a linked list, using the 963 * pNext member of struct Trigger. A pointer to the first element of the 964 * linked list is stored as the "pTrigger" member of the associated 965 * struct Table. 966 * 967 * The "step_list" member points to the first element of a linked list 968 * containing the SQL statements specified as the trigger program. 969 */ 970 struct Trigger { 971 char *name; /* The name of the trigger */ 972 char *table; /* The table or view to which the trigger applies */ 973 u8 iDb; /* Database containing this trigger */ 974 u8 iTabDb; /* Database containing Trigger.table */ 975 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 976 u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */ 977 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 978 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 979 the <column-list> is stored here */ 980 int foreach; /* One of TK_ROW or TK_STATEMENT */ 981 Token nameToken; /* Token containing zName. Use during parsing only */ 982 983 TriggerStep *step_list; /* Link list of trigger program steps */ 984 Trigger *pNext; /* Next trigger associated with the table */ 985 }; 986 987 /* 988 * An instance of struct TriggerStep is used to store a single SQL statement 989 * that is a part of a trigger-program. 990 * 991 * Instances of struct TriggerStep are stored in a singly linked list (linked 992 * using the "pNext" member) referenced by the "step_list" member of the 993 * associated struct Trigger instance. The first element of the linked list is 994 * the first step of the trigger-program. 995 * 996 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 997 * "SELECT" statement. The meanings of the other members is determined by the 998 * value of "op" as follows: 999 * 1000 * (op == TK_INSERT) 1001 * orconf -> stores the ON CONFLICT algorithm 1002 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 1003 * this stores a pointer to the SELECT statement. Otherwise NULL. 1004 * target -> A token holding the name of the table to insert into. 1005 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 1006 * this stores values to be inserted. Otherwise NULL. 1007 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 1008 * statement, then this stores the column-names to be 1009 * inserted into. 1010 * 1011 * (op == TK_DELETE) 1012 * target -> A token holding the name of the table to delete from. 1013 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 1014 * Otherwise NULL. 1015 * 1016 * (op == TK_UPDATE) 1017 * target -> A token holding the name of the table to update rows of. 1018 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 1019 * Otherwise NULL. 1020 * pExprList -> A list of the columns to update and the expressions to update 1021 * them to. See sqliteUpdate() documentation of "pChanges" 1022 * argument. 1023 * 1024 */ 1025 struct TriggerStep { 1026 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 1027 int orconf; /* OE_Rollback etc. */ 1028 Trigger *pTrig; /* The trigger that this step is a part of */ 1029 1030 Select *pSelect; /* Valid for SELECT and sometimes 1031 INSERT steps (when pExprList == 0) */ 1032 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 1033 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 1034 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 1035 INSERT steps (when pSelect == 0) */ 1036 IdList *pIdList; /* Valid for INSERT statements only */ 1037 1038 TriggerStep * pNext; /* Next in the link-list */ 1039 }; 1040 1041 /* 1042 * An instance of struct TriggerStack stores information required during code 1043 * generation of a single trigger program. While the trigger program is being 1044 * coded, its associated TriggerStack instance is pointed to by the 1045 * "pTriggerStack" member of the Parse structure. 1046 * 1047 * The pTab member points to the table that triggers are being coded on. The 1048 * newIdx member contains the index of the vdbe cursor that points at the temp 1049 * table that stores the new.* references. If new.* references are not valid 1050 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 1051 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 1052 * 1053 * The ON CONFLICT policy to be used for the trigger program steps is stored 1054 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 1055 * specified for individual triggers steps is used. 1056 * 1057 * struct TriggerStack has a "pNext" member, to allow linked lists to be 1058 * constructed. When coding nested triggers (triggers fired by other triggers) 1059 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 1060 * pointer. Once the nested trigger has been coded, the pNext value is restored 1061 * to the pTriggerStack member of the Parse stucture and coding of the parent 1062 * trigger continues. 1063 * 1064 * Before a nested trigger is coded, the linked list pointed to by the 1065 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 1066 * recursively. If this condition is detected, the nested trigger is not coded. 1067 */ 1068 struct TriggerStack { 1069 Table *pTab; /* Table that triggers are currently being coded on */ 1070 int newIdx; /* Index of vdbe cursor to "new" temp table */ 1071 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 1072 int orconf; /* Current orconf policy */ 1073 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 1074 Trigger *pTrigger; /* The trigger currently being coded */ 1075 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 1076 }; 1077 1078 /* 1079 ** The following structure contains information used by the sqliteFix... 1080 ** routines as they walk the parse tree to make database references 1081 ** explicit. 1082 */ 1083 typedef struct DbFixer DbFixer; 1084 struct DbFixer { 1085 Parse *pParse; /* The parsing context. Error messages written here */ 1086 const char *zDb; /* Make sure all objects are contained in this database */ 1087 const char *zType; /* Type of the container - used for error messages */ 1088 const Token *pName; /* Name of the container - used for error messages */ 1089 }; 1090 1091 /* 1092 * This global flag is set for performance testing of triggers. When it is set 1093 * SQLite will perform the overhead of building new and old trigger references 1094 * even when no triggers exist 1095 */ 1096 extern int always_code_trigger_setup; 1097 1098 /* 1099 ** Internal function prototypes 1100 */ 1101 int sqliteStrICmp(const char *, const char *); 1102 int sqliteStrNICmp(const char *, const char *, int); 1103 int sqliteHashNoCase(const char *, int); 1104 int sqliteIsNumber(const char*); 1105 int sqliteCompare(const char *, const char *); 1106 int sqliteSortCompare(const char *, const char *); 1107 void sqliteRealToSortable(double r, char *); 1108 #ifdef MEMORY_DEBUG 1109 void *sqliteMalloc_(int,int,char*,int); 1110 void sqliteFree_(void*,char*,int); 1111 void *sqliteRealloc_(void*,int,char*,int); 1112 char *sqliteStrDup_(const char*,char*,int); 1113 char *sqliteStrNDup_(const char*, int,char*,int); 1114 void sqliteCheckMemory(void*,int); 1115 #else 1116 void *sqliteMalloc(int); 1117 void *sqliteMallocRaw(int); 1118 void sqliteFree(void*); 1119 void *sqliteRealloc(void*,int); 1120 char *sqliteStrDup(const char*); 1121 char *sqliteStrNDup(const char*, int); 1122 # define sqliteCheckMemory(a,b) 1123 #endif 1124 char *sqliteMPrintf(const char*, ...); 1125 char *sqliteVMPrintf(const char*, va_list); 1126 void sqliteSetString(char **, const char *, ...); 1127 void sqliteSetNString(char **, ...); 1128 void sqliteErrorMsg(Parse*, const char*, ...); 1129 void sqliteDequote(char*); 1130 int sqliteKeywordCode(const char*, int); 1131 int sqliteRunParser(Parse*, const char*, char **); 1132 void sqliteExec(Parse*); 1133 Expr *sqliteExpr(int, Expr*, Expr*, Token*); 1134 void sqliteExprSpan(Expr*,Token*,Token*); 1135 Expr *sqliteExprFunction(ExprList*, Token*); 1136 void sqliteExprDelete(Expr*); 1137 ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); 1138 void sqliteExprListDelete(ExprList*); 1139 int sqliteInit(sqlite*, char**); 1140 void sqlitePragma(Parse*,Token*,Token*,int); 1141 void sqliteResetInternalSchema(sqlite*, int); 1142 void sqliteBeginParse(Parse*,int); 1143 void sqliteRollbackInternalChanges(sqlite*); 1144 void sqliteCommitInternalChanges(sqlite*); 1145 Table *sqliteResultSetOfSelect(Parse*,char*,Select*); 1146 void sqliteOpenMasterTable(Vdbe *v, int); 1147 void sqliteStartTable(Parse*,Token*,Token*,int,int); 1148 void sqliteAddColumn(Parse*,Token*); 1149 void sqliteAddNotNull(Parse*, int); 1150 void sqliteAddPrimaryKey(Parse*, IdList*, int); 1151 void sqliteAddColumnType(Parse*,Token*,Token*); 1152 void sqliteAddDefaultValue(Parse*,Token*,int); 1153 int sqliteCollateType(const char*, int); 1154 void sqliteAddCollateType(Parse*, int); 1155 void sqliteEndTable(Parse*,Token*,Select*); 1156 void sqliteCreateView(Parse*,Token*,Token*,Select*,int); 1157 int sqliteViewGetColumnNames(Parse*,Table*); 1158 void sqliteDropTable(Parse*, Token*, int); 1159 void sqliteDeleteTable(sqlite*, Table*); 1160 void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 1161 IdList *sqliteIdListAppend(IdList*, Token*); 1162 int sqliteIdListIndex(IdList*,const char*); 1163 SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*); 1164 void sqliteSrcListAddAlias(SrcList*, Token*); 1165 void sqliteSrcListAssignCursors(Parse*, SrcList*); 1166 void sqliteIdListDelete(IdList*); 1167 void sqliteSrcListDelete(SrcList*); 1168 void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*); 1169 void sqliteDropIndex(Parse*, SrcList*); 1170 void sqliteAddKeyType(Vdbe*, ExprList*); 1171 void sqliteAddIdxKeyType(Vdbe*, Index*); 1172 int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*); 1173 Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 1174 int,int,int); 1175 void sqliteSelectDelete(Select*); 1176 void sqliteSelectUnbind(Select*); 1177 Table *sqliteSrcListLookup(Parse*, SrcList*); 1178 int sqliteIsReadOnly(Parse*, Table*, int); 1179 void sqliteDeleteFrom(Parse*, SrcList*, Expr*); 1180 void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int); 1181 WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**); 1182 void sqliteWhereEnd(WhereInfo*); 1183 void sqliteExprCode(Parse*, Expr*); 1184 int sqliteExprCodeExprList(Parse*, ExprList*, int); 1185 void sqliteExprIfTrue(Parse*, Expr*, int, int); 1186 void sqliteExprIfFalse(Parse*, Expr*, int, int); 1187 Table *sqliteFindTable(sqlite*,const char*, const char*); 1188 Table *sqliteLocateTable(Parse*,const char*, const char*); 1189 Index *sqliteFindIndex(sqlite*,const char*, const char*); 1190 void sqliteUnlinkAndDeleteIndex(sqlite*,Index*); 1191 void sqliteCopy(Parse*, SrcList*, Token*, Token*, int); 1192 void sqliteVacuum(Parse*, Token*); 1193 int sqliteRunVacuum(char**, sqlite*); 1194 int sqliteGlobCompare(const unsigned char*,const unsigned char*); 1195 int sqliteLikeCompare(const unsigned char*,const unsigned char*); 1196 char *sqliteTableNameFromToken(Token*); 1197 int sqliteExprCheck(Parse*, Expr*, int, int*); 1198 int sqliteExprType(Expr*); 1199 int sqliteExprCompare(Expr*, Expr*); 1200 int sqliteFuncId(Token*); 1201 int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*); 1202 int sqliteExprAnalyzeAggregates(Parse*, Expr*); 1203 Vdbe *sqliteGetVdbe(Parse*); 1204 void sqliteRandomness(int, void*); 1205 void sqliteRollbackAll(sqlite*); 1206 void sqliteCodeVerifySchema(Parse*, int); 1207 void sqliteBeginTransaction(Parse*, int); 1208 void sqliteCommitTransaction(Parse*); 1209 void sqliteRollbackTransaction(Parse*); 1210 int sqliteExprIsConstant(Expr*); 1211 int sqliteExprIsInteger(Expr*, int*); 1212 int sqliteIsRowid(const char*); 1213 void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int); 1214 void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*); 1215 void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 1216 void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int); 1217 int sqliteOpenTableAndIndices(Parse*, Table*, int); 1218 void sqliteBeginWriteOperation(Parse*, int, int); 1219 void sqliteEndWriteOperation(Parse*); 1220 Expr *sqliteExprDup(Expr*); 1221 void sqliteTokenCopy(Token*, Token*); 1222 ExprList *sqliteExprListDup(ExprList*); 1223 SrcList *sqliteSrcListDup(SrcList*); 1224 IdList *sqliteIdListDup(IdList*); 1225 Select *sqliteSelectDup(Select*); 1226 FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int); 1227 void sqliteRegisterBuiltinFunctions(sqlite*); 1228 void sqliteRegisterDateTimeFunctions(sqlite*); 1229 int sqliteSafetyOn(sqlite*); 1230 int sqliteSafetyOff(sqlite*); 1231 int sqliteSafetyCheck(sqlite*); 1232 void sqliteChangeCookie(sqlite*, Vdbe*); 1233 void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int); 1234 void sqliteFinishTrigger(Parse*, TriggerStep*, Token*); 1235 void sqliteDropTrigger(Parse*, SrcList*); 1236 void sqliteDropTriggerPtr(Parse*, Trigger*, int); 1237 int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*); 1238 int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 1239 int, int); 1240 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 1241 void sqliteDeleteTriggerStep(TriggerStep*); 1242 TriggerStep *sqliteTriggerSelectStep(Select*); 1243 TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); 1244 TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int); 1245 TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*); 1246 void sqliteDeleteTrigger(Trigger*); 1247 int sqliteJoinType(Parse*, Token*, Token*, Token*); 1248 void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int); 1249 void sqliteDeferForeignKey(Parse*, int); 1250 #ifndef SQLITE_OMIT_AUTHORIZATION 1251 void sqliteAuthRead(Parse*,Expr*,SrcList*); 1252 int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*); 1253 void sqliteAuthContextPush(Parse*, AuthContext*, const char*); 1254 void sqliteAuthContextPop(AuthContext*); 1255 #else 1256 # define sqliteAuthRead(a,b,c) 1257 # define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK 1258 # define sqliteAuthContextPush(a,b,c) 1259 # define sqliteAuthContextPop(a) ((void)(a)) 1260 #endif 1261 void sqliteAttach(Parse*, Token*, Token*, Token*); 1262 void sqliteDetach(Parse*, Token*); 1263 int sqliteBtreeFactory(const sqlite *db, const char *zFilename, 1264 int mode, int nPg, Btree **ppBtree); 1265 int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*); 1266 int sqliteFixSrcList(DbFixer*, SrcList*); 1267 int sqliteFixSelect(DbFixer*, Select*); 1268 int sqliteFixExpr(DbFixer*, Expr*); 1269 int sqliteFixExprList(DbFixer*, ExprList*); 1270 int sqliteFixTriggerStep(DbFixer*, TriggerStep*); 1271 double sqliteAtoF(const char *z, const char **); 1272 char *sqlite_snprintf(int,char*,const char*,...); 1273 int sqliteFitsIn32Bits(const char *); 1274