1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for IMS Passenger Control Unit Devices
4 *
5 * Copyright (C) 2013 The IMS Company
6 */
7
8 #include <linux/completion.h>
9 #include <linux/device.h>
10 #include <linux/firmware.h>
11 #include <linux/ihex.h>
12 #include <linux/input.h>
13 #include <linux/kernel.h>
14 #include <linux/leds.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/usb/input.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/unaligned.h>
21
22 #define IMS_PCU_KEYMAP_LEN 32
23
24 struct ims_pcu_buttons {
25 struct input_dev *input;
26 char name[32];
27 char phys[32];
28 unsigned short keymap[IMS_PCU_KEYMAP_LEN];
29 };
30
31 struct ims_pcu_gamepad {
32 struct input_dev *input;
33 char name[32];
34 char phys[32];
35 };
36
37 struct ims_pcu_backlight {
38 struct led_classdev cdev;
39 char name[32];
40 };
41
42 #define IMS_PCU_PART_NUMBER_LEN 15
43 #define IMS_PCU_SERIAL_NUMBER_LEN 8
44 #define IMS_PCU_DOM_LEN 8
45 #define IMS_PCU_FW_VERSION_LEN 16
46 #define IMS_PCU_BL_VERSION_LEN 16
47 #define IMS_PCU_BL_RESET_REASON_LEN (2 + 1)
48
49 #define IMS_PCU_PCU_B_DEVICE_ID 5
50
51 #define IMS_PCU_BUF_SIZE 128
52
53 struct ims_pcu {
54 struct usb_device *udev;
55 struct device *dev; /* control interface's device, used for logging */
56
57 unsigned int device_no;
58
59 bool bootloader_mode;
60
61 char part_number[IMS_PCU_PART_NUMBER_LEN];
62 char serial_number[IMS_PCU_SERIAL_NUMBER_LEN];
63 char date_of_manufacturing[IMS_PCU_DOM_LEN];
64 char fw_version[IMS_PCU_FW_VERSION_LEN];
65 char bl_version[IMS_PCU_BL_VERSION_LEN];
66 char reset_reason[IMS_PCU_BL_RESET_REASON_LEN];
67 int update_firmware_status;
68 u8 device_id;
69
70 u8 ofn_reg_addr;
71
72 struct usb_interface *ctrl_intf;
73
74 struct usb_endpoint_descriptor *ep_ctrl;
75 struct urb *urb_ctrl;
76 u8 *urb_ctrl_buf;
77 dma_addr_t ctrl_dma;
78 size_t max_ctrl_size;
79
80 struct usb_interface *data_intf;
81
82 struct usb_endpoint_descriptor *ep_in;
83 struct urb *urb_in;
84 u8 *urb_in_buf;
85 dma_addr_t read_dma;
86 size_t max_in_size;
87
88 struct usb_endpoint_descriptor *ep_out;
89 u8 *urb_out_buf;
90 size_t max_out_size;
91
92 u8 read_buf[IMS_PCU_BUF_SIZE];
93 u8 read_pos;
94 u8 check_sum;
95 bool have_stx;
96 bool have_dle;
97
98 u8 cmd_buf[IMS_PCU_BUF_SIZE];
99 u8 ack_id;
100 u8 expected_response;
101 u8 cmd_buf_len;
102 struct completion cmd_done;
103 struct mutex cmd_mutex;
104
105 u32 fw_start_addr;
106 u32 fw_end_addr;
107 struct completion async_firmware_done;
108
109 struct ims_pcu_buttons buttons;
110 struct ims_pcu_gamepad *gamepad;
111 struct ims_pcu_backlight backlight;
112
113 bool setup_complete; /* Input and LED devices have been created */
114 };
115
116
117 /*********************************************************************
118 * Buttons Input device support *
119 *********************************************************************/
120
121 static const unsigned short ims_pcu_keymap_1[] = {
122 [1] = KEY_ATTENDANT_OFF,
123 [2] = KEY_ATTENDANT_ON,
124 [3] = KEY_LIGHTS_TOGGLE,
125 [4] = KEY_VOLUMEUP,
126 [5] = KEY_VOLUMEDOWN,
127 [6] = KEY_INFO,
128 };
129
130 static const unsigned short ims_pcu_keymap_2[] = {
131 [4] = KEY_VOLUMEUP,
132 [5] = KEY_VOLUMEDOWN,
133 [6] = KEY_INFO,
134 };
135
136 static const unsigned short ims_pcu_keymap_3[] = {
137 [1] = KEY_HOMEPAGE,
138 [2] = KEY_ATTENDANT_TOGGLE,
139 [3] = KEY_LIGHTS_TOGGLE,
140 [4] = KEY_VOLUMEUP,
141 [5] = KEY_VOLUMEDOWN,
142 [6] = KEY_DISPLAYTOGGLE,
143 [18] = KEY_PLAYPAUSE,
144 };
145
146 static const unsigned short ims_pcu_keymap_4[] = {
147 [1] = KEY_ATTENDANT_OFF,
148 [2] = KEY_ATTENDANT_ON,
149 [3] = KEY_LIGHTS_TOGGLE,
150 [4] = KEY_VOLUMEUP,
151 [5] = KEY_VOLUMEDOWN,
152 [6] = KEY_INFO,
153 [18] = KEY_PLAYPAUSE,
154 };
155
156 static const unsigned short ims_pcu_keymap_5[] = {
157 [1] = KEY_ATTENDANT_OFF,
158 [2] = KEY_ATTENDANT_ON,
159 [3] = KEY_LIGHTS_TOGGLE,
160 };
161
162 struct ims_pcu_device_info {
163 const unsigned short *keymap;
164 size_t keymap_len;
165 bool has_gamepad;
166 };
167
168 #define IMS_PCU_DEVINFO(_n, _gamepad) \
169 [_n] = { \
170 .keymap = ims_pcu_keymap_##_n, \
171 .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n), \
172 .has_gamepad = _gamepad, \
173 }
174
175 static const struct ims_pcu_device_info ims_pcu_device_info[] = {
176 IMS_PCU_DEVINFO(1, true),
177 IMS_PCU_DEVINFO(2, true),
178 IMS_PCU_DEVINFO(3, true),
179 IMS_PCU_DEVINFO(4, true),
180 IMS_PCU_DEVINFO(5, false),
181 };
182
ims_pcu_buttons_report(struct ims_pcu * pcu,u32 data)183 static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data)
184 {
185 struct ims_pcu_buttons *buttons = &pcu->buttons;
186 struct input_dev *input = buttons->input;
187 int i;
188
189 for (i = 0; i < 32; i++) {
190 unsigned short keycode = buttons->keymap[i];
191
192 if (keycode != KEY_RESERVED)
193 input_report_key(input, keycode, data & (1UL << i));
194 }
195
196 input_sync(input);
197 }
198
ims_pcu_setup_buttons(struct ims_pcu * pcu,const unsigned short * keymap,size_t keymap_len)199 static int ims_pcu_setup_buttons(struct ims_pcu *pcu,
200 const unsigned short *keymap,
201 size_t keymap_len)
202 {
203 struct ims_pcu_buttons *buttons = &pcu->buttons;
204 struct input_dev *input;
205 int i;
206 int error;
207
208 input = input_allocate_device();
209 if (!input) {
210 dev_err(pcu->dev, "Not enough memory for input device\n");
211 return -ENOMEM;
212 }
213
214 snprintf(buttons->name, sizeof(buttons->name),
215 "IMS PCU#%d Button Interface", pcu->device_no);
216
217 usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys));
218 strlcat(buttons->phys, "/input0", sizeof(buttons->phys));
219
220 memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len);
221
222 input->name = buttons->name;
223 input->phys = buttons->phys;
224 usb_to_input_id(pcu->udev, &input->id);
225 input->dev.parent = &pcu->ctrl_intf->dev;
226
227 input->keycode = buttons->keymap;
228 input->keycodemax = ARRAY_SIZE(buttons->keymap);
229 input->keycodesize = sizeof(buttons->keymap[0]);
230
231 __set_bit(EV_KEY, input->evbit);
232 for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++)
233 __set_bit(buttons->keymap[i], input->keybit);
234 __clear_bit(KEY_RESERVED, input->keybit);
235
236 error = input_register_device(input);
237 if (error) {
238 dev_err(pcu->dev,
239 "Failed to register buttons input device: %d\n",
240 error);
241 input_free_device(input);
242 return error;
243 }
244
245 buttons->input = input;
246 return 0;
247 }
248
ims_pcu_destroy_buttons(struct ims_pcu * pcu)249 static void ims_pcu_destroy_buttons(struct ims_pcu *pcu)
250 {
251 struct ims_pcu_buttons *buttons = &pcu->buttons;
252
253 input_unregister_device(buttons->input);
254 }
255
256
257 /*********************************************************************
258 * Gamepad Input device support *
259 *********************************************************************/
260
ims_pcu_gamepad_report(struct ims_pcu * pcu,u32 data)261 static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data)
262 {
263 struct ims_pcu_gamepad *gamepad = pcu->gamepad;
264 struct input_dev *input = gamepad->input;
265 int x, y;
266
267 x = !!(data & (1 << 14)) - !!(data & (1 << 13));
268 y = !!(data & (1 << 12)) - !!(data & (1 << 11));
269
270 input_report_abs(input, ABS_X, x);
271 input_report_abs(input, ABS_Y, y);
272
273 input_report_key(input, BTN_A, data & (1 << 7));
274 input_report_key(input, BTN_B, data & (1 << 8));
275 input_report_key(input, BTN_X, data & (1 << 9));
276 input_report_key(input, BTN_Y, data & (1 << 10));
277 input_report_key(input, BTN_START, data & (1 << 15));
278 input_report_key(input, BTN_SELECT, data & (1 << 16));
279
280 input_sync(input);
281 }
282
ims_pcu_setup_gamepad(struct ims_pcu * pcu)283 static int ims_pcu_setup_gamepad(struct ims_pcu *pcu)
284 {
285 struct ims_pcu_gamepad *gamepad;
286 struct input_dev *input;
287 int error;
288
289 gamepad = kzalloc(sizeof(*gamepad), GFP_KERNEL);
290 input = input_allocate_device();
291 if (!gamepad || !input) {
292 dev_err(pcu->dev,
293 "Not enough memory for gamepad device\n");
294 error = -ENOMEM;
295 goto err_free_mem;
296 }
297
298 gamepad->input = input;
299
300 snprintf(gamepad->name, sizeof(gamepad->name),
301 "IMS PCU#%d Gamepad Interface", pcu->device_no);
302
303 usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys));
304 strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys));
305
306 input->name = gamepad->name;
307 input->phys = gamepad->phys;
308 usb_to_input_id(pcu->udev, &input->id);
309 input->dev.parent = &pcu->ctrl_intf->dev;
310
311 __set_bit(EV_KEY, input->evbit);
312 __set_bit(BTN_A, input->keybit);
313 __set_bit(BTN_B, input->keybit);
314 __set_bit(BTN_X, input->keybit);
315 __set_bit(BTN_Y, input->keybit);
316 __set_bit(BTN_START, input->keybit);
317 __set_bit(BTN_SELECT, input->keybit);
318
319 __set_bit(EV_ABS, input->evbit);
320 input_set_abs_params(input, ABS_X, -1, 1, 0, 0);
321 input_set_abs_params(input, ABS_Y, -1, 1, 0, 0);
322
323 error = input_register_device(input);
324 if (error) {
325 dev_err(pcu->dev,
326 "Failed to register gamepad input device: %d\n",
327 error);
328 goto err_free_mem;
329 }
330
331 pcu->gamepad = gamepad;
332 return 0;
333
334 err_free_mem:
335 input_free_device(input);
336 kfree(gamepad);
337 return error;
338 }
339
ims_pcu_destroy_gamepad(struct ims_pcu * pcu)340 static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu)
341 {
342 struct ims_pcu_gamepad *gamepad = pcu->gamepad;
343
344 input_unregister_device(gamepad->input);
345 kfree(gamepad);
346 }
347
348
349 /*********************************************************************
350 * PCU Communication protocol handling *
351 *********************************************************************/
352
353 #define IMS_PCU_PROTOCOL_STX 0x02
354 #define IMS_PCU_PROTOCOL_ETX 0x03
355 #define IMS_PCU_PROTOCOL_DLE 0x10
356
357 /* PCU commands */
358 #define IMS_PCU_CMD_STATUS 0xa0
359 #define IMS_PCU_CMD_PCU_RESET 0xa1
360 #define IMS_PCU_CMD_RESET_REASON 0xa2
361 #define IMS_PCU_CMD_SEND_BUTTONS 0xa3
362 #define IMS_PCU_CMD_JUMP_TO_BTLDR 0xa4
363 #define IMS_PCU_CMD_GET_INFO 0xa5
364 #define IMS_PCU_CMD_SET_BRIGHTNESS 0xa6
365 #define IMS_PCU_CMD_EEPROM 0xa7
366 #define IMS_PCU_CMD_GET_FW_VERSION 0xa8
367 #define IMS_PCU_CMD_GET_BL_VERSION 0xa9
368 #define IMS_PCU_CMD_SET_INFO 0xab
369 #define IMS_PCU_CMD_GET_BRIGHTNESS 0xac
370 #define IMS_PCU_CMD_GET_DEVICE_ID 0xae
371 #define IMS_PCU_CMD_SPECIAL_INFO 0xb0
372 #define IMS_PCU_CMD_BOOTLOADER 0xb1 /* Pass data to bootloader */
373 #define IMS_PCU_CMD_OFN_SET_CONFIG 0xb3
374 #define IMS_PCU_CMD_OFN_GET_CONFIG 0xb4
375
376 /* PCU responses */
377 #define IMS_PCU_RSP_STATUS 0xc0
378 #define IMS_PCU_RSP_PCU_RESET 0 /* Originally 0xc1 */
379 #define IMS_PCU_RSP_RESET_REASON 0xc2
380 #define IMS_PCU_RSP_SEND_BUTTONS 0xc3
381 #define IMS_PCU_RSP_JUMP_TO_BTLDR 0 /* Originally 0xc4 */
382 #define IMS_PCU_RSP_GET_INFO 0xc5
383 #define IMS_PCU_RSP_SET_BRIGHTNESS 0xc6
384 #define IMS_PCU_RSP_EEPROM 0xc7
385 #define IMS_PCU_RSP_GET_FW_VERSION 0xc8
386 #define IMS_PCU_RSP_GET_BL_VERSION 0xc9
387 #define IMS_PCU_RSP_SET_INFO 0xcb
388 #define IMS_PCU_RSP_GET_BRIGHTNESS 0xcc
389 #define IMS_PCU_RSP_CMD_INVALID 0xcd
390 #define IMS_PCU_RSP_GET_DEVICE_ID 0xce
391 #define IMS_PCU_RSP_SPECIAL_INFO 0xd0
392 #define IMS_PCU_RSP_BOOTLOADER 0xd1 /* Bootloader response */
393 #define IMS_PCU_RSP_OFN_SET_CONFIG 0xd2
394 #define IMS_PCU_RSP_OFN_GET_CONFIG 0xd3
395
396
397 #define IMS_PCU_RSP_EVNT_BUTTONS 0xe0 /* Unsolicited, button state */
398 #define IMS_PCU_GAMEPAD_MASK 0x0001ff80UL /* Bits 7 through 16 */
399
400
401 #define IMS_PCU_MIN_PACKET_LEN 3
402 #define IMS_PCU_DATA_OFFSET 2
403
404 #define IMS_PCU_CMD_WRITE_TIMEOUT 100 /* msec */
405 #define IMS_PCU_CMD_RESPONSE_TIMEOUT 500 /* msec */
406
ims_pcu_report_events(struct ims_pcu * pcu)407 static void ims_pcu_report_events(struct ims_pcu *pcu)
408 {
409 u32 data = get_unaligned_be32(&pcu->read_buf[3]);
410
411 ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK);
412 if (pcu->gamepad)
413 ims_pcu_gamepad_report(pcu, data);
414 }
415
ims_pcu_handle_response(struct ims_pcu * pcu)416 static void ims_pcu_handle_response(struct ims_pcu *pcu)
417 {
418 switch (pcu->read_buf[0]) {
419 case IMS_PCU_RSP_EVNT_BUTTONS:
420 if (likely(pcu->setup_complete))
421 ims_pcu_report_events(pcu);
422 break;
423
424 default:
425 /*
426 * See if we got command completion.
427 * If both the sequence and response code match save
428 * the data and signal completion.
429 */
430 if (pcu->read_buf[0] == pcu->expected_response &&
431 pcu->read_buf[1] == pcu->ack_id - 1) {
432
433 memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos);
434 pcu->cmd_buf_len = pcu->read_pos;
435 complete(&pcu->cmd_done);
436 }
437 break;
438 }
439 }
440
ims_pcu_process_data(struct ims_pcu * pcu,struct urb * urb)441 static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb)
442 {
443 int i;
444
445 for (i = 0; i < urb->actual_length; i++) {
446 u8 data = pcu->urb_in_buf[i];
447
448 /* Skip everything until we get Start Xmit */
449 if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX)
450 continue;
451
452 if (pcu->have_dle) {
453 pcu->have_dle = false;
454 pcu->read_buf[pcu->read_pos++] = data;
455 pcu->check_sum += data;
456 continue;
457 }
458
459 switch (data) {
460 case IMS_PCU_PROTOCOL_STX:
461 if (pcu->have_stx)
462 dev_warn(pcu->dev,
463 "Unexpected STX at byte %d, discarding old data\n",
464 pcu->read_pos);
465 pcu->have_stx = true;
466 pcu->have_dle = false;
467 pcu->read_pos = 0;
468 pcu->check_sum = 0;
469 break;
470
471 case IMS_PCU_PROTOCOL_DLE:
472 pcu->have_dle = true;
473 break;
474
475 case IMS_PCU_PROTOCOL_ETX:
476 if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) {
477 dev_warn(pcu->dev,
478 "Short packet received (%d bytes), ignoring\n",
479 pcu->read_pos);
480 } else if (pcu->check_sum != 0) {
481 dev_warn(pcu->dev,
482 "Invalid checksum in packet (%d bytes), ignoring\n",
483 pcu->read_pos);
484 } else {
485 ims_pcu_handle_response(pcu);
486 }
487
488 pcu->have_stx = false;
489 pcu->have_dle = false;
490 pcu->read_pos = 0;
491 break;
492
493 default:
494 pcu->read_buf[pcu->read_pos++] = data;
495 pcu->check_sum += data;
496 break;
497 }
498 }
499 }
500
ims_pcu_byte_needs_escape(u8 byte)501 static bool ims_pcu_byte_needs_escape(u8 byte)
502 {
503 return byte == IMS_PCU_PROTOCOL_STX ||
504 byte == IMS_PCU_PROTOCOL_ETX ||
505 byte == IMS_PCU_PROTOCOL_DLE;
506 }
507
ims_pcu_send_cmd_chunk(struct ims_pcu * pcu,u8 command,int chunk,int len)508 static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu,
509 u8 command, int chunk, int len)
510 {
511 int error;
512
513 error = usb_bulk_msg(pcu->udev,
514 usb_sndbulkpipe(pcu->udev,
515 pcu->ep_out->bEndpointAddress),
516 pcu->urb_out_buf, len,
517 NULL, IMS_PCU_CMD_WRITE_TIMEOUT);
518 if (error < 0) {
519 dev_dbg(pcu->dev,
520 "Sending 0x%02x command failed at chunk %d: %d\n",
521 command, chunk, error);
522 return error;
523 }
524
525 return 0;
526 }
527
ims_pcu_send_command(struct ims_pcu * pcu,u8 command,const u8 * data,int len)528 static int ims_pcu_send_command(struct ims_pcu *pcu,
529 u8 command, const u8 *data, int len)
530 {
531 int count = 0;
532 int chunk = 0;
533 int delta;
534 int i;
535 int error;
536 u8 csum = 0;
537 u8 ack_id;
538
539 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX;
540
541 /* We know the command need not be escaped */
542 pcu->urb_out_buf[count++] = command;
543 csum += command;
544
545 ack_id = pcu->ack_id++;
546 if (ack_id == 0xff)
547 ack_id = pcu->ack_id++;
548
549 if (ims_pcu_byte_needs_escape(ack_id))
550 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
551
552 pcu->urb_out_buf[count++] = ack_id;
553 csum += ack_id;
554
555 for (i = 0; i < len; i++) {
556
557 delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1;
558 if (count + delta >= pcu->max_out_size) {
559 error = ims_pcu_send_cmd_chunk(pcu, command,
560 ++chunk, count);
561 if (error)
562 return error;
563
564 count = 0;
565 }
566
567 if (delta == 2)
568 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
569
570 pcu->urb_out_buf[count++] = data[i];
571 csum += data[i];
572 }
573
574 csum = 1 + ~csum;
575
576 delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2;
577 if (count + delta >= pcu->max_out_size) {
578 error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
579 if (error)
580 return error;
581
582 count = 0;
583 }
584
585 if (delta == 3)
586 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
587
588 pcu->urb_out_buf[count++] = csum;
589 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX;
590
591 return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
592 }
593
__ims_pcu_execute_command(struct ims_pcu * pcu,u8 command,const void * data,size_t len,u8 expected_response,int response_time)594 static int __ims_pcu_execute_command(struct ims_pcu *pcu,
595 u8 command, const void *data, size_t len,
596 u8 expected_response, int response_time)
597 {
598 int error;
599
600 pcu->expected_response = expected_response;
601 init_completion(&pcu->cmd_done);
602
603 error = ims_pcu_send_command(pcu, command, data, len);
604 if (error)
605 return error;
606
607 if (expected_response &&
608 !wait_for_completion_timeout(&pcu->cmd_done,
609 msecs_to_jiffies(response_time))) {
610 dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command);
611 return -ETIMEDOUT;
612 }
613
614 return 0;
615 }
616
617 #define ims_pcu_execute_command(pcu, code, data, len) \
618 __ims_pcu_execute_command(pcu, \
619 IMS_PCU_CMD_##code, data, len, \
620 IMS_PCU_RSP_##code, \
621 IMS_PCU_CMD_RESPONSE_TIMEOUT)
622
623 #define ims_pcu_execute_query(pcu, code) \
624 ims_pcu_execute_command(pcu, code, NULL, 0)
625
626 /* Bootloader commands */
627 #define IMS_PCU_BL_CMD_QUERY_DEVICE 0xa1
628 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG 0xa2
629 #define IMS_PCU_BL_CMD_ERASE_APP 0xa3
630 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE 0xa4
631 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5
632 #define IMS_PCU_BL_CMD_READ_APP 0xa6
633 #define IMS_PCU_BL_CMD_RESET_DEVICE 0xa7
634 #define IMS_PCU_BL_CMD_LAUNCH_APP 0xa8
635
636 /* Bootloader commands */
637 #define IMS_PCU_BL_RSP_QUERY_DEVICE 0xc1
638 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG 0xc2
639 #define IMS_PCU_BL_RSP_ERASE_APP 0xc3
640 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE 0xc4
641 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5
642 #define IMS_PCU_BL_RSP_READ_APP 0xc6
643 #define IMS_PCU_BL_RSP_RESET_DEVICE 0 /* originally 0xa7 */
644 #define IMS_PCU_BL_RSP_LAUNCH_APP 0 /* originally 0xa8 */
645
646 #define IMS_PCU_BL_DATA_OFFSET 3
647
__ims_pcu_execute_bl_command(struct ims_pcu * pcu,u8 command,const void * data,size_t len,u8 expected_response,int response_time)648 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu,
649 u8 command, const void *data, size_t len,
650 u8 expected_response, int response_time)
651 {
652 int error;
653
654 pcu->cmd_buf[0] = command;
655 if (data)
656 memcpy(&pcu->cmd_buf[1], data, len);
657
658 error = __ims_pcu_execute_command(pcu,
659 IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1,
660 expected_response ? IMS_PCU_RSP_BOOTLOADER : 0,
661 response_time);
662 if (error) {
663 dev_err(pcu->dev,
664 "Failure when sending 0x%02x command to bootloader, error: %d\n",
665 pcu->cmd_buf[0], error);
666 return error;
667 }
668
669 if (expected_response && pcu->cmd_buf[2] != expected_response) {
670 dev_err(pcu->dev,
671 "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n",
672 pcu->cmd_buf[2], expected_response);
673 return -EINVAL;
674 }
675
676 return 0;
677 }
678
679 #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout) \
680 __ims_pcu_execute_bl_command(pcu, \
681 IMS_PCU_BL_CMD_##code, data, len, \
682 IMS_PCU_BL_RSP_##code, timeout) \
683
684 #define IMS_PCU_INFO_PART_OFFSET 2
685 #define IMS_PCU_INFO_DOM_OFFSET 17
686 #define IMS_PCU_INFO_SERIAL_OFFSET 25
687
688 #define IMS_PCU_SET_INFO_SIZE 31
689
ims_pcu_get_info(struct ims_pcu * pcu)690 static int ims_pcu_get_info(struct ims_pcu *pcu)
691 {
692 int error;
693
694 error = ims_pcu_execute_query(pcu, GET_INFO);
695 if (error) {
696 dev_err(pcu->dev,
697 "GET_INFO command failed, error: %d\n", error);
698 return error;
699 }
700
701 memcpy(pcu->part_number,
702 &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
703 sizeof(pcu->part_number));
704 memcpy(pcu->date_of_manufacturing,
705 &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
706 sizeof(pcu->date_of_manufacturing));
707 memcpy(pcu->serial_number,
708 &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
709 sizeof(pcu->serial_number));
710
711 return 0;
712 }
713
ims_pcu_set_info(struct ims_pcu * pcu)714 static int ims_pcu_set_info(struct ims_pcu *pcu)
715 {
716 int error;
717
718 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
719 pcu->part_number, sizeof(pcu->part_number));
720 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
721 pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing));
722 memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
723 pcu->serial_number, sizeof(pcu->serial_number));
724
725 error = ims_pcu_execute_command(pcu, SET_INFO,
726 &pcu->cmd_buf[IMS_PCU_DATA_OFFSET],
727 IMS_PCU_SET_INFO_SIZE);
728 if (error) {
729 dev_err(pcu->dev,
730 "Failed to update device information, error: %d\n",
731 error);
732 return error;
733 }
734
735 return 0;
736 }
737
ims_pcu_switch_to_bootloader(struct ims_pcu * pcu)738 static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu)
739 {
740 int error;
741
742 /* Execute jump to the bootoloader */
743 error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0);
744 if (error) {
745 dev_err(pcu->dev,
746 "Failure when sending JUMP TO BOOTLOADER command, error: %d\n",
747 error);
748 return error;
749 }
750
751 return 0;
752 }
753
754 /*********************************************************************
755 * Firmware Update handling *
756 *********************************************************************/
757
758 #define IMS_PCU_FIRMWARE_NAME "imspcu.fw"
759
760 struct ims_pcu_flash_fmt {
761 __le32 addr;
762 u8 len;
763 u8 data[] __counted_by(len);
764 };
765
ims_pcu_count_fw_records(const struct firmware * fw)766 static unsigned int ims_pcu_count_fw_records(const struct firmware *fw)
767 {
768 const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
769 unsigned int count = 0;
770
771 while (rec) {
772 count++;
773 rec = ihex_next_binrec(rec);
774 }
775
776 return count;
777 }
778
ims_pcu_verify_block(struct ims_pcu * pcu,u32 addr,u8 len,const u8 * data)779 static int ims_pcu_verify_block(struct ims_pcu *pcu,
780 u32 addr, u8 len, const u8 *data)
781 {
782 struct ims_pcu_flash_fmt *fragment;
783 int error;
784
785 fragment = (void *)&pcu->cmd_buf[1];
786 put_unaligned_le32(addr, &fragment->addr);
787 fragment->len = len;
788
789 error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5,
790 IMS_PCU_CMD_RESPONSE_TIMEOUT);
791 if (error) {
792 dev_err(pcu->dev,
793 "Failed to retrieve block at 0x%08x, len %d, error: %d\n",
794 addr, len, error);
795 return error;
796 }
797
798 fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET];
799 if (get_unaligned_le32(&fragment->addr) != addr ||
800 fragment->len != len) {
801 dev_err(pcu->dev,
802 "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n",
803 addr, get_unaligned_le32(&fragment->addr),
804 len, fragment->len);
805 return -EINVAL;
806 }
807
808 if (memcmp(fragment->data, data, len)) {
809 dev_err(pcu->dev,
810 "Mismatch in block at 0x%08x, len %d\n",
811 addr, len);
812 return -EINVAL;
813 }
814
815 return 0;
816 }
817
ims_pcu_flash_firmware(struct ims_pcu * pcu,const struct firmware * fw,unsigned int n_fw_records)818 static int ims_pcu_flash_firmware(struct ims_pcu *pcu,
819 const struct firmware *fw,
820 unsigned int n_fw_records)
821 {
822 const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
823 struct ims_pcu_flash_fmt *fragment;
824 unsigned int count = 0;
825 u32 addr;
826 u8 len;
827 int error;
828
829 error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000);
830 if (error) {
831 dev_err(pcu->dev,
832 "Failed to erase application image, error: %d\n",
833 error);
834 return error;
835 }
836
837 while (rec) {
838 /*
839 * The firmware format is messed up for some reason.
840 * The address twice that of what is needed for some
841 * reason and we end up overwriting half of the data
842 * with the next record.
843 */
844 addr = be32_to_cpu(rec->addr) / 2;
845 len = be16_to_cpu(rec->len);
846
847 fragment = (void *)&pcu->cmd_buf[1];
848 put_unaligned_le32(addr, &fragment->addr);
849 fragment->len = len;
850 memcpy(fragment->data, rec->data, len);
851
852 error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE,
853 NULL, len + 5,
854 IMS_PCU_CMD_RESPONSE_TIMEOUT);
855 if (error) {
856 dev_err(pcu->dev,
857 "Failed to write block at 0x%08x, len %d, error: %d\n",
858 addr, len, error);
859 return error;
860 }
861
862 if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) {
863 error = ims_pcu_verify_block(pcu, addr, len, rec->data);
864 if (error)
865 return error;
866 }
867
868 count++;
869 pcu->update_firmware_status = (count * 100) / n_fw_records;
870
871 rec = ihex_next_binrec(rec);
872 }
873
874 error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE,
875 NULL, 0, 2000);
876 if (error)
877 dev_err(pcu->dev,
878 "Failed to send PROGRAM_COMPLETE, error: %d\n",
879 error);
880
881 return 0;
882 }
883
ims_pcu_handle_firmware_update(struct ims_pcu * pcu,const struct firmware * fw)884 static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu,
885 const struct firmware *fw)
886 {
887 unsigned int n_fw_records;
888 int retval;
889
890 dev_info(pcu->dev, "Updating firmware %s, size: %zu\n",
891 IMS_PCU_FIRMWARE_NAME, fw->size);
892
893 n_fw_records = ims_pcu_count_fw_records(fw);
894
895 retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records);
896 if (retval)
897 goto out;
898
899 retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0);
900 if (retval)
901 dev_err(pcu->dev,
902 "Failed to start application image, error: %d\n",
903 retval);
904
905 out:
906 pcu->update_firmware_status = retval;
907 sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status");
908 return retval;
909 }
910
ims_pcu_process_async_firmware(const struct firmware * fw,void * context)911 static void ims_pcu_process_async_firmware(const struct firmware *fw,
912 void *context)
913 {
914 struct ims_pcu *pcu = context;
915 int error;
916
917 if (!fw) {
918 dev_err(pcu->dev, "Failed to get firmware %s\n",
919 IMS_PCU_FIRMWARE_NAME);
920 goto out;
921 }
922
923 error = ihex_validate_fw(fw);
924 if (error) {
925 dev_err(pcu->dev, "Firmware %s is invalid\n",
926 IMS_PCU_FIRMWARE_NAME);
927 goto out;
928 }
929
930 scoped_guard(mutex, &pcu->cmd_mutex)
931 ims_pcu_handle_firmware_update(pcu, fw);
932
933 release_firmware(fw);
934
935 out:
936 complete(&pcu->async_firmware_done);
937 }
938
939 /*********************************************************************
940 * Backlight LED device support *
941 *********************************************************************/
942
943 #define IMS_PCU_MAX_BRIGHTNESS 31998
944
ims_pcu_backlight_set_brightness(struct led_classdev * cdev,enum led_brightness value)945 static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev,
946 enum led_brightness value)
947 {
948 struct ims_pcu_backlight *backlight =
949 container_of(cdev, struct ims_pcu_backlight, cdev);
950 struct ims_pcu *pcu =
951 container_of(backlight, struct ims_pcu, backlight);
952 __le16 br_val = cpu_to_le16(value);
953 int error;
954
955 guard(mutex)(&pcu->cmd_mutex);
956
957 error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS,
958 &br_val, sizeof(br_val));
959 if (error && error != -ENODEV)
960 dev_warn(pcu->dev,
961 "Failed to set desired brightness %u, error: %d\n",
962 value, error);
963
964 return error;
965 }
966
967 static enum led_brightness
ims_pcu_backlight_get_brightness(struct led_classdev * cdev)968 ims_pcu_backlight_get_brightness(struct led_classdev *cdev)
969 {
970 struct ims_pcu_backlight *backlight =
971 container_of(cdev, struct ims_pcu_backlight, cdev);
972 struct ims_pcu *pcu =
973 container_of(backlight, struct ims_pcu, backlight);
974 int brightness;
975 int error;
976
977 guard(mutex)(&pcu->cmd_mutex);
978
979 error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS);
980 if (error) {
981 dev_warn(pcu->dev,
982 "Failed to get current brightness, error: %d\n",
983 error);
984 /* Assume the LED is OFF */
985 brightness = LED_OFF;
986 } else {
987 brightness =
988 get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
989 }
990
991 return brightness;
992 }
993
ims_pcu_setup_backlight(struct ims_pcu * pcu)994 static int ims_pcu_setup_backlight(struct ims_pcu *pcu)
995 {
996 struct ims_pcu_backlight *backlight = &pcu->backlight;
997 int error;
998
999 snprintf(backlight->name, sizeof(backlight->name),
1000 "pcu%d::kbd_backlight", pcu->device_no);
1001
1002 backlight->cdev.name = backlight->name;
1003 backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS;
1004 backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness;
1005 backlight->cdev.brightness_set_blocking =
1006 ims_pcu_backlight_set_brightness;
1007
1008 error = led_classdev_register(pcu->dev, &backlight->cdev);
1009 if (error) {
1010 dev_err(pcu->dev,
1011 "Failed to register backlight LED device, error: %d\n",
1012 error);
1013 return error;
1014 }
1015
1016 return 0;
1017 }
1018
ims_pcu_destroy_backlight(struct ims_pcu * pcu)1019 static void ims_pcu_destroy_backlight(struct ims_pcu *pcu)
1020 {
1021 struct ims_pcu_backlight *backlight = &pcu->backlight;
1022
1023 led_classdev_unregister(&backlight->cdev);
1024 }
1025
1026
1027 /*********************************************************************
1028 * Sysfs attributes handling *
1029 *********************************************************************/
1030
1031 struct ims_pcu_attribute {
1032 struct device_attribute dattr;
1033 size_t field_offset;
1034 int field_length;
1035 };
1036
ims_pcu_attribute_show(struct device * dev,struct device_attribute * dattr,char * buf)1037 static ssize_t ims_pcu_attribute_show(struct device *dev,
1038 struct device_attribute *dattr,
1039 char *buf)
1040 {
1041 struct usb_interface *intf = to_usb_interface(dev);
1042 struct ims_pcu *pcu = usb_get_intfdata(intf);
1043 struct ims_pcu_attribute *attr =
1044 container_of(dattr, struct ims_pcu_attribute, dattr);
1045 char *field = (char *)pcu + attr->field_offset;
1046
1047 return sysfs_emit(buf, "%.*s\n", attr->field_length, field);
1048 }
1049
ims_pcu_attribute_store(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1050 static ssize_t ims_pcu_attribute_store(struct device *dev,
1051 struct device_attribute *dattr,
1052 const char *buf, size_t count)
1053 {
1054
1055 struct usb_interface *intf = to_usb_interface(dev);
1056 struct ims_pcu *pcu = usb_get_intfdata(intf);
1057 struct ims_pcu_attribute *attr =
1058 container_of(dattr, struct ims_pcu_attribute, dattr);
1059 char *field = (char *)pcu + attr->field_offset;
1060 size_t data_len;
1061 int error;
1062
1063 if (count > attr->field_length)
1064 return -EINVAL;
1065
1066 data_len = strnlen(buf, attr->field_length);
1067 if (data_len > attr->field_length)
1068 return -EINVAL;
1069
1070 scoped_cond_guard(mutex_intr, return -EINTR, &pcu->cmd_mutex) {
1071 memset(field, 0, attr->field_length);
1072 memcpy(field, buf, data_len);
1073
1074 error = ims_pcu_set_info(pcu);
1075
1076 /*
1077 * Even if update failed, let's fetch the info again as we just
1078 * clobbered one of the fields.
1079 */
1080 ims_pcu_get_info(pcu);
1081
1082 if (error)
1083 return error;
1084 }
1085
1086 return count;
1087 }
1088
1089 #define IMS_PCU_ATTR(_field, _mode) \
1090 struct ims_pcu_attribute ims_pcu_attr_##_field = { \
1091 .dattr = __ATTR(_field, _mode, \
1092 ims_pcu_attribute_show, \
1093 ims_pcu_attribute_store), \
1094 .field_offset = offsetof(struct ims_pcu, _field), \
1095 .field_length = sizeof(((struct ims_pcu *)NULL)->_field), \
1096 }
1097
1098 #define IMS_PCU_RO_ATTR(_field) \
1099 IMS_PCU_ATTR(_field, S_IRUGO)
1100 #define IMS_PCU_RW_ATTR(_field) \
1101 IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR)
1102
1103 static IMS_PCU_RW_ATTR(part_number);
1104 static IMS_PCU_RW_ATTR(serial_number);
1105 static IMS_PCU_RW_ATTR(date_of_manufacturing);
1106
1107 static IMS_PCU_RO_ATTR(fw_version);
1108 static IMS_PCU_RO_ATTR(bl_version);
1109 static IMS_PCU_RO_ATTR(reset_reason);
1110
ims_pcu_reset_device(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1111 static ssize_t ims_pcu_reset_device(struct device *dev,
1112 struct device_attribute *dattr,
1113 const char *buf, size_t count)
1114 {
1115 static const u8 reset_byte = 1;
1116 struct usb_interface *intf = to_usb_interface(dev);
1117 struct ims_pcu *pcu = usb_get_intfdata(intf);
1118 int value;
1119 int error;
1120
1121 error = kstrtoint(buf, 0, &value);
1122 if (error)
1123 return error;
1124
1125 if (value != 1)
1126 return -EINVAL;
1127
1128 dev_info(pcu->dev, "Attempting to reset device\n");
1129
1130 error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1);
1131 if (error) {
1132 dev_info(pcu->dev,
1133 "Failed to reset device, error: %d\n",
1134 error);
1135 return error;
1136 }
1137
1138 return count;
1139 }
1140
1141 static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device);
1142
ims_pcu_update_firmware_store(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1143 static ssize_t ims_pcu_update_firmware_store(struct device *dev,
1144 struct device_attribute *dattr,
1145 const char *buf, size_t count)
1146 {
1147 struct usb_interface *intf = to_usb_interface(dev);
1148 struct ims_pcu *pcu = usb_get_intfdata(intf);
1149 int value;
1150 int error;
1151
1152 error = kstrtoint(buf, 0, &value);
1153 if (error)
1154 return error;
1155
1156 if (value != 1)
1157 return -EINVAL;
1158
1159 const struct firmware *fw __free(firmware) = NULL;
1160 error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev);
1161 if (error) {
1162 dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n",
1163 IMS_PCU_FIRMWARE_NAME, error);
1164 return error;
1165 }
1166
1167 scoped_cond_guard(mutex_intr, return -EINTR, &pcu->cmd_mutex) {
1168 /*
1169 * If we are already in bootloader mode we can proceed with
1170 * flashing the firmware.
1171 *
1172 * If we are in application mode, then we need to switch into
1173 * bootloader mode, which will cause the device to disconnect
1174 * and reconnect as different device.
1175 */
1176 if (pcu->bootloader_mode)
1177 error = ims_pcu_handle_firmware_update(pcu, fw);
1178 else
1179 error = ims_pcu_switch_to_bootloader(pcu);
1180
1181 if (error)
1182 return error;
1183 }
1184
1185 return count;
1186 }
1187
1188 static DEVICE_ATTR(update_firmware, S_IWUSR,
1189 NULL, ims_pcu_update_firmware_store);
1190
1191 static ssize_t
ims_pcu_update_firmware_status_show(struct device * dev,struct device_attribute * dattr,char * buf)1192 ims_pcu_update_firmware_status_show(struct device *dev,
1193 struct device_attribute *dattr,
1194 char *buf)
1195 {
1196 struct usb_interface *intf = to_usb_interface(dev);
1197 struct ims_pcu *pcu = usb_get_intfdata(intf);
1198
1199 return sysfs_emit(buf, "%d\n", pcu->update_firmware_status);
1200 }
1201
1202 static DEVICE_ATTR(update_firmware_status, S_IRUGO,
1203 ims_pcu_update_firmware_status_show, NULL);
1204
1205 static struct attribute *ims_pcu_attrs[] = {
1206 &ims_pcu_attr_part_number.dattr.attr,
1207 &ims_pcu_attr_serial_number.dattr.attr,
1208 &ims_pcu_attr_date_of_manufacturing.dattr.attr,
1209 &ims_pcu_attr_fw_version.dattr.attr,
1210 &ims_pcu_attr_bl_version.dattr.attr,
1211 &ims_pcu_attr_reset_reason.dattr.attr,
1212 &dev_attr_reset_device.attr,
1213 &dev_attr_update_firmware.attr,
1214 &dev_attr_update_firmware_status.attr,
1215 NULL
1216 };
1217
ims_pcu_is_attr_visible(struct kobject * kobj,struct attribute * attr,int n)1218 static umode_t ims_pcu_is_attr_visible(struct kobject *kobj,
1219 struct attribute *attr, int n)
1220 {
1221 struct device *dev = kobj_to_dev(kobj);
1222 struct usb_interface *intf = to_usb_interface(dev);
1223 struct ims_pcu *pcu = usb_get_intfdata(intf);
1224 umode_t mode = attr->mode;
1225
1226 if (pcu->bootloader_mode) {
1227 if (attr != &dev_attr_update_firmware_status.attr &&
1228 attr != &dev_attr_update_firmware.attr &&
1229 attr != &dev_attr_reset_device.attr) {
1230 mode = 0;
1231 }
1232 } else {
1233 if (attr == &dev_attr_update_firmware_status.attr)
1234 mode = 0;
1235 }
1236
1237 return mode;
1238 }
1239
1240 static const struct attribute_group ims_pcu_attr_group = {
1241 .is_visible = ims_pcu_is_attr_visible,
1242 .attrs = ims_pcu_attrs,
1243 };
1244
1245 /* Support for a separate OFN attribute group */
1246
1247 #define OFN_REG_RESULT_OFFSET 2
1248
ims_pcu_read_ofn_config(struct ims_pcu * pcu,u8 addr,u8 * data)1249 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data)
1250 {
1251 int error;
1252 s16 result;
1253
1254 error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG,
1255 &addr, sizeof(addr));
1256 if (error)
1257 return error;
1258
1259 result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1260 if (result < 0)
1261 return -EIO;
1262
1263 /* We only need LSB */
1264 *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET];
1265 return 0;
1266 }
1267
ims_pcu_write_ofn_config(struct ims_pcu * pcu,u8 addr,u8 data)1268 static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data)
1269 {
1270 u8 buffer[] = { addr, data };
1271 int error;
1272 s16 result;
1273
1274 error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG,
1275 &buffer, sizeof(buffer));
1276 if (error)
1277 return error;
1278
1279 result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1280 if (result < 0)
1281 return -EIO;
1282
1283 return 0;
1284 }
1285
ims_pcu_ofn_reg_data_show(struct device * dev,struct device_attribute * dattr,char * buf)1286 static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev,
1287 struct device_attribute *dattr,
1288 char *buf)
1289 {
1290 struct usb_interface *intf = to_usb_interface(dev);
1291 struct ims_pcu *pcu = usb_get_intfdata(intf);
1292 int error;
1293 u8 data;
1294
1295 scoped_guard(mutex, &pcu->cmd_mutex) {
1296 error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data);
1297 if (error)
1298 return error;
1299 }
1300
1301 return sysfs_emit(buf, "%x\n", data);
1302 }
1303
ims_pcu_ofn_reg_data_store(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1304 static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev,
1305 struct device_attribute *dattr,
1306 const char *buf, size_t count)
1307 {
1308 struct usb_interface *intf = to_usb_interface(dev);
1309 struct ims_pcu *pcu = usb_get_intfdata(intf);
1310 int error;
1311 u8 value;
1312
1313 error = kstrtou8(buf, 0, &value);
1314 if (error)
1315 return error;
1316
1317 guard(mutex)(&pcu->cmd_mutex);
1318
1319 error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value);
1320 if (error)
1321 return error;
1322
1323 return count;
1324 }
1325
1326 static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR,
1327 ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store);
1328
ims_pcu_ofn_reg_addr_show(struct device * dev,struct device_attribute * dattr,char * buf)1329 static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev,
1330 struct device_attribute *dattr,
1331 char *buf)
1332 {
1333 struct usb_interface *intf = to_usb_interface(dev);
1334 struct ims_pcu *pcu = usb_get_intfdata(intf);
1335
1336 guard(mutex)(&pcu->cmd_mutex);
1337
1338 return sysfs_emit(buf, "%x\n", pcu->ofn_reg_addr);
1339 }
1340
ims_pcu_ofn_reg_addr_store(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1341 static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev,
1342 struct device_attribute *dattr,
1343 const char *buf, size_t count)
1344 {
1345 struct usb_interface *intf = to_usb_interface(dev);
1346 struct ims_pcu *pcu = usb_get_intfdata(intf);
1347 int error;
1348 u8 value;
1349
1350 error = kstrtou8(buf, 0, &value);
1351 if (error)
1352 return error;
1353
1354 guard(mutex)(&pcu->cmd_mutex);
1355
1356 pcu->ofn_reg_addr = value;
1357
1358 return count;
1359 }
1360
1361 static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR,
1362 ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store);
1363
1364 struct ims_pcu_ofn_bit_attribute {
1365 struct device_attribute dattr;
1366 u8 addr;
1367 u8 nr;
1368 };
1369
ims_pcu_ofn_bit_show(struct device * dev,struct device_attribute * dattr,char * buf)1370 static ssize_t ims_pcu_ofn_bit_show(struct device *dev,
1371 struct device_attribute *dattr,
1372 char *buf)
1373 {
1374 struct usb_interface *intf = to_usb_interface(dev);
1375 struct ims_pcu *pcu = usb_get_intfdata(intf);
1376 struct ims_pcu_ofn_bit_attribute *attr =
1377 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1378 int error;
1379 u8 data;
1380
1381 scoped_guard(mutex, &pcu->cmd_mutex) {
1382 error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1383 if (error)
1384 return error;
1385 }
1386
1387 return sysfs_emit(buf, "%d\n", !!(data & (1 << attr->nr)));
1388 }
1389
ims_pcu_ofn_bit_store(struct device * dev,struct device_attribute * dattr,const char * buf,size_t count)1390 static ssize_t ims_pcu_ofn_bit_store(struct device *dev,
1391 struct device_attribute *dattr,
1392 const char *buf, size_t count)
1393 {
1394 struct usb_interface *intf = to_usb_interface(dev);
1395 struct ims_pcu *pcu = usb_get_intfdata(intf);
1396 struct ims_pcu_ofn_bit_attribute *attr =
1397 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1398 int error;
1399 int value;
1400 u8 data;
1401
1402 error = kstrtoint(buf, 0, &value);
1403 if (error)
1404 return error;
1405
1406 if (value > 1)
1407 return -EINVAL;
1408
1409 scoped_guard(mutex, &pcu->cmd_mutex) {
1410 error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1411 if (error)
1412 return error;
1413
1414 if (value)
1415 data |= 1U << attr->nr;
1416 else
1417 data &= ~(1U << attr->nr);
1418
1419 error = ims_pcu_write_ofn_config(pcu, attr->addr, data);
1420 if (error)
1421 return error;
1422 }
1423
1424 return count;
1425 }
1426
1427 #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr) \
1428 struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = { \
1429 .dattr = __ATTR(_field, S_IWUSR | S_IRUGO, \
1430 ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store), \
1431 .addr = _addr, \
1432 .nr = _nr, \
1433 }
1434
1435 static IMS_PCU_OFN_BIT_ATTR(engine_enable, 0x60, 7);
1436 static IMS_PCU_OFN_BIT_ATTR(speed_enable, 0x60, 6);
1437 static IMS_PCU_OFN_BIT_ATTR(assert_enable, 0x60, 5);
1438 static IMS_PCU_OFN_BIT_ATTR(xyquant_enable, 0x60, 4);
1439 static IMS_PCU_OFN_BIT_ATTR(xyscale_enable, 0x60, 1);
1440
1441 static IMS_PCU_OFN_BIT_ATTR(scale_x2, 0x63, 6);
1442 static IMS_PCU_OFN_BIT_ATTR(scale_y2, 0x63, 7);
1443
1444 static struct attribute *ims_pcu_ofn_attrs[] = {
1445 &dev_attr_reg_data.attr,
1446 &dev_attr_reg_addr.attr,
1447 &ims_pcu_ofn_attr_engine_enable.dattr.attr,
1448 &ims_pcu_ofn_attr_speed_enable.dattr.attr,
1449 &ims_pcu_ofn_attr_assert_enable.dattr.attr,
1450 &ims_pcu_ofn_attr_xyquant_enable.dattr.attr,
1451 &ims_pcu_ofn_attr_xyscale_enable.dattr.attr,
1452 &ims_pcu_ofn_attr_scale_x2.dattr.attr,
1453 &ims_pcu_ofn_attr_scale_y2.dattr.attr,
1454 NULL
1455 };
1456
ims_pcu_ofn_is_attr_visible(struct kobject * kobj,struct attribute * attr,int n)1457 static umode_t ims_pcu_ofn_is_attr_visible(struct kobject *kobj,
1458 struct attribute *attr, int n)
1459 {
1460 struct device *dev = kobj_to_dev(kobj);
1461 struct usb_interface *intf = to_usb_interface(dev);
1462 struct ims_pcu *pcu = usb_get_intfdata(intf);
1463 umode_t mode = attr->mode;
1464
1465 /*
1466 * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor.
1467 */
1468 if (pcu->bootloader_mode || pcu->device_id == IMS_PCU_PCU_B_DEVICE_ID)
1469 mode = 0;
1470
1471 return mode;
1472 }
1473
1474 static const struct attribute_group ims_pcu_ofn_attr_group = {
1475 .name = "ofn",
1476 .is_visible = ims_pcu_ofn_is_attr_visible,
1477 .attrs = ims_pcu_ofn_attrs,
1478 };
1479
ims_pcu_irq(struct urb * urb)1480 static void ims_pcu_irq(struct urb *urb)
1481 {
1482 struct ims_pcu *pcu = urb->context;
1483 int retval, status;
1484
1485 status = urb->status;
1486
1487 switch (status) {
1488 case 0:
1489 /* success */
1490 break;
1491 case -ECONNRESET:
1492 case -ENOENT:
1493 case -ESHUTDOWN:
1494 /* this urb is terminated, clean up */
1495 dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n",
1496 __func__, status);
1497 return;
1498 default:
1499 dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n",
1500 __func__, status);
1501 goto exit;
1502 }
1503
1504 dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__,
1505 urb->actual_length, urb->actual_length, pcu->urb_in_buf);
1506
1507 if (urb == pcu->urb_in)
1508 ims_pcu_process_data(pcu, urb);
1509
1510 exit:
1511 retval = usb_submit_urb(urb, GFP_ATOMIC);
1512 if (retval && retval != -ENODEV)
1513 dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n",
1514 __func__, retval);
1515 }
1516
ims_pcu_buffers_alloc(struct ims_pcu * pcu)1517 static int ims_pcu_buffers_alloc(struct ims_pcu *pcu)
1518 {
1519 int error;
1520
1521 pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size,
1522 GFP_KERNEL, &pcu->read_dma);
1523 if (!pcu->urb_in_buf) {
1524 dev_err(pcu->dev,
1525 "Failed to allocate memory for read buffer\n");
1526 return -ENOMEM;
1527 }
1528
1529 pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL);
1530 if (!pcu->urb_in) {
1531 dev_err(pcu->dev, "Failed to allocate input URB\n");
1532 error = -ENOMEM;
1533 goto err_free_urb_in_buf;
1534 }
1535
1536 pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1537 pcu->urb_in->transfer_dma = pcu->read_dma;
1538
1539 usb_fill_bulk_urb(pcu->urb_in, pcu->udev,
1540 usb_rcvbulkpipe(pcu->udev,
1541 pcu->ep_in->bEndpointAddress),
1542 pcu->urb_in_buf, pcu->max_in_size,
1543 ims_pcu_irq, pcu);
1544
1545 /*
1546 * We are using usb_bulk_msg() for sending so there is no point
1547 * in allocating memory with usb_alloc_coherent().
1548 */
1549 pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL);
1550 if (!pcu->urb_out_buf) {
1551 dev_err(pcu->dev, "Failed to allocate memory for write buffer\n");
1552 error = -ENOMEM;
1553 goto err_free_in_urb;
1554 }
1555
1556 pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size,
1557 GFP_KERNEL, &pcu->ctrl_dma);
1558 if (!pcu->urb_ctrl_buf) {
1559 dev_err(pcu->dev,
1560 "Failed to allocate memory for read buffer\n");
1561 error = -ENOMEM;
1562 goto err_free_urb_out_buf;
1563 }
1564
1565 pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL);
1566 if (!pcu->urb_ctrl) {
1567 dev_err(pcu->dev, "Failed to allocate input URB\n");
1568 error = -ENOMEM;
1569 goto err_free_urb_ctrl_buf;
1570 }
1571
1572 pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1573 pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma;
1574
1575 usb_fill_int_urb(pcu->urb_ctrl, pcu->udev,
1576 usb_rcvintpipe(pcu->udev,
1577 pcu->ep_ctrl->bEndpointAddress),
1578 pcu->urb_ctrl_buf, pcu->max_ctrl_size,
1579 ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval);
1580
1581 return 0;
1582
1583 err_free_urb_ctrl_buf:
1584 usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1585 pcu->urb_ctrl_buf, pcu->ctrl_dma);
1586 err_free_urb_out_buf:
1587 kfree(pcu->urb_out_buf);
1588 err_free_in_urb:
1589 usb_free_urb(pcu->urb_in);
1590 err_free_urb_in_buf:
1591 usb_free_coherent(pcu->udev, pcu->max_in_size,
1592 pcu->urb_in_buf, pcu->read_dma);
1593 return error;
1594 }
1595
ims_pcu_buffers_free(struct ims_pcu * pcu)1596 static void ims_pcu_buffers_free(struct ims_pcu *pcu)
1597 {
1598 usb_kill_urb(pcu->urb_in);
1599 usb_free_urb(pcu->urb_in);
1600
1601 usb_free_coherent(pcu->udev, pcu->max_out_size,
1602 pcu->urb_in_buf, pcu->read_dma);
1603
1604 kfree(pcu->urb_out_buf);
1605
1606 usb_kill_urb(pcu->urb_ctrl);
1607 usb_free_urb(pcu->urb_ctrl);
1608
1609 usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1610 pcu->urb_ctrl_buf, pcu->ctrl_dma);
1611 }
1612
1613 static const struct usb_cdc_union_desc *
ims_pcu_get_cdc_union_desc(struct usb_interface * intf)1614 ims_pcu_get_cdc_union_desc(struct usb_interface *intf)
1615 {
1616 const void *buf = intf->altsetting->extra;
1617 size_t buflen = intf->altsetting->extralen;
1618 struct usb_cdc_union_desc *union_desc;
1619
1620 if (!buf) {
1621 dev_err(&intf->dev, "Missing descriptor data\n");
1622 return NULL;
1623 }
1624
1625 if (!buflen) {
1626 dev_err(&intf->dev, "Zero length descriptor\n");
1627 return NULL;
1628 }
1629
1630 while (buflen >= sizeof(*union_desc)) {
1631 union_desc = (struct usb_cdc_union_desc *)buf;
1632
1633 if (union_desc->bLength > buflen) {
1634 dev_err(&intf->dev, "Too large descriptor\n");
1635 return NULL;
1636 }
1637
1638 if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE &&
1639 union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) {
1640 dev_dbg(&intf->dev, "Found union header\n");
1641
1642 if (union_desc->bLength >= sizeof(*union_desc))
1643 return union_desc;
1644
1645 dev_err(&intf->dev,
1646 "Union descriptor too short (%d vs %zd)\n",
1647 union_desc->bLength, sizeof(*union_desc));
1648 return NULL;
1649 }
1650
1651 buflen -= union_desc->bLength;
1652 buf += union_desc->bLength;
1653 }
1654
1655 dev_err(&intf->dev, "Missing CDC union descriptor\n");
1656 return NULL;
1657 }
1658
ims_pcu_parse_cdc_data(struct usb_interface * intf,struct ims_pcu * pcu)1659 static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu)
1660 {
1661 const struct usb_cdc_union_desc *union_desc;
1662 struct usb_host_interface *alt;
1663
1664 union_desc = ims_pcu_get_cdc_union_desc(intf);
1665 if (!union_desc)
1666 return -EINVAL;
1667
1668 pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev,
1669 union_desc->bMasterInterface0);
1670 if (!pcu->ctrl_intf)
1671 return -EINVAL;
1672
1673 alt = pcu->ctrl_intf->cur_altsetting;
1674
1675 if (alt->desc.bNumEndpoints < 1)
1676 return -ENODEV;
1677
1678 pcu->ep_ctrl = &alt->endpoint[0].desc;
1679 pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl);
1680
1681 pcu->data_intf = usb_ifnum_to_if(pcu->udev,
1682 union_desc->bSlaveInterface0);
1683 if (!pcu->data_intf)
1684 return -EINVAL;
1685
1686 alt = pcu->data_intf->cur_altsetting;
1687 if (alt->desc.bNumEndpoints != 2) {
1688 dev_err(pcu->dev,
1689 "Incorrect number of endpoints on data interface (%d)\n",
1690 alt->desc.bNumEndpoints);
1691 return -EINVAL;
1692 }
1693
1694 pcu->ep_out = &alt->endpoint[0].desc;
1695 if (!usb_endpoint_is_bulk_out(pcu->ep_out)) {
1696 dev_err(pcu->dev,
1697 "First endpoint on data interface is not BULK OUT\n");
1698 return -EINVAL;
1699 }
1700
1701 pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out);
1702 if (pcu->max_out_size < 8) {
1703 dev_err(pcu->dev,
1704 "Max OUT packet size is too small (%zd)\n",
1705 pcu->max_out_size);
1706 return -EINVAL;
1707 }
1708
1709 pcu->ep_in = &alt->endpoint[1].desc;
1710 if (!usb_endpoint_is_bulk_in(pcu->ep_in)) {
1711 dev_err(pcu->dev,
1712 "Second endpoint on data interface is not BULK IN\n");
1713 return -EINVAL;
1714 }
1715
1716 pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in);
1717 if (pcu->max_in_size < 8) {
1718 dev_err(pcu->dev,
1719 "Max IN packet size is too small (%zd)\n",
1720 pcu->max_in_size);
1721 return -EINVAL;
1722 }
1723
1724 return 0;
1725 }
1726
ims_pcu_start_io(struct ims_pcu * pcu)1727 static int ims_pcu_start_io(struct ims_pcu *pcu)
1728 {
1729 int error;
1730
1731 error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL);
1732 if (error) {
1733 dev_err(pcu->dev,
1734 "Failed to start control IO - usb_submit_urb failed with result: %d\n",
1735 error);
1736 return -EIO;
1737 }
1738
1739 error = usb_submit_urb(pcu->urb_in, GFP_KERNEL);
1740 if (error) {
1741 dev_err(pcu->dev,
1742 "Failed to start IO - usb_submit_urb failed with result: %d\n",
1743 error);
1744 usb_kill_urb(pcu->urb_ctrl);
1745 return -EIO;
1746 }
1747
1748 return 0;
1749 }
1750
ims_pcu_stop_io(struct ims_pcu * pcu)1751 static void ims_pcu_stop_io(struct ims_pcu *pcu)
1752 {
1753 usb_kill_urb(pcu->urb_in);
1754 usb_kill_urb(pcu->urb_ctrl);
1755 }
1756
ims_pcu_line_setup(struct ims_pcu * pcu)1757 static int ims_pcu_line_setup(struct ims_pcu *pcu)
1758 {
1759 struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting;
1760 struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf;
1761 int error;
1762
1763 memset(line, 0, sizeof(*line));
1764 line->dwDTERate = cpu_to_le32(57600);
1765 line->bDataBits = 8;
1766
1767 error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1768 USB_CDC_REQ_SET_LINE_CODING,
1769 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1770 0, interface->desc.bInterfaceNumber,
1771 line, sizeof(struct usb_cdc_line_coding),
1772 5000);
1773 if (error < 0) {
1774 dev_err(pcu->dev, "Failed to set line coding, error: %d\n",
1775 error);
1776 return error;
1777 }
1778
1779 error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1780 USB_CDC_REQ_SET_CONTROL_LINE_STATE,
1781 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1782 0x03, interface->desc.bInterfaceNumber,
1783 NULL, 0, 5000);
1784 if (error < 0) {
1785 dev_err(pcu->dev, "Failed to set line state, error: %d\n",
1786 error);
1787 return error;
1788 }
1789
1790 return 0;
1791 }
1792
ims_pcu_get_device_info(struct ims_pcu * pcu)1793 static int ims_pcu_get_device_info(struct ims_pcu *pcu)
1794 {
1795 int error;
1796
1797 error = ims_pcu_get_info(pcu);
1798 if (error)
1799 return error;
1800
1801 error = ims_pcu_execute_query(pcu, GET_FW_VERSION);
1802 if (error) {
1803 dev_err(pcu->dev,
1804 "GET_FW_VERSION command failed, error: %d\n", error);
1805 return error;
1806 }
1807
1808 snprintf(pcu->fw_version, sizeof(pcu->fw_version),
1809 "%02d%02d%02d%02d.%c%c",
1810 pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1811 pcu->cmd_buf[6], pcu->cmd_buf[7]);
1812
1813 error = ims_pcu_execute_query(pcu, GET_BL_VERSION);
1814 if (error) {
1815 dev_err(pcu->dev,
1816 "GET_BL_VERSION command failed, error: %d\n", error);
1817 return error;
1818 }
1819
1820 snprintf(pcu->bl_version, sizeof(pcu->bl_version),
1821 "%02d%02d%02d%02d.%c%c",
1822 pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1823 pcu->cmd_buf[6], pcu->cmd_buf[7]);
1824
1825 error = ims_pcu_execute_query(pcu, RESET_REASON);
1826 if (error) {
1827 dev_err(pcu->dev,
1828 "RESET_REASON command failed, error: %d\n", error);
1829 return error;
1830 }
1831
1832 snprintf(pcu->reset_reason, sizeof(pcu->reset_reason),
1833 "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
1834
1835 dev_dbg(pcu->dev,
1836 "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n",
1837 pcu->part_number,
1838 pcu->date_of_manufacturing,
1839 pcu->serial_number,
1840 pcu->fw_version,
1841 pcu->bl_version,
1842 pcu->reset_reason);
1843
1844 return 0;
1845 }
1846
ims_pcu_identify_type(struct ims_pcu * pcu,u8 * device_id)1847 static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id)
1848 {
1849 int error;
1850
1851 error = ims_pcu_execute_query(pcu, GET_DEVICE_ID);
1852 if (error) {
1853 dev_err(pcu->dev,
1854 "GET_DEVICE_ID command failed, error: %d\n", error);
1855 return error;
1856 }
1857
1858 *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET];
1859 dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id);
1860
1861 return 0;
1862 }
1863
ims_pcu_init_application_mode(struct ims_pcu * pcu)1864 static int ims_pcu_init_application_mode(struct ims_pcu *pcu)
1865 {
1866 static atomic_t device_no = ATOMIC_INIT(-1);
1867
1868 const struct ims_pcu_device_info *info;
1869 int error;
1870
1871 error = ims_pcu_get_device_info(pcu);
1872 if (error) {
1873 /* Device does not respond to basic queries, hopeless */
1874 return error;
1875 }
1876
1877 error = ims_pcu_identify_type(pcu, &pcu->device_id);
1878 if (error) {
1879 dev_err(pcu->dev,
1880 "Failed to identify device, error: %d\n", error);
1881 /*
1882 * Do not signal error, but do not create input nor
1883 * backlight devices either, let userspace figure this
1884 * out (flash a new firmware?).
1885 */
1886 return 0;
1887 }
1888
1889 if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) ||
1890 !ims_pcu_device_info[pcu->device_id].keymap) {
1891 dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id);
1892 /* Same as above, punt to userspace */
1893 return 0;
1894 }
1895
1896 /* Device appears to be operable, complete initialization */
1897 pcu->device_no = atomic_inc_return(&device_no);
1898
1899 error = ims_pcu_setup_backlight(pcu);
1900 if (error)
1901 return error;
1902
1903 info = &ims_pcu_device_info[pcu->device_id];
1904 error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len);
1905 if (error)
1906 goto err_destroy_backlight;
1907
1908 if (info->has_gamepad) {
1909 error = ims_pcu_setup_gamepad(pcu);
1910 if (error)
1911 goto err_destroy_buttons;
1912 }
1913
1914 pcu->setup_complete = true;
1915
1916 return 0;
1917
1918 err_destroy_buttons:
1919 ims_pcu_destroy_buttons(pcu);
1920 err_destroy_backlight:
1921 ims_pcu_destroy_backlight(pcu);
1922 return error;
1923 }
1924
ims_pcu_destroy_application_mode(struct ims_pcu * pcu)1925 static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu)
1926 {
1927 if (pcu->setup_complete) {
1928 pcu->setup_complete = false;
1929 mb(); /* make sure flag setting is not reordered */
1930
1931 if (pcu->gamepad)
1932 ims_pcu_destroy_gamepad(pcu);
1933 ims_pcu_destroy_buttons(pcu);
1934 ims_pcu_destroy_backlight(pcu);
1935 }
1936 }
1937
ims_pcu_init_bootloader_mode(struct ims_pcu * pcu)1938 static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu)
1939 {
1940 int error;
1941
1942 error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0,
1943 IMS_PCU_CMD_RESPONSE_TIMEOUT);
1944 if (error) {
1945 dev_err(pcu->dev, "Bootloader does not respond, aborting\n");
1946 return error;
1947 }
1948
1949 pcu->fw_start_addr =
1950 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]);
1951 pcu->fw_end_addr =
1952 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]);
1953
1954 dev_info(pcu->dev,
1955 "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n",
1956 pcu->fw_start_addr, pcu->fw_end_addr);
1957
1958 error = request_firmware_nowait(THIS_MODULE, true,
1959 IMS_PCU_FIRMWARE_NAME,
1960 pcu->dev, GFP_KERNEL, pcu,
1961 ims_pcu_process_async_firmware);
1962 if (error) {
1963 /* This error is not fatal, let userspace have another chance */
1964 complete(&pcu->async_firmware_done);
1965 }
1966
1967 return 0;
1968 }
1969
ims_pcu_destroy_bootloader_mode(struct ims_pcu * pcu)1970 static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu)
1971 {
1972 /* Make sure our initial firmware request has completed */
1973 wait_for_completion(&pcu->async_firmware_done);
1974 }
1975
1976 #define IMS_PCU_APPLICATION_MODE 0
1977 #define IMS_PCU_BOOTLOADER_MODE 1
1978
1979 static struct usb_driver ims_pcu_driver;
1980
ims_pcu_probe(struct usb_interface * intf,const struct usb_device_id * id)1981 static int ims_pcu_probe(struct usb_interface *intf,
1982 const struct usb_device_id *id)
1983 {
1984 struct usb_device *udev = interface_to_usbdev(intf);
1985 struct ims_pcu *pcu;
1986 int error;
1987
1988 pcu = kzalloc(sizeof(*pcu), GFP_KERNEL);
1989 if (!pcu)
1990 return -ENOMEM;
1991
1992 pcu->dev = &intf->dev;
1993 pcu->udev = udev;
1994 pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE;
1995 mutex_init(&pcu->cmd_mutex);
1996 init_completion(&pcu->cmd_done);
1997 init_completion(&pcu->async_firmware_done);
1998
1999 error = ims_pcu_parse_cdc_data(intf, pcu);
2000 if (error)
2001 goto err_free_mem;
2002
2003 error = usb_driver_claim_interface(&ims_pcu_driver,
2004 pcu->data_intf, pcu);
2005 if (error) {
2006 dev_err(&intf->dev,
2007 "Unable to claim corresponding data interface: %d\n",
2008 error);
2009 goto err_free_mem;
2010 }
2011
2012 usb_set_intfdata(pcu->ctrl_intf, pcu);
2013
2014 error = ims_pcu_buffers_alloc(pcu);
2015 if (error)
2016 goto err_unclaim_intf;
2017
2018 error = ims_pcu_start_io(pcu);
2019 if (error)
2020 goto err_free_buffers;
2021
2022 error = ims_pcu_line_setup(pcu);
2023 if (error)
2024 goto err_stop_io;
2025
2026 error = pcu->bootloader_mode ?
2027 ims_pcu_init_bootloader_mode(pcu) :
2028 ims_pcu_init_application_mode(pcu);
2029 if (error)
2030 goto err_stop_io;
2031
2032 return 0;
2033
2034 err_stop_io:
2035 ims_pcu_stop_io(pcu);
2036 err_free_buffers:
2037 ims_pcu_buffers_free(pcu);
2038 err_unclaim_intf:
2039 usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf);
2040 err_free_mem:
2041 kfree(pcu);
2042 return error;
2043 }
2044
ims_pcu_disconnect(struct usb_interface * intf)2045 static void ims_pcu_disconnect(struct usb_interface *intf)
2046 {
2047 struct ims_pcu *pcu = usb_get_intfdata(intf);
2048 struct usb_host_interface *alt = intf->cur_altsetting;
2049
2050 usb_set_intfdata(intf, NULL);
2051
2052 /*
2053 * See if we are dealing with control or data interface. The cleanup
2054 * happens when we unbind primary (control) interface.
2055 */
2056 if (alt->desc.bInterfaceClass != USB_CLASS_COMM)
2057 return;
2058
2059 ims_pcu_stop_io(pcu);
2060
2061 if (pcu->bootloader_mode)
2062 ims_pcu_destroy_bootloader_mode(pcu);
2063 else
2064 ims_pcu_destroy_application_mode(pcu);
2065
2066 ims_pcu_buffers_free(pcu);
2067 kfree(pcu);
2068 }
2069
2070 #ifdef CONFIG_PM
ims_pcu_suspend(struct usb_interface * intf,pm_message_t message)2071 static int ims_pcu_suspend(struct usb_interface *intf,
2072 pm_message_t message)
2073 {
2074 struct ims_pcu *pcu = usb_get_intfdata(intf);
2075 struct usb_host_interface *alt = intf->cur_altsetting;
2076
2077 if (alt->desc.bInterfaceClass == USB_CLASS_COMM)
2078 ims_pcu_stop_io(pcu);
2079
2080 return 0;
2081 }
2082
ims_pcu_resume(struct usb_interface * intf)2083 static int ims_pcu_resume(struct usb_interface *intf)
2084 {
2085 struct ims_pcu *pcu = usb_get_intfdata(intf);
2086 struct usb_host_interface *alt = intf->cur_altsetting;
2087 int retval = 0;
2088
2089 if (alt->desc.bInterfaceClass == USB_CLASS_COMM) {
2090 retval = ims_pcu_start_io(pcu);
2091 if (retval == 0)
2092 retval = ims_pcu_line_setup(pcu);
2093 }
2094
2095 return retval;
2096 }
2097 #endif
2098
2099 static const struct usb_device_id ims_pcu_id_table[] = {
2100 {
2101 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082,
2102 USB_CLASS_COMM,
2103 USB_CDC_SUBCLASS_ACM,
2104 USB_CDC_ACM_PROTO_AT_V25TER),
2105 .driver_info = IMS_PCU_APPLICATION_MODE,
2106 },
2107 {
2108 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083,
2109 USB_CLASS_COMM,
2110 USB_CDC_SUBCLASS_ACM,
2111 USB_CDC_ACM_PROTO_AT_V25TER),
2112 .driver_info = IMS_PCU_BOOTLOADER_MODE,
2113 },
2114 { }
2115 };
2116
2117 static const struct attribute_group *ims_pcu_sysfs_groups[] = {
2118 &ims_pcu_attr_group,
2119 &ims_pcu_ofn_attr_group,
2120 NULL
2121 };
2122
2123 static struct usb_driver ims_pcu_driver = {
2124 .name = "ims_pcu",
2125 .id_table = ims_pcu_id_table,
2126 .dev_groups = ims_pcu_sysfs_groups,
2127 .probe = ims_pcu_probe,
2128 .disconnect = ims_pcu_disconnect,
2129 #ifdef CONFIG_PM
2130 .suspend = ims_pcu_suspend,
2131 .resume = ims_pcu_resume,
2132 .reset_resume = ims_pcu_resume,
2133 #endif
2134 };
2135
2136 module_usb_driver(ims_pcu_driver);
2137
2138 MODULE_DESCRIPTION("IMS Passenger Control Unit driver");
2139 MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>");
2140 MODULE_LICENSE("GPL");
2141