xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 33efde4275d24731ef87927237b0ffb0630b6b2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31  * Copyright 2019 Joyent, Inc.
32  * Copyright (c) 2017, Intel Corporation.
33  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
34  * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
35  * Copyright 2022 Oxide Computer Company
36  * Copyright 2023 MNX Cloud, Inc.
37  */
38 
39 /*
40  * SPA: Storage Pool Allocator
41  *
42  * This file contains all the routines used when modifying on-disk SPA state.
43  * This includes opening, importing, destroying, exporting a pool, and syncing a
44  * pool.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/abd.h>
88 
89 #ifdef	_KERNEL
90 #include <sys/bootprops.h>
91 #include <sys/callb.h>
92 #include <sys/cpupart.h>
93 #include <sys/pool.h>
94 #include <sys/sysdc.h>
95 #include <sys/zone.h>
96 #endif	/* _KERNEL */
97 
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100 
101 /*
102  * The interval, in seconds, at which failed configuration cache file writes
103  * should be retried.
104  */
105 int zfs_ccw_retry_interval = 300;
106 
107 typedef enum zti_modes {
108 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
109 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
110 	ZTI_MODE_NULL,			/* don't create a taskq */
111 	ZTI_NMODES
112 } zti_modes_t;
113 
114 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
115 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
116 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
117 
118 #define	ZTI_N(n)	ZTI_P(n, 1)
119 #define	ZTI_ONE		ZTI_N(1)
120 
121 typedef struct zio_taskq_info {
122 	zti_modes_t zti_mode;
123 	uint_t zti_value;
124 	uint_t zti_count;
125 } zio_taskq_info_t;
126 
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 	"issue", "issue_high", "intr", "intr_high"
129 };
130 
131 /*
132  * This table defines the taskq settings for each ZFS I/O type. When
133  * initializing a pool, we use this table to create an appropriately sized
134  * taskq. Some operations are low volume and therefore have a small, static
135  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136  * macros. Other operations process a large amount of data; the ZTI_BATCH
137  * macro causes us to create a taskq oriented for throughput. Some operations
138  * are so high frequency and short-lived that the taskq itself can become a
139  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140  * additional degree of parallelism specified by the number of threads per-
141  * taskq and the number of taskqs; when dispatching an event in this case, the
142  * particular taskq is chosen at random.
143  *
144  * The different taskq priorities are to handle the different contexts (issue
145  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146  * need to be handled with minimum delay.
147  */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
150 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
151 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
152 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
153 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
154 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
156 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
157 };
158 
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164 
165 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166 id_t		zio_taskq_psrset_bind = PS_NONE;
167 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
168 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
169 
170 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
171 extern int	zfs_sync_pass_deferred_free;
172 
173 /*
174  * Report any spa_load_verify errors found, but do not fail spa_load.
175  * This is used by zdb to analyze non-idle pools.
176  */
177 boolean_t	spa_load_verify_dryrun = B_FALSE;
178 
179 /*
180  * This (illegal) pool name is used when temporarily importing a spa_t in order
181  * to get the vdev stats associated with the imported devices.
182  */
183 #define	TRYIMPORT_NAME	"$import"
184 
185 /*
186  * For debugging purposes: print out vdev tree during pool import.
187  */
188 boolean_t	spa_load_print_vdev_tree = B_FALSE;
189 
190 /*
191  * A non-zero value for zfs_max_missing_tvds means that we allow importing
192  * pools with missing top-level vdevs. This is strictly intended for advanced
193  * pool recovery cases since missing data is almost inevitable. Pools with
194  * missing devices can only be imported read-only for safety reasons, and their
195  * fail-mode will be automatically set to "continue".
196  *
197  * With 1 missing vdev we should be able to import the pool and mount all
198  * datasets. User data that was not modified after the missing device has been
199  * added should be recoverable. This means that snapshots created prior to the
200  * addition of that device should be completely intact.
201  *
202  * With 2 missing vdevs, some datasets may fail to mount since there are
203  * dataset statistics that are stored as regular metadata. Some data might be
204  * recoverable if those vdevs were added recently.
205  *
206  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
207  * may be missing entirely. Chances of data recovery are very low. Note that
208  * there are also risks of performing an inadvertent rewind as we might be
209  * missing all the vdevs with the latest uberblocks.
210  */
211 uint64_t	zfs_max_missing_tvds = 0;
212 
213 /*
214  * The parameters below are similar to zfs_max_missing_tvds but are only
215  * intended for a preliminary open of the pool with an untrusted config which
216  * might be incomplete or out-dated.
217  *
218  * We are more tolerant for pools opened from a cachefile since we could have
219  * an out-dated cachefile where a device removal was not registered.
220  * We could have set the limit arbitrarily high but in the case where devices
221  * are really missing we would want to return the proper error codes; we chose
222  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
223  * and we get a chance to retrieve the trusted config.
224  */
225 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
226 
227 /*
228  * In the case where config was assembled by scanning device paths (/dev/dsks
229  * by default) we are less tolerant since all the existing devices should have
230  * been detected and we want spa_load to return the right error codes.
231  */
232 uint64_t	zfs_max_missing_tvds_scan = 0;
233 
234 /*
235  * Interval in seconds at which to poll spare vdevs for health.
236  * Setting this to zero disables spare polling.
237  * Set to three hours by default.
238  */
239 uint_t		spa_spare_poll_interval_seconds = 60 * 60 * 3;
240 
241 /*
242  * Debugging aid that pauses spa_sync() towards the end.
243  */
244 boolean_t	zfs_pause_spa_sync = B_FALSE;
245 
246 /*
247  * ==========================================================================
248  * SPA properties routines
249  * ==========================================================================
250  */
251 
252 /*
253  * Add a (source=src, propname=propval) list to an nvlist.
254  */
255 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)256 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
257     uint64_t intval, zprop_source_t src)
258 {
259 	const char *propname = zpool_prop_to_name(prop);
260 	nvlist_t *propval;
261 
262 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
263 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
264 
265 	if (strval != NULL)
266 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
267 	else
268 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
269 
270 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
271 	nvlist_free(propval);
272 }
273 
274 /*
275  * Get property values from the spa configuration.
276  */
277 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)278 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
279 {
280 	vdev_t *rvd = spa->spa_root_vdev;
281 	dsl_pool_t *pool = spa->spa_dsl_pool;
282 	uint64_t size, alloc, cap, version;
283 	zprop_source_t src = ZPROP_SRC_NONE;
284 	spa_config_dirent_t *dp;
285 	metaslab_class_t *mc = spa_normal_class(spa);
286 
287 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
288 
289 	if (rvd != NULL) {
290 		alloc = metaslab_class_get_alloc(mc);
291 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
292 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
293 
294 		size = metaslab_class_get_space(mc);
295 		size += metaslab_class_get_space(spa_special_class(spa));
296 		size += metaslab_class_get_space(spa_dedup_class(spa));
297 
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
301 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
302 		    size - alloc, src);
303 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
304 		    spa->spa_checkpoint_info.sci_dspace, src);
305 
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
307 		    metaslab_class_fragmentation(mc), src);
308 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
309 		    metaslab_class_expandable_space(mc), src);
310 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
311 		    (spa_mode(spa) == FREAD), src);
312 
313 		cap = (size == 0) ? 0 : (alloc * 100 / size);
314 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
315 
316 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
317 		    ddt_get_pool_dedup_ratio(spa), src);
318 
319 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
320 		    rvd->vdev_state, src);
321 
322 		version = spa_version(spa);
323 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
324 			src = ZPROP_SRC_DEFAULT;
325 		else
326 			src = ZPROP_SRC_LOCAL;
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
328 	}
329 
330 	if (pool != NULL) {
331 		/*
332 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
333 		 * when opening pools before this version freedir will be NULL.
334 		 */
335 		if (pool->dp_free_dir != NULL) {
336 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
337 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
338 			    src);
339 		} else {
340 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
341 			    NULL, 0, src);
342 		}
343 
344 		if (pool->dp_leak_dir != NULL) {
345 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
346 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
347 			    src);
348 		} else {
349 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
350 			    NULL, 0, src);
351 		}
352 	}
353 
354 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
355 
356 	if (spa->spa_comment != NULL) {
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
358 		    0, ZPROP_SRC_LOCAL);
359 	}
360 
361 	if (spa->spa_root != NULL)
362 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
363 		    0, ZPROP_SRC_LOCAL);
364 
365 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
366 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
367 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
368 	} else {
369 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
370 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
371 	}
372 
373 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
374 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
375 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
376 	} else {
377 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
378 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
379 	}
380 
381 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
382 		if (dp->scd_path == NULL) {
383 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
384 			    "none", 0, ZPROP_SRC_LOCAL);
385 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
386 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
387 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
388 		}
389 	}
390 }
391 
392 /*
393  * Get zpool property values.
394  */
395 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)396 spa_prop_get(spa_t *spa, nvlist_t **nvp)
397 {
398 	objset_t *mos = spa->spa_meta_objset;
399 	zap_cursor_t zc;
400 	zap_attribute_t za;
401 	int err;
402 
403 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
404 
405 	mutex_enter(&spa->spa_props_lock);
406 
407 	/*
408 	 * Get properties from the spa config.
409 	 */
410 	spa_prop_get_config(spa, nvp);
411 
412 	/* If no pool property object, no more prop to get. */
413 	if (mos == NULL || spa->spa_pool_props_object == 0) {
414 		mutex_exit(&spa->spa_props_lock);
415 		return (0);
416 	}
417 
418 	/*
419 	 * Get properties from the MOS pool property object.
420 	 */
421 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
422 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
423 	    zap_cursor_advance(&zc)) {
424 		uint64_t intval = 0;
425 		char *strval = NULL;
426 		zprop_source_t src = ZPROP_SRC_DEFAULT;
427 		zpool_prop_t prop;
428 
429 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
430 			continue;
431 
432 		switch (za.za_integer_length) {
433 		case 8:
434 			/* integer property */
435 			if (za.za_first_integer !=
436 			    zpool_prop_default_numeric(prop))
437 				src = ZPROP_SRC_LOCAL;
438 
439 			if (prop == ZPOOL_PROP_BOOTFS) {
440 				dsl_pool_t *dp;
441 				dsl_dataset_t *ds = NULL;
442 
443 				dp = spa_get_dsl(spa);
444 				dsl_pool_config_enter(dp, FTAG);
445 				err = dsl_dataset_hold_obj(dp,
446 				    za.za_first_integer, FTAG, &ds);
447 				if (err != 0) {
448 					dsl_pool_config_exit(dp, FTAG);
449 					break;
450 				}
451 
452 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
453 				    KM_SLEEP);
454 				dsl_dataset_name(ds, strval);
455 				dsl_dataset_rele(ds, FTAG);
456 				dsl_pool_config_exit(dp, FTAG);
457 			} else {
458 				strval = NULL;
459 				intval = za.za_first_integer;
460 			}
461 
462 			spa_prop_add_list(*nvp, prop, strval, intval, src);
463 
464 			if (strval != NULL)
465 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
466 
467 			break;
468 
469 		case 1:
470 			/* string property */
471 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
472 			err = zap_lookup(mos, spa->spa_pool_props_object,
473 			    za.za_name, 1, za.za_num_integers, strval);
474 			if (err) {
475 				kmem_free(strval, za.za_num_integers);
476 				break;
477 			}
478 			spa_prop_add_list(*nvp, prop, strval, 0, src);
479 			kmem_free(strval, za.za_num_integers);
480 			break;
481 
482 		default:
483 			break;
484 		}
485 	}
486 	zap_cursor_fini(&zc);
487 	mutex_exit(&spa->spa_props_lock);
488 	if (err && err != ENOENT) {
489 		nvlist_free(*nvp);
490 		*nvp = NULL;
491 		return (err);
492 	}
493 
494 	return (0);
495 }
496 
497 /*
498  * Validate the given pool properties nvlist and modify the list
499  * for the property values to be set.
500  */
501 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)502 spa_prop_validate(spa_t *spa, nvlist_t *props)
503 {
504 	nvpair_t *elem;
505 	int error = 0, reset_bootfs = 0;
506 	uint64_t objnum = 0;
507 	boolean_t has_feature = B_FALSE;
508 
509 	elem = NULL;
510 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
511 		uint64_t intval;
512 		char *strval, *slash, *check, *fname;
513 		const char *propname = nvpair_name(elem);
514 		zpool_prop_t prop = zpool_name_to_prop(propname);
515 
516 		switch (prop) {
517 		case ZPOOL_PROP_INVAL:
518 			if (!zpool_prop_feature(propname)) {
519 				error = SET_ERROR(EINVAL);
520 				break;
521 			}
522 
523 			/*
524 			 * Sanitize the input.
525 			 */
526 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
527 				error = SET_ERROR(EINVAL);
528 				break;
529 			}
530 
531 			if (nvpair_value_uint64(elem, &intval) != 0) {
532 				error = SET_ERROR(EINVAL);
533 				break;
534 			}
535 
536 			if (intval != 0) {
537 				error = SET_ERROR(EINVAL);
538 				break;
539 			}
540 
541 			fname = strchr(propname, '@') + 1;
542 			if (zfeature_lookup_name(fname, NULL) != 0) {
543 				error = SET_ERROR(EINVAL);
544 				break;
545 			}
546 
547 			has_feature = B_TRUE;
548 			break;
549 
550 		case ZPOOL_PROP_VERSION:
551 			error = nvpair_value_uint64(elem, &intval);
552 			if (!error &&
553 			    (intval < spa_version(spa) ||
554 			    intval > SPA_VERSION_BEFORE_FEATURES ||
555 			    has_feature))
556 				error = SET_ERROR(EINVAL);
557 			break;
558 
559 		case ZPOOL_PROP_DELEGATION:
560 		case ZPOOL_PROP_AUTOREPLACE:
561 		case ZPOOL_PROP_LISTSNAPS:
562 		case ZPOOL_PROP_AUTOEXPAND:
563 		case ZPOOL_PROP_AUTOTRIM:
564 			error = nvpair_value_uint64(elem, &intval);
565 			if (!error && intval > 1)
566 				error = SET_ERROR(EINVAL);
567 			break;
568 
569 		case ZPOOL_PROP_MULTIHOST:
570 			error = nvpair_value_uint64(elem, &intval);
571 			if (!error && intval > 1)
572 				error = SET_ERROR(EINVAL);
573 
574 			if (!error && !spa_get_hostid())
575 				error = SET_ERROR(ENOTSUP);
576 
577 			break;
578 
579 		case ZPOOL_PROP_BOOTFS:
580 			/*
581 			 * If the pool version is less than SPA_VERSION_BOOTFS,
582 			 * or the pool is still being created (version == 0),
583 			 * the bootfs property cannot be set.
584 			 */
585 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
586 				error = SET_ERROR(ENOTSUP);
587 				break;
588 			}
589 
590 			/*
591 			 * Make sure the vdev config is bootable
592 			 */
593 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
594 				error = SET_ERROR(ENOTSUP);
595 				break;
596 			}
597 
598 			reset_bootfs = 1;
599 
600 			error = nvpair_value_string(elem, &strval);
601 
602 			if (!error) {
603 				objset_t *os;
604 				uint64_t propval;
605 
606 				if (strval == NULL || strval[0] == '\0') {
607 					objnum = zpool_prop_default_numeric(
608 					    ZPOOL_PROP_BOOTFS);
609 					break;
610 				}
611 
612 				error = dmu_objset_hold(strval, FTAG, &os);
613 				if (error != 0)
614 					break;
615 
616 				/*
617 				 * Must be ZPL, and its property settings
618 				 * must be supported.
619 				 */
620 
621 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
622 					error = SET_ERROR(ENOTSUP);
623 				} else if ((error =
624 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
625 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
626 				    &propval)) == 0 &&
627 				    !BOOTFS_COMPRESS_VALID(propval)) {
628 					error = SET_ERROR(ENOTSUP);
629 				} else {
630 					objnum = dmu_objset_id(os);
631 				}
632 				dmu_objset_rele(os, FTAG);
633 			}
634 			break;
635 
636 		case ZPOOL_PROP_FAILUREMODE:
637 			error = nvpair_value_uint64(elem, &intval);
638 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
639 			    intval > ZIO_FAILURE_MODE_PANIC))
640 				error = SET_ERROR(EINVAL);
641 
642 			/*
643 			 * This is a special case which only occurs when
644 			 * the pool has completely failed. This allows
645 			 * the user to change the in-core failmode property
646 			 * without syncing it out to disk (I/Os might
647 			 * currently be blocked). We do this by returning
648 			 * EIO to the caller (spa_prop_set) to trick it
649 			 * into thinking we encountered a property validation
650 			 * error.
651 			 */
652 			if (!error && spa_suspended(spa)) {
653 				spa->spa_failmode = intval;
654 				error = SET_ERROR(EIO);
655 			}
656 			break;
657 
658 		case ZPOOL_PROP_CACHEFILE:
659 			if ((error = nvpair_value_string(elem, &strval)) != 0)
660 				break;
661 
662 			if (strval[0] == '\0')
663 				break;
664 
665 			if (strcmp(strval, "none") == 0)
666 				break;
667 
668 			if (strval[0] != '/') {
669 				error = SET_ERROR(EINVAL);
670 				break;
671 			}
672 
673 			slash = strrchr(strval, '/');
674 			ASSERT(slash != NULL);
675 
676 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
677 			    strcmp(slash, "/..") == 0)
678 				error = SET_ERROR(EINVAL);
679 			break;
680 
681 		case ZPOOL_PROP_COMMENT:
682 			if ((error = nvpair_value_string(elem, &strval)) != 0)
683 				break;
684 			for (check = strval; *check != '\0'; check++) {
685 				/*
686 				 * The kernel doesn't have an easy isprint()
687 				 * check.  For this kernel check, we merely
688 				 * check ASCII apart from DEL.  Fix this if
689 				 * there is an easy-to-use kernel isprint().
690 				 */
691 				if (*check >= 0x7f) {
692 					error = SET_ERROR(EINVAL);
693 					break;
694 				}
695 			}
696 			if (strlen(strval) > ZPROP_MAX_COMMENT)
697 				error = E2BIG;
698 			break;
699 
700 		case ZPOOL_PROP_DEDUPDITTO:
701 			if (spa_version(spa) < SPA_VERSION_DEDUP)
702 				error = SET_ERROR(ENOTSUP);
703 			else
704 				error = nvpair_value_uint64(elem, &intval);
705 			if (error == 0 &&
706 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
707 				error = SET_ERROR(EINVAL);
708 			break;
709 		}
710 
711 		if (error)
712 			break;
713 	}
714 
715 	if (!error && reset_bootfs) {
716 		error = nvlist_remove(props,
717 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
718 
719 		if (!error) {
720 			error = nvlist_add_uint64(props,
721 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
722 		}
723 	}
724 
725 	return (error);
726 }
727 
728 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)729 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
730 {
731 	char *cachefile;
732 	spa_config_dirent_t *dp;
733 
734 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
735 	    &cachefile) != 0)
736 		return;
737 
738 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
739 	    KM_SLEEP);
740 
741 	if (cachefile[0] == '\0')
742 		dp->scd_path = spa_strdup(spa_config_path);
743 	else if (strcmp(cachefile, "none") == 0)
744 		dp->scd_path = NULL;
745 	else
746 		dp->scd_path = spa_strdup(cachefile);
747 
748 	list_insert_head(&spa->spa_config_list, dp);
749 	if (need_sync)
750 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
751 }
752 
753 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)754 spa_prop_set(spa_t *spa, nvlist_t *nvp)
755 {
756 	int error;
757 	nvpair_t *elem = NULL;
758 	boolean_t need_sync = B_FALSE;
759 
760 	if ((error = spa_prop_validate(spa, nvp)) != 0)
761 		return (error);
762 
763 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
764 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
765 
766 		if (prop == ZPOOL_PROP_CACHEFILE ||
767 		    prop == ZPOOL_PROP_ALTROOT ||
768 		    prop == ZPOOL_PROP_READONLY)
769 			continue;
770 
771 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
772 			uint64_t ver;
773 
774 			if (prop == ZPOOL_PROP_VERSION) {
775 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
776 			} else {
777 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
778 				ver = SPA_VERSION_FEATURES;
779 				need_sync = B_TRUE;
780 			}
781 
782 			/* Save time if the version is already set. */
783 			if (ver == spa_version(spa))
784 				continue;
785 
786 			/*
787 			 * In addition to the pool directory object, we might
788 			 * create the pool properties object, the features for
789 			 * read object, the features for write object, or the
790 			 * feature descriptions object.
791 			 */
792 			error = dsl_sync_task(spa->spa_name, NULL,
793 			    spa_sync_version, &ver,
794 			    6, ZFS_SPACE_CHECK_RESERVED);
795 			if (error)
796 				return (error);
797 			continue;
798 		}
799 
800 		need_sync = B_TRUE;
801 		break;
802 	}
803 
804 	if (need_sync) {
805 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
806 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
807 	}
808 
809 	return (0);
810 }
811 
812 /*
813  * If the bootfs property value is dsobj, clear it.
814  */
815 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)816 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
817 {
818 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
819 		VERIFY(zap_remove(spa->spa_meta_objset,
820 		    spa->spa_pool_props_object,
821 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
822 		spa->spa_bootfs = 0;
823 	}
824 }
825 
826 /*ARGSUSED*/
827 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)828 spa_change_guid_check(void *arg, dmu_tx_t *tx)
829 {
830 	uint64_t *newguid = arg;
831 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
832 	vdev_t *rvd = spa->spa_root_vdev;
833 	uint64_t vdev_state;
834 
835 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
836 		int error = (spa_has_checkpoint(spa)) ?
837 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
838 		return (SET_ERROR(error));
839 	}
840 
841 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
842 	vdev_state = rvd->vdev_state;
843 	spa_config_exit(spa, SCL_STATE, FTAG);
844 
845 	if (vdev_state != VDEV_STATE_HEALTHY)
846 		return (SET_ERROR(ENXIO));
847 
848 	ASSERT3U(spa_guid(spa), !=, *newguid);
849 
850 	return (0);
851 }
852 
853 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)854 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
855 {
856 	uint64_t *newguid = arg;
857 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
858 	uint64_t oldguid;
859 	vdev_t *rvd = spa->spa_root_vdev;
860 
861 	oldguid = spa_guid(spa);
862 
863 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
864 	rvd->vdev_guid = *newguid;
865 	rvd->vdev_guid_sum += (*newguid - oldguid);
866 	vdev_config_dirty(rvd);
867 	spa_config_exit(spa, SCL_STATE, FTAG);
868 
869 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
870 	    oldguid, *newguid);
871 }
872 
873 /*
874  * Change the GUID for the pool.  This is done so that we can later
875  * re-import a pool built from a clone of our own vdevs.  We will modify
876  * the root vdev's guid, our own pool guid, and then mark all of our
877  * vdevs dirty.  Note that we must make sure that all our vdevs are
878  * online when we do this, or else any vdevs that weren't present
879  * would be orphaned from our pool.  We are also going to issue a
880  * sysevent to update any watchers.
881  */
882 int
spa_change_guid(spa_t * spa)883 spa_change_guid(spa_t *spa)
884 {
885 	int error;
886 	uint64_t guid;
887 
888 	mutex_enter(&spa->spa_vdev_top_lock);
889 	mutex_enter(&spa_namespace_lock);
890 	guid = spa_generate_guid(NULL);
891 
892 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
893 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
894 
895 	if (error == 0) {
896 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
897 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
898 	}
899 
900 	mutex_exit(&spa_namespace_lock);
901 	mutex_exit(&spa->spa_vdev_top_lock);
902 
903 	return (error);
904 }
905 
906 /*
907  * ==========================================================================
908  * SPA state manipulation (open/create/destroy/import/export)
909  * ==========================================================================
910  */
911 
912 static int
spa_error_entry_compare(const void * a,const void * b)913 spa_error_entry_compare(const void *a, const void *b)
914 {
915 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
916 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
917 	int ret;
918 
919 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
920 	    sizeof (zbookmark_phys_t));
921 
922 	return (TREE_ISIGN(ret));
923 }
924 
925 /*
926  * Utility function which retrieves copies of the current logs and
927  * re-initializes them in the process.
928  */
929 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)930 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
931 {
932 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
933 
934 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
935 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
936 
937 	avl_create(&spa->spa_errlist_scrub,
938 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
939 	    offsetof(spa_error_entry_t, se_avl));
940 	avl_create(&spa->spa_errlist_last,
941 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
942 	    offsetof(spa_error_entry_t, se_avl));
943 }
944 
945 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)946 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947 {
948 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
949 	enum zti_modes mode = ztip->zti_mode;
950 	uint_t value = ztip->zti_value;
951 	uint_t count = ztip->zti_count;
952 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953 	char name[32];
954 	uint_t flags = 0;
955 	boolean_t batch = B_FALSE;
956 
957 	if (mode == ZTI_MODE_NULL) {
958 		tqs->stqs_count = 0;
959 		tqs->stqs_taskq = NULL;
960 		return;
961 	}
962 
963 	ASSERT3U(count, >, 0);
964 
965 	tqs->stqs_count = count;
966 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
967 
968 	switch (mode) {
969 	case ZTI_MODE_FIXED:
970 		ASSERT3U(value, >=, 1);
971 		value = MAX(value, 1);
972 		break;
973 
974 	case ZTI_MODE_BATCH:
975 		batch = B_TRUE;
976 		flags |= TASKQ_THREADS_CPU_PCT;
977 		value = zio_taskq_batch_pct;
978 		break;
979 
980 	default:
981 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
982 		    "spa_activate()",
983 		    zio_type_name[t], zio_taskq_types[q], mode, value);
984 		break;
985 	}
986 
987 	for (uint_t i = 0; i < count; i++) {
988 		taskq_t *tq;
989 
990 		if (count > 1) {
991 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
992 			    zio_type_name[t], zio_taskq_types[q], i);
993 		} else {
994 			(void) snprintf(name, sizeof (name), "%s_%s",
995 			    zio_type_name[t], zio_taskq_types[q]);
996 		}
997 
998 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
999 			if (batch)
1000 				flags |= TASKQ_DC_BATCH;
1001 
1002 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1003 			    spa->spa_proc, zio_taskq_basedc, flags);
1004 		} else {
1005 			pri_t pri = maxclsyspri;
1006 			/*
1007 			 * The write issue taskq can be extremely CPU
1008 			 * intensive.  Run it at slightly lower priority
1009 			 * than the other taskqs.
1010 			 */
1011 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1012 				pri--;
1013 
1014 			tq = taskq_create_proc(name, value, pri, 50,
1015 			    INT_MAX, spa->spa_proc, flags);
1016 		}
1017 
1018 		tqs->stqs_taskq[i] = tq;
1019 	}
1020 }
1021 
1022 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1023 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1024 {
1025 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1026 
1027 	if (tqs->stqs_taskq == NULL) {
1028 		ASSERT0(tqs->stqs_count);
1029 		return;
1030 	}
1031 
1032 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1033 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1034 		taskq_destroy(tqs->stqs_taskq[i]);
1035 	}
1036 
1037 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1038 	tqs->stqs_taskq = NULL;
1039 }
1040 
1041 /*
1042  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1043  * Note that a type may have multiple discrete taskqs to avoid lock contention
1044  * on the taskq itself. In that case we choose which taskq at random by using
1045  * the low bits of gethrtime().
1046  */
1047 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)1048 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1049     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1050 {
1051 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1052 	taskq_t *tq;
1053 
1054 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1055 	ASSERT3U(tqs->stqs_count, !=, 0);
1056 
1057 	if (tqs->stqs_count == 1) {
1058 		tq = tqs->stqs_taskq[0];
1059 	} else {
1060 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1061 	}
1062 
1063 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1064 }
1065 
1066 static void
spa_create_zio_taskqs(spa_t * spa)1067 spa_create_zio_taskqs(spa_t *spa)
1068 {
1069 	for (int t = 0; t < ZIO_TYPES; t++) {
1070 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1071 			spa_taskqs_init(spa, t, q);
1072 		}
1073 	}
1074 }
1075 
1076 #ifdef _KERNEL
1077 static void
spa_thread(void * arg)1078 spa_thread(void *arg)
1079 {
1080 	callb_cpr_t cprinfo;
1081 	spa_t *spa = arg;
1082 	char spa_id_readable[CB_MAXNAME + 1];
1083 	user_t *pu = PTOU(curproc);
1084 
1085 	(void) snprintf(spa_id_readable, sizeof (spa_id_readable), "SPA:0x%p",
1086 	    spa);
1087 
1088 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1089 	    spa_id_readable);
1090 
1091 	ASSERT(curproc != &p0);
1092 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1093 	    "zpool-%s", spa->spa_name);
1094 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1095 
1096 	/* bind this thread to the requested psrset */
1097 	if (zio_taskq_psrset_bind != PS_NONE) {
1098 		pool_lock();
1099 		mutex_enter(&cpu_lock);
1100 		mutex_enter(&pidlock);
1101 		mutex_enter(&curproc->p_lock);
1102 
1103 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1104 		    0, NULL, NULL) == 0)  {
1105 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1106 		} else {
1107 			cmn_err(CE_WARN,
1108 			    "Couldn't bind process for zfs pool \"%s\" to "
1109 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1110 		}
1111 
1112 		mutex_exit(&curproc->p_lock);
1113 		mutex_exit(&pidlock);
1114 		mutex_exit(&cpu_lock);
1115 		pool_unlock();
1116 	}
1117 
1118 	if (zio_taskq_sysdc) {
1119 		sysdc_thread_enter(curthread, 100, 0);
1120 	}
1121 
1122 	spa->spa_proc = curproc;
1123 	spa->spa_did = curthread->t_did;
1124 
1125 	spa_create_zio_taskqs(spa);
1126 
1127 	mutex_enter(&spa->spa_proc_lock);
1128 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1129 
1130 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1131 	cv_broadcast(&spa->spa_proc_cv);
1132 
1133 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1134 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1135 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1136 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1137 
1138 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1139 	spa->spa_proc_state = SPA_PROC_GONE;
1140 	spa->spa_proc = &p0;
1141 	cv_broadcast(&spa->spa_proc_cv);
1142 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1143 
1144 	mutex_enter(&curproc->p_lock);
1145 	lwp_exit();
1146 }
1147 #endif
1148 
1149 /*
1150  * Activate an uninitialized pool.
1151  */
1152 static void
spa_activate(spa_t * spa,int mode)1153 spa_activate(spa_t *spa, int mode)
1154 {
1155 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1156 
1157 	spa->spa_state = POOL_STATE_ACTIVE;
1158 	spa->spa_mode = mode;
1159 
1160 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1161 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1162 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1163 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1164 
1165 	/* Try to create a covering process */
1166 	mutex_enter(&spa->spa_proc_lock);
1167 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1168 	ASSERT(spa->spa_proc == &p0);
1169 	spa->spa_did = 0;
1170 
1171 	/* Only create a process if we're going to be around a while. */
1172 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1173 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1174 		    NULL, 0) == 0) {
1175 			spa->spa_proc_state = SPA_PROC_CREATED;
1176 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1177 				cv_wait(&spa->spa_proc_cv,
1178 				    &spa->spa_proc_lock);
1179 			}
1180 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1181 			ASSERT(spa->spa_proc != &p0);
1182 			ASSERT(spa->spa_did != 0);
1183 		} else {
1184 #ifdef _KERNEL
1185 			cmn_err(CE_WARN,
1186 			    "Couldn't create process for zfs pool \"%s\"\n",
1187 			    spa->spa_name);
1188 #endif
1189 		}
1190 	}
1191 	mutex_exit(&spa->spa_proc_lock);
1192 
1193 	/* If we didn't create a process, we need to create our taskqs. */
1194 	if (spa->spa_proc == &p0) {
1195 		spa_create_zio_taskqs(spa);
1196 	}
1197 
1198 	for (size_t i = 0; i < TXG_SIZE; i++) {
1199 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1200 		    ZIO_FLAG_CANFAIL);
1201 	}
1202 
1203 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1204 	    offsetof(vdev_t, vdev_config_dirty_node));
1205 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1206 	    offsetof(objset_t, os_evicting_node));
1207 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1208 	    offsetof(vdev_t, vdev_state_dirty_node));
1209 
1210 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1211 	    offsetof(struct vdev, vdev_txg_node));
1212 
1213 	avl_create(&spa->spa_errlist_scrub,
1214 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1215 	    offsetof(spa_error_entry_t, se_avl));
1216 	avl_create(&spa->spa_errlist_last,
1217 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1218 	    offsetof(spa_error_entry_t, se_avl));
1219 
1220 	spa_keystore_init(&spa->spa_keystore);
1221 
1222 	/*
1223 	 * The taskq to upgrade datasets in this pool. Currently used by
1224 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1225 	 */
1226 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1227 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1228 }
1229 
1230 /*
1231  * Opposite of spa_activate().
1232  */
1233 static void
spa_deactivate(spa_t * spa)1234 spa_deactivate(spa_t *spa)
1235 {
1236 	ASSERT(spa->spa_sync_on == B_FALSE);
1237 	ASSERT(spa->spa_dsl_pool == NULL);
1238 	ASSERT(spa->spa_root_vdev == NULL);
1239 	ASSERT(spa->spa_async_zio_root == NULL);
1240 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1241 
1242 	spa_evicting_os_wait(spa);
1243 
1244 	if (spa->spa_upgrade_taskq) {
1245 		taskq_destroy(spa->spa_upgrade_taskq);
1246 		spa->spa_upgrade_taskq = NULL;
1247 	}
1248 
1249 	txg_list_destroy(&spa->spa_vdev_txg_list);
1250 
1251 	list_destroy(&spa->spa_config_dirty_list);
1252 	list_destroy(&spa->spa_evicting_os_list);
1253 	list_destroy(&spa->spa_state_dirty_list);
1254 
1255 	for (int t = 0; t < ZIO_TYPES; t++) {
1256 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1257 			spa_taskqs_fini(spa, t, q);
1258 		}
1259 	}
1260 
1261 	for (size_t i = 0; i < TXG_SIZE; i++) {
1262 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1263 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1264 		spa->spa_txg_zio[i] = NULL;
1265 	}
1266 
1267 	metaslab_class_destroy(spa->spa_normal_class);
1268 	spa->spa_normal_class = NULL;
1269 
1270 	metaslab_class_destroy(spa->spa_log_class);
1271 	spa->spa_log_class = NULL;
1272 
1273 	metaslab_class_destroy(spa->spa_special_class);
1274 	spa->spa_special_class = NULL;
1275 
1276 	metaslab_class_destroy(spa->spa_dedup_class);
1277 	spa->spa_dedup_class = NULL;
1278 
1279 	/*
1280 	 * If this was part of an import or the open otherwise failed, we may
1281 	 * still have errors left in the queues.  Empty them just in case.
1282 	 */
1283 	spa_errlog_drain(spa);
1284 	avl_destroy(&spa->spa_errlist_scrub);
1285 	avl_destroy(&spa->spa_errlist_last);
1286 
1287 	spa_keystore_fini(&spa->spa_keystore);
1288 
1289 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1290 
1291 	mutex_enter(&spa->spa_proc_lock);
1292 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1293 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1294 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1295 		cv_broadcast(&spa->spa_proc_cv);
1296 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1297 			ASSERT(spa->spa_proc != &p0);
1298 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1299 		}
1300 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1301 		spa->spa_proc_state = SPA_PROC_NONE;
1302 	}
1303 	ASSERT(spa->spa_proc == &p0);
1304 	mutex_exit(&spa->spa_proc_lock);
1305 
1306 	/*
1307 	 * We want to make sure spa_thread() has actually exited the ZFS
1308 	 * module, so that the module can't be unloaded out from underneath
1309 	 * it.
1310 	 */
1311 	if (spa->spa_did != 0) {
1312 		thread_join(spa->spa_did);
1313 		spa->spa_did = 0;
1314 	}
1315 }
1316 
1317 /*
1318  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1319  * will create all the necessary vdevs in the appropriate layout, with each vdev
1320  * in the CLOSED state.  This will prep the pool before open/creation/import.
1321  * All vdev validation is done by the vdev_alloc() routine.
1322  */
1323 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1324 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1325     uint_t id, int atype)
1326 {
1327 	nvlist_t **child;
1328 	uint_t children;
1329 	int error;
1330 
1331 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1332 		return (error);
1333 
1334 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1335 		return (0);
1336 
1337 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1338 	    &child, &children);
1339 
1340 	if (error == ENOENT)
1341 		return (0);
1342 
1343 	if (error) {
1344 		vdev_free(*vdp);
1345 		*vdp = NULL;
1346 		return (SET_ERROR(EINVAL));
1347 	}
1348 
1349 	for (int c = 0; c < children; c++) {
1350 		vdev_t *vd;
1351 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1352 		    atype)) != 0) {
1353 			vdev_free(*vdp);
1354 			*vdp = NULL;
1355 			return (error);
1356 		}
1357 	}
1358 
1359 	ASSERT(*vdp != NULL);
1360 
1361 	return (0);
1362 }
1363 
1364 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1365 spa_should_flush_logs_on_unload(spa_t *spa)
1366 {
1367 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1368 		return (B_FALSE);
1369 
1370 	if (!spa_writeable(spa))
1371 		return (B_FALSE);
1372 
1373 	if (!spa->spa_sync_on)
1374 		return (B_FALSE);
1375 
1376 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1377 		return (B_FALSE);
1378 
1379 	if (zfs_keep_log_spacemaps_at_export)
1380 		return (B_FALSE);
1381 
1382 	return (B_TRUE);
1383 }
1384 
1385 /*
1386  * Opens a transaction that will set the flag that will instruct
1387  * spa_sync to attempt to flush all the metaslabs for that txg.
1388  */
1389 static void
spa_unload_log_sm_flush_all(spa_t * spa)1390 spa_unload_log_sm_flush_all(spa_t *spa)
1391 {
1392 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1393 
1394 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1395 
1396 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1397 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1398 
1399 	dmu_tx_commit(tx);
1400 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1401 }
1402 
1403 static void
spa_unload_log_sm_metadata(spa_t * spa)1404 spa_unload_log_sm_metadata(spa_t *spa)
1405 {
1406 	void *cookie = NULL;
1407 	spa_log_sm_t *sls;
1408 
1409 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1410 	    &cookie)) != NULL) {
1411 		VERIFY0(sls->sls_mscount);
1412 		kmem_free(sls, sizeof (spa_log_sm_t));
1413 	}
1414 
1415 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1416 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1417 		VERIFY0(e->lse_mscount);
1418 		list_remove(&spa->spa_log_summary, e);
1419 		kmem_free(e, sizeof (log_summary_entry_t));
1420 	}
1421 
1422 	spa->spa_unflushed_stats.sus_nblocks = 0;
1423 	spa->spa_unflushed_stats.sus_memused = 0;
1424 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1425 }
1426 
1427 /*
1428  * Opposite of spa_load().
1429  */
1430 static void
spa_unload(spa_t * spa)1431 spa_unload(spa_t *spa)
1432 {
1433 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1434 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1435 
1436 	spa_import_progress_remove(spa);
1437 	spa_load_note(spa, "UNLOADING");
1438 
1439 	/*
1440 	 * If the log space map feature is enabled and the pool is getting
1441 	 * exported (but not destroyed), we want to spend some time flushing
1442 	 * as many metaslabs as we can in an attempt to destroy log space
1443 	 * maps and save import time.
1444 	 */
1445 	if (spa_should_flush_logs_on_unload(spa))
1446 		spa_unload_log_sm_flush_all(spa);
1447 
1448 	/*
1449 	 * Stop async tasks.
1450 	 */
1451 	spa_async_suspend(spa);
1452 
1453 	if (spa->spa_root_vdev) {
1454 		vdev_t *root_vdev = spa->spa_root_vdev;
1455 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1456 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1457 		vdev_autotrim_stop_all(spa);
1458 	}
1459 
1460 	/*
1461 	 * Stop syncing.
1462 	 */
1463 	if (spa->spa_sync_on) {
1464 		txg_sync_stop(spa->spa_dsl_pool);
1465 		spa->spa_sync_on = B_FALSE;
1466 	}
1467 
1468 	/*
1469 	 * This ensures that there is no async metaslab prefetching
1470 	 * while we attempt to unload the spa.
1471 	 */
1472 	if (spa->spa_root_vdev != NULL) {
1473 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1474 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1475 			if (vc->vdev_mg != NULL)
1476 				taskq_wait(vc->vdev_mg->mg_taskq);
1477 		}
1478 	}
1479 
1480 	if (spa->spa_mmp.mmp_thread)
1481 		mmp_thread_stop(spa);
1482 
1483 	/*
1484 	 * Wait for any outstanding async I/O to complete.
1485 	 */
1486 	if (spa->spa_async_zio_root != NULL) {
1487 		for (int i = 0; i < max_ncpus; i++)
1488 			(void) zio_wait(spa->spa_async_zio_root[i]);
1489 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1490 		spa->spa_async_zio_root = NULL;
1491 	}
1492 
1493 	if (spa->spa_vdev_removal != NULL) {
1494 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1495 		spa->spa_vdev_removal = NULL;
1496 	}
1497 
1498 	if (spa->spa_condense_zthr != NULL) {
1499 		zthr_destroy(spa->spa_condense_zthr);
1500 		spa->spa_condense_zthr = NULL;
1501 	}
1502 
1503 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1504 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1505 		spa->spa_checkpoint_discard_zthr = NULL;
1506 	}
1507 
1508 	spa_condense_fini(spa);
1509 
1510 	bpobj_close(&spa->spa_deferred_bpobj);
1511 
1512 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1513 
1514 	/*
1515 	 * Close all vdevs.
1516 	 */
1517 	if (spa->spa_root_vdev)
1518 		vdev_free(spa->spa_root_vdev);
1519 	ASSERT(spa->spa_root_vdev == NULL);
1520 
1521 	/*
1522 	 * Close the dsl pool.
1523 	 */
1524 	if (spa->spa_dsl_pool) {
1525 		dsl_pool_close(spa->spa_dsl_pool);
1526 		spa->spa_dsl_pool = NULL;
1527 		spa->spa_meta_objset = NULL;
1528 	}
1529 
1530 	ddt_unload(spa);
1531 	spa_unload_log_sm_metadata(spa);
1532 
1533 	/*
1534 	 * Drop and purge level 2 cache
1535 	 */
1536 	spa_l2cache_drop(spa);
1537 
1538 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1539 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1540 	if (spa->spa_spares.sav_vdevs) {
1541 		kmem_free(spa->spa_spares.sav_vdevs,
1542 		    spa->spa_spares.sav_count * sizeof (void *));
1543 		spa->spa_spares.sav_vdevs = NULL;
1544 	}
1545 	if (spa->spa_spares.sav_config) {
1546 		nvlist_free(spa->spa_spares.sav_config);
1547 		spa->spa_spares.sav_config = NULL;
1548 	}
1549 	spa->spa_spares.sav_count = 0;
1550 
1551 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1552 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1553 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1554 	}
1555 	if (spa->spa_l2cache.sav_vdevs) {
1556 		kmem_free(spa->spa_l2cache.sav_vdevs,
1557 		    spa->spa_l2cache.sav_count * sizeof (void *));
1558 		spa->spa_l2cache.sav_vdevs = NULL;
1559 	}
1560 	if (spa->spa_l2cache.sav_config) {
1561 		nvlist_free(spa->spa_l2cache.sav_config);
1562 		spa->spa_l2cache.sav_config = NULL;
1563 	}
1564 	spa->spa_l2cache.sav_count = 0;
1565 
1566 	spa->spa_async_suspended = 0;
1567 
1568 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1569 
1570 	if (spa->spa_comment != NULL) {
1571 		spa_strfree(spa->spa_comment);
1572 		spa->spa_comment = NULL;
1573 	}
1574 
1575 	spa_config_exit(spa, SCL_ALL, spa);
1576 }
1577 
1578 /*
1579  * Load (or re-load) the current list of vdevs describing the active spares for
1580  * this pool.  When this is called, we have some form of basic information in
1581  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1582  * then re-generate a more complete list including status information.
1583  */
1584 void
spa_load_spares(spa_t * spa)1585 spa_load_spares(spa_t *spa)
1586 {
1587 	nvlist_t **spares;
1588 	uint_t nspares;
1589 	int i;
1590 	vdev_t *vd, *tvd;
1591 
1592 #ifndef _KERNEL
1593 	/*
1594 	 * zdb opens both the current state of the pool and the
1595 	 * checkpointed state (if present), with a different spa_t.
1596 	 *
1597 	 * As spare vdevs are shared among open pools, we skip loading
1598 	 * them when we load the checkpointed state of the pool.
1599 	 */
1600 	if (!spa_writeable(spa))
1601 		return;
1602 #endif
1603 
1604 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1605 
1606 	/*
1607 	 * First, close and free any existing spare vdevs.
1608 	 */
1609 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1610 		vd = spa->spa_spares.sav_vdevs[i];
1611 
1612 		/* Undo the call to spa_activate() below */
1613 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1614 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1615 			spa_spare_remove(tvd);
1616 		vdev_close(vd);
1617 		vdev_free(vd);
1618 	}
1619 
1620 	if (spa->spa_spares.sav_vdevs)
1621 		kmem_free(spa->spa_spares.sav_vdevs,
1622 		    spa->spa_spares.sav_count * sizeof (void *));
1623 
1624 	if (spa->spa_spares.sav_config == NULL)
1625 		nspares = 0;
1626 	else
1627 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1628 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1629 
1630 	spa->spa_spares.sav_count = (int)nspares;
1631 	spa->spa_spares.sav_vdevs = NULL;
1632 
1633 	if (nspares == 0)
1634 		return;
1635 
1636 	/*
1637 	 * Construct the array of vdevs, opening them to get status in the
1638 	 * process.   For each spare, there is potentially two different vdev_t
1639 	 * structures associated with it: one in the list of spares (used only
1640 	 * for basic validation purposes) and one in the active vdev
1641 	 * configuration (if it's spared in).  During this phase we open and
1642 	 * validate each vdev on the spare list.  If the vdev also exists in the
1643 	 * active configuration, then we also mark this vdev as an active spare.
1644 	 */
1645 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1646 	    KM_SLEEP);
1647 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1648 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1649 		    VDEV_ALLOC_SPARE) == 0);
1650 		ASSERT(vd != NULL);
1651 
1652 		spa->spa_spares.sav_vdevs[i] = vd;
1653 
1654 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1655 		    B_FALSE)) != NULL) {
1656 			if (!tvd->vdev_isspare)
1657 				spa_spare_add(tvd);
1658 
1659 			/*
1660 			 * We only mark the spare active if we were successfully
1661 			 * able to load the vdev.  Otherwise, importing a pool
1662 			 * with a bad active spare would result in strange
1663 			 * behavior, because multiple pool would think the spare
1664 			 * is actively in use.
1665 			 *
1666 			 * There is a vulnerability here to an equally bizarre
1667 			 * circumstance, where a dead active spare is later
1668 			 * brought back to life (onlined or otherwise).  Given
1669 			 * the rarity of this scenario, and the extra complexity
1670 			 * it adds, we ignore the possibility.
1671 			 */
1672 			if (!vdev_is_dead(tvd))
1673 				spa_spare_activate(tvd);
1674 		}
1675 
1676 		vd->vdev_top = vd;
1677 		vd->vdev_aux = &spa->spa_spares;
1678 
1679 		if (vdev_open(vd) != 0)
1680 			continue;
1681 
1682 		if (vdev_validate_aux(vd) == 0)
1683 			spa_spare_add(vd);
1684 	}
1685 
1686 	/*
1687 	 * Recompute the stashed list of spares, with status information
1688 	 * this time.
1689 	 */
1690 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1691 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1692 
1693 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1694 	    KM_SLEEP);
1695 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1696 		spares[i] = vdev_config_generate(spa,
1697 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1698 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1699 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1700 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1701 		nvlist_free(spares[i]);
1702 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1703 }
1704 
1705 /*
1706  * Load (or re-load) the current list of vdevs describing the active l2cache for
1707  * this pool.  When this is called, we have some form of basic information in
1708  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1709  * then re-generate a more complete list including status information.
1710  * Devices which are already active have their details maintained, and are
1711  * not re-opened.
1712  */
1713 void
spa_load_l2cache(spa_t * spa)1714 spa_load_l2cache(spa_t *spa)
1715 {
1716 	nvlist_t **l2cache;
1717 	uint_t nl2cache;
1718 	int i, j, oldnvdevs;
1719 	uint64_t guid;
1720 	vdev_t *vd, **oldvdevs, **newvdevs;
1721 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1722 
1723 #ifndef _KERNEL
1724 	/*
1725 	 * zdb opens both the current state of the pool and the
1726 	 * checkpointed state (if present), with a different spa_t.
1727 	 *
1728 	 * As L2 caches are part of the ARC which is shared among open
1729 	 * pools, we skip loading them when we load the checkpointed
1730 	 * state of the pool.
1731 	 */
1732 	if (!spa_writeable(spa))
1733 		return;
1734 #endif
1735 
1736 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1737 
1738 	nl2cache = 0;
1739 	newvdevs = NULL;
1740 	if (sav->sav_config != NULL) {
1741 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1742 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1743 		if (nl2cache > 0) {
1744 			newvdevs = kmem_alloc(
1745 			    nl2cache * sizeof (void *), KM_SLEEP);
1746 		}
1747 	}
1748 
1749 	oldvdevs = sav->sav_vdevs;
1750 	oldnvdevs = sav->sav_count;
1751 	sav->sav_vdevs = NULL;
1752 	sav->sav_count = 0;
1753 
1754 	/*
1755 	 * Process new nvlist of vdevs.
1756 	 */
1757 	for (i = 0; i < nl2cache; i++) {
1758 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1759 		    &guid) == 0);
1760 
1761 		newvdevs[i] = NULL;
1762 		for (j = 0; j < oldnvdevs; j++) {
1763 			vd = oldvdevs[j];
1764 			if (vd != NULL && guid == vd->vdev_guid) {
1765 				/*
1766 				 * Retain previous vdev for add/remove ops.
1767 				 */
1768 				newvdevs[i] = vd;
1769 				oldvdevs[j] = NULL;
1770 				break;
1771 			}
1772 		}
1773 
1774 		if (newvdevs[i] == NULL) {
1775 			/*
1776 			 * Create new vdev
1777 			 */
1778 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1779 			    VDEV_ALLOC_L2CACHE) == 0);
1780 			ASSERT(vd != NULL);
1781 			newvdevs[i] = vd;
1782 
1783 			/*
1784 			 * Commit this vdev as an l2cache device,
1785 			 * even if it fails to open.
1786 			 */
1787 			spa_l2cache_add(vd);
1788 
1789 			vd->vdev_top = vd;
1790 			vd->vdev_aux = sav;
1791 
1792 			spa_l2cache_activate(vd);
1793 
1794 			if (vdev_open(vd) != 0)
1795 				continue;
1796 
1797 			(void) vdev_validate_aux(vd);
1798 
1799 			if (!vdev_is_dead(vd))
1800 				l2arc_add_vdev(spa, vd);
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * Purge vdevs that were dropped
1806 	 */
1807 	for (i = 0; i < oldnvdevs; i++) {
1808 		uint64_t pool;
1809 
1810 		vd = oldvdevs[i];
1811 		if (vd != NULL) {
1812 			ASSERT(vd->vdev_isl2cache);
1813 
1814 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1815 			    pool != 0ULL && l2arc_vdev_present(vd))
1816 				l2arc_remove_vdev(vd);
1817 			vdev_clear_stats(vd);
1818 			vdev_free(vd);
1819 		}
1820 	}
1821 
1822 	if (oldvdevs)
1823 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1824 
1825 	if (sav->sav_config == NULL)
1826 		goto out;
1827 
1828 	sav->sav_vdevs = newvdevs;
1829 	sav->sav_count = (int)nl2cache;
1830 
1831 	/*
1832 	 * Recompute the stashed list of l2cache devices, with status
1833 	 * information this time.
1834 	 */
1835 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1836 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1837 
1838 	l2cache = NULL;
1839 	if (sav->sav_count > 0) {
1840 		l2cache = kmem_alloc(
1841 		    sav->sav_count * sizeof (void *), KM_SLEEP);
1842 	}
1843 	for (i = 0; i < sav->sav_count; i++)
1844 		l2cache[i] = vdev_config_generate(spa,
1845 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1846 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1847 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1848 out:
1849 	for (i = 0; i < sav->sav_count; i++)
1850 		nvlist_free(l2cache[i]);
1851 	if (sav->sav_count)
1852 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1853 }
1854 
1855 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1856 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1857 {
1858 	dmu_buf_t *db;
1859 	char *packed = NULL;
1860 	size_t nvsize = 0;
1861 	int error;
1862 	*value = NULL;
1863 
1864 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1865 	if (error != 0)
1866 		return (error);
1867 
1868 	nvsize = *(uint64_t *)db->db_data;
1869 	dmu_buf_rele(db, FTAG);
1870 
1871 	packed = kmem_alloc(nvsize, KM_SLEEP);
1872 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1873 	    DMU_READ_PREFETCH);
1874 	if (error == 0)
1875 		error = nvlist_unpack(packed, nvsize, value, 0);
1876 	kmem_free(packed, nvsize);
1877 
1878 	return (error);
1879 }
1880 
1881 /*
1882  * Concrete top-level vdevs that are not missing and are not logs. At every
1883  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1884  */
1885 static uint64_t
spa_healthy_core_tvds(spa_t * spa)1886 spa_healthy_core_tvds(spa_t *spa)
1887 {
1888 	vdev_t *rvd = spa->spa_root_vdev;
1889 	uint64_t tvds = 0;
1890 
1891 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1892 		vdev_t *vd = rvd->vdev_child[i];
1893 		if (vd->vdev_islog)
1894 			continue;
1895 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1896 			tvds++;
1897 	}
1898 
1899 	return (tvds);
1900 }
1901 
1902 /*
1903  * Checks to see if the given vdev could not be opened, in which case we post a
1904  * sysevent to notify the autoreplace code that the device has been removed.
1905  */
1906 static void
spa_check_removed(vdev_t * vd)1907 spa_check_removed(vdev_t *vd)
1908 {
1909 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1910 		spa_check_removed(vd->vdev_child[c]);
1911 
1912 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1913 	    vdev_is_concrete(vd)) {
1914 		zfs_post_autoreplace(vd->vdev_spa, vd);
1915 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1916 	}
1917 }
1918 
1919 static int
spa_check_for_missing_logs(spa_t * spa)1920 spa_check_for_missing_logs(spa_t *spa)
1921 {
1922 	vdev_t *rvd = spa->spa_root_vdev;
1923 
1924 	/*
1925 	 * If we're doing a normal import, then build up any additional
1926 	 * diagnostic information about missing log devices.
1927 	 * We'll pass this up to the user for further processing.
1928 	 */
1929 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1930 		nvlist_t **child, *nv;
1931 		uint64_t idx = 0;
1932 
1933 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1934 		    KM_SLEEP);
1935 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1936 
1937 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1938 			vdev_t *tvd = rvd->vdev_child[c];
1939 
1940 			/*
1941 			 * We consider a device as missing only if it failed
1942 			 * to open (i.e. offline or faulted is not considered
1943 			 * as missing).
1944 			 */
1945 			if (tvd->vdev_islog &&
1946 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1947 				child[idx++] = vdev_config_generate(spa, tvd,
1948 				    B_FALSE, VDEV_CONFIG_MISSING);
1949 			}
1950 		}
1951 
1952 		if (idx > 0) {
1953 			fnvlist_add_nvlist_array(nv,
1954 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1955 			fnvlist_add_nvlist(spa->spa_load_info,
1956 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1957 
1958 			for (uint64_t i = 0; i < idx; i++)
1959 				nvlist_free(child[i]);
1960 		}
1961 		nvlist_free(nv);
1962 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1963 
1964 		if (idx > 0) {
1965 			spa_load_failed(spa, "some log devices are missing");
1966 			vdev_dbgmsg_print_tree(rvd, 2);
1967 			return (SET_ERROR(ENXIO));
1968 		}
1969 	} else {
1970 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1971 			vdev_t *tvd = rvd->vdev_child[c];
1972 
1973 			if (tvd->vdev_islog &&
1974 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1975 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1976 				spa_load_note(spa, "some log devices are "
1977 				    "missing, ZIL is dropped.");
1978 				vdev_dbgmsg_print_tree(rvd, 2);
1979 				break;
1980 			}
1981 		}
1982 	}
1983 
1984 	return (0);
1985 }
1986 
1987 /*
1988  * Check for missing log devices
1989  */
1990 static boolean_t
spa_check_logs(spa_t * spa)1991 spa_check_logs(spa_t *spa)
1992 {
1993 	boolean_t rv = B_FALSE;
1994 	dsl_pool_t *dp = spa_get_dsl(spa);
1995 
1996 	switch (spa->spa_log_state) {
1997 	case SPA_LOG_MISSING:
1998 		/* need to recheck in case slog has been restored */
1999 	case SPA_LOG_UNKNOWN:
2000 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2001 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2002 		if (rv)
2003 			spa_set_log_state(spa, SPA_LOG_MISSING);
2004 		break;
2005 	}
2006 	return (rv);
2007 }
2008 
2009 static boolean_t
spa_passivate_log(spa_t * spa)2010 spa_passivate_log(spa_t *spa)
2011 {
2012 	vdev_t *rvd = spa->spa_root_vdev;
2013 	boolean_t slog_found = B_FALSE;
2014 
2015 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2016 
2017 	if (!spa_has_slogs(spa))
2018 		return (B_FALSE);
2019 
2020 	for (int c = 0; c < rvd->vdev_children; c++) {
2021 		vdev_t *tvd = rvd->vdev_child[c];
2022 		metaslab_group_t *mg = tvd->vdev_mg;
2023 
2024 		if (tvd->vdev_islog) {
2025 			metaslab_group_passivate(mg);
2026 			slog_found = B_TRUE;
2027 		}
2028 	}
2029 
2030 	return (slog_found);
2031 }
2032 
2033 static void
spa_activate_log(spa_t * spa)2034 spa_activate_log(spa_t *spa)
2035 {
2036 	vdev_t *rvd = spa->spa_root_vdev;
2037 
2038 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2039 
2040 	for (int c = 0; c < rvd->vdev_children; c++) {
2041 		vdev_t *tvd = rvd->vdev_child[c];
2042 		metaslab_group_t *mg = tvd->vdev_mg;
2043 
2044 		if (tvd->vdev_islog)
2045 			metaslab_group_activate(mg);
2046 	}
2047 }
2048 
2049 int
spa_reset_logs(spa_t * spa)2050 spa_reset_logs(spa_t *spa)
2051 {
2052 	int error;
2053 
2054 	error = dmu_objset_find(spa_name(spa), zil_reset,
2055 	    NULL, DS_FIND_CHILDREN);
2056 	if (error == 0) {
2057 		/*
2058 		 * We successfully offlined the log device, sync out the
2059 		 * current txg so that the "stubby" block can be removed
2060 		 * by zil_sync().
2061 		 */
2062 		txg_wait_synced(spa->spa_dsl_pool, 0);
2063 	}
2064 	return (error);
2065 }
2066 
2067 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2068 spa_aux_check_removed(spa_aux_vdev_t *sav)
2069 {
2070 	for (int i = 0; i < sav->sav_count; i++)
2071 		spa_check_removed(sav->sav_vdevs[i]);
2072 }
2073 
2074 void
spa_claim_notify(zio_t * zio)2075 spa_claim_notify(zio_t *zio)
2076 {
2077 	spa_t *spa = zio->io_spa;
2078 
2079 	if (zio->io_error)
2080 		return;
2081 
2082 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2083 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2084 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2085 	mutex_exit(&spa->spa_props_lock);
2086 }
2087 
2088 typedef struct spa_load_error {
2089 	uint64_t	sle_meta_count;
2090 	uint64_t	sle_data_count;
2091 } spa_load_error_t;
2092 
2093 static void
spa_load_verify_done(zio_t * zio)2094 spa_load_verify_done(zio_t *zio)
2095 {
2096 	blkptr_t *bp = zio->io_bp;
2097 	spa_load_error_t *sle = zio->io_private;
2098 	dmu_object_type_t type = BP_GET_TYPE(bp);
2099 	int error = zio->io_error;
2100 	spa_t *spa = zio->io_spa;
2101 
2102 	abd_free(zio->io_abd);
2103 	if (error) {
2104 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2105 		    type != DMU_OT_INTENT_LOG)
2106 			atomic_inc_64(&sle->sle_meta_count);
2107 		else
2108 			atomic_inc_64(&sle->sle_data_count);
2109 	}
2110 
2111 	mutex_enter(&spa->spa_scrub_lock);
2112 	spa->spa_load_verify_ios--;
2113 	cv_broadcast(&spa->spa_scrub_io_cv);
2114 	mutex_exit(&spa->spa_scrub_lock);
2115 }
2116 
2117 /*
2118  * Maximum number of concurrent scrub i/os to create while verifying
2119  * a pool while importing it.
2120  */
2121 int spa_load_verify_maxinflight = 10000;
2122 boolean_t spa_load_verify_metadata = B_TRUE;
2123 boolean_t spa_load_verify_data = B_TRUE;
2124 
2125 /*ARGSUSED*/
2126 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2127 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2128     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2129 {
2130 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2131 		return (0);
2132 	/*
2133 	 * Note: normally this routine will not be called if
2134 	 * spa_load_verify_metadata is not set.  However, it may be useful
2135 	 * to manually set the flag after the traversal has begun.
2136 	 */
2137 	if (!spa_load_verify_metadata)
2138 		return (0);
2139 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2140 		return (0);
2141 
2142 	zio_t *rio = arg;
2143 	size_t size = BP_GET_PSIZE(bp);
2144 
2145 	mutex_enter(&spa->spa_scrub_lock);
2146 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2147 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2148 	spa->spa_load_verify_ios++;
2149 	mutex_exit(&spa->spa_scrub_lock);
2150 
2151 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2152 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2153 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2154 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2155 	return (0);
2156 }
2157 
2158 /* ARGSUSED */
2159 int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2160 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2161 {
2162 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2163 		return (SET_ERROR(ENAMETOOLONG));
2164 
2165 	return (0);
2166 }
2167 
2168 static int
spa_load_verify(spa_t * spa)2169 spa_load_verify(spa_t *spa)
2170 {
2171 	zio_t *rio;
2172 	spa_load_error_t sle = { 0 };
2173 	zpool_load_policy_t policy;
2174 	boolean_t verify_ok = B_FALSE;
2175 	int error = 0;
2176 
2177 	zpool_get_load_policy(spa->spa_config, &policy);
2178 
2179 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2180 		return (0);
2181 
2182 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2183 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2184 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2185 	    DS_FIND_CHILDREN);
2186 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2187 	if (error != 0)
2188 		return (error);
2189 
2190 	rio = zio_root(spa, NULL, &sle,
2191 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2192 
2193 	if (spa_load_verify_metadata) {
2194 		if (spa->spa_extreme_rewind) {
2195 			spa_load_note(spa, "performing a complete scan of the "
2196 			    "pool since extreme rewind is on. This may take "
2197 			    "a very long time.\n  (spa_load_verify_data=%u, "
2198 			    "spa_load_verify_metadata=%u)",
2199 			    spa_load_verify_data, spa_load_verify_metadata);
2200 		}
2201 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2202 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2203 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2204 	}
2205 
2206 	(void) zio_wait(rio);
2207 
2208 	spa->spa_load_meta_errors = sle.sle_meta_count;
2209 	spa->spa_load_data_errors = sle.sle_data_count;
2210 
2211 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2212 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2213 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2214 		    (u_longlong_t)sle.sle_data_count);
2215 	}
2216 
2217 	if (spa_load_verify_dryrun ||
2218 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2219 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2220 		int64_t loss = 0;
2221 
2222 		verify_ok = B_TRUE;
2223 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2224 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2225 
2226 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2227 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2228 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2229 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2230 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2231 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2232 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2233 	} else {
2234 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2235 	}
2236 
2237 	if (spa_load_verify_dryrun)
2238 		return (0);
2239 
2240 	if (error) {
2241 		if (error != ENXIO && error != EIO)
2242 			error = SET_ERROR(EIO);
2243 		return (error);
2244 	}
2245 
2246 	return (verify_ok ? 0 : EIO);
2247 }
2248 
2249 /*
2250  * Find a value in the pool props object.
2251  */
2252 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2253 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2254 {
2255 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2256 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2257 }
2258 
2259 /*
2260  * Find a value in the pool directory object.
2261  */
2262 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2263 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2264 {
2265 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2266 	    name, sizeof (uint64_t), 1, val);
2267 
2268 	if (error != 0 && (error != ENOENT || log_enoent)) {
2269 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2270 		    "[error=%d]", name, error);
2271 	}
2272 
2273 	return (error);
2274 }
2275 
2276 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2277 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2278 {
2279 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2280 	return (SET_ERROR(err));
2281 }
2282 
2283 static void
spa_spawn_aux_threads(spa_t * spa)2284 spa_spawn_aux_threads(spa_t *spa)
2285 {
2286 	ASSERT(spa_writeable(spa));
2287 
2288 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2289 
2290 	spa_start_indirect_condensing_thread(spa);
2291 
2292 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2293 	spa->spa_checkpoint_discard_zthr =
2294 	    zthr_create(spa_checkpoint_discard_thread_check,
2295 	    spa_checkpoint_discard_thread, spa);
2296 }
2297 
2298 /*
2299  * Fix up config after a partly-completed split.  This is done with the
2300  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2301  * pool have that entry in their config, but only the splitting one contains
2302  * a list of all the guids of the vdevs that are being split off.
2303  *
2304  * This function determines what to do with that list: either rejoin
2305  * all the disks to the pool, or complete the splitting process.  To attempt
2306  * the rejoin, each disk that is offlined is marked online again, and
2307  * we do a reopen() call.  If the vdev label for every disk that was
2308  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2309  * then we call vdev_split() on each disk, and complete the split.
2310  *
2311  * Otherwise we leave the config alone, with all the vdevs in place in
2312  * the original pool.
2313  */
2314 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2315 spa_try_repair(spa_t *spa, nvlist_t *config)
2316 {
2317 	uint_t extracted;
2318 	uint64_t *glist;
2319 	uint_t i, gcount;
2320 	nvlist_t *nvl;
2321 	vdev_t **vd;
2322 	boolean_t attempt_reopen;
2323 
2324 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2325 		return;
2326 
2327 	/* check that the config is complete */
2328 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2329 	    &glist, &gcount) != 0)
2330 		return;
2331 
2332 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2333 
2334 	/* attempt to online all the vdevs & validate */
2335 	attempt_reopen = B_TRUE;
2336 	for (i = 0; i < gcount; i++) {
2337 		if (glist[i] == 0)	/* vdev is hole */
2338 			continue;
2339 
2340 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2341 		if (vd[i] == NULL) {
2342 			/*
2343 			 * Don't bother attempting to reopen the disks;
2344 			 * just do the split.
2345 			 */
2346 			attempt_reopen = B_FALSE;
2347 		} else {
2348 			/* attempt to re-online it */
2349 			vd[i]->vdev_offline = B_FALSE;
2350 		}
2351 	}
2352 
2353 	if (attempt_reopen) {
2354 		vdev_reopen(spa->spa_root_vdev);
2355 
2356 		/* check each device to see what state it's in */
2357 		for (extracted = 0, i = 0; i < gcount; i++) {
2358 			if (vd[i] != NULL &&
2359 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2360 				break;
2361 			++extracted;
2362 		}
2363 	}
2364 
2365 	/*
2366 	 * If every disk has been moved to the new pool, or if we never
2367 	 * even attempted to look at them, then we split them off for
2368 	 * good.
2369 	 */
2370 	if (!attempt_reopen || gcount == extracted) {
2371 		for (i = 0; i < gcount; i++)
2372 			if (vd[i] != NULL)
2373 				vdev_split(vd[i]);
2374 		vdev_reopen(spa->spa_root_vdev);
2375 	}
2376 
2377 	kmem_free(vd, gcount * sizeof (vdev_t *));
2378 }
2379 
2380 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)2381 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2382 {
2383 	char *ereport = FM_EREPORT_ZFS_POOL;
2384 	int error;
2385 
2386 	spa->spa_load_state = state;
2387 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2388 
2389 	gethrestime(&spa->spa_loaded_ts);
2390 	error = spa_load_impl(spa, type, &ereport);
2391 
2392 	/*
2393 	 * Don't count references from objsets that are already closed
2394 	 * and are making their way through the eviction process.
2395 	 */
2396 	spa_evicting_os_wait(spa);
2397 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2398 	if (error) {
2399 		if (error != EEXIST) {
2400 			spa->spa_loaded_ts.tv_sec = 0;
2401 			spa->spa_loaded_ts.tv_nsec = 0;
2402 		}
2403 		if (error != EBADF) {
2404 			(void) zfs_ereport_post(ereport, spa,
2405 			    NULL, NULL, NULL, 0, 0);
2406 		}
2407 	}
2408 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2409 	spa->spa_ena = 0;
2410 
2411 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2412 
2413 	return (error);
2414 }
2415 
2416 /*
2417  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2418  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2419  * spa's per-vdev ZAP list.
2420  */
2421 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)2422 vdev_count_verify_zaps(vdev_t *vd)
2423 {
2424 	spa_t *spa = vd->vdev_spa;
2425 	uint64_t total = 0;
2426 	if (vd->vdev_top_zap != 0) {
2427 		total++;
2428 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2429 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2430 	}
2431 	if (vd->vdev_leaf_zap != 0) {
2432 		total++;
2433 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2434 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2435 	}
2436 
2437 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2438 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2439 	}
2440 
2441 	return (total);
2442 }
2443 
2444 /*
2445  * Determine whether the activity check is required.
2446  */
2447 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)2448 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2449     nvlist_t *config)
2450 {
2451 	uint64_t state = 0;
2452 	uint64_t hostid = 0;
2453 	uint64_t tryconfig_txg = 0;
2454 	uint64_t tryconfig_timestamp = 0;
2455 	uint16_t tryconfig_mmp_seq = 0;
2456 	nvlist_t *nvinfo;
2457 
2458 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2459 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2460 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2461 		    &tryconfig_txg);
2462 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2463 		    &tryconfig_timestamp);
2464 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2465 		    &tryconfig_mmp_seq);
2466 	}
2467 
2468 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2469 
2470 	/*
2471 	 * Disable the MMP activity check - This is used by zdb which
2472 	 * is intended to be used on potentially active pools.
2473 	 */
2474 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2475 		return (B_FALSE);
2476 
2477 	/*
2478 	 * Skip the activity check when the MMP feature is disabled.
2479 	 */
2480 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2481 		return (B_FALSE);
2482 
2483 	/*
2484 	 * If the tryconfig_ values are nonzero, they are the results of an
2485 	 * earlier tryimport.  If they all match the uberblock we just found,
2486 	 * then the pool has not changed and we return false so we do not test
2487 	 * a second time.
2488 	 */
2489 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2490 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2491 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2492 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2493 		return (B_FALSE);
2494 
2495 	/*
2496 	 * Allow the activity check to be skipped when importing the pool
2497 	 * on the same host which last imported it.  Since the hostid from
2498 	 * configuration may be stale use the one read from the label.
2499 	 */
2500 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2501 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2502 
2503 	if (hostid == spa_get_hostid())
2504 		return (B_FALSE);
2505 
2506 	/*
2507 	 * Skip the activity test when the pool was cleanly exported.
2508 	 */
2509 	if (state != POOL_STATE_ACTIVE)
2510 		return (B_FALSE);
2511 
2512 	return (B_TRUE);
2513 }
2514 
2515 /*
2516  * Nanoseconds the activity check must watch for changes on-disk.
2517  */
2518 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)2519 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2520 {
2521 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2522 	uint64_t multihost_interval = MSEC2NSEC(
2523 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2524 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2525 	    multihost_interval);
2526 
2527 	/*
2528 	 * Local tunables determine a minimum duration except for the case
2529 	 * where we know when the remote host will suspend the pool if MMP
2530 	 * writes do not land.
2531 	 *
2532 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2533 	 * these cases and times.
2534 	 */
2535 
2536 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2537 
2538 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2539 	    MMP_FAIL_INT(ub) > 0) {
2540 
2541 		/* MMP on remote host will suspend pool after failed writes */
2542 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2543 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2544 
2545 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2546 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2547 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2548 		    MMP_INTERVAL(ub), import_intervals);
2549 
2550 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2551 	    MMP_FAIL_INT(ub) == 0) {
2552 
2553 		/* MMP on remote host will never suspend pool */
2554 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2555 		    ub->ub_mmp_delay) * import_intervals);
2556 
2557 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2558 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2559 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2560 		    ub->ub_mmp_delay, import_intervals);
2561 
2562 	} else if (MMP_VALID(ub)) {
2563 		/*
2564 		 * zfs-0.7 compatability case
2565 		 */
2566 
2567 		import_delay = MAX(import_delay, (multihost_interval +
2568 		    ub->ub_mmp_delay) * import_intervals);
2569 
2570 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2571 		    "import_intervals=%u leaves=%u", import_delay,
2572 		    ub->ub_mmp_delay, import_intervals,
2573 		    vdev_count_leaves(spa));
2574 	} else {
2575 		/* Using local tunings is the only reasonable option */
2576 		zfs_dbgmsg("pool last imported on non-MMP aware "
2577 		    "host using import_delay=%llu multihost_interval=%llu "
2578 		    "import_intervals=%u", import_delay, multihost_interval,
2579 		    import_intervals);
2580 	}
2581 
2582 	return (import_delay);
2583 }
2584 
2585 /*
2586  * Perform the import activity check.  If the user canceled the import or
2587  * we detected activity then fail.
2588  */
2589 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config)2590 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2591 {
2592 	uint64_t txg = ub->ub_txg;
2593 	uint64_t timestamp = ub->ub_timestamp;
2594 	uint64_t mmp_config = ub->ub_mmp_config;
2595 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2596 	uint64_t import_delay;
2597 	hrtime_t import_expire;
2598 	nvlist_t *mmp_label = NULL;
2599 	vdev_t *rvd = spa->spa_root_vdev;
2600 	kcondvar_t cv;
2601 	kmutex_t mtx;
2602 	int error = 0;
2603 
2604 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2605 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2606 	mutex_enter(&mtx);
2607 
2608 	/*
2609 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2610 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2611 	 * the pool is known to be active on another host.
2612 	 *
2613 	 * Otherwise, the pool might be in use on another host.  Check for
2614 	 * changes in the uberblocks on disk if necessary.
2615 	 */
2616 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2617 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2618 		    ZPOOL_CONFIG_LOAD_INFO);
2619 
2620 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2621 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2622 			vdev_uberblock_load(rvd, ub, &mmp_label);
2623 			error = SET_ERROR(EREMOTEIO);
2624 			goto out;
2625 		}
2626 	}
2627 
2628 	import_delay = spa_activity_check_duration(spa, ub);
2629 
2630 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2631 	import_delay += import_delay * spa_get_random(250) / 1000;
2632 
2633 	import_expire = gethrtime() + import_delay;
2634 
2635 	while (gethrtime() < import_expire) {
2636 		(void) spa_import_progress_set_mmp_check(spa,
2637 		    NSEC2SEC(import_expire - gethrtime()));
2638 
2639 		vdev_uberblock_load(rvd, ub, &mmp_label);
2640 
2641 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2642 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2643 			zfs_dbgmsg("multihost activity detected "
2644 			    "txg %llu ub_txg  %llu "
2645 			    "timestamp %llu ub_timestamp  %llu "
2646 			    "mmp_config %#llx ub_mmp_config %#llx",
2647 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2648 			    mmp_config, ub->ub_mmp_config);
2649 
2650 			error = SET_ERROR(EREMOTEIO);
2651 			break;
2652 		}
2653 
2654 		if (mmp_label) {
2655 			nvlist_free(mmp_label);
2656 			mmp_label = NULL;
2657 		}
2658 
2659 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2660 		if (error != -1) {
2661 			error = SET_ERROR(EINTR);
2662 			break;
2663 		}
2664 		error = 0;
2665 	}
2666 
2667 out:
2668 	mutex_exit(&mtx);
2669 	mutex_destroy(&mtx);
2670 	cv_destroy(&cv);
2671 
2672 	/*
2673 	 * If the pool is determined to be active store the status in the
2674 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2675 	 * available from configuration read from disk store them as well.
2676 	 * This allows 'zpool import' to generate a more useful message.
2677 	 *
2678 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2679 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2680 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2681 	 */
2682 	if (error == EREMOTEIO) {
2683 		char *hostname = "<unknown>";
2684 		uint64_t hostid = 0;
2685 
2686 		if (mmp_label) {
2687 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2688 				hostname = fnvlist_lookup_string(mmp_label,
2689 				    ZPOOL_CONFIG_HOSTNAME);
2690 				fnvlist_add_string(spa->spa_load_info,
2691 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2692 			}
2693 
2694 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2695 				hostid = fnvlist_lookup_uint64(mmp_label,
2696 				    ZPOOL_CONFIG_HOSTID);
2697 				fnvlist_add_uint64(spa->spa_load_info,
2698 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2699 			}
2700 		}
2701 
2702 		fnvlist_add_uint64(spa->spa_load_info,
2703 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2704 		fnvlist_add_uint64(spa->spa_load_info,
2705 		    ZPOOL_CONFIG_MMP_TXG, 0);
2706 
2707 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2708 	}
2709 
2710 	if (mmp_label)
2711 		nvlist_free(mmp_label);
2712 
2713 	return (error);
2714 }
2715 
2716 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)2717 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2718 {
2719 	uint64_t hostid;
2720 	char *hostname;
2721 	uint64_t myhostid = 0;
2722 
2723 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2724 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2725 		hostname = fnvlist_lookup_string(mos_config,
2726 		    ZPOOL_CONFIG_HOSTNAME);
2727 
2728 		myhostid = zone_get_hostid(NULL);
2729 
2730 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2731 			cmn_err(CE_WARN, "pool '%s' could not be "
2732 			    "loaded as it was last accessed by "
2733 			    "another system (host: %s hostid: 0x%llx). "
2734 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2735 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2736 			spa_load_failed(spa, "hostid verification failed: pool "
2737 			    "last accessed by host: %s (hostid: 0x%llx)",
2738 			    hostname, (u_longlong_t)hostid);
2739 			return (SET_ERROR(EBADF));
2740 		}
2741 	}
2742 
2743 	return (0);
2744 }
2745 
2746 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)2747 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2748 {
2749 	int error = 0;
2750 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2751 	int parse;
2752 	vdev_t *rvd;
2753 	uint64_t pool_guid;
2754 	char *comment;
2755 
2756 	/*
2757 	 * Versioning wasn't explicitly added to the label until later, so if
2758 	 * it's not present treat it as the initial version.
2759 	 */
2760 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2761 	    &spa->spa_ubsync.ub_version) != 0)
2762 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2763 
2764 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2765 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2766 		    ZPOOL_CONFIG_POOL_GUID);
2767 		return (SET_ERROR(EINVAL));
2768 	}
2769 
2770 	/*
2771 	 * If we are doing an import, ensure that the pool is not already
2772 	 * imported by checking if its pool guid already exists in the
2773 	 * spa namespace.
2774 	 *
2775 	 * The only case that we allow an already imported pool to be
2776 	 * imported again, is when the pool is checkpointed and we want to
2777 	 * look at its checkpointed state from userland tools like zdb.
2778 	 */
2779 #ifdef _KERNEL
2780 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2781 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2782 	    spa_guid_exists(pool_guid, 0)) {
2783 #else
2784 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2785 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2786 	    spa_guid_exists(pool_guid, 0) &&
2787 	    !spa_importing_readonly_checkpoint(spa)) {
2788 #endif
2789 		spa_load_failed(spa, "a pool with guid %llu is already open",
2790 		    (u_longlong_t)pool_guid);
2791 		return (SET_ERROR(EEXIST));
2792 	}
2793 
2794 	spa->spa_config_guid = pool_guid;
2795 
2796 	nvlist_free(spa->spa_load_info);
2797 	spa->spa_load_info = fnvlist_alloc();
2798 
2799 	ASSERT(spa->spa_comment == NULL);
2800 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2801 		spa->spa_comment = spa_strdup(comment);
2802 
2803 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2804 	    &spa->spa_config_txg);
2805 
2806 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2807 		spa->spa_config_splitting = fnvlist_dup(nvl);
2808 
2809 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2810 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2811 		    ZPOOL_CONFIG_VDEV_TREE);
2812 		return (SET_ERROR(EINVAL));
2813 	}
2814 
2815 	/*
2816 	 * Create "The Godfather" zio to hold all async IOs
2817 	 */
2818 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2819 	    KM_SLEEP);
2820 	for (int i = 0; i < max_ncpus; i++) {
2821 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2822 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2823 		    ZIO_FLAG_GODFATHER);
2824 	}
2825 
2826 	/*
2827 	 * Parse the configuration into a vdev tree.  We explicitly set the
2828 	 * value that will be returned by spa_version() since parsing the
2829 	 * configuration requires knowing the version number.
2830 	 */
2831 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2832 	parse = (type == SPA_IMPORT_EXISTING ?
2833 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2834 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2835 	spa_config_exit(spa, SCL_ALL, FTAG);
2836 
2837 	if (error != 0) {
2838 		spa_load_failed(spa, "unable to parse config [error=%d]",
2839 		    error);
2840 		return (error);
2841 	}
2842 
2843 	ASSERT(spa->spa_root_vdev == rvd);
2844 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2845 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2846 
2847 	if (type != SPA_IMPORT_ASSEMBLE) {
2848 		ASSERT(spa_guid(spa) == pool_guid);
2849 	}
2850 
2851 	return (0);
2852 }
2853 
2854 /*
2855  * Recursively open all vdevs in the vdev tree. This function is called twice:
2856  * first with the untrusted config, then with the trusted config.
2857  */
2858 static int
2859 spa_ld_open_vdevs(spa_t *spa)
2860 {
2861 	int error = 0;
2862 
2863 	/*
2864 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2865 	 * missing/unopenable for the root vdev to be still considered openable.
2866 	 */
2867 	if (spa->spa_trust_config) {
2868 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2869 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2870 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2871 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2872 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2873 	} else {
2874 		spa->spa_missing_tvds_allowed = 0;
2875 	}
2876 
2877 	spa->spa_missing_tvds_allowed =
2878 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2879 
2880 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2881 	error = vdev_open(spa->spa_root_vdev);
2882 	spa_config_exit(spa, SCL_ALL, FTAG);
2883 
2884 	if (spa->spa_missing_tvds != 0) {
2885 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2886 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2887 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2888 			/*
2889 			 * Although theoretically we could allow users to open
2890 			 * incomplete pools in RW mode, we'd need to add a lot
2891 			 * of extra logic (e.g. adjust pool space to account
2892 			 * for missing vdevs).
2893 			 * This limitation also prevents users from accidentally
2894 			 * opening the pool in RW mode during data recovery and
2895 			 * damaging it further.
2896 			 */
2897 			spa_load_note(spa, "pools with missing top-level "
2898 			    "vdevs can only be opened in read-only mode.");
2899 			error = SET_ERROR(ENXIO);
2900 		} else {
2901 			spa_load_note(spa, "current settings allow for maximum "
2902 			    "%lld missing top-level vdevs at this stage.",
2903 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2904 		}
2905 	}
2906 	if (error != 0) {
2907 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2908 		    error);
2909 	}
2910 	if (spa->spa_missing_tvds != 0 || error != 0)
2911 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2912 
2913 	return (error);
2914 }
2915 
2916 /*
2917  * We need to validate the vdev labels against the configuration that
2918  * we have in hand. This function is called twice: first with an untrusted
2919  * config, then with a trusted config. The validation is more strict when the
2920  * config is trusted.
2921  */
2922 static int
2923 spa_ld_validate_vdevs(spa_t *spa)
2924 {
2925 	int error = 0;
2926 	vdev_t *rvd = spa->spa_root_vdev;
2927 
2928 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2929 	error = vdev_validate(rvd);
2930 	spa_config_exit(spa, SCL_ALL, FTAG);
2931 
2932 	if (error != 0) {
2933 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2934 		return (error);
2935 	}
2936 
2937 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2938 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2939 		    "some vdevs");
2940 		vdev_dbgmsg_print_tree(rvd, 2);
2941 		return (SET_ERROR(ENXIO));
2942 	}
2943 
2944 	return (0);
2945 }
2946 
2947 static void
2948 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2949 {
2950 	spa->spa_state = POOL_STATE_ACTIVE;
2951 	spa->spa_ubsync = spa->spa_uberblock;
2952 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2953 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2954 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2955 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2956 	spa->spa_claim_max_txg = spa->spa_first_txg;
2957 	spa->spa_prev_software_version = ub->ub_software_version;
2958 }
2959 
2960 static int
2961 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2962 {
2963 	vdev_t *rvd = spa->spa_root_vdev;
2964 	nvlist_t *label;
2965 	uberblock_t *ub = &spa->spa_uberblock;
2966 	boolean_t activity_check = B_FALSE;
2967 
2968 	/*
2969 	 * If we are opening the checkpointed state of the pool by
2970 	 * rewinding to it, at this point we will have written the
2971 	 * checkpointed uberblock to the vdev labels, so searching
2972 	 * the labels will find the right uberblock.  However, if
2973 	 * we are opening the checkpointed state read-only, we have
2974 	 * not modified the labels. Therefore, we must ignore the
2975 	 * labels and continue using the spa_uberblock that was set
2976 	 * by spa_ld_checkpoint_rewind.
2977 	 *
2978 	 * Note that it would be fine to ignore the labels when
2979 	 * rewinding (opening writeable) as well. However, if we
2980 	 * crash just after writing the labels, we will end up
2981 	 * searching the labels. Doing so in the common case means
2982 	 * that this code path gets exercised normally, rather than
2983 	 * just in the edge case.
2984 	 */
2985 	if (ub->ub_checkpoint_txg != 0 &&
2986 	    spa_importing_readonly_checkpoint(spa)) {
2987 		spa_ld_select_uberblock_done(spa, ub);
2988 		return (0);
2989 	}
2990 
2991 	/*
2992 	 * Find the best uberblock.
2993 	 */
2994 	vdev_uberblock_load(rvd, ub, &label);
2995 
2996 	/*
2997 	 * If we weren't able to find a single valid uberblock, return failure.
2998 	 */
2999 	if (ub->ub_txg == 0) {
3000 		nvlist_free(label);
3001 		spa_load_failed(spa, "no valid uberblock found");
3002 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3003 	}
3004 
3005 	if (spa->spa_load_max_txg != UINT64_MAX) {
3006 		(void) spa_import_progress_set_max_txg(spa,
3007 		    (u_longlong_t)spa->spa_load_max_txg);
3008 	}
3009 	spa_load_note(spa, "using uberblock with txg=%llu",
3010 	    (u_longlong_t)ub->ub_txg);
3011 
3012 	/*
3013 	 * For pools which have the multihost property on determine if the
3014 	 * pool is truly inactive and can be safely imported.  Prevent
3015 	 * hosts which don't have a hostid set from importing the pool.
3016 	 */
3017 	activity_check = spa_activity_check_required(spa, ub, label,
3018 	    spa->spa_config);
3019 	if (activity_check) {
3020 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3021 		    spa_get_hostid() == 0) {
3022 			nvlist_free(label);
3023 			fnvlist_add_uint64(spa->spa_load_info,
3024 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3025 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3026 		}
3027 
3028 		int error = spa_activity_check(spa, ub, spa->spa_config);
3029 		if (error) {
3030 			nvlist_free(label);
3031 			return (error);
3032 		}
3033 
3034 		fnvlist_add_uint64(spa->spa_load_info,
3035 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3036 		fnvlist_add_uint64(spa->spa_load_info,
3037 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3038 		fnvlist_add_uint16(spa->spa_load_info,
3039 		    ZPOOL_CONFIG_MMP_SEQ,
3040 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3041 	}
3042 
3043 	/*
3044 	 * If the pool has an unsupported version we can't open it.
3045 	 */
3046 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3047 		nvlist_free(label);
3048 		spa_load_failed(spa, "version %llu is not supported",
3049 		    (u_longlong_t)ub->ub_version);
3050 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3051 	}
3052 
3053 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3054 		nvlist_t *features;
3055 
3056 		/*
3057 		 * If we weren't able to find what's necessary for reading the
3058 		 * MOS in the label, return failure.
3059 		 */
3060 		if (label == NULL) {
3061 			spa_load_failed(spa, "label config unavailable");
3062 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3063 			    ENXIO));
3064 		}
3065 
3066 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3067 		    &features) != 0) {
3068 			nvlist_free(label);
3069 			spa_load_failed(spa, "invalid label: '%s' missing",
3070 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3071 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3072 			    ENXIO));
3073 		}
3074 
3075 		/*
3076 		 * Update our in-core representation with the definitive values
3077 		 * from the label.
3078 		 */
3079 		nvlist_free(spa->spa_label_features);
3080 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3081 	}
3082 
3083 	nvlist_free(label);
3084 
3085 	/*
3086 	 * Look through entries in the label nvlist's features_for_read. If
3087 	 * there is a feature listed there which we don't understand then we
3088 	 * cannot open a pool.
3089 	 */
3090 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3091 		nvlist_t *unsup_feat;
3092 
3093 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3094 		    0);
3095 
3096 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3097 		    NULL); nvp != NULL;
3098 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3099 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3100 				VERIFY(nvlist_add_string(unsup_feat,
3101 				    nvpair_name(nvp), "") == 0);
3102 			}
3103 		}
3104 
3105 		if (!nvlist_empty(unsup_feat)) {
3106 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3107 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3108 			nvlist_free(unsup_feat);
3109 			spa_load_failed(spa, "some features are unsupported");
3110 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3111 			    ENOTSUP));
3112 		}
3113 
3114 		nvlist_free(unsup_feat);
3115 	}
3116 
3117 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3118 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3119 		spa_try_repair(spa, spa->spa_config);
3120 		spa_config_exit(spa, SCL_ALL, FTAG);
3121 		nvlist_free(spa->spa_config_splitting);
3122 		spa->spa_config_splitting = NULL;
3123 	}
3124 
3125 	/*
3126 	 * Initialize internal SPA structures.
3127 	 */
3128 	spa_ld_select_uberblock_done(spa, ub);
3129 
3130 	return (0);
3131 }
3132 
3133 static int
3134 spa_ld_open_rootbp(spa_t *spa)
3135 {
3136 	int error = 0;
3137 	vdev_t *rvd = spa->spa_root_vdev;
3138 
3139 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3140 	if (error != 0) {
3141 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3142 		    "[error=%d]", error);
3143 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3144 	}
3145 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3146 
3147 	return (0);
3148 }
3149 
3150 static int
3151 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3152     boolean_t reloading)
3153 {
3154 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3155 	nvlist_t *nv, *mos_config, *policy;
3156 	int error = 0, copy_error;
3157 	uint64_t healthy_tvds, healthy_tvds_mos;
3158 	uint64_t mos_config_txg;
3159 
3160 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3161 	    != 0)
3162 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3163 
3164 	/*
3165 	 * If we're assembling a pool from a split, the config provided is
3166 	 * already trusted so there is nothing to do.
3167 	 */
3168 	if (type == SPA_IMPORT_ASSEMBLE)
3169 		return (0);
3170 
3171 	healthy_tvds = spa_healthy_core_tvds(spa);
3172 
3173 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3174 	    != 0) {
3175 		spa_load_failed(spa, "unable to retrieve MOS config");
3176 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3177 	}
3178 
3179 	/*
3180 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3181 	 * the verification here.
3182 	 */
3183 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3184 		error = spa_verify_host(spa, mos_config);
3185 		if (error != 0) {
3186 			nvlist_free(mos_config);
3187 			return (error);
3188 		}
3189 	}
3190 
3191 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3192 
3193 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3194 
3195 	/*
3196 	 * Build a new vdev tree from the trusted config
3197 	 */
3198 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3199 
3200 	/*
3201 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3202 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3203 	 * paths. We update the trusted MOS config with this information.
3204 	 * We first try to copy the paths with vdev_copy_path_strict, which
3205 	 * succeeds only when both configs have exactly the same vdev tree.
3206 	 * If that fails, we fall back to a more flexible method that has a
3207 	 * best effort policy.
3208 	 */
3209 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3210 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3211 		spa_load_note(spa, "provided vdev tree:");
3212 		vdev_dbgmsg_print_tree(rvd, 2);
3213 		spa_load_note(spa, "MOS vdev tree:");
3214 		vdev_dbgmsg_print_tree(mrvd, 2);
3215 	}
3216 	if (copy_error != 0) {
3217 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3218 		    "back to vdev_copy_path_relaxed");
3219 		vdev_copy_path_relaxed(rvd, mrvd);
3220 	}
3221 
3222 	vdev_close(rvd);
3223 	vdev_free(rvd);
3224 	spa->spa_root_vdev = mrvd;
3225 	rvd = mrvd;
3226 	spa_config_exit(spa, SCL_ALL, FTAG);
3227 
3228 	/*
3229 	 * We will use spa_config if we decide to reload the spa or if spa_load
3230 	 * fails and we rewind. We must thus regenerate the config using the
3231 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3232 	 * pass settings on how to load the pool and is not stored in the MOS.
3233 	 * We copy it over to our new, trusted config.
3234 	 */
3235 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3236 	    ZPOOL_CONFIG_POOL_TXG);
3237 	nvlist_free(mos_config);
3238 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3239 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3240 	    &policy) == 0)
3241 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3242 	spa_config_set(spa, mos_config);
3243 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3244 
3245 	/*
3246 	 * Now that we got the config from the MOS, we should be more strict
3247 	 * in checking blkptrs and can make assumptions about the consistency
3248 	 * of the vdev tree. spa_trust_config must be set to true before opening
3249 	 * vdevs in order for them to be writeable.
3250 	 */
3251 	spa->spa_trust_config = B_TRUE;
3252 
3253 	/*
3254 	 * Open and validate the new vdev tree
3255 	 */
3256 	error = spa_ld_open_vdevs(spa);
3257 	if (error != 0)
3258 		return (error);
3259 
3260 	error = spa_ld_validate_vdevs(spa);
3261 	if (error != 0)
3262 		return (error);
3263 
3264 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3265 		spa_load_note(spa, "final vdev tree:");
3266 		vdev_dbgmsg_print_tree(rvd, 2);
3267 	}
3268 
3269 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3270 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3271 		/*
3272 		 * Sanity check to make sure that we are indeed loading the
3273 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3274 		 * in the config provided and they happened to be the only ones
3275 		 * to have the latest uberblock, we could involuntarily perform
3276 		 * an extreme rewind.
3277 		 */
3278 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3279 		if (healthy_tvds_mos - healthy_tvds >=
3280 		    SPA_SYNC_MIN_VDEVS) {
3281 			spa_load_note(spa, "config provided misses too many "
3282 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3283 			    (u_longlong_t)healthy_tvds,
3284 			    (u_longlong_t)healthy_tvds_mos);
3285 			spa_load_note(spa, "vdev tree:");
3286 			vdev_dbgmsg_print_tree(rvd, 2);
3287 			if (reloading) {
3288 				spa_load_failed(spa, "config was already "
3289 				    "provided from MOS. Aborting.");
3290 				return (spa_vdev_err(rvd,
3291 				    VDEV_AUX_CORRUPT_DATA, EIO));
3292 			}
3293 			spa_load_note(spa, "spa must be reloaded using MOS "
3294 			    "config");
3295 			return (SET_ERROR(EAGAIN));
3296 		}
3297 	}
3298 
3299 	error = spa_check_for_missing_logs(spa);
3300 	if (error != 0)
3301 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3302 
3303 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3304 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3305 		    "guid sum (%llu != %llu)",
3306 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3307 		    (u_longlong_t)rvd->vdev_guid_sum);
3308 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3309 		    ENXIO));
3310 	}
3311 
3312 	return (0);
3313 }
3314 
3315 static int
3316 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3317 {
3318 	int error = 0;
3319 	vdev_t *rvd = spa->spa_root_vdev;
3320 
3321 	/*
3322 	 * Everything that we read before spa_remove_init() must be stored
3323 	 * on concreted vdevs.  Therefore we do this as early as possible.
3324 	 */
3325 	error = spa_remove_init(spa);
3326 	if (error != 0) {
3327 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3328 		    error);
3329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3330 	}
3331 
3332 	/*
3333 	 * Retrieve information needed to condense indirect vdev mappings.
3334 	 */
3335 	error = spa_condense_init(spa);
3336 	if (error != 0) {
3337 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3338 		    error);
3339 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3340 	}
3341 
3342 	return (0);
3343 }
3344 
3345 static int
3346 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3347 {
3348 	int error = 0;
3349 	vdev_t *rvd = spa->spa_root_vdev;
3350 
3351 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3352 		boolean_t missing_feat_read = B_FALSE;
3353 		nvlist_t *unsup_feat, *enabled_feat;
3354 
3355 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3356 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3357 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3358 		}
3359 
3360 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3361 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3362 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3363 		}
3364 
3365 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3366 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3367 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3368 		}
3369 
3370 		enabled_feat = fnvlist_alloc();
3371 		unsup_feat = fnvlist_alloc();
3372 
3373 		if (!spa_features_check(spa, B_FALSE,
3374 		    unsup_feat, enabled_feat))
3375 			missing_feat_read = B_TRUE;
3376 
3377 		if (spa_writeable(spa) ||
3378 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3379 			if (!spa_features_check(spa, B_TRUE,
3380 			    unsup_feat, enabled_feat)) {
3381 				*missing_feat_writep = B_TRUE;
3382 			}
3383 		}
3384 
3385 		fnvlist_add_nvlist(spa->spa_load_info,
3386 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3387 
3388 		if (!nvlist_empty(unsup_feat)) {
3389 			fnvlist_add_nvlist(spa->spa_load_info,
3390 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3391 		}
3392 
3393 		fnvlist_free(enabled_feat);
3394 		fnvlist_free(unsup_feat);
3395 
3396 		if (!missing_feat_read) {
3397 			fnvlist_add_boolean(spa->spa_load_info,
3398 			    ZPOOL_CONFIG_CAN_RDONLY);
3399 		}
3400 
3401 		/*
3402 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3403 		 * twofold: to determine whether the pool is available for
3404 		 * import in read-write mode and (if it is not) whether the
3405 		 * pool is available for import in read-only mode. If the pool
3406 		 * is available for import in read-write mode, it is displayed
3407 		 * as available in userland; if it is not available for import
3408 		 * in read-only mode, it is displayed as unavailable in
3409 		 * userland. If the pool is available for import in read-only
3410 		 * mode but not read-write mode, it is displayed as unavailable
3411 		 * in userland with a special note that the pool is actually
3412 		 * available for open in read-only mode.
3413 		 *
3414 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3415 		 * missing a feature for write, we must first determine whether
3416 		 * the pool can be opened read-only before returning to
3417 		 * userland in order to know whether to display the
3418 		 * abovementioned note.
3419 		 */
3420 		if (missing_feat_read || (*missing_feat_writep &&
3421 		    spa_writeable(spa))) {
3422 			spa_load_failed(spa, "pool uses unsupported features");
3423 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3424 			    ENOTSUP));
3425 		}
3426 
3427 		/*
3428 		 * Load refcounts for ZFS features from disk into an in-memory
3429 		 * cache during SPA initialization.
3430 		 */
3431 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3432 			uint64_t refcount;
3433 
3434 			error = feature_get_refcount_from_disk(spa,
3435 			    &spa_feature_table[i], &refcount);
3436 			if (error == 0) {
3437 				spa->spa_feat_refcount_cache[i] = refcount;
3438 			} else if (error == ENOTSUP) {
3439 				spa->spa_feat_refcount_cache[i] =
3440 				    SPA_FEATURE_DISABLED;
3441 			} else {
3442 				spa_load_failed(spa, "error getting refcount "
3443 				    "for feature %s [error=%d]",
3444 				    spa_feature_table[i].fi_guid, error);
3445 				return (spa_vdev_err(rvd,
3446 				    VDEV_AUX_CORRUPT_DATA, EIO));
3447 			}
3448 		}
3449 	}
3450 
3451 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3452 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3453 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3454 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3455 	}
3456 
3457 	/*
3458 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3459 	 * is now a dependency. If this pool has encryption enabled without
3460 	 * bookmark_v2, trigger an errata message.
3461 	 */
3462 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3463 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3464 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3465 	}
3466 
3467 	return (0);
3468 }
3469 
3470 static int
3471 spa_ld_load_special_directories(spa_t *spa)
3472 {
3473 	int error = 0;
3474 	vdev_t *rvd = spa->spa_root_vdev;
3475 
3476 	spa->spa_is_initializing = B_TRUE;
3477 	error = dsl_pool_open(spa->spa_dsl_pool);
3478 	spa->spa_is_initializing = B_FALSE;
3479 	if (error != 0) {
3480 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3481 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3482 	}
3483 
3484 	return (0);
3485 }
3486 
3487 static int
3488 spa_ld_get_props(spa_t *spa)
3489 {
3490 	int error = 0;
3491 	uint64_t obj;
3492 	vdev_t *rvd = spa->spa_root_vdev;
3493 
3494 	/* Grab the secret checksum salt from the MOS. */
3495 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3496 	    DMU_POOL_CHECKSUM_SALT, 1,
3497 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3498 	    spa->spa_cksum_salt.zcs_bytes);
3499 	if (error == ENOENT) {
3500 		/* Generate a new salt for subsequent use */
3501 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3502 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3503 	} else if (error != 0) {
3504 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3505 		    "MOS [error=%d]", error);
3506 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3507 	}
3508 
3509 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3510 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3511 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3512 	if (error != 0) {
3513 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3514 		    "[error=%d]", error);
3515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3516 	}
3517 
3518 	/*
3519 	 * Load the bit that tells us to use the new accounting function
3520 	 * (raid-z deflation).  If we have an older pool, this will not
3521 	 * be present.
3522 	 */
3523 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3524 	if (error != 0 && error != ENOENT)
3525 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3526 
3527 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3528 	    &spa->spa_creation_version, B_FALSE);
3529 	if (error != 0 && error != ENOENT)
3530 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3531 
3532 	/*
3533 	 * Load the persistent error log.  If we have an older pool, this will
3534 	 * not be present.
3535 	 */
3536 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3537 	    B_FALSE);
3538 	if (error != 0 && error != ENOENT)
3539 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3540 
3541 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3542 	    &spa->spa_errlog_scrub, B_FALSE);
3543 	if (error != 0 && error != ENOENT)
3544 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3545 
3546 	/*
3547 	 * Load the history object.  If we have an older pool, this
3548 	 * will not be present.
3549 	 */
3550 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3551 	if (error != 0 && error != ENOENT)
3552 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3553 
3554 	/*
3555 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3556 	 * be present; in this case, defer its creation to a later time to
3557 	 * avoid dirtying the MOS this early / out of sync context. See
3558 	 * spa_sync_config_object.
3559 	 */
3560 
3561 	/* The sentinel is only available in the MOS config. */
3562 	nvlist_t *mos_config;
3563 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3564 		spa_load_failed(spa, "unable to retrieve MOS config");
3565 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3566 	}
3567 
3568 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3569 	    &spa->spa_all_vdev_zaps, B_FALSE);
3570 
3571 	if (error == ENOENT) {
3572 		VERIFY(!nvlist_exists(mos_config,
3573 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3574 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3575 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3576 	} else if (error != 0) {
3577 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3578 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3579 		/*
3580 		 * An older version of ZFS overwrote the sentinel value, so
3581 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3582 		 * destruction to later; see spa_sync_config_object.
3583 		 */
3584 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3585 		/*
3586 		 * We're assuming that no vdevs have had their ZAPs created
3587 		 * before this. Better be sure of it.
3588 		 */
3589 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3590 	}
3591 	nvlist_free(mos_config);
3592 
3593 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3594 
3595 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3596 	    B_FALSE);
3597 	if (error && error != ENOENT)
3598 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3599 
3600 	if (error == 0) {
3601 		uint64_t autoreplace;
3602 
3603 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3604 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3605 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3606 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3607 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3608 		spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
3609 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3610 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3611 		    &spa->spa_dedup_ditto);
3612 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3613 		spa->spa_autoreplace = (autoreplace != 0);
3614 	}
3615 
3616 	/*
3617 	 * If we are importing a pool with missing top-level vdevs,
3618 	 * we enforce that the pool doesn't panic or get suspended on
3619 	 * error since the likelihood of missing data is extremely high.
3620 	 */
3621 	if (spa->spa_missing_tvds > 0 &&
3622 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3623 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3624 		spa_load_note(spa, "forcing failmode to 'continue' "
3625 		    "as some top level vdevs are missing");
3626 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3627 	}
3628 
3629 	return (0);
3630 }
3631 
3632 static int
3633 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3634 {
3635 	int error = 0;
3636 	vdev_t *rvd = spa->spa_root_vdev;
3637 
3638 	/*
3639 	 * If we're assembling the pool from the split-off vdevs of
3640 	 * an existing pool, we don't want to attach the spares & cache
3641 	 * devices.
3642 	 */
3643 
3644 	/*
3645 	 * Load any hot spares for this pool.
3646 	 */
3647 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3648 	    B_FALSE);
3649 	if (error != 0 && error != ENOENT)
3650 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3651 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3652 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3653 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3654 		    &spa->spa_spares.sav_config) != 0) {
3655 			spa_load_failed(spa, "error loading spares nvlist");
3656 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3657 		}
3658 
3659 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3660 		spa_load_spares(spa);
3661 		spa_config_exit(spa, SCL_ALL, FTAG);
3662 	} else if (error == 0) {
3663 		spa->spa_spares.sav_sync = B_TRUE;
3664 	}
3665 
3666 	/*
3667 	 * Load any level 2 ARC devices for this pool.
3668 	 */
3669 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3670 	    &spa->spa_l2cache.sav_object, B_FALSE);
3671 	if (error != 0 && error != ENOENT)
3672 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3673 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3674 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3675 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3676 		    &spa->spa_l2cache.sav_config) != 0) {
3677 			spa_load_failed(spa, "error loading l2cache nvlist");
3678 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3679 		}
3680 
3681 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3682 		spa_load_l2cache(spa);
3683 		spa_config_exit(spa, SCL_ALL, FTAG);
3684 	} else if (error == 0) {
3685 		spa->spa_l2cache.sav_sync = B_TRUE;
3686 	}
3687 
3688 	return (0);
3689 }
3690 
3691 static int
3692 spa_ld_load_vdev_metadata(spa_t *spa)
3693 {
3694 	int error = 0;
3695 	vdev_t *rvd = spa->spa_root_vdev;
3696 
3697 	/*
3698 	 * If the 'multihost' property is set, then never allow a pool to
3699 	 * be imported when the system hostid is zero.  The exception to
3700 	 * this rule is zdb which is always allowed to access pools.
3701 	 */
3702 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3703 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3704 		fnvlist_add_uint64(spa->spa_load_info,
3705 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3706 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3707 	}
3708 
3709 	/*
3710 	 * If the 'autoreplace' property is set, then post a resource notifying
3711 	 * the ZFS DE that it should not issue any faults for unopenable
3712 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3713 	 * unopenable vdevs so that the normal autoreplace handler can take
3714 	 * over.
3715 	 */
3716 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3717 		spa_check_removed(spa->spa_root_vdev);
3718 		/*
3719 		 * For the import case, this is done in spa_import(), because
3720 		 * at this point we're using the spare definitions from
3721 		 * the MOS config, not necessarily from the userland config.
3722 		 */
3723 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3724 			spa_aux_check_removed(&spa->spa_spares);
3725 			spa_aux_check_removed(&spa->spa_l2cache);
3726 		}
3727 	}
3728 
3729 	/*
3730 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3731 	 */
3732 	error = vdev_load(rvd);
3733 	if (error != 0) {
3734 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3735 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3736 	}
3737 
3738 	error = spa_ld_log_spacemaps(spa);
3739 	if (error != 0) {
3740 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3741 		    error);
3742 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3743 	}
3744 
3745 	/*
3746 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3747 	 */
3748 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3749 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3750 	spa_config_exit(spa, SCL_ALL, FTAG);
3751 
3752 	return (0);
3753 }
3754 
3755 static int
3756 spa_ld_load_dedup_tables(spa_t *spa)
3757 {
3758 	int error = 0;
3759 	vdev_t *rvd = spa->spa_root_vdev;
3760 
3761 	error = ddt_load(spa);
3762 	if (error != 0) {
3763 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3764 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3765 	}
3766 
3767 	return (0);
3768 }
3769 
3770 static int
3771 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3772 {
3773 	vdev_t *rvd = spa->spa_root_vdev;
3774 
3775 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3776 		boolean_t missing = spa_check_logs(spa);
3777 		if (missing) {
3778 			if (spa->spa_missing_tvds != 0) {
3779 				spa_load_note(spa, "spa_check_logs failed "
3780 				    "so dropping the logs");
3781 			} else {
3782 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3783 				spa_load_failed(spa, "spa_check_logs failed");
3784 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3785 				    ENXIO));
3786 			}
3787 		}
3788 	}
3789 
3790 	return (0);
3791 }
3792 
3793 static int
3794 spa_ld_verify_pool_data(spa_t *spa)
3795 {
3796 	int error = 0;
3797 	vdev_t *rvd = spa->spa_root_vdev;
3798 
3799 	/*
3800 	 * We've successfully opened the pool, verify that we're ready
3801 	 * to start pushing transactions.
3802 	 */
3803 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3804 		error = spa_load_verify(spa);
3805 		if (error != 0) {
3806 			spa_load_failed(spa, "spa_load_verify failed "
3807 			    "[error=%d]", error);
3808 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3809 			    error));
3810 		}
3811 	}
3812 
3813 	return (0);
3814 }
3815 
3816 static void
3817 spa_ld_claim_log_blocks(spa_t *spa)
3818 {
3819 	dmu_tx_t *tx;
3820 	dsl_pool_t *dp = spa_get_dsl(spa);
3821 
3822 	/*
3823 	 * Claim log blocks that haven't been committed yet.
3824 	 * This must all happen in a single txg.
3825 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3826 	 * invoked from zil_claim_log_block()'s i/o done callback.
3827 	 * Price of rollback is that we abandon the log.
3828 	 */
3829 	spa->spa_claiming = B_TRUE;
3830 
3831 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3832 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3833 	    zil_claim, tx, DS_FIND_CHILDREN);
3834 	dmu_tx_commit(tx);
3835 
3836 	spa->spa_claiming = B_FALSE;
3837 
3838 	spa_set_log_state(spa, SPA_LOG_GOOD);
3839 }
3840 
3841 static void
3842 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3843     boolean_t update_config_cache)
3844 {
3845 	vdev_t *rvd = spa->spa_root_vdev;
3846 	int need_update = B_FALSE;
3847 
3848 	/*
3849 	 * If the config cache is stale, or we have uninitialized
3850 	 * metaslabs (see spa_vdev_add()), then update the config.
3851 	 *
3852 	 * If this is a verbatim import, trust the current
3853 	 * in-core spa_config and update the disk labels.
3854 	 */
3855 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3856 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3857 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3858 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3859 		need_update = B_TRUE;
3860 
3861 	for (int c = 0; c < rvd->vdev_children; c++)
3862 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3863 			need_update = B_TRUE;
3864 
3865 	/*
3866 	 * Update the config cache asychronously in case we're the
3867 	 * root pool, in which case the config cache isn't writable yet.
3868 	 */
3869 	if (need_update)
3870 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3871 }
3872 
3873 static void
3874 spa_ld_prepare_for_reload(spa_t *spa)
3875 {
3876 	int mode = spa->spa_mode;
3877 	int async_suspended = spa->spa_async_suspended;
3878 
3879 	spa_unload(spa);
3880 	spa_deactivate(spa);
3881 	spa_activate(spa, mode);
3882 
3883 	/*
3884 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3885 	 * spa_unload(). We want to restore it back to the original value before
3886 	 * returning as we might be calling spa_async_resume() later.
3887 	 */
3888 	spa->spa_async_suspended = async_suspended;
3889 }
3890 
3891 static int
3892 spa_ld_read_checkpoint_txg(spa_t *spa)
3893 {
3894 	uberblock_t checkpoint;
3895 	int error = 0;
3896 
3897 	ASSERT0(spa->spa_checkpoint_txg);
3898 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3899 
3900 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3901 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3902 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3903 
3904 	if (error == ENOENT)
3905 		return (0);
3906 
3907 	if (error != 0)
3908 		return (error);
3909 
3910 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3911 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3912 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3913 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3914 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3915 
3916 	return (0);
3917 }
3918 
3919 static int
3920 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3921 {
3922 	int error = 0;
3923 
3924 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3925 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3926 
3927 	/*
3928 	 * Never trust the config that is provided unless we are assembling
3929 	 * a pool following a split.
3930 	 * This means don't trust blkptrs and the vdev tree in general. This
3931 	 * also effectively puts the spa in read-only mode since
3932 	 * spa_writeable() checks for spa_trust_config to be true.
3933 	 * We will later load a trusted config from the MOS.
3934 	 */
3935 	if (type != SPA_IMPORT_ASSEMBLE)
3936 		spa->spa_trust_config = B_FALSE;
3937 
3938 	/*
3939 	 * Parse the config provided to create a vdev tree.
3940 	 */
3941 	error = spa_ld_parse_config(spa, type);
3942 	if (error != 0)
3943 		return (error);
3944 
3945 	spa_import_progress_add(spa);
3946 
3947 	/*
3948 	 * Now that we have the vdev tree, try to open each vdev. This involves
3949 	 * opening the underlying physical device, retrieving its geometry and
3950 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3951 	 * based on the success of those operations. After this we'll be ready
3952 	 * to read from the vdevs.
3953 	 */
3954 	error = spa_ld_open_vdevs(spa);
3955 	if (error != 0)
3956 		return (error);
3957 
3958 	/*
3959 	 * Read the label of each vdev and make sure that the GUIDs stored
3960 	 * there match the GUIDs in the config provided.
3961 	 * If we're assembling a new pool that's been split off from an
3962 	 * existing pool, the labels haven't yet been updated so we skip
3963 	 * validation for now.
3964 	 */
3965 	if (type != SPA_IMPORT_ASSEMBLE) {
3966 		error = spa_ld_validate_vdevs(spa);
3967 		if (error != 0)
3968 			return (error);
3969 	}
3970 
3971 	/*
3972 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3973 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3974 	 * get the list of features required to read blkptrs in the MOS from
3975 	 * the vdev label with the best uberblock and verify that our version
3976 	 * of zfs supports them all.
3977 	 */
3978 	error = spa_ld_select_uberblock(spa, type);
3979 	if (error != 0)
3980 		return (error);
3981 
3982 	/*
3983 	 * Pass that uberblock to the dsl_pool layer which will open the root
3984 	 * blkptr. This blkptr points to the latest version of the MOS and will
3985 	 * allow us to read its contents.
3986 	 */
3987 	error = spa_ld_open_rootbp(spa);
3988 	if (error != 0)
3989 		return (error);
3990 
3991 	return (0);
3992 }
3993 
3994 static int
3995 spa_ld_checkpoint_rewind(spa_t *spa)
3996 {
3997 	uberblock_t checkpoint;
3998 	int error = 0;
3999 
4000 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4001 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4002 
4003 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4004 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4005 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4006 
4007 	if (error != 0) {
4008 		spa_load_failed(spa, "unable to retrieve checkpointed "
4009 		    "uberblock from the MOS config [error=%d]", error);
4010 
4011 		if (error == ENOENT)
4012 			error = ZFS_ERR_NO_CHECKPOINT;
4013 
4014 		return (error);
4015 	}
4016 
4017 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4018 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4019 
4020 	/*
4021 	 * We need to update the txg and timestamp of the checkpointed
4022 	 * uberblock to be higher than the latest one. This ensures that
4023 	 * the checkpointed uberblock is selected if we were to close and
4024 	 * reopen the pool right after we've written it in the vdev labels.
4025 	 * (also see block comment in vdev_uberblock_compare)
4026 	 */
4027 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4028 	checkpoint.ub_timestamp = gethrestime_sec();
4029 
4030 	/*
4031 	 * Set current uberblock to be the checkpointed uberblock.
4032 	 */
4033 	spa->spa_uberblock = checkpoint;
4034 
4035 	/*
4036 	 * If we are doing a normal rewind, then the pool is open for
4037 	 * writing and we sync the "updated" checkpointed uberblock to
4038 	 * disk. Once this is done, we've basically rewound the whole
4039 	 * pool and there is no way back.
4040 	 *
4041 	 * There are cases when we don't want to attempt and sync the
4042 	 * checkpointed uberblock to disk because we are opening a
4043 	 * pool as read-only. Specifically, verifying the checkpointed
4044 	 * state with zdb, and importing the checkpointed state to get
4045 	 * a "preview" of its content.
4046 	 */
4047 	if (spa_writeable(spa)) {
4048 		vdev_t *rvd = spa->spa_root_vdev;
4049 
4050 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4051 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4052 		int svdcount = 0;
4053 		int children = rvd->vdev_children;
4054 		int c0 = spa_get_random(children);
4055 
4056 		for (int c = 0; c < children; c++) {
4057 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4058 
4059 			/* Stop when revisiting the first vdev */
4060 			if (c > 0 && svd[0] == vd)
4061 				break;
4062 
4063 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4064 			    !vdev_is_concrete(vd))
4065 				continue;
4066 
4067 			svd[svdcount++] = vd;
4068 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4069 				break;
4070 		}
4071 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4072 		if (error == 0)
4073 			spa->spa_last_synced_guid = rvd->vdev_guid;
4074 		spa_config_exit(spa, SCL_ALL, FTAG);
4075 
4076 		if (error != 0) {
4077 			spa_load_failed(spa, "failed to write checkpointed "
4078 			    "uberblock to the vdev labels [error=%d]", error);
4079 			return (error);
4080 		}
4081 	}
4082 
4083 	return (0);
4084 }
4085 
4086 static int
4087 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4088     boolean_t *update_config_cache)
4089 {
4090 	int error;
4091 
4092 	/*
4093 	 * Parse the config for pool, open and validate vdevs,
4094 	 * select an uberblock, and use that uberblock to open
4095 	 * the MOS.
4096 	 */
4097 	error = spa_ld_mos_init(spa, type);
4098 	if (error != 0)
4099 		return (error);
4100 
4101 	/*
4102 	 * Retrieve the trusted config stored in the MOS and use it to create
4103 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4104 	 */
4105 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4106 	if (error == EAGAIN) {
4107 		if (update_config_cache != NULL)
4108 			*update_config_cache = B_TRUE;
4109 
4110 		/*
4111 		 * Redo the loading process with the trusted config if it is
4112 		 * too different from the untrusted config.
4113 		 */
4114 		spa_ld_prepare_for_reload(spa);
4115 		spa_load_note(spa, "RELOADING");
4116 		error = spa_ld_mos_init(spa, type);
4117 		if (error != 0)
4118 			return (error);
4119 
4120 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4121 		if (error != 0)
4122 			return (error);
4123 
4124 	} else if (error != 0) {
4125 		return (error);
4126 	}
4127 
4128 	return (0);
4129 }
4130 
4131 /*
4132  * Load an existing storage pool, using the config provided. This config
4133  * describes which vdevs are part of the pool and is later validated against
4134  * partial configs present in each vdev's label and an entire copy of the
4135  * config stored in the MOS.
4136  */
4137 static int
4138 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4139 {
4140 	int error = 0;
4141 	boolean_t missing_feat_write = B_FALSE;
4142 	boolean_t checkpoint_rewind =
4143 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4144 	boolean_t update_config_cache = B_FALSE;
4145 
4146 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4147 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4148 
4149 	spa_load_note(spa, "LOADING");
4150 
4151 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4152 	if (error != 0)
4153 		return (error);
4154 
4155 	/*
4156 	 * If we are rewinding to the checkpoint then we need to repeat
4157 	 * everything we've done so far in this function but this time
4158 	 * selecting the checkpointed uberblock and using that to open
4159 	 * the MOS.
4160 	 */
4161 	if (checkpoint_rewind) {
4162 		/*
4163 		 * If we are rewinding to the checkpoint update config cache
4164 		 * anyway.
4165 		 */
4166 		update_config_cache = B_TRUE;
4167 
4168 		/*
4169 		 * Extract the checkpointed uberblock from the current MOS
4170 		 * and use this as the pool's uberblock from now on. If the
4171 		 * pool is imported as writeable we also write the checkpoint
4172 		 * uberblock to the labels, making the rewind permanent.
4173 		 */
4174 		error = spa_ld_checkpoint_rewind(spa);
4175 		if (error != 0)
4176 			return (error);
4177 
4178 		/*
4179 		 * Redo the loading process process again with the
4180 		 * checkpointed uberblock.
4181 		 */
4182 		spa_ld_prepare_for_reload(spa);
4183 		spa_load_note(spa, "LOADING checkpointed uberblock");
4184 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4185 		if (error != 0)
4186 			return (error);
4187 	}
4188 
4189 	/*
4190 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4191 	 */
4192 	error = spa_ld_read_checkpoint_txg(spa);
4193 	if (error != 0)
4194 		return (error);
4195 
4196 	/*
4197 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4198 	 * from the pool and their contents were re-mapped to other vdevs. Note
4199 	 * that everything that we read before this step must have been
4200 	 * rewritten on concrete vdevs after the last device removal was
4201 	 * initiated. Otherwise we could be reading from indirect vdevs before
4202 	 * we have loaded their mappings.
4203 	 */
4204 	error = spa_ld_open_indirect_vdev_metadata(spa);
4205 	if (error != 0)
4206 		return (error);
4207 
4208 	/*
4209 	 * Retrieve the full list of active features from the MOS and check if
4210 	 * they are all supported.
4211 	 */
4212 	error = spa_ld_check_features(spa, &missing_feat_write);
4213 	if (error != 0)
4214 		return (error);
4215 
4216 	/*
4217 	 * Load several special directories from the MOS needed by the dsl_pool
4218 	 * layer.
4219 	 */
4220 	error = spa_ld_load_special_directories(spa);
4221 	if (error != 0)
4222 		return (error);
4223 
4224 	/*
4225 	 * Retrieve pool properties from the MOS.
4226 	 */
4227 	error = spa_ld_get_props(spa);
4228 	if (error != 0)
4229 		return (error);
4230 
4231 	/*
4232 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4233 	 * and open them.
4234 	 */
4235 	error = spa_ld_open_aux_vdevs(spa, type);
4236 	if (error != 0)
4237 		return (error);
4238 
4239 	/*
4240 	 * Load the metadata for all vdevs. Also check if unopenable devices
4241 	 * should be autoreplaced.
4242 	 */
4243 	error = spa_ld_load_vdev_metadata(spa);
4244 	if (error != 0)
4245 		return (error);
4246 
4247 	error = spa_ld_load_dedup_tables(spa);
4248 	if (error != 0)
4249 		return (error);
4250 
4251 	/*
4252 	 * Verify the logs now to make sure we don't have any unexpected errors
4253 	 * when we claim log blocks later.
4254 	 */
4255 	error = spa_ld_verify_logs(spa, type, ereport);
4256 	if (error != 0)
4257 		return (error);
4258 
4259 	if (missing_feat_write) {
4260 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4261 
4262 		/*
4263 		 * At this point, we know that we can open the pool in
4264 		 * read-only mode but not read-write mode. We now have enough
4265 		 * information and can return to userland.
4266 		 */
4267 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4268 		    ENOTSUP));
4269 	}
4270 
4271 	/*
4272 	 * Traverse the last txgs to make sure the pool was left off in a safe
4273 	 * state. When performing an extreme rewind, we verify the whole pool,
4274 	 * which can take a very long time.
4275 	 */
4276 	error = spa_ld_verify_pool_data(spa);
4277 	if (error != 0)
4278 		return (error);
4279 
4280 	/*
4281 	 * Calculate the deflated space for the pool. This must be done before
4282 	 * we write anything to the pool because we'd need to update the space
4283 	 * accounting using the deflated sizes.
4284 	 */
4285 	spa_update_dspace(spa);
4286 
4287 	/*
4288 	 * We have now retrieved all the information we needed to open the
4289 	 * pool. If we are importing the pool in read-write mode, a few
4290 	 * additional steps must be performed to finish the import.
4291 	 */
4292 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4293 	    spa->spa_load_max_txg == UINT64_MAX)) {
4294 		uint64_t config_cache_txg = spa->spa_config_txg;
4295 
4296 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4297 
4298 		/*
4299 		 * In case of a checkpoint rewind, log the original txg
4300 		 * of the checkpointed uberblock.
4301 		 */
4302 		if (checkpoint_rewind) {
4303 			spa_history_log_internal(spa, "checkpoint rewind",
4304 			    NULL, "rewound state to txg=%llu",
4305 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4306 		}
4307 
4308 		/*
4309 		 * Traverse the ZIL and claim all blocks.
4310 		 */
4311 		spa_ld_claim_log_blocks(spa);
4312 
4313 		/*
4314 		 * Kick-off the syncing thread.
4315 		 */
4316 		spa->spa_sync_on = B_TRUE;
4317 		txg_sync_start(spa->spa_dsl_pool);
4318 		mmp_thread_start(spa);
4319 
4320 		/*
4321 		 * Wait for all claims to sync.  We sync up to the highest
4322 		 * claimed log block birth time so that claimed log blocks
4323 		 * don't appear to be from the future.  spa_claim_max_txg
4324 		 * will have been set for us by ZIL traversal operations
4325 		 * performed above.
4326 		 */
4327 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4328 
4329 		/*
4330 		 * Check if we need to request an update of the config. On the
4331 		 * next sync, we would update the config stored in vdev labels
4332 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4333 		 */
4334 		spa_ld_check_for_config_update(spa, config_cache_txg,
4335 		    update_config_cache);
4336 
4337 		/*
4338 		 * Check all DTLs to see if anything needs resilvering.
4339 		 */
4340 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4341 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4342 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4343 
4344 		/*
4345 		 * Log the fact that we booted up (so that we can detect if
4346 		 * we rebooted in the middle of an operation).
4347 		 */
4348 		spa_history_log_version(spa, "open");
4349 
4350 		spa_restart_removal(spa);
4351 		spa_spawn_aux_threads(spa);
4352 
4353 		/*
4354 		 * Delete any inconsistent datasets.
4355 		 *
4356 		 * Note:
4357 		 * Since we may be issuing deletes for clones here,
4358 		 * we make sure to do so after we've spawned all the
4359 		 * auxiliary threads above (from which the livelist
4360 		 * deletion zthr is part of).
4361 		 */
4362 		(void) dmu_objset_find(spa_name(spa),
4363 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4364 
4365 		/*
4366 		 * Clean up any stale temporary dataset userrefs.
4367 		 */
4368 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4369 
4370 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4371 		vdev_initialize_restart(spa->spa_root_vdev);
4372 		vdev_trim_restart(spa->spa_root_vdev);
4373 		vdev_autotrim_restart(spa);
4374 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4375 	}
4376 
4377 	spa_import_progress_remove(spa);
4378 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4379 
4380 	spa_load_note(spa, "LOADED");
4381 
4382 	return (0);
4383 }
4384 
4385 static int
4386 spa_load_retry(spa_t *spa, spa_load_state_t state)
4387 {
4388 	int mode = spa->spa_mode;
4389 
4390 	spa_unload(spa);
4391 	spa_deactivate(spa);
4392 
4393 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4394 
4395 	spa_activate(spa, mode);
4396 	spa_async_suspend(spa);
4397 
4398 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4399 	    (u_longlong_t)spa->spa_load_max_txg);
4400 
4401 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4402 }
4403 
4404 /*
4405  * If spa_load() fails this function will try loading prior txg's. If
4406  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4407  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4408  * function will not rewind the pool and will return the same error as
4409  * spa_load().
4410  */
4411 static int
4412 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4413     int rewind_flags)
4414 {
4415 	nvlist_t *loadinfo = NULL;
4416 	nvlist_t *config = NULL;
4417 	int load_error, rewind_error;
4418 	uint64_t safe_rewind_txg;
4419 	uint64_t min_txg;
4420 
4421 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4422 		spa->spa_load_max_txg = spa->spa_load_txg;
4423 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4424 	} else {
4425 		spa->spa_load_max_txg = max_request;
4426 		if (max_request != UINT64_MAX)
4427 			spa->spa_extreme_rewind = B_TRUE;
4428 	}
4429 
4430 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4431 	if (load_error == 0)
4432 		return (0);
4433 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4434 		/*
4435 		 * When attempting checkpoint-rewind on a pool with no
4436 		 * checkpoint, we should not attempt to load uberblocks
4437 		 * from previous txgs when spa_load fails.
4438 		 */
4439 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4440 		spa_import_progress_remove(spa);
4441 		return (load_error);
4442 	}
4443 
4444 	if (spa->spa_root_vdev != NULL)
4445 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4446 
4447 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4448 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4449 
4450 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4451 		nvlist_free(config);
4452 		spa_import_progress_remove(spa);
4453 		return (load_error);
4454 	}
4455 
4456 	if (state == SPA_LOAD_RECOVER) {
4457 		/* Price of rolling back is discarding txgs, including log */
4458 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4459 	} else {
4460 		/*
4461 		 * If we aren't rolling back save the load info from our first
4462 		 * import attempt so that we can restore it after attempting
4463 		 * to rewind.
4464 		 */
4465 		loadinfo = spa->spa_load_info;
4466 		spa->spa_load_info = fnvlist_alloc();
4467 	}
4468 
4469 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4470 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4471 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4472 	    TXG_INITIAL : safe_rewind_txg;
4473 
4474 	/*
4475 	 * Continue as long as we're finding errors, we're still within
4476 	 * the acceptable rewind range, and we're still finding uberblocks
4477 	 */
4478 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4479 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4480 		if (spa->spa_load_max_txg < safe_rewind_txg)
4481 			spa->spa_extreme_rewind = B_TRUE;
4482 		rewind_error = spa_load_retry(spa, state);
4483 	}
4484 
4485 	spa->spa_extreme_rewind = B_FALSE;
4486 	spa->spa_load_max_txg = UINT64_MAX;
4487 
4488 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4489 		spa_config_set(spa, config);
4490 	else
4491 		nvlist_free(config);
4492 
4493 	if (state == SPA_LOAD_RECOVER) {
4494 		ASSERT3P(loadinfo, ==, NULL);
4495 		spa_import_progress_remove(spa);
4496 		return (rewind_error);
4497 	} else {
4498 		/* Store the rewind info as part of the initial load info */
4499 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4500 		    spa->spa_load_info);
4501 
4502 		/* Restore the initial load info */
4503 		fnvlist_free(spa->spa_load_info);
4504 		spa->spa_load_info = loadinfo;
4505 
4506 		spa_import_progress_remove(spa);
4507 		return (load_error);
4508 	}
4509 }
4510 
4511 /*
4512  * Pool Open/Import
4513  *
4514  * The import case is identical to an open except that the configuration is sent
4515  * down from userland, instead of grabbed from the configuration cache.  For the
4516  * case of an open, the pool configuration will exist in the
4517  * POOL_STATE_UNINITIALIZED state.
4518  *
4519  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4520  * the same time open the pool, without having to keep around the spa_t in some
4521  * ambiguous state.
4522  */
4523 static int
4524 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4525     nvlist_t **config)
4526 {
4527 	spa_t *spa;
4528 	spa_load_state_t state = SPA_LOAD_OPEN;
4529 	int error;
4530 	int locked = B_FALSE;
4531 
4532 	*spapp = NULL;
4533 
4534 	/*
4535 	 * As disgusting as this is, we need to support recursive calls to this
4536 	 * function because dsl_dir_open() is called during spa_load(), and ends
4537 	 * up calling spa_open() again.  The real fix is to figure out how to
4538 	 * avoid dsl_dir_open() calling this in the first place.
4539 	 */
4540 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4541 		mutex_enter(&spa_namespace_lock);
4542 		locked = B_TRUE;
4543 	}
4544 
4545 	if ((spa = spa_lookup(pool)) == NULL) {
4546 		if (locked)
4547 			mutex_exit(&spa_namespace_lock);
4548 		return (SET_ERROR(ENOENT));
4549 	}
4550 
4551 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4552 		zpool_load_policy_t policy;
4553 
4554 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4555 		    &policy);
4556 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4557 			state = SPA_LOAD_RECOVER;
4558 
4559 		spa_activate(spa, spa_mode_global);
4560 
4561 		if (state != SPA_LOAD_RECOVER)
4562 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4563 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4564 
4565 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4566 		error = spa_load_best(spa, state, policy.zlp_txg,
4567 		    policy.zlp_rewind);
4568 
4569 		if (error == EBADF) {
4570 			/*
4571 			 * If vdev_validate() returns failure (indicated by
4572 			 * EBADF), it indicates that one of the vdevs indicates
4573 			 * that the pool has been exported or destroyed.  If
4574 			 * this is the case, the config cache is out of sync and
4575 			 * we should remove the pool from the namespace.
4576 			 */
4577 			spa_unload(spa);
4578 			spa_deactivate(spa);
4579 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4580 			spa_remove(spa);
4581 			if (locked)
4582 				mutex_exit(&spa_namespace_lock);
4583 			return (SET_ERROR(ENOENT));
4584 		}
4585 
4586 		if (error) {
4587 			/*
4588 			 * We can't open the pool, but we still have useful
4589 			 * information: the state of each vdev after the
4590 			 * attempted vdev_open().  Return this to the user.
4591 			 */
4592 			if (config != NULL && spa->spa_config) {
4593 				VERIFY(nvlist_dup(spa->spa_config, config,
4594 				    KM_SLEEP) == 0);
4595 				VERIFY(nvlist_add_nvlist(*config,
4596 				    ZPOOL_CONFIG_LOAD_INFO,
4597 				    spa->spa_load_info) == 0);
4598 			}
4599 			spa_unload(spa);
4600 			spa_deactivate(spa);
4601 			spa->spa_last_open_failed = error;
4602 			if (locked)
4603 				mutex_exit(&spa_namespace_lock);
4604 			*spapp = NULL;
4605 			return (error);
4606 		}
4607 	}
4608 
4609 	spa_open_ref(spa, tag);
4610 
4611 	if (config != NULL)
4612 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4613 
4614 	/*
4615 	 * If we've recovered the pool, pass back any information we
4616 	 * gathered while doing the load.
4617 	 */
4618 	if (state == SPA_LOAD_RECOVER) {
4619 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4620 		    spa->spa_load_info) == 0);
4621 	}
4622 
4623 	if (locked) {
4624 		spa->spa_last_open_failed = 0;
4625 		spa->spa_last_ubsync_txg = 0;
4626 		spa->spa_load_txg = 0;
4627 		mutex_exit(&spa_namespace_lock);
4628 	}
4629 
4630 	*spapp = spa;
4631 
4632 	return (0);
4633 }
4634 
4635 int
4636 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4637     nvlist_t **config)
4638 {
4639 	return (spa_open_common(name, spapp, tag, policy, config));
4640 }
4641 
4642 int
4643 spa_open(const char *name, spa_t **spapp, void *tag)
4644 {
4645 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4646 }
4647 
4648 /*
4649  * Lookup the given spa_t, incrementing the inject count in the process,
4650  * preventing it from being exported or destroyed.
4651  */
4652 spa_t *
4653 spa_inject_addref(char *name)
4654 {
4655 	spa_t *spa;
4656 
4657 	mutex_enter(&spa_namespace_lock);
4658 	if ((spa = spa_lookup(name)) == NULL) {
4659 		mutex_exit(&spa_namespace_lock);
4660 		return (NULL);
4661 	}
4662 	spa->spa_inject_ref++;
4663 	mutex_exit(&spa_namespace_lock);
4664 
4665 	return (spa);
4666 }
4667 
4668 void
4669 spa_inject_delref(spa_t *spa)
4670 {
4671 	mutex_enter(&spa_namespace_lock);
4672 	spa->spa_inject_ref--;
4673 	mutex_exit(&spa_namespace_lock);
4674 }
4675 
4676 /*
4677  * Add spares device information to the nvlist.
4678  */
4679 static void
4680 spa_add_spares(spa_t *spa, nvlist_t *config)
4681 {
4682 	nvlist_t **spares;
4683 	uint_t i, nspares;
4684 	nvlist_t *nvroot;
4685 	uint64_t guid;
4686 	vdev_stat_t *vs;
4687 	uint_t vsc;
4688 	uint64_t pool;
4689 
4690 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4691 
4692 	if (spa->spa_spares.sav_count == 0)
4693 		return;
4694 
4695 	VERIFY(nvlist_lookup_nvlist(config,
4696 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4697 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4698 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4699 	if (nspares != 0) {
4700 		VERIFY(nvlist_add_nvlist_array(nvroot,
4701 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4702 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4703 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4704 
4705 		/*
4706 		 * Go through and find any spares which have since been
4707 		 * repurposed as an active spare.  If this is the case, update
4708 		 * their status appropriately.
4709 		 */
4710 		for (i = 0; i < nspares; i++) {
4711 			VERIFY(nvlist_lookup_uint64(spares[i],
4712 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4713 			if (spa_spare_exists(guid, &pool, NULL) &&
4714 			    pool != 0ULL) {
4715 				VERIFY(nvlist_lookup_uint64_array(
4716 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4717 				    (uint64_t **)&vs, &vsc) == 0);
4718 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4719 				vs->vs_aux = VDEV_AUX_SPARED;
4720 			}
4721 		}
4722 	}
4723 }
4724 
4725 /*
4726  * Add l2cache device information to the nvlist, including vdev stats.
4727  */
4728 static void
4729 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4730 {
4731 	nvlist_t **l2cache;
4732 	uint_t i, j, nl2cache;
4733 	nvlist_t *nvroot;
4734 	uint64_t guid;
4735 	vdev_t *vd;
4736 	vdev_stat_t *vs;
4737 	uint_t vsc;
4738 
4739 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4740 
4741 	if (spa->spa_l2cache.sav_count == 0)
4742 		return;
4743 
4744 	VERIFY(nvlist_lookup_nvlist(config,
4745 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4746 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4747 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4748 	if (nl2cache != 0) {
4749 		VERIFY(nvlist_add_nvlist_array(nvroot,
4750 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4751 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4752 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4753 
4754 		/*
4755 		 * Update level 2 cache device stats.
4756 		 */
4757 
4758 		for (i = 0; i < nl2cache; i++) {
4759 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4760 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4761 
4762 			vd = NULL;
4763 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4764 				if (guid ==
4765 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4766 					vd = spa->spa_l2cache.sav_vdevs[j];
4767 					break;
4768 				}
4769 			}
4770 			ASSERT(vd != NULL);
4771 
4772 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4773 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4774 			    == 0);
4775 			vdev_get_stats(vd, vs);
4776 			vdev_config_generate_stats(vd, l2cache[i]);
4777 
4778 		}
4779 	}
4780 }
4781 
4782 static void
4783 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4784 {
4785 	nvlist_t *features;
4786 	zap_cursor_t zc;
4787 	zap_attribute_t za;
4788 
4789 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4790 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4791 
4792 	if (spa->spa_feat_for_read_obj != 0) {
4793 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4794 		    spa->spa_feat_for_read_obj);
4795 		    zap_cursor_retrieve(&zc, &za) == 0;
4796 		    zap_cursor_advance(&zc)) {
4797 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4798 			    za.za_num_integers == 1);
4799 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4800 			    za.za_first_integer));
4801 		}
4802 		zap_cursor_fini(&zc);
4803 	}
4804 
4805 	if (spa->spa_feat_for_write_obj != 0) {
4806 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4807 		    spa->spa_feat_for_write_obj);
4808 		    zap_cursor_retrieve(&zc, &za) == 0;
4809 		    zap_cursor_advance(&zc)) {
4810 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4811 			    za.za_num_integers == 1);
4812 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4813 			    za.za_first_integer));
4814 		}
4815 		zap_cursor_fini(&zc);
4816 	}
4817 
4818 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4819 	    features) == 0);
4820 	nvlist_free(features);
4821 }
4822 
4823 int
4824 spa_get_stats(const char *name, nvlist_t **config,
4825     char *altroot, size_t buflen)
4826 {
4827 	int error;
4828 	spa_t *spa;
4829 
4830 	*config = NULL;
4831 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4832 
4833 	if (spa != NULL) {
4834 		/*
4835 		 * This still leaves a window of inconsistency where the spares
4836 		 * or l2cache devices could change and the config would be
4837 		 * self-inconsistent.
4838 		 */
4839 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4840 
4841 		if (*config != NULL) {
4842 			uint64_t loadtimes[2];
4843 
4844 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4845 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4846 			VERIFY(nvlist_add_uint64_array(*config,
4847 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4848 
4849 			VERIFY(nvlist_add_uint64(*config,
4850 			    ZPOOL_CONFIG_ERRCOUNT,
4851 			    spa_get_errlog_size(spa)) == 0);
4852 
4853 			if (spa_suspended(spa)) {
4854 				VERIFY(nvlist_add_uint64(*config,
4855 				    ZPOOL_CONFIG_SUSPENDED,
4856 				    spa->spa_failmode) == 0);
4857 				VERIFY(nvlist_add_uint64(*config,
4858 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4859 				    spa->spa_suspended) == 0);
4860 			}
4861 
4862 			spa_add_spares(spa, *config);
4863 			spa_add_l2cache(spa, *config);
4864 			spa_add_feature_stats(spa, *config);
4865 		}
4866 	}
4867 
4868 	/*
4869 	 * We want to get the alternate root even for faulted pools, so we cheat
4870 	 * and call spa_lookup() directly.
4871 	 */
4872 	if (altroot) {
4873 		if (spa == NULL) {
4874 			mutex_enter(&spa_namespace_lock);
4875 			spa = spa_lookup(name);
4876 			if (spa)
4877 				spa_altroot(spa, altroot, buflen);
4878 			else
4879 				altroot[0] = '\0';
4880 			spa = NULL;
4881 			mutex_exit(&spa_namespace_lock);
4882 		} else {
4883 			spa_altroot(spa, altroot, buflen);
4884 		}
4885 	}
4886 
4887 	if (spa != NULL) {
4888 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4889 		spa_close(spa, FTAG);
4890 	}
4891 
4892 	return (error);
4893 }
4894 
4895 /*
4896  * Validate that the auxiliary device array is well formed.  We must have an
4897  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4898  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4899  * specified, as long as they are well-formed.
4900  */
4901 static int
4902 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4903     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4904     vdev_labeltype_t label)
4905 {
4906 	nvlist_t **dev;
4907 	uint_t i, ndev;
4908 	vdev_t *vd;
4909 	int error;
4910 
4911 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4912 
4913 	/*
4914 	 * It's acceptable to have no devs specified.
4915 	 */
4916 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4917 		return (0);
4918 
4919 	if (ndev == 0)
4920 		return (SET_ERROR(EINVAL));
4921 
4922 	/*
4923 	 * Make sure the pool is formatted with a version that supports this
4924 	 * device type.
4925 	 */
4926 	if (spa_version(spa) < version)
4927 		return (SET_ERROR(ENOTSUP));
4928 
4929 	/*
4930 	 * Set the pending device list so we correctly handle device in-use
4931 	 * checking.
4932 	 */
4933 	sav->sav_pending = dev;
4934 	sav->sav_npending = ndev;
4935 
4936 	for (i = 0; i < ndev; i++) {
4937 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4938 		    mode)) != 0)
4939 			goto out;
4940 
4941 		if (!vd->vdev_ops->vdev_op_leaf) {
4942 			vdev_free(vd);
4943 			error = SET_ERROR(EINVAL);
4944 			goto out;
4945 		}
4946 
4947 		vd->vdev_top = vd;
4948 
4949 		if ((error = vdev_open(vd)) == 0 &&
4950 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4951 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4952 			    vd->vdev_guid) == 0);
4953 		}
4954 
4955 		vdev_free(vd);
4956 
4957 		if (error &&
4958 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4959 			goto out;
4960 		else
4961 			error = 0;
4962 	}
4963 
4964 out:
4965 	sav->sav_pending = NULL;
4966 	sav->sav_npending = 0;
4967 	return (error);
4968 }
4969 
4970 static int
4971 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4972 {
4973 	int error;
4974 
4975 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4976 
4977 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4978 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4979 	    VDEV_LABEL_SPARE)) != 0) {
4980 		return (error);
4981 	}
4982 
4983 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4984 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4985 	    VDEV_LABEL_L2CACHE));
4986 }
4987 
4988 static void
4989 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4990     const char *config)
4991 {
4992 	int i;
4993 
4994 	if (sav->sav_config != NULL) {
4995 		nvlist_t **olddevs;
4996 		uint_t oldndevs;
4997 		nvlist_t **newdevs;
4998 
4999 		/*
5000 		 * Generate new dev list by concatentating with the
5001 		 * current dev list.
5002 		 */
5003 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5004 		    &olddevs, &oldndevs) == 0);
5005 
5006 		newdevs = kmem_alloc(sizeof (void *) *
5007 		    (ndevs + oldndevs), KM_SLEEP);
5008 		for (i = 0; i < oldndevs; i++)
5009 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5010 			    KM_SLEEP) == 0);
5011 		for (i = 0; i < ndevs; i++)
5012 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5013 			    KM_SLEEP) == 0);
5014 
5015 		VERIFY(nvlist_remove(sav->sav_config, config,
5016 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5017 
5018 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5019 		    config, newdevs, ndevs + oldndevs) == 0);
5020 		for (i = 0; i < oldndevs + ndevs; i++)
5021 			nvlist_free(newdevs[i]);
5022 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5023 	} else {
5024 		/*
5025 		 * Generate a new dev list.
5026 		 */
5027 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5028 		    KM_SLEEP) == 0);
5029 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5030 		    devs, ndevs) == 0);
5031 	}
5032 }
5033 
5034 /*
5035  * Stop and drop level 2 ARC devices
5036  */
5037 void
5038 spa_l2cache_drop(spa_t *spa)
5039 {
5040 	vdev_t *vd;
5041 	int i;
5042 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5043 
5044 	for (i = 0; i < sav->sav_count; i++) {
5045 		uint64_t pool;
5046 
5047 		vd = sav->sav_vdevs[i];
5048 		ASSERT(vd != NULL);
5049 
5050 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5051 		    pool != 0ULL && l2arc_vdev_present(vd))
5052 			l2arc_remove_vdev(vd);
5053 	}
5054 }
5055 
5056 /*
5057  * Verify encryption parameters for spa creation. If we are encrypting, we must
5058  * have the encryption feature flag enabled.
5059  */
5060 static int
5061 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5062     boolean_t has_encryption)
5063 {
5064 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5065 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5066 	    !has_encryption)
5067 		return (SET_ERROR(ENOTSUP));
5068 
5069 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5070 }
5071 
5072 /*
5073  * Pool Creation
5074  */
5075 int
5076 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5077     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5078 {
5079 	spa_t *spa;
5080 	char *altroot = NULL;
5081 	vdev_t *rvd;
5082 	dsl_pool_t *dp;
5083 	dmu_tx_t *tx;
5084 	int error = 0;
5085 	uint64_t txg = TXG_INITIAL;
5086 	nvlist_t **spares, **l2cache;
5087 	uint_t nspares, nl2cache;
5088 	uint64_t version, obj;
5089 	boolean_t has_features;
5090 	char *poolname;
5091 	nvlist_t *nvl;
5092 	boolean_t has_encryption;
5093 	spa_feature_t feat;
5094 	char *feat_name;
5095 
5096 	if (props == NULL ||
5097 	    nvlist_lookup_string(props,
5098 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5099 		poolname = (char *)pool;
5100 
5101 	/*
5102 	 * If this pool already exists, return failure.
5103 	 */
5104 	mutex_enter(&spa_namespace_lock);
5105 	if (spa_lookup(poolname) != NULL) {
5106 		mutex_exit(&spa_namespace_lock);
5107 		return (SET_ERROR(EEXIST));
5108 	}
5109 
5110 	/*
5111 	 * Allocate a new spa_t structure.
5112 	 */
5113 	nvl = fnvlist_alloc();
5114 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5115 	(void) nvlist_lookup_string(props,
5116 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5117 	spa = spa_add(poolname, nvl, altroot);
5118 	fnvlist_free(nvl);
5119 	spa_activate(spa, spa_mode_global);
5120 
5121 	if (props && (error = spa_prop_validate(spa, props))) {
5122 		spa_deactivate(spa);
5123 		spa_remove(spa);
5124 		mutex_exit(&spa_namespace_lock);
5125 		return (error);
5126 	}
5127 
5128 	/*
5129 	 * Temporary pool names should never be written to disk.
5130 	 */
5131 	if (poolname != pool)
5132 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5133 
5134 	has_features = B_FALSE;
5135 	has_encryption = B_FALSE;
5136 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5137 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5138 		if (zpool_prop_feature(nvpair_name(elem))) {
5139 			has_features = B_TRUE;
5140 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5141 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5142 			if (feat == SPA_FEATURE_ENCRYPTION)
5143 				has_encryption = B_TRUE;
5144 		}
5145 	}
5146 
5147 	/* verify encryption params, if they were provided */
5148 	if (dcp != NULL) {
5149 		error = spa_create_check_encryption_params(dcp, has_encryption);
5150 		if (error != 0) {
5151 			spa_deactivate(spa);
5152 			spa_remove(spa);
5153 			mutex_exit(&spa_namespace_lock);
5154 			return (error);
5155 		}
5156 	}
5157 
5158 	if (has_features || nvlist_lookup_uint64(props,
5159 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5160 		version = SPA_VERSION;
5161 	}
5162 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5163 
5164 	spa->spa_first_txg = txg;
5165 	spa->spa_uberblock.ub_txg = txg - 1;
5166 	spa->spa_uberblock.ub_version = version;
5167 	spa->spa_ubsync = spa->spa_uberblock;
5168 	spa->spa_load_state = SPA_LOAD_CREATE;
5169 	spa->spa_removing_phys.sr_state = DSS_NONE;
5170 	spa->spa_removing_phys.sr_removing_vdev = -1;
5171 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5172 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5173 
5174 	/*
5175 	 * Create "The Godfather" zio to hold all async IOs
5176 	 */
5177 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5178 	    KM_SLEEP);
5179 	for (int i = 0; i < max_ncpus; i++) {
5180 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5181 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5182 		    ZIO_FLAG_GODFATHER);
5183 	}
5184 
5185 	/*
5186 	 * Create the root vdev.
5187 	 */
5188 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5189 
5190 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5191 
5192 	ASSERT(error != 0 || rvd != NULL);
5193 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5194 
5195 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5196 		error = SET_ERROR(EINVAL);
5197 
5198 	if (error == 0 &&
5199 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5200 	    (error = spa_validate_aux(spa, nvroot, txg,
5201 	    VDEV_ALLOC_ADD)) == 0) {
5202 		/*
5203 		 * instantiate the metaslab groups (this will dirty the vdevs)
5204 		 * we can no longer error exit past this point
5205 		 */
5206 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5207 			vdev_t *vd = rvd->vdev_child[c];
5208 
5209 			vdev_metaslab_set_size(vd);
5210 			vdev_expand(vd, txg);
5211 		}
5212 	}
5213 
5214 	spa_config_exit(spa, SCL_ALL, FTAG);
5215 
5216 	if (error != 0) {
5217 		spa_unload(spa);
5218 		spa_deactivate(spa);
5219 		spa_remove(spa);
5220 		mutex_exit(&spa_namespace_lock);
5221 		return (error);
5222 	}
5223 
5224 	/*
5225 	 * Get the list of spares, if specified.
5226 	 */
5227 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5228 	    &spares, &nspares) == 0) {
5229 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5230 		    KM_SLEEP) == 0);
5231 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5232 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5233 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5234 		spa_load_spares(spa);
5235 		spa_config_exit(spa, SCL_ALL, FTAG);
5236 		spa->spa_spares.sav_sync = B_TRUE;
5237 	}
5238 
5239 	/*
5240 	 * Get the list of level 2 cache devices, if specified.
5241 	 */
5242 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5243 	    &l2cache, &nl2cache) == 0) {
5244 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5245 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5246 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5247 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5248 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5249 		spa_load_l2cache(spa);
5250 		spa_config_exit(spa, SCL_ALL, FTAG);
5251 		spa->spa_l2cache.sav_sync = B_TRUE;
5252 	}
5253 
5254 	spa->spa_is_initializing = B_TRUE;
5255 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5256 	spa->spa_is_initializing = B_FALSE;
5257 
5258 	/*
5259 	 * Create DDTs (dedup tables).
5260 	 */
5261 	ddt_create(spa);
5262 
5263 	spa_update_dspace(spa);
5264 
5265 	tx = dmu_tx_create_assigned(dp, txg);
5266 
5267 	/*
5268 	 * Create the pool config object.
5269 	 */
5270 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5271 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5272 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5273 
5274 	if (zap_add(spa->spa_meta_objset,
5275 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5276 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5277 		cmn_err(CE_PANIC, "failed to add pool config");
5278 	}
5279 
5280 	if (zap_add(spa->spa_meta_objset,
5281 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5282 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5283 		cmn_err(CE_PANIC, "failed to add pool version");
5284 	}
5285 
5286 	/* Newly created pools with the right version are always deflated. */
5287 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5288 		spa->spa_deflate = TRUE;
5289 		if (zap_add(spa->spa_meta_objset,
5290 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5291 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5292 			cmn_err(CE_PANIC, "failed to add deflate");
5293 		}
5294 	}
5295 
5296 	/*
5297 	 * Create the deferred-free bpobj.  Turn off compression
5298 	 * because sync-to-convergence takes longer if the blocksize
5299 	 * keeps changing.
5300 	 */
5301 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5302 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5303 	    ZIO_COMPRESS_OFF, tx);
5304 	if (zap_add(spa->spa_meta_objset,
5305 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5306 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5307 		cmn_err(CE_PANIC, "failed to add bpobj");
5308 	}
5309 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5310 	    spa->spa_meta_objset, obj));
5311 
5312 	/*
5313 	 * Create the pool's history object.
5314 	 */
5315 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5316 		spa_history_create_obj(spa, tx);
5317 
5318 	/*
5319 	 * Generate some random noise for salted checksums to operate on.
5320 	 */
5321 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5322 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5323 
5324 	/*
5325 	 * Set pool properties.
5326 	 */
5327 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5328 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5329 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5330 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5331 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5332 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5333 
5334 	if (props != NULL) {
5335 		spa_configfile_set(spa, props, B_FALSE);
5336 		spa_sync_props(props, tx);
5337 	}
5338 
5339 	dmu_tx_commit(tx);
5340 
5341 	spa->spa_sync_on = B_TRUE;
5342 	txg_sync_start(spa->spa_dsl_pool);
5343 	mmp_thread_start(spa);
5344 
5345 	/*
5346 	 * We explicitly wait for the first transaction to complete so that our
5347 	 * bean counters are appropriately updated.
5348 	 */
5349 	txg_wait_synced(spa->spa_dsl_pool, txg);
5350 
5351 	spa_spawn_aux_threads(spa);
5352 
5353 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5354 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5355 
5356 	spa_history_log_version(spa, "create");
5357 
5358 	/*
5359 	 * Don't count references from objsets that are already closed
5360 	 * and are making their way through the eviction process.
5361 	 */
5362 	spa_evicting_os_wait(spa);
5363 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5364 	spa->spa_load_state = SPA_LOAD_NONE;
5365 
5366 	mutex_exit(&spa_namespace_lock);
5367 
5368 	return (0);
5369 }
5370 
5371 #ifdef _KERNEL
5372 /*
5373  * Get the root pool information from the root disk, then import the root pool
5374  * during the system boot up time.
5375  */
5376 static nvlist_t *
5377 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5378     uint64_t pool_guid)
5379 {
5380 	nvlist_t *config;
5381 	nvlist_t *nvtop, *nvroot;
5382 	uint64_t pgid;
5383 
5384 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5385 		return (NULL);
5386 
5387 	/*
5388 	 * Add this top-level vdev to the child array.
5389 	 */
5390 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5391 	    &nvtop) == 0);
5392 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5393 	    &pgid) == 0);
5394 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5395 
5396 	if (pool_guid != 0 && pool_guid != pgid) {
5397 		/*
5398 		 * The boot loader provided a pool GUID, but it does not match
5399 		 * the one we found in the label.  Return failure so that we
5400 		 * can fall back to the full device scan.
5401 		 */
5402 		zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5403 		    "label pool guid %llu", (u_longlong_t)pool_guid,
5404 		    (u_longlong_t)pgid);
5405 		nvlist_free(config);
5406 		return (NULL);
5407 	}
5408 
5409 	/*
5410 	 * Put this pool's top-level vdevs into a root vdev.
5411 	 */
5412 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5413 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5414 	    VDEV_TYPE_ROOT) == 0);
5415 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5416 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5417 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5418 	    &nvtop, 1) == 0);
5419 
5420 	/*
5421 	 * Replace the existing vdev_tree with the new root vdev in
5422 	 * this pool's configuration (remove the old, add the new).
5423 	 */
5424 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5425 	nvlist_free(nvroot);
5426 	return (config);
5427 }
5428 
5429 /*
5430  * Walk the vdev tree and see if we can find a device with "better"
5431  * configuration. A configuration is "better" if the label on that
5432  * device has a more recent txg.
5433  */
5434 static void
5435 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5436 {
5437 	for (int c = 0; c < vd->vdev_children; c++)
5438 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5439 
5440 	if (vd->vdev_ops->vdev_op_leaf) {
5441 		nvlist_t *label;
5442 		uint64_t label_txg;
5443 
5444 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5445 		    &label) != 0)
5446 			return;
5447 
5448 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5449 		    &label_txg) == 0);
5450 
5451 		/*
5452 		 * Do we have a better boot device?
5453 		 */
5454 		if (label_txg > *txg) {
5455 			*txg = label_txg;
5456 			*avd = vd;
5457 		}
5458 		nvlist_free(label);
5459 	}
5460 }
5461 
5462 /*
5463  * Import a root pool.
5464  *
5465  * For x86. devpath_list will consist of devid and/or physpath name of
5466  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5467  * The GRUB "findroot" command will return the vdev we should boot.
5468  *
5469  * For Sparc, devpath_list consists the physpath name of the booting device
5470  * no matter the rootpool is a single device pool or a mirrored pool.
5471  * e.g.
5472  *	"/pci@1f,0/ide@d/disk@0,0:a"
5473  */
5474 int
5475 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5476     uint64_t vdev_guid)
5477 {
5478 	spa_t *spa;
5479 	vdev_t *rvd, *bvd, *avd = NULL;
5480 	nvlist_t *config, *nvtop;
5481 	uint64_t guid, txg;
5482 	char *pname;
5483 	int error;
5484 	const char *altdevpath = NULL;
5485 	const char *rdpath = NULL;
5486 
5487 	if ((rdpath = vdev_disk_preroot_force_path()) != NULL) {
5488 		/*
5489 		 * We expect to import a single-vdev pool from a specific
5490 		 * device such as a ramdisk device.  We don't care what the
5491 		 * pool label says.
5492 		 */
5493 		config = spa_generate_rootconf(rdpath, NULL, &guid, 0);
5494 		if (config != NULL) {
5495 			goto configok;
5496 		}
5497 		cmn_err(CE_NOTE, "Cannot use root disk device '%s'", rdpath);
5498 		return (SET_ERROR(EIO));
5499 	}
5500 
5501 	/*
5502 	 * Read the label from the boot device and generate a configuration.
5503 	 */
5504 	config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5505 #if defined(_OBP) && defined(_KERNEL)
5506 	if (config == NULL) {
5507 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5508 			/* iscsi boot */
5509 			get_iscsi_bootpath_phy(devpath);
5510 			config = spa_generate_rootconf(devpath, devid, &guid,
5511 			    pool_guid);
5512 		}
5513 	}
5514 #endif
5515 
5516 	/*
5517 	 * We were unable to import the pool using the /devices path or devid
5518 	 * provided by the boot loader.  This may be the case if the boot
5519 	 * device has been connected to a different location in the system, or
5520 	 * if a new boot environment has changed the driver used to access the
5521 	 * boot device.
5522 	 *
5523 	 * Attempt an exhaustive scan of all visible block devices to see if we
5524 	 * can locate an alternative /devices path with a label that matches
5525 	 * the expected pool and vdev GUID.
5526 	 */
5527 	if (config == NULL && (altdevpath =
5528 	    vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5529 		cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5530 		    "ZFS is trying an alternate path (%s)", devpath,
5531 		    altdevpath);
5532 		config = spa_generate_rootconf(altdevpath, NULL, &guid,
5533 		    pool_guid);
5534 	}
5535 
5536 	if (config == NULL) {
5537 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5538 		    devpath);
5539 		return (SET_ERROR(EIO));
5540 	}
5541 
5542 configok:
5543 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5544 	    &pname) == 0);
5545 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5546 
5547 	mutex_enter(&spa_namespace_lock);
5548 	if ((spa = spa_lookup(pname)) != NULL) {
5549 		/*
5550 		 * Remove the existing root pool from the namespace so that we
5551 		 * can replace it with the correct config we just read in.
5552 		 */
5553 		spa_remove(spa);
5554 	}
5555 
5556 	spa = spa_add(pname, config, NULL);
5557 	spa->spa_is_root = B_TRUE;
5558 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5559 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5560 	    &spa->spa_ubsync.ub_version) != 0)
5561 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5562 
5563 	/*
5564 	 * Build up a vdev tree based on the boot device's label config.
5565 	 */
5566 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5567 	    &nvtop) == 0);
5568 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5569 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5570 	    VDEV_ALLOC_ROOTPOOL);
5571 	spa_config_exit(spa, SCL_ALL, FTAG);
5572 	if (error) {
5573 		mutex_exit(&spa_namespace_lock);
5574 		nvlist_free(config);
5575 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5576 		    pname);
5577 		return (error);
5578 	}
5579 
5580 	/*
5581 	 * Get the boot vdev.
5582 	 */
5583 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5584 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5585 		    (u_longlong_t)guid);
5586 		error = SET_ERROR(ENOENT);
5587 		goto out;
5588 	}
5589 
5590 	/*
5591 	 * Determine if there is a better boot device.
5592 	 */
5593 	avd = bvd;
5594 	spa_alt_rootvdev(rvd, &avd, &txg);
5595 	if (avd != bvd) {
5596 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5597 		    "try booting from '%s'", avd->vdev_path);
5598 		error = SET_ERROR(EINVAL);
5599 		goto out;
5600 	}
5601 
5602 	/*
5603 	 * If the boot device is part of a spare vdev then ensure that
5604 	 * we're booting off the active spare.
5605 	 */
5606 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5607 	    !bvd->vdev_isspare) {
5608 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5609 		    "try booting from '%s'",
5610 		    bvd->vdev_parent->
5611 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5612 		error = SET_ERROR(EINVAL);
5613 		goto out;
5614 	}
5615 
5616 	/*
5617 	 * The root disk may have been expanded while the system was offline.
5618 	 * Kick off an async task to check for and handle expansion.
5619 	 */
5620 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5621 
5622 	error = 0;
5623 out:
5624 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5625 	vdev_free(rvd);
5626 	spa_config_exit(spa, SCL_ALL, FTAG);
5627 	mutex_exit(&spa_namespace_lock);
5628 
5629 	nvlist_free(config);
5630 	return (error);
5631 }
5632 
5633 #endif
5634 
5635 /*
5636  * Import a non-root pool into the system.
5637  */
5638 int
5639 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5640 {
5641 	spa_t *spa;
5642 	char *altroot = NULL;
5643 	spa_load_state_t state = SPA_LOAD_IMPORT;
5644 	zpool_load_policy_t policy;
5645 	uint64_t mode = spa_mode_global;
5646 	uint64_t readonly = B_FALSE;
5647 	int error;
5648 	nvlist_t *nvroot;
5649 	nvlist_t **spares, **l2cache;
5650 	uint_t nspares, nl2cache;
5651 
5652 	/*
5653 	 * If a pool with this name exists, return failure.
5654 	 */
5655 	mutex_enter(&spa_namespace_lock);
5656 	if (spa_lookup(pool) != NULL) {
5657 		mutex_exit(&spa_namespace_lock);
5658 		return (SET_ERROR(EEXIST));
5659 	}
5660 
5661 	/*
5662 	 * Create and initialize the spa structure.
5663 	 */
5664 	(void) nvlist_lookup_string(props,
5665 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5666 	(void) nvlist_lookup_uint64(props,
5667 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5668 	if (readonly)
5669 		mode = FREAD;
5670 	spa = spa_add(pool, config, altroot);
5671 	spa->spa_import_flags = flags;
5672 
5673 	/*
5674 	 * Verbatim import - Take a pool and insert it into the namespace
5675 	 * as if it had been loaded at boot.
5676 	 */
5677 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5678 		if (props != NULL)
5679 			spa_configfile_set(spa, props, B_FALSE);
5680 
5681 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5682 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5683 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5684 		mutex_exit(&spa_namespace_lock);
5685 		return (0);
5686 	}
5687 
5688 	spa_activate(spa, mode);
5689 
5690 	/*
5691 	 * Don't start async tasks until we know everything is healthy.
5692 	 */
5693 	spa_async_suspend(spa);
5694 
5695 	zpool_get_load_policy(config, &policy);
5696 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5697 		state = SPA_LOAD_RECOVER;
5698 
5699 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5700 
5701 	if (state != SPA_LOAD_RECOVER) {
5702 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5703 		zfs_dbgmsg("spa_import: importing %s", pool);
5704 	} else {
5705 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5706 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5707 	}
5708 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5709 
5710 	/*
5711 	 * Propagate anything learned while loading the pool and pass it
5712 	 * back to caller (i.e. rewind info, missing devices, etc).
5713 	 */
5714 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5715 	    spa->spa_load_info) == 0);
5716 
5717 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5718 	/*
5719 	 * Toss any existing sparelist, as it doesn't have any validity
5720 	 * anymore, and conflicts with spa_has_spare().
5721 	 */
5722 	if (spa->spa_spares.sav_config) {
5723 		nvlist_free(spa->spa_spares.sav_config);
5724 		spa->spa_spares.sav_config = NULL;
5725 		spa_load_spares(spa);
5726 	}
5727 	if (spa->spa_l2cache.sav_config) {
5728 		nvlist_free(spa->spa_l2cache.sav_config);
5729 		spa->spa_l2cache.sav_config = NULL;
5730 		spa_load_l2cache(spa);
5731 	}
5732 
5733 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5734 	    &nvroot) == 0);
5735 	if (error == 0)
5736 		error = spa_validate_aux(spa, nvroot, -1ULL,
5737 		    VDEV_ALLOC_SPARE);
5738 	if (error == 0)
5739 		error = spa_validate_aux(spa, nvroot, -1ULL,
5740 		    VDEV_ALLOC_L2CACHE);
5741 	spa_config_exit(spa, SCL_ALL, FTAG);
5742 
5743 	if (props != NULL)
5744 		spa_configfile_set(spa, props, B_FALSE);
5745 
5746 	if (error != 0 || (props && spa_writeable(spa) &&
5747 	    (error = spa_prop_set(spa, props)))) {
5748 		spa_unload(spa);
5749 		spa_deactivate(spa);
5750 		spa_remove(spa);
5751 		mutex_exit(&spa_namespace_lock);
5752 		return (error);
5753 	}
5754 
5755 	spa_async_resume(spa);
5756 
5757 	/*
5758 	 * Override any spares and level 2 cache devices as specified by
5759 	 * the user, as these may have correct device names/devids, etc.
5760 	 */
5761 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5762 	    &spares, &nspares) == 0) {
5763 		if (spa->spa_spares.sav_config)
5764 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5765 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5766 		else
5767 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5768 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5769 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5770 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5771 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5772 		spa_load_spares(spa);
5773 		spa_config_exit(spa, SCL_ALL, FTAG);
5774 		spa->spa_spares.sav_sync = B_TRUE;
5775 	}
5776 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5777 	    &l2cache, &nl2cache) == 0) {
5778 		if (spa->spa_l2cache.sav_config)
5779 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5780 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5781 		else
5782 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5783 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5784 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5785 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5786 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5787 		spa_load_l2cache(spa);
5788 		spa_config_exit(spa, SCL_ALL, FTAG);
5789 		spa->spa_l2cache.sav_sync = B_TRUE;
5790 	}
5791 
5792 	/*
5793 	 * Check for any removed devices.
5794 	 */
5795 	if (spa->spa_autoreplace) {
5796 		spa_aux_check_removed(&spa->spa_spares);
5797 		spa_aux_check_removed(&spa->spa_l2cache);
5798 	}
5799 
5800 	if (spa_writeable(spa)) {
5801 		/*
5802 		 * Update the config cache to include the newly-imported pool.
5803 		 */
5804 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5805 	}
5806 
5807 	/*
5808 	 * It's possible that the pool was expanded while it was exported.
5809 	 * We kick off an async task to handle this for us.
5810 	 */
5811 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5812 
5813 	spa_history_log_version(spa, "import");
5814 
5815 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5816 
5817 	mutex_exit(&spa_namespace_lock);
5818 
5819 	return (0);
5820 }
5821 
5822 nvlist_t *
5823 spa_tryimport(nvlist_t *tryconfig)
5824 {
5825 	nvlist_t *config = NULL;
5826 	char *poolname, *cachefile;
5827 	spa_t *spa;
5828 	uint64_t state;
5829 	int error;
5830 	zpool_load_policy_t policy;
5831 
5832 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5833 		return (NULL);
5834 
5835 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5836 		return (NULL);
5837 
5838 	/*
5839 	 * Create and initialize the spa structure.
5840 	 */
5841 	mutex_enter(&spa_namespace_lock);
5842 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5843 	spa_activate(spa, FREAD);
5844 
5845 	/*
5846 	 * Rewind pool if a max txg was provided.
5847 	 */
5848 	zpool_get_load_policy(spa->spa_config, &policy);
5849 	if (policy.zlp_txg != UINT64_MAX) {
5850 		spa->spa_load_max_txg = policy.zlp_txg;
5851 		spa->spa_extreme_rewind = B_TRUE;
5852 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5853 		    poolname, (longlong_t)policy.zlp_txg);
5854 	} else {
5855 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5856 	}
5857 
5858 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5859 	    == 0) {
5860 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5861 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5862 	} else {
5863 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5864 	}
5865 
5866 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5867 
5868 	/*
5869 	 * If 'tryconfig' was at least parsable, return the current config.
5870 	 */
5871 	if (spa->spa_root_vdev != NULL) {
5872 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5873 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5874 		    poolname) == 0);
5875 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5876 		    state) == 0);
5877 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5878 		    spa->spa_uberblock.ub_timestamp) == 0);
5879 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5880 		    spa->spa_load_info) == 0);
5881 
5882 		/*
5883 		 * If the bootfs property exists on this pool then we
5884 		 * copy it out so that external consumers can tell which
5885 		 * pools are bootable.
5886 		 */
5887 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5888 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5889 
5890 			/*
5891 			 * We have to play games with the name since the
5892 			 * pool was opened as TRYIMPORT_NAME.
5893 			 */
5894 			if (dsl_dsobj_to_dsname(spa_name(spa),
5895 			    spa->spa_bootfs, tmpname) == 0) {
5896 				char *cp;
5897 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5898 
5899 				cp = strchr(tmpname, '/');
5900 				if (cp == NULL) {
5901 					(void) strlcpy(dsname, tmpname,
5902 					    MAXPATHLEN);
5903 				} else {
5904 					(void) snprintf(dsname, MAXPATHLEN,
5905 					    "%s/%s", poolname, ++cp);
5906 				}
5907 				VERIFY(nvlist_add_string(config,
5908 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5909 				kmem_free(dsname, MAXPATHLEN);
5910 			}
5911 			kmem_free(tmpname, MAXPATHLEN);
5912 		}
5913 
5914 		/*
5915 		 * Add the list of hot spares and level 2 cache devices.
5916 		 */
5917 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5918 		spa_add_spares(spa, config);
5919 		spa_add_l2cache(spa, config);
5920 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5921 	}
5922 
5923 	spa_unload(spa);
5924 	spa_deactivate(spa);
5925 	spa_remove(spa);
5926 	mutex_exit(&spa_namespace_lock);
5927 
5928 	return (config);
5929 }
5930 
5931 /*
5932  * Pool export/destroy
5933  *
5934  * The act of destroying or exporting a pool is very simple.  We make sure there
5935  * is no more pending I/O and any references to the pool are gone.  Then, we
5936  * update the pool state and sync all the labels to disk, removing the
5937  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5938  * we don't sync the labels or remove the configuration cache.
5939  */
5940 static int
5941 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5942     boolean_t force, boolean_t hardforce)
5943 {
5944 	spa_t *spa;
5945 
5946 	if (oldconfig)
5947 		*oldconfig = NULL;
5948 
5949 	if (!(spa_mode_global & FWRITE))
5950 		return (SET_ERROR(EROFS));
5951 
5952 	mutex_enter(&spa_namespace_lock);
5953 	if ((spa = spa_lookup(pool)) == NULL) {
5954 		mutex_exit(&spa_namespace_lock);
5955 		return (SET_ERROR(ENOENT));
5956 	}
5957 
5958 	/*
5959 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5960 	 * reacquire the namespace lock, and see if we can export.
5961 	 */
5962 	spa_open_ref(spa, FTAG);
5963 	mutex_exit(&spa_namespace_lock);
5964 	spa_async_suspend(spa);
5965 	mutex_enter(&spa_namespace_lock);
5966 	spa_close(spa, FTAG);
5967 
5968 	/*
5969 	 * The pool will be in core if it's openable,
5970 	 * in which case we can modify its state.
5971 	 */
5972 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5973 
5974 		/*
5975 		 * Objsets may be open only because they're dirty, so we
5976 		 * have to force it to sync before checking spa_refcnt.
5977 		 */
5978 		txg_wait_synced(spa->spa_dsl_pool, 0);
5979 		spa_evicting_os_wait(spa);
5980 
5981 		/*
5982 		 * A pool cannot be exported or destroyed if there are active
5983 		 * references.  If we are resetting a pool, allow references by
5984 		 * fault injection handlers.
5985 		 */
5986 		if (!spa_refcount_zero(spa) ||
5987 		    (spa->spa_inject_ref != 0 &&
5988 		    new_state != POOL_STATE_UNINITIALIZED)) {
5989 			spa_async_resume(spa);
5990 			mutex_exit(&spa_namespace_lock);
5991 			return (SET_ERROR(EBUSY));
5992 		}
5993 
5994 		/*
5995 		 * A pool cannot be exported if it has an active shared spare.
5996 		 * This is to prevent other pools stealing the active spare
5997 		 * from an exported pool. At user's own will, such pool can
5998 		 * be forcedly exported.
5999 		 */
6000 		if (!force && new_state == POOL_STATE_EXPORTED &&
6001 		    spa_has_active_shared_spare(spa)) {
6002 			spa_async_resume(spa);
6003 			mutex_exit(&spa_namespace_lock);
6004 			return (SET_ERROR(EXDEV));
6005 		}
6006 
6007 		/*
6008 		 * We're about to export or destroy this pool. Make sure
6009 		 * we stop all initialization and trim activity here before
6010 		 * we set the spa_final_txg. This will ensure that all
6011 		 * dirty data resulting from the initialization is
6012 		 * committed to disk before we unload the pool.
6013 		 */
6014 		if (spa->spa_root_vdev != NULL) {
6015 			vdev_t *rvd = spa->spa_root_vdev;
6016 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6017 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6018 			vdev_autotrim_stop_all(spa);
6019 		}
6020 
6021 		/*
6022 		 * We want this to be reflected on every label,
6023 		 * so mark them all dirty.  spa_unload() will do the
6024 		 * final sync that pushes these changes out.
6025 		 */
6026 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6027 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6028 			spa->spa_state = new_state;
6029 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6030 			    TXG_DEFER_SIZE + 1;
6031 			vdev_config_dirty(spa->spa_root_vdev);
6032 			spa_config_exit(spa, SCL_ALL, FTAG);
6033 		}
6034 	}
6035 
6036 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6037 
6038 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6039 		spa_unload(spa);
6040 		spa_deactivate(spa);
6041 	}
6042 
6043 	if (oldconfig && spa->spa_config)
6044 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6045 
6046 	if (new_state != POOL_STATE_UNINITIALIZED) {
6047 		if (!hardforce)
6048 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6049 		spa_remove(spa);
6050 	}
6051 	mutex_exit(&spa_namespace_lock);
6052 
6053 	return (0);
6054 }
6055 
6056 /*
6057  * Destroy a storage pool.
6058  */
6059 int
6060 spa_destroy(char *pool)
6061 {
6062 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6063 	    B_FALSE, B_FALSE));
6064 }
6065 
6066 /*
6067  * Export a storage pool.
6068  */
6069 int
6070 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6071     boolean_t hardforce)
6072 {
6073 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6074 	    force, hardforce));
6075 }
6076 
6077 /*
6078  * Similar to spa_export(), this unloads the spa_t without actually removing it
6079  * from the namespace in any way.
6080  */
6081 int
6082 spa_reset(char *pool)
6083 {
6084 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6085 	    B_FALSE, B_FALSE));
6086 }
6087 
6088 /*
6089  * ==========================================================================
6090  * Device manipulation
6091  * ==========================================================================
6092  */
6093 
6094 /*
6095  * Add a device to a storage pool.
6096  */
6097 int
6098 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6099 {
6100 	uint64_t txg;
6101 	int error;
6102 	vdev_t *rvd = spa->spa_root_vdev;
6103 	vdev_t *vd, *tvd;
6104 	nvlist_t **spares, **l2cache;
6105 	uint_t nspares, nl2cache;
6106 
6107 	ASSERT(spa_writeable(spa));
6108 
6109 	txg = spa_vdev_enter(spa);
6110 
6111 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6112 	    VDEV_ALLOC_ADD)) != 0)
6113 		return (spa_vdev_exit(spa, NULL, txg, error));
6114 
6115 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6116 
6117 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6118 	    &nspares) != 0)
6119 		nspares = 0;
6120 
6121 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6122 	    &nl2cache) != 0)
6123 		nl2cache = 0;
6124 
6125 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6126 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6127 
6128 	if (vd->vdev_children != 0 &&
6129 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6130 		return (spa_vdev_exit(spa, vd, txg, error));
6131 
6132 	/*
6133 	 * We must validate the spares and l2cache devices after checking the
6134 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6135 	 */
6136 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6137 		return (spa_vdev_exit(spa, vd, txg, error));
6138 
6139 	/*
6140 	 * If we are in the middle of a device removal, we can only add
6141 	 * devices which match the existing devices in the pool.
6142 	 * If we are in the middle of a removal, or have some indirect
6143 	 * vdevs, we can not add raidz toplevels.
6144 	 */
6145 	if (spa->spa_vdev_removal != NULL ||
6146 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6147 		for (int c = 0; c < vd->vdev_children; c++) {
6148 			tvd = vd->vdev_child[c];
6149 			if (spa->spa_vdev_removal != NULL &&
6150 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6151 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6152 			}
6153 			/* Fail if top level vdev is raidz */
6154 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6155 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6156 			}
6157 			/*
6158 			 * Need the top level mirror to be
6159 			 * a mirror of leaf vdevs only
6160 			 */
6161 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6162 				for (uint64_t cid = 0;
6163 				    cid < tvd->vdev_children; cid++) {
6164 					vdev_t *cvd = tvd->vdev_child[cid];
6165 					if (!cvd->vdev_ops->vdev_op_leaf) {
6166 						return (spa_vdev_exit(spa, vd,
6167 						    txg, EINVAL));
6168 					}
6169 				}
6170 			}
6171 		}
6172 	}
6173 
6174 	for (int c = 0; c < vd->vdev_children; c++) {
6175 		tvd = vd->vdev_child[c];
6176 		vdev_remove_child(vd, tvd);
6177 		tvd->vdev_id = rvd->vdev_children;
6178 		vdev_add_child(rvd, tvd);
6179 		vdev_config_dirty(tvd);
6180 	}
6181 
6182 	if (nspares != 0) {
6183 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6184 		    ZPOOL_CONFIG_SPARES);
6185 		spa_load_spares(spa);
6186 		spa->spa_spares.sav_sync = B_TRUE;
6187 	}
6188 
6189 	if (nl2cache != 0) {
6190 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6191 		    ZPOOL_CONFIG_L2CACHE);
6192 		spa_load_l2cache(spa);
6193 		spa->spa_l2cache.sav_sync = B_TRUE;
6194 	}
6195 
6196 	/*
6197 	 * We have to be careful when adding new vdevs to an existing pool.
6198 	 * If other threads start allocating from these vdevs before we
6199 	 * sync the config cache, and we lose power, then upon reboot we may
6200 	 * fail to open the pool because there are DVAs that the config cache
6201 	 * can't translate.  Therefore, we first add the vdevs without
6202 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6203 	 * and then let spa_config_update() initialize the new metaslabs.
6204 	 *
6205 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6206 	 * if we lose power at any point in this sequence, the remaining
6207 	 * steps will be completed the next time we load the pool.
6208 	 */
6209 	(void) spa_vdev_exit(spa, vd, txg, 0);
6210 
6211 	mutex_enter(&spa_namespace_lock);
6212 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6213 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6214 	mutex_exit(&spa_namespace_lock);
6215 
6216 	return (0);
6217 }
6218 
6219 /*
6220  * Attach a device to a mirror.  The arguments are the path to any device
6221  * in the mirror, and the nvroot for the new device.  If the path specifies
6222  * a device that is not mirrored, we automatically insert the mirror vdev.
6223  *
6224  * If 'replacing' is specified, the new device is intended to replace the
6225  * existing device; in this case the two devices are made into their own
6226  * mirror using the 'replacing' vdev, which is functionally identical to
6227  * the mirror vdev (it actually reuses all the same ops) but has a few
6228  * extra rules: you can't attach to it after it's been created, and upon
6229  * completion of resilvering, the first disk (the one being replaced)
6230  * is automatically detached.
6231  */
6232 int
6233 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6234 {
6235 	uint64_t txg, dtl_max_txg;
6236 	vdev_t *rvd = spa->spa_root_vdev;
6237 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6238 	vdev_ops_t *pvops;
6239 	char *oldvdpath, *newvdpath;
6240 	int newvd_isspare;
6241 	int error;
6242 
6243 	ASSERT(spa_writeable(spa));
6244 
6245 	txg = spa_vdev_enter(spa);
6246 
6247 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6248 
6249 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6250 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6251 		error = (spa_has_checkpoint(spa)) ?
6252 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6253 		return (spa_vdev_exit(spa, NULL, txg, error));
6254 	}
6255 
6256 	if (spa->spa_vdev_removal != NULL)
6257 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6258 
6259 	if (oldvd == NULL)
6260 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6261 
6262 	if (!oldvd->vdev_ops->vdev_op_leaf)
6263 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6264 
6265 	pvd = oldvd->vdev_parent;
6266 
6267 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6268 	    VDEV_ALLOC_ATTACH)) != 0)
6269 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6270 
6271 	if (newrootvd->vdev_children != 1)
6272 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6273 
6274 	newvd = newrootvd->vdev_child[0];
6275 
6276 	if (!newvd->vdev_ops->vdev_op_leaf)
6277 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6278 
6279 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6280 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6281 
6282 	/*
6283 	 * Spares can't replace logs
6284 	 */
6285 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6286 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6287 
6288 	if (!replacing) {
6289 		/*
6290 		 * For attach, the only allowable parent is a mirror or the root
6291 		 * vdev.
6292 		 */
6293 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6294 		    pvd->vdev_ops != &vdev_root_ops)
6295 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6296 
6297 		pvops = &vdev_mirror_ops;
6298 	} else {
6299 		/*
6300 		 * Active hot spares can only be replaced by inactive hot
6301 		 * spares.
6302 		 */
6303 		if (pvd->vdev_ops == &vdev_spare_ops &&
6304 		    oldvd->vdev_isspare &&
6305 		    !spa_has_spare(spa, newvd->vdev_guid))
6306 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6307 
6308 		/*
6309 		 * If the source is a hot spare, and the parent isn't already a
6310 		 * spare, then we want to create a new hot spare.  Otherwise, we
6311 		 * want to create a replacing vdev.  The user is not allowed to
6312 		 * attach to a spared vdev child unless the 'isspare' state is
6313 		 * the same (spare replaces spare, non-spare replaces
6314 		 * non-spare).
6315 		 */
6316 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6317 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6318 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6319 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6320 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6321 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6322 		}
6323 
6324 		if (newvd->vdev_isspare)
6325 			pvops = &vdev_spare_ops;
6326 		else
6327 			pvops = &vdev_replacing_ops;
6328 	}
6329 
6330 	/*
6331 	 * Make sure the new device is big enough.
6332 	 */
6333 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6334 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6335 
6336 	/*
6337 	 * The new device cannot have a higher alignment requirement
6338 	 * than the top-level vdev.
6339 	 */
6340 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6341 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6342 
6343 	/*
6344 	 * If this is an in-place replacement, update oldvd's path and devid
6345 	 * to make it distinguishable from newvd, and unopenable from now on.
6346 	 */
6347 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6348 		spa_strfree(oldvd->vdev_path);
6349 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6350 		    KM_SLEEP);
6351 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6352 		    newvd->vdev_path, "old");
6353 		if (oldvd->vdev_devid != NULL) {
6354 			spa_strfree(oldvd->vdev_devid);
6355 			oldvd->vdev_devid = NULL;
6356 		}
6357 	}
6358 
6359 	/* mark the device being resilvered */
6360 	newvd->vdev_resilver_txg = txg;
6361 
6362 	/*
6363 	 * If the parent is not a mirror, or if we're replacing, insert the new
6364 	 * mirror/replacing/spare vdev above oldvd.
6365 	 */
6366 	if (pvd->vdev_ops != pvops)
6367 		pvd = vdev_add_parent(oldvd, pvops);
6368 
6369 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6370 	ASSERT(pvd->vdev_ops == pvops);
6371 	ASSERT(oldvd->vdev_parent == pvd);
6372 
6373 	/*
6374 	 * Extract the new device from its root and add it to pvd.
6375 	 */
6376 	vdev_remove_child(newrootvd, newvd);
6377 	newvd->vdev_id = pvd->vdev_children;
6378 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6379 	vdev_add_child(pvd, newvd);
6380 
6381 	tvd = newvd->vdev_top;
6382 	ASSERT(pvd->vdev_top == tvd);
6383 	ASSERT(tvd->vdev_parent == rvd);
6384 
6385 	vdev_config_dirty(tvd);
6386 
6387 	/*
6388 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6389 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6390 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6391 	 */
6392 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6393 
6394 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6395 	    dtl_max_txg - TXG_INITIAL);
6396 
6397 	if (newvd->vdev_isspare) {
6398 		spa_spare_activate(newvd);
6399 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6400 	}
6401 
6402 	oldvdpath = spa_strdup(oldvd->vdev_path);
6403 	newvdpath = spa_strdup(newvd->vdev_path);
6404 	newvd_isspare = newvd->vdev_isspare;
6405 
6406 	/*
6407 	 * Mark newvd's DTL dirty in this txg.
6408 	 */
6409 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6410 
6411 	/*
6412 	 * Schedule the resilver to restart in the future. We do this to
6413 	 * ensure that dmu_sync-ed blocks have been stitched into the
6414 	 * respective datasets. We do not do this if resilvers have been
6415 	 * deferred.
6416 	 */
6417 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6418 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6419 		vdev_defer_resilver(newvd);
6420 	else
6421 		dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6422 
6423 	if (spa->spa_bootfs)
6424 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6425 
6426 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6427 
6428 	/*
6429 	 * Commit the config
6430 	 */
6431 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6432 
6433 	spa_history_log_internal(spa, "vdev attach", NULL,
6434 	    "%s vdev=%s %s vdev=%s",
6435 	    replacing && newvd_isspare ? "spare in" :
6436 	    replacing ? "replace" : "attach", newvdpath,
6437 	    replacing ? "for" : "to", oldvdpath);
6438 
6439 	spa_strfree(oldvdpath);
6440 	spa_strfree(newvdpath);
6441 
6442 	return (0);
6443 }
6444 
6445 /*
6446  * Detach a device from a mirror or replacing vdev.
6447  *
6448  * If 'replace_done' is specified, only detach if the parent
6449  * is a replacing vdev.
6450  */
6451 int
6452 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6453 {
6454 	uint64_t txg;
6455 	int error;
6456 	vdev_t *rvd = spa->spa_root_vdev;
6457 	vdev_t *vd, *pvd, *cvd, *tvd;
6458 	boolean_t unspare = B_FALSE;
6459 	uint64_t unspare_guid = 0;
6460 	char *vdpath;
6461 
6462 	ASSERT(spa_writeable(spa));
6463 
6464 	txg = spa_vdev_enter(spa);
6465 
6466 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6467 
6468 	/*
6469 	 * Besides being called directly from the userland through the
6470 	 * ioctl interface, spa_vdev_detach() can be potentially called
6471 	 * at the end of spa_vdev_resilver_done().
6472 	 *
6473 	 * In the regular case, when we have a checkpoint this shouldn't
6474 	 * happen as we never empty the DTLs of a vdev during the scrub
6475 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6476 	 * should never get here when we have a checkpoint.
6477 	 *
6478 	 * That said, even in a case when we checkpoint the pool exactly
6479 	 * as spa_vdev_resilver_done() calls this function everything
6480 	 * should be fine as the resilver will return right away.
6481 	 */
6482 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6483 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6484 		error = (spa_has_checkpoint(spa)) ?
6485 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6486 		return (spa_vdev_exit(spa, NULL, txg, error));
6487 	}
6488 
6489 	if (vd == NULL)
6490 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6491 
6492 	if (!vd->vdev_ops->vdev_op_leaf)
6493 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6494 
6495 	pvd = vd->vdev_parent;
6496 
6497 	/*
6498 	 * If the parent/child relationship is not as expected, don't do it.
6499 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6500 	 * vdev that's replacing B with C.  The user's intent in replacing
6501 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6502 	 * the replace by detaching C, the expected behavior is to end up
6503 	 * M(A,B).  But suppose that right after deciding to detach C,
6504 	 * the replacement of B completes.  We would have M(A,C), and then
6505 	 * ask to detach C, which would leave us with just A -- not what
6506 	 * the user wanted.  To prevent this, we make sure that the
6507 	 * parent/child relationship hasn't changed -- in this example,
6508 	 * that C's parent is still the replacing vdev R.
6509 	 */
6510 	if (pvd->vdev_guid != pguid && pguid != 0)
6511 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6512 
6513 	/*
6514 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6515 	 */
6516 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6517 	    pvd->vdev_ops != &vdev_spare_ops)
6518 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6519 
6520 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6521 	    spa_version(spa) >= SPA_VERSION_SPARES);
6522 
6523 	/*
6524 	 * Only mirror, replacing, and spare vdevs support detach.
6525 	 */
6526 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6527 	    pvd->vdev_ops != &vdev_mirror_ops &&
6528 	    pvd->vdev_ops != &vdev_spare_ops)
6529 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6530 
6531 	/*
6532 	 * If this device has the only valid copy of some data,
6533 	 * we cannot safely detach it.
6534 	 */
6535 	if (vdev_dtl_required(vd))
6536 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6537 
6538 	ASSERT(pvd->vdev_children >= 2);
6539 
6540 	/*
6541 	 * If we are detaching the second disk from a replacing vdev, then
6542 	 * check to see if we changed the original vdev's path to have "/old"
6543 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6544 	 */
6545 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6546 	    vd->vdev_path != NULL) {
6547 		size_t len = strlen(vd->vdev_path);
6548 
6549 		for (int c = 0; c < pvd->vdev_children; c++) {
6550 			cvd = pvd->vdev_child[c];
6551 
6552 			if (cvd == vd || cvd->vdev_path == NULL)
6553 				continue;
6554 
6555 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6556 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6557 				spa_strfree(cvd->vdev_path);
6558 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6559 				break;
6560 			}
6561 		}
6562 	}
6563 
6564 	/*
6565 	 * If we are detaching the original disk from a spare, then it implies
6566 	 * that the spare should become a real disk, and be removed from the
6567 	 * active spare list for the pool.
6568 	 */
6569 	if (pvd->vdev_ops == &vdev_spare_ops &&
6570 	    vd->vdev_id == 0 &&
6571 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6572 		unspare = B_TRUE;
6573 
6574 	/*
6575 	 * Erase the disk labels so the disk can be used for other things.
6576 	 * This must be done after all other error cases are handled,
6577 	 * but before we disembowel vd (so we can still do I/O to it).
6578 	 * But if we can't do it, don't treat the error as fatal --
6579 	 * it may be that the unwritability of the disk is the reason
6580 	 * it's being detached!
6581 	 */
6582 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6583 
6584 	/*
6585 	 * Remove vd from its parent and compact the parent's children.
6586 	 */
6587 	vdev_remove_child(pvd, vd);
6588 	vdev_compact_children(pvd);
6589 
6590 	/*
6591 	 * Remember one of the remaining children so we can get tvd below.
6592 	 */
6593 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6594 
6595 	/*
6596 	 * If we need to remove the remaining child from the list of hot spares,
6597 	 * do it now, marking the vdev as no longer a spare in the process.
6598 	 * We must do this before vdev_remove_parent(), because that can
6599 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6600 	 * reason, we must remove the spare now, in the same txg as the detach;
6601 	 * otherwise someone could attach a new sibling, change the GUID, and
6602 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6603 	 */
6604 	if (unspare) {
6605 		ASSERT(cvd->vdev_isspare);
6606 		spa_spare_remove(cvd);
6607 		unspare_guid = cvd->vdev_guid;
6608 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6609 		cvd->vdev_unspare = B_TRUE;
6610 	}
6611 
6612 	/*
6613 	 * If the parent mirror/replacing vdev only has one child,
6614 	 * the parent is no longer needed.  Remove it from the tree.
6615 	 */
6616 	if (pvd->vdev_children == 1) {
6617 		if (pvd->vdev_ops == &vdev_spare_ops)
6618 			cvd->vdev_unspare = B_FALSE;
6619 		vdev_remove_parent(cvd);
6620 	}
6621 
6622 	/*
6623 	 * We don't set tvd until now because the parent we just removed
6624 	 * may have been the previous top-level vdev.
6625 	 */
6626 	tvd = cvd->vdev_top;
6627 	ASSERT(tvd->vdev_parent == rvd);
6628 
6629 	/*
6630 	 * Reevaluate the parent vdev state.
6631 	 */
6632 	vdev_propagate_state(cvd);
6633 
6634 	/*
6635 	 * If the 'autoexpand' property is set on the pool then automatically
6636 	 * try to expand the size of the pool. For example if the device we
6637 	 * just detached was smaller than the others, it may be possible to
6638 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6639 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6640 	 */
6641 	if (spa->spa_autoexpand) {
6642 		vdev_reopen(tvd);
6643 		vdev_expand(tvd, txg);
6644 	}
6645 
6646 	vdev_config_dirty(tvd);
6647 
6648 	/*
6649 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6650 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6651 	 * But first make sure we're not on any *other* txg's DTL list, to
6652 	 * prevent vd from being accessed after it's freed.
6653 	 */
6654 	vdpath = spa_strdup(vd->vdev_path);
6655 	for (int t = 0; t < TXG_SIZE; t++)
6656 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6657 	vd->vdev_detached = B_TRUE;
6658 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6659 
6660 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6661 
6662 	/* hang on to the spa before we release the lock */
6663 	spa_open_ref(spa, FTAG);
6664 
6665 	error = spa_vdev_exit(spa, vd, txg, 0);
6666 
6667 	spa_history_log_internal(spa, "detach", NULL,
6668 	    "vdev=%s", vdpath);
6669 	spa_strfree(vdpath);
6670 
6671 	/*
6672 	 * If this was the removal of the original device in a hot spare vdev,
6673 	 * then we want to go through and remove the device from the hot spare
6674 	 * list of every other pool.
6675 	 */
6676 	if (unspare) {
6677 		spa_t *altspa = NULL;
6678 
6679 		mutex_enter(&spa_namespace_lock);
6680 		while ((altspa = spa_next(altspa)) != NULL) {
6681 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6682 			    altspa == spa)
6683 				continue;
6684 
6685 			spa_open_ref(altspa, FTAG);
6686 			mutex_exit(&spa_namespace_lock);
6687 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6688 			mutex_enter(&spa_namespace_lock);
6689 			spa_close(altspa, FTAG);
6690 		}
6691 		mutex_exit(&spa_namespace_lock);
6692 
6693 		/* search the rest of the vdevs for spares to remove */
6694 		spa_vdev_resilver_done(spa);
6695 	}
6696 
6697 	/* all done with the spa; OK to release */
6698 	mutex_enter(&spa_namespace_lock);
6699 	spa_close(spa, FTAG);
6700 	mutex_exit(&spa_namespace_lock);
6701 
6702 	return (error);
6703 }
6704 
6705 static int
6706 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6707     list_t *vd_list)
6708 {
6709 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6710 
6711 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6712 
6713 	/* Look up vdev and ensure it's a leaf. */
6714 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6715 	if (vd == NULL || vd->vdev_detached) {
6716 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6717 		return (SET_ERROR(ENODEV));
6718 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6719 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6720 		return (SET_ERROR(EINVAL));
6721 	} else if (!vdev_writeable(vd)) {
6722 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6723 		return (SET_ERROR(EROFS));
6724 	}
6725 	mutex_enter(&vd->vdev_initialize_lock);
6726 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6727 
6728 	/*
6729 	 * When we activate an initialize action we check to see
6730 	 * if the vdev_initialize_thread is NULL. We do this instead
6731 	 * of using the vdev_initialize_state since there might be
6732 	 * a previous initialization process which has completed but
6733 	 * the thread is not exited.
6734 	 */
6735 	if (cmd_type == POOL_INITIALIZE_START &&
6736 	    (vd->vdev_initialize_thread != NULL ||
6737 	    vd->vdev_top->vdev_removing)) {
6738 		mutex_exit(&vd->vdev_initialize_lock);
6739 		return (SET_ERROR(EBUSY));
6740 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6741 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6742 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6743 		mutex_exit(&vd->vdev_initialize_lock);
6744 		return (SET_ERROR(ESRCH));
6745 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6746 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6747 		mutex_exit(&vd->vdev_initialize_lock);
6748 		return (SET_ERROR(ESRCH));
6749 	}
6750 
6751 	switch (cmd_type) {
6752 	case POOL_INITIALIZE_START:
6753 		vdev_initialize(vd);
6754 		break;
6755 	case POOL_INITIALIZE_CANCEL:
6756 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6757 		break;
6758 	case POOL_INITIALIZE_SUSPEND:
6759 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6760 		break;
6761 	default:
6762 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6763 	}
6764 	mutex_exit(&vd->vdev_initialize_lock);
6765 
6766 	return (0);
6767 }
6768 
6769 int
6770 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6771     nvlist_t *vdev_errlist)
6772 {
6773 	int total_errors = 0;
6774 	list_t vd_list;
6775 
6776 	list_create(&vd_list, sizeof (vdev_t),
6777 	    offsetof(vdev_t, vdev_initialize_node));
6778 
6779 	/*
6780 	 * We hold the namespace lock through the whole function
6781 	 * to prevent any changes to the pool while we're starting or
6782 	 * stopping initialization. The config and state locks are held so that
6783 	 * we can properly assess the vdev state before we commit to
6784 	 * the initializing operation.
6785 	 */
6786 	mutex_enter(&spa_namespace_lock);
6787 
6788 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6789 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6790 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6791 
6792 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6793 		    &vd_list);
6794 		if (error != 0) {
6795 			char guid_as_str[MAXNAMELEN];
6796 
6797 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6798 			    "%llu", (unsigned long long)vdev_guid);
6799 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6800 			total_errors++;
6801 		}
6802 	}
6803 
6804 	/* Wait for all initialize threads to stop. */
6805 	vdev_initialize_stop_wait(spa, &vd_list);
6806 
6807 	/* Sync out the initializing state */
6808 	txg_wait_synced(spa->spa_dsl_pool, 0);
6809 	mutex_exit(&spa_namespace_lock);
6810 
6811 	list_destroy(&vd_list);
6812 
6813 	return (total_errors);
6814 }
6815 
6816 static int
6817 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6818     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6819 {
6820 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6821 
6822 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6823 
6824 	/* Look up vdev and ensure it's a leaf. */
6825 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6826 	if (vd == NULL || vd->vdev_detached) {
6827 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6828 		return (SET_ERROR(ENODEV));
6829 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6830 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6831 		return (SET_ERROR(EINVAL));
6832 	} else if (!vdev_writeable(vd)) {
6833 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6834 		return (SET_ERROR(EROFS));
6835 	} else if (!vd->vdev_has_trim) {
6836 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6837 		return (SET_ERROR(EOPNOTSUPP));
6838 	} else if (secure && !vd->vdev_has_securetrim) {
6839 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6840 		return (SET_ERROR(EOPNOTSUPP));
6841 	}
6842 	mutex_enter(&vd->vdev_trim_lock);
6843 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6844 
6845 	/*
6846 	 * When we activate a TRIM action we check to see if the
6847 	 * vdev_trim_thread is NULL. We do this instead of using the
6848 	 * vdev_trim_state since there might be a previous TRIM process
6849 	 * which has completed but the thread is not exited.
6850 	 */
6851 	if (cmd_type == POOL_TRIM_START &&
6852 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6853 		mutex_exit(&vd->vdev_trim_lock);
6854 		return (SET_ERROR(EBUSY));
6855 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6856 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6857 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6858 		mutex_exit(&vd->vdev_trim_lock);
6859 		return (SET_ERROR(ESRCH));
6860 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6861 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6862 		mutex_exit(&vd->vdev_trim_lock);
6863 		return (SET_ERROR(ESRCH));
6864 	}
6865 
6866 	switch (cmd_type) {
6867 	case POOL_TRIM_START:
6868 		vdev_trim(vd, rate, partial, secure);
6869 		break;
6870 	case POOL_TRIM_CANCEL:
6871 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6872 		break;
6873 	case POOL_TRIM_SUSPEND:
6874 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6875 		break;
6876 	default:
6877 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6878 	}
6879 	mutex_exit(&vd->vdev_trim_lock);
6880 
6881 	return (0);
6882 }
6883 
6884 /*
6885  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6886  * TRIM threads for each child vdev.  These threads pass over all of the free
6887  * space in the vdev's metaslabs and issues TRIM commands for that space.
6888  */
6889 int
6890 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6891     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6892 {
6893 	int total_errors = 0;
6894 	list_t vd_list;
6895 
6896 	list_create(&vd_list, sizeof (vdev_t),
6897 	    offsetof(vdev_t, vdev_trim_node));
6898 
6899 	/*
6900 	 * We hold the namespace lock through the whole function
6901 	 * to prevent any changes to the pool while we're starting or
6902 	 * stopping TRIM. The config and state locks are held so that
6903 	 * we can properly assess the vdev state before we commit to
6904 	 * the TRIM operation.
6905 	 */
6906 	mutex_enter(&spa_namespace_lock);
6907 
6908 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6909 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6910 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6911 
6912 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6913 		    rate, partial, secure, &vd_list);
6914 		if (error != 0) {
6915 			char guid_as_str[MAXNAMELEN];
6916 
6917 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6918 			    "%llu", (unsigned long long)vdev_guid);
6919 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6920 			total_errors++;
6921 		}
6922 	}
6923 
6924 	/* Wait for all TRIM threads to stop. */
6925 	vdev_trim_stop_wait(spa, &vd_list);
6926 
6927 	/* Sync out the TRIM state */
6928 	txg_wait_synced(spa->spa_dsl_pool, 0);
6929 	mutex_exit(&spa_namespace_lock);
6930 
6931 	list_destroy(&vd_list);
6932 
6933 	return (total_errors);
6934 }
6935 
6936 /*
6937  * Split a set of devices from their mirrors, and create a new pool from them.
6938  */
6939 int
6940 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6941     nvlist_t *props, boolean_t exp)
6942 {
6943 	int error = 0;
6944 	uint64_t txg, *glist;
6945 	spa_t *newspa;
6946 	uint_t c, children, lastlog;
6947 	nvlist_t **child, *nvl, *tmp;
6948 	dmu_tx_t *tx;
6949 	char *altroot = NULL;
6950 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6951 	boolean_t activate_slog;
6952 
6953 	ASSERT(spa_writeable(spa));
6954 
6955 	txg = spa_vdev_enter(spa);
6956 
6957 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6958 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6959 		error = (spa_has_checkpoint(spa)) ?
6960 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6961 		return (spa_vdev_exit(spa, NULL, txg, error));
6962 	}
6963 
6964 	/* clear the log and flush everything up to now */
6965 	activate_slog = spa_passivate_log(spa);
6966 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6967 	error = spa_reset_logs(spa);
6968 	txg = spa_vdev_config_enter(spa);
6969 
6970 	if (activate_slog)
6971 		spa_activate_log(spa);
6972 
6973 	if (error != 0)
6974 		return (spa_vdev_exit(spa, NULL, txg, error));
6975 
6976 	/* check new spa name before going any further */
6977 	if (spa_lookup(newname) != NULL)
6978 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6979 
6980 	/*
6981 	 * scan through all the children to ensure they're all mirrors
6982 	 */
6983 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6984 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6985 	    &children) != 0)
6986 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6987 
6988 	/* first, check to ensure we've got the right child count */
6989 	rvd = spa->spa_root_vdev;
6990 	lastlog = 0;
6991 	for (c = 0; c < rvd->vdev_children; c++) {
6992 		vdev_t *vd = rvd->vdev_child[c];
6993 
6994 		/* don't count the holes & logs as children */
6995 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6996 			if (lastlog == 0)
6997 				lastlog = c;
6998 			continue;
6999 		}
7000 
7001 		lastlog = 0;
7002 	}
7003 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7004 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7005 
7006 	/* next, ensure no spare or cache devices are part of the split */
7007 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7008 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7009 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7010 
7011 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7012 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7013 
7014 	/* then, loop over each vdev and validate it */
7015 	for (c = 0; c < children; c++) {
7016 		uint64_t is_hole = 0;
7017 
7018 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7019 		    &is_hole);
7020 
7021 		if (is_hole != 0) {
7022 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7023 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7024 				continue;
7025 			} else {
7026 				error = SET_ERROR(EINVAL);
7027 				break;
7028 			}
7029 		}
7030 
7031 		/* which disk is going to be split? */
7032 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7033 		    &glist[c]) != 0) {
7034 			error = SET_ERROR(EINVAL);
7035 			break;
7036 		}
7037 
7038 		/* look it up in the spa */
7039 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7040 		if (vml[c] == NULL) {
7041 			error = SET_ERROR(ENODEV);
7042 			break;
7043 		}
7044 
7045 		/* make sure there's nothing stopping the split */
7046 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7047 		    vml[c]->vdev_islog ||
7048 		    !vdev_is_concrete(vml[c]) ||
7049 		    vml[c]->vdev_isspare ||
7050 		    vml[c]->vdev_isl2cache ||
7051 		    !vdev_writeable(vml[c]) ||
7052 		    vml[c]->vdev_children != 0 ||
7053 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7054 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7055 			error = SET_ERROR(EINVAL);
7056 			break;
7057 		}
7058 
7059 		if (vdev_dtl_required(vml[c])) {
7060 			error = SET_ERROR(EBUSY);
7061 			break;
7062 		}
7063 
7064 		/* we need certain info from the top level */
7065 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7066 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7067 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7068 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7069 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7070 		    vml[c]->vdev_top->vdev_asize) == 0);
7071 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7072 		    vml[c]->vdev_top->vdev_ashift) == 0);
7073 
7074 		/* transfer per-vdev ZAPs */
7075 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7076 		VERIFY0(nvlist_add_uint64(child[c],
7077 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7078 
7079 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7080 		VERIFY0(nvlist_add_uint64(child[c],
7081 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7082 		    vml[c]->vdev_parent->vdev_top_zap));
7083 	}
7084 
7085 	if (error != 0) {
7086 		kmem_free(vml, children * sizeof (vdev_t *));
7087 		kmem_free(glist, children * sizeof (uint64_t));
7088 		return (spa_vdev_exit(spa, NULL, txg, error));
7089 	}
7090 
7091 	/* stop writers from using the disks */
7092 	for (c = 0; c < children; c++) {
7093 		if (vml[c] != NULL)
7094 			vml[c]->vdev_offline = B_TRUE;
7095 	}
7096 	vdev_reopen(spa->spa_root_vdev);
7097 
7098 	/*
7099 	 * Temporarily record the splitting vdevs in the spa config.  This
7100 	 * will disappear once the config is regenerated.
7101 	 */
7102 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7103 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7104 	    glist, children) == 0);
7105 	kmem_free(glist, children * sizeof (uint64_t));
7106 
7107 	mutex_enter(&spa->spa_props_lock);
7108 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7109 	    nvl) == 0);
7110 	mutex_exit(&spa->spa_props_lock);
7111 	spa->spa_config_splitting = nvl;
7112 	vdev_config_dirty(spa->spa_root_vdev);
7113 
7114 	/* configure and create the new pool */
7115 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7116 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7117 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7118 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7119 	    spa_version(spa)) == 0);
7120 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7121 	    spa->spa_config_txg) == 0);
7122 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7123 	    spa_generate_guid(NULL)) == 0);
7124 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7125 	(void) nvlist_lookup_string(props,
7126 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7127 
7128 	/* add the new pool to the namespace */
7129 	newspa = spa_add(newname, config, altroot);
7130 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7131 	newspa->spa_config_txg = spa->spa_config_txg;
7132 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7133 
7134 	/* release the spa config lock, retaining the namespace lock */
7135 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7136 
7137 	if (zio_injection_enabled)
7138 		zio_handle_panic_injection(spa, FTAG, 1);
7139 
7140 	spa_activate(newspa, spa_mode_global);
7141 	spa_async_suspend(newspa);
7142 
7143 	/*
7144 	 * Temporarily stop the initializing and TRIM activity.  We set the
7145 	 * state to ACTIVE so that we know to resume initializing or TRIM
7146 	 * once the split has completed.
7147 	 */
7148 	list_t vd_initialize_list;
7149 	list_create(&vd_initialize_list, sizeof (vdev_t),
7150 	    offsetof(vdev_t, vdev_initialize_node));
7151 
7152 	list_t vd_trim_list;
7153 	list_create(&vd_trim_list, sizeof (vdev_t),
7154 	    offsetof(vdev_t, vdev_trim_node));
7155 
7156 	for (c = 0; c < children; c++) {
7157 		if (vml[c] != NULL) {
7158 			mutex_enter(&vml[c]->vdev_initialize_lock);
7159 			vdev_initialize_stop(vml[c],
7160 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7161 			mutex_exit(&vml[c]->vdev_initialize_lock);
7162 
7163 			mutex_enter(&vml[c]->vdev_trim_lock);
7164 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7165 			mutex_exit(&vml[c]->vdev_trim_lock);
7166 		}
7167 	}
7168 
7169 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7170 	vdev_trim_stop_wait(spa, &vd_trim_list);
7171 
7172 	list_destroy(&vd_initialize_list);
7173 	list_destroy(&vd_trim_list);
7174 
7175 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7176 
7177 	/* create the new pool from the disks of the original pool */
7178 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7179 	if (error)
7180 		goto out;
7181 
7182 	/* if that worked, generate a real config for the new pool */
7183 	if (newspa->spa_root_vdev != NULL) {
7184 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7185 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7186 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7187 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7188 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7189 		    B_TRUE));
7190 	}
7191 
7192 	/* set the props */
7193 	if (props != NULL) {
7194 		spa_configfile_set(newspa, props, B_FALSE);
7195 		error = spa_prop_set(newspa, props);
7196 		if (error)
7197 			goto out;
7198 	}
7199 
7200 	/* flush everything */
7201 	txg = spa_vdev_config_enter(newspa);
7202 	vdev_config_dirty(newspa->spa_root_vdev);
7203 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7204 
7205 	if (zio_injection_enabled)
7206 		zio_handle_panic_injection(spa, FTAG, 2);
7207 
7208 	spa_async_resume(newspa);
7209 
7210 	/* finally, update the original pool's config */
7211 	txg = spa_vdev_config_enter(spa);
7212 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7213 	error = dmu_tx_assign(tx, TXG_WAIT);
7214 	if (error != 0)
7215 		dmu_tx_abort(tx);
7216 	for (c = 0; c < children; c++) {
7217 		if (vml[c] != NULL) {
7218 			vdev_split(vml[c]);
7219 			if (error == 0)
7220 				spa_history_log_internal(spa, "detach", tx,
7221 				    "vdev=%s", vml[c]->vdev_path);
7222 
7223 			vdev_free(vml[c]);
7224 		}
7225 	}
7226 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7227 	vdev_config_dirty(spa->spa_root_vdev);
7228 	spa->spa_config_splitting = NULL;
7229 	nvlist_free(nvl);
7230 	if (error == 0)
7231 		dmu_tx_commit(tx);
7232 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7233 
7234 	if (zio_injection_enabled)
7235 		zio_handle_panic_injection(spa, FTAG, 3);
7236 
7237 	/* split is complete; log a history record */
7238 	spa_history_log_internal(newspa, "split", NULL,
7239 	    "from pool %s", spa_name(spa));
7240 
7241 	kmem_free(vml, children * sizeof (vdev_t *));
7242 
7243 	/* if we're not going to mount the filesystems in userland, export */
7244 	if (exp)
7245 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7246 		    B_FALSE, B_FALSE);
7247 
7248 	return (error);
7249 
7250 out:
7251 	spa_unload(newspa);
7252 	spa_deactivate(newspa);
7253 	spa_remove(newspa);
7254 
7255 	txg = spa_vdev_config_enter(spa);
7256 
7257 	/* re-online all offlined disks */
7258 	for (c = 0; c < children; c++) {
7259 		if (vml[c] != NULL)
7260 			vml[c]->vdev_offline = B_FALSE;
7261 	}
7262 
7263 	/* restart initializing or trimming disks as necessary */
7264 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7265 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7266 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7267 
7268 	vdev_reopen(spa->spa_root_vdev);
7269 
7270 	nvlist_free(spa->spa_config_splitting);
7271 	spa->spa_config_splitting = NULL;
7272 	(void) spa_vdev_exit(spa, NULL, txg, error);
7273 
7274 	kmem_free(vml, children * sizeof (vdev_t *));
7275 	return (error);
7276 }
7277 
7278 /*
7279  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7280  * currently spared, so we can detach it.
7281  */
7282 static vdev_t *
7283 spa_vdev_resilver_done_hunt(vdev_t *vd)
7284 {
7285 	vdev_t *newvd, *oldvd;
7286 
7287 	for (int c = 0; c < vd->vdev_children; c++) {
7288 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7289 		if (oldvd != NULL)
7290 			return (oldvd);
7291 	}
7292 
7293 	/*
7294 	 * Check for a completed replacement.  We always consider the first
7295 	 * vdev in the list to be the oldest vdev, and the last one to be
7296 	 * the newest (see spa_vdev_attach() for how that works).  In
7297 	 * the case where the newest vdev is faulted, we will not automatically
7298 	 * remove it after a resilver completes.  This is OK as it will require
7299 	 * user intervention to determine which disk the admin wishes to keep.
7300 	 */
7301 	if (vd->vdev_ops == &vdev_replacing_ops) {
7302 		ASSERT(vd->vdev_children > 1);
7303 
7304 		newvd = vd->vdev_child[vd->vdev_children - 1];
7305 		oldvd = vd->vdev_child[0];
7306 
7307 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7308 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7309 		    !vdev_dtl_required(oldvd))
7310 			return (oldvd);
7311 	}
7312 
7313 	/*
7314 	 * Check for a completed resilver with the 'unspare' flag set.
7315 	 * Also potentially update faulted state.
7316 	 */
7317 	if (vd->vdev_ops == &vdev_spare_ops) {
7318 		vdev_t *first = vd->vdev_child[0];
7319 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7320 
7321 		if (last->vdev_unspare) {
7322 			oldvd = first;
7323 			newvd = last;
7324 		} else if (first->vdev_unspare) {
7325 			oldvd = last;
7326 			newvd = first;
7327 		} else {
7328 			oldvd = NULL;
7329 		}
7330 
7331 		if (oldvd != NULL &&
7332 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7333 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7334 		    !vdev_dtl_required(oldvd))
7335 			return (oldvd);
7336 
7337 		vdev_propagate_state(vd);
7338 
7339 		/*
7340 		 * If there are more than two spares attached to a disk,
7341 		 * and those spares are not required, then we want to
7342 		 * attempt to free them up now so that they can be used
7343 		 * by other pools.  Once we're back down to a single
7344 		 * disk+spare, we stop removing them.
7345 		 */
7346 		if (vd->vdev_children > 2) {
7347 			newvd = vd->vdev_child[1];
7348 
7349 			if (newvd->vdev_isspare && last->vdev_isspare &&
7350 			    vdev_dtl_empty(last, DTL_MISSING) &&
7351 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7352 			    !vdev_dtl_required(newvd))
7353 				return (newvd);
7354 		}
7355 	}
7356 
7357 	return (NULL);
7358 }
7359 
7360 static void
7361 spa_vdev_resilver_done(spa_t *spa)
7362 {
7363 	vdev_t *vd, *pvd, *ppvd;
7364 	uint64_t guid, sguid, pguid, ppguid;
7365 
7366 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7367 
7368 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7369 		pvd = vd->vdev_parent;
7370 		ppvd = pvd->vdev_parent;
7371 		guid = vd->vdev_guid;
7372 		pguid = pvd->vdev_guid;
7373 		ppguid = ppvd->vdev_guid;
7374 		sguid = 0;
7375 		/*
7376 		 * If we have just finished replacing a hot spared device, then
7377 		 * we need to detach the parent's first child (the original hot
7378 		 * spare) as well.
7379 		 */
7380 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7381 		    ppvd->vdev_children == 2) {
7382 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7383 			sguid = ppvd->vdev_child[1]->vdev_guid;
7384 		}
7385 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7386 
7387 		spa_config_exit(spa, SCL_ALL, FTAG);
7388 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7389 			return;
7390 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7391 			return;
7392 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7393 	}
7394 
7395 	spa_config_exit(spa, SCL_ALL, FTAG);
7396 }
7397 
7398 /*
7399  * Update the stored path or FRU for this vdev.
7400  */
7401 int
7402 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7403     boolean_t ispath)
7404 {
7405 	vdev_t *vd;
7406 	boolean_t sync = B_FALSE;
7407 
7408 	ASSERT(spa_writeable(spa));
7409 
7410 	spa_vdev_state_enter(spa, SCL_ALL);
7411 
7412 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7413 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7414 
7415 	if (!vd->vdev_ops->vdev_op_leaf)
7416 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7417 
7418 	if (ispath) {
7419 		if (strcmp(value, vd->vdev_path) != 0) {
7420 			spa_strfree(vd->vdev_path);
7421 			vd->vdev_path = spa_strdup(value);
7422 			sync = B_TRUE;
7423 		}
7424 	} else {
7425 		if (vd->vdev_fru == NULL) {
7426 			vd->vdev_fru = spa_strdup(value);
7427 			sync = B_TRUE;
7428 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7429 			spa_strfree(vd->vdev_fru);
7430 			vd->vdev_fru = spa_strdup(value);
7431 			sync = B_TRUE;
7432 		}
7433 	}
7434 
7435 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7436 }
7437 
7438 int
7439 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7440 {
7441 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7442 }
7443 
7444 int
7445 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7446 {
7447 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7448 }
7449 
7450 /*
7451  * ==========================================================================
7452  * SPA Scanning
7453  * ==========================================================================
7454  */
7455 int
7456 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7457 {
7458 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7459 
7460 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7461 		return (SET_ERROR(EBUSY));
7462 
7463 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7464 }
7465 
7466 int
7467 spa_scan_stop(spa_t *spa)
7468 {
7469 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7470 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7471 		return (SET_ERROR(EBUSY));
7472 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7473 }
7474 
7475 int
7476 spa_scan(spa_t *spa, pool_scan_func_t func)
7477 {
7478 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7479 
7480 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7481 		return (SET_ERROR(ENOTSUP));
7482 
7483 	if (func == POOL_SCAN_RESILVER &&
7484 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7485 		return (SET_ERROR(ENOTSUP));
7486 
7487 	/*
7488 	 * If a resilver was requested, but there is no DTL on a
7489 	 * writeable leaf device, we have nothing to do.
7490 	 */
7491 	if (func == POOL_SCAN_RESILVER &&
7492 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7493 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7494 		return (0);
7495 	}
7496 
7497 	return (dsl_scan(spa->spa_dsl_pool, func));
7498 }
7499 
7500 /*
7501  * ==========================================================================
7502  * SPA async task processing
7503  * ==========================================================================
7504  */
7505 
7506 static void
7507 spa_async_remove(spa_t *spa, vdev_t *vd)
7508 {
7509 	if (vd->vdev_remove_wanted) {
7510 		vd->vdev_remove_wanted = B_FALSE;
7511 		vd->vdev_delayed_close = B_FALSE;
7512 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7513 
7514 		/*
7515 		 * We want to clear the stats, but we don't want to do a full
7516 		 * vdev_clear() as that will cause us to throw away
7517 		 * degraded/faulted state as well as attempt to reopen the
7518 		 * device, all of which is a waste.
7519 		 */
7520 		vd->vdev_stat.vs_read_errors = 0;
7521 		vd->vdev_stat.vs_write_errors = 0;
7522 		vd->vdev_stat.vs_checksum_errors = 0;
7523 
7524 		vdev_state_dirty(vd->vdev_top);
7525 	}
7526 
7527 	for (int c = 0; c < vd->vdev_children; c++)
7528 		spa_async_remove(spa, vd->vdev_child[c]);
7529 }
7530 
7531 static void
7532 spa_async_probe(spa_t *spa, vdev_t *vd)
7533 {
7534 	if (vd->vdev_probe_wanted) {
7535 		vd->vdev_probe_wanted = B_FALSE;
7536 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7537 	}
7538 
7539 	for (int c = 0; c < vd->vdev_children; c++)
7540 		spa_async_probe(spa, vd->vdev_child[c]);
7541 }
7542 
7543 static void
7544 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7545 {
7546 	char *physpath;
7547 
7548 	if (!spa->spa_autoexpand)
7549 		return;
7550 
7551 	for (int c = 0; c < vd->vdev_children; c++) {
7552 		vdev_t *cvd = vd->vdev_child[c];
7553 		spa_async_autoexpand(spa, cvd);
7554 	}
7555 
7556 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7557 		return;
7558 
7559 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7560 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7561 
7562 	zfs_post_dle_sysevent(physpath);
7563 
7564 	kmem_free(physpath, MAXPATHLEN);
7565 }
7566 
7567 static void
7568 spa_async_thread(void *arg)
7569 {
7570 	spa_t *spa = (spa_t *)arg;
7571 	dsl_pool_t *dp = spa->spa_dsl_pool;
7572 	int tasks;
7573 
7574 	ASSERT(spa->spa_sync_on);
7575 
7576 	mutex_enter(&spa->spa_async_lock);
7577 	tasks = spa->spa_async_tasks;
7578 	spa->spa_async_tasks = 0;
7579 	mutex_exit(&spa->spa_async_lock);
7580 
7581 	/*
7582 	 * See if the config needs to be updated.
7583 	 */
7584 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7585 		uint64_t old_space, new_space;
7586 
7587 		mutex_enter(&spa_namespace_lock);
7588 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7589 		old_space += metaslab_class_get_space(spa_special_class(spa));
7590 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7591 
7592 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7593 
7594 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7595 		new_space += metaslab_class_get_space(spa_special_class(spa));
7596 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7597 		mutex_exit(&spa_namespace_lock);
7598 
7599 		/*
7600 		 * If the pool grew as a result of the config update,
7601 		 * then log an internal history event.
7602 		 */
7603 		if (new_space != old_space) {
7604 			spa_history_log_internal(spa, "vdev online", NULL,
7605 			    "pool '%s' size: %llu(+%llu)",
7606 			    spa_name(spa), new_space, new_space - old_space);
7607 		}
7608 	}
7609 
7610 	/*
7611 	 * See if any devices need to be marked REMOVED.
7612 	 */
7613 	if (tasks & SPA_ASYNC_REMOVE) {
7614 		spa_vdev_state_enter(spa, SCL_NONE);
7615 		spa_async_remove(spa, spa->spa_root_vdev);
7616 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7617 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7618 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7619 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7620 		(void) spa_vdev_state_exit(spa, NULL, 0);
7621 	}
7622 
7623 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7624 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7625 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7626 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7627 	}
7628 
7629 	/*
7630 	 * See if any devices need to be probed.
7631 	 */
7632 	if (tasks & SPA_ASYNC_PROBE) {
7633 		spa_vdev_state_enter(spa, SCL_NONE);
7634 		spa_async_probe(spa, spa->spa_root_vdev);
7635 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7636 			spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7637 		(void) spa_vdev_state_exit(spa, NULL, 0);
7638 	}
7639 
7640 	/*
7641 	 * If any devices are done replacing, detach them.
7642 	 */
7643 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7644 		spa_vdev_resilver_done(spa);
7645 
7646 	/*
7647 	 * Kick off a resilver.
7648 	 */
7649 	if (tasks & SPA_ASYNC_RESILVER &&
7650 	    (!dsl_scan_resilvering(dp) ||
7651 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7652 		dsl_scan_restart_resilver(dp, 0);
7653 
7654 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7655 		mutex_enter(&spa_namespace_lock);
7656 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7657 		vdev_initialize_restart(spa->spa_root_vdev);
7658 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7659 		mutex_exit(&spa_namespace_lock);
7660 	}
7661 
7662 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7663 		mutex_enter(&spa_namespace_lock);
7664 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7665 		vdev_trim_restart(spa->spa_root_vdev);
7666 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7667 		mutex_exit(&spa_namespace_lock);
7668 	}
7669 
7670 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7671 		mutex_enter(&spa_namespace_lock);
7672 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7673 		vdev_autotrim_restart(spa);
7674 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7675 		mutex_exit(&spa_namespace_lock);
7676 	}
7677 
7678 	/*
7679 	 * Kick off L2 cache rebuilding.
7680 	 */
7681 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
7682 		mutex_enter(&spa_namespace_lock);
7683 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
7684 		l2arc_spa_rebuild_start(spa);
7685 		spa_config_exit(spa, SCL_L2ARC, FTAG);
7686 		mutex_exit(&spa_namespace_lock);
7687 	}
7688 
7689 	/*
7690 	 * Let the world know that we're done.
7691 	 */
7692 	mutex_enter(&spa->spa_async_lock);
7693 	spa->spa_async_thread = NULL;
7694 	cv_broadcast(&spa->spa_async_cv);
7695 	mutex_exit(&spa->spa_async_lock);
7696 	thread_exit();
7697 }
7698 
7699 void
7700 spa_async_suspend(spa_t *spa)
7701 {
7702 	mutex_enter(&spa->spa_async_lock);
7703 	spa->spa_async_suspended++;
7704 	while (spa->spa_async_thread != NULL)
7705 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7706 	mutex_exit(&spa->spa_async_lock);
7707 
7708 	spa_vdev_remove_suspend(spa);
7709 
7710 	zthr_t *condense_thread = spa->spa_condense_zthr;
7711 	if (condense_thread != NULL)
7712 		zthr_cancel(condense_thread);
7713 
7714 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7715 	if (discard_thread != NULL)
7716 		zthr_cancel(discard_thread);
7717 }
7718 
7719 void
7720 spa_async_resume(spa_t *spa)
7721 {
7722 	mutex_enter(&spa->spa_async_lock);
7723 	ASSERT(spa->spa_async_suspended != 0);
7724 	spa->spa_async_suspended--;
7725 	mutex_exit(&spa->spa_async_lock);
7726 	spa_restart_removal(spa);
7727 
7728 	zthr_t *condense_thread = spa->spa_condense_zthr;
7729 	if (condense_thread != NULL)
7730 		zthr_resume(condense_thread);
7731 
7732 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7733 	if (discard_thread != NULL)
7734 		zthr_resume(discard_thread);
7735 }
7736 
7737 static boolean_t
7738 spa_async_tasks_pending(spa_t *spa)
7739 {
7740 	uint_t non_config_tasks;
7741 	uint_t config_task;
7742 	boolean_t config_task_suspended;
7743 
7744 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7745 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7746 	if (spa->spa_ccw_fail_time == 0) {
7747 		config_task_suspended = B_FALSE;
7748 	} else {
7749 		config_task_suspended =
7750 		    (gethrtime() - spa->spa_ccw_fail_time) <
7751 		    (zfs_ccw_retry_interval * NANOSEC);
7752 	}
7753 
7754 	return (non_config_tasks || (config_task && !config_task_suspended));
7755 }
7756 
7757 static void
7758 spa_async_dispatch(spa_t *spa)
7759 {
7760 	mutex_enter(&spa->spa_async_lock);
7761 	if (spa_async_tasks_pending(spa) &&
7762 	    !spa->spa_async_suspended &&
7763 	    spa->spa_async_thread == NULL &&
7764 	    rootdir != NULL)
7765 		spa->spa_async_thread = thread_create(NULL, 0,
7766 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7767 	mutex_exit(&spa->spa_async_lock);
7768 }
7769 
7770 void
7771 spa_async_request(spa_t *spa, int task)
7772 {
7773 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7774 	mutex_enter(&spa->spa_async_lock);
7775 	spa->spa_async_tasks |= task;
7776 	mutex_exit(&spa->spa_async_lock);
7777 }
7778 
7779 int
7780 spa_async_tasks(spa_t *spa)
7781 {
7782 	return (spa->spa_async_tasks);
7783 }
7784 
7785 /*
7786  * ==========================================================================
7787  * SPA syncing routines
7788  * ==========================================================================
7789  */
7790 
7791 static int
7792 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7793 {
7794 	bpobj_t *bpo = arg;
7795 	bpobj_enqueue(bpo, bp, tx);
7796 	return (0);
7797 }
7798 
7799 static int
7800 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7801 {
7802 	zio_t *zio = arg;
7803 
7804 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7805 	    zio->io_flags));
7806 	return (0);
7807 }
7808 
7809 /*
7810  * Note: this simple function is not inlined to make it easier to dtrace the
7811  * amount of time spent syncing frees.
7812  */
7813 static void
7814 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7815 {
7816 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7817 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7818 	VERIFY(zio_wait(zio) == 0);
7819 }
7820 
7821 /*
7822  * Note: this simple function is not inlined to make it easier to dtrace the
7823  * amount of time spent syncing deferred frees.
7824  */
7825 static void
7826 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7827 {
7828 	if (spa_sync_pass(spa) != 1)
7829 		return;
7830 
7831 	/*
7832 	 * Note:
7833 	 * If the log space map feature is active, we stop deferring
7834 	 * frees to the next TXG and therefore running this function
7835 	 * would be considered a no-op as spa_deferred_bpobj should
7836 	 * not have any entries.
7837 	 *
7838 	 * That said we run this function anyway (instead of returning
7839 	 * immediately) for the edge-case scenario where we just
7840 	 * activated the log space map feature in this TXG but we have
7841 	 * deferred frees from the previous TXG.
7842 	 */
7843 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7844 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7845 	    spa_free_sync_cb, zio, tx), ==, 0);
7846 	VERIFY0(zio_wait(zio));
7847 }
7848 
7849 
7850 static void
7851 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7852 {
7853 	char *packed = NULL;
7854 	size_t bufsize;
7855 	size_t nvsize = 0;
7856 	dmu_buf_t *db;
7857 
7858 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7859 
7860 	/*
7861 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7862 	 * information.  This avoids the dmu_buf_will_dirty() path and
7863 	 * saves us a pre-read to get data we don't actually care about.
7864 	 */
7865 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7866 	packed = kmem_alloc(bufsize, KM_SLEEP);
7867 
7868 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7869 	    KM_SLEEP) == 0);
7870 	bzero(packed + nvsize, bufsize - nvsize);
7871 
7872 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7873 
7874 	kmem_free(packed, bufsize);
7875 
7876 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7877 	dmu_buf_will_dirty(db, tx);
7878 	*(uint64_t *)db->db_data = nvsize;
7879 	dmu_buf_rele(db, FTAG);
7880 }
7881 
7882 static void
7883 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7884     const char *config, const char *entry)
7885 {
7886 	nvlist_t *nvroot;
7887 	nvlist_t **list;
7888 	int i;
7889 
7890 	if (!sav->sav_sync)
7891 		return;
7892 
7893 	/*
7894 	 * Update the MOS nvlist describing the list of available devices.
7895 	 * spa_validate_aux() will have already made sure this nvlist is
7896 	 * valid and the vdevs are labeled appropriately.
7897 	 */
7898 	if (sav->sav_object == 0) {
7899 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7900 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7901 		    sizeof (uint64_t), tx);
7902 		VERIFY(zap_update(spa->spa_meta_objset,
7903 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7904 		    &sav->sav_object, tx) == 0);
7905 	}
7906 
7907 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7908 	if (sav->sav_count == 0) {
7909 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7910 	} else {
7911 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7912 		for (i = 0; i < sav->sav_count; i++)
7913 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7914 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7915 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7916 		    sav->sav_count) == 0);
7917 		for (i = 0; i < sav->sav_count; i++)
7918 			nvlist_free(list[i]);
7919 		kmem_free(list, sav->sav_count * sizeof (void *));
7920 	}
7921 
7922 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7923 	nvlist_free(nvroot);
7924 
7925 	sav->sav_sync = B_FALSE;
7926 }
7927 
7928 /*
7929  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7930  * The all-vdev ZAP must be empty.
7931  */
7932 static void
7933 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7934 {
7935 	spa_t *spa = vd->vdev_spa;
7936 	if (vd->vdev_top_zap != 0) {
7937 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7938 		    vd->vdev_top_zap, tx));
7939 	}
7940 	if (vd->vdev_leaf_zap != 0) {
7941 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7942 		    vd->vdev_leaf_zap, tx));
7943 	}
7944 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7945 		spa_avz_build(vd->vdev_child[i], avz, tx);
7946 	}
7947 }
7948 
7949 static void
7950 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7951 {
7952 	nvlist_t *config;
7953 
7954 	/*
7955 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7956 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7957 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7958 	 * need to rebuild the AVZ although the config may not be dirty.
7959 	 */
7960 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7961 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7962 		return;
7963 
7964 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7965 
7966 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7967 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7968 	    spa->spa_all_vdev_zaps != 0);
7969 
7970 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7971 		/* Make and build the new AVZ */
7972 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7973 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7974 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7975 
7976 		/* Diff old AVZ with new one */
7977 		zap_cursor_t zc;
7978 		zap_attribute_t za;
7979 
7980 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7981 		    spa->spa_all_vdev_zaps);
7982 		    zap_cursor_retrieve(&zc, &za) == 0;
7983 		    zap_cursor_advance(&zc)) {
7984 			uint64_t vdzap = za.za_first_integer;
7985 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7986 			    vdzap) == ENOENT) {
7987 				/*
7988 				 * ZAP is listed in old AVZ but not in new one;
7989 				 * destroy it
7990 				 */
7991 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7992 				    tx));
7993 			}
7994 		}
7995 
7996 		zap_cursor_fini(&zc);
7997 
7998 		/* Destroy the old AVZ */
7999 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8000 		    spa->spa_all_vdev_zaps, tx));
8001 
8002 		/* Replace the old AVZ in the dir obj with the new one */
8003 		VERIFY0(zap_update(spa->spa_meta_objset,
8004 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8005 		    sizeof (new_avz), 1, &new_avz, tx));
8006 
8007 		spa->spa_all_vdev_zaps = new_avz;
8008 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8009 		zap_cursor_t zc;
8010 		zap_attribute_t za;
8011 
8012 		/* Walk through the AVZ and destroy all listed ZAPs */
8013 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8014 		    spa->spa_all_vdev_zaps);
8015 		    zap_cursor_retrieve(&zc, &za) == 0;
8016 		    zap_cursor_advance(&zc)) {
8017 			uint64_t zap = za.za_first_integer;
8018 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8019 		}
8020 
8021 		zap_cursor_fini(&zc);
8022 
8023 		/* Destroy and unlink the AVZ itself */
8024 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8025 		    spa->spa_all_vdev_zaps, tx));
8026 		VERIFY0(zap_remove(spa->spa_meta_objset,
8027 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8028 		spa->spa_all_vdev_zaps = 0;
8029 	}
8030 
8031 	if (spa->spa_all_vdev_zaps == 0) {
8032 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8033 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8034 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8035 	}
8036 	spa->spa_avz_action = AVZ_ACTION_NONE;
8037 
8038 	/* Create ZAPs for vdevs that don't have them. */
8039 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8040 
8041 	config = spa_config_generate(spa, spa->spa_root_vdev,
8042 	    dmu_tx_get_txg(tx), B_FALSE);
8043 
8044 	/*
8045 	 * If we're upgrading the spa version then make sure that
8046 	 * the config object gets updated with the correct version.
8047 	 */
8048 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8049 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8050 		    spa->spa_uberblock.ub_version);
8051 
8052 	spa_config_exit(spa, SCL_STATE, FTAG);
8053 
8054 	nvlist_free(spa->spa_config_syncing);
8055 	spa->spa_config_syncing = config;
8056 
8057 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8058 }
8059 
8060 static void
8061 spa_sync_version(void *arg, dmu_tx_t *tx)
8062 {
8063 	uint64_t *versionp = arg;
8064 	uint64_t version = *versionp;
8065 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8066 
8067 	/*
8068 	 * Setting the version is special cased when first creating the pool.
8069 	 */
8070 	ASSERT(tx->tx_txg != TXG_INITIAL);
8071 
8072 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8073 	ASSERT(version >= spa_version(spa));
8074 
8075 	spa->spa_uberblock.ub_version = version;
8076 	vdev_config_dirty(spa->spa_root_vdev);
8077 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8078 }
8079 
8080 /*
8081  * Set zpool properties.
8082  */
8083 static void
8084 spa_sync_props(void *arg, dmu_tx_t *tx)
8085 {
8086 	nvlist_t *nvp = arg;
8087 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8088 	objset_t *mos = spa->spa_meta_objset;
8089 	nvpair_t *elem = NULL;
8090 
8091 	mutex_enter(&spa->spa_props_lock);
8092 
8093 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8094 		uint64_t intval;
8095 		char *strval, *fname;
8096 		zpool_prop_t prop;
8097 		const char *propname;
8098 		zprop_type_t proptype;
8099 		spa_feature_t fid;
8100 
8101 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8102 		case ZPOOL_PROP_INVAL:
8103 			/*
8104 			 * We checked this earlier in spa_prop_validate().
8105 			 */
8106 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8107 
8108 			fname = strchr(nvpair_name(elem), '@') + 1;
8109 			VERIFY0(zfeature_lookup_name(fname, &fid));
8110 
8111 			spa_feature_enable(spa, fid, tx);
8112 			spa_history_log_internal(spa, "set", tx,
8113 			    "%s=enabled", nvpair_name(elem));
8114 			break;
8115 
8116 		case ZPOOL_PROP_VERSION:
8117 			intval = fnvpair_value_uint64(elem);
8118 			/*
8119 			 * The version is synced seperatly before other
8120 			 * properties and should be correct by now.
8121 			 */
8122 			ASSERT3U(spa_version(spa), >=, intval);
8123 			break;
8124 
8125 		case ZPOOL_PROP_ALTROOT:
8126 			/*
8127 			 * 'altroot' is a non-persistent property. It should
8128 			 * have been set temporarily at creation or import time.
8129 			 */
8130 			ASSERT(spa->spa_root != NULL);
8131 			break;
8132 
8133 		case ZPOOL_PROP_READONLY:
8134 		case ZPOOL_PROP_CACHEFILE:
8135 			/*
8136 			 * 'readonly' and 'cachefile' are also non-persisitent
8137 			 * properties.
8138 			 */
8139 			break;
8140 		case ZPOOL_PROP_COMMENT:
8141 			strval = fnvpair_value_string(elem);
8142 			if (spa->spa_comment != NULL)
8143 				spa_strfree(spa->spa_comment);
8144 			spa->spa_comment = spa_strdup(strval);
8145 			/*
8146 			 * We need to dirty the configuration on all the vdevs
8147 			 * so that their labels get updated.  It's unnecessary
8148 			 * to do this for pool creation since the vdev's
8149 			 * configuratoin has already been dirtied.
8150 			 */
8151 			if (tx->tx_txg != TXG_INITIAL)
8152 				vdev_config_dirty(spa->spa_root_vdev);
8153 			spa_history_log_internal(spa, "set", tx,
8154 			    "%s=%s", nvpair_name(elem), strval);
8155 			break;
8156 		default:
8157 			/*
8158 			 * Set pool property values in the poolprops mos object.
8159 			 */
8160 			if (spa->spa_pool_props_object == 0) {
8161 				spa->spa_pool_props_object =
8162 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8163 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8164 				    tx);
8165 			}
8166 
8167 			/* normalize the property name */
8168 			propname = zpool_prop_to_name(prop);
8169 			proptype = zpool_prop_get_type(prop);
8170 
8171 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8172 				ASSERT(proptype == PROP_TYPE_STRING);
8173 				strval = fnvpair_value_string(elem);
8174 				VERIFY0(zap_update(mos,
8175 				    spa->spa_pool_props_object, propname,
8176 				    1, strlen(strval) + 1, strval, tx));
8177 				spa_history_log_internal(spa, "set", tx,
8178 				    "%s=%s", nvpair_name(elem), strval);
8179 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8180 				intval = fnvpair_value_uint64(elem);
8181 
8182 				if (proptype == PROP_TYPE_INDEX) {
8183 					const char *unused;
8184 					VERIFY0(zpool_prop_index_to_string(
8185 					    prop, intval, &unused));
8186 				}
8187 				VERIFY0(zap_update(mos,
8188 				    spa->spa_pool_props_object, propname,
8189 				    8, 1, &intval, tx));
8190 				spa_history_log_internal(spa, "set", tx,
8191 				    "%s=%lld", nvpair_name(elem), intval);
8192 			} else {
8193 				ASSERT(0); /* not allowed */
8194 			}
8195 
8196 			switch (prop) {
8197 			case ZPOOL_PROP_DELEGATION:
8198 				spa->spa_delegation = intval;
8199 				break;
8200 			case ZPOOL_PROP_BOOTFS:
8201 				spa->spa_bootfs = intval;
8202 				break;
8203 			case ZPOOL_PROP_FAILUREMODE:
8204 				spa->spa_failmode = intval;
8205 				break;
8206 			case ZPOOL_PROP_AUTOTRIM:
8207 				spa->spa_autotrim = intval;
8208 				spa_async_request(spa,
8209 				    SPA_ASYNC_AUTOTRIM_RESTART);
8210 				break;
8211 			case ZPOOL_PROP_AUTOEXPAND:
8212 				spa->spa_autoexpand = intval;
8213 				if (tx->tx_txg != TXG_INITIAL)
8214 					spa_async_request(spa,
8215 					    SPA_ASYNC_AUTOEXPAND);
8216 				break;
8217 			case ZPOOL_PROP_MULTIHOST:
8218 				spa->spa_multihost = intval;
8219 				break;
8220 			case ZPOOL_PROP_DEDUPDITTO:
8221 				spa->spa_dedup_ditto = intval;
8222 				break;
8223 			default:
8224 				break;
8225 			}
8226 		}
8227 
8228 	}
8229 
8230 	mutex_exit(&spa->spa_props_lock);
8231 }
8232 
8233 /*
8234  * Perform one-time upgrade on-disk changes.  spa_version() does not
8235  * reflect the new version this txg, so there must be no changes this
8236  * txg to anything that the upgrade code depends on after it executes.
8237  * Therefore this must be called after dsl_pool_sync() does the sync
8238  * tasks.
8239  */
8240 static void
8241 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8242 {
8243 	if (spa_sync_pass(spa) != 1)
8244 		return;
8245 
8246 	dsl_pool_t *dp = spa->spa_dsl_pool;
8247 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8248 
8249 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8250 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8251 		dsl_pool_create_origin(dp, tx);
8252 
8253 		/* Keeping the origin open increases spa_minref */
8254 		spa->spa_minref += 3;
8255 	}
8256 
8257 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8258 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8259 		dsl_pool_upgrade_clones(dp, tx);
8260 	}
8261 
8262 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8263 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8264 		dsl_pool_upgrade_dir_clones(dp, tx);
8265 
8266 		/* Keeping the freedir open increases spa_minref */
8267 		spa->spa_minref += 3;
8268 	}
8269 
8270 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8271 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8272 		spa_feature_create_zap_objects(spa, tx);
8273 	}
8274 
8275 	/*
8276 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8277 	 * when possibility to use lz4 compression for metadata was added
8278 	 * Old pools that have this feature enabled must be upgraded to have
8279 	 * this feature active
8280 	 */
8281 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8282 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8283 		    SPA_FEATURE_LZ4_COMPRESS);
8284 		boolean_t lz4_ac = spa_feature_is_active(spa,
8285 		    SPA_FEATURE_LZ4_COMPRESS);
8286 
8287 		if (lz4_en && !lz4_ac)
8288 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8289 	}
8290 
8291 	/*
8292 	 * If we haven't written the salt, do so now.  Note that the
8293 	 * feature may not be activated yet, but that's fine since
8294 	 * the presence of this ZAP entry is backwards compatible.
8295 	 */
8296 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8297 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8298 		VERIFY0(zap_add(spa->spa_meta_objset,
8299 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8300 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8301 		    spa->spa_cksum_salt.zcs_bytes, tx));
8302 	}
8303 
8304 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8305 }
8306 
8307 static void
8308 vdev_indirect_state_sync_verify(vdev_t *vd)
8309 {
8310 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8311 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8312 
8313 	if (vd->vdev_ops == &vdev_indirect_ops) {
8314 		ASSERT(vim != NULL);
8315 		ASSERT(vib != NULL);
8316 	}
8317 
8318 	if (vdev_obsolete_sm_object(vd) != 0) {
8319 		ASSERT(vd->vdev_obsolete_sm != NULL);
8320 		ASSERT(vd->vdev_removing ||
8321 		    vd->vdev_ops == &vdev_indirect_ops);
8322 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8323 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8324 
8325 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8326 		    space_map_object(vd->vdev_obsolete_sm));
8327 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8328 		    space_map_allocated(vd->vdev_obsolete_sm));
8329 	}
8330 	ASSERT(vd->vdev_obsolete_segments != NULL);
8331 
8332 	/*
8333 	 * Since frees / remaps to an indirect vdev can only
8334 	 * happen in syncing context, the obsolete segments
8335 	 * tree must be empty when we start syncing.
8336 	 */
8337 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8338 }
8339 
8340 /*
8341  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8342  * async write queue depth in case it changed. The max queue depth will
8343  * not change in the middle of syncing out this txg.
8344  */
8345 static void
8346 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8347 {
8348 	ASSERT(spa_writeable(spa));
8349 
8350 	vdev_t *rvd = spa->spa_root_vdev;
8351 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8352 	    zfs_vdev_queue_depth_pct / 100;
8353 	metaslab_class_t *normal = spa_normal_class(spa);
8354 	metaslab_class_t *special = spa_special_class(spa);
8355 	metaslab_class_t *dedup = spa_dedup_class(spa);
8356 
8357 	uint64_t slots_per_allocator = 0;
8358 	for (int c = 0; c < rvd->vdev_children; c++) {
8359 		vdev_t *tvd = rvd->vdev_child[c];
8360 
8361 		metaslab_group_t *mg = tvd->vdev_mg;
8362 		if (mg == NULL || !metaslab_group_initialized(mg))
8363 			continue;
8364 
8365 		metaslab_class_t *mc = mg->mg_class;
8366 		if (mc != normal && mc != special && mc != dedup)
8367 			continue;
8368 
8369 		/*
8370 		 * It is safe to do a lock-free check here because only async
8371 		 * allocations look at mg_max_alloc_queue_depth, and async
8372 		 * allocations all happen from spa_sync().
8373 		 */
8374 		for (int i = 0; i < spa->spa_alloc_count; i++)
8375 			ASSERT0(zfs_refcount_count(
8376 			    &(mg->mg_alloc_queue_depth[i])));
8377 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8378 
8379 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8380 			mg->mg_cur_max_alloc_queue_depth[i] =
8381 			    zfs_vdev_def_queue_depth;
8382 		}
8383 		slots_per_allocator += zfs_vdev_def_queue_depth;
8384 	}
8385 
8386 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8387 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8388 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8389 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8390 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8391 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8392 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8393 	}
8394 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8395 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8396 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8397 }
8398 
8399 static void
8400 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8401 {
8402 	ASSERT(spa_writeable(spa));
8403 
8404 	vdev_t *rvd = spa->spa_root_vdev;
8405 	for (int c = 0; c < rvd->vdev_children; c++) {
8406 		vdev_t *vd = rvd->vdev_child[c];
8407 		vdev_indirect_state_sync_verify(vd);
8408 
8409 		if (vdev_indirect_should_condense(vd)) {
8410 			spa_condense_indirect_start_sync(vd, tx);
8411 			break;
8412 		}
8413 	}
8414 }
8415 
8416 static void
8417 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8418 {
8419 	objset_t *mos = spa->spa_meta_objset;
8420 	dsl_pool_t *dp = spa->spa_dsl_pool;
8421 	uint64_t txg = tx->tx_txg;
8422 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8423 
8424 	do {
8425 		int pass = ++spa->spa_sync_pass;
8426 
8427 		spa_sync_config_object(spa, tx);
8428 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8429 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8430 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8431 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8432 		spa_errlog_sync(spa, txg);
8433 		dsl_pool_sync(dp, txg);
8434 
8435 		if (pass < zfs_sync_pass_deferred_free ||
8436 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8437 			/*
8438 			 * If the log space map feature is active we don't
8439 			 * care about deferred frees and the deferred bpobj
8440 			 * as the log space map should effectively have the
8441 			 * same results (i.e. appending only to one object).
8442 			 */
8443 			spa_sync_frees(spa, free_bpl, tx);
8444 		} else {
8445 			/*
8446 			 * We can not defer frees in pass 1, because
8447 			 * we sync the deferred frees later in pass 1.
8448 			 */
8449 			ASSERT3U(pass, >, 1);
8450 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8451 			    &spa->spa_deferred_bpobj, tx);
8452 		}
8453 
8454 		ddt_sync(spa, txg);
8455 		dsl_scan_sync(dp, tx);
8456 		svr_sync(spa, tx);
8457 		spa_sync_upgrades(spa, tx);
8458 
8459 		spa_flush_metaslabs(spa, tx);
8460 
8461 		vdev_t *vd = NULL;
8462 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8463 		    != NULL)
8464 			vdev_sync(vd, txg);
8465 
8466 		/*
8467 		 * Note: We need to check if the MOS is dirty because we could
8468 		 * have marked the MOS dirty without updating the uberblock
8469 		 * (e.g. if we have sync tasks but no dirty user data). We need
8470 		 * to check the uberblock's rootbp because it is updated if we
8471 		 * have synced out dirty data (though in this case the MOS will
8472 		 * most likely also be dirty due to second order effects, we
8473 		 * don't want to rely on that here).
8474 		 */
8475 		if (pass == 1 &&
8476 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8477 		    !dmu_objset_is_dirty(mos, txg)) {
8478 			/*
8479 			 * Nothing changed on the first pass, therefore this
8480 			 * TXG is a no-op. Avoid syncing deferred frees, so
8481 			 * that we can keep this TXG as a no-op.
8482 			 */
8483 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8484 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8485 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8486 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8487 			break;
8488 		}
8489 
8490 		spa_sync_deferred_frees(spa, tx);
8491 	} while (dmu_objset_is_dirty(mos, txg));
8492 }
8493 
8494 /*
8495  * Rewrite the vdev configuration (which includes the uberblock) to
8496  * commit the transaction group.
8497  *
8498  * If there are no dirty vdevs, we sync the uberblock to a few random
8499  * top-level vdevs that are known to be visible in the config cache
8500  * (see spa_vdev_add() for a complete description). If there *are* dirty
8501  * vdevs, sync the uberblock to all vdevs.
8502  */
8503 static void
8504 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8505 {
8506 	vdev_t *rvd = spa->spa_root_vdev;
8507 	uint64_t txg = tx->tx_txg;
8508 
8509 	for (;;) {
8510 		int error = 0;
8511 
8512 		/*
8513 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8514 		 * while we're attempting to write the vdev labels.
8515 		 */
8516 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8517 
8518 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8519 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8520 			int svdcount = 0;
8521 			int children = rvd->vdev_children;
8522 			int c0 = spa_get_random(children);
8523 
8524 			for (int c = 0; c < children; c++) {
8525 				vdev_t *vd =
8526 				    rvd->vdev_child[(c0 + c) % children];
8527 
8528 				/* Stop when revisiting the first vdev */
8529 				if (c > 0 && svd[0] == vd)
8530 					break;
8531 
8532 				if (vd->vdev_ms_array == 0 ||
8533 				    vd->vdev_islog ||
8534 				    !vdev_is_concrete(vd))
8535 					continue;
8536 
8537 				svd[svdcount++] = vd;
8538 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8539 					break;
8540 			}
8541 			error = vdev_config_sync(svd, svdcount, txg);
8542 		} else {
8543 			error = vdev_config_sync(rvd->vdev_child,
8544 			    rvd->vdev_children, txg);
8545 		}
8546 
8547 		if (error == 0)
8548 			spa->spa_last_synced_guid = rvd->vdev_guid;
8549 
8550 		spa_config_exit(spa, SCL_STATE, FTAG);
8551 
8552 		if (error == 0)
8553 			break;
8554 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8555 		zio_resume_wait(spa);
8556 	}
8557 }
8558 
8559 /*
8560  * Sync the specified transaction group.  New blocks may be dirtied as
8561  * part of the process, so we iterate until it converges.
8562  */
8563 void
8564 spa_sync(spa_t *spa, uint64_t txg)
8565 {
8566 	vdev_t *vd = NULL;
8567 
8568 	VERIFY(spa_writeable(spa));
8569 
8570 	/*
8571 	 * Wait for i/os issued in open context that need to complete
8572 	 * before this txg syncs.
8573 	 */
8574 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8575 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8576 	    ZIO_FLAG_CANFAIL);
8577 
8578 	/*
8579 	 * Lock out configuration changes.
8580 	 */
8581 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8582 
8583 	spa->spa_syncing_txg = txg;
8584 	spa->spa_sync_pass = 0;
8585 
8586 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8587 		mutex_enter(&spa->spa_alloc_locks[i]);
8588 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8589 		mutex_exit(&spa->spa_alloc_locks[i]);
8590 	}
8591 
8592 	/*
8593 	 * If there are any pending vdev state changes, convert them
8594 	 * into config changes that go out with this transaction group.
8595 	 */
8596 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8597 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8598 		/*
8599 		 * We need the write lock here because, for aux vdevs,
8600 		 * calling vdev_config_dirty() modifies sav_config.
8601 		 * This is ugly and will become unnecessary when we
8602 		 * eliminate the aux vdev wart by integrating all vdevs
8603 		 * into the root vdev tree.
8604 		 */
8605 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8606 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8607 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8608 			vdev_state_clean(vd);
8609 			vdev_config_dirty(vd);
8610 		}
8611 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8612 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8613 	}
8614 	spa_config_exit(spa, SCL_STATE, FTAG);
8615 
8616 	dsl_pool_t *dp = spa->spa_dsl_pool;
8617 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8618 
8619 	spa->spa_sync_starttime = gethrtime();
8620 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8621 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8622 
8623 	/*
8624 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8625 	 * set spa_deflate if we have no raid-z vdevs.
8626 	 */
8627 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8628 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8629 		vdev_t *rvd = spa->spa_root_vdev;
8630 
8631 		int i;
8632 		for (i = 0; i < rvd->vdev_children; i++) {
8633 			vd = rvd->vdev_child[i];
8634 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8635 				break;
8636 		}
8637 		if (i == rvd->vdev_children) {
8638 			spa->spa_deflate = TRUE;
8639 			VERIFY0(zap_add(spa->spa_meta_objset,
8640 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8641 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8642 		}
8643 	}
8644 
8645 	spa_sync_adjust_vdev_max_queue_depth(spa);
8646 
8647 	spa_sync_condense_indirect(spa, tx);
8648 
8649 	spa_sync_iterate_to_convergence(spa, tx);
8650 
8651 #ifdef ZFS_DEBUG
8652 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8653 		/*
8654 		 * Make sure that the number of ZAPs for all the vdevs matches
8655 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8656 		 * called if the config is dirty; otherwise there may be
8657 		 * outstanding AVZ operations that weren't completed in
8658 		 * spa_sync_config_object.
8659 		 */
8660 		uint64_t all_vdev_zap_entry_count;
8661 		ASSERT0(zap_count(spa->spa_meta_objset,
8662 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8663 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8664 		    all_vdev_zap_entry_count);
8665 	}
8666 #endif
8667 
8668 	if (spa->spa_vdev_removal != NULL) {
8669 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8670 	}
8671 
8672 	spa_sync_rewrite_vdev_config(spa, tx);
8673 	dmu_tx_commit(tx);
8674 
8675 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8676 
8677 	/*
8678 	 * Clear the dirty config list.
8679 	 */
8680 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8681 		vdev_config_clean(vd);
8682 
8683 	/*
8684 	 * Now that the new config has synced transactionally,
8685 	 * let it become visible to the config cache.
8686 	 */
8687 	if (spa->spa_config_syncing != NULL) {
8688 		spa_config_set(spa, spa->spa_config_syncing);
8689 		spa->spa_config_txg = txg;
8690 		spa->spa_config_syncing = NULL;
8691 	}
8692 
8693 	dsl_pool_sync_done(dp, txg);
8694 
8695 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8696 		mutex_enter(&spa->spa_alloc_locks[i]);
8697 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8698 		mutex_exit(&spa->spa_alloc_locks[i]);
8699 	}
8700 
8701 	/*
8702 	 * Update usable space statistics.
8703 	 */
8704 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8705 	    != NULL)
8706 		vdev_sync_done(vd, txg);
8707 
8708 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8709 	metaslab_class_evict_old(spa->spa_log_class, txg);
8710 
8711 	spa_sync_close_syncing_log_sm(spa);
8712 
8713 	spa_update_dspace(spa);
8714 
8715 	/*
8716 	 * It had better be the case that we didn't dirty anything
8717 	 * since vdev_config_sync().
8718 	 */
8719 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8720 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8721 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8722 
8723 	while (zfs_pause_spa_sync)
8724 		delay(1);
8725 
8726 	spa->spa_sync_pass = 0;
8727 
8728 	/*
8729 	 * Update the last synced uberblock here. We want to do this at
8730 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8731 	 * will be guaranteed that all the processing associated with
8732 	 * that txg has been completed.
8733 	 */
8734 	spa->spa_ubsync = spa->spa_uberblock;
8735 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8736 
8737 	spa_handle_ignored_writes(spa);
8738 
8739 	/* Mark unused spares as needing a health check. */
8740 	if (spa_spare_poll_interval_seconds != 0 &&
8741 	    NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8742 	    spa_spare_poll_interval_seconds) {
8743 		spa_spare_poll(spa);
8744 		spa->spa_spares_last_polled = gethrtime();
8745 	}
8746 
8747 	/*
8748 	 * If any async tasks have been requested, kick them off.
8749 	 */
8750 	spa_async_dispatch(spa);
8751 }
8752 
8753 /*
8754  * Sync all pools.  We don't want to hold the namespace lock across these
8755  * operations, so we take a reference on the spa_t and drop the lock during the
8756  * sync.
8757  */
8758 void
8759 spa_sync_allpools(void)
8760 {
8761 	spa_t *spa = NULL;
8762 	mutex_enter(&spa_namespace_lock);
8763 	while ((spa = spa_next(spa)) != NULL) {
8764 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8765 		    !spa_writeable(spa) || spa_suspended(spa))
8766 			continue;
8767 		spa_open_ref(spa, FTAG);
8768 		mutex_exit(&spa_namespace_lock);
8769 		txg_wait_synced(spa_get_dsl(spa), 0);
8770 		mutex_enter(&spa_namespace_lock);
8771 		spa_close(spa, FTAG);
8772 	}
8773 	mutex_exit(&spa_namespace_lock);
8774 }
8775 
8776 /*
8777  * ==========================================================================
8778  * Miscellaneous routines
8779  * ==========================================================================
8780  */
8781 
8782 /*
8783  * Remove all pools in the system.
8784  */
8785 void
8786 spa_evict_all(void)
8787 {
8788 	spa_t *spa;
8789 
8790 	/*
8791 	 * Remove all cached state.  All pools should be closed now,
8792 	 * so every spa in the AVL tree should be unreferenced.
8793 	 */
8794 	mutex_enter(&spa_namespace_lock);
8795 	while ((spa = spa_next(NULL)) != NULL) {
8796 		/*
8797 		 * Stop async tasks.  The async thread may need to detach
8798 		 * a device that's been replaced, which requires grabbing
8799 		 * spa_namespace_lock, so we must drop it here.
8800 		 */
8801 		spa_open_ref(spa, FTAG);
8802 		mutex_exit(&spa_namespace_lock);
8803 		spa_async_suspend(spa);
8804 		mutex_enter(&spa_namespace_lock);
8805 		spa_close(spa, FTAG);
8806 
8807 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8808 			spa_unload(spa);
8809 			spa_deactivate(spa);
8810 		}
8811 		spa_remove(spa);
8812 	}
8813 	mutex_exit(&spa_namespace_lock);
8814 }
8815 
8816 vdev_t *
8817 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8818 {
8819 	vdev_t *vd;
8820 	int i;
8821 
8822 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8823 		return (vd);
8824 
8825 	if (aux) {
8826 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8827 			vd = spa->spa_l2cache.sav_vdevs[i];
8828 			if (vd->vdev_guid == guid)
8829 				return (vd);
8830 		}
8831 
8832 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8833 			vd = spa->spa_spares.sav_vdevs[i];
8834 			if (vd->vdev_guid == guid)
8835 				return (vd);
8836 		}
8837 	}
8838 
8839 	return (NULL);
8840 }
8841 
8842 void
8843 spa_upgrade(spa_t *spa, uint64_t version)
8844 {
8845 	ASSERT(spa_writeable(spa));
8846 
8847 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8848 
8849 	/*
8850 	 * This should only be called for a non-faulted pool, and since a
8851 	 * future version would result in an unopenable pool, this shouldn't be
8852 	 * possible.
8853 	 */
8854 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8855 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8856 
8857 	spa->spa_uberblock.ub_version = version;
8858 	vdev_config_dirty(spa->spa_root_vdev);
8859 
8860 	spa_config_exit(spa, SCL_ALL, FTAG);
8861 
8862 	txg_wait_synced(spa_get_dsl(spa), 0);
8863 }
8864 
8865 boolean_t
8866 spa_has_spare(spa_t *spa, uint64_t guid)
8867 {
8868 	int i;
8869 	uint64_t spareguid;
8870 	spa_aux_vdev_t *sav = &spa->spa_spares;
8871 
8872 	for (i = 0; i < sav->sav_count; i++)
8873 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8874 			return (B_TRUE);
8875 
8876 	for (i = 0; i < sav->sav_npending; i++) {
8877 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8878 		    &spareguid) == 0 && spareguid == guid)
8879 			return (B_TRUE);
8880 	}
8881 
8882 	return (B_FALSE);
8883 }
8884 
8885 /*
8886  * Check if a pool has an active shared spare device.
8887  * Note: reference count of an active spare is 2, as a spare and as a replace
8888  */
8889 static boolean_t
8890 spa_has_active_shared_spare(spa_t *spa)
8891 {
8892 	int i, refcnt;
8893 	uint64_t pool;
8894 	spa_aux_vdev_t *sav = &spa->spa_spares;
8895 
8896 	for (i = 0; i < sav->sav_count; i++) {
8897 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8898 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8899 		    refcnt > 2)
8900 			return (B_TRUE);
8901 	}
8902 
8903 	return (B_FALSE);
8904 }
8905 
8906 uint64_t
8907 spa_total_metaslabs(spa_t *spa)
8908 {
8909 	vdev_t *rvd = spa->spa_root_vdev;
8910 	uint64_t m = 0;
8911 
8912 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8913 		vdev_t *vd = rvd->vdev_child[c];
8914 		if (!vdev_is_concrete(vd))
8915 			continue;
8916 		m += vd->vdev_ms_count;
8917 	}
8918 	return (m);
8919 }
8920 
8921 sysevent_t *
8922 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8923 {
8924 	sysevent_t		*ev = NULL;
8925 #ifdef _KERNEL
8926 	sysevent_attr_list_t	*attr = NULL;
8927 	sysevent_value_t	value;
8928 
8929 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8930 	    SE_SLEEP);
8931 	ASSERT(ev != NULL);
8932 
8933 	value.value_type = SE_DATA_TYPE_STRING;
8934 	value.value.sv_string = spa_name(spa);
8935 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8936 		goto done;
8937 
8938 	value.value_type = SE_DATA_TYPE_UINT64;
8939 	value.value.sv_uint64 = spa_guid(spa);
8940 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8941 		goto done;
8942 
8943 	if (vd) {
8944 		value.value_type = SE_DATA_TYPE_UINT64;
8945 		value.value.sv_uint64 = vd->vdev_guid;
8946 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8947 		    SE_SLEEP) != 0)
8948 			goto done;
8949 
8950 		if (vd->vdev_path) {
8951 			value.value_type = SE_DATA_TYPE_STRING;
8952 			value.value.sv_string = vd->vdev_path;
8953 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8954 			    &value, SE_SLEEP) != 0)
8955 				goto done;
8956 		}
8957 	}
8958 
8959 	if (hist_nvl != NULL) {
8960 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8961 	}
8962 
8963 	if (sysevent_attach_attributes(ev, attr) != 0)
8964 		goto done;
8965 	attr = NULL;
8966 
8967 done:
8968 	if (attr)
8969 		sysevent_free_attr(attr);
8970 
8971 #endif
8972 	return (ev);
8973 }
8974 
8975 void
8976 spa_event_post(sysevent_t *ev)
8977 {
8978 #ifdef _KERNEL
8979 	sysevent_id_t		eid;
8980 
8981 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8982 	sysevent_free(ev);
8983 #endif
8984 }
8985 
8986 void
8987 spa_event_discard(sysevent_t *ev)
8988 {
8989 #ifdef _KERNEL
8990 	sysevent_free(ev);
8991 #endif
8992 }
8993 
8994 /*
8995  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8996  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8997  * filled in from the spa and (optionally) the vdev and history nvl.  This
8998  * doesn't do anything in the userland libzpool, as we don't want consumers to
8999  * misinterpret ztest or zdb as real changes.
9000  */
9001 void
9002 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9003 {
9004 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9005 }
9006