xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 8ac904ce090b1c2e355da8aa122ca2252183f4e1)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
26  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright 2013 Saso Kiselkov. All rights reserved.
29  * Copyright (c) 2014 Integros [integros.com]
30  * Copyright 2016 Toomas Soome <tsoome@me.com>
31  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32  * Copyright 2018 Joyent, Inc.
33  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
34  * Copyright 2017 Joyent, Inc.
35  * Copyright (c) 2017, Intel Corporation.
36  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
37  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
38  * Copyright (c) 2023, 2024, Klara Inc.
39  */
40 
41 /*
42  * SPA: Storage Pool Allocator
43  *
44  * This file contains all the routines used when modifying on-disk SPA state.
45  * This includes opening, importing, destroying, exporting a pool, and syncing a
46  * pool.
47  */
48 
49 #include <sys/zfs_context.h>
50 #include <sys/fm/fs/zfs.h>
51 #include <sys/spa_impl.h>
52 #include <sys/zio.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/dmu.h>
55 #include <sys/dmu_tx.h>
56 #include <sys/zap.h>
57 #include <sys/zil.h>
58 #include <sys/brt.h>
59 #include <sys/ddt.h>
60 #include <sys/vdev_impl.h>
61 #include <sys/vdev_removal.h>
62 #include <sys/vdev_indirect_mapping.h>
63 #include <sys/vdev_indirect_births.h>
64 #include <sys/vdev_initialize.h>
65 #include <sys/vdev_rebuild.h>
66 #include <sys/vdev_trim.h>
67 #include <sys/vdev_disk.h>
68 #include <sys/vdev_raidz.h>
69 #include <sys/vdev_draid.h>
70 #include <sys/metaslab.h>
71 #include <sys/metaslab_impl.h>
72 #include <sys/mmp.h>
73 #include <sys/uberblock_impl.h>
74 #include <sys/txg.h>
75 #include <sys/avl.h>
76 #include <sys/bpobj.h>
77 #include <sys/dmu_traverse.h>
78 #include <sys/dmu_objset.h>
79 #include <sys/unique.h>
80 #include <sys/dsl_pool.h>
81 #include <sys/dsl_dataset.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/dsl_prop.h>
84 #include <sys/dsl_synctask.h>
85 #include <sys/fs/zfs.h>
86 #include <sys/arc.h>
87 #include <sys/callb.h>
88 #include <sys/systeminfo.h>
89 #include <sys/zfs_ioctl.h>
90 #include <sys/dsl_scan.h>
91 #include <sys/zfeature.h>
92 #include <sys/dsl_destroy.h>
93 #include <sys/zvol.h>
94 
95 #ifdef	_KERNEL
96 #include <sys/fm/protocol.h>
97 #include <sys/fm/util.h>
98 #include <sys/callb.h>
99 #include <sys/zone.h>
100 #include <sys/vmsystm.h>
101 #endif	/* _KERNEL */
102 
103 #include "zfs_crrd.h"
104 #include "zfs_prop.h"
105 #include "zfs_comutil.h"
106 #include <cityhash.h>
107 
108 /*
109  * spa_thread() existed on Illumos as a parent thread for the various worker
110  * threads that actually run the pool, as a way to both reference the entire
111  * pool work as a single object, and to share properties like scheduling
112  * options. It has not yet been adapted to Linux or FreeBSD. This define is
113  * used to mark related parts of the code to make things easier for the reader,
114  * and to compile this code out. It can be removed when someone implements it,
115  * moves it to some Illumos-specific place, or removes it entirely.
116  */
117 #undef HAVE_SPA_THREAD
118 
119 /*
120  * The "System Duty Cycle" scheduling class is an Illumos feature to help
121  * prevent CPU-intensive kernel threads from affecting latency on interactive
122  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
123  * gated behind a define. On Illumos SDC depends on spa_thread(), but
124  * spa_thread() also has other uses, so this is a separate define.
125  */
126 #undef HAVE_SYSDC
127 
128 /*
129  * The interval, in seconds, at which failed configuration cache file writes
130  * should be retried.
131  */
132 int zfs_ccw_retry_interval = 300;
133 
134 typedef enum zti_modes {
135 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
136 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
137 	ZTI_MODE_SYNC,			/* sync thread assigned */
138 	ZTI_MODE_NULL,			/* don't create a taskq */
139 	ZTI_NMODES
140 } zti_modes_t;
141 
142 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
143 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
144 #define	ZTI_SCALE(min)	{ ZTI_MODE_SCALE, (min), 1 }
145 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
146 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
147 
148 #define	ZTI_N(n)	ZTI_P(n, 1)
149 #define	ZTI_ONE		ZTI_N(1)
150 
151 typedef struct zio_taskq_info {
152 	zti_modes_t zti_mode;
153 	uint_t zti_value;
154 	uint_t zti_count;
155 } zio_taskq_info_t;
156 
157 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
158 	"iss", "iss_h", "int", "int_h"
159 };
160 
161 /*
162  * This table defines the taskq settings for each ZFS I/O type. When
163  * initializing a pool, we use this table to create an appropriately sized
164  * taskq. Some operations are low volume and therefore have a small, static
165  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
166  * macros. Other operations process a large amount of data; the ZTI_SCALE
167  * macro causes us to create a taskq oriented for throughput. Some operations
168  * are so high frequency and short-lived that the taskq itself can become a
169  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
170  * additional degree of parallelism specified by the number of threads per-
171  * taskq and the number of taskqs; when dispatching an event in this case, the
172  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
173  * that scales with the number of CPUs.
174  *
175  * The different taskq priorities are to handle the different contexts (issue
176  * and interrupt) and then to reserve threads for high priority I/Os that
177  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
178  * implementation, so separate high priority threads are used there.
179  */
180 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
181 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
182 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
183 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE(0),	ZTI_NULL }, /* READ */
184 #ifdef illumos
185 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE(0),	ZTI_N(5) }, /* WRITE */
186 #else
187 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE(0),	ZTI_NULL }, /* WRITE */
188 #endif
189 	{ ZTI_SCALE(32), ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
190 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
191 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
192 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
193 };
194 
195 static void spa_sync_version(void *arg, dmu_tx_t *tx);
196 static void spa_sync_props(void *arg, dmu_tx_t *tx);
197 static boolean_t spa_has_active_shared_spare(spa_t *spa);
198 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
199     const char **ereport);
200 static void spa_vdev_resilver_done(spa_t *spa);
201 
202 /*
203  * Percentage of all CPUs that can be used by the metaslab preload taskq.
204  */
205 static uint_t metaslab_preload_pct = 50;
206 
207 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
208 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
209 
210 #ifdef HAVE_SYSDC
211 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
212 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
213 #endif
214 
215 #ifdef HAVE_SPA_THREAD
216 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
217 #endif
218 
219 static uint_t	zio_taskq_write_tpq = 16;
220 
221 /*
222  * Report any spa_load_verify errors found, but do not fail spa_load.
223  * This is used by zdb to analyze non-idle pools.
224  */
225 boolean_t	spa_load_verify_dryrun = B_FALSE;
226 
227 /*
228  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
229  * This is used by zdb for spacemaps verification.
230  */
231 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
232 
233 /*
234  * This (illegal) pool name is used when temporarily importing a spa_t in order
235  * to get the vdev stats associated with the imported devices.
236  */
237 #define	TRYIMPORT_NAME	"$import"
238 
239 /*
240  * For debugging purposes: print out vdev tree during pool import.
241  */
242 static int		spa_load_print_vdev_tree = B_FALSE;
243 
244 /*
245  * A non-zero value for zfs_max_missing_tvds means that we allow importing
246  * pools with missing top-level vdevs. This is strictly intended for advanced
247  * pool recovery cases since missing data is almost inevitable. Pools with
248  * missing devices can only be imported read-only for safety reasons, and their
249  * fail-mode will be automatically set to "continue".
250  *
251  * With 1 missing vdev we should be able to import the pool and mount all
252  * datasets. User data that was not modified after the missing device has been
253  * added should be recoverable. This means that snapshots created prior to the
254  * addition of that device should be completely intact.
255  *
256  * With 2 missing vdevs, some datasets may fail to mount since there are
257  * dataset statistics that are stored as regular metadata. Some data might be
258  * recoverable if those vdevs were added recently.
259  *
260  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
261  * may be missing entirely. Chances of data recovery are very low. Note that
262  * there are also risks of performing an inadvertent rewind as we might be
263  * missing all the vdevs with the latest uberblocks.
264  */
265 uint64_t	zfs_max_missing_tvds = 0;
266 
267 /*
268  * The parameters below are similar to zfs_max_missing_tvds but are only
269  * intended for a preliminary open of the pool with an untrusted config which
270  * might be incomplete or out-dated.
271  *
272  * We are more tolerant for pools opened from a cachefile since we could have
273  * an out-dated cachefile where a device removal was not registered.
274  * We could have set the limit arbitrarily high but in the case where devices
275  * are really missing we would want to return the proper error codes; we chose
276  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
277  * and we get a chance to retrieve the trusted config.
278  */
279 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
280 
281 /*
282  * In the case where config was assembled by scanning device paths (/dev/dsks
283  * by default) we are less tolerant since all the existing devices should have
284  * been detected and we want spa_load to return the right error codes.
285  */
286 uint64_t	zfs_max_missing_tvds_scan = 0;
287 
288 /*
289  * Debugging aid that pauses spa_sync() towards the end.
290  */
291 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
292 
293 /*
294  * Variables to indicate the livelist condense zthr func should wait at certain
295  * points for the livelist to be removed - used to test condense/destroy races
296  */
297 static int zfs_livelist_condense_zthr_pause = 0;
298 static int zfs_livelist_condense_sync_pause = 0;
299 
300 /*
301  * Variables to track whether or not condense cancellation has been
302  * triggered in testing.
303  */
304 static int zfs_livelist_condense_sync_cancel = 0;
305 static int zfs_livelist_condense_zthr_cancel = 0;
306 
307 /*
308  * Variable to track whether or not extra ALLOC blkptrs were added to a
309  * livelist entry while it was being condensed (caused by the way we track
310  * remapped blkptrs in dbuf_remap_impl)
311  */
312 static int zfs_livelist_condense_new_alloc = 0;
313 
314 /*
315  * Time variable to decide how often the txg should be added into the
316  * database (in seconds).
317  * The smallest available resolution is in minutes, which means an update occurs
318  * each time we reach `spa_note_txg_time` and the txg has changed. We provide
319  * a 256-slot ring buffer for minute-level resolution. The number is limited by
320  * the size of the structure we use and the maximum amount of bytes we can write
321  * into ZAP. Setting `spa_note_txg_time` to 10 minutes results in approximately
322  * 144 records per day. Given the 256 slots, this provides roughly 1.5 days of
323  * high-resolution data.
324  *
325  * The user can decrease `spa_note_txg_time` to increase resolution within
326  * a day, at the cost of retaining fewer days of data. Alternatively, increasing
327  * the interval allows storing data over a longer period, but with lower
328  * frequency.
329  *
330  * This parameter does not affect the daily or monthly databases, as those only
331  * store one record per day and per month, respectively.
332  */
333 static uint_t spa_note_txg_time = 10 * 60;
334 
335 /*
336  * How often flush txg database to a disk (in seconds).
337  * We flush data every time we write to it, making it the most reliable option.
338  * Since this happens every 10 minutes, it shouldn't introduce any noticeable
339  * overhead for the system. In case of failure, we will always have an
340  * up-to-date version of the database.
341  *
342  * The user can adjust the flush interval to a lower value, but it probably
343  * doesn't make sense to flush more often than the database is updated.
344  * The user can also increase the interval if they're concerned about the
345  * performance of writing the entire database to disk.
346  */
347 static uint_t spa_flush_txg_time = 10 * 60;
348 
349 /*
350  * ==========================================================================
351  * SPA properties routines
352  * ==========================================================================
353  */
354 
355 /*
356  * Add a (source=src, propname=propval) list to an nvlist.
357  */
358 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)359 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
360     uint64_t intval, zprop_source_t src)
361 {
362 	const char *propname = zpool_prop_to_name(prop);
363 	nvlist_t *propval;
364 
365 	propval = fnvlist_alloc();
366 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
367 
368 	if (strval != NULL)
369 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
370 	else
371 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
372 
373 	fnvlist_add_nvlist(nvl, propname, propval);
374 	nvlist_free(propval);
375 }
376 
377 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)378 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
379 {
380 	zpool_prop_t prop = zpool_name_to_prop(propname);
381 	zprop_source_t src = ZPROP_SRC_NONE;
382 	uint64_t intval;
383 	int err;
384 
385 	/*
386 	 * NB: Not all properties lookups via this API require
387 	 * the spa props lock, so they must explicitly grab it here.
388 	 */
389 	switch (prop) {
390 	case ZPOOL_PROP_DEDUPCACHED:
391 		err = ddt_get_pool_dedup_cached(spa, &intval);
392 		if (err != 0)
393 			return (SET_ERROR(err));
394 		break;
395 	default:
396 		return (SET_ERROR(EINVAL));
397 	}
398 
399 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
400 
401 	return (0);
402 }
403 
404 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)405 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
406     nvlist_t *outnvl)
407 {
408 	int err = 0;
409 
410 	if (props == NULL)
411 		return (0);
412 
413 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
414 		err = spa_prop_add(spa, props[i], outnvl);
415 	}
416 
417 	return (err);
418 }
419 
420 /*
421  * Add a user property (source=src, propname=propval) to an nvlist.
422  */
423 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)424 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
425     zprop_source_t src)
426 {
427 	nvlist_t *propval;
428 
429 	VERIFY0(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP));
430 	VERIFY0(nvlist_add_uint64(propval, ZPROP_SOURCE, src));
431 	VERIFY0(nvlist_add_string(propval, ZPROP_VALUE, strval));
432 	VERIFY0(nvlist_add_nvlist(nvl, propname, propval));
433 	nvlist_free(propval);
434 }
435 
436 /*
437  * Get property values from the spa configuration.
438  */
439 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)440 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
441 {
442 	vdev_t *rvd = spa->spa_root_vdev;
443 	dsl_pool_t *pool = spa->spa_dsl_pool;
444 	uint64_t size, alloc, cap, version;
445 	const zprop_source_t src = ZPROP_SRC_NONE;
446 	spa_config_dirent_t *dp;
447 	metaslab_class_t *mc = spa_normal_class(spa);
448 
449 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
450 
451 	if (rvd != NULL) {
452 		alloc = metaslab_class_get_alloc(mc);
453 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
454 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
455 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
456 		alloc += metaslab_class_get_alloc(
457 		    spa_special_embedded_log_class(spa));
458 
459 		size = metaslab_class_get_space(mc);
460 		size += metaslab_class_get_space(spa_special_class(spa));
461 		size += metaslab_class_get_space(spa_dedup_class(spa));
462 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
463 		size += metaslab_class_get_space(
464 		    spa_special_embedded_log_class(spa));
465 
466 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
467 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
468 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
469 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
470 		    size - alloc, src);
471 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
472 		    spa->spa_checkpoint_info.sci_dspace, src);
473 
474 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
475 		    metaslab_class_fragmentation(mc), src);
476 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
477 		    metaslab_class_expandable_space(mc), src);
478 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
479 		    (spa_mode(spa) == SPA_MODE_READ), src);
480 
481 		cap = (size == 0) ? 0 : (alloc * 100 / size);
482 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
483 
484 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
485 		    ddt_get_pool_dedup_ratio(spa), src);
486 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
487 		    brt_get_used(spa), src);
488 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
489 		    brt_get_saved(spa), src);
490 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
491 		    brt_get_ratio(spa), src);
492 
493 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
494 		    ddt_get_ddt_dsize(spa), src);
495 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
496 		    rvd->vdev_state, src);
497 		spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
498 		    spa_get_last_scrubbed_txg(spa), src);
499 
500 		version = spa_version(spa);
501 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
502 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
503 			    version, ZPROP_SRC_DEFAULT);
504 		} else {
505 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
506 			    version, ZPROP_SRC_LOCAL);
507 		}
508 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
509 		    NULL, spa_load_guid(spa), src);
510 	}
511 
512 	if (pool != NULL) {
513 		/*
514 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
515 		 * when opening pools before this version freedir will be NULL.
516 		 */
517 		if (pool->dp_free_dir != NULL) {
518 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
519 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
520 			    src);
521 		} else {
522 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
523 			    NULL, 0, src);
524 		}
525 
526 		if (pool->dp_leak_dir != NULL) {
527 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
528 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
529 			    src);
530 		} else {
531 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
532 			    NULL, 0, src);
533 		}
534 	}
535 
536 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
537 
538 	if (spa->spa_comment != NULL) {
539 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
540 		    0, ZPROP_SRC_LOCAL);
541 	}
542 
543 	if (spa->spa_compatibility != NULL) {
544 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
545 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
546 	}
547 
548 	if (spa->spa_root != NULL)
549 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
550 		    0, ZPROP_SRC_LOCAL);
551 
552 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
553 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
554 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
555 	} else {
556 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
557 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
558 	}
559 
560 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
561 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
562 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
563 	} else {
564 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
565 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
566 	}
567 
568 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
569 		if (dp->scd_path == NULL) {
570 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
571 			    "none", 0, ZPROP_SRC_LOCAL);
572 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
573 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
574 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
575 		}
576 	}
577 }
578 
579 /*
580  * Get zpool property values.
581  */
582 int
spa_prop_get(spa_t * spa,nvlist_t * nv)583 spa_prop_get(spa_t *spa, nvlist_t *nv)
584 {
585 	objset_t *mos = spa->spa_meta_objset;
586 	zap_cursor_t zc;
587 	zap_attribute_t *za;
588 	dsl_pool_t *dp;
589 	int err = 0;
590 
591 	dp = spa_get_dsl(spa);
592 	dsl_pool_config_enter(dp, FTAG);
593 	za = zap_attribute_alloc();
594 	mutex_enter(&spa->spa_props_lock);
595 
596 	/*
597 	 * Get properties from the spa config.
598 	 */
599 	spa_prop_get_config(spa, nv);
600 
601 	/* If no pool property object, no more prop to get. */
602 	if (mos == NULL || spa->spa_pool_props_object == 0)
603 		goto out;
604 
605 	/*
606 	 * Get properties from the MOS pool property object.
607 	 */
608 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
609 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
610 	    zap_cursor_advance(&zc)) {
611 		uint64_t intval = 0;
612 		char *strval = NULL;
613 		zprop_source_t src = ZPROP_SRC_DEFAULT;
614 		zpool_prop_t prop;
615 
616 		if ((prop = zpool_name_to_prop(za->za_name)) ==
617 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
618 			continue;
619 
620 		switch (za->za_integer_length) {
621 		case 8:
622 			/* integer property */
623 			if (za->za_first_integer !=
624 			    zpool_prop_default_numeric(prop))
625 				src = ZPROP_SRC_LOCAL;
626 
627 			if (prop == ZPOOL_PROP_BOOTFS) {
628 				dsl_dataset_t *ds = NULL;
629 
630 				err = dsl_dataset_hold_obj(dp,
631 				    za->za_first_integer, FTAG, &ds);
632 				if (err != 0)
633 					break;
634 
635 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
636 				    KM_SLEEP);
637 				dsl_dataset_name(ds, strval);
638 				dsl_dataset_rele(ds, FTAG);
639 			} else {
640 				strval = NULL;
641 				intval = za->za_first_integer;
642 			}
643 
644 			spa_prop_add_list(nv, prop, strval, intval, src);
645 
646 			if (strval != NULL)
647 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
648 
649 			break;
650 
651 		case 1:
652 			/* string property */
653 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
654 			err = zap_lookup(mos, spa->spa_pool_props_object,
655 			    za->za_name, 1, za->za_num_integers, strval);
656 			if (err) {
657 				kmem_free(strval, za->za_num_integers);
658 				break;
659 			}
660 			if (prop != ZPOOL_PROP_INVAL) {
661 				spa_prop_add_list(nv, prop, strval, 0, src);
662 			} else {
663 				src = ZPROP_SRC_LOCAL;
664 				spa_prop_add_user(nv, za->za_name, strval,
665 				    src);
666 			}
667 			kmem_free(strval, za->za_num_integers);
668 			break;
669 
670 		default:
671 			break;
672 		}
673 	}
674 	zap_cursor_fini(&zc);
675 out:
676 	mutex_exit(&spa->spa_props_lock);
677 	dsl_pool_config_exit(dp, FTAG);
678 	zap_attribute_free(za);
679 
680 	if (err && err != ENOENT)
681 		return (err);
682 
683 	return (0);
684 }
685 
686 /*
687  * Validate the given pool properties nvlist and modify the list
688  * for the property values to be set.
689  */
690 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)691 spa_prop_validate(spa_t *spa, nvlist_t *props)
692 {
693 	nvpair_t *elem;
694 	int error = 0, reset_bootfs = 0;
695 	uint64_t objnum = 0;
696 	boolean_t has_feature = B_FALSE;
697 
698 	elem = NULL;
699 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
700 		uint64_t intval;
701 		const char *strval, *slash, *check, *fname;
702 		const char *propname = nvpair_name(elem);
703 		zpool_prop_t prop = zpool_name_to_prop(propname);
704 
705 		switch (prop) {
706 		case ZPOOL_PROP_INVAL:
707 			/*
708 			 * Sanitize the input.
709 			 */
710 			if (zfs_prop_user(propname)) {
711 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
712 					error = SET_ERROR(ENAMETOOLONG);
713 					break;
714 				}
715 
716 				if (strlen(fnvpair_value_string(elem)) >=
717 				    ZAP_MAXVALUELEN) {
718 					error = SET_ERROR(E2BIG);
719 					break;
720 				}
721 			} else if (zpool_prop_feature(propname)) {
722 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
723 					error = SET_ERROR(EINVAL);
724 					break;
725 				}
726 
727 				if (nvpair_value_uint64(elem, &intval) != 0) {
728 					error = SET_ERROR(EINVAL);
729 					break;
730 				}
731 
732 				if (intval != 0) {
733 					error = SET_ERROR(EINVAL);
734 					break;
735 				}
736 
737 				fname = strchr(propname, '@') + 1;
738 				if (zfeature_lookup_name(fname, NULL) != 0) {
739 					error = SET_ERROR(EINVAL);
740 					break;
741 				}
742 
743 				has_feature = B_TRUE;
744 			} else {
745 				error = SET_ERROR(EINVAL);
746 				break;
747 			}
748 			break;
749 
750 		case ZPOOL_PROP_VERSION:
751 			error = nvpair_value_uint64(elem, &intval);
752 			if (!error &&
753 			    (intval < spa_version(spa) ||
754 			    intval > SPA_VERSION_BEFORE_FEATURES ||
755 			    has_feature))
756 				error = SET_ERROR(EINVAL);
757 			break;
758 
759 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
760 			error = nvpair_value_uint64(elem, &intval);
761 			break;
762 
763 		case ZPOOL_PROP_DELEGATION:
764 		case ZPOOL_PROP_AUTOREPLACE:
765 		case ZPOOL_PROP_LISTSNAPS:
766 		case ZPOOL_PROP_AUTOEXPAND:
767 		case ZPOOL_PROP_AUTOTRIM:
768 			error = nvpair_value_uint64(elem, &intval);
769 			if (!error && intval > 1)
770 				error = SET_ERROR(EINVAL);
771 			break;
772 
773 		case ZPOOL_PROP_MULTIHOST:
774 			error = nvpair_value_uint64(elem, &intval);
775 			if (!error && intval > 1)
776 				error = SET_ERROR(EINVAL);
777 
778 			if (!error) {
779 				uint32_t hostid = zone_get_hostid(NULL);
780 				if (hostid)
781 					spa->spa_hostid = hostid;
782 				else
783 					error = SET_ERROR(ENOTSUP);
784 			}
785 
786 			break;
787 
788 		case ZPOOL_PROP_BOOTFS:
789 			/*
790 			 * If the pool version is less than SPA_VERSION_BOOTFS,
791 			 * or the pool is still being created (version == 0),
792 			 * the bootfs property cannot be set.
793 			 */
794 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
795 				error = SET_ERROR(ENOTSUP);
796 				break;
797 			}
798 
799 			/*
800 			 * Make sure the vdev config is bootable
801 			 */
802 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
803 				error = SET_ERROR(ENOTSUP);
804 				break;
805 			}
806 
807 			reset_bootfs = 1;
808 
809 			error = nvpair_value_string(elem, &strval);
810 
811 			if (!error) {
812 				objset_t *os;
813 
814 				if (strval == NULL || strval[0] == '\0') {
815 					objnum = zpool_prop_default_numeric(
816 					    ZPOOL_PROP_BOOTFS);
817 					break;
818 				}
819 
820 				error = dmu_objset_hold(strval, FTAG, &os);
821 				if (error != 0)
822 					break;
823 
824 				/* Must be ZPL. */
825 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
826 					error = SET_ERROR(ENOTSUP);
827 				} else {
828 					objnum = dmu_objset_id(os);
829 				}
830 				dmu_objset_rele(os, FTAG);
831 			}
832 			break;
833 
834 		case ZPOOL_PROP_FAILUREMODE:
835 			error = nvpair_value_uint64(elem, &intval);
836 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
837 				error = SET_ERROR(EINVAL);
838 
839 			/*
840 			 * This is a special case which only occurs when
841 			 * the pool has completely failed. This allows
842 			 * the user to change the in-core failmode property
843 			 * without syncing it out to disk (I/Os might
844 			 * currently be blocked). We do this by returning
845 			 * EIO to the caller (spa_prop_set) to trick it
846 			 * into thinking we encountered a property validation
847 			 * error.
848 			 */
849 			if (!error && spa_suspended(spa)) {
850 				spa->spa_failmode = intval;
851 				error = SET_ERROR(EIO);
852 			}
853 			break;
854 
855 		case ZPOOL_PROP_CACHEFILE:
856 			if ((error = nvpair_value_string(elem, &strval)) != 0)
857 				break;
858 
859 			if (strval[0] == '\0')
860 				break;
861 
862 			if (strcmp(strval, "none") == 0)
863 				break;
864 
865 			if (strval[0] != '/') {
866 				error = SET_ERROR(EINVAL);
867 				break;
868 			}
869 
870 			slash = strrchr(strval, '/');
871 			ASSERT(slash != NULL);
872 
873 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
874 			    strcmp(slash, "/..") == 0)
875 				error = SET_ERROR(EINVAL);
876 			break;
877 
878 		case ZPOOL_PROP_COMMENT:
879 			if ((error = nvpair_value_string(elem, &strval)) != 0)
880 				break;
881 			for (check = strval; *check != '\0'; check++) {
882 				if (!isprint(*check)) {
883 					error = SET_ERROR(EINVAL);
884 					break;
885 				}
886 			}
887 			if (strlen(strval) > ZPROP_MAX_COMMENT)
888 				error = SET_ERROR(E2BIG);
889 			break;
890 
891 		default:
892 			break;
893 		}
894 
895 		if (error)
896 			break;
897 	}
898 
899 	(void) nvlist_remove_all(props,
900 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
901 
902 	if (!error && reset_bootfs) {
903 		error = nvlist_remove(props,
904 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
905 
906 		if (!error) {
907 			error = nvlist_add_uint64(props,
908 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
909 		}
910 	}
911 
912 	return (error);
913 }
914 
915 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)916 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
917 {
918 	const char *cachefile;
919 	spa_config_dirent_t *dp;
920 
921 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
922 	    &cachefile) != 0)
923 		return;
924 
925 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
926 	    KM_SLEEP);
927 
928 	if (cachefile[0] == '\0')
929 		dp->scd_path = spa_strdup(spa_config_path);
930 	else if (strcmp(cachefile, "none") == 0)
931 		dp->scd_path = NULL;
932 	else
933 		dp->scd_path = spa_strdup(cachefile);
934 
935 	list_insert_head(&spa->spa_config_list, dp);
936 	if (need_sync)
937 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
938 }
939 
940 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)941 spa_prop_set(spa_t *spa, nvlist_t *nvp)
942 {
943 	int error;
944 	nvpair_t *elem = NULL;
945 	boolean_t need_sync = B_FALSE;
946 
947 	if ((error = spa_prop_validate(spa, nvp)) != 0)
948 		return (error);
949 
950 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
951 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
952 
953 		if (prop == ZPOOL_PROP_CACHEFILE ||
954 		    prop == ZPOOL_PROP_ALTROOT ||
955 		    prop == ZPOOL_PROP_READONLY)
956 			continue;
957 
958 		if (prop == ZPOOL_PROP_INVAL &&
959 		    zfs_prop_user(nvpair_name(elem))) {
960 			need_sync = B_TRUE;
961 			break;
962 		}
963 
964 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
965 			uint64_t ver = 0;
966 
967 			if (prop == ZPOOL_PROP_VERSION) {
968 				VERIFY0(nvpair_value_uint64(elem, &ver));
969 			} else {
970 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
971 				ver = SPA_VERSION_FEATURES;
972 				need_sync = B_TRUE;
973 			}
974 
975 			/* Save time if the version is already set. */
976 			if (ver == spa_version(spa))
977 				continue;
978 
979 			/*
980 			 * In addition to the pool directory object, we might
981 			 * create the pool properties object, the features for
982 			 * read object, the features for write object, or the
983 			 * feature descriptions object.
984 			 */
985 			error = dsl_sync_task(spa->spa_name, NULL,
986 			    spa_sync_version, &ver,
987 			    6, ZFS_SPACE_CHECK_RESERVED);
988 			if (error)
989 				return (error);
990 			continue;
991 		}
992 
993 		need_sync = B_TRUE;
994 		break;
995 	}
996 
997 	if (need_sync) {
998 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
999 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
1000 	}
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * If the bootfs property value is dsobj, clear it.
1007  */
1008 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)1009 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
1010 {
1011 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
1012 		VERIFY(zap_remove(spa->spa_meta_objset,
1013 		    spa->spa_pool_props_object,
1014 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
1015 		spa->spa_bootfs = 0;
1016 	}
1017 }
1018 
1019 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)1020 spa_change_guid_check(void *arg, dmu_tx_t *tx)
1021 {
1022 	uint64_t *newguid __maybe_unused = arg;
1023 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1024 	vdev_t *rvd = spa->spa_root_vdev;
1025 	uint64_t vdev_state;
1026 
1027 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1028 		int error = (spa_has_checkpoint(spa)) ?
1029 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1030 		return (SET_ERROR(error));
1031 	}
1032 
1033 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1034 	vdev_state = rvd->vdev_state;
1035 	spa_config_exit(spa, SCL_STATE, FTAG);
1036 
1037 	if (vdev_state != VDEV_STATE_HEALTHY)
1038 		return (SET_ERROR(ENXIO));
1039 
1040 	ASSERT3U(spa_guid(spa), !=, *newguid);
1041 
1042 	return (0);
1043 }
1044 
1045 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1046 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1047 {
1048 	uint64_t *newguid = arg;
1049 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1050 	uint64_t oldguid;
1051 	vdev_t *rvd = spa->spa_root_vdev;
1052 
1053 	oldguid = spa_guid(spa);
1054 
1055 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1056 	rvd->vdev_guid = *newguid;
1057 	rvd->vdev_guid_sum += (*newguid - oldguid);
1058 	vdev_config_dirty(rvd);
1059 	spa_config_exit(spa, SCL_STATE, FTAG);
1060 
1061 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1062 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1063 }
1064 
1065 /*
1066  * Change the GUID for the pool.  This is done so that we can later
1067  * re-import a pool built from a clone of our own vdevs.  We will modify
1068  * the root vdev's guid, our own pool guid, and then mark all of our
1069  * vdevs dirty.  Note that we must make sure that all our vdevs are
1070  * online when we do this, or else any vdevs that weren't present
1071  * would be orphaned from our pool.  We are also going to issue a
1072  * sysevent to update any watchers.
1073  *
1074  * The GUID of the pool will be changed to the value pointed to by guidp.
1075  * The GUID may not be set to the reserverd value of 0.
1076  * The new GUID will be generated if guidp is NULL.
1077  */
1078 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1079 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1080 {
1081 	uint64_t guid;
1082 	int error;
1083 
1084 	mutex_enter(&spa->spa_vdev_top_lock);
1085 	spa_namespace_enter(FTAG);
1086 
1087 	if (guidp != NULL) {
1088 		guid = *guidp;
1089 		if (guid == 0) {
1090 			error = SET_ERROR(EINVAL);
1091 			goto out;
1092 		}
1093 
1094 		if (spa_guid_exists(guid, 0)) {
1095 			error = SET_ERROR(EEXIST);
1096 			goto out;
1097 		}
1098 	} else {
1099 		guid = spa_generate_guid(NULL);
1100 	}
1101 
1102 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1103 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1104 
1105 	if (error == 0) {
1106 		/*
1107 		 * Clear the kobj flag from all the vdevs to allow
1108 		 * vdev_cache_process_kobj_evt() to post events to all the
1109 		 * vdevs since GUID is updated.
1110 		 */
1111 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1112 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1113 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1114 
1115 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1116 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1117 	}
1118 
1119 out:
1120 	spa_namespace_exit(FTAG);
1121 	mutex_exit(&spa->spa_vdev_top_lock);
1122 
1123 	return (error);
1124 }
1125 
1126 /*
1127  * ==========================================================================
1128  * SPA state manipulation (open/create/destroy/import/export)
1129  * ==========================================================================
1130  */
1131 
1132 static int
spa_error_entry_compare(const void * a,const void * b)1133 spa_error_entry_compare(const void *a, const void *b)
1134 {
1135 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1136 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1137 	int ret;
1138 
1139 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1140 	    sizeof (zbookmark_phys_t));
1141 
1142 	return (TREE_ISIGN(ret));
1143 }
1144 
1145 /*
1146  * Utility function which retrieves copies of the current logs and
1147  * re-initializes them in the process.
1148  */
1149 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1150 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1151 {
1152 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1153 
1154 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1155 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1156 
1157 	avl_create(&spa->spa_errlist_scrub,
1158 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1159 	    offsetof(spa_error_entry_t, se_avl));
1160 	avl_create(&spa->spa_errlist_last,
1161 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 	    offsetof(spa_error_entry_t, se_avl));
1163 }
1164 
1165 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1166 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1167 {
1168 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1169 	enum zti_modes mode = ztip->zti_mode;
1170 	uint_t value = ztip->zti_value;
1171 	uint_t count = ztip->zti_count;
1172 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1173 	uint_t cpus, threads, flags = TASKQ_DYNAMIC;
1174 
1175 	switch (mode) {
1176 	case ZTI_MODE_FIXED:
1177 		ASSERT3U(value, >, 0);
1178 		break;
1179 
1180 	case ZTI_MODE_SYNC:
1181 
1182 		/*
1183 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1184 		 * not to exceed the number of spa allocators, and align to it.
1185 		 */
1186 		threads = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1187 		count = MAX(1, threads / MAX(1, zio_taskq_write_tpq));
1188 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1189 		count = MIN(count, spa->spa_alloc_count);
1190 		while (spa->spa_alloc_count % count != 0 &&
1191 		    spa->spa_alloc_count < count * 2)
1192 			count--;
1193 
1194 		/*
1195 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1196 		 * single taskq may have more threads than 100% of online cpus.
1197 		 */
1198 		value = (zio_taskq_batch_pct + count / 2) / count;
1199 		value = MIN(value, 100);
1200 		flags |= TASKQ_THREADS_CPU_PCT;
1201 		break;
1202 
1203 	case ZTI_MODE_SCALE:
1204 		/*
1205 		 * We want more taskqs to reduce lock contention, but we want
1206 		 * less for better request ordering and CPU utilization.
1207 		 */
1208 		threads = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1209 		threads = MAX(threads, value);
1210 		if (zio_taskq_batch_tpq > 0) {
1211 			count = MAX(1, (threads + zio_taskq_batch_tpq / 2) /
1212 			    zio_taskq_batch_tpq);
1213 		} else {
1214 			/*
1215 			 * Prefer 6 threads per taskq, but no more taskqs
1216 			 * than threads in them on large systems. For 80%:
1217 			 *
1218 			 *                 taskq   taskq   total
1219 			 * cpus    taskqs  percent threads threads
1220 			 * ------- ------- ------- ------- -------
1221 			 * 1       1       80%     1       1
1222 			 * 2       1       80%     1       1
1223 			 * 4       1       80%     3       3
1224 			 * 8       2       40%     3       6
1225 			 * 16      3       27%     4       12
1226 			 * 32      5       16%     5       25
1227 			 * 64      7       11%     7       49
1228 			 * 128     10      8%      10      100
1229 			 * 256     14      6%      15      210
1230 			 */
1231 			cpus = MIN(threads, boot_ncpus);
1232 			count = 1 + threads / 6;
1233 			while (count * count > cpus)
1234 				count--;
1235 		}
1236 
1237 		/*
1238 		 * Try to represent the number of threads per taskq as percent
1239 		 * of online CPUs to allow scaling with later online/offline.
1240 		 * Fall back to absolute numbers if can't.
1241 		 */
1242 		value = (threads * 100 + boot_ncpus * count / 2) /
1243 		    (boot_ncpus * count);
1244 		if (value < 5 || value > 100)
1245 			value = MAX(1, (threads + count / 2) / count);
1246 		else
1247 			flags |= TASKQ_THREADS_CPU_PCT;
1248 		break;
1249 
1250 	case ZTI_MODE_NULL:
1251 		tqs->stqs_count = 0;
1252 		tqs->stqs_taskq = NULL;
1253 		return;
1254 
1255 	default:
1256 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1257 		    "spa_taskqs_init()",
1258 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1259 		break;
1260 	}
1261 
1262 	ASSERT3U(count, >, 0);
1263 	tqs->stqs_count = count;
1264 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1265 
1266 	for (uint_t i = 0; i < count; i++) {
1267 		taskq_t *tq;
1268 		char name[32];
1269 
1270 		if (count > 1)
1271 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1272 			    zio_type_name[t], zio_taskq_types[q], i);
1273 		else
1274 			(void) snprintf(name, sizeof (name), "%s_%s",
1275 			    zio_type_name[t], zio_taskq_types[q]);
1276 
1277 #ifdef HAVE_SYSDC
1278 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1279 			(void) zio_taskq_basedc;
1280 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1281 			    spa->spa_proc, zio_taskq_basedc, flags);
1282 		} else {
1283 #endif
1284 			/*
1285 			 * The write issue taskq can be extremely CPU
1286 			 * intensive.  Run it at slightly less important
1287 			 * priority than the other taskqs.
1288 			 */
1289 			const pri_t pri = (t == ZIO_TYPE_WRITE &&
1290 			    q == ZIO_TASKQ_ISSUE) ?
1291 			    wtqclsyspri : maxclsyspri;
1292 			tq = taskq_create_proc(name, value, pri, 50,
1293 			    INT_MAX, spa->spa_proc, flags);
1294 #ifdef HAVE_SYSDC
1295 		}
1296 #endif
1297 
1298 		tqs->stqs_taskq[i] = tq;
1299 	}
1300 }
1301 
1302 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1303 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1304 {
1305 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1306 
1307 	if (tqs->stqs_taskq == NULL) {
1308 		ASSERT0(tqs->stqs_count);
1309 		return;
1310 	}
1311 
1312 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1313 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1314 		taskq_destroy(tqs->stqs_taskq[i]);
1315 	}
1316 
1317 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1318 	tqs->stqs_taskq = NULL;
1319 }
1320 
1321 #ifdef _KERNEL
1322 /*
1323  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1324  * by setting zio_taskq_read or zio_taskq_write.
1325  *
1326  * Example (the defaults for READ and WRITE)
1327  *   zio_taskq_read='fixed,1,8 null scale null'
1328  *   zio_taskq_write='sync null scale null'
1329  *
1330  * Each sets the entire row at a time.
1331  *
1332  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1333  * of threads per taskq.
1334  *
1335  * 'null' can only be set on the high-priority queues (queue selection for
1336  * high-priority queues will fall back to the regular queue if the high-pri
1337  * is NULL.
1338  */
1339 static const char *const modes[ZTI_NMODES] = {
1340 	"fixed", "scale", "sync", "null"
1341 };
1342 
1343 /* Parse the incoming config string. Modifies cfg */
1344 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1345 spa_taskq_param_set(zio_type_t t, char *cfg)
1346 {
1347 	int err = 0;
1348 
1349 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1350 
1351 	char *next = cfg, *tok, *c;
1352 
1353 	/*
1354 	 * Parse out each element from the string and fill `row`. The entire
1355 	 * row has to be set at once, so any errors are flagged by just
1356 	 * breaking out of this loop early.
1357 	 */
1358 	uint_t q;
1359 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1360 		/* `next` is the start of the config */
1361 		if (next == NULL)
1362 			break;
1363 
1364 		/* Eat up leading space */
1365 		while (isspace(*next))
1366 			next++;
1367 		if (*next == '\0')
1368 			break;
1369 
1370 		/* Mode ends at space or end of string */
1371 		tok = next;
1372 		next = strchr(tok, ' ');
1373 		if (next != NULL) *next++ = '\0';
1374 
1375 		/* Parameters start after a comma */
1376 		c = strchr(tok, ',');
1377 		if (c != NULL) *c++ = '\0';
1378 
1379 		/* Match mode string */
1380 		uint_t mode;
1381 		for (mode = 0; mode < ZTI_NMODES; mode++)
1382 			if (strcmp(tok, modes[mode]) == 0)
1383 				break;
1384 		if (mode == ZTI_NMODES)
1385 			break;
1386 
1387 		/* Invalid canary */
1388 		row[q].zti_mode = ZTI_NMODES;
1389 
1390 		/* Per-mode setup */
1391 		switch (mode) {
1392 
1393 		/*
1394 		 * FIXED is parameterised: number of queues, and number of
1395 		 * threads per queue.
1396 		 */
1397 		case ZTI_MODE_FIXED: {
1398 			/* No parameters? */
1399 			if (c == NULL || *c == '\0')
1400 				break;
1401 
1402 			/* Find next parameter */
1403 			tok = c;
1404 			c = strchr(tok, ',');
1405 			if (c == NULL)
1406 				break;
1407 
1408 			/* Take digits and convert */
1409 			unsigned long long nq;
1410 			if (!(isdigit(*tok)))
1411 				break;
1412 			err = ddi_strtoull(tok, &tok, 10, &nq);
1413 			/* Must succeed and also end at the next param sep */
1414 			if (err != 0 || tok != c)
1415 				break;
1416 
1417 			/* Move past the comma */
1418 			tok++;
1419 			/* Need another number */
1420 			if (!(isdigit(*tok)))
1421 				break;
1422 			/* Remember start to make sure we moved */
1423 			c = tok;
1424 
1425 			/* Take digits */
1426 			unsigned long long ntpq;
1427 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1428 			/* Must succeed, and moved forward */
1429 			if (err != 0 || tok == c || *tok != '\0')
1430 				break;
1431 
1432 			/*
1433 			 * sanity; zero queues/threads make no sense, and
1434 			 * 16K is almost certainly more than anyone will ever
1435 			 * need and avoids silly numbers like UINT32_MAX
1436 			 */
1437 			if (nq == 0 || nq >= 16384 ||
1438 			    ntpq == 0 || ntpq >= 16384)
1439 				break;
1440 
1441 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1442 			row[q] = zti;
1443 			break;
1444 		}
1445 
1446 		/*
1447 		 * SCALE is optionally parameterised by minimum number of
1448 		 * threads.
1449 		 */
1450 		case ZTI_MODE_SCALE: {
1451 			unsigned long long mint = 0;
1452 			if (c != NULL && *c != '\0') {
1453 				/* Need a number */
1454 				if (!(isdigit(*c)))
1455 					break;
1456 				tok = c;
1457 
1458 				/* Take digits */
1459 				err = ddi_strtoull(tok, &tok, 10, &mint);
1460 				/* Must succeed, and moved forward */
1461 				if (err != 0 || tok == c || *tok != '\0')
1462 					break;
1463 
1464 				/* Sanity check */
1465 				if (mint >= 16384)
1466 					break;
1467 			}
1468 
1469 			const zio_taskq_info_t zti = ZTI_SCALE(mint);
1470 			row[q] = zti;
1471 			break;
1472 		}
1473 
1474 		case ZTI_MODE_SYNC: {
1475 			const zio_taskq_info_t zti = ZTI_SYNC;
1476 			row[q] = zti;
1477 			break;
1478 		}
1479 
1480 		case ZTI_MODE_NULL: {
1481 			/*
1482 			 * Can only null the high-priority queues; the general-
1483 			 * purpose ones have to exist.
1484 			 */
1485 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1486 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1487 				break;
1488 
1489 			const zio_taskq_info_t zti = ZTI_NULL;
1490 			row[q] = zti;
1491 			break;
1492 		}
1493 
1494 		default:
1495 			break;
1496 		}
1497 
1498 		/* Ensure we set a mode */
1499 		if (row[q].zti_mode == ZTI_NMODES)
1500 			break;
1501 	}
1502 
1503 	/* Didn't get a full row, fail */
1504 	if (q < ZIO_TASKQ_TYPES)
1505 		return (SET_ERROR(EINVAL));
1506 
1507 	/* Eat trailing space */
1508 	if (next != NULL)
1509 		while (isspace(*next))
1510 			next++;
1511 
1512 	/* If there's anything left over then fail */
1513 	if (next != NULL && *next != '\0')
1514 		return (SET_ERROR(EINVAL));
1515 
1516 	/* Success! Copy it into the real config */
1517 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1518 		zio_taskqs[t][q] = row[q];
1519 
1520 	return (0);
1521 }
1522 
1523 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1524 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1525 {
1526 	int pos = 0;
1527 
1528 	/* Build paramater string from live config */
1529 	const char *sep = "";
1530 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1531 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1532 		if (zti->zti_mode == ZTI_MODE_FIXED)
1533 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1534 			    modes[zti->zti_mode], zti->zti_count,
1535 			    zti->zti_value);
1536 		else if (zti->zti_mode == ZTI_MODE_SCALE && zti->zti_value > 0)
1537 			pos += sprintf(&buf[pos], "%s%s,%u", sep,
1538 			    modes[zti->zti_mode], zti->zti_value);
1539 		else
1540 			pos += sprintf(&buf[pos], "%s%s", sep,
1541 			    modes[zti->zti_mode]);
1542 		sep = " ";
1543 	}
1544 
1545 	if (add_newline)
1546 		buf[pos++] = '\n';
1547 	buf[pos] = '\0';
1548 
1549 	return (pos);
1550 }
1551 
1552 #ifdef __linux__
1553 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1554 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1555 {
1556 	char *cfg = kmem_strdup(val);
1557 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1558 	kmem_strfree(cfg);
1559 	return (-err);
1560 }
1561 
1562 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1563 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1564 {
1565 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1566 }
1567 
1568 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1569 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1570 {
1571 	char *cfg = kmem_strdup(val);
1572 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1573 	kmem_strfree(cfg);
1574 	return (-err);
1575 }
1576 
1577 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1578 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1579 {
1580 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1581 }
1582 
1583 static int
spa_taskq_free_param_set(const char * val,zfs_kernel_param_t * kp)1584 spa_taskq_free_param_set(const char *val, zfs_kernel_param_t *kp)
1585 {
1586 	char *cfg = kmem_strdup(val);
1587 	int err = spa_taskq_param_set(ZIO_TYPE_FREE, cfg);
1588 	kmem_strfree(cfg);
1589 	return (-err);
1590 }
1591 
1592 static int
spa_taskq_free_param_get(char * buf,zfs_kernel_param_t * kp)1593 spa_taskq_free_param_get(char *buf, zfs_kernel_param_t *kp)
1594 {
1595 	return (spa_taskq_param_get(ZIO_TYPE_FREE, buf, TRUE));
1596 }
1597 #else
1598 /*
1599  * On FreeBSD load-time parameters can be set up before malloc() is available,
1600  * so we have to do all the parsing work on the stack.
1601  */
1602 #define	SPA_TASKQ_PARAM_MAX	(128)
1603 
1604 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1605 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1606 {
1607 	char buf[SPA_TASKQ_PARAM_MAX];
1608 	int err;
1609 
1610 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1611 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1612 	if (err || req->newptr == NULL)
1613 		return (err);
1614 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1615 }
1616 
1617 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1618 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1619 {
1620 	char buf[SPA_TASKQ_PARAM_MAX];
1621 	int err;
1622 
1623 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1624 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1625 	if (err || req->newptr == NULL)
1626 		return (err);
1627 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1628 }
1629 
1630 static int
spa_taskq_free_param(ZFS_MODULE_PARAM_ARGS)1631 spa_taskq_free_param(ZFS_MODULE_PARAM_ARGS)
1632 {
1633 	char buf[SPA_TASKQ_PARAM_MAX];
1634 	int err;
1635 
1636 	(void) spa_taskq_param_get(ZIO_TYPE_FREE, buf, FALSE);
1637 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1638 	if (err || req->newptr == NULL)
1639 		return (err);
1640 	return (spa_taskq_param_set(ZIO_TYPE_FREE, buf));
1641 }
1642 #endif
1643 #endif /* _KERNEL */
1644 
1645 /*
1646  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1647  * Note that a type may have multiple discrete taskqs to avoid lock contention
1648  * on the taskq itself.
1649  */
1650 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1651 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1652     task_func_t *func, zio_t *zio, boolean_t cutinline)
1653 {
1654 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1655 	taskq_t *tq;
1656 
1657 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1658 	ASSERT3U(tqs->stqs_count, !=, 0);
1659 
1660 	/*
1661 	 * NB: We are assuming that the zio can only be dispatched
1662 	 * to a single taskq at a time.  It would be a grievous error
1663 	 * to dispatch the zio to another taskq at the same time.
1664 	 */
1665 	ASSERT(zio);
1666 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1667 
1668 	if (tqs->stqs_count == 1) {
1669 		tq = tqs->stqs_taskq[0];
1670 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1671 	    ZIO_HAS_ALLOCATOR(zio)) {
1672 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1673 	} else {
1674 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1675 	}
1676 
1677 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1678 	    &zio->io_tqent);
1679 }
1680 
1681 static void
spa_create_zio_taskqs(spa_t * spa)1682 spa_create_zio_taskqs(spa_t *spa)
1683 {
1684 	for (int t = 0; t < ZIO_TYPES; t++) {
1685 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1686 			spa_taskqs_init(spa, t, q);
1687 		}
1688 	}
1689 }
1690 
1691 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1692 static void
spa_thread(void * arg)1693 spa_thread(void *arg)
1694 {
1695 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1696 	callb_cpr_t cprinfo;
1697 
1698 	spa_t *spa = arg;
1699 	user_t *pu = PTOU(curproc);
1700 
1701 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1702 	    spa->spa_name);
1703 
1704 	ASSERT(curproc != &p0);
1705 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1706 	    "zpool-%s", spa->spa_name);
1707 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1708 
1709 	/* bind this thread to the requested psrset */
1710 	if (zio_taskq_psrset_bind != PS_NONE) {
1711 		pool_lock();
1712 		mutex_enter(&cpu_lock);
1713 		mutex_enter(&pidlock);
1714 		mutex_enter(&curproc->p_lock);
1715 
1716 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1717 		    0, NULL, NULL) == 0)  {
1718 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1719 		} else {
1720 			cmn_err(CE_WARN,
1721 			    "Couldn't bind process for zfs pool \"%s\" to "
1722 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1723 		}
1724 
1725 		mutex_exit(&curproc->p_lock);
1726 		mutex_exit(&pidlock);
1727 		mutex_exit(&cpu_lock);
1728 		pool_unlock();
1729 	}
1730 
1731 #ifdef HAVE_SYSDC
1732 	if (zio_taskq_sysdc) {
1733 		sysdc_thread_enter(curthread, 100, 0);
1734 	}
1735 #endif
1736 
1737 	spa->spa_proc = curproc;
1738 	spa->spa_did = curthread->t_did;
1739 
1740 	spa_create_zio_taskqs(spa);
1741 
1742 	mutex_enter(&spa->spa_proc_lock);
1743 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1744 
1745 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1746 	cv_broadcast(&spa->spa_proc_cv);
1747 
1748 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1749 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1750 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1751 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1752 
1753 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1754 	spa->spa_proc_state = SPA_PROC_GONE;
1755 	spa->spa_proc = &p0;
1756 	cv_broadcast(&spa->spa_proc_cv);
1757 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1758 
1759 	mutex_enter(&curproc->p_lock);
1760 	lwp_exit();
1761 }
1762 #endif
1763 
1764 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1765 
1766 /*
1767  * Activate an uninitialized pool.
1768  */
1769 static void
spa_activate(spa_t * spa,spa_mode_t mode)1770 spa_activate(spa_t *spa, spa_mode_t mode)
1771 {
1772 	metaslab_ops_t *msp = metaslab_allocator(spa);
1773 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1774 
1775 	spa->spa_state = POOL_STATE_ACTIVE;
1776 	spa->spa_final_txg = UINT64_MAX;
1777 	spa->spa_mode = mode;
1778 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1779 
1780 	spa->spa_normal_class = metaslab_class_create(spa, "normal",
1781 	    msp, B_FALSE);
1782 	spa->spa_log_class = metaslab_class_create(spa, "log", msp, B_TRUE);
1783 	spa->spa_embedded_log_class = metaslab_class_create(spa,
1784 	    "embedded_log", msp, B_TRUE);
1785 	spa->spa_special_class = metaslab_class_create(spa, "special",
1786 	    msp, B_FALSE);
1787 	spa->spa_special_embedded_log_class = metaslab_class_create(spa,
1788 	    "special_embedded_log", msp, B_TRUE);
1789 	spa->spa_dedup_class = metaslab_class_create(spa, "dedup",
1790 	    msp, B_FALSE);
1791 
1792 	/* Try to create a covering process */
1793 	mutex_enter(&spa->spa_proc_lock);
1794 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1795 	ASSERT(spa->spa_proc == &p0);
1796 	spa->spa_did = 0;
1797 
1798 #ifdef HAVE_SPA_THREAD
1799 	/* Only create a process if we're going to be around a while. */
1800 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1801 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1802 		    NULL, 0) == 0) {
1803 			spa->spa_proc_state = SPA_PROC_CREATED;
1804 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1805 				cv_wait(&spa->spa_proc_cv,
1806 				    &spa->spa_proc_lock);
1807 			}
1808 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1809 			ASSERT(spa->spa_proc != &p0);
1810 			ASSERT(spa->spa_did != 0);
1811 		} else {
1812 #ifdef _KERNEL
1813 			cmn_err(CE_WARN,
1814 			    "Couldn't create process for zfs pool \"%s\"\n",
1815 			    spa->spa_name);
1816 #endif
1817 		}
1818 	}
1819 #endif /* HAVE_SPA_THREAD */
1820 	mutex_exit(&spa->spa_proc_lock);
1821 
1822 	/* If we didn't create a process, we need to create our taskqs. */
1823 	if (spa->spa_proc == &p0) {
1824 		spa_create_zio_taskqs(spa);
1825 	}
1826 
1827 	for (size_t i = 0; i < TXG_SIZE; i++) {
1828 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1829 		    ZIO_FLAG_CANFAIL);
1830 	}
1831 
1832 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1833 	    offsetof(vdev_t, vdev_config_dirty_node));
1834 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1835 	    offsetof(objset_t, os_evicting_node));
1836 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1837 	    offsetof(vdev_t, vdev_state_dirty_node));
1838 
1839 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1840 	    offsetof(struct vdev, vdev_txg_node));
1841 
1842 	avl_create(&spa->spa_errlist_scrub,
1843 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1844 	    offsetof(spa_error_entry_t, se_avl));
1845 	avl_create(&spa->spa_errlist_last,
1846 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1847 	    offsetof(spa_error_entry_t, se_avl));
1848 	avl_create(&spa->spa_errlist_healed,
1849 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1850 	    offsetof(spa_error_entry_t, se_avl));
1851 
1852 	spa_activate_os(spa);
1853 
1854 	spa_keystore_init(&spa->spa_keystore);
1855 
1856 	/*
1857 	 * This taskq is used to perform zvol-minor-related tasks
1858 	 * asynchronously. This has several advantages, including easy
1859 	 * resolution of various deadlocks.
1860 	 *
1861 	 * The taskq must be single threaded to ensure tasks are always
1862 	 * processed in the order in which they were dispatched.
1863 	 *
1864 	 * A taskq per pool allows one to keep the pools independent.
1865 	 * This way if one pool is suspended, it will not impact another.
1866 	 *
1867 	 * The preferred location to dispatch a zvol minor task is a sync
1868 	 * task. In this context, there is easy access to the spa_t and minimal
1869 	 * error handling is required because the sync task must succeed.
1870 	 */
1871 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1872 	    1, INT_MAX, 0);
1873 
1874 	/*
1875 	 * The taskq to preload metaslabs.
1876 	 */
1877 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1878 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1879 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1880 
1881 	/*
1882 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1883 	 * pool traverse code from monopolizing the global (and limited)
1884 	 * system_taskq by inappropriately scheduling long running tasks on it.
1885 	 */
1886 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1887 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1888 
1889 	/*
1890 	 * The taskq to upgrade datasets in this pool. Currently used by
1891 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1892 	 */
1893 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1894 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1895 }
1896 
1897 /*
1898  * Opposite of spa_activate().
1899  */
1900 static void
spa_deactivate(spa_t * spa)1901 spa_deactivate(spa_t *spa)
1902 {
1903 	ASSERT(spa->spa_sync_on == B_FALSE);
1904 	ASSERT0P(spa->spa_dsl_pool);
1905 	ASSERT0P(spa->spa_root_vdev);
1906 	ASSERT0P(spa->spa_async_zio_root);
1907 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1908 
1909 	spa_evicting_os_wait(spa);
1910 
1911 	if (spa->spa_zvol_taskq) {
1912 		taskq_destroy(spa->spa_zvol_taskq);
1913 		spa->spa_zvol_taskq = NULL;
1914 	}
1915 
1916 	if (spa->spa_metaslab_taskq) {
1917 		taskq_destroy(spa->spa_metaslab_taskq);
1918 		spa->spa_metaslab_taskq = NULL;
1919 	}
1920 
1921 	if (spa->spa_prefetch_taskq) {
1922 		taskq_destroy(spa->spa_prefetch_taskq);
1923 		spa->spa_prefetch_taskq = NULL;
1924 	}
1925 
1926 	if (spa->spa_upgrade_taskq) {
1927 		taskq_destroy(spa->spa_upgrade_taskq);
1928 		spa->spa_upgrade_taskq = NULL;
1929 	}
1930 
1931 	txg_list_destroy(&spa->spa_vdev_txg_list);
1932 
1933 	list_destroy(&spa->spa_config_dirty_list);
1934 	list_destroy(&spa->spa_evicting_os_list);
1935 	list_destroy(&spa->spa_state_dirty_list);
1936 
1937 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1938 
1939 	for (int t = 0; t < ZIO_TYPES; t++) {
1940 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1941 			spa_taskqs_fini(spa, t, q);
1942 		}
1943 	}
1944 
1945 	for (size_t i = 0; i < TXG_SIZE; i++) {
1946 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1947 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1948 		spa->spa_txg_zio[i] = NULL;
1949 	}
1950 
1951 	metaslab_class_destroy(spa->spa_normal_class);
1952 	spa->spa_normal_class = NULL;
1953 
1954 	metaslab_class_destroy(spa->spa_log_class);
1955 	spa->spa_log_class = NULL;
1956 
1957 	metaslab_class_destroy(spa->spa_embedded_log_class);
1958 	spa->spa_embedded_log_class = NULL;
1959 
1960 	metaslab_class_destroy(spa->spa_special_class);
1961 	spa->spa_special_class = NULL;
1962 
1963 	metaslab_class_destroy(spa->spa_special_embedded_log_class);
1964 	spa->spa_special_embedded_log_class = NULL;
1965 
1966 	metaslab_class_destroy(spa->spa_dedup_class);
1967 	spa->spa_dedup_class = NULL;
1968 
1969 	/*
1970 	 * If this was part of an import or the open otherwise failed, we may
1971 	 * still have errors left in the queues.  Empty them just in case.
1972 	 */
1973 	spa_errlog_drain(spa);
1974 	avl_destroy(&spa->spa_errlist_scrub);
1975 	avl_destroy(&spa->spa_errlist_last);
1976 	avl_destroy(&spa->spa_errlist_healed);
1977 
1978 	spa_keystore_fini(&spa->spa_keystore);
1979 
1980 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1981 
1982 	mutex_enter(&spa->spa_proc_lock);
1983 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1984 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1985 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1986 		cv_broadcast(&spa->spa_proc_cv);
1987 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1988 			ASSERT(spa->spa_proc != &p0);
1989 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1990 		}
1991 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1992 		spa->spa_proc_state = SPA_PROC_NONE;
1993 	}
1994 	ASSERT(spa->spa_proc == &p0);
1995 	mutex_exit(&spa->spa_proc_lock);
1996 
1997 	/*
1998 	 * We want to make sure spa_thread() has actually exited the ZFS
1999 	 * module, so that the module can't be unloaded out from underneath
2000 	 * it.
2001 	 */
2002 	if (spa->spa_did != 0) {
2003 		thread_join(spa->spa_did);
2004 		spa->spa_did = 0;
2005 	}
2006 
2007 	spa_deactivate_os(spa);
2008 
2009 }
2010 
2011 /*
2012  * Verify a pool configuration, and construct the vdev tree appropriately.  This
2013  * will create all the necessary vdevs in the appropriate layout, with each vdev
2014  * in the CLOSED state.  This will prep the pool before open/creation/import.
2015  * All vdev validation is done by the vdev_alloc() routine.
2016  */
2017 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)2018 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
2019     uint_t id, int atype)
2020 {
2021 	nvlist_t **child;
2022 	uint_t children;
2023 	int error;
2024 
2025 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
2026 		return (error);
2027 
2028 	if ((*vdp)->vdev_ops->vdev_op_leaf)
2029 		return (0);
2030 
2031 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2032 	    &child, &children);
2033 
2034 	if (error == ENOENT)
2035 		return (0);
2036 
2037 	if (error) {
2038 		vdev_free(*vdp);
2039 		*vdp = NULL;
2040 		return (SET_ERROR(EINVAL));
2041 	}
2042 
2043 	for (int c = 0; c < children; c++) {
2044 		vdev_t *vd;
2045 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
2046 		    atype)) != 0) {
2047 			vdev_free(*vdp);
2048 			*vdp = NULL;
2049 			return (error);
2050 		}
2051 	}
2052 
2053 	ASSERT(*vdp != NULL);
2054 
2055 	return (0);
2056 }
2057 
2058 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)2059 spa_should_flush_logs_on_unload(spa_t *spa)
2060 {
2061 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
2062 		return (B_FALSE);
2063 
2064 	if (!spa_writeable(spa))
2065 		return (B_FALSE);
2066 
2067 	if (!spa->spa_sync_on)
2068 		return (B_FALSE);
2069 
2070 	if (spa_state(spa) != POOL_STATE_EXPORTED)
2071 		return (B_FALSE);
2072 
2073 	if (zfs_keep_log_spacemaps_at_export)
2074 		return (B_FALSE);
2075 
2076 	return (B_TRUE);
2077 }
2078 
2079 /*
2080  * Opens a transaction that will set the flag that will instruct
2081  * spa_sync to attempt to flush all the metaslabs for that txg.
2082  */
2083 static void
spa_unload_log_sm_flush_all(spa_t * spa)2084 spa_unload_log_sm_flush_all(spa_t *spa)
2085 {
2086 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2087 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
2088 
2089 	ASSERT0(spa->spa_log_flushall_txg);
2090 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
2091 
2092 	dmu_tx_commit(tx);
2093 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
2094 }
2095 
2096 static void
spa_unload_log_sm_metadata(spa_t * spa)2097 spa_unload_log_sm_metadata(spa_t *spa)
2098 {
2099 	void *cookie = NULL;
2100 	spa_log_sm_t *sls;
2101 	log_summary_entry_t *e;
2102 
2103 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2104 	    &cookie)) != NULL) {
2105 		VERIFY0(sls->sls_mscount);
2106 		kmem_free(sls, sizeof (spa_log_sm_t));
2107 	}
2108 
2109 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2110 		VERIFY0(e->lse_mscount);
2111 		kmem_free(e, sizeof (log_summary_entry_t));
2112 	}
2113 
2114 	spa->spa_unflushed_stats.sus_nblocks = 0;
2115 	spa->spa_unflushed_stats.sus_memused = 0;
2116 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2117 }
2118 
2119 static void
spa_destroy_aux_threads(spa_t * spa)2120 spa_destroy_aux_threads(spa_t *spa)
2121 {
2122 	if (spa->spa_condense_zthr != NULL) {
2123 		zthr_destroy(spa->spa_condense_zthr);
2124 		spa->spa_condense_zthr = NULL;
2125 	}
2126 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2127 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2128 		spa->spa_checkpoint_discard_zthr = NULL;
2129 	}
2130 	if (spa->spa_livelist_delete_zthr != NULL) {
2131 		zthr_destroy(spa->spa_livelist_delete_zthr);
2132 		spa->spa_livelist_delete_zthr = NULL;
2133 	}
2134 	if (spa->spa_livelist_condense_zthr != NULL) {
2135 		zthr_destroy(spa->spa_livelist_condense_zthr);
2136 		spa->spa_livelist_condense_zthr = NULL;
2137 	}
2138 	if (spa->spa_raidz_expand_zthr != NULL) {
2139 		zthr_destroy(spa->spa_raidz_expand_zthr);
2140 		spa->spa_raidz_expand_zthr = NULL;
2141 	}
2142 }
2143 
2144 static void
spa_sync_time_logger(spa_t * spa,uint64_t txg)2145 spa_sync_time_logger(spa_t *spa, uint64_t txg)
2146 {
2147 	uint64_t curtime;
2148 	dmu_tx_t *tx;
2149 
2150 	if (!spa_writeable(spa)) {
2151 		return;
2152 	}
2153 	curtime = gethrestime_sec();
2154 	if (curtime < spa->spa_last_noted_txg_time + spa_note_txg_time) {
2155 		return;
2156 	}
2157 
2158 	if (txg > spa->spa_last_noted_txg) {
2159 		spa->spa_last_noted_txg_time = curtime;
2160 		spa->spa_last_noted_txg = txg;
2161 
2162 		mutex_enter(&spa->spa_txg_log_time_lock);
2163 		dbrrd_add(&spa->spa_txg_log_time, curtime, txg);
2164 		mutex_exit(&spa->spa_txg_log_time_lock);
2165 	}
2166 
2167 	if (curtime < spa->spa_last_flush_txg_time + spa_flush_txg_time) {
2168 		return;
2169 	}
2170 	spa->spa_last_flush_txg_time = curtime;
2171 
2172 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2173 
2174 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2175 	    DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2176 	    &spa->spa_txg_log_time.dbr_minutes, tx));
2177 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2178 	    DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2179 	    &spa->spa_txg_log_time.dbr_days, tx));
2180 	VERIFY0(zap_update(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
2181 	    DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2182 	    &spa->spa_txg_log_time.dbr_months, tx));
2183 	dmu_tx_commit(tx);
2184 }
2185 
2186 static void
spa_unload_sync_time_logger(spa_t * spa)2187 spa_unload_sync_time_logger(spa_t *spa)
2188 {
2189 	uint64_t txg;
2190 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2191 	VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT));
2192 
2193 	txg = dmu_tx_get_txg(tx);
2194 	spa->spa_last_noted_txg_time = 0;
2195 	spa->spa_last_flush_txg_time = 0;
2196 	spa_sync_time_logger(spa, txg);
2197 
2198 	dmu_tx_commit(tx);
2199 }
2200 
2201 static void
spa_load_txg_log_time(spa_t * spa)2202 spa_load_txg_log_time(spa_t *spa)
2203 {
2204 	int error;
2205 
2206 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2207 	    DMU_POOL_TXG_LOG_TIME_MINUTES, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2208 	    &spa->spa_txg_log_time.dbr_minutes);
2209 	if (error != 0 && error != ENOENT) {
2210 		spa_load_note(spa, "unable to load a txg time database with "
2211 		    "minute resolution [error=%d]", error);
2212 	}
2213 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2214 	    DMU_POOL_TXG_LOG_TIME_DAYS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2215 	    &spa->spa_txg_log_time.dbr_days);
2216 	if (error != 0 && error != ENOENT) {
2217 		spa_load_note(spa, "unable to load a txg time database with "
2218 		    "day resolution [error=%d]", error);
2219 	}
2220 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2221 	    DMU_POOL_TXG_LOG_TIME_MONTHS, RRD_ENTRY_SIZE, RRD_STRUCT_ELEM,
2222 	    &spa->spa_txg_log_time.dbr_months);
2223 	if (error != 0 && error != ENOENT) {
2224 		spa_load_note(spa, "unable to load a txg time database with "
2225 		    "month resolution [error=%d]", error);
2226 	}
2227 }
2228 
2229 static boolean_t
spa_should_sync_time_logger_on_unload(spa_t * spa)2230 spa_should_sync_time_logger_on_unload(spa_t *spa)
2231 {
2232 
2233 	if (!spa_writeable(spa))
2234 		return (B_FALSE);
2235 
2236 	if (!spa->spa_sync_on)
2237 		return (B_FALSE);
2238 
2239 	if (spa_state(spa) != POOL_STATE_EXPORTED)
2240 		return (B_FALSE);
2241 
2242 	if (spa->spa_last_noted_txg == 0)
2243 		return (B_FALSE);
2244 
2245 	return (B_TRUE);
2246 }
2247 
2248 
2249 /*
2250  * Opposite of spa_load().
2251  */
2252 static void
spa_unload(spa_t * spa)2253 spa_unload(spa_t *spa)
2254 {
2255 	ASSERT(spa_namespace_held() ||
2256 	    spa->spa_export_thread == curthread);
2257 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2258 
2259 	spa_import_progress_remove(spa_guid(spa));
2260 	spa_load_note(spa, "UNLOADING");
2261 
2262 	spa_wake_waiters(spa);
2263 
2264 	/*
2265 	 * If we have set the spa_final_txg, we have already performed the
2266 	 * tasks below in spa_export_common(). We should not redo it here since
2267 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2268 	 */
2269 	if (spa->spa_final_txg == UINT64_MAX) {
2270 		if (spa_should_sync_time_logger_on_unload(spa))
2271 			spa_unload_sync_time_logger(spa);
2272 
2273 		/*
2274 		 * If the log space map feature is enabled and the pool is
2275 		 * getting exported (but not destroyed), we want to spend some
2276 		 * time flushing as many metaslabs as we can in an attempt to
2277 		 * destroy log space maps and save import time.
2278 		 */
2279 		if (spa_should_flush_logs_on_unload(spa))
2280 			spa_unload_log_sm_flush_all(spa);
2281 
2282 		/*
2283 		 * Stop async tasks.
2284 		 */
2285 		spa_async_suspend(spa);
2286 
2287 		if (spa->spa_root_vdev) {
2288 			vdev_t *root_vdev = spa->spa_root_vdev;
2289 			vdev_initialize_stop_all(root_vdev,
2290 			    VDEV_INITIALIZE_ACTIVE);
2291 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2292 			vdev_autotrim_stop_all(spa);
2293 			vdev_rebuild_stop_all(spa);
2294 			l2arc_spa_rebuild_stop(spa);
2295 		}
2296 
2297 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2298 		spa->spa_final_txg = spa_last_synced_txg(spa) +
2299 		    TXG_DEFER_SIZE + 1;
2300 		spa_config_exit(spa, SCL_ALL, FTAG);
2301 	}
2302 
2303 	/*
2304 	 * Stop syncing.
2305 	 */
2306 	if (spa->spa_sync_on) {
2307 		txg_sync_stop(spa->spa_dsl_pool);
2308 		spa->spa_sync_on = B_FALSE;
2309 	}
2310 
2311 	/*
2312 	 * This ensures that there is no async metaslab prefetching
2313 	 * while we attempt to unload the spa.
2314 	 */
2315 	taskq_wait(spa->spa_metaslab_taskq);
2316 
2317 	if (spa->spa_mmp.mmp_thread)
2318 		mmp_thread_stop(spa);
2319 
2320 	/*
2321 	 * Wait for any outstanding async I/O to complete.
2322 	 */
2323 	if (spa->spa_async_zio_root != NULL) {
2324 		for (int i = 0; i < max_ncpus; i++)
2325 			(void) zio_wait(spa->spa_async_zio_root[i]);
2326 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2327 		spa->spa_async_zio_root = NULL;
2328 	}
2329 
2330 	if (spa->spa_vdev_removal != NULL) {
2331 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2332 		spa->spa_vdev_removal = NULL;
2333 	}
2334 
2335 	spa_destroy_aux_threads(spa);
2336 
2337 	spa_condense_fini(spa);
2338 
2339 	bpobj_close(&spa->spa_deferred_bpobj);
2340 
2341 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2342 
2343 	/*
2344 	 * Close all vdevs.
2345 	 */
2346 	if (spa->spa_root_vdev)
2347 		vdev_free(spa->spa_root_vdev);
2348 	ASSERT0P(spa->spa_root_vdev);
2349 
2350 	/*
2351 	 * Close the dsl pool.
2352 	 */
2353 	if (spa->spa_dsl_pool) {
2354 		dsl_pool_close(spa->spa_dsl_pool);
2355 		spa->spa_dsl_pool = NULL;
2356 		spa->spa_meta_objset = NULL;
2357 	}
2358 
2359 	ddt_unload(spa);
2360 	brt_unload(spa);
2361 	spa_unload_log_sm_metadata(spa);
2362 
2363 	/*
2364 	 * Drop and purge level 2 cache
2365 	 */
2366 	spa_l2cache_drop(spa);
2367 
2368 	if (spa->spa_spares.sav_vdevs) {
2369 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2370 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2371 		kmem_free(spa->spa_spares.sav_vdevs,
2372 		    spa->spa_spares.sav_count * sizeof (void *));
2373 		spa->spa_spares.sav_vdevs = NULL;
2374 	}
2375 	if (spa->spa_spares.sav_config) {
2376 		nvlist_free(spa->spa_spares.sav_config);
2377 		spa->spa_spares.sav_config = NULL;
2378 	}
2379 	spa->spa_spares.sav_count = 0;
2380 
2381 	if (spa->spa_l2cache.sav_vdevs) {
2382 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2383 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2384 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2385 		}
2386 		kmem_free(spa->spa_l2cache.sav_vdevs,
2387 		    spa->spa_l2cache.sav_count * sizeof (void *));
2388 		spa->spa_l2cache.sav_vdevs = NULL;
2389 	}
2390 	if (spa->spa_l2cache.sav_config) {
2391 		nvlist_free(spa->spa_l2cache.sav_config);
2392 		spa->spa_l2cache.sav_config = NULL;
2393 	}
2394 	spa->spa_l2cache.sav_count = 0;
2395 
2396 	spa->spa_async_suspended = 0;
2397 
2398 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2399 
2400 	if (spa->spa_comment != NULL) {
2401 		spa_strfree(spa->spa_comment);
2402 		spa->spa_comment = NULL;
2403 	}
2404 	if (spa->spa_compatibility != NULL) {
2405 		spa_strfree(spa->spa_compatibility);
2406 		spa->spa_compatibility = NULL;
2407 	}
2408 
2409 	spa->spa_raidz_expand = NULL;
2410 	spa->spa_checkpoint_txg = 0;
2411 
2412 	spa_config_exit(spa, SCL_ALL, spa);
2413 }
2414 
2415 /*
2416  * Load (or re-load) the current list of vdevs describing the active spares for
2417  * this pool.  When this is called, we have some form of basic information in
2418  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2419  * then re-generate a more complete list including status information.
2420  */
2421 void
spa_load_spares(spa_t * spa)2422 spa_load_spares(spa_t *spa)
2423 {
2424 	nvlist_t **spares;
2425 	uint_t nspares;
2426 	int i;
2427 	vdev_t *vd, *tvd;
2428 
2429 #ifndef _KERNEL
2430 	/*
2431 	 * zdb opens both the current state of the pool and the
2432 	 * checkpointed state (if present), with a different spa_t.
2433 	 *
2434 	 * As spare vdevs are shared among open pools, we skip loading
2435 	 * them when we load the checkpointed state of the pool.
2436 	 */
2437 	if (!spa_writeable(spa))
2438 		return;
2439 #endif
2440 
2441 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2442 
2443 	/*
2444 	 * First, close and free any existing spare vdevs.
2445 	 */
2446 	if (spa->spa_spares.sav_vdevs) {
2447 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2448 			vd = spa->spa_spares.sav_vdevs[i];
2449 
2450 			/* Undo the call to spa_activate() below */
2451 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2452 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2453 				spa_spare_remove(tvd);
2454 			vdev_close(vd);
2455 			vdev_free(vd);
2456 		}
2457 
2458 		kmem_free(spa->spa_spares.sav_vdevs,
2459 		    spa->spa_spares.sav_count * sizeof (void *));
2460 	}
2461 
2462 	if (spa->spa_spares.sav_config == NULL)
2463 		nspares = 0;
2464 	else
2465 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2466 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2467 
2468 	spa->spa_spares.sav_count = (int)nspares;
2469 	spa->spa_spares.sav_vdevs = NULL;
2470 
2471 	if (nspares == 0)
2472 		return;
2473 
2474 	/*
2475 	 * Construct the array of vdevs, opening them to get status in the
2476 	 * process.   For each spare, there is potentially two different vdev_t
2477 	 * structures associated with it: one in the list of spares (used only
2478 	 * for basic validation purposes) and one in the active vdev
2479 	 * configuration (if it's spared in).  During this phase we open and
2480 	 * validate each vdev on the spare list.  If the vdev also exists in the
2481 	 * active configuration, then we also mark this vdev as an active spare.
2482 	 */
2483 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2484 	    KM_SLEEP);
2485 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2486 		VERIFY0(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2487 		    VDEV_ALLOC_SPARE));
2488 		ASSERT(vd != NULL);
2489 
2490 		spa->spa_spares.sav_vdevs[i] = vd;
2491 
2492 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2493 		    B_FALSE)) != NULL) {
2494 			if (!tvd->vdev_isspare)
2495 				spa_spare_add(tvd);
2496 
2497 			/*
2498 			 * We only mark the spare active if we were successfully
2499 			 * able to load the vdev.  Otherwise, importing a pool
2500 			 * with a bad active spare would result in strange
2501 			 * behavior, because multiple pool would think the spare
2502 			 * is actively in use.
2503 			 *
2504 			 * There is a vulnerability here to an equally bizarre
2505 			 * circumstance, where a dead active spare is later
2506 			 * brought back to life (onlined or otherwise).  Given
2507 			 * the rarity of this scenario, and the extra complexity
2508 			 * it adds, we ignore the possibility.
2509 			 */
2510 			if (!vdev_is_dead(tvd))
2511 				spa_spare_activate(tvd);
2512 		}
2513 
2514 		vd->vdev_top = vd;
2515 		vd->vdev_aux = &spa->spa_spares;
2516 
2517 		if (vdev_open(vd) != 0)
2518 			continue;
2519 
2520 		if (vdev_validate_aux(vd) == 0)
2521 			spa_spare_add(vd);
2522 	}
2523 
2524 	/*
2525 	 * Recompute the stashed list of spares, with status information
2526 	 * this time.
2527 	 */
2528 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2529 
2530 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2531 	    KM_SLEEP);
2532 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2533 		spares[i] = vdev_config_generate(spa,
2534 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2535 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2536 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2537 	    spa->spa_spares.sav_count);
2538 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2539 		nvlist_free(spares[i]);
2540 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2541 }
2542 
2543 /*
2544  * Load (or re-load) the current list of vdevs describing the active l2cache for
2545  * this pool.  When this is called, we have some form of basic information in
2546  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2547  * then re-generate a more complete list including status information.
2548  * Devices which are already active have their details maintained, and are
2549  * not re-opened.
2550  */
2551 void
spa_load_l2cache(spa_t * spa)2552 spa_load_l2cache(spa_t *spa)
2553 {
2554 	nvlist_t **l2cache = NULL;
2555 	uint_t nl2cache;
2556 	int i, j, oldnvdevs;
2557 	uint64_t guid;
2558 	vdev_t *vd, **oldvdevs, **newvdevs;
2559 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2560 
2561 #ifndef _KERNEL
2562 	/*
2563 	 * zdb opens both the current state of the pool and the
2564 	 * checkpointed state (if present), with a different spa_t.
2565 	 *
2566 	 * As L2 caches are part of the ARC which is shared among open
2567 	 * pools, we skip loading them when we load the checkpointed
2568 	 * state of the pool.
2569 	 */
2570 	if (!spa_writeable(spa))
2571 		return;
2572 #endif
2573 
2574 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2575 
2576 	oldvdevs = sav->sav_vdevs;
2577 	oldnvdevs = sav->sav_count;
2578 	sav->sav_vdevs = NULL;
2579 	sav->sav_count = 0;
2580 
2581 	if (sav->sav_config == NULL) {
2582 		nl2cache = 0;
2583 		newvdevs = NULL;
2584 		goto out;
2585 	}
2586 
2587 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2588 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2589 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2590 
2591 	/*
2592 	 * Process new nvlist of vdevs.
2593 	 */
2594 	for (i = 0; i < nl2cache; i++) {
2595 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2596 
2597 		newvdevs[i] = NULL;
2598 		for (j = 0; j < oldnvdevs; j++) {
2599 			vd = oldvdevs[j];
2600 			if (vd != NULL && guid == vd->vdev_guid) {
2601 				/*
2602 				 * Retain previous vdev for add/remove ops.
2603 				 */
2604 				newvdevs[i] = vd;
2605 				oldvdevs[j] = NULL;
2606 				break;
2607 			}
2608 		}
2609 
2610 		if (newvdevs[i] == NULL) {
2611 			/*
2612 			 * Create new vdev
2613 			 */
2614 			VERIFY0(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2615 			    VDEV_ALLOC_L2CACHE));
2616 			ASSERT(vd != NULL);
2617 			newvdevs[i] = vd;
2618 
2619 			/*
2620 			 * Commit this vdev as an l2cache device,
2621 			 * even if it fails to open.
2622 			 */
2623 			spa_l2cache_add(vd);
2624 
2625 			vd->vdev_top = vd;
2626 			vd->vdev_aux = sav;
2627 
2628 			spa_l2cache_activate(vd);
2629 
2630 			if (vdev_open(vd) != 0)
2631 				continue;
2632 
2633 			(void) vdev_validate_aux(vd);
2634 
2635 			if (!vdev_is_dead(vd))
2636 				l2arc_add_vdev(spa, vd);
2637 
2638 			/*
2639 			 * Upon cache device addition to a pool or pool
2640 			 * creation with a cache device or if the header
2641 			 * of the device is invalid we issue an async
2642 			 * TRIM command for the whole device which will
2643 			 * execute if l2arc_trim_ahead > 0.
2644 			 */
2645 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2646 		}
2647 	}
2648 
2649 	sav->sav_vdevs = newvdevs;
2650 	sav->sav_count = (int)nl2cache;
2651 
2652 	/*
2653 	 * Recompute the stashed list of l2cache devices, with status
2654 	 * information this time.
2655 	 */
2656 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2657 
2658 	if (sav->sav_count > 0)
2659 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2660 		    KM_SLEEP);
2661 	for (i = 0; i < sav->sav_count; i++)
2662 		l2cache[i] = vdev_config_generate(spa,
2663 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2664 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2665 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2666 
2667 out:
2668 	/*
2669 	 * Purge vdevs that were dropped
2670 	 */
2671 	if (oldvdevs) {
2672 		for (i = 0; i < oldnvdevs; i++) {
2673 			uint64_t pool;
2674 
2675 			vd = oldvdevs[i];
2676 			if (vd != NULL) {
2677 				ASSERT(vd->vdev_isl2cache);
2678 
2679 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2680 				    pool != 0ULL && l2arc_vdev_present(vd))
2681 					l2arc_remove_vdev(vd);
2682 				vdev_clear_stats(vd);
2683 				vdev_free(vd);
2684 			}
2685 		}
2686 
2687 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2688 	}
2689 
2690 	for (i = 0; i < sav->sav_count; i++)
2691 		nvlist_free(l2cache[i]);
2692 	if (sav->sav_count)
2693 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2694 }
2695 
2696 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2697 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2698 {
2699 	dmu_buf_t *db;
2700 	char *packed = NULL;
2701 	size_t nvsize = 0;
2702 	int error;
2703 	*value = NULL;
2704 
2705 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2706 	if (error)
2707 		return (error);
2708 
2709 	nvsize = *(uint64_t *)db->db_data;
2710 	dmu_buf_rele(db, FTAG);
2711 
2712 	packed = vmem_alloc(nvsize, KM_SLEEP);
2713 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2714 	    DMU_READ_PREFETCH);
2715 	if (error == 0)
2716 		error = nvlist_unpack(packed, nvsize, value, 0);
2717 	vmem_free(packed, nvsize);
2718 
2719 	return (error);
2720 }
2721 
2722 /*
2723  * Concrete top-level vdevs that are not missing and are not logs. At every
2724  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2725  */
2726 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2727 spa_healthy_core_tvds(spa_t *spa)
2728 {
2729 	vdev_t *rvd = spa->spa_root_vdev;
2730 	uint64_t tvds = 0;
2731 
2732 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2733 		vdev_t *vd = rvd->vdev_child[i];
2734 		if (vd->vdev_islog)
2735 			continue;
2736 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2737 			tvds++;
2738 	}
2739 
2740 	return (tvds);
2741 }
2742 
2743 /*
2744  * Checks to see if the given vdev could not be opened, in which case we post a
2745  * sysevent to notify the autoreplace code that the device has been removed.
2746  */
2747 static void
spa_check_removed(vdev_t * vd)2748 spa_check_removed(vdev_t *vd)
2749 {
2750 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2751 		spa_check_removed(vd->vdev_child[c]);
2752 
2753 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2754 	    vdev_is_concrete(vd)) {
2755 		zfs_post_autoreplace(vd->vdev_spa, vd);
2756 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2757 	}
2758 }
2759 
2760 static int
spa_check_for_missing_logs(spa_t * spa)2761 spa_check_for_missing_logs(spa_t *spa)
2762 {
2763 	vdev_t *rvd = spa->spa_root_vdev;
2764 
2765 	/*
2766 	 * If we're doing a normal import, then build up any additional
2767 	 * diagnostic information about missing log devices.
2768 	 * We'll pass this up to the user for further processing.
2769 	 */
2770 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2771 		nvlist_t **child, *nv;
2772 		uint64_t idx = 0;
2773 
2774 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2775 		    KM_SLEEP);
2776 		nv = fnvlist_alloc();
2777 
2778 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2779 			vdev_t *tvd = rvd->vdev_child[c];
2780 
2781 			/*
2782 			 * We consider a device as missing only if it failed
2783 			 * to open (i.e. offline or faulted is not considered
2784 			 * as missing).
2785 			 */
2786 			if (tvd->vdev_islog &&
2787 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2788 				child[idx++] = vdev_config_generate(spa, tvd,
2789 				    B_FALSE, VDEV_CONFIG_MISSING);
2790 			}
2791 		}
2792 
2793 		if (idx > 0) {
2794 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2795 			    (const nvlist_t * const *)child, idx);
2796 			fnvlist_add_nvlist(spa->spa_load_info,
2797 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2798 
2799 			for (uint64_t i = 0; i < idx; i++)
2800 				nvlist_free(child[i]);
2801 		}
2802 		nvlist_free(nv);
2803 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2804 
2805 		if (idx > 0) {
2806 			spa_load_failed(spa, "some log devices are missing");
2807 			vdev_dbgmsg_print_tree(rvd, 2);
2808 			return (SET_ERROR(ENXIO));
2809 		}
2810 	} else {
2811 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2812 			vdev_t *tvd = rvd->vdev_child[c];
2813 
2814 			if (tvd->vdev_islog &&
2815 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2816 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2817 				spa_load_note(spa, "some log devices are "
2818 				    "missing, ZIL is dropped.");
2819 				vdev_dbgmsg_print_tree(rvd, 2);
2820 				break;
2821 			}
2822 		}
2823 	}
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Check for missing log devices
2830  */
2831 static boolean_t
spa_check_logs(spa_t * spa)2832 spa_check_logs(spa_t *spa)
2833 {
2834 	boolean_t rv = B_FALSE;
2835 	dsl_pool_t *dp = spa_get_dsl(spa);
2836 
2837 	switch (spa->spa_log_state) {
2838 	default:
2839 		break;
2840 	case SPA_LOG_MISSING:
2841 		/* need to recheck in case slog has been restored */
2842 	case SPA_LOG_UNKNOWN:
2843 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2844 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2845 		if (rv)
2846 			spa_set_log_state(spa, SPA_LOG_MISSING);
2847 		break;
2848 	}
2849 	return (rv);
2850 }
2851 
2852 /*
2853  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2854  */
2855 static boolean_t
spa_passivate_log(spa_t * spa)2856 spa_passivate_log(spa_t *spa)
2857 {
2858 	vdev_t *rvd = spa->spa_root_vdev;
2859 	boolean_t slog_found = B_FALSE;
2860 
2861 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2862 
2863 	for (int c = 0; c < rvd->vdev_children; c++) {
2864 		vdev_t *tvd = rvd->vdev_child[c];
2865 
2866 		if (tvd->vdev_islog) {
2867 			ASSERT0P(tvd->vdev_log_mg);
2868 			metaslab_group_passivate(tvd->vdev_mg);
2869 			slog_found = B_TRUE;
2870 		}
2871 	}
2872 
2873 	return (slog_found);
2874 }
2875 
2876 /*
2877  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2878  */
2879 static void
spa_activate_log(spa_t * spa)2880 spa_activate_log(spa_t *spa)
2881 {
2882 	vdev_t *rvd = spa->spa_root_vdev;
2883 
2884 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2885 
2886 	for (int c = 0; c < rvd->vdev_children; c++) {
2887 		vdev_t *tvd = rvd->vdev_child[c];
2888 
2889 		if (tvd->vdev_islog) {
2890 			ASSERT0P(tvd->vdev_log_mg);
2891 			metaslab_group_activate(tvd->vdev_mg);
2892 		}
2893 	}
2894 }
2895 
2896 int
spa_reset_logs(spa_t * spa)2897 spa_reset_logs(spa_t *spa)
2898 {
2899 	int error;
2900 
2901 	error = dmu_objset_find(spa_name(spa), zil_reset,
2902 	    NULL, DS_FIND_CHILDREN);
2903 	if (error == 0) {
2904 		/*
2905 		 * We successfully offlined the log device, sync out the
2906 		 * current txg so that the "stubby" block can be removed
2907 		 * by zil_sync().
2908 		 */
2909 		txg_wait_synced(spa->spa_dsl_pool, 0);
2910 	}
2911 	return (error);
2912 }
2913 
2914 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2915 spa_aux_check_removed(spa_aux_vdev_t *sav)
2916 {
2917 	for (int i = 0; i < sav->sav_count; i++)
2918 		spa_check_removed(sav->sav_vdevs[i]);
2919 }
2920 
2921 void
spa_claim_notify(zio_t * zio)2922 spa_claim_notify(zio_t *zio)
2923 {
2924 	spa_t *spa = zio->io_spa;
2925 
2926 	if (zio->io_error)
2927 		return;
2928 
2929 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2930 	if (spa->spa_claim_max_txg < BP_GET_BIRTH(zio->io_bp))
2931 		spa->spa_claim_max_txg = BP_GET_BIRTH(zio->io_bp);
2932 	mutex_exit(&spa->spa_props_lock);
2933 }
2934 
2935 typedef struct spa_load_error {
2936 	boolean_t	sle_verify_data;
2937 	uint64_t	sle_meta_count;
2938 	uint64_t	sle_data_count;
2939 } spa_load_error_t;
2940 
2941 static void
spa_load_verify_done(zio_t * zio)2942 spa_load_verify_done(zio_t *zio)
2943 {
2944 	blkptr_t *bp = zio->io_bp;
2945 	spa_load_error_t *sle = zio->io_private;
2946 	dmu_object_type_t type = BP_GET_TYPE(bp);
2947 	int error = zio->io_error;
2948 	spa_t *spa = zio->io_spa;
2949 
2950 	abd_free(zio->io_abd);
2951 	if (error) {
2952 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2953 		    type != DMU_OT_INTENT_LOG)
2954 			atomic_inc_64(&sle->sle_meta_count);
2955 		else
2956 			atomic_inc_64(&sle->sle_data_count);
2957 	}
2958 
2959 	mutex_enter(&spa->spa_scrub_lock);
2960 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2961 	cv_broadcast(&spa->spa_scrub_io_cv);
2962 	mutex_exit(&spa->spa_scrub_lock);
2963 }
2964 
2965 /*
2966  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2967  * By default, we set it to 1/16th of the arc.
2968  */
2969 static uint_t spa_load_verify_shift = 4;
2970 static int spa_load_verify_metadata = B_TRUE;
2971 static int spa_load_verify_data = B_TRUE;
2972 
2973 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2974 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2975     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2976 {
2977 	zio_t *rio = arg;
2978 	spa_load_error_t *sle = rio->io_private;
2979 
2980 	(void) zilog, (void) dnp;
2981 
2982 	/*
2983 	 * Note: normally this routine will not be called if
2984 	 * spa_load_verify_metadata is not set.  However, it may be useful
2985 	 * to manually set the flag after the traversal has begun.
2986 	 */
2987 	if (!spa_load_verify_metadata)
2988 		return (0);
2989 
2990 	/*
2991 	 * Sanity check the block pointer in order to detect obvious damage
2992 	 * before using the contents in subsequent checks or in zio_read().
2993 	 * When damaged consider it to be a metadata error since we cannot
2994 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2995 	 */
2996 	if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2997 		atomic_inc_64(&sle->sle_meta_count);
2998 		return (0);
2999 	}
3000 
3001 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
3002 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3003 		return (0);
3004 
3005 	if (!BP_IS_METADATA(bp) &&
3006 	    (!spa_load_verify_data || !sle->sle_verify_data))
3007 		return (0);
3008 
3009 	uint64_t maxinflight_bytes =
3010 	    arc_target_bytes() >> spa_load_verify_shift;
3011 	size_t size = BP_GET_PSIZE(bp);
3012 
3013 	mutex_enter(&spa->spa_scrub_lock);
3014 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
3015 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3016 	spa->spa_load_verify_bytes += size;
3017 	mutex_exit(&spa->spa_scrub_lock);
3018 
3019 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
3020 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
3021 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
3022 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
3023 	return (0);
3024 }
3025 
3026 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)3027 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
3028 {
3029 	(void) dp, (void) arg;
3030 
3031 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
3032 		return (SET_ERROR(ENAMETOOLONG));
3033 
3034 	return (0);
3035 }
3036 
3037 static int
spa_load_verify(spa_t * spa)3038 spa_load_verify(spa_t *spa)
3039 {
3040 	zio_t *rio;
3041 	spa_load_error_t sle = { 0 };
3042 	zpool_load_policy_t policy;
3043 	boolean_t verify_ok = B_FALSE;
3044 	int error = 0;
3045 
3046 	zpool_get_load_policy(spa->spa_config, &policy);
3047 
3048 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
3049 	    policy.zlp_maxmeta == UINT64_MAX)
3050 		return (0);
3051 
3052 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
3053 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
3054 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
3055 	    DS_FIND_CHILDREN);
3056 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
3057 	if (error != 0)
3058 		return (error);
3059 
3060 	/*
3061 	 * Verify data only if we are rewinding or error limit was set.
3062 	 * Otherwise nothing except dbgmsg care about it to waste time.
3063 	 */
3064 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
3065 	    (policy.zlp_maxdata < UINT64_MAX);
3066 
3067 	rio = zio_root(spa, NULL, &sle,
3068 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
3069 
3070 	if (spa_load_verify_metadata) {
3071 		if (spa->spa_extreme_rewind) {
3072 			spa_load_note(spa, "performing a complete scan of the "
3073 			    "pool since extreme rewind is on. This may take "
3074 			    "a very long time.\n  (spa_load_verify_data=%u, "
3075 			    "spa_load_verify_metadata=%u)",
3076 			    spa_load_verify_data, spa_load_verify_metadata);
3077 		}
3078 
3079 		error = traverse_pool(spa, spa->spa_verify_min_txg,
3080 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
3081 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
3082 	}
3083 
3084 	(void) zio_wait(rio);
3085 	ASSERT0(spa->spa_load_verify_bytes);
3086 
3087 	spa->spa_load_meta_errors = sle.sle_meta_count;
3088 	spa->spa_load_data_errors = sle.sle_data_count;
3089 
3090 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
3091 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
3092 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
3093 		    (u_longlong_t)sle.sle_data_count);
3094 	}
3095 
3096 	if (spa_load_verify_dryrun ||
3097 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
3098 	    sle.sle_data_count <= policy.zlp_maxdata)) {
3099 		int64_t loss = 0;
3100 
3101 		verify_ok = B_TRUE;
3102 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
3103 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
3104 
3105 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
3106 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
3107 		    spa->spa_load_txg_ts);
3108 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
3109 		    loss);
3110 		fnvlist_add_uint64(spa->spa_load_info,
3111 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
3112 		fnvlist_add_uint64(spa->spa_load_info,
3113 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
3114 	} else {
3115 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
3116 	}
3117 
3118 	if (spa_load_verify_dryrun)
3119 		return (0);
3120 
3121 	if (error) {
3122 		if (error != ENXIO && error != EIO)
3123 			error = SET_ERROR(EIO);
3124 		return (error);
3125 	}
3126 
3127 	return (verify_ok ? 0 : EIO);
3128 }
3129 
3130 /*
3131  * Find a value in the pool props object.
3132  */
3133 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)3134 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
3135 {
3136 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
3137 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
3138 }
3139 
3140 /*
3141  * Find a value in the pool directory object.
3142  */
3143 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)3144 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
3145 {
3146 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3147 	    name, sizeof (uint64_t), 1, val);
3148 
3149 	if (error != 0 && (error != ENOENT || log_enoent)) {
3150 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
3151 		    "[error=%d]", name, error);
3152 	}
3153 
3154 	return (error);
3155 }
3156 
3157 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)3158 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
3159 {
3160 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
3161 	return (SET_ERROR(err));
3162 }
3163 
3164 boolean_t
spa_livelist_delete_check(spa_t * spa)3165 spa_livelist_delete_check(spa_t *spa)
3166 {
3167 	return (spa->spa_livelists_to_delete != 0);
3168 }
3169 
3170 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)3171 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
3172 {
3173 	(void) z;
3174 	spa_t *spa = arg;
3175 	return (spa_livelist_delete_check(spa));
3176 }
3177 
3178 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3179 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3180 {
3181 	spa_t *spa = arg;
3182 	zio_free(spa, tx->tx_txg, bp);
3183 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3184 	    -bp_get_dsize_sync(spa, bp),
3185 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3186 	return (0);
3187 }
3188 
3189 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)3190 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
3191 {
3192 	int err;
3193 	zap_cursor_t zc;
3194 	zap_attribute_t *za = zap_attribute_alloc();
3195 	zap_cursor_init(&zc, os, zap_obj);
3196 	err = zap_cursor_retrieve(&zc, za);
3197 	zap_cursor_fini(&zc);
3198 	if (err == 0)
3199 		*llp = za->za_first_integer;
3200 	zap_attribute_free(za);
3201 	return (err);
3202 }
3203 
3204 /*
3205  * Components of livelist deletion that must be performed in syncing
3206  * context: freeing block pointers and updating the pool-wide data
3207  * structures to indicate how much work is left to do
3208  */
3209 typedef struct sublist_delete_arg {
3210 	spa_t *spa;
3211 	dsl_deadlist_t *ll;
3212 	uint64_t key;
3213 	bplist_t *to_free;
3214 } sublist_delete_arg_t;
3215 
3216 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3217 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3218 {
3219 	sublist_delete_arg_t *sda = arg;
3220 	spa_t *spa = sda->spa;
3221 	dsl_deadlist_t *ll = sda->ll;
3222 	uint64_t key = sda->key;
3223 	bplist_t *to_free = sda->to_free;
3224 
3225 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3226 	dsl_deadlist_remove_entry(ll, key, tx);
3227 }
3228 
3229 typedef struct livelist_delete_arg {
3230 	spa_t *spa;
3231 	uint64_t ll_obj;
3232 	uint64_t zap_obj;
3233 } livelist_delete_arg_t;
3234 
3235 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3236 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3237 {
3238 	livelist_delete_arg_t *lda = arg;
3239 	spa_t *spa = lda->spa;
3240 	uint64_t ll_obj = lda->ll_obj;
3241 	uint64_t zap_obj = lda->zap_obj;
3242 	objset_t *mos = spa->spa_meta_objset;
3243 	uint64_t count;
3244 
3245 	/* free the livelist and decrement the feature count */
3246 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3247 	dsl_deadlist_free(mos, ll_obj, tx);
3248 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3249 	VERIFY0(zap_count(mos, zap_obj, &count));
3250 	if (count == 0) {
3251 		/* no more livelists to delete */
3252 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3253 		    DMU_POOL_DELETED_CLONES, tx));
3254 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3255 		spa->spa_livelists_to_delete = 0;
3256 		spa_notify_waiters(spa);
3257 	}
3258 }
3259 
3260 /*
3261  * Load in the value for the livelist to be removed and open it. Then,
3262  * load its first sublist and determine which block pointers should actually
3263  * be freed. Then, call a synctask which performs the actual frees and updates
3264  * the pool-wide livelist data.
3265  */
3266 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3267 spa_livelist_delete_cb(void *arg, zthr_t *z)
3268 {
3269 	spa_t *spa = arg;
3270 	uint64_t ll_obj = 0, count;
3271 	objset_t *mos = spa->spa_meta_objset;
3272 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3273 	/*
3274 	 * Determine the next livelist to delete. This function should only
3275 	 * be called if there is at least one deleted clone.
3276 	 */
3277 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3278 	VERIFY0(zap_count(mos, ll_obj, &count));
3279 	if (count > 0) {
3280 		dsl_deadlist_t *ll;
3281 		dsl_deadlist_entry_t *dle;
3282 		bplist_t to_free;
3283 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3284 		VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3285 		dle = dsl_deadlist_first(ll);
3286 		ASSERT3P(dle, !=, NULL);
3287 		bplist_create(&to_free);
3288 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3289 		    z, NULL);
3290 		if (err == 0) {
3291 			sublist_delete_arg_t sync_arg = {
3292 			    .spa = spa,
3293 			    .ll = ll,
3294 			    .key = dle->dle_mintxg,
3295 			    .to_free = &to_free
3296 			};
3297 			zfs_dbgmsg("deleting sublist (id %llu) from"
3298 			    " livelist %llu, %lld remaining",
3299 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3300 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3301 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3302 			    sublist_delete_sync, &sync_arg, 0,
3303 			    ZFS_SPACE_CHECK_DESTROY));
3304 		} else {
3305 			VERIFY3U(err, ==, EINTR);
3306 		}
3307 		bplist_clear(&to_free);
3308 		bplist_destroy(&to_free);
3309 		dsl_deadlist_close(ll);
3310 		kmem_free(ll, sizeof (dsl_deadlist_t));
3311 	} else {
3312 		livelist_delete_arg_t sync_arg = {
3313 		    .spa = spa,
3314 		    .ll_obj = ll_obj,
3315 		    .zap_obj = zap_obj
3316 		};
3317 		zfs_dbgmsg("deletion of livelist %llu completed",
3318 		    (u_longlong_t)ll_obj);
3319 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3320 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3321 	}
3322 }
3323 
3324 static void
spa_start_livelist_destroy_thread(spa_t * spa)3325 spa_start_livelist_destroy_thread(spa_t *spa)
3326 {
3327 	ASSERT0P(spa->spa_livelist_delete_zthr);
3328 	spa->spa_livelist_delete_zthr =
3329 	    zthr_create("z_livelist_destroy",
3330 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3331 	    minclsyspri);
3332 }
3333 
3334 typedef struct livelist_new_arg {
3335 	bplist_t *allocs;
3336 	bplist_t *frees;
3337 } livelist_new_arg_t;
3338 
3339 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3340 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3341     dmu_tx_t *tx)
3342 {
3343 	ASSERT0P(tx);
3344 	livelist_new_arg_t *lna = arg;
3345 	if (bp_freed) {
3346 		bplist_append(lna->frees, bp);
3347 	} else {
3348 		bplist_append(lna->allocs, bp);
3349 		zfs_livelist_condense_new_alloc++;
3350 	}
3351 	return (0);
3352 }
3353 
3354 typedef struct livelist_condense_arg {
3355 	spa_t *spa;
3356 	bplist_t to_keep;
3357 	uint64_t first_size;
3358 	uint64_t next_size;
3359 } livelist_condense_arg_t;
3360 
3361 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3362 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3363 {
3364 	livelist_condense_arg_t *lca = arg;
3365 	spa_t *spa = lca->spa;
3366 	bplist_t new_frees;
3367 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3368 
3369 	/* Have we been cancelled? */
3370 	if (spa->spa_to_condense.cancelled) {
3371 		zfs_livelist_condense_sync_cancel++;
3372 		goto out;
3373 	}
3374 
3375 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3376 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3377 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3378 
3379 	/*
3380 	 * It's possible that the livelist was changed while the zthr was
3381 	 * running. Therefore, we need to check for new blkptrs in the two
3382 	 * entries being condensed and continue to track them in the livelist.
3383 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3384 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3385 	 * we need to sort them into two different bplists.
3386 	 */
3387 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3388 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3389 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3390 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3391 
3392 	bplist_create(&new_frees);
3393 	livelist_new_arg_t new_bps = {
3394 	    .allocs = &lca->to_keep,
3395 	    .frees = &new_frees,
3396 	};
3397 
3398 	if (cur_first_size > lca->first_size) {
3399 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3400 		    livelist_track_new_cb, &new_bps, lca->first_size));
3401 	}
3402 	if (cur_next_size > lca->next_size) {
3403 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3404 		    livelist_track_new_cb, &new_bps, lca->next_size));
3405 	}
3406 
3407 	dsl_deadlist_clear_entry(first, ll, tx);
3408 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3409 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3410 
3411 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3412 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3413 	bplist_destroy(&new_frees);
3414 
3415 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3416 	dsl_dataset_name(ds, dsname);
3417 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3418 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3419 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3420 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3421 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3422 	    (u_longlong_t)cur_next_size,
3423 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3424 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3425 out:
3426 	dmu_buf_rele(ds->ds_dbuf, spa);
3427 	spa->spa_to_condense.ds = NULL;
3428 	bplist_clear(&lca->to_keep);
3429 	bplist_destroy(&lca->to_keep);
3430 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3431 	spa->spa_to_condense.syncing = B_FALSE;
3432 }
3433 
3434 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3435 spa_livelist_condense_cb(void *arg, zthr_t *t)
3436 {
3437 	while (zfs_livelist_condense_zthr_pause &&
3438 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3439 		delay(1);
3440 
3441 	spa_t *spa = arg;
3442 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3443 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3444 	uint64_t first_size, next_size;
3445 
3446 	livelist_condense_arg_t *lca =
3447 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3448 	bplist_create(&lca->to_keep);
3449 
3450 	/*
3451 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3452 	 * so we have minimal work in syncing context to condense.
3453 	 *
3454 	 * We save bpobj sizes (first_size and next_size) to use later in
3455 	 * syncing context to determine if entries were added to these sublists
3456 	 * while in open context. This is possible because the clone is still
3457 	 * active and open for normal writes and we want to make sure the new,
3458 	 * unprocessed blockpointers are inserted into the livelist normally.
3459 	 *
3460 	 * Note that dsl_process_sub_livelist() both stores the size number of
3461 	 * blockpointers and iterates over them while the bpobj's lock held, so
3462 	 * the sizes returned to us are consistent which what was actually
3463 	 * processed.
3464 	 */
3465 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3466 	    &first_size);
3467 	if (err == 0)
3468 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3469 		    t, &next_size);
3470 
3471 	if (err == 0) {
3472 		while (zfs_livelist_condense_sync_pause &&
3473 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3474 			delay(1);
3475 
3476 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3477 		dmu_tx_mark_netfree(tx);
3478 		dmu_tx_hold_space(tx, 1);
3479 		err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE);
3480 		if (err == 0) {
3481 			/*
3482 			 * Prevent the condense zthr restarting before
3483 			 * the synctask completes.
3484 			 */
3485 			spa->spa_to_condense.syncing = B_TRUE;
3486 			lca->spa = spa;
3487 			lca->first_size = first_size;
3488 			lca->next_size = next_size;
3489 			dsl_sync_task_nowait(spa_get_dsl(spa),
3490 			    spa_livelist_condense_sync, lca, tx);
3491 			dmu_tx_commit(tx);
3492 			return;
3493 		}
3494 	}
3495 	/*
3496 	 * Condensing can not continue: either it was externally stopped or
3497 	 * we were unable to assign to a tx because the pool has run out of
3498 	 * space. In the second case, we'll just end up trying to condense
3499 	 * again in a later txg.
3500 	 */
3501 	ASSERT(err != 0);
3502 	bplist_clear(&lca->to_keep);
3503 	bplist_destroy(&lca->to_keep);
3504 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3505 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3506 	spa->spa_to_condense.ds = NULL;
3507 	if (err == EINTR)
3508 		zfs_livelist_condense_zthr_cancel++;
3509 }
3510 
3511 /*
3512  * Check that there is something to condense but that a condense is not
3513  * already in progress and that condensing has not been cancelled.
3514  */
3515 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3516 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3517 {
3518 	(void) z;
3519 	spa_t *spa = arg;
3520 	if ((spa->spa_to_condense.ds != NULL) &&
3521 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3522 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3523 		return (B_TRUE);
3524 	}
3525 	return (B_FALSE);
3526 }
3527 
3528 static void
spa_start_livelist_condensing_thread(spa_t * spa)3529 spa_start_livelist_condensing_thread(spa_t *spa)
3530 {
3531 	spa->spa_to_condense.ds = NULL;
3532 	spa->spa_to_condense.first = NULL;
3533 	spa->spa_to_condense.next = NULL;
3534 	spa->spa_to_condense.syncing = B_FALSE;
3535 	spa->spa_to_condense.cancelled = B_FALSE;
3536 
3537 	ASSERT0P(spa->spa_livelist_condense_zthr);
3538 	spa->spa_livelist_condense_zthr =
3539 	    zthr_create("z_livelist_condense",
3540 	    spa_livelist_condense_cb_check,
3541 	    spa_livelist_condense_cb, spa, minclsyspri);
3542 }
3543 
3544 static void
spa_spawn_aux_threads(spa_t * spa)3545 spa_spawn_aux_threads(spa_t *spa)
3546 {
3547 	ASSERT(spa_writeable(spa));
3548 
3549 	spa_start_raidz_expansion_thread(spa);
3550 	spa_start_indirect_condensing_thread(spa);
3551 	spa_start_livelist_destroy_thread(spa);
3552 	spa_start_livelist_condensing_thread(spa);
3553 
3554 	ASSERT0P(spa->spa_checkpoint_discard_zthr);
3555 	spa->spa_checkpoint_discard_zthr =
3556 	    zthr_create("z_checkpoint_discard",
3557 	    spa_checkpoint_discard_thread_check,
3558 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3559 }
3560 
3561 /*
3562  * Fix up config after a partly-completed split.  This is done with the
3563  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3564  * pool have that entry in their config, but only the splitting one contains
3565  * a list of all the guids of the vdevs that are being split off.
3566  *
3567  * This function determines what to do with that list: either rejoin
3568  * all the disks to the pool, or complete the splitting process.  To attempt
3569  * the rejoin, each disk that is offlined is marked online again, and
3570  * we do a reopen() call.  If the vdev label for every disk that was
3571  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3572  * then we call vdev_split() on each disk, and complete the split.
3573  *
3574  * Otherwise we leave the config alone, with all the vdevs in place in
3575  * the original pool.
3576  */
3577 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3578 spa_try_repair(spa_t *spa, nvlist_t *config)
3579 {
3580 	uint_t extracted;
3581 	uint64_t *glist;
3582 	uint_t i, gcount;
3583 	nvlist_t *nvl;
3584 	vdev_t **vd;
3585 	boolean_t attempt_reopen;
3586 
3587 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3588 		return;
3589 
3590 	/* check that the config is complete */
3591 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3592 	    &glist, &gcount) != 0)
3593 		return;
3594 
3595 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3596 
3597 	/* attempt to online all the vdevs & validate */
3598 	attempt_reopen = B_TRUE;
3599 	for (i = 0; i < gcount; i++) {
3600 		if (glist[i] == 0)	/* vdev is hole */
3601 			continue;
3602 
3603 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3604 		if (vd[i] == NULL) {
3605 			/*
3606 			 * Don't bother attempting to reopen the disks;
3607 			 * just do the split.
3608 			 */
3609 			attempt_reopen = B_FALSE;
3610 		} else {
3611 			/* attempt to re-online it */
3612 			vd[i]->vdev_offline = B_FALSE;
3613 		}
3614 	}
3615 
3616 	if (attempt_reopen) {
3617 		vdev_reopen(spa->spa_root_vdev);
3618 
3619 		/* check each device to see what state it's in */
3620 		for (extracted = 0, i = 0; i < gcount; i++) {
3621 			if (vd[i] != NULL &&
3622 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3623 				break;
3624 			++extracted;
3625 		}
3626 	}
3627 
3628 	/*
3629 	 * If every disk has been moved to the new pool, or if we never
3630 	 * even attempted to look at them, then we split them off for
3631 	 * good.
3632 	 */
3633 	if (!attempt_reopen || gcount == extracted) {
3634 		for (i = 0; i < gcount; i++)
3635 			if (vd[i] != NULL)
3636 				vdev_split(vd[i]);
3637 		vdev_reopen(spa->spa_root_vdev);
3638 	}
3639 
3640 	kmem_free(vd, gcount * sizeof (vdev_t *));
3641 }
3642 
3643 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3644 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3645 {
3646 	const char *ereport = FM_EREPORT_ZFS_POOL;
3647 	int error;
3648 
3649 	spa->spa_load_state = state;
3650 	(void) spa_import_progress_set_state(spa_guid(spa),
3651 	    spa_load_state(spa));
3652 	spa_import_progress_set_notes(spa, "spa_load()");
3653 
3654 	gethrestime(&spa->spa_loaded_ts);
3655 	error = spa_load_impl(spa, type, &ereport);
3656 
3657 	/*
3658 	 * Don't count references from objsets that are already closed
3659 	 * and are making their way through the eviction process.
3660 	 */
3661 	spa_evicting_os_wait(spa);
3662 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3663 	if (error) {
3664 		if (error != EEXIST) {
3665 			spa->spa_loaded_ts.tv_sec = 0;
3666 			spa->spa_loaded_ts.tv_nsec = 0;
3667 		}
3668 		if (error != EBADF) {
3669 			(void) zfs_ereport_post(ereport, spa,
3670 			    NULL, NULL, NULL, 0);
3671 		}
3672 	}
3673 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3674 	spa->spa_ena = 0;
3675 
3676 	(void) spa_import_progress_set_state(spa_guid(spa),
3677 	    spa_load_state(spa));
3678 
3679 	return (error);
3680 }
3681 
3682 #ifdef ZFS_DEBUG
3683 /*
3684  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3685  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3686  * spa's per-vdev ZAP list.
3687  */
3688 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3689 vdev_count_verify_zaps(vdev_t *vd)
3690 {
3691 	spa_t *spa = vd->vdev_spa;
3692 	uint64_t total = 0;
3693 
3694 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3695 	    vd->vdev_root_zap != 0) {
3696 		total++;
3697 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3698 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3699 	}
3700 	if (vd->vdev_top_zap != 0) {
3701 		total++;
3702 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3703 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3704 	}
3705 	if (vd->vdev_leaf_zap != 0) {
3706 		total++;
3707 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3708 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3709 	}
3710 
3711 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3712 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3713 	}
3714 
3715 	return (total);
3716 }
3717 #else
3718 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3719 #endif
3720 
3721 /*
3722  * Determine whether the activity check is required.
3723  */
3724 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3725 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3726     nvlist_t *config)
3727 {
3728 	uint64_t state = 0;
3729 	uint64_t hostid = 0;
3730 	uint64_t tryconfig_txg = 0;
3731 	uint64_t tryconfig_timestamp = 0;
3732 	uint16_t tryconfig_mmp_seq = 0;
3733 	nvlist_t *nvinfo;
3734 
3735 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3736 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3737 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3738 		    &tryconfig_txg);
3739 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3740 		    &tryconfig_timestamp);
3741 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3742 		    &tryconfig_mmp_seq);
3743 	}
3744 
3745 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3746 
3747 	/*
3748 	 * Disable the MMP activity check - This is used by zdb which
3749 	 * is intended to be used on potentially active pools.
3750 	 */
3751 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3752 		return (B_FALSE);
3753 
3754 	/*
3755 	 * Skip the activity check when the MMP feature is disabled.
3756 	 */
3757 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3758 		return (B_FALSE);
3759 
3760 	/*
3761 	 * If the tryconfig_ values are nonzero, they are the results of an
3762 	 * earlier tryimport.  If they all match the uberblock we just found,
3763 	 * then the pool has not changed and we return false so we do not test
3764 	 * a second time.
3765 	 */
3766 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3767 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3768 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3769 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3770 		return (B_FALSE);
3771 
3772 	/*
3773 	 * Allow the activity check to be skipped when importing the pool
3774 	 * on the same host which last imported it.  Since the hostid from
3775 	 * configuration may be stale use the one read from the label.
3776 	 */
3777 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3778 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3779 
3780 	if (hostid == spa_get_hostid(spa))
3781 		return (B_FALSE);
3782 
3783 	/*
3784 	 * Skip the activity test when the pool was cleanly exported.
3785 	 */
3786 	if (state != POOL_STATE_ACTIVE)
3787 		return (B_FALSE);
3788 
3789 	return (B_TRUE);
3790 }
3791 
3792 /*
3793  * Nanoseconds the activity check must watch for changes on-disk.
3794  */
3795 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3796 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3797 {
3798 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3799 	uint64_t multihost_interval = MSEC2NSEC(
3800 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3801 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3802 	    multihost_interval);
3803 
3804 	/*
3805 	 * Local tunables determine a minimum duration except for the case
3806 	 * where we know when the remote host will suspend the pool if MMP
3807 	 * writes do not land.
3808 	 *
3809 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3810 	 * these cases and times.
3811 	 */
3812 
3813 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3814 
3815 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3816 	    MMP_FAIL_INT(ub) > 0) {
3817 
3818 		/* MMP on remote host will suspend pool after failed writes */
3819 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3820 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3821 
3822 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3823 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3824 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3825 		    (u_longlong_t)MMP_FAIL_INT(ub),
3826 		    (u_longlong_t)MMP_INTERVAL(ub),
3827 		    (u_longlong_t)import_intervals);
3828 
3829 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3830 	    MMP_FAIL_INT(ub) == 0) {
3831 
3832 		/* MMP on remote host will never suspend pool */
3833 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3834 		    ub->ub_mmp_delay) * import_intervals);
3835 
3836 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3837 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3838 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3839 		    (u_longlong_t)MMP_INTERVAL(ub),
3840 		    (u_longlong_t)ub->ub_mmp_delay,
3841 		    (u_longlong_t)import_intervals);
3842 
3843 	} else if (MMP_VALID(ub)) {
3844 		/*
3845 		 * zfs-0.7 compatibility case
3846 		 */
3847 
3848 		import_delay = MAX(import_delay, (multihost_interval +
3849 		    ub->ub_mmp_delay) * import_intervals);
3850 
3851 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3852 		    "import_intervals=%llu leaves=%u",
3853 		    (u_longlong_t)import_delay,
3854 		    (u_longlong_t)ub->ub_mmp_delay,
3855 		    (u_longlong_t)import_intervals,
3856 		    vdev_count_leaves(spa));
3857 	} else {
3858 		/* Using local tunings is the only reasonable option */
3859 		zfs_dbgmsg("pool last imported on non-MMP aware "
3860 		    "host using import_delay=%llu multihost_interval=%llu "
3861 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3862 		    (u_longlong_t)multihost_interval,
3863 		    (u_longlong_t)import_intervals);
3864 	}
3865 
3866 	return (import_delay);
3867 }
3868 
3869 /*
3870  * Remote host activity check.
3871  *
3872  * error results:
3873  *          0 - no activity detected
3874  *  EREMOTEIO - remote activity detected
3875  *      EINTR - user canceled the operation
3876  */
3877 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3878 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3879     boolean_t importing)
3880 {
3881 	uint64_t txg = ub->ub_txg;
3882 	uint64_t timestamp = ub->ub_timestamp;
3883 	uint64_t mmp_config = ub->ub_mmp_config;
3884 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3885 	uint64_t import_delay;
3886 	hrtime_t import_expire, now;
3887 	nvlist_t *mmp_label = NULL;
3888 	vdev_t *rvd = spa->spa_root_vdev;
3889 	kcondvar_t cv;
3890 	kmutex_t mtx;
3891 	int error = 0;
3892 
3893 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3894 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3895 	mutex_enter(&mtx);
3896 
3897 	/*
3898 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3899 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3900 	 * the pool is known to be active on another host.
3901 	 *
3902 	 * Otherwise, the pool might be in use on another host.  Check for
3903 	 * changes in the uberblocks on disk if necessary.
3904 	 */
3905 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3906 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3907 		    ZPOOL_CONFIG_LOAD_INFO);
3908 
3909 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3910 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3911 			vdev_uberblock_load(rvd, ub, &mmp_label);
3912 			error = SET_ERROR(EREMOTEIO);
3913 			goto out;
3914 		}
3915 	}
3916 
3917 	import_delay = spa_activity_check_duration(spa, ub);
3918 
3919 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3920 	import_delay += import_delay * random_in_range(250) / 1000;
3921 
3922 	import_expire = gethrtime() + import_delay;
3923 
3924 	if (importing) {
3925 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3926 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3927 	}
3928 
3929 	int iterations = 0;
3930 	while ((now = gethrtime()) < import_expire) {
3931 		if (importing && iterations++ % 30 == 0) {
3932 			spa_import_progress_set_notes(spa, "Checking MMP "
3933 			    "activity, %llu ms remaining",
3934 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3935 		}
3936 
3937 		if (importing) {
3938 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3939 			    NSEC2SEC(import_expire - gethrtime()));
3940 		}
3941 
3942 		vdev_uberblock_load(rvd, ub, &mmp_label);
3943 
3944 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3945 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3946 			zfs_dbgmsg("multihost activity detected "
3947 			    "txg %llu ub_txg  %llu "
3948 			    "timestamp %llu ub_timestamp  %llu "
3949 			    "mmp_config %#llx ub_mmp_config %#llx",
3950 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3951 			    (u_longlong_t)timestamp,
3952 			    (u_longlong_t)ub->ub_timestamp,
3953 			    (u_longlong_t)mmp_config,
3954 			    (u_longlong_t)ub->ub_mmp_config);
3955 
3956 			error = SET_ERROR(EREMOTEIO);
3957 			break;
3958 		}
3959 
3960 		if (mmp_label) {
3961 			nvlist_free(mmp_label);
3962 			mmp_label = NULL;
3963 		}
3964 
3965 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3966 		if (error != -1) {
3967 			error = SET_ERROR(EINTR);
3968 			break;
3969 		}
3970 		error = 0;
3971 	}
3972 
3973 out:
3974 	mutex_exit(&mtx);
3975 	mutex_destroy(&mtx);
3976 	cv_destroy(&cv);
3977 
3978 	/*
3979 	 * If the pool is determined to be active store the status in the
3980 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3981 	 * available from configuration read from disk store them as well.
3982 	 * This allows 'zpool import' to generate a more useful message.
3983 	 *
3984 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3985 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3986 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3987 	 */
3988 	if (error == EREMOTEIO) {
3989 		if (mmp_label) {
3990 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3991 				const char *hostname = fnvlist_lookup_string(
3992 				    mmp_label, ZPOOL_CONFIG_HOSTNAME);
3993 				fnvlist_add_string(spa->spa_load_info,
3994 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3995 			}
3996 
3997 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3998 				uint64_t hostid = fnvlist_lookup_uint64(
3999 				    mmp_label, ZPOOL_CONFIG_HOSTID);
4000 				fnvlist_add_uint64(spa->spa_load_info,
4001 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
4002 			}
4003 		}
4004 
4005 		fnvlist_add_uint64(spa->spa_load_info,
4006 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
4007 		fnvlist_add_uint64(spa->spa_load_info,
4008 		    ZPOOL_CONFIG_MMP_TXG, 0);
4009 
4010 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
4011 	}
4012 
4013 	if (mmp_label)
4014 		nvlist_free(mmp_label);
4015 
4016 	return (error);
4017 }
4018 
4019 /*
4020  * Called from zfs_ioc_clear for a pool that was suspended
4021  * after failing mmp write checks.
4022  */
4023 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)4024 spa_mmp_remote_host_activity(spa_t *spa)
4025 {
4026 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
4027 
4028 	nvlist_t *best_label;
4029 	uberblock_t best_ub;
4030 
4031 	/*
4032 	 * Locate the best uberblock on disk
4033 	 */
4034 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
4035 	if (best_label) {
4036 		/*
4037 		 * confirm that the best hostid matches our hostid
4038 		 */
4039 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
4040 		    spa_get_hostid(spa) !=
4041 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
4042 			nvlist_free(best_label);
4043 			return (B_TRUE);
4044 		}
4045 		nvlist_free(best_label);
4046 	} else {
4047 		return (B_TRUE);
4048 	}
4049 
4050 	if (!MMP_VALID(&best_ub) ||
4051 	    !MMP_FAIL_INT_VALID(&best_ub) ||
4052 	    MMP_FAIL_INT(&best_ub) == 0) {
4053 		return (B_TRUE);
4054 	}
4055 
4056 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
4057 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
4058 		zfs_dbgmsg("txg mismatch detected during pool clear "
4059 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
4060 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
4061 		    (u_longlong_t)best_ub.ub_txg,
4062 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
4063 		    (u_longlong_t)best_ub.ub_timestamp);
4064 		return (B_TRUE);
4065 	}
4066 
4067 	/*
4068 	 * Perform an activity check looking for any remote writer
4069 	 */
4070 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
4071 	    B_FALSE) != 0);
4072 }
4073 
4074 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)4075 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
4076 {
4077 	uint64_t hostid;
4078 	const char *hostname;
4079 	uint64_t myhostid = 0;
4080 
4081 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
4082 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
4083 		hostname = fnvlist_lookup_string(mos_config,
4084 		    ZPOOL_CONFIG_HOSTNAME);
4085 
4086 		myhostid = zone_get_hostid(NULL);
4087 
4088 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
4089 			cmn_err(CE_WARN, "pool '%s' could not be "
4090 			    "loaded as it was last accessed by "
4091 			    "another system (host: %s hostid: 0x%llx). "
4092 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
4093 			    "ZFS-8000-EY",
4094 			    spa_name(spa), hostname, (u_longlong_t)hostid);
4095 			spa_load_failed(spa, "hostid verification failed: pool "
4096 			    "last accessed by host: %s (hostid: 0x%llx)",
4097 			    hostname, (u_longlong_t)hostid);
4098 			return (SET_ERROR(EBADF));
4099 		}
4100 	}
4101 
4102 	return (0);
4103 }
4104 
4105 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)4106 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
4107 {
4108 	int error = 0;
4109 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
4110 	int parse;
4111 	vdev_t *rvd;
4112 	uint64_t pool_guid;
4113 	const char *comment;
4114 	const char *compatibility;
4115 
4116 	/*
4117 	 * Versioning wasn't explicitly added to the label until later, so if
4118 	 * it's not present treat it as the initial version.
4119 	 */
4120 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4121 	    &spa->spa_ubsync.ub_version) != 0)
4122 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4123 
4124 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
4125 		spa_load_failed(spa, "invalid config provided: '%s' missing",
4126 		    ZPOOL_CONFIG_POOL_GUID);
4127 		return (SET_ERROR(EINVAL));
4128 	}
4129 
4130 	/*
4131 	 * If we are doing an import, ensure that the pool is not already
4132 	 * imported by checking if its pool guid already exists in the
4133 	 * spa namespace.
4134 	 *
4135 	 * The only case that we allow an already imported pool to be
4136 	 * imported again, is when the pool is checkpointed and we want to
4137 	 * look at its checkpointed state from userland tools like zdb.
4138 	 */
4139 #ifdef _KERNEL
4140 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4141 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4142 	    spa_guid_exists(pool_guid, 0)) {
4143 #else
4144 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
4145 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
4146 	    spa_guid_exists(pool_guid, 0) &&
4147 	    !spa_importing_readonly_checkpoint(spa)) {
4148 #endif
4149 		spa_load_failed(spa, "a pool with guid %llu is already open",
4150 		    (u_longlong_t)pool_guid);
4151 		return (SET_ERROR(EEXIST));
4152 	}
4153 
4154 	spa->spa_config_guid = pool_guid;
4155 
4156 	nvlist_free(spa->spa_load_info);
4157 	spa->spa_load_info = fnvlist_alloc();
4158 
4159 	ASSERT0P(spa->spa_comment);
4160 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
4161 		spa->spa_comment = spa_strdup(comment);
4162 
4163 	ASSERT0P(spa->spa_compatibility);
4164 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
4165 	    &compatibility) == 0)
4166 		spa->spa_compatibility = spa_strdup(compatibility);
4167 
4168 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4169 	    &spa->spa_config_txg);
4170 
4171 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
4172 		spa->spa_config_splitting = fnvlist_dup(nvl);
4173 
4174 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
4175 		spa_load_failed(spa, "invalid config provided: '%s' missing",
4176 		    ZPOOL_CONFIG_VDEV_TREE);
4177 		return (SET_ERROR(EINVAL));
4178 	}
4179 
4180 	/*
4181 	 * Create "The Godfather" zio to hold all async IOs
4182 	 */
4183 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4184 	    KM_SLEEP);
4185 	for (int i = 0; i < max_ncpus; i++) {
4186 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4187 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4188 		    ZIO_FLAG_GODFATHER);
4189 	}
4190 
4191 	/*
4192 	 * Parse the configuration into a vdev tree.  We explicitly set the
4193 	 * value that will be returned by spa_version() since parsing the
4194 	 * configuration requires knowing the version number.
4195 	 */
4196 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4197 	parse = (type == SPA_IMPORT_EXISTING ?
4198 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
4199 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
4200 	spa_config_exit(spa, SCL_ALL, FTAG);
4201 
4202 	if (error != 0) {
4203 		spa_load_failed(spa, "unable to parse config [error=%d]",
4204 		    error);
4205 		return (error);
4206 	}
4207 
4208 	ASSERT(spa->spa_root_vdev == rvd);
4209 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
4210 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4211 
4212 	if (type != SPA_IMPORT_ASSEMBLE) {
4213 		ASSERT(spa_guid(spa) == pool_guid);
4214 	}
4215 
4216 	return (0);
4217 }
4218 
4219 /*
4220  * Recursively open all vdevs in the vdev tree. This function is called twice:
4221  * first with the untrusted config, then with the trusted config.
4222  */
4223 static int
4224 spa_ld_open_vdevs(spa_t *spa)
4225 {
4226 	int error = 0;
4227 
4228 	/*
4229 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4230 	 * missing/unopenable for the root vdev to be still considered openable.
4231 	 */
4232 	if (spa->spa_trust_config) {
4233 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4234 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4235 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4236 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4237 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4238 	} else {
4239 		spa->spa_missing_tvds_allowed = 0;
4240 	}
4241 
4242 	spa->spa_missing_tvds_allowed =
4243 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4244 
4245 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4246 	error = vdev_open(spa->spa_root_vdev);
4247 	spa_config_exit(spa, SCL_ALL, FTAG);
4248 
4249 	if (spa->spa_missing_tvds != 0) {
4250 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4251 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4252 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4253 			/*
4254 			 * Although theoretically we could allow users to open
4255 			 * incomplete pools in RW mode, we'd need to add a lot
4256 			 * of extra logic (e.g. adjust pool space to account
4257 			 * for missing vdevs).
4258 			 * This limitation also prevents users from accidentally
4259 			 * opening the pool in RW mode during data recovery and
4260 			 * damaging it further.
4261 			 */
4262 			spa_load_note(spa, "pools with missing top-level "
4263 			    "vdevs can only be opened in read-only mode.");
4264 			error = SET_ERROR(ENXIO);
4265 		} else {
4266 			spa_load_note(spa, "current settings allow for maximum "
4267 			    "%lld missing top-level vdevs at this stage.",
4268 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4269 		}
4270 	}
4271 	if (error != 0) {
4272 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4273 		    error);
4274 	}
4275 	if (spa->spa_missing_tvds != 0 || error != 0)
4276 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4277 
4278 	return (error);
4279 }
4280 
4281 /*
4282  * We need to validate the vdev labels against the configuration that
4283  * we have in hand. This function is called twice: first with an untrusted
4284  * config, then with a trusted config. The validation is more strict when the
4285  * config is trusted.
4286  */
4287 static int
4288 spa_ld_validate_vdevs(spa_t *spa)
4289 {
4290 	int error = 0;
4291 	vdev_t *rvd = spa->spa_root_vdev;
4292 
4293 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4294 	error = vdev_validate(rvd);
4295 	spa_config_exit(spa, SCL_ALL, FTAG);
4296 
4297 	if (error != 0) {
4298 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4299 		return (error);
4300 	}
4301 
4302 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4303 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4304 		    "some vdevs");
4305 		vdev_dbgmsg_print_tree(rvd, 2);
4306 		return (SET_ERROR(ENXIO));
4307 	}
4308 
4309 	return (0);
4310 }
4311 
4312 static void
4313 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4314 {
4315 	spa->spa_state = POOL_STATE_ACTIVE;
4316 	spa->spa_ubsync = spa->spa_uberblock;
4317 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4318 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4319 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4320 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4321 	spa->spa_claim_max_txg = spa->spa_first_txg;
4322 	spa->spa_prev_software_version = ub->ub_software_version;
4323 }
4324 
4325 static int
4326 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4327 {
4328 	vdev_t *rvd = spa->spa_root_vdev;
4329 	nvlist_t *label;
4330 	uberblock_t *ub = &spa->spa_uberblock;
4331 	boolean_t activity_check = B_FALSE;
4332 
4333 	/*
4334 	 * If we are opening the checkpointed state of the pool by
4335 	 * rewinding to it, at this point we will have written the
4336 	 * checkpointed uberblock to the vdev labels, so searching
4337 	 * the labels will find the right uberblock.  However, if
4338 	 * we are opening the checkpointed state read-only, we have
4339 	 * not modified the labels. Therefore, we must ignore the
4340 	 * labels and continue using the spa_uberblock that was set
4341 	 * by spa_ld_checkpoint_rewind.
4342 	 *
4343 	 * Note that it would be fine to ignore the labels when
4344 	 * rewinding (opening writeable) as well. However, if we
4345 	 * crash just after writing the labels, we will end up
4346 	 * searching the labels. Doing so in the common case means
4347 	 * that this code path gets exercised normally, rather than
4348 	 * just in the edge case.
4349 	 */
4350 	if (ub->ub_checkpoint_txg != 0 &&
4351 	    spa_importing_readonly_checkpoint(spa)) {
4352 		spa_ld_select_uberblock_done(spa, ub);
4353 		return (0);
4354 	}
4355 
4356 	/*
4357 	 * Find the best uberblock.
4358 	 */
4359 	vdev_uberblock_load(rvd, ub, &label);
4360 
4361 	/*
4362 	 * If we weren't able to find a single valid uberblock, return failure.
4363 	 */
4364 	if (ub->ub_txg == 0) {
4365 		nvlist_free(label);
4366 		spa_load_failed(spa, "no valid uberblock found");
4367 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4368 	}
4369 
4370 	if (spa->spa_load_max_txg != UINT64_MAX) {
4371 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4372 		    (u_longlong_t)spa->spa_load_max_txg);
4373 	}
4374 	spa_load_note(spa, "using uberblock with txg=%llu",
4375 	    (u_longlong_t)ub->ub_txg);
4376 	if (ub->ub_raidz_reflow_info != 0) {
4377 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4378 		    "state=%u offset=%llu",
4379 		    (int)RRSS_GET_STATE(ub),
4380 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4381 	}
4382 
4383 
4384 	/*
4385 	 * For pools which have the multihost property on determine if the
4386 	 * pool is truly inactive and can be safely imported.  Prevent
4387 	 * hosts which don't have a hostid set from importing the pool.
4388 	 */
4389 	activity_check = spa_activity_check_required(spa, ub, label,
4390 	    spa->spa_config);
4391 	if (activity_check) {
4392 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4393 		    spa_get_hostid(spa) == 0) {
4394 			nvlist_free(label);
4395 			fnvlist_add_uint64(spa->spa_load_info,
4396 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4397 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4398 		}
4399 
4400 		int error =
4401 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4402 		if (error) {
4403 			nvlist_free(label);
4404 			return (error);
4405 		}
4406 
4407 		fnvlist_add_uint64(spa->spa_load_info,
4408 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4409 		fnvlist_add_uint64(spa->spa_load_info,
4410 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4411 		fnvlist_add_uint16(spa->spa_load_info,
4412 		    ZPOOL_CONFIG_MMP_SEQ,
4413 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4414 	}
4415 
4416 	/*
4417 	 * If the pool has an unsupported version we can't open it.
4418 	 */
4419 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4420 		nvlist_free(label);
4421 		spa_load_failed(spa, "version %llu is not supported",
4422 		    (u_longlong_t)ub->ub_version);
4423 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4424 	}
4425 
4426 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4427 		nvlist_t *features;
4428 
4429 		/*
4430 		 * If we weren't able to find what's necessary for reading the
4431 		 * MOS in the label, return failure.
4432 		 */
4433 		if (label == NULL) {
4434 			spa_load_failed(spa, "label config unavailable");
4435 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4436 			    ENXIO));
4437 		}
4438 
4439 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4440 		    &features) != 0) {
4441 			nvlist_free(label);
4442 			spa_load_failed(spa, "invalid label: '%s' missing",
4443 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4444 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4445 			    ENXIO));
4446 		}
4447 
4448 		/*
4449 		 * Update our in-core representation with the definitive values
4450 		 * from the label.
4451 		 */
4452 		nvlist_free(spa->spa_label_features);
4453 		spa->spa_label_features = fnvlist_dup(features);
4454 	}
4455 
4456 	nvlist_free(label);
4457 
4458 	/*
4459 	 * Look through entries in the label nvlist's features_for_read. If
4460 	 * there is a feature listed there which we don't understand then we
4461 	 * cannot open a pool.
4462 	 */
4463 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4464 		nvlist_t *unsup_feat;
4465 
4466 		unsup_feat = fnvlist_alloc();
4467 
4468 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4469 		    NULL); nvp != NULL;
4470 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4471 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4472 				fnvlist_add_string(unsup_feat,
4473 				    nvpair_name(nvp), "");
4474 			}
4475 		}
4476 
4477 		if (!nvlist_empty(unsup_feat)) {
4478 			fnvlist_add_nvlist(spa->spa_load_info,
4479 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4480 			nvlist_free(unsup_feat);
4481 			spa_load_failed(spa, "some features are unsupported");
4482 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4483 			    ENOTSUP));
4484 		}
4485 
4486 		nvlist_free(unsup_feat);
4487 	}
4488 
4489 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4490 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4491 		spa_try_repair(spa, spa->spa_config);
4492 		spa_config_exit(spa, SCL_ALL, FTAG);
4493 		nvlist_free(spa->spa_config_splitting);
4494 		spa->spa_config_splitting = NULL;
4495 	}
4496 
4497 	/*
4498 	 * Initialize internal SPA structures.
4499 	 */
4500 	spa_ld_select_uberblock_done(spa, ub);
4501 
4502 	return (0);
4503 }
4504 
4505 static int
4506 spa_ld_open_rootbp(spa_t *spa)
4507 {
4508 	int error = 0;
4509 	vdev_t *rvd = spa->spa_root_vdev;
4510 
4511 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4512 	if (error != 0) {
4513 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4514 		    "[error=%d]", error);
4515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4516 	}
4517 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4518 
4519 	return (0);
4520 }
4521 
4522 static int
4523 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4524     boolean_t reloading)
4525 {
4526 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4527 	nvlist_t *nv, *mos_config, *policy;
4528 	int error = 0, copy_error;
4529 	uint64_t healthy_tvds, healthy_tvds_mos;
4530 	uint64_t mos_config_txg;
4531 
4532 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4533 	    != 0)
4534 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4535 
4536 	/*
4537 	 * If we're assembling a pool from a split, the config provided is
4538 	 * already trusted so there is nothing to do.
4539 	 */
4540 	if (type == SPA_IMPORT_ASSEMBLE)
4541 		return (0);
4542 
4543 	healthy_tvds = spa_healthy_core_tvds(spa);
4544 
4545 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4546 	    != 0) {
4547 		spa_load_failed(spa, "unable to retrieve MOS config");
4548 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4549 	}
4550 
4551 	/*
4552 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4553 	 * the verification here.
4554 	 */
4555 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4556 		error = spa_verify_host(spa, mos_config);
4557 		if (error != 0) {
4558 			nvlist_free(mos_config);
4559 			return (error);
4560 		}
4561 	}
4562 
4563 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4564 
4565 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4566 
4567 	/*
4568 	 * Build a new vdev tree from the trusted config
4569 	 */
4570 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4571 	if (error != 0) {
4572 		nvlist_free(mos_config);
4573 		spa_config_exit(spa, SCL_ALL, FTAG);
4574 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4575 		    error);
4576 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4577 	}
4578 
4579 	/*
4580 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4581 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4582 	 * paths. We update the trusted MOS config with this information.
4583 	 * We first try to copy the paths with vdev_copy_path_strict, which
4584 	 * succeeds only when both configs have exactly the same vdev tree.
4585 	 * If that fails, we fall back to a more flexible method that has a
4586 	 * best effort policy.
4587 	 */
4588 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4589 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4590 		spa_load_note(spa, "provided vdev tree:");
4591 		vdev_dbgmsg_print_tree(rvd, 2);
4592 		spa_load_note(spa, "MOS vdev tree:");
4593 		vdev_dbgmsg_print_tree(mrvd, 2);
4594 	}
4595 	if (copy_error != 0) {
4596 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4597 		    "back to vdev_copy_path_relaxed");
4598 		vdev_copy_path_relaxed(rvd, mrvd);
4599 	}
4600 
4601 	vdev_close(rvd);
4602 	vdev_free(rvd);
4603 	spa->spa_root_vdev = mrvd;
4604 	rvd = mrvd;
4605 	spa_config_exit(spa, SCL_ALL, FTAG);
4606 
4607 	/*
4608 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4609 	 * hostname may be different to the cached config in ways that should
4610 	 * prevent import.  Userspace can't discover this without a scan, but
4611 	 * we know, so we add these values to LOAD_INFO so the caller can know
4612 	 * the difference.
4613 	 *
4614 	 * Note that we have to do this before the config is regenerated,
4615 	 * because the new config will have the hostid and hostname for this
4616 	 * host, in readiness for import.
4617 	 */
4618 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4619 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4620 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4621 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4622 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4623 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4624 
4625 	/*
4626 	 * We will use spa_config if we decide to reload the spa or if spa_load
4627 	 * fails and we rewind. We must thus regenerate the config using the
4628 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4629 	 * pass settings on how to load the pool and is not stored in the MOS.
4630 	 * We copy it over to our new, trusted config.
4631 	 */
4632 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4633 	    ZPOOL_CONFIG_POOL_TXG);
4634 	nvlist_free(mos_config);
4635 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4636 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4637 	    &policy) == 0)
4638 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4639 	spa_config_set(spa, mos_config);
4640 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4641 
4642 	/*
4643 	 * Now that we got the config from the MOS, we should be more strict
4644 	 * in checking blkptrs and can make assumptions about the consistency
4645 	 * of the vdev tree. spa_trust_config must be set to true before opening
4646 	 * vdevs in order for them to be writeable.
4647 	 */
4648 	spa->spa_trust_config = B_TRUE;
4649 
4650 	/*
4651 	 * Open and validate the new vdev tree
4652 	 */
4653 	error = spa_ld_open_vdevs(spa);
4654 	if (error != 0)
4655 		return (error);
4656 
4657 	error = spa_ld_validate_vdevs(spa);
4658 	if (error != 0)
4659 		return (error);
4660 
4661 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4662 		spa_load_note(spa, "final vdev tree:");
4663 		vdev_dbgmsg_print_tree(rvd, 2);
4664 	}
4665 
4666 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4667 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4668 		/*
4669 		 * Sanity check to make sure that we are indeed loading the
4670 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4671 		 * in the config provided and they happened to be the only ones
4672 		 * to have the latest uberblock, we could involuntarily perform
4673 		 * an extreme rewind.
4674 		 */
4675 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4676 		if (healthy_tvds_mos - healthy_tvds >=
4677 		    SPA_SYNC_MIN_VDEVS) {
4678 			spa_load_note(spa, "config provided misses too many "
4679 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4680 			    (u_longlong_t)healthy_tvds,
4681 			    (u_longlong_t)healthy_tvds_mos);
4682 			spa_load_note(spa, "vdev tree:");
4683 			vdev_dbgmsg_print_tree(rvd, 2);
4684 			if (reloading) {
4685 				spa_load_failed(spa, "config was already "
4686 				    "provided from MOS. Aborting.");
4687 				return (spa_vdev_err(rvd,
4688 				    VDEV_AUX_CORRUPT_DATA, EIO));
4689 			}
4690 			spa_load_note(spa, "spa must be reloaded using MOS "
4691 			    "config");
4692 			return (SET_ERROR(EAGAIN));
4693 		}
4694 	}
4695 
4696 	error = spa_check_for_missing_logs(spa);
4697 	if (error != 0)
4698 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4699 
4700 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4701 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4702 		    "guid sum (%llu != %llu)",
4703 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4704 		    (u_longlong_t)rvd->vdev_guid_sum);
4705 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4706 		    ENXIO));
4707 	}
4708 
4709 	return (0);
4710 }
4711 
4712 static int
4713 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4714 {
4715 	int error = 0;
4716 	vdev_t *rvd = spa->spa_root_vdev;
4717 
4718 	/*
4719 	 * Everything that we read before spa_remove_init() must be stored
4720 	 * on concreted vdevs.  Therefore we do this as early as possible.
4721 	 */
4722 	error = spa_remove_init(spa);
4723 	if (error != 0) {
4724 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4725 		    error);
4726 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4727 	}
4728 
4729 	/*
4730 	 * Retrieve information needed to condense indirect vdev mappings.
4731 	 */
4732 	error = spa_condense_init(spa);
4733 	if (error != 0) {
4734 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4735 		    error);
4736 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4737 	}
4738 
4739 	return (0);
4740 }
4741 
4742 static int
4743 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4744 {
4745 	int error = 0;
4746 	vdev_t *rvd = spa->spa_root_vdev;
4747 
4748 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4749 		boolean_t missing_feat_read = B_FALSE;
4750 		nvlist_t *unsup_feat, *enabled_feat;
4751 
4752 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4753 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4754 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4755 		}
4756 
4757 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4758 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4759 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4760 		}
4761 
4762 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4763 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4764 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4765 		}
4766 
4767 		enabled_feat = fnvlist_alloc();
4768 		unsup_feat = fnvlist_alloc();
4769 
4770 		if (!spa_features_check(spa, B_FALSE,
4771 		    unsup_feat, enabled_feat))
4772 			missing_feat_read = B_TRUE;
4773 
4774 		if (spa_writeable(spa) ||
4775 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4776 			if (!spa_features_check(spa, B_TRUE,
4777 			    unsup_feat, enabled_feat)) {
4778 				*missing_feat_writep = B_TRUE;
4779 			}
4780 		}
4781 
4782 		fnvlist_add_nvlist(spa->spa_load_info,
4783 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4784 
4785 		if (!nvlist_empty(unsup_feat)) {
4786 			fnvlist_add_nvlist(spa->spa_load_info,
4787 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4788 		}
4789 
4790 		fnvlist_free(enabled_feat);
4791 		fnvlist_free(unsup_feat);
4792 
4793 		if (!missing_feat_read) {
4794 			fnvlist_add_boolean(spa->spa_load_info,
4795 			    ZPOOL_CONFIG_CAN_RDONLY);
4796 		}
4797 
4798 		/*
4799 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4800 		 * twofold: to determine whether the pool is available for
4801 		 * import in read-write mode and (if it is not) whether the
4802 		 * pool is available for import in read-only mode. If the pool
4803 		 * is available for import in read-write mode, it is displayed
4804 		 * as available in userland; if it is not available for import
4805 		 * in read-only mode, it is displayed as unavailable in
4806 		 * userland. If the pool is available for import in read-only
4807 		 * mode but not read-write mode, it is displayed as unavailable
4808 		 * in userland with a special note that the pool is actually
4809 		 * available for open in read-only mode.
4810 		 *
4811 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4812 		 * missing a feature for write, we must first determine whether
4813 		 * the pool can be opened read-only before returning to
4814 		 * userland in order to know whether to display the
4815 		 * abovementioned note.
4816 		 */
4817 		if (missing_feat_read || (*missing_feat_writep &&
4818 		    spa_writeable(spa))) {
4819 			spa_load_failed(spa, "pool uses unsupported features");
4820 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4821 			    ENOTSUP));
4822 		}
4823 
4824 		/*
4825 		 * Load refcounts for ZFS features from disk into an in-memory
4826 		 * cache during SPA initialization.
4827 		 */
4828 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4829 			uint64_t refcount;
4830 
4831 			error = feature_get_refcount_from_disk(spa,
4832 			    &spa_feature_table[i], &refcount);
4833 			if (error == 0) {
4834 				spa->spa_feat_refcount_cache[i] = refcount;
4835 			} else if (error == ENOTSUP) {
4836 				spa->spa_feat_refcount_cache[i] =
4837 				    SPA_FEATURE_DISABLED;
4838 			} else {
4839 				spa_load_failed(spa, "error getting refcount "
4840 				    "for feature %s [error=%d]",
4841 				    spa_feature_table[i].fi_guid, error);
4842 				return (spa_vdev_err(rvd,
4843 				    VDEV_AUX_CORRUPT_DATA, EIO));
4844 			}
4845 		}
4846 	}
4847 
4848 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4849 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4850 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4851 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4852 	}
4853 
4854 	/*
4855 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4856 	 * is now a dependency. If this pool has encryption enabled without
4857 	 * bookmark_v2, trigger an errata message.
4858 	 */
4859 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4860 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4861 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4862 	}
4863 
4864 	return (0);
4865 }
4866 
4867 static int
4868 spa_ld_load_special_directories(spa_t *spa)
4869 {
4870 	int error = 0;
4871 	vdev_t *rvd = spa->spa_root_vdev;
4872 
4873 	spa->spa_is_initializing = B_TRUE;
4874 	error = dsl_pool_open(spa->spa_dsl_pool);
4875 	spa->spa_is_initializing = B_FALSE;
4876 	if (error != 0) {
4877 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4878 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4879 	}
4880 
4881 	return (0);
4882 }
4883 
4884 static int
4885 spa_ld_get_props(spa_t *spa)
4886 {
4887 	int error = 0;
4888 	uint64_t obj;
4889 	vdev_t *rvd = spa->spa_root_vdev;
4890 
4891 	/* Grab the checksum salt from the MOS. */
4892 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4893 	    DMU_POOL_CHECKSUM_SALT, 1,
4894 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4895 	    spa->spa_cksum_salt.zcs_bytes);
4896 	if (error == ENOENT) {
4897 		/* Generate a new salt for subsequent use */
4898 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4899 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4900 	} else if (error != 0) {
4901 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4902 		    "MOS [error=%d]", error);
4903 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4904 	}
4905 
4906 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4907 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4908 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4909 	if (error != 0) {
4910 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4911 		    "[error=%d]", error);
4912 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4913 	}
4914 
4915 	/*
4916 	 * Load the bit that tells us to use the new accounting function
4917 	 * (raid-z deflation).  If we have an older pool, this will not
4918 	 * be present.
4919 	 */
4920 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4921 	if (error != 0 && error != ENOENT)
4922 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4923 
4924 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4925 	    &spa->spa_creation_version, B_FALSE);
4926 	if (error != 0 && error != ENOENT)
4927 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4928 
4929 	/* Load time log */
4930 	spa_load_txg_log_time(spa);
4931 
4932 	/*
4933 	 * Load the persistent error log.  If we have an older pool, this will
4934 	 * not be present.
4935 	 */
4936 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4937 	    B_FALSE);
4938 	if (error != 0 && error != ENOENT)
4939 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4940 
4941 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4942 	    &spa->spa_errlog_scrub, B_FALSE);
4943 	if (error != 0 && error != ENOENT)
4944 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4945 
4946 	/* Load the last scrubbed txg. */
4947 	error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4948 	    &spa->spa_scrubbed_last_txg, B_FALSE);
4949 	if (error != 0 && error != ENOENT)
4950 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4951 
4952 	/*
4953 	 * Load the livelist deletion field. If a livelist is queued for
4954 	 * deletion, indicate that in the spa
4955 	 */
4956 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4957 	    &spa->spa_livelists_to_delete, B_FALSE);
4958 	if (error != 0 && error != ENOENT)
4959 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4960 
4961 	/*
4962 	 * Load the history object.  If we have an older pool, this
4963 	 * will not be present.
4964 	 */
4965 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4966 	if (error != 0 && error != ENOENT)
4967 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4968 
4969 	/*
4970 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4971 	 * be present; in this case, defer its creation to a later time to
4972 	 * avoid dirtying the MOS this early / out of sync context. See
4973 	 * spa_sync_config_object.
4974 	 */
4975 
4976 	/* The sentinel is only available in the MOS config. */
4977 	nvlist_t *mos_config;
4978 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4979 		spa_load_failed(spa, "unable to retrieve MOS config");
4980 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4981 	}
4982 
4983 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4984 	    &spa->spa_all_vdev_zaps, B_FALSE);
4985 
4986 	if (error == ENOENT) {
4987 		VERIFY(!nvlist_exists(mos_config,
4988 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4989 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4990 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4991 	} else if (error != 0) {
4992 		nvlist_free(mos_config);
4993 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4994 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4995 		/*
4996 		 * An older version of ZFS overwrote the sentinel value, so
4997 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4998 		 * destruction to later; see spa_sync_config_object.
4999 		 */
5000 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
5001 		/*
5002 		 * We're assuming that no vdevs have had their ZAPs created
5003 		 * before this. Better be sure of it.
5004 		 */
5005 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
5006 	}
5007 	nvlist_free(mos_config);
5008 
5009 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5010 
5011 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
5012 	    B_FALSE);
5013 	if (error && error != ENOENT)
5014 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5015 
5016 	if (error == 0) {
5017 		uint64_t autoreplace = 0;
5018 
5019 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
5020 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
5021 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
5022 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
5023 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
5024 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
5025 		    &spa->spa_dedup_table_quota);
5026 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
5027 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
5028 		spa->spa_autoreplace = (autoreplace != 0);
5029 	}
5030 
5031 	/*
5032 	 * If we are importing a pool with missing top-level vdevs,
5033 	 * we enforce that the pool doesn't panic or get suspended on
5034 	 * error since the likelihood of missing data is extremely high.
5035 	 */
5036 	if (spa->spa_missing_tvds > 0 &&
5037 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
5038 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5039 		spa_load_note(spa, "forcing failmode to 'continue' "
5040 		    "as some top level vdevs are missing");
5041 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
5042 	}
5043 
5044 	return (0);
5045 }
5046 
5047 static int
5048 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
5049 {
5050 	int error = 0;
5051 	vdev_t *rvd = spa->spa_root_vdev;
5052 
5053 	/*
5054 	 * If we're assembling the pool from the split-off vdevs of
5055 	 * an existing pool, we don't want to attach the spares & cache
5056 	 * devices.
5057 	 */
5058 
5059 	/*
5060 	 * Load any hot spares for this pool.
5061 	 */
5062 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
5063 	    B_FALSE);
5064 	if (error != 0 && error != ENOENT)
5065 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5066 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5067 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
5068 		if (load_nvlist(spa, spa->spa_spares.sav_object,
5069 		    &spa->spa_spares.sav_config) != 0) {
5070 			spa_load_failed(spa, "error loading spares nvlist");
5071 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5072 		}
5073 
5074 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5075 		spa_load_spares(spa);
5076 		spa_config_exit(spa, SCL_ALL, FTAG);
5077 	} else if (error == 0) {
5078 		spa->spa_spares.sav_sync = B_TRUE;
5079 	}
5080 
5081 	/*
5082 	 * Load any level 2 ARC devices for this pool.
5083 	 */
5084 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
5085 	    &spa->spa_l2cache.sav_object, B_FALSE);
5086 	if (error != 0 && error != ENOENT)
5087 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5088 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
5089 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
5090 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
5091 		    &spa->spa_l2cache.sav_config) != 0) {
5092 			spa_load_failed(spa, "error loading l2cache nvlist");
5093 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5094 		}
5095 
5096 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5097 		spa_load_l2cache(spa);
5098 		spa_config_exit(spa, SCL_ALL, FTAG);
5099 	} else if (error == 0) {
5100 		spa->spa_l2cache.sav_sync = B_TRUE;
5101 	}
5102 
5103 	return (0);
5104 }
5105 
5106 static int
5107 spa_ld_load_vdev_metadata(spa_t *spa)
5108 {
5109 	int error = 0;
5110 	vdev_t *rvd = spa->spa_root_vdev;
5111 
5112 	/*
5113 	 * If the 'multihost' property is set, then never allow a pool to
5114 	 * be imported when the system hostid is zero.  The exception to
5115 	 * this rule is zdb which is always allowed to access pools.
5116 	 */
5117 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
5118 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
5119 		fnvlist_add_uint64(spa->spa_load_info,
5120 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
5121 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
5122 	}
5123 
5124 	/*
5125 	 * If the 'autoreplace' property is set, then post a resource notifying
5126 	 * the ZFS DE that it should not issue any faults for unopenable
5127 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
5128 	 * unopenable vdevs so that the normal autoreplace handler can take
5129 	 * over.
5130 	 */
5131 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5132 		spa_check_removed(spa->spa_root_vdev);
5133 		/*
5134 		 * For the import case, this is done in spa_import(), because
5135 		 * at this point we're using the spare definitions from
5136 		 * the MOS config, not necessarily from the userland config.
5137 		 */
5138 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
5139 			spa_aux_check_removed(&spa->spa_spares);
5140 			spa_aux_check_removed(&spa->spa_l2cache);
5141 		}
5142 	}
5143 
5144 	/*
5145 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
5146 	 */
5147 	error = vdev_load(rvd);
5148 	if (error != 0) {
5149 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
5150 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5151 	}
5152 
5153 	error = spa_ld_log_spacemaps(spa);
5154 	if (error != 0) {
5155 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
5156 		    error);
5157 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
5158 	}
5159 
5160 	/*
5161 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
5162 	 */
5163 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5164 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
5165 	spa_config_exit(spa, SCL_ALL, FTAG);
5166 
5167 	return (0);
5168 }
5169 
5170 static int
5171 spa_ld_load_dedup_tables(spa_t *spa)
5172 {
5173 	int error = 0;
5174 	vdev_t *rvd = spa->spa_root_vdev;
5175 
5176 	error = ddt_load(spa);
5177 	if (error != 0) {
5178 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
5179 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5180 	}
5181 
5182 	return (0);
5183 }
5184 
5185 static int
5186 spa_ld_load_brt(spa_t *spa)
5187 {
5188 	int error = 0;
5189 	vdev_t *rvd = spa->spa_root_vdev;
5190 
5191 	error = brt_load(spa);
5192 	if (error != 0) {
5193 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
5194 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
5195 	}
5196 
5197 	return (0);
5198 }
5199 
5200 static int
5201 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
5202 {
5203 	vdev_t *rvd = spa->spa_root_vdev;
5204 
5205 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
5206 		boolean_t missing = spa_check_logs(spa);
5207 		if (missing) {
5208 			if (spa->spa_missing_tvds != 0) {
5209 				spa_load_note(spa, "spa_check_logs failed "
5210 				    "so dropping the logs");
5211 			} else {
5212 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
5213 				spa_load_failed(spa, "spa_check_logs failed");
5214 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5215 				    ENXIO));
5216 			}
5217 		}
5218 	}
5219 
5220 	return (0);
5221 }
5222 
5223 static int
5224 spa_ld_verify_pool_data(spa_t *spa)
5225 {
5226 	int error = 0;
5227 	vdev_t *rvd = spa->spa_root_vdev;
5228 
5229 	/*
5230 	 * We've successfully opened the pool, verify that we're ready
5231 	 * to start pushing transactions.
5232 	 */
5233 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5234 		error = spa_load_verify(spa);
5235 		if (error != 0) {
5236 			spa_load_failed(spa, "spa_load_verify failed "
5237 			    "[error=%d]", error);
5238 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5239 			    error));
5240 		}
5241 	}
5242 
5243 	return (0);
5244 }
5245 
5246 static void
5247 spa_ld_claim_log_blocks(spa_t *spa)
5248 {
5249 	dmu_tx_t *tx;
5250 	dsl_pool_t *dp = spa_get_dsl(spa);
5251 
5252 	/*
5253 	 * Claim log blocks that haven't been committed yet.
5254 	 * This must all happen in a single txg.
5255 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5256 	 * invoked from zil_claim_log_block()'s i/o done callback.
5257 	 * Price of rollback is that we abandon the log.
5258 	 */
5259 	spa->spa_claiming = B_TRUE;
5260 
5261 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5262 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5263 	    zil_claim, tx, DS_FIND_CHILDREN);
5264 	dmu_tx_commit(tx);
5265 
5266 	spa->spa_claiming = B_FALSE;
5267 
5268 	spa_set_log_state(spa, SPA_LOG_GOOD);
5269 }
5270 
5271 static void
5272 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5273     boolean_t update_config_cache)
5274 {
5275 	vdev_t *rvd = spa->spa_root_vdev;
5276 	int need_update = B_FALSE;
5277 
5278 	/*
5279 	 * If the config cache is stale, or we have uninitialized
5280 	 * metaslabs (see spa_vdev_add()), then update the config.
5281 	 *
5282 	 * If this is a verbatim import, trust the current
5283 	 * in-core spa_config and update the disk labels.
5284 	 */
5285 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5286 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5287 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5288 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5289 		need_update = B_TRUE;
5290 
5291 	for (int c = 0; c < rvd->vdev_children; c++)
5292 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5293 			need_update = B_TRUE;
5294 
5295 	/*
5296 	 * Update the config cache asynchronously in case we're the
5297 	 * root pool, in which case the config cache isn't writable yet.
5298 	 */
5299 	if (need_update)
5300 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5301 }
5302 
5303 static void
5304 spa_ld_prepare_for_reload(spa_t *spa)
5305 {
5306 	spa_mode_t mode = spa->spa_mode;
5307 	int async_suspended = spa->spa_async_suspended;
5308 
5309 	spa_unload(spa);
5310 	spa_deactivate(spa);
5311 	spa_activate(spa, mode);
5312 
5313 	/*
5314 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5315 	 * spa_unload(). We want to restore it back to the original value before
5316 	 * returning as we might be calling spa_async_resume() later.
5317 	 */
5318 	spa->spa_async_suspended = async_suspended;
5319 }
5320 
5321 static int
5322 spa_ld_read_checkpoint_txg(spa_t *spa)
5323 {
5324 	uberblock_t checkpoint;
5325 	int error = 0;
5326 
5327 	ASSERT0(spa->spa_checkpoint_txg);
5328 	ASSERT(spa_namespace_held() ||
5329 	    spa->spa_load_thread == curthread);
5330 
5331 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5332 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5333 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5334 
5335 	if (error == ENOENT)
5336 		return (0);
5337 
5338 	if (error != 0)
5339 		return (error);
5340 
5341 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5342 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5343 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5344 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5345 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5346 
5347 	return (0);
5348 }
5349 
5350 static int
5351 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5352 {
5353 	int error = 0;
5354 
5355 	ASSERT(spa_namespace_held());
5356 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5357 
5358 	/*
5359 	 * Never trust the config that is provided unless we are assembling
5360 	 * a pool following a split.
5361 	 * This means don't trust blkptrs and the vdev tree in general. This
5362 	 * also effectively puts the spa in read-only mode since
5363 	 * spa_writeable() checks for spa_trust_config to be true.
5364 	 * We will later load a trusted config from the MOS.
5365 	 */
5366 	if (type != SPA_IMPORT_ASSEMBLE)
5367 		spa->spa_trust_config = B_FALSE;
5368 
5369 	/*
5370 	 * Parse the config provided to create a vdev tree.
5371 	 */
5372 	error = spa_ld_parse_config(spa, type);
5373 	if (error != 0)
5374 		return (error);
5375 
5376 	spa_import_progress_add(spa);
5377 
5378 	/*
5379 	 * Now that we have the vdev tree, try to open each vdev. This involves
5380 	 * opening the underlying physical device, retrieving its geometry and
5381 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5382 	 * based on the success of those operations. After this we'll be ready
5383 	 * to read from the vdevs.
5384 	 */
5385 	error = spa_ld_open_vdevs(spa);
5386 	if (error != 0)
5387 		return (error);
5388 
5389 	/*
5390 	 * Read the label of each vdev and make sure that the GUIDs stored
5391 	 * there match the GUIDs in the config provided.
5392 	 * If we're assembling a new pool that's been split off from an
5393 	 * existing pool, the labels haven't yet been updated so we skip
5394 	 * validation for now.
5395 	 */
5396 	if (type != SPA_IMPORT_ASSEMBLE) {
5397 		error = spa_ld_validate_vdevs(spa);
5398 		if (error != 0)
5399 			return (error);
5400 	}
5401 
5402 	/*
5403 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5404 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5405 	 * get the list of features required to read blkptrs in the MOS from
5406 	 * the vdev label with the best uberblock and verify that our version
5407 	 * of zfs supports them all.
5408 	 */
5409 	error = spa_ld_select_uberblock(spa, type);
5410 	if (error != 0)
5411 		return (error);
5412 
5413 	/*
5414 	 * Pass that uberblock to the dsl_pool layer which will open the root
5415 	 * blkptr. This blkptr points to the latest version of the MOS and will
5416 	 * allow us to read its contents.
5417 	 */
5418 	error = spa_ld_open_rootbp(spa);
5419 	if (error != 0)
5420 		return (error);
5421 
5422 	return (0);
5423 }
5424 
5425 static int
5426 spa_ld_checkpoint_rewind(spa_t *spa)
5427 {
5428 	uberblock_t checkpoint;
5429 	int error = 0;
5430 
5431 	ASSERT(spa_namespace_held());
5432 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5433 
5434 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5435 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5436 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5437 
5438 	if (error != 0) {
5439 		spa_load_failed(spa, "unable to retrieve checkpointed "
5440 		    "uberblock from the MOS config [error=%d]", error);
5441 
5442 		if (error == ENOENT)
5443 			error = ZFS_ERR_NO_CHECKPOINT;
5444 
5445 		return (error);
5446 	}
5447 
5448 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5449 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5450 
5451 	/*
5452 	 * We need to update the txg and timestamp of the checkpointed
5453 	 * uberblock to be higher than the latest one. This ensures that
5454 	 * the checkpointed uberblock is selected if we were to close and
5455 	 * reopen the pool right after we've written it in the vdev labels.
5456 	 * (also see block comment in vdev_uberblock_compare)
5457 	 */
5458 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5459 	checkpoint.ub_timestamp = gethrestime_sec();
5460 
5461 	/*
5462 	 * Set current uberblock to be the checkpointed uberblock.
5463 	 */
5464 	spa->spa_uberblock = checkpoint;
5465 
5466 	/*
5467 	 * If we are doing a normal rewind, then the pool is open for
5468 	 * writing and we sync the "updated" checkpointed uberblock to
5469 	 * disk. Once this is done, we've basically rewound the whole
5470 	 * pool and there is no way back.
5471 	 *
5472 	 * There are cases when we don't want to attempt and sync the
5473 	 * checkpointed uberblock to disk because we are opening a
5474 	 * pool as read-only. Specifically, verifying the checkpointed
5475 	 * state with zdb, and importing the checkpointed state to get
5476 	 * a "preview" of its content.
5477 	 */
5478 	if (spa_writeable(spa)) {
5479 		vdev_t *rvd = spa->spa_root_vdev;
5480 
5481 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5482 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5483 		int svdcount = 0;
5484 		int children = rvd->vdev_children;
5485 		int c0 = random_in_range(children);
5486 
5487 		for (int c = 0; c < children; c++) {
5488 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5489 
5490 			/* Stop when revisiting the first vdev */
5491 			if (c > 0 && svd[0] == vd)
5492 				break;
5493 
5494 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5495 			    !vdev_is_concrete(vd))
5496 				continue;
5497 
5498 			svd[svdcount++] = vd;
5499 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5500 				break;
5501 		}
5502 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5503 		if (error == 0)
5504 			spa->spa_last_synced_guid = rvd->vdev_guid;
5505 		spa_config_exit(spa, SCL_ALL, FTAG);
5506 
5507 		if (error != 0) {
5508 			spa_load_failed(spa, "failed to write checkpointed "
5509 			    "uberblock to the vdev labels [error=%d]", error);
5510 			return (error);
5511 		}
5512 	}
5513 
5514 	return (0);
5515 }
5516 
5517 static int
5518 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5519     boolean_t *update_config_cache)
5520 {
5521 	int error;
5522 
5523 	/*
5524 	 * Parse the config for pool, open and validate vdevs,
5525 	 * select an uberblock, and use that uberblock to open
5526 	 * the MOS.
5527 	 */
5528 	error = spa_ld_mos_init(spa, type);
5529 	if (error != 0)
5530 		return (error);
5531 
5532 	/*
5533 	 * Retrieve the trusted config stored in the MOS and use it to create
5534 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5535 	 */
5536 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5537 	if (error == EAGAIN) {
5538 		if (update_config_cache != NULL)
5539 			*update_config_cache = B_TRUE;
5540 
5541 		/*
5542 		 * Redo the loading process with the trusted config if it is
5543 		 * too different from the untrusted config.
5544 		 */
5545 		spa_ld_prepare_for_reload(spa);
5546 		spa_load_note(spa, "RELOADING");
5547 		error = spa_ld_mos_init(spa, type);
5548 		if (error != 0)
5549 			return (error);
5550 
5551 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5552 		if (error != 0)
5553 			return (error);
5554 
5555 	} else if (error != 0) {
5556 		return (error);
5557 	}
5558 
5559 	return (0);
5560 }
5561 
5562 /*
5563  * Load an existing storage pool, using the config provided. This config
5564  * describes which vdevs are part of the pool and is later validated against
5565  * partial configs present in each vdev's label and an entire copy of the
5566  * config stored in the MOS.
5567  */
5568 static int
5569 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5570 {
5571 	int error = 0;
5572 	boolean_t missing_feat_write = B_FALSE;
5573 	boolean_t checkpoint_rewind =
5574 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5575 	boolean_t update_config_cache = B_FALSE;
5576 	hrtime_t load_start = gethrtime();
5577 
5578 	ASSERT(spa_namespace_held());
5579 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5580 
5581 	spa_load_note(spa, "LOADING");
5582 
5583 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5584 	if (error != 0)
5585 		return (error);
5586 
5587 	/*
5588 	 * If we are rewinding to the checkpoint then we need to repeat
5589 	 * everything we've done so far in this function but this time
5590 	 * selecting the checkpointed uberblock and using that to open
5591 	 * the MOS.
5592 	 */
5593 	if (checkpoint_rewind) {
5594 		/*
5595 		 * If we are rewinding to the checkpoint update config cache
5596 		 * anyway.
5597 		 */
5598 		update_config_cache = B_TRUE;
5599 
5600 		/*
5601 		 * Extract the checkpointed uberblock from the current MOS
5602 		 * and use this as the pool's uberblock from now on. If the
5603 		 * pool is imported as writeable we also write the checkpoint
5604 		 * uberblock to the labels, making the rewind permanent.
5605 		 */
5606 		error = spa_ld_checkpoint_rewind(spa);
5607 		if (error != 0)
5608 			return (error);
5609 
5610 		/*
5611 		 * Redo the loading process again with the
5612 		 * checkpointed uberblock.
5613 		 */
5614 		spa_ld_prepare_for_reload(spa);
5615 		spa_load_note(spa, "LOADING checkpointed uberblock");
5616 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5617 		if (error != 0)
5618 			return (error);
5619 	}
5620 
5621 	/*
5622 	 * Drop the namespace lock for the rest of the function.
5623 	 */
5624 	spa->spa_load_thread = curthread;
5625 	spa_namespace_exit(FTAG);
5626 
5627 	/*
5628 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5629 	 */
5630 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5631 	error = spa_ld_read_checkpoint_txg(spa);
5632 	if (error != 0)
5633 		goto fail;
5634 
5635 	/*
5636 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5637 	 * from the pool and their contents were re-mapped to other vdevs. Note
5638 	 * that everything that we read before this step must have been
5639 	 * rewritten on concrete vdevs after the last device removal was
5640 	 * initiated. Otherwise we could be reading from indirect vdevs before
5641 	 * we have loaded their mappings.
5642 	 */
5643 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5644 	error = spa_ld_open_indirect_vdev_metadata(spa);
5645 	if (error != 0)
5646 		goto fail;
5647 
5648 	/*
5649 	 * Retrieve the full list of active features from the MOS and check if
5650 	 * they are all supported.
5651 	 */
5652 	spa_import_progress_set_notes(spa, "Checking feature flags");
5653 	error = spa_ld_check_features(spa, &missing_feat_write);
5654 	if (error != 0)
5655 		goto fail;
5656 
5657 	/*
5658 	 * Load several special directories from the MOS needed by the dsl_pool
5659 	 * layer.
5660 	 */
5661 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5662 	error = spa_ld_load_special_directories(spa);
5663 	if (error != 0)
5664 		goto fail;
5665 
5666 	/*
5667 	 * Retrieve pool properties from the MOS.
5668 	 */
5669 	spa_import_progress_set_notes(spa, "Loading properties");
5670 	error = spa_ld_get_props(spa);
5671 	if (error != 0)
5672 		goto fail;
5673 
5674 	/*
5675 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5676 	 * and open them.
5677 	 */
5678 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5679 	error = spa_ld_open_aux_vdevs(spa, type);
5680 	if (error != 0)
5681 		goto fail;
5682 
5683 	/*
5684 	 * Load the metadata for all vdevs. Also check if unopenable devices
5685 	 * should be autoreplaced.
5686 	 */
5687 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5688 	error = spa_ld_load_vdev_metadata(spa);
5689 	if (error != 0)
5690 		goto fail;
5691 
5692 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5693 	error = spa_ld_load_dedup_tables(spa);
5694 	if (error != 0)
5695 		goto fail;
5696 
5697 	spa_import_progress_set_notes(spa, "Loading BRT");
5698 	error = spa_ld_load_brt(spa);
5699 	if (error != 0)
5700 		goto fail;
5701 
5702 	/*
5703 	 * Verify the logs now to make sure we don't have any unexpected errors
5704 	 * when we claim log blocks later.
5705 	 */
5706 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5707 	error = spa_ld_verify_logs(spa, type, ereport);
5708 	if (error != 0)
5709 		goto fail;
5710 
5711 	if (missing_feat_write) {
5712 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5713 
5714 		/*
5715 		 * At this point, we know that we can open the pool in
5716 		 * read-only mode but not read-write mode. We now have enough
5717 		 * information and can return to userland.
5718 		 */
5719 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5720 		    ENOTSUP);
5721 		goto fail;
5722 	}
5723 
5724 	/*
5725 	 * Traverse the last txgs to make sure the pool was left off in a safe
5726 	 * state. When performing an extreme rewind, we verify the whole pool,
5727 	 * which can take a very long time.
5728 	 */
5729 	spa_import_progress_set_notes(spa, "Verifying pool data");
5730 	error = spa_ld_verify_pool_data(spa);
5731 	if (error != 0)
5732 		goto fail;
5733 
5734 	/*
5735 	 * Calculate the deflated space for the pool. This must be done before
5736 	 * we write anything to the pool because we'd need to update the space
5737 	 * accounting using the deflated sizes.
5738 	 */
5739 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5740 	spa_update_dspace(spa);
5741 
5742 	/*
5743 	 * We have now retrieved all the information we needed to open the
5744 	 * pool. If we are importing the pool in read-write mode, a few
5745 	 * additional steps must be performed to finish the import.
5746 	 */
5747 	spa_import_progress_set_notes(spa, "Starting import");
5748 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5749 	    spa->spa_load_max_txg == UINT64_MAX)) {
5750 		uint64_t config_cache_txg = spa->spa_config_txg;
5751 
5752 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5753 
5754 		/*
5755 		 * Before we do any zio_write's, complete the raidz expansion
5756 		 * scratch space copying, if necessary.
5757 		 */
5758 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5759 			vdev_raidz_reflow_copy_scratch(spa);
5760 
5761 		/*
5762 		 * In case of a checkpoint rewind, log the original txg
5763 		 * of the checkpointed uberblock.
5764 		 */
5765 		if (checkpoint_rewind) {
5766 			spa_history_log_internal(spa, "checkpoint rewind",
5767 			    NULL, "rewound state to txg=%llu",
5768 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5769 		}
5770 
5771 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5772 		/*
5773 		 * Traverse the ZIL and claim all blocks.
5774 		 */
5775 		spa_ld_claim_log_blocks(spa);
5776 
5777 		/*
5778 		 * Kick-off the syncing thread.
5779 		 */
5780 		spa->spa_sync_on = B_TRUE;
5781 		txg_sync_start(spa->spa_dsl_pool);
5782 		mmp_thread_start(spa);
5783 
5784 		/*
5785 		 * Wait for all claims to sync.  We sync up to the highest
5786 		 * claimed log block birth time so that claimed log blocks
5787 		 * don't appear to be from the future.  spa_claim_max_txg
5788 		 * will have been set for us by ZIL traversal operations
5789 		 * performed above.
5790 		 */
5791 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5792 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5793 
5794 		/*
5795 		 * Check if we need to request an update of the config. On the
5796 		 * next sync, we would update the config stored in vdev labels
5797 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5798 		 */
5799 		spa_import_progress_set_notes(spa, "Updating configs");
5800 		spa_ld_check_for_config_update(spa, config_cache_txg,
5801 		    update_config_cache);
5802 
5803 		/*
5804 		 * Check if a rebuild was in progress and if so resume it.
5805 		 * Then check all DTLs to see if anything needs resilvering.
5806 		 * The resilver will be deferred if a rebuild was started.
5807 		 */
5808 		spa_import_progress_set_notes(spa, "Starting resilvers");
5809 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5810 			vdev_rebuild_restart(spa);
5811 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5812 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5813 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5814 		}
5815 
5816 		/*
5817 		 * Log the fact that we booted up (so that we can detect if
5818 		 * we rebooted in the middle of an operation).
5819 		 */
5820 		spa_history_log_version(spa, "open", NULL);
5821 
5822 		spa_import_progress_set_notes(spa,
5823 		    "Restarting device removals");
5824 		spa_restart_removal(spa);
5825 		spa_spawn_aux_threads(spa);
5826 
5827 		/*
5828 		 * Delete any inconsistent datasets.
5829 		 *
5830 		 * Note:
5831 		 * Since we may be issuing deletes for clones here,
5832 		 * we make sure to do so after we've spawned all the
5833 		 * auxiliary threads above (from which the livelist
5834 		 * deletion zthr is part of).
5835 		 */
5836 		spa_import_progress_set_notes(spa,
5837 		    "Cleaning up inconsistent objsets");
5838 		(void) dmu_objset_find(spa_name(spa),
5839 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5840 
5841 		/*
5842 		 * Clean up any stale temporary dataset userrefs.
5843 		 */
5844 		spa_import_progress_set_notes(spa,
5845 		    "Cleaning up temporary userrefs");
5846 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5847 
5848 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5849 		spa_import_progress_set_notes(spa, "Restarting initialize");
5850 		vdev_initialize_restart(spa->spa_root_vdev);
5851 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5852 		vdev_trim_restart(spa->spa_root_vdev);
5853 		vdev_autotrim_restart(spa);
5854 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5855 		spa_import_progress_set_notes(spa, "Finished importing");
5856 	}
5857 	zio_handle_import_delay(spa, gethrtime() - load_start);
5858 
5859 	spa_import_progress_remove(spa_guid(spa));
5860 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5861 
5862 	spa_load_note(spa, "LOADED");
5863 fail:
5864 	spa_namespace_enter(FTAG);
5865 	spa->spa_load_thread = NULL;
5866 	spa_namespace_broadcast();
5867 
5868 	return (error);
5869 
5870 }
5871 
5872 static int
5873 spa_load_retry(spa_t *spa, spa_load_state_t state)
5874 {
5875 	spa_mode_t mode = spa->spa_mode;
5876 
5877 	spa_unload(spa);
5878 	spa_deactivate(spa);
5879 
5880 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5881 
5882 	spa_activate(spa, mode);
5883 	spa_async_suspend(spa);
5884 
5885 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5886 	    (u_longlong_t)spa->spa_load_max_txg);
5887 
5888 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5889 }
5890 
5891 /*
5892  * If spa_load() fails this function will try loading prior txg's. If
5893  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5894  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5895  * function will not rewind the pool and will return the same error as
5896  * spa_load().
5897  */
5898 static int
5899 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5900     int rewind_flags)
5901 {
5902 	nvlist_t *loadinfo = NULL;
5903 	nvlist_t *config = NULL;
5904 	int load_error, rewind_error;
5905 	uint64_t safe_rewind_txg;
5906 	uint64_t min_txg;
5907 
5908 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5909 		spa->spa_load_max_txg = spa->spa_load_txg;
5910 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5911 	} else {
5912 		spa->spa_load_max_txg = max_request;
5913 		if (max_request != UINT64_MAX)
5914 			spa->spa_extreme_rewind = B_TRUE;
5915 	}
5916 
5917 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5918 	if (load_error == 0)
5919 		return (0);
5920 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5921 		/*
5922 		 * When attempting checkpoint-rewind on a pool with no
5923 		 * checkpoint, we should not attempt to load uberblocks
5924 		 * from previous txgs when spa_load fails.
5925 		 */
5926 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5927 		spa_import_progress_remove(spa_guid(spa));
5928 		return (load_error);
5929 	}
5930 
5931 	if (spa->spa_root_vdev != NULL)
5932 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5933 
5934 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5935 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5936 
5937 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5938 		nvlist_free(config);
5939 		spa_import_progress_remove(spa_guid(spa));
5940 		return (load_error);
5941 	}
5942 
5943 	if (state == SPA_LOAD_RECOVER) {
5944 		/* Price of rolling back is discarding txgs, including log */
5945 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5946 	} else {
5947 		/*
5948 		 * If we aren't rolling back save the load info from our first
5949 		 * import attempt so that we can restore it after attempting
5950 		 * to rewind.
5951 		 */
5952 		loadinfo = spa->spa_load_info;
5953 		spa->spa_load_info = fnvlist_alloc();
5954 	}
5955 
5956 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5957 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5958 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5959 	    TXG_INITIAL : safe_rewind_txg;
5960 
5961 	/*
5962 	 * Continue as long as we're finding errors, we're still within
5963 	 * the acceptable rewind range, and we're still finding uberblocks
5964 	 */
5965 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5966 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5967 		if (spa->spa_load_max_txg < safe_rewind_txg)
5968 			spa->spa_extreme_rewind = B_TRUE;
5969 		rewind_error = spa_load_retry(spa, state);
5970 	}
5971 
5972 	spa->spa_extreme_rewind = B_FALSE;
5973 	spa->spa_load_max_txg = UINT64_MAX;
5974 
5975 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5976 		spa_config_set(spa, config);
5977 	else
5978 		nvlist_free(config);
5979 
5980 	if (state == SPA_LOAD_RECOVER) {
5981 		ASSERT0P(loadinfo);
5982 		spa_import_progress_remove(spa_guid(spa));
5983 		return (rewind_error);
5984 	} else {
5985 		/* Store the rewind info as part of the initial load info */
5986 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5987 		    spa->spa_load_info);
5988 
5989 		/* Restore the initial load info */
5990 		fnvlist_free(spa->spa_load_info);
5991 		spa->spa_load_info = loadinfo;
5992 
5993 		spa_import_progress_remove(spa_guid(spa));
5994 		return (load_error);
5995 	}
5996 }
5997 
5998 /*
5999  * Pool Open/Import
6000  *
6001  * The import case is identical to an open except that the configuration is sent
6002  * down from userland, instead of grabbed from the configuration cache.  For the
6003  * case of an open, the pool configuration will exist in the
6004  * POOL_STATE_UNINITIALIZED state.
6005  *
6006  * The stats information (gen/count/ustats) is used to gather vdev statistics at
6007  * the same time open the pool, without having to keep around the spa_t in some
6008  * ambiguous state.
6009  */
6010 static int
6011 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
6012     nvlist_t *nvpolicy, nvlist_t **config)
6013 {
6014 	spa_t *spa;
6015 	spa_load_state_t state = SPA_LOAD_OPEN;
6016 	int error;
6017 	int locked = B_FALSE;
6018 	int firstopen = B_FALSE;
6019 
6020 	*spapp = NULL;
6021 
6022 	/*
6023 	 * As disgusting as this is, we need to support recursive calls to this
6024 	 * function because dsl_dir_open() is called during spa_load(), and ends
6025 	 * up calling spa_open() again.  The real fix is to figure out how to
6026 	 * avoid dsl_dir_open() calling this in the first place.
6027 	 */
6028 	if (!spa_namespace_held()) {
6029 		spa_namespace_enter(FTAG);
6030 		locked = B_TRUE;
6031 	}
6032 
6033 	if ((spa = spa_lookup(pool)) == NULL) {
6034 		if (locked)
6035 			spa_namespace_exit(FTAG);
6036 		return (SET_ERROR(ENOENT));
6037 	}
6038 
6039 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
6040 		zpool_load_policy_t policy;
6041 
6042 		firstopen = B_TRUE;
6043 
6044 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
6045 		    &policy);
6046 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6047 			state = SPA_LOAD_RECOVER;
6048 
6049 		spa_activate(spa, spa_mode_global);
6050 
6051 		if (state != SPA_LOAD_RECOVER)
6052 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6053 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6054 
6055 		zfs_dbgmsg("spa_open_common: opening %s", pool);
6056 		error = spa_load_best(spa, state, policy.zlp_txg,
6057 		    policy.zlp_rewind);
6058 
6059 		if (error == EBADF) {
6060 			/*
6061 			 * If vdev_validate() returns failure (indicated by
6062 			 * EBADF), it indicates that one of the vdevs indicates
6063 			 * that the pool has been exported or destroyed.  If
6064 			 * this is the case, the config cache is out of sync and
6065 			 * we should remove the pool from the namespace.
6066 			 */
6067 			spa_unload(spa);
6068 			spa_deactivate(spa);
6069 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6070 			spa_remove(spa);
6071 			if (locked)
6072 				spa_namespace_exit(FTAG);
6073 			return (SET_ERROR(ENOENT));
6074 		}
6075 
6076 		if (error) {
6077 			/*
6078 			 * We can't open the pool, but we still have useful
6079 			 * information: the state of each vdev after the
6080 			 * attempted vdev_open().  Return this to the user.
6081 			 */
6082 			if (config != NULL && spa->spa_config) {
6083 				*config = fnvlist_dup(spa->spa_config);
6084 				fnvlist_add_nvlist(*config,
6085 				    ZPOOL_CONFIG_LOAD_INFO,
6086 				    spa->spa_load_info);
6087 			}
6088 			spa_unload(spa);
6089 			spa_deactivate(spa);
6090 			spa->spa_last_open_failed = error;
6091 			if (locked)
6092 				spa_namespace_exit(FTAG);
6093 			*spapp = NULL;
6094 			return (error);
6095 		}
6096 	}
6097 
6098 	spa_open_ref(spa, tag);
6099 
6100 	if (config != NULL)
6101 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6102 
6103 	/*
6104 	 * If we've recovered the pool, pass back any information we
6105 	 * gathered while doing the load.
6106 	 */
6107 	if (state == SPA_LOAD_RECOVER && config != NULL) {
6108 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
6109 		    spa->spa_load_info);
6110 	}
6111 
6112 	if (locked) {
6113 		spa->spa_last_open_failed = 0;
6114 		spa->spa_last_ubsync_txg = 0;
6115 		spa->spa_load_txg = 0;
6116 		spa_namespace_exit(FTAG);
6117 	}
6118 
6119 	if (firstopen)
6120 		zvol_create_minors(spa_name(spa));
6121 
6122 	*spapp = spa;
6123 
6124 	return (0);
6125 }
6126 
6127 int
6128 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
6129     nvlist_t *policy, nvlist_t **config)
6130 {
6131 	return (spa_open_common(name, spapp, tag, policy, config));
6132 }
6133 
6134 int
6135 spa_open(const char *name, spa_t **spapp, const void *tag)
6136 {
6137 	return (spa_open_common(name, spapp, tag, NULL, NULL));
6138 }
6139 
6140 /*
6141  * Lookup the given spa_t, incrementing the inject count in the process,
6142  * preventing it from being exported or destroyed.
6143  */
6144 spa_t *
6145 spa_inject_addref(char *name)
6146 {
6147 	spa_t *spa;
6148 
6149 	spa_namespace_enter(FTAG);
6150 	if ((spa = spa_lookup(name)) == NULL) {
6151 		spa_namespace_exit(FTAG);
6152 		return (NULL);
6153 	}
6154 	spa->spa_inject_ref++;
6155 	spa_namespace_exit(FTAG);
6156 
6157 	return (spa);
6158 }
6159 
6160 void
6161 spa_inject_delref(spa_t *spa)
6162 {
6163 	spa_namespace_enter(FTAG);
6164 	spa->spa_inject_ref--;
6165 	spa_namespace_exit(FTAG);
6166 }
6167 
6168 /*
6169  * Add spares device information to the nvlist.
6170  */
6171 static void
6172 spa_add_spares(spa_t *spa, nvlist_t *config)
6173 {
6174 	nvlist_t **spares;
6175 	uint_t i, nspares;
6176 	nvlist_t *nvroot;
6177 	uint64_t guid;
6178 	vdev_stat_t *vs;
6179 	uint_t vsc;
6180 	uint64_t pool;
6181 
6182 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6183 
6184 	if (spa->spa_spares.sav_count == 0)
6185 		return;
6186 
6187 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6188 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
6189 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
6190 	if (nspares != 0) {
6191 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6192 		    (const nvlist_t * const *)spares, nspares);
6193 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6194 		    &spares, &nspares));
6195 
6196 		/*
6197 		 * Go through and find any spares which have since been
6198 		 * repurposed as an active spare.  If this is the case, update
6199 		 * their status appropriately.
6200 		 */
6201 		for (i = 0; i < nspares; i++) {
6202 			guid = fnvlist_lookup_uint64(spares[i],
6203 			    ZPOOL_CONFIG_GUID);
6204 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
6205 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6206 			if (spa_spare_exists(guid, &pool, NULL) &&
6207 			    pool != 0ULL) {
6208 				vs->vs_state = VDEV_STATE_CANT_OPEN;
6209 				vs->vs_aux = VDEV_AUX_SPARED;
6210 			} else {
6211 				vs->vs_state =
6212 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
6213 			}
6214 		}
6215 	}
6216 }
6217 
6218 /*
6219  * Add l2cache device information to the nvlist, including vdev stats.
6220  */
6221 static void
6222 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6223 {
6224 	nvlist_t **l2cache;
6225 	uint_t i, j, nl2cache;
6226 	nvlist_t *nvroot;
6227 	uint64_t guid;
6228 	vdev_t *vd;
6229 	vdev_stat_t *vs;
6230 	uint_t vsc;
6231 
6232 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6233 
6234 	if (spa->spa_l2cache.sav_count == 0)
6235 		return;
6236 
6237 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6238 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6239 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6240 	if (nl2cache != 0) {
6241 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6242 		    (const nvlist_t * const *)l2cache, nl2cache);
6243 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6244 		    &l2cache, &nl2cache));
6245 
6246 		/*
6247 		 * Update level 2 cache device stats.
6248 		 */
6249 
6250 		for (i = 0; i < nl2cache; i++) {
6251 			guid = fnvlist_lookup_uint64(l2cache[i],
6252 			    ZPOOL_CONFIG_GUID);
6253 
6254 			vd = NULL;
6255 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6256 				if (guid ==
6257 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6258 					vd = spa->spa_l2cache.sav_vdevs[j];
6259 					break;
6260 				}
6261 			}
6262 			ASSERT(vd != NULL);
6263 
6264 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6265 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6266 			vdev_get_stats(vd, vs);
6267 			vdev_config_generate_stats(vd, l2cache[i]);
6268 
6269 		}
6270 	}
6271 }
6272 
6273 static void
6274 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6275 {
6276 	zap_cursor_t zc;
6277 	zap_attribute_t *za = zap_attribute_alloc();
6278 
6279 	if (spa->spa_feat_for_read_obj != 0) {
6280 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6281 		    spa->spa_feat_for_read_obj);
6282 		    zap_cursor_retrieve(&zc, za) == 0;
6283 		    zap_cursor_advance(&zc)) {
6284 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6285 			    za->za_num_integers == 1);
6286 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6287 			    za->za_first_integer));
6288 		}
6289 		zap_cursor_fini(&zc);
6290 	}
6291 
6292 	if (spa->spa_feat_for_write_obj != 0) {
6293 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6294 		    spa->spa_feat_for_write_obj);
6295 		    zap_cursor_retrieve(&zc, za) == 0;
6296 		    zap_cursor_advance(&zc)) {
6297 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6298 			    za->za_num_integers == 1);
6299 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6300 			    za->za_first_integer));
6301 		}
6302 		zap_cursor_fini(&zc);
6303 	}
6304 	zap_attribute_free(za);
6305 }
6306 
6307 static void
6308 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6309 {
6310 	int i;
6311 
6312 	for (i = 0; i < SPA_FEATURES; i++) {
6313 		zfeature_info_t feature = spa_feature_table[i];
6314 		uint64_t refcount;
6315 
6316 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6317 			continue;
6318 
6319 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6320 	}
6321 }
6322 
6323 /*
6324  * Store a list of pool features and their reference counts in the
6325  * config.
6326  *
6327  * The first time this is called on a spa, allocate a new nvlist, fetch
6328  * the pool features and reference counts from disk, then save the list
6329  * in the spa. In subsequent calls on the same spa use the saved nvlist
6330  * and refresh its values from the cached reference counts.  This
6331  * ensures we don't block here on I/O on a suspended pool so 'zpool
6332  * clear' can resume the pool.
6333  */
6334 static void
6335 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6336 {
6337 	nvlist_t *features;
6338 
6339 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6340 
6341 	mutex_enter(&spa->spa_feat_stats_lock);
6342 	features = spa->spa_feat_stats;
6343 
6344 	if (features != NULL) {
6345 		spa_feature_stats_from_cache(spa, features);
6346 	} else {
6347 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6348 		spa->spa_feat_stats = features;
6349 		spa_feature_stats_from_disk(spa, features);
6350 	}
6351 
6352 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6353 	    features));
6354 
6355 	mutex_exit(&spa->spa_feat_stats_lock);
6356 }
6357 
6358 int
6359 spa_get_stats(const char *name, nvlist_t **config,
6360     char *altroot, size_t buflen)
6361 {
6362 	int error;
6363 	spa_t *spa;
6364 
6365 	*config = NULL;
6366 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6367 
6368 	if (spa != NULL) {
6369 		/*
6370 		 * This still leaves a window of inconsistency where the spares
6371 		 * or l2cache devices could change and the config would be
6372 		 * self-inconsistent.
6373 		 */
6374 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6375 
6376 		if (*config != NULL) {
6377 			uint64_t loadtimes[2];
6378 
6379 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6380 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6381 			fnvlist_add_uint64_array(*config,
6382 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6383 
6384 			fnvlist_add_uint64(*config,
6385 			    ZPOOL_CONFIG_ERRCOUNT,
6386 			    spa_approx_errlog_size(spa));
6387 
6388 			if (spa_suspended(spa)) {
6389 				fnvlist_add_uint64(*config,
6390 				    ZPOOL_CONFIG_SUSPENDED,
6391 				    spa->spa_failmode);
6392 				fnvlist_add_uint64(*config,
6393 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6394 				    spa->spa_suspended);
6395 			}
6396 
6397 			spa_add_spares(spa, *config);
6398 			spa_add_l2cache(spa, *config);
6399 			spa_add_feature_stats(spa, *config);
6400 		}
6401 	}
6402 
6403 	/*
6404 	 * We want to get the alternate root even for faulted pools, so we cheat
6405 	 * and call spa_lookup() directly.
6406 	 */
6407 	if (altroot) {
6408 		if (spa == NULL) {
6409 			spa_namespace_enter(FTAG);
6410 			spa = spa_lookup(name);
6411 			if (spa)
6412 				spa_altroot(spa, altroot, buflen);
6413 			else
6414 				altroot[0] = '\0';
6415 			spa = NULL;
6416 			spa_namespace_exit(FTAG);
6417 		} else {
6418 			spa_altroot(spa, altroot, buflen);
6419 		}
6420 	}
6421 
6422 	if (spa != NULL) {
6423 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6424 		spa_close(spa, FTAG);
6425 	}
6426 
6427 	return (error);
6428 }
6429 
6430 /*
6431  * Validate that the auxiliary device array is well formed.  We must have an
6432  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6433  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6434  * specified, as long as they are well-formed.
6435  */
6436 static int
6437 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6438     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6439     vdev_labeltype_t label)
6440 {
6441 	nvlist_t **dev;
6442 	uint_t i, ndev;
6443 	vdev_t *vd;
6444 	int error;
6445 
6446 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6447 
6448 	/*
6449 	 * It's acceptable to have no devs specified.
6450 	 */
6451 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6452 		return (0);
6453 
6454 	if (ndev == 0)
6455 		return (SET_ERROR(EINVAL));
6456 
6457 	/*
6458 	 * Make sure the pool is formatted with a version that supports this
6459 	 * device type.
6460 	 */
6461 	if (spa_version(spa) < version)
6462 		return (SET_ERROR(ENOTSUP));
6463 
6464 	/*
6465 	 * Set the pending device list so we correctly handle device in-use
6466 	 * checking.
6467 	 */
6468 	sav->sav_pending = dev;
6469 	sav->sav_npending = ndev;
6470 
6471 	for (i = 0; i < ndev; i++) {
6472 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6473 		    mode)) != 0)
6474 			goto out;
6475 
6476 		if (!vd->vdev_ops->vdev_op_leaf) {
6477 			vdev_free(vd);
6478 			error = SET_ERROR(EINVAL);
6479 			goto out;
6480 		}
6481 
6482 		vd->vdev_top = vd;
6483 
6484 		if ((error = vdev_open(vd)) == 0 &&
6485 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6486 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6487 			    vd->vdev_guid);
6488 		}
6489 
6490 		vdev_free(vd);
6491 
6492 		if (error &&
6493 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6494 			goto out;
6495 		else
6496 			error = 0;
6497 	}
6498 
6499 out:
6500 	sav->sav_pending = NULL;
6501 	sav->sav_npending = 0;
6502 	return (error);
6503 }
6504 
6505 static int
6506 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6507 {
6508 	int error;
6509 
6510 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6511 
6512 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6513 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6514 	    VDEV_LABEL_SPARE)) != 0) {
6515 		return (error);
6516 	}
6517 
6518 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6519 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6520 	    VDEV_LABEL_L2CACHE));
6521 }
6522 
6523 static void
6524 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6525     const char *config)
6526 {
6527 	int i;
6528 
6529 	if (sav->sav_config != NULL) {
6530 		nvlist_t **olddevs;
6531 		uint_t oldndevs;
6532 		nvlist_t **newdevs;
6533 
6534 		/*
6535 		 * Generate new dev list by concatenating with the
6536 		 * current dev list.
6537 		 */
6538 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6539 		    &olddevs, &oldndevs));
6540 
6541 		newdevs = kmem_alloc(sizeof (void *) *
6542 		    (ndevs + oldndevs), KM_SLEEP);
6543 		for (i = 0; i < oldndevs; i++)
6544 			newdevs[i] = fnvlist_dup(olddevs[i]);
6545 		for (i = 0; i < ndevs; i++)
6546 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6547 
6548 		fnvlist_remove(sav->sav_config, config);
6549 
6550 		fnvlist_add_nvlist_array(sav->sav_config, config,
6551 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6552 		for (i = 0; i < oldndevs + ndevs; i++)
6553 			nvlist_free(newdevs[i]);
6554 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6555 	} else {
6556 		/*
6557 		 * Generate a new dev list.
6558 		 */
6559 		sav->sav_config = fnvlist_alloc();
6560 		fnvlist_add_nvlist_array(sav->sav_config, config,
6561 		    (const nvlist_t * const *)devs, ndevs);
6562 	}
6563 }
6564 
6565 /*
6566  * Stop and drop level 2 ARC devices
6567  */
6568 void
6569 spa_l2cache_drop(spa_t *spa)
6570 {
6571 	vdev_t *vd;
6572 	int i;
6573 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6574 
6575 	for (i = 0; i < sav->sav_count; i++) {
6576 		uint64_t pool;
6577 
6578 		vd = sav->sav_vdevs[i];
6579 		ASSERT(vd != NULL);
6580 
6581 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6582 		    pool != 0ULL && l2arc_vdev_present(vd))
6583 			l2arc_remove_vdev(vd);
6584 	}
6585 }
6586 
6587 /*
6588  * Verify encryption parameters for spa creation. If we are encrypting, we must
6589  * have the encryption feature flag enabled.
6590  */
6591 static int
6592 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6593     boolean_t has_encryption)
6594 {
6595 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6596 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6597 	    !has_encryption)
6598 		return (SET_ERROR(ENOTSUP));
6599 
6600 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6601 }
6602 
6603 /*
6604  * Pool Creation
6605  */
6606 int
6607 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6608     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6609 {
6610 	spa_t *spa;
6611 	const char *altroot = NULL;
6612 	vdev_t *rvd;
6613 	dsl_pool_t *dp;
6614 	dmu_tx_t *tx;
6615 	int error = 0;
6616 	uint64_t txg = TXG_INITIAL;
6617 	nvlist_t **spares, **l2cache;
6618 	uint_t nspares, nl2cache;
6619 	uint64_t version, obj, ndraid = 0;
6620 	boolean_t has_features;
6621 	boolean_t has_encryption;
6622 	boolean_t has_allocclass;
6623 	spa_feature_t feat;
6624 	const char *feat_name;
6625 	const char *poolname;
6626 	nvlist_t *nvl;
6627 
6628 	if (props == NULL ||
6629 	    nvlist_lookup_string(props,
6630 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6631 		poolname = (char *)pool;
6632 
6633 	/*
6634 	 * If this pool already exists, return failure.
6635 	 */
6636 	spa_namespace_enter(FTAG);
6637 	if (spa_lookup(poolname) != NULL) {
6638 		spa_namespace_exit(FTAG);
6639 		return (SET_ERROR(EEXIST));
6640 	}
6641 
6642 	/*
6643 	 * Allocate a new spa_t structure.
6644 	 */
6645 	nvl = fnvlist_alloc();
6646 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6647 	(void) nvlist_lookup_string(props,
6648 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6649 	spa = spa_add(poolname, nvl, altroot);
6650 	fnvlist_free(nvl);
6651 	spa_activate(spa, spa_mode_global);
6652 
6653 	if (props && (error = spa_prop_validate(spa, props))) {
6654 		spa_deactivate(spa);
6655 		spa_remove(spa);
6656 		spa_namespace_exit(FTAG);
6657 		return (error);
6658 	}
6659 
6660 	/*
6661 	 * Temporary pool names should never be written to disk.
6662 	 */
6663 	if (poolname != pool)
6664 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6665 
6666 	has_features = B_FALSE;
6667 	has_encryption = B_FALSE;
6668 	has_allocclass = B_FALSE;
6669 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6670 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6671 		if (zpool_prop_feature(nvpair_name(elem))) {
6672 			has_features = B_TRUE;
6673 
6674 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6675 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6676 			if (feat == SPA_FEATURE_ENCRYPTION)
6677 				has_encryption = B_TRUE;
6678 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6679 				has_allocclass = B_TRUE;
6680 		}
6681 	}
6682 
6683 	/* verify encryption params, if they were provided */
6684 	if (dcp != NULL) {
6685 		error = spa_create_check_encryption_params(dcp, has_encryption);
6686 		if (error != 0) {
6687 			spa_deactivate(spa);
6688 			spa_remove(spa);
6689 			spa_namespace_exit(FTAG);
6690 			return (error);
6691 		}
6692 	}
6693 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6694 		spa_deactivate(spa);
6695 		spa_remove(spa);
6696 		spa_namespace_exit(FTAG);
6697 		return (ENOTSUP);
6698 	}
6699 
6700 	if (has_features || nvlist_lookup_uint64(props,
6701 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6702 		version = SPA_VERSION;
6703 	}
6704 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6705 
6706 	spa->spa_first_txg = txg;
6707 	spa->spa_uberblock.ub_txg = txg - 1;
6708 	spa->spa_uberblock.ub_version = version;
6709 	spa->spa_ubsync = spa->spa_uberblock;
6710 	spa->spa_load_state = SPA_LOAD_CREATE;
6711 	spa->spa_removing_phys.sr_state = DSS_NONE;
6712 	spa->spa_removing_phys.sr_removing_vdev = -1;
6713 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6714 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6715 
6716 	/*
6717 	 * Create "The Godfather" zio to hold all async IOs
6718 	 */
6719 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6720 	    KM_SLEEP);
6721 	for (int i = 0; i < max_ncpus; i++) {
6722 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6723 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6724 		    ZIO_FLAG_GODFATHER);
6725 	}
6726 
6727 	/*
6728 	 * Create the root vdev.
6729 	 */
6730 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6731 
6732 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6733 
6734 	ASSERT(error != 0 || rvd != NULL);
6735 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6736 
6737 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6738 		error = SET_ERROR(EINVAL);
6739 
6740 	if (error == 0 &&
6741 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6742 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6743 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6744 		/*
6745 		 * instantiate the metaslab groups (this will dirty the vdevs)
6746 		 * we can no longer error exit past this point
6747 		 */
6748 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6749 			vdev_t *vd = rvd->vdev_child[c];
6750 
6751 			vdev_metaslab_set_size(vd);
6752 			vdev_expand(vd, txg);
6753 		}
6754 	}
6755 
6756 	spa_config_exit(spa, SCL_ALL, FTAG);
6757 
6758 	if (error != 0) {
6759 		spa_unload(spa);
6760 		spa_deactivate(spa);
6761 		spa_remove(spa);
6762 		spa_namespace_exit(FTAG);
6763 		return (error);
6764 	}
6765 
6766 	/*
6767 	 * Get the list of spares, if specified.
6768 	 */
6769 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6770 	    &spares, &nspares) == 0) {
6771 		spa->spa_spares.sav_config = fnvlist_alloc();
6772 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6773 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6774 		    nspares);
6775 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6776 		spa_load_spares(spa);
6777 		spa_config_exit(spa, SCL_ALL, FTAG);
6778 		spa->spa_spares.sav_sync = B_TRUE;
6779 	}
6780 
6781 	/*
6782 	 * Get the list of level 2 cache devices, if specified.
6783 	 */
6784 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6785 	    &l2cache, &nl2cache) == 0) {
6786 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6787 		    NV_UNIQUE_NAME, KM_SLEEP));
6788 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6789 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6790 		    nl2cache);
6791 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6792 		spa_load_l2cache(spa);
6793 		spa_config_exit(spa, SCL_ALL, FTAG);
6794 		spa->spa_l2cache.sav_sync = B_TRUE;
6795 	}
6796 
6797 	spa->spa_is_initializing = B_TRUE;
6798 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6799 	spa->spa_is_initializing = B_FALSE;
6800 
6801 	/*
6802 	 * Create DDTs (dedup tables).
6803 	 */
6804 	ddt_create(spa);
6805 	/*
6806 	 * Create BRT table and BRT table object.
6807 	 */
6808 	brt_create(spa);
6809 
6810 	spa_update_dspace(spa);
6811 
6812 	tx = dmu_tx_create_assigned(dp, txg);
6813 
6814 	/*
6815 	 * Create the pool's history object.
6816 	 */
6817 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6818 		spa_history_create_obj(spa, tx);
6819 
6820 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6821 	spa_history_log_version(spa, "create", tx);
6822 
6823 	/*
6824 	 * Create the pool config object.
6825 	 */
6826 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6827 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6828 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6829 
6830 	if (zap_add(spa->spa_meta_objset,
6831 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6832 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6833 		cmn_err(CE_PANIC, "failed to add pool config");
6834 	}
6835 
6836 	if (zap_add(spa->spa_meta_objset,
6837 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6838 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6839 		cmn_err(CE_PANIC, "failed to add pool version");
6840 	}
6841 
6842 	/* Newly created pools with the right version are always deflated. */
6843 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6844 		spa->spa_deflate = TRUE;
6845 		if (zap_add(spa->spa_meta_objset,
6846 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6847 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6848 			cmn_err(CE_PANIC, "failed to add deflate");
6849 		}
6850 	}
6851 
6852 	/*
6853 	 * Create the deferred-free bpobj.  Turn off compression
6854 	 * because sync-to-convergence takes longer if the blocksize
6855 	 * keeps changing.
6856 	 */
6857 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6858 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6859 	    ZIO_COMPRESS_OFF, tx);
6860 	if (zap_add(spa->spa_meta_objset,
6861 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6862 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6863 		cmn_err(CE_PANIC, "failed to add bpobj");
6864 	}
6865 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6866 	    spa->spa_meta_objset, obj));
6867 
6868 	/*
6869 	 * Generate some random noise for salted checksums to operate on.
6870 	 */
6871 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6872 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6873 
6874 	/*
6875 	 * Set pool properties.
6876 	 */
6877 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6878 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6879 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6880 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6881 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6882 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6883 	spa->spa_dedup_table_quota =
6884 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6885 
6886 	if (props != NULL) {
6887 		spa_configfile_set(spa, props, B_FALSE);
6888 		spa_sync_props(props, tx);
6889 	}
6890 
6891 	for (int i = 0; i < ndraid; i++)
6892 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6893 
6894 	dmu_tx_commit(tx);
6895 
6896 	spa->spa_sync_on = B_TRUE;
6897 	txg_sync_start(dp);
6898 	mmp_thread_start(spa);
6899 	txg_wait_synced(dp, txg);
6900 
6901 	spa_spawn_aux_threads(spa);
6902 
6903 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6904 
6905 	/*
6906 	 * Don't count references from objsets that are already closed
6907 	 * and are making their way through the eviction process.
6908 	 */
6909 	spa_evicting_os_wait(spa);
6910 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6911 	spa->spa_load_state = SPA_LOAD_NONE;
6912 
6913 	spa_import_os(spa);
6914 
6915 	spa_namespace_exit(FTAG);
6916 
6917 	return (0);
6918 }
6919 
6920 /*
6921  * Import a non-root pool into the system.
6922  */
6923 int
6924 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6925 {
6926 	spa_t *spa;
6927 	const char *altroot = NULL;
6928 	spa_load_state_t state = SPA_LOAD_IMPORT;
6929 	zpool_load_policy_t policy;
6930 	spa_mode_t mode = spa_mode_global;
6931 	uint64_t readonly = B_FALSE;
6932 	int error;
6933 	nvlist_t *nvroot;
6934 	nvlist_t **spares, **l2cache;
6935 	uint_t nspares, nl2cache;
6936 
6937 	/*
6938 	 * If a pool with this name exists, return failure.
6939 	 */
6940 	spa_namespace_enter(FTAG);
6941 	if (spa_lookup(pool) != NULL) {
6942 		spa_namespace_exit(FTAG);
6943 		return (SET_ERROR(EEXIST));
6944 	}
6945 
6946 	/*
6947 	 * Create and initialize the spa structure.
6948 	 */
6949 	(void) nvlist_lookup_string(props,
6950 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6951 	(void) nvlist_lookup_uint64(props,
6952 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6953 	if (readonly)
6954 		mode = SPA_MODE_READ;
6955 	spa = spa_add(pool, config, altroot);
6956 	spa->spa_import_flags = flags;
6957 
6958 	/*
6959 	 * Verbatim import - Take a pool and insert it into the namespace
6960 	 * as if it had been loaded at boot.
6961 	 */
6962 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6963 		if (props != NULL)
6964 			spa_configfile_set(spa, props, B_FALSE);
6965 
6966 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6967 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6968 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6969 		spa_namespace_exit(FTAG);
6970 		return (0);
6971 	}
6972 
6973 	spa_activate(spa, mode);
6974 
6975 	/*
6976 	 * Don't start async tasks until we know everything is healthy.
6977 	 */
6978 	spa_async_suspend(spa);
6979 
6980 	zpool_get_load_policy(config, &policy);
6981 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6982 		state = SPA_LOAD_RECOVER;
6983 
6984 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6985 
6986 	if (state != SPA_LOAD_RECOVER) {
6987 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6988 		zfs_dbgmsg("spa_import: importing %s", pool);
6989 	} else {
6990 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6991 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6992 	}
6993 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6994 
6995 	/*
6996 	 * Propagate anything learned while loading the pool and pass it
6997 	 * back to caller (i.e. rewind info, missing devices, etc).
6998 	 */
6999 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
7000 
7001 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7002 	/*
7003 	 * Toss any existing sparelist, as it doesn't have any validity
7004 	 * anymore, and conflicts with spa_has_spare().
7005 	 */
7006 	if (spa->spa_spares.sav_config) {
7007 		nvlist_free(spa->spa_spares.sav_config);
7008 		spa->spa_spares.sav_config = NULL;
7009 		spa_load_spares(spa);
7010 	}
7011 	if (spa->spa_l2cache.sav_config) {
7012 		nvlist_free(spa->spa_l2cache.sav_config);
7013 		spa->spa_l2cache.sav_config = NULL;
7014 		spa_load_l2cache(spa);
7015 	}
7016 
7017 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
7018 	spa_config_exit(spa, SCL_ALL, FTAG);
7019 
7020 	if (props != NULL)
7021 		spa_configfile_set(spa, props, B_FALSE);
7022 
7023 	if (error != 0 || (props && spa_writeable(spa) &&
7024 	    (error = spa_prop_set(spa, props)))) {
7025 		spa_unload(spa);
7026 		spa_deactivate(spa);
7027 		spa_remove(spa);
7028 		spa_namespace_exit(FTAG);
7029 		return (error);
7030 	}
7031 
7032 	spa_async_resume(spa);
7033 
7034 	/*
7035 	 * Override any spares and level 2 cache devices as specified by
7036 	 * the user, as these may have correct device names/devids, etc.
7037 	 */
7038 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
7039 	    &spares, &nspares) == 0) {
7040 		if (spa->spa_spares.sav_config)
7041 			fnvlist_remove(spa->spa_spares.sav_config,
7042 			    ZPOOL_CONFIG_SPARES);
7043 		else
7044 			spa->spa_spares.sav_config = fnvlist_alloc();
7045 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
7046 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
7047 		    nspares);
7048 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7049 		spa_load_spares(spa);
7050 		spa_config_exit(spa, SCL_ALL, FTAG);
7051 		spa->spa_spares.sav_sync = B_TRUE;
7052 		spa->spa_spares.sav_label_sync = B_TRUE;
7053 	}
7054 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
7055 	    &l2cache, &nl2cache) == 0) {
7056 		if (spa->spa_l2cache.sav_config)
7057 			fnvlist_remove(spa->spa_l2cache.sav_config,
7058 			    ZPOOL_CONFIG_L2CACHE);
7059 		else
7060 			spa->spa_l2cache.sav_config = fnvlist_alloc();
7061 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
7062 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
7063 		    nl2cache);
7064 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7065 		spa_load_l2cache(spa);
7066 		spa_config_exit(spa, SCL_ALL, FTAG);
7067 		spa->spa_l2cache.sav_sync = B_TRUE;
7068 		spa->spa_l2cache.sav_label_sync = B_TRUE;
7069 	}
7070 
7071 	/*
7072 	 * Check for any removed devices.
7073 	 */
7074 	if (spa->spa_autoreplace) {
7075 		spa_aux_check_removed(&spa->spa_spares);
7076 		spa_aux_check_removed(&spa->spa_l2cache);
7077 	}
7078 
7079 	if (spa_writeable(spa)) {
7080 		/*
7081 		 * Update the config cache to include the newly-imported pool.
7082 		 */
7083 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7084 	}
7085 
7086 	/*
7087 	 * It's possible that the pool was expanded while it was exported.
7088 	 * We kick off an async task to handle this for us.
7089 	 */
7090 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
7091 
7092 	spa_history_log_version(spa, "import", NULL);
7093 
7094 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
7095 
7096 	spa_namespace_exit(FTAG);
7097 
7098 	zvol_create_minors(pool);
7099 
7100 	spa_import_os(spa);
7101 
7102 	return (0);
7103 }
7104 
7105 nvlist_t *
7106 spa_tryimport(nvlist_t *tryconfig)
7107 {
7108 	nvlist_t *config = NULL;
7109 	const char *poolname, *cachefile;
7110 	spa_t *spa;
7111 	uint64_t state;
7112 	int error;
7113 	zpool_load_policy_t policy;
7114 
7115 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
7116 		return (NULL);
7117 
7118 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
7119 		return (NULL);
7120 
7121 	/*
7122 	 * Create and initialize the spa structure.
7123 	 */
7124 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7125 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
7126 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
7127 
7128 	spa_namespace_enter(FTAG);
7129 	spa = spa_add(name, tryconfig, NULL);
7130 	spa_activate(spa, SPA_MODE_READ);
7131 	kmem_free(name, MAXPATHLEN);
7132 
7133 	/*
7134 	 * Rewind pool if a max txg was provided.
7135 	 */
7136 	zpool_get_load_policy(spa->spa_config, &policy);
7137 	if (policy.zlp_txg != UINT64_MAX) {
7138 		spa->spa_load_max_txg = policy.zlp_txg;
7139 		spa->spa_extreme_rewind = B_TRUE;
7140 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
7141 		    poolname, (longlong_t)policy.zlp_txg);
7142 	} else {
7143 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
7144 	}
7145 
7146 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
7147 	    == 0) {
7148 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
7149 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
7150 	} else {
7151 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
7152 	}
7153 
7154 	/*
7155 	 * spa_import() relies on a pool config fetched by spa_try_import()
7156 	 * for spare/cache devices. Import flags are not passed to
7157 	 * spa_tryimport(), which makes it return early due to a missing log
7158 	 * device and missing retrieving the cache device and spare eventually.
7159 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
7160 	 * the correct configuration regardless of the missing log device.
7161 	 */
7162 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
7163 
7164 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
7165 
7166 	/*
7167 	 * If 'tryconfig' was at least parsable, return the current config.
7168 	 */
7169 	if (spa->spa_root_vdev != NULL) {
7170 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
7171 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
7172 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
7173 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
7174 		    spa->spa_uberblock.ub_timestamp);
7175 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
7176 		    spa->spa_load_info);
7177 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
7178 		    spa->spa_errata);
7179 
7180 		/*
7181 		 * If the bootfs property exists on this pool then we
7182 		 * copy it out so that external consumers can tell which
7183 		 * pools are bootable.
7184 		 */
7185 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
7186 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7187 
7188 			/*
7189 			 * We have to play games with the name since the
7190 			 * pool was opened as TRYIMPORT_NAME.
7191 			 */
7192 			if (dsl_dsobj_to_dsname(spa_name(spa),
7193 			    spa->spa_bootfs, tmpname) == 0) {
7194 				char *cp;
7195 				char *dsname;
7196 
7197 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
7198 
7199 				cp = strchr(tmpname, '/');
7200 				if (cp == NULL) {
7201 					(void) strlcpy(dsname, tmpname,
7202 					    MAXPATHLEN);
7203 				} else {
7204 					(void) snprintf(dsname, MAXPATHLEN,
7205 					    "%s/%s", poolname, ++cp);
7206 				}
7207 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
7208 				    dsname);
7209 				kmem_free(dsname, MAXPATHLEN);
7210 			}
7211 			kmem_free(tmpname, MAXPATHLEN);
7212 		}
7213 
7214 		/*
7215 		 * Add the list of hot spares and level 2 cache devices.
7216 		 */
7217 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7218 		spa_add_spares(spa, config);
7219 		spa_add_l2cache(spa, config);
7220 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7221 	}
7222 
7223 	spa_unload(spa);
7224 	spa_deactivate(spa);
7225 	spa_remove(spa);
7226 	spa_namespace_exit(FTAG);
7227 
7228 	return (config);
7229 }
7230 
7231 /*
7232  * Pool export/destroy
7233  *
7234  * The act of destroying or exporting a pool is very simple.  We make sure there
7235  * is no more pending I/O and any references to the pool are gone.  Then, we
7236  * update the pool state and sync all the labels to disk, removing the
7237  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7238  * we don't sync the labels or remove the configuration cache.
7239  */
7240 static int
7241 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7242     boolean_t force, boolean_t hardforce)
7243 {
7244 	int error = 0;
7245 	spa_t *spa;
7246 	hrtime_t export_start = gethrtime();
7247 
7248 	if (oldconfig)
7249 		*oldconfig = NULL;
7250 
7251 	if (!(spa_mode_global & SPA_MODE_WRITE))
7252 		return (SET_ERROR(EROFS));
7253 
7254 	spa_namespace_enter(FTAG);
7255 	if ((spa = spa_lookup(pool)) == NULL) {
7256 		spa_namespace_exit(FTAG);
7257 		return (SET_ERROR(ENOENT));
7258 	}
7259 
7260 	if (spa->spa_is_exporting) {
7261 		/* the pool is being exported by another thread */
7262 		spa_namespace_exit(FTAG);
7263 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7264 	}
7265 	spa->spa_is_exporting = B_TRUE;
7266 
7267 	/*
7268 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7269 	 * and see if we can export.
7270 	 */
7271 	spa_open_ref(spa, FTAG);
7272 	spa_namespace_exit(FTAG);
7273 	spa_async_suspend(spa);
7274 	if (spa->spa_zvol_taskq) {
7275 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7276 		taskq_wait(spa->spa_zvol_taskq);
7277 	}
7278 	spa_namespace_enter(FTAG);
7279 	spa->spa_export_thread = curthread;
7280 	spa_close(spa, FTAG);
7281 
7282 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7283 		spa_namespace_exit(FTAG);
7284 		goto export_spa;
7285 	}
7286 
7287 	/*
7288 	 * The pool will be in core if it's openable, in which case we can
7289 	 * modify its state.  Objsets may be open only because they're dirty,
7290 	 * so we have to force it to sync before checking spa_refcnt.
7291 	 */
7292 	if (spa->spa_sync_on) {
7293 		txg_wait_synced(spa->spa_dsl_pool, 0);
7294 		spa_evicting_os_wait(spa);
7295 	}
7296 
7297 	/*
7298 	 * A pool cannot be exported or destroyed if there are active
7299 	 * references.  If we are resetting a pool, allow references by
7300 	 * fault injection handlers.
7301 	 */
7302 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7303 		error = SET_ERROR(EBUSY);
7304 		goto fail;
7305 	}
7306 
7307 	spa_namespace_exit(FTAG);
7308 	/*
7309 	 * At this point we no longer hold the spa_namespace_lock and
7310 	 * there were no references on the spa. Future spa_lookups will
7311 	 * notice the spa->spa_export_thread and wait until we signal
7312 	 * that we are finshed.
7313 	 */
7314 
7315 	if (spa->spa_sync_on) {
7316 		vdev_t *rvd = spa->spa_root_vdev;
7317 		/*
7318 		 * A pool cannot be exported if it has an active shared spare.
7319 		 * This is to prevent other pools stealing the active spare
7320 		 * from an exported pool. At user's own will, such pool can
7321 		 * be forcedly exported.
7322 		 */
7323 		if (!force && new_state == POOL_STATE_EXPORTED &&
7324 		    spa_has_active_shared_spare(spa)) {
7325 			error = SET_ERROR(EXDEV);
7326 			spa_namespace_enter(FTAG);
7327 			goto fail;
7328 		}
7329 
7330 		/*
7331 		 * We're about to export or destroy this pool. Make sure
7332 		 * we stop all initialization and trim activity here before
7333 		 * we set the spa_final_txg. This will ensure that all
7334 		 * dirty data resulting from the initialization is
7335 		 * committed to disk before we unload the pool.
7336 		 */
7337 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7338 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7339 		vdev_autotrim_stop_all(spa);
7340 		vdev_rebuild_stop_all(spa);
7341 		l2arc_spa_rebuild_stop(spa);
7342 
7343 		/*
7344 		 * We want this to be reflected on every label,
7345 		 * so mark them all dirty.  spa_unload() will do the
7346 		 * final sync that pushes these changes out.
7347 		 */
7348 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7349 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7350 			spa->spa_state = new_state;
7351 			vdev_config_dirty(rvd);
7352 			spa_config_exit(spa, SCL_ALL, FTAG);
7353 		}
7354 
7355 		if (spa_should_sync_time_logger_on_unload(spa))
7356 			spa_unload_sync_time_logger(spa);
7357 
7358 		/*
7359 		 * If the log space map feature is enabled and the pool is
7360 		 * getting exported (but not destroyed), we want to spend some
7361 		 * time flushing as many metaslabs as we can in an attempt to
7362 		 * destroy log space maps and save import time. This has to be
7363 		 * done before we set the spa_final_txg, otherwise
7364 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7365 		 * spa_should_flush_logs_on_unload() should be called after
7366 		 * spa_state has been set to the new_state.
7367 		 */
7368 		if (spa_should_flush_logs_on_unload(spa))
7369 			spa_unload_log_sm_flush_all(spa);
7370 
7371 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7372 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7373 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7374 			    TXG_DEFER_SIZE + 1;
7375 			spa_config_exit(spa, SCL_ALL, FTAG);
7376 		}
7377 	}
7378 
7379 export_spa:
7380 	spa_export_os(spa);
7381 
7382 	if (new_state == POOL_STATE_DESTROYED)
7383 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7384 	else if (new_state == POOL_STATE_EXPORTED)
7385 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7386 
7387 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7388 		spa_unload(spa);
7389 		spa_deactivate(spa);
7390 	}
7391 
7392 	if (oldconfig && spa->spa_config)
7393 		*oldconfig = fnvlist_dup(spa->spa_config);
7394 
7395 	if (new_state == POOL_STATE_EXPORTED)
7396 		zio_handle_export_delay(spa, gethrtime() - export_start);
7397 
7398 	/*
7399 	 * Take the namespace lock for the actual spa_t removal
7400 	 */
7401 	spa_namespace_enter(FTAG);
7402 	if (new_state != POOL_STATE_UNINITIALIZED) {
7403 		if (!hardforce)
7404 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7405 		spa_remove(spa);
7406 	} else {
7407 		/*
7408 		 * If spa_remove() is not called for this spa_t and
7409 		 * there is any possibility that it can be reused,
7410 		 * we make sure to reset the exporting flag.
7411 		 */
7412 		spa->spa_is_exporting = B_FALSE;
7413 		spa->spa_export_thread = NULL;
7414 	}
7415 
7416 	/*
7417 	 * Wake up any waiters in spa_lookup()
7418 	 */
7419 	spa_namespace_broadcast();
7420 	spa_namespace_exit(FTAG);
7421 	return (0);
7422 
7423 fail:
7424 	spa->spa_is_exporting = B_FALSE;
7425 	spa->spa_export_thread = NULL;
7426 
7427 	spa_async_resume(spa);
7428 	/*
7429 	 * Wake up any waiters in spa_lookup()
7430 	 */
7431 	spa_namespace_broadcast();
7432 	spa_namespace_exit(FTAG);
7433 	return (error);
7434 }
7435 
7436 /*
7437  * Destroy a storage pool.
7438  */
7439 int
7440 spa_destroy(const char *pool)
7441 {
7442 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7443 	    B_FALSE, B_FALSE));
7444 }
7445 
7446 /*
7447  * Export a storage pool.
7448  */
7449 int
7450 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7451     boolean_t hardforce)
7452 {
7453 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7454 	    force, hardforce));
7455 }
7456 
7457 /*
7458  * Similar to spa_export(), this unloads the spa_t without actually removing it
7459  * from the namespace in any way.
7460  */
7461 int
7462 spa_reset(const char *pool)
7463 {
7464 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7465 	    B_FALSE, B_FALSE));
7466 }
7467 
7468 /*
7469  * ==========================================================================
7470  * Device manipulation
7471  * ==========================================================================
7472  */
7473 
7474 /*
7475  * This is called as a synctask to increment the draid feature flag
7476  */
7477 static void
7478 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7479 {
7480 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7481 	int draid = (int)(uintptr_t)arg;
7482 
7483 	for (int c = 0; c < draid; c++)
7484 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7485 }
7486 
7487 /*
7488  * Add a device to a storage pool.
7489  */
7490 int
7491 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7492 {
7493 	uint64_t txg, ndraid = 0;
7494 	int error;
7495 	vdev_t *rvd = spa->spa_root_vdev;
7496 	vdev_t *vd, *tvd;
7497 	nvlist_t **spares, **l2cache;
7498 	uint_t nspares, nl2cache;
7499 
7500 	ASSERT(spa_writeable(spa));
7501 
7502 	txg = spa_vdev_enter(spa);
7503 
7504 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7505 	    VDEV_ALLOC_ADD)) != 0)
7506 		return (spa_vdev_exit(spa, NULL, txg, error));
7507 
7508 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7509 
7510 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7511 	    &nspares) != 0)
7512 		nspares = 0;
7513 
7514 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7515 	    &nl2cache) != 0)
7516 		nl2cache = 0;
7517 
7518 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7519 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7520 
7521 	if (vd->vdev_children != 0 &&
7522 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7523 		return (spa_vdev_exit(spa, vd, txg, error));
7524 	}
7525 
7526 	/*
7527 	 * The virtual dRAID spares must be added after vdev tree is created
7528 	 * and the vdev guids are generated.  The guid of their associated
7529 	 * dRAID is stored in the config and used when opening the spare.
7530 	 */
7531 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7532 	    rvd->vdev_children)) == 0) {
7533 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7534 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7535 			nspares = 0;
7536 	} else {
7537 		return (spa_vdev_exit(spa, vd, txg, error));
7538 	}
7539 
7540 	/*
7541 	 * We must validate the spares and l2cache devices after checking the
7542 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7543 	 */
7544 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7545 		return (spa_vdev_exit(spa, vd, txg, error));
7546 
7547 	/*
7548 	 * If we are in the middle of a device removal, we can only add
7549 	 * devices which match the existing devices in the pool.
7550 	 * If we are in the middle of a removal, or have some indirect
7551 	 * vdevs, we can not add raidz or dRAID top levels.
7552 	 */
7553 	if (spa->spa_vdev_removal != NULL ||
7554 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7555 		for (int c = 0; c < vd->vdev_children; c++) {
7556 			tvd = vd->vdev_child[c];
7557 			if (spa->spa_vdev_removal != NULL &&
7558 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7559 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7560 			}
7561 			/* Fail if top level vdev is raidz or a dRAID */
7562 			if (vdev_get_nparity(tvd) != 0)
7563 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7564 
7565 			/*
7566 			 * Need the top level mirror to be
7567 			 * a mirror of leaf vdevs only
7568 			 */
7569 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7570 				for (uint64_t cid = 0;
7571 				    cid < tvd->vdev_children; cid++) {
7572 					vdev_t *cvd = tvd->vdev_child[cid];
7573 					if (!cvd->vdev_ops->vdev_op_leaf) {
7574 						return (spa_vdev_exit(spa, vd,
7575 						    txg, EINVAL));
7576 					}
7577 				}
7578 			}
7579 		}
7580 	}
7581 
7582 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7583 		for (int c = 0; c < vd->vdev_children; c++) {
7584 			tvd = vd->vdev_child[c];
7585 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7586 				return (spa_vdev_exit(spa, vd, txg,
7587 				    ZFS_ERR_ASHIFT_MISMATCH));
7588 			}
7589 		}
7590 	}
7591 
7592 	for (int c = 0; c < vd->vdev_children; c++) {
7593 		tvd = vd->vdev_child[c];
7594 		vdev_remove_child(vd, tvd);
7595 		tvd->vdev_id = rvd->vdev_children;
7596 		vdev_add_child(rvd, tvd);
7597 		vdev_config_dirty(tvd);
7598 	}
7599 
7600 	if (nspares != 0) {
7601 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7602 		    ZPOOL_CONFIG_SPARES);
7603 		spa_load_spares(spa);
7604 		spa->spa_spares.sav_sync = B_TRUE;
7605 	}
7606 
7607 	if (nl2cache != 0) {
7608 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7609 		    ZPOOL_CONFIG_L2CACHE);
7610 		spa_load_l2cache(spa);
7611 		spa->spa_l2cache.sav_sync = B_TRUE;
7612 	}
7613 
7614 	/*
7615 	 * We can't increment a feature while holding spa_vdev so we
7616 	 * have to do it in a synctask.
7617 	 */
7618 	if (ndraid != 0) {
7619 		dmu_tx_t *tx;
7620 
7621 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7622 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7623 		    (void *)(uintptr_t)ndraid, tx);
7624 		dmu_tx_commit(tx);
7625 	}
7626 
7627 	/*
7628 	 * We have to be careful when adding new vdevs to an existing pool.
7629 	 * If other threads start allocating from these vdevs before we
7630 	 * sync the config cache, and we lose power, then upon reboot we may
7631 	 * fail to open the pool because there are DVAs that the config cache
7632 	 * can't translate.  Therefore, we first add the vdevs without
7633 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7634 	 * and then let spa_config_update() initialize the new metaslabs.
7635 	 *
7636 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7637 	 * if we lose power at any point in this sequence, the remaining
7638 	 * steps will be completed the next time we load the pool.
7639 	 */
7640 	(void) spa_vdev_exit(spa, vd, txg, 0);
7641 
7642 	spa_namespace_enter(FTAG);
7643 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7644 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7645 	spa_namespace_exit(FTAG);
7646 
7647 	return (0);
7648 }
7649 
7650 /*
7651  * Given a vdev to be replaced and its parent, check for a possible
7652  * "double spare" condition if a vdev is to be replaced by a spare.  When this
7653  * happens, you can get two spares assigned to one failed vdev.
7654  *
7655  * To trigger a double spare condition:
7656  *
7657  * 1. disk1 fails
7658  * 2. 1st spare is kicked in for disk1 and it resilvers
7659  * 3. Someone replaces disk1 with a new blank disk
7660  * 4. New blank disk starts resilvering
7661  * 5. While resilvering, new blank disk has IO errors and faults
7662  * 6. 2nd spare is kicked in for new blank disk
7663  * 7. At this point two spares are kicked in for the original disk1.
7664  *
7665  * It looks like this:
7666  *
7667  * NAME                                            STATE     READ WRITE CKSUM
7668  * tank2                                           DEGRADED     0     0     0
7669  *   draid2:6d:10c:2s-0                            DEGRADED     0     0     0
7670  *     scsi-0QEMU_QEMU_HARDDISK_d1                 ONLINE       0     0     0
7671  *     scsi-0QEMU_QEMU_HARDDISK_d2                 ONLINE       0     0     0
7672  *     scsi-0QEMU_QEMU_HARDDISK_d3                 ONLINE       0     0     0
7673  *     scsi-0QEMU_QEMU_HARDDISK_d4                 ONLINE       0     0     0
7674  *     scsi-0QEMU_QEMU_HARDDISK_d5                 ONLINE       0     0     0
7675  *     scsi-0QEMU_QEMU_HARDDISK_d6                 ONLINE       0     0     0
7676  *     scsi-0QEMU_QEMU_HARDDISK_d7                 ONLINE       0     0     0
7677  *     scsi-0QEMU_QEMU_HARDDISK_d8                 ONLINE       0     0     0
7678  *     scsi-0QEMU_QEMU_HARDDISK_d9                 ONLINE       0     0     0
7679  *     spare-9                                     DEGRADED     0     0     0
7680  *       replacing-0                               DEGRADED     0    93     0
7681  *         scsi-0QEMU_QEMU_HARDDISK_d10-part1/old  UNAVAIL      0     0     0
7682  *         spare-1                                 DEGRADED     0     0     0
7683  *           scsi-0QEMU_QEMU_HARDDISK_d10          REMOVED      0     0     0
7684  *           draid2-0-0                            ONLINE       0     0     0
7685  *       draid2-0-1                                ONLINE       0     0     0
7686  * spares
7687  *   draid2-0-0                                    INUSE     currently in use
7688  *   draid2-0-1                                    INUSE     currently in use
7689  *
7690  * ARGS:
7691  *
7692  * newvd:  New spare disk
7693  * pvd:    Parent vdev_t the spare should attach to
7694  *
7695  * This function returns B_TRUE if adding the new vdev would create a double
7696  * spare condition, B_FALSE otherwise.
7697  */
7698 static boolean_t
7699 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd)
7700 {
7701 	vdev_t *ppvd;
7702 
7703 	ppvd = pvd->vdev_parent;
7704 	if (ppvd == NULL)
7705 		return (B_FALSE);
7706 
7707 	/*
7708 	 * To determine if this configuration would cause a double spare, we
7709 	 * look at the vdev_op of the parent vdev, and of the parent's parent
7710 	 * vdev.  We also look at vdev_isspare on the new disk.  A double spare
7711 	 * condition looks like this:
7712 	 *
7713 	 * 1. parent of parent's op is a spare or draid spare
7714 	 * 2. parent's op is replacing
7715 	 * 3. new disk is a spare
7716 	 */
7717 	if ((ppvd->vdev_ops == &vdev_spare_ops) ||
7718 	    (ppvd->vdev_ops == &vdev_draid_spare_ops))
7719 		if (pvd->vdev_ops == &vdev_replacing_ops)
7720 			if (newvd->vdev_isspare)
7721 				return (B_TRUE);
7722 
7723 	return (B_FALSE);
7724 }
7725 
7726 /*
7727  * Attach a device to a vdev specified by its guid.  The vdev type can be
7728  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7729  * single device). When the vdev is a single device, a mirror vdev will be
7730  * automatically inserted.
7731  *
7732  * If 'replacing' is specified, the new device is intended to replace the
7733  * existing device; in this case the two devices are made into their own
7734  * mirror using the 'replacing' vdev, which is functionally identical to
7735  * the mirror vdev (it actually reuses all the same ops) but has a few
7736  * extra rules: you can't attach to it after it's been created, and upon
7737  * completion of resilvering, the first disk (the one being replaced)
7738  * is automatically detached.
7739  *
7740  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7741  * should be performed instead of traditional healing reconstruction.  From
7742  * an administrators perspective these are both resilver operations.
7743  */
7744 int
7745 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7746     int rebuild)
7747 {
7748 	uint64_t txg, dtl_max_txg;
7749 	vdev_t *rvd = spa->spa_root_vdev;
7750 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7751 	vdev_ops_t *pvops;
7752 	char *oldvdpath, *newvdpath;
7753 	int newvd_isspare = B_FALSE;
7754 	int error;
7755 
7756 	ASSERT(spa_writeable(spa));
7757 
7758 	txg = spa_vdev_enter(spa);
7759 
7760 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7761 
7762 	ASSERT(spa_namespace_held());
7763 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7764 		error = (spa_has_checkpoint(spa)) ?
7765 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7766 		return (spa_vdev_exit(spa, NULL, txg, error));
7767 	}
7768 
7769 	if (rebuild) {
7770 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7771 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7772 
7773 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7774 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7775 			return (spa_vdev_exit(spa, NULL, txg,
7776 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7777 		}
7778 	} else {
7779 		if (vdev_rebuild_active(rvd))
7780 			return (spa_vdev_exit(spa, NULL, txg,
7781 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7782 	}
7783 
7784 	if (spa->spa_vdev_removal != NULL) {
7785 		return (spa_vdev_exit(spa, NULL, txg,
7786 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7787 	}
7788 
7789 	if (oldvd == NULL)
7790 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7791 
7792 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7793 
7794 	if (raidz) {
7795 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7796 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7797 
7798 		/*
7799 		 * Can't expand a raidz while prior expand is in progress.
7800 		 */
7801 		if (spa->spa_raidz_expand != NULL) {
7802 			return (spa_vdev_exit(spa, NULL, txg,
7803 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7804 		}
7805 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7806 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7807 	}
7808 
7809 	if (raidz)
7810 		pvd = oldvd;
7811 	else
7812 		pvd = oldvd->vdev_parent;
7813 
7814 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7815 	    VDEV_ALLOC_ATTACH) != 0)
7816 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7817 
7818 	if (newrootvd->vdev_children != 1)
7819 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7820 
7821 	newvd = newrootvd->vdev_child[0];
7822 
7823 	if (!newvd->vdev_ops->vdev_op_leaf)
7824 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7825 
7826 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7827 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7828 
7829 	/*
7830 	 * log, dedup and special vdevs should not be replaced by spares.
7831 	 */
7832 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7833 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7834 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7835 	}
7836 
7837 	/*
7838 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7839 	 */
7840 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7841 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7842 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7843 	}
7844 
7845 	if (rebuild) {
7846 		/*
7847 		 * For rebuilds, the top vdev must support reconstruction
7848 		 * using only space maps.  This means the only allowable
7849 		 * vdevs types are the root vdev, a mirror, or dRAID.
7850 		 */
7851 		tvd = pvd;
7852 		if (pvd->vdev_top != NULL)
7853 			tvd = pvd->vdev_top;
7854 
7855 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7856 		    tvd->vdev_ops != &vdev_root_ops &&
7857 		    tvd->vdev_ops != &vdev_draid_ops) {
7858 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7859 		}
7860 	}
7861 
7862 	if (!replacing) {
7863 		/*
7864 		 * For attach, the only allowable parent is a mirror or
7865 		 * the root vdev. A raidz vdev can be attached to, but
7866 		 * you cannot attach to a raidz child.
7867 		 */
7868 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7869 		    pvd->vdev_ops != &vdev_root_ops &&
7870 		    !raidz)
7871 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7872 
7873 		pvops = &vdev_mirror_ops;
7874 	} else {
7875 		/*
7876 		 * Active hot spares can only be replaced by inactive hot
7877 		 * spares.
7878 		 */
7879 		if (pvd->vdev_ops == &vdev_spare_ops &&
7880 		    oldvd->vdev_isspare &&
7881 		    !spa_has_spare(spa, newvd->vdev_guid))
7882 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7883 
7884 		/*
7885 		 * If the source is a hot spare, and the parent isn't already a
7886 		 * spare, then we want to create a new hot spare.  Otherwise, we
7887 		 * want to create a replacing vdev.  The user is not allowed to
7888 		 * attach to a spared vdev child unless the 'isspare' state is
7889 		 * the same (spare replaces spare, non-spare replaces
7890 		 * non-spare).
7891 		 */
7892 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7893 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7894 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7895 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7896 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7897 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7898 		}
7899 
7900 		if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) {
7901 			vdev_dbgmsg(newvd,
7902 			    "disk would create double spares, ignore.");
7903 			return (spa_vdev_exit(spa, newrootvd, txg, EEXIST));
7904 		}
7905 
7906 		if (newvd->vdev_isspare)
7907 			pvops = &vdev_spare_ops;
7908 		else
7909 			pvops = &vdev_replacing_ops;
7910 	}
7911 
7912 	/*
7913 	 * Make sure the new device is big enough.
7914 	 */
7915 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7916 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7917 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7918 
7919 	/*
7920 	 * The new device cannot have a higher alignment requirement
7921 	 * than the top-level vdev.
7922 	 */
7923 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7924 		return (spa_vdev_exit(spa, newrootvd, txg,
7925 		    ZFS_ERR_ASHIFT_MISMATCH));
7926 	}
7927 
7928 	/*
7929 	 * RAIDZ-expansion-specific checks.
7930 	 */
7931 	if (raidz) {
7932 		if (vdev_raidz_attach_check(newvd) != 0)
7933 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7934 
7935 		/*
7936 		 * Fail early if a child is not healthy or being replaced
7937 		 */
7938 		for (int i = 0; i < oldvd->vdev_children; i++) {
7939 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7940 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7941 				return (spa_vdev_exit(spa, newrootvd, txg,
7942 				    ENXIO));
7943 			}
7944 			/* Also fail if reserved boot area is in-use */
7945 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7946 			    != 0) {
7947 				return (spa_vdev_exit(spa, newrootvd, txg,
7948 				    EADDRINUSE));
7949 			}
7950 		}
7951 	}
7952 
7953 	if (raidz) {
7954 		/*
7955 		 * Note: oldvdpath is freed by spa_strfree(),  but
7956 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7957 		 * move it to a spa_strdup-ed string.
7958 		 */
7959 		char *tmp = kmem_asprintf("raidz%u-%u",
7960 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7961 		oldvdpath = spa_strdup(tmp);
7962 		kmem_strfree(tmp);
7963 	} else {
7964 		oldvdpath = spa_strdup(oldvd->vdev_path);
7965 	}
7966 	newvdpath = spa_strdup(newvd->vdev_path);
7967 
7968 	/*
7969 	 * If this is an in-place replacement, update oldvd's path and devid
7970 	 * to make it distinguishable from newvd, and unopenable from now on.
7971 	 */
7972 	if (strcmp(oldvdpath, newvdpath) == 0) {
7973 		spa_strfree(oldvd->vdev_path);
7974 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7975 		    KM_SLEEP);
7976 		(void) sprintf(oldvd->vdev_path, "%s/old",
7977 		    newvdpath);
7978 		if (oldvd->vdev_devid != NULL) {
7979 			spa_strfree(oldvd->vdev_devid);
7980 			oldvd->vdev_devid = NULL;
7981 		}
7982 		spa_strfree(oldvdpath);
7983 		oldvdpath = spa_strdup(oldvd->vdev_path);
7984 	}
7985 
7986 	/*
7987 	 * If the parent is not a mirror, or if we're replacing, insert the new
7988 	 * mirror/replacing/spare vdev above oldvd.
7989 	 */
7990 	if (!raidz && pvd->vdev_ops != pvops) {
7991 		pvd = vdev_add_parent(oldvd, pvops);
7992 		ASSERT(pvd->vdev_ops == pvops);
7993 		ASSERT(oldvd->vdev_parent == pvd);
7994 	}
7995 
7996 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7997 
7998 	/*
7999 	 * Extract the new device from its root and add it to pvd.
8000 	 */
8001 	vdev_remove_child(newrootvd, newvd);
8002 	newvd->vdev_id = pvd->vdev_children;
8003 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
8004 	vdev_add_child(pvd, newvd);
8005 
8006 	/*
8007 	 * Reevaluate the parent vdev state.
8008 	 */
8009 	vdev_propagate_state(pvd);
8010 
8011 	tvd = newvd->vdev_top;
8012 	ASSERT(pvd->vdev_top == tvd);
8013 	ASSERT(tvd->vdev_parent == rvd);
8014 
8015 	vdev_config_dirty(tvd);
8016 
8017 	/*
8018 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
8019 	 * for any dmu_sync-ed blocks.  It will propagate upward when
8020 	 * spa_vdev_exit() calls vdev_dtl_reassess().
8021 	 */
8022 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
8023 
8024 	if (raidz) {
8025 		/*
8026 		 * Wait for the youngest allocations and frees to sync,
8027 		 * and then wait for the deferral of those frees to finish.
8028 		 */
8029 		spa_vdev_config_exit(spa, NULL,
8030 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
8031 
8032 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
8033 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
8034 		vdev_autotrim_stop_wait(tvd);
8035 
8036 		dtl_max_txg = spa_vdev_config_enter(spa);
8037 
8038 		tvd->vdev_rz_expanding = B_TRUE;
8039 
8040 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
8041 		vdev_config_dirty(tvd);
8042 
8043 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
8044 		    dtl_max_txg);
8045 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
8046 		    newvd, tx);
8047 		dmu_tx_commit(tx);
8048 	} else {
8049 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
8050 		    dtl_max_txg - TXG_INITIAL);
8051 
8052 		if (newvd->vdev_isspare) {
8053 			spa_spare_activate(newvd);
8054 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
8055 		}
8056 
8057 		newvd_isspare = newvd->vdev_isspare;
8058 
8059 		/*
8060 		 * Mark newvd's DTL dirty in this txg.
8061 		 */
8062 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
8063 
8064 		/*
8065 		 * Schedule the resilver or rebuild to restart in the future.
8066 		 * We do this to ensure that dmu_sync-ed blocks have been
8067 		 * stitched into the respective datasets.
8068 		 */
8069 		if (rebuild) {
8070 			newvd->vdev_rebuild_txg = txg;
8071 
8072 			vdev_rebuild(tvd);
8073 		} else {
8074 			newvd->vdev_resilver_txg = txg;
8075 
8076 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
8077 			    spa_feature_is_enabled(spa,
8078 			    SPA_FEATURE_RESILVER_DEFER)) {
8079 				vdev_defer_resilver(newvd);
8080 			} else {
8081 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
8082 				    dtl_max_txg);
8083 			}
8084 		}
8085 	}
8086 
8087 	if (spa->spa_bootfs)
8088 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
8089 
8090 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
8091 
8092 	/*
8093 	 * Commit the config
8094 	 */
8095 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
8096 
8097 	spa_history_log_internal(spa, "vdev attach", NULL,
8098 	    "%s vdev=%s %s vdev=%s",
8099 	    replacing && newvd_isspare ? "spare in" :
8100 	    replacing ? "replace" : "attach", newvdpath,
8101 	    replacing ? "for" : "to", oldvdpath);
8102 
8103 	spa_strfree(oldvdpath);
8104 	spa_strfree(newvdpath);
8105 
8106 	return (0);
8107 }
8108 
8109 /*
8110  * Detach a device from a mirror or replacing vdev.
8111  *
8112  * If 'replace_done' is specified, only detach if the parent
8113  * is a replacing or a spare vdev.
8114  */
8115 int
8116 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
8117 {
8118 	uint64_t txg;
8119 	int error;
8120 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
8121 	vdev_t *vd, *pvd, *cvd, *tvd;
8122 	boolean_t unspare = B_FALSE;
8123 	uint64_t unspare_guid = 0;
8124 	char *vdpath;
8125 
8126 	ASSERT(spa_writeable(spa));
8127 
8128 	txg = spa_vdev_detach_enter(spa, guid);
8129 
8130 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8131 
8132 	/*
8133 	 * Besides being called directly from the userland through the
8134 	 * ioctl interface, spa_vdev_detach() can be potentially called
8135 	 * at the end of spa_vdev_resilver_done().
8136 	 *
8137 	 * In the regular case, when we have a checkpoint this shouldn't
8138 	 * happen as we never empty the DTLs of a vdev during the scrub
8139 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
8140 	 * should never get here when we have a checkpoint.
8141 	 *
8142 	 * That said, even in a case when we checkpoint the pool exactly
8143 	 * as spa_vdev_resilver_done() calls this function everything
8144 	 * should be fine as the resilver will return right away.
8145 	 */
8146 	ASSERT(spa_namespace_held());
8147 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8148 		error = (spa_has_checkpoint(spa)) ?
8149 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8150 		return (spa_vdev_exit(spa, NULL, txg, error));
8151 	}
8152 
8153 	if (vd == NULL)
8154 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
8155 
8156 	if (!vd->vdev_ops->vdev_op_leaf)
8157 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8158 
8159 	pvd = vd->vdev_parent;
8160 
8161 	/*
8162 	 * If the parent/child relationship is not as expected, don't do it.
8163 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
8164 	 * vdev that's replacing B with C.  The user's intent in replacing
8165 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
8166 	 * the replace by detaching C, the expected behavior is to end up
8167 	 * M(A,B).  But suppose that right after deciding to detach C,
8168 	 * the replacement of B completes.  We would have M(A,C), and then
8169 	 * ask to detach C, which would leave us with just A -- not what
8170 	 * the user wanted.  To prevent this, we make sure that the
8171 	 * parent/child relationship hasn't changed -- in this example,
8172 	 * that C's parent is still the replacing vdev R.
8173 	 */
8174 	if (pvd->vdev_guid != pguid && pguid != 0)
8175 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8176 
8177 	/*
8178 	 * Only 'replacing' or 'spare' vdevs can be replaced.
8179 	 */
8180 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
8181 	    pvd->vdev_ops != &vdev_spare_ops)
8182 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8183 
8184 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
8185 	    spa_version(spa) >= SPA_VERSION_SPARES);
8186 
8187 	/*
8188 	 * Only mirror, replacing, and spare vdevs support detach.
8189 	 */
8190 	if (pvd->vdev_ops != &vdev_replacing_ops &&
8191 	    pvd->vdev_ops != &vdev_mirror_ops &&
8192 	    pvd->vdev_ops != &vdev_spare_ops)
8193 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
8194 
8195 	/*
8196 	 * If this device has the only valid copy of some data,
8197 	 * we cannot safely detach it.
8198 	 */
8199 	if (vdev_dtl_required(vd))
8200 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
8201 
8202 	ASSERT(pvd->vdev_children >= 2);
8203 
8204 	/*
8205 	 * If we are detaching the second disk from a replacing vdev, then
8206 	 * check to see if we changed the original vdev's path to have "/old"
8207 	 * at the end in spa_vdev_attach().  If so, undo that change now.
8208 	 */
8209 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
8210 	    vd->vdev_path != NULL) {
8211 		size_t len = strlen(vd->vdev_path);
8212 
8213 		for (int c = 0; c < pvd->vdev_children; c++) {
8214 			cvd = pvd->vdev_child[c];
8215 
8216 			if (cvd == vd || cvd->vdev_path == NULL)
8217 				continue;
8218 
8219 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
8220 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
8221 				spa_strfree(cvd->vdev_path);
8222 				cvd->vdev_path = spa_strdup(vd->vdev_path);
8223 				break;
8224 			}
8225 		}
8226 	}
8227 
8228 	/*
8229 	 * If we are detaching the original disk from a normal spare, then it
8230 	 * implies that the spare should become a real disk, and be removed
8231 	 * from the active spare list for the pool.  dRAID spares on the
8232 	 * other hand are coupled to the pool and thus should never be removed
8233 	 * from the spares list.
8234 	 */
8235 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
8236 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
8237 
8238 		if (last_cvd->vdev_isspare &&
8239 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
8240 			unspare = B_TRUE;
8241 		}
8242 	}
8243 
8244 	/*
8245 	 * Erase the disk labels so the disk can be used for other things.
8246 	 * This must be done after all other error cases are handled,
8247 	 * but before we disembowel vd (so we can still do I/O to it).
8248 	 * But if we can't do it, don't treat the error as fatal --
8249 	 * it may be that the unwritability of the disk is the reason
8250 	 * it's being detached!
8251 	 */
8252 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
8253 
8254 	/*
8255 	 * Remove vd from its parent and compact the parent's children.
8256 	 */
8257 	vdev_remove_child(pvd, vd);
8258 	vdev_compact_children(pvd);
8259 
8260 	/*
8261 	 * Remember one of the remaining children so we can get tvd below.
8262 	 */
8263 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
8264 
8265 	/*
8266 	 * If we need to remove the remaining child from the list of hot spares,
8267 	 * do it now, marking the vdev as no longer a spare in the process.
8268 	 * We must do this before vdev_remove_parent(), because that can
8269 	 * change the GUID if it creates a new toplevel GUID.  For a similar
8270 	 * reason, we must remove the spare now, in the same txg as the detach;
8271 	 * otherwise someone could attach a new sibling, change the GUID, and
8272 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
8273 	 */
8274 	if (unspare) {
8275 		ASSERT(cvd->vdev_isspare);
8276 		spa_spare_remove(cvd);
8277 		unspare_guid = cvd->vdev_guid;
8278 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
8279 		cvd->vdev_unspare = B_TRUE;
8280 	}
8281 
8282 	/*
8283 	 * If the parent mirror/replacing vdev only has one child,
8284 	 * the parent is no longer needed.  Remove it from the tree.
8285 	 */
8286 	if (pvd->vdev_children == 1) {
8287 		if (pvd->vdev_ops == &vdev_spare_ops)
8288 			cvd->vdev_unspare = B_FALSE;
8289 		vdev_remove_parent(cvd);
8290 	}
8291 
8292 	/*
8293 	 * We don't set tvd until now because the parent we just removed
8294 	 * may have been the previous top-level vdev.
8295 	 */
8296 	tvd = cvd->vdev_top;
8297 	ASSERT(tvd->vdev_parent == rvd);
8298 
8299 	/*
8300 	 * Reevaluate the parent vdev state.
8301 	 */
8302 	vdev_propagate_state(cvd);
8303 
8304 	/*
8305 	 * If the 'autoexpand' property is set on the pool then automatically
8306 	 * try to expand the size of the pool. For example if the device we
8307 	 * just detached was smaller than the others, it may be possible to
8308 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8309 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8310 	 */
8311 	if (spa->spa_autoexpand) {
8312 		vdev_reopen(tvd);
8313 		vdev_expand(tvd, txg);
8314 	}
8315 
8316 	vdev_config_dirty(tvd);
8317 
8318 	/*
8319 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8320 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8321 	 * But first make sure we're not on any *other* txg's DTL list, to
8322 	 * prevent vd from being accessed after it's freed.
8323 	 */
8324 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8325 	for (int t = 0; t < TXG_SIZE; t++)
8326 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8327 	vd->vdev_detached = B_TRUE;
8328 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8329 
8330 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8331 	spa_notify_waiters(spa);
8332 
8333 	/* hang on to the spa before we release the lock */
8334 	spa_open_ref(spa, FTAG);
8335 
8336 	error = spa_vdev_exit(spa, vd, txg, 0);
8337 
8338 	spa_history_log_internal(spa, "detach", NULL,
8339 	    "vdev=%s", vdpath);
8340 	spa_strfree(vdpath);
8341 
8342 	/*
8343 	 * If this was the removal of the original device in a hot spare vdev,
8344 	 * then we want to go through and remove the device from the hot spare
8345 	 * list of every other pool.
8346 	 */
8347 	if (unspare) {
8348 		spa_t *altspa = NULL;
8349 
8350 		spa_namespace_enter(FTAG);
8351 		while ((altspa = spa_next(altspa)) != NULL) {
8352 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8353 			    altspa == spa)
8354 				continue;
8355 
8356 			spa_open_ref(altspa, FTAG);
8357 			spa_namespace_exit(FTAG);
8358 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8359 			spa_namespace_enter(FTAG);
8360 			spa_close(altspa, FTAG);
8361 		}
8362 		spa_namespace_exit(FTAG);
8363 
8364 		/* search the rest of the vdevs for spares to remove */
8365 		spa_vdev_resilver_done(spa);
8366 	}
8367 
8368 	/* all done with the spa; OK to release */
8369 	spa_namespace_enter(FTAG);
8370 	spa_close(spa, FTAG);
8371 	spa_namespace_exit(FTAG);
8372 
8373 	return (error);
8374 }
8375 
8376 static int
8377 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8378     list_t *vd_list)
8379 {
8380 	ASSERT(spa_namespace_held());
8381 
8382 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8383 
8384 	/* Look up vdev and ensure it's a leaf. */
8385 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8386 	if (vd == NULL || vd->vdev_detached) {
8387 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8388 		return (SET_ERROR(ENODEV));
8389 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8390 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8391 		return (SET_ERROR(EINVAL));
8392 	} else if (!vdev_writeable(vd)) {
8393 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8394 		return (SET_ERROR(EROFS));
8395 	}
8396 	mutex_enter(&vd->vdev_initialize_lock);
8397 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8398 
8399 	/*
8400 	 * When we activate an initialize action we check to see
8401 	 * if the vdev_initialize_thread is NULL. We do this instead
8402 	 * of using the vdev_initialize_state since there might be
8403 	 * a previous initialization process which has completed but
8404 	 * the thread is not exited.
8405 	 */
8406 	if (cmd_type == POOL_INITIALIZE_START &&
8407 	    (vd->vdev_initialize_thread != NULL ||
8408 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8409 		mutex_exit(&vd->vdev_initialize_lock);
8410 		return (SET_ERROR(EBUSY));
8411 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8412 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8413 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8414 		mutex_exit(&vd->vdev_initialize_lock);
8415 		return (SET_ERROR(ESRCH));
8416 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8417 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8418 		mutex_exit(&vd->vdev_initialize_lock);
8419 		return (SET_ERROR(ESRCH));
8420 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8421 	    vd->vdev_initialize_thread != NULL) {
8422 		mutex_exit(&vd->vdev_initialize_lock);
8423 		return (SET_ERROR(EBUSY));
8424 	}
8425 
8426 	switch (cmd_type) {
8427 	case POOL_INITIALIZE_START:
8428 		vdev_initialize(vd);
8429 		break;
8430 	case POOL_INITIALIZE_CANCEL:
8431 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8432 		break;
8433 	case POOL_INITIALIZE_SUSPEND:
8434 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8435 		break;
8436 	case POOL_INITIALIZE_UNINIT:
8437 		vdev_uninitialize(vd);
8438 		break;
8439 	default:
8440 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8441 	}
8442 	mutex_exit(&vd->vdev_initialize_lock);
8443 
8444 	return (0);
8445 }
8446 
8447 int
8448 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8449     nvlist_t *vdev_errlist)
8450 {
8451 	int total_errors = 0;
8452 	list_t vd_list;
8453 
8454 	list_create(&vd_list, sizeof (vdev_t),
8455 	    offsetof(vdev_t, vdev_initialize_node));
8456 
8457 	/*
8458 	 * We hold the namespace lock through the whole function
8459 	 * to prevent any changes to the pool while we're starting or
8460 	 * stopping initialization. The config and state locks are held so that
8461 	 * we can properly assess the vdev state before we commit to
8462 	 * the initializing operation.
8463 	 */
8464 	spa_namespace_enter(FTAG);
8465 
8466 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8467 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8468 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8469 
8470 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8471 		    &vd_list);
8472 		if (error != 0) {
8473 			char guid_as_str[MAXNAMELEN];
8474 
8475 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8476 			    "%llu", (unsigned long long)vdev_guid);
8477 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8478 			total_errors++;
8479 		}
8480 	}
8481 
8482 	/* Wait for all initialize threads to stop. */
8483 	vdev_initialize_stop_wait(spa, &vd_list);
8484 
8485 	/* Sync out the initializing state */
8486 	txg_wait_synced(spa->spa_dsl_pool, 0);
8487 	spa_namespace_exit(FTAG);
8488 
8489 	list_destroy(&vd_list);
8490 
8491 	return (total_errors);
8492 }
8493 
8494 static int
8495 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8496     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8497 {
8498 	ASSERT(spa_namespace_held());
8499 
8500 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8501 
8502 	/* Look up vdev and ensure it's a leaf. */
8503 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8504 	if (vd == NULL || vd->vdev_detached) {
8505 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8506 		return (SET_ERROR(ENODEV));
8507 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8508 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8509 		return (SET_ERROR(EINVAL));
8510 	} else if (!vdev_writeable(vd)) {
8511 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8512 		return (SET_ERROR(EROFS));
8513 	} else if (!vd->vdev_has_trim) {
8514 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8515 		return (SET_ERROR(EOPNOTSUPP));
8516 	} else if (secure && !vd->vdev_has_securetrim) {
8517 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8518 		return (SET_ERROR(EOPNOTSUPP));
8519 	}
8520 	mutex_enter(&vd->vdev_trim_lock);
8521 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8522 
8523 	/*
8524 	 * When we activate a TRIM action we check to see if the
8525 	 * vdev_trim_thread is NULL. We do this instead of using the
8526 	 * vdev_trim_state since there might be a previous TRIM process
8527 	 * which has completed but the thread is not exited.
8528 	 */
8529 	if (cmd_type == POOL_TRIM_START &&
8530 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8531 	    vd->vdev_top->vdev_rz_expanding)) {
8532 		mutex_exit(&vd->vdev_trim_lock);
8533 		return (SET_ERROR(EBUSY));
8534 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8535 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8536 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8537 		mutex_exit(&vd->vdev_trim_lock);
8538 		return (SET_ERROR(ESRCH));
8539 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8540 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8541 		mutex_exit(&vd->vdev_trim_lock);
8542 		return (SET_ERROR(ESRCH));
8543 	}
8544 
8545 	switch (cmd_type) {
8546 	case POOL_TRIM_START:
8547 		vdev_trim(vd, rate, partial, secure);
8548 		break;
8549 	case POOL_TRIM_CANCEL:
8550 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8551 		break;
8552 	case POOL_TRIM_SUSPEND:
8553 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8554 		break;
8555 	default:
8556 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8557 	}
8558 	mutex_exit(&vd->vdev_trim_lock);
8559 
8560 	return (0);
8561 }
8562 
8563 /*
8564  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8565  * TRIM threads for each child vdev.  These threads pass over all of the free
8566  * space in the vdev's metaslabs and issues TRIM commands for that space.
8567  */
8568 int
8569 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8570     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8571 {
8572 	int total_errors = 0;
8573 	list_t vd_list;
8574 
8575 	list_create(&vd_list, sizeof (vdev_t),
8576 	    offsetof(vdev_t, vdev_trim_node));
8577 
8578 	/*
8579 	 * We hold the namespace lock through the whole function
8580 	 * to prevent any changes to the pool while we're starting or
8581 	 * stopping TRIM. The config and state locks are held so that
8582 	 * we can properly assess the vdev state before we commit to
8583 	 * the TRIM operation.
8584 	 */
8585 	spa_namespace_enter(FTAG);
8586 
8587 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8588 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8589 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8590 
8591 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8592 		    rate, partial, secure, &vd_list);
8593 		if (error != 0) {
8594 			char guid_as_str[MAXNAMELEN];
8595 
8596 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8597 			    "%llu", (unsigned long long)vdev_guid);
8598 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8599 			total_errors++;
8600 		}
8601 	}
8602 
8603 	/* Wait for all TRIM threads to stop. */
8604 	vdev_trim_stop_wait(spa, &vd_list);
8605 
8606 	/* Sync out the TRIM state */
8607 	txg_wait_synced(spa->spa_dsl_pool, 0);
8608 	spa_namespace_exit(FTAG);
8609 
8610 	list_destroy(&vd_list);
8611 
8612 	return (total_errors);
8613 }
8614 
8615 /*
8616  * Split a set of devices from their mirrors, and create a new pool from them.
8617  */
8618 int
8619 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8620     nvlist_t *props, boolean_t exp)
8621 {
8622 	int error = 0;
8623 	uint64_t txg, *glist;
8624 	spa_t *newspa;
8625 	uint_t c, children, lastlog;
8626 	nvlist_t **child, *nvl, *tmp;
8627 	dmu_tx_t *tx;
8628 	const char *altroot = NULL;
8629 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8630 	boolean_t activate_slog;
8631 
8632 	ASSERT(spa_writeable(spa));
8633 
8634 	txg = spa_vdev_enter(spa);
8635 
8636 	ASSERT(spa_namespace_held());
8637 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8638 		error = (spa_has_checkpoint(spa)) ?
8639 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8640 		return (spa_vdev_exit(spa, NULL, txg, error));
8641 	}
8642 
8643 	/* clear the log and flush everything up to now */
8644 	activate_slog = spa_passivate_log(spa);
8645 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8646 	error = spa_reset_logs(spa);
8647 	txg = spa_vdev_config_enter(spa);
8648 
8649 	if (activate_slog)
8650 		spa_activate_log(spa);
8651 
8652 	if (error != 0)
8653 		return (spa_vdev_exit(spa, NULL, txg, error));
8654 
8655 	/* check new spa name before going any further */
8656 	if (spa_lookup(newname) != NULL)
8657 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8658 
8659 	/*
8660 	 * scan through all the children to ensure they're all mirrors
8661 	 */
8662 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8663 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8664 	    &children) != 0)
8665 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8666 
8667 	/* first, check to ensure we've got the right child count */
8668 	rvd = spa->spa_root_vdev;
8669 	lastlog = 0;
8670 	for (c = 0; c < rvd->vdev_children; c++) {
8671 		vdev_t *vd = rvd->vdev_child[c];
8672 
8673 		/* don't count the holes & logs as children */
8674 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8675 		    !vdev_is_concrete(vd))) {
8676 			if (lastlog == 0)
8677 				lastlog = c;
8678 			continue;
8679 		}
8680 
8681 		lastlog = 0;
8682 	}
8683 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8684 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8685 
8686 	/* next, ensure no spare or cache devices are part of the split */
8687 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8688 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8689 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8690 
8691 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8692 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8693 
8694 	/* then, loop over each vdev and validate it */
8695 	for (c = 0; c < children; c++) {
8696 		uint64_t is_hole = 0;
8697 
8698 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8699 		    &is_hole);
8700 
8701 		if (is_hole != 0) {
8702 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8703 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8704 				continue;
8705 			} else {
8706 				error = SET_ERROR(EINVAL);
8707 				break;
8708 			}
8709 		}
8710 
8711 		/* deal with indirect vdevs */
8712 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8713 		    &vdev_indirect_ops)
8714 			continue;
8715 
8716 		/* which disk is going to be split? */
8717 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8718 		    &glist[c]) != 0) {
8719 			error = SET_ERROR(EINVAL);
8720 			break;
8721 		}
8722 
8723 		/* look it up in the spa */
8724 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8725 		if (vml[c] == NULL) {
8726 			error = SET_ERROR(ENODEV);
8727 			break;
8728 		}
8729 
8730 		/* make sure there's nothing stopping the split */
8731 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8732 		    vml[c]->vdev_islog ||
8733 		    !vdev_is_concrete(vml[c]) ||
8734 		    vml[c]->vdev_isspare ||
8735 		    vml[c]->vdev_isl2cache ||
8736 		    !vdev_writeable(vml[c]) ||
8737 		    vml[c]->vdev_children != 0 ||
8738 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8739 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8740 			error = SET_ERROR(EINVAL);
8741 			break;
8742 		}
8743 
8744 		if (vdev_dtl_required(vml[c]) ||
8745 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8746 			error = SET_ERROR(EBUSY);
8747 			break;
8748 		}
8749 
8750 		/* we need certain info from the top level */
8751 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8752 		    vml[c]->vdev_top->vdev_ms_array);
8753 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8754 		    vml[c]->vdev_top->vdev_ms_shift);
8755 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8756 		    vml[c]->vdev_top->vdev_asize);
8757 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8758 		    vml[c]->vdev_top->vdev_ashift);
8759 
8760 		/* transfer per-vdev ZAPs */
8761 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8762 		VERIFY0(nvlist_add_uint64(child[c],
8763 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8764 
8765 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8766 		VERIFY0(nvlist_add_uint64(child[c],
8767 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8768 		    vml[c]->vdev_parent->vdev_top_zap));
8769 	}
8770 
8771 	if (error != 0) {
8772 		kmem_free(vml, children * sizeof (vdev_t *));
8773 		kmem_free(glist, children * sizeof (uint64_t));
8774 		return (spa_vdev_exit(spa, NULL, txg, error));
8775 	}
8776 
8777 	/* stop writers from using the disks */
8778 	for (c = 0; c < children; c++) {
8779 		if (vml[c] != NULL)
8780 			vml[c]->vdev_offline = B_TRUE;
8781 	}
8782 	vdev_reopen(spa->spa_root_vdev);
8783 
8784 	/*
8785 	 * Temporarily record the splitting vdevs in the spa config.  This
8786 	 * will disappear once the config is regenerated.
8787 	 */
8788 	nvl = fnvlist_alloc();
8789 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8790 	kmem_free(glist, children * sizeof (uint64_t));
8791 
8792 	mutex_enter(&spa->spa_props_lock);
8793 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8794 	mutex_exit(&spa->spa_props_lock);
8795 	spa->spa_config_splitting = nvl;
8796 	vdev_config_dirty(spa->spa_root_vdev);
8797 
8798 	/* configure and create the new pool */
8799 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8800 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8801 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8802 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8803 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8804 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8805 	    spa_generate_guid(NULL));
8806 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8807 	(void) nvlist_lookup_string(props,
8808 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8809 
8810 	/* add the new pool to the namespace */
8811 	newspa = spa_add(newname, config, altroot);
8812 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8813 	newspa->spa_config_txg = spa->spa_config_txg;
8814 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8815 
8816 	/* release the spa config lock, retaining the namespace lock */
8817 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8818 
8819 	if (zio_injection_enabled)
8820 		zio_handle_panic_injection(spa, FTAG, 1);
8821 
8822 	spa_activate(newspa, spa_mode_global);
8823 	spa_async_suspend(newspa);
8824 
8825 	/*
8826 	 * Temporarily stop the initializing and TRIM activity.  We set the
8827 	 * state to ACTIVE so that we know to resume initializing or TRIM
8828 	 * once the split has completed.
8829 	 */
8830 	list_t vd_initialize_list;
8831 	list_create(&vd_initialize_list, sizeof (vdev_t),
8832 	    offsetof(vdev_t, vdev_initialize_node));
8833 
8834 	list_t vd_trim_list;
8835 	list_create(&vd_trim_list, sizeof (vdev_t),
8836 	    offsetof(vdev_t, vdev_trim_node));
8837 
8838 	for (c = 0; c < children; c++) {
8839 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8840 			mutex_enter(&vml[c]->vdev_initialize_lock);
8841 			vdev_initialize_stop(vml[c],
8842 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8843 			mutex_exit(&vml[c]->vdev_initialize_lock);
8844 
8845 			mutex_enter(&vml[c]->vdev_trim_lock);
8846 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8847 			mutex_exit(&vml[c]->vdev_trim_lock);
8848 		}
8849 	}
8850 
8851 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8852 	vdev_trim_stop_wait(spa, &vd_trim_list);
8853 
8854 	list_destroy(&vd_initialize_list);
8855 	list_destroy(&vd_trim_list);
8856 
8857 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8858 	newspa->spa_is_splitting = B_TRUE;
8859 
8860 	/* create the new pool from the disks of the original pool */
8861 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8862 	if (error)
8863 		goto out;
8864 
8865 	/* if that worked, generate a real config for the new pool */
8866 	if (newspa->spa_root_vdev != NULL) {
8867 		newspa->spa_config_splitting = fnvlist_alloc();
8868 		fnvlist_add_uint64(newspa->spa_config_splitting,
8869 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8870 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8871 		    B_TRUE));
8872 	}
8873 
8874 	/* set the props */
8875 	if (props != NULL) {
8876 		spa_configfile_set(newspa, props, B_FALSE);
8877 		error = spa_prop_set(newspa, props);
8878 		if (error)
8879 			goto out;
8880 	}
8881 
8882 	/* flush everything */
8883 	txg = spa_vdev_config_enter(newspa);
8884 	vdev_config_dirty(newspa->spa_root_vdev);
8885 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8886 
8887 	if (zio_injection_enabled)
8888 		zio_handle_panic_injection(spa, FTAG, 2);
8889 
8890 	spa_async_resume(newspa);
8891 
8892 	/* finally, update the original pool's config */
8893 	txg = spa_vdev_config_enter(spa);
8894 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8895 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
8896 	if (error != 0)
8897 		dmu_tx_abort(tx);
8898 	for (c = 0; c < children; c++) {
8899 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8900 			vdev_t *tvd = vml[c]->vdev_top;
8901 
8902 			/*
8903 			 * Need to be sure the detachable VDEV is not
8904 			 * on any *other* txg's DTL list to prevent it
8905 			 * from being accessed after it's freed.
8906 			 */
8907 			for (int t = 0; t < TXG_SIZE; t++) {
8908 				(void) txg_list_remove_this(
8909 				    &tvd->vdev_dtl_list, vml[c], t);
8910 			}
8911 
8912 			vdev_split(vml[c]);
8913 			if (error == 0)
8914 				spa_history_log_internal(spa, "detach", tx,
8915 				    "vdev=%s", vml[c]->vdev_path);
8916 
8917 			vdev_free(vml[c]);
8918 		}
8919 	}
8920 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8921 	vdev_config_dirty(spa->spa_root_vdev);
8922 	spa->spa_config_splitting = NULL;
8923 	nvlist_free(nvl);
8924 	if (error == 0)
8925 		dmu_tx_commit(tx);
8926 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8927 
8928 	if (zio_injection_enabled)
8929 		zio_handle_panic_injection(spa, FTAG, 3);
8930 
8931 	/* split is complete; log a history record */
8932 	spa_history_log_internal(newspa, "split", NULL,
8933 	    "from pool %s", spa_name(spa));
8934 
8935 	newspa->spa_is_splitting = B_FALSE;
8936 	kmem_free(vml, children * sizeof (vdev_t *));
8937 
8938 	/* if we're not going to mount the filesystems in userland, export */
8939 	if (exp)
8940 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8941 		    B_FALSE, B_FALSE);
8942 
8943 	return (error);
8944 
8945 out:
8946 	spa_unload(newspa);
8947 	spa_deactivate(newspa);
8948 	spa_remove(newspa);
8949 
8950 	txg = spa_vdev_config_enter(spa);
8951 
8952 	/* re-online all offlined disks */
8953 	for (c = 0; c < children; c++) {
8954 		if (vml[c] != NULL)
8955 			vml[c]->vdev_offline = B_FALSE;
8956 	}
8957 
8958 	/* restart initializing or trimming disks as necessary */
8959 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8960 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8961 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8962 
8963 	vdev_reopen(spa->spa_root_vdev);
8964 
8965 	nvlist_free(spa->spa_config_splitting);
8966 	spa->spa_config_splitting = NULL;
8967 	(void) spa_vdev_exit(spa, NULL, txg, error);
8968 
8969 	kmem_free(vml, children * sizeof (vdev_t *));
8970 	return (error);
8971 }
8972 
8973 /*
8974  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8975  * currently spared, so we can detach it.
8976  */
8977 static vdev_t *
8978 spa_vdev_resilver_done_hunt(vdev_t *vd)
8979 {
8980 	vdev_t *newvd, *oldvd;
8981 
8982 	for (int c = 0; c < vd->vdev_children; c++) {
8983 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8984 		if (oldvd != NULL)
8985 			return (oldvd);
8986 	}
8987 
8988 	/*
8989 	 * Check for a completed replacement.  We always consider the first
8990 	 * vdev in the list to be the oldest vdev, and the last one to be
8991 	 * the newest (see spa_vdev_attach() for how that works).  In
8992 	 * the case where the newest vdev is faulted, we will not automatically
8993 	 * remove it after a resilver completes.  This is OK as it will require
8994 	 * user intervention to determine which disk the admin wishes to keep.
8995 	 */
8996 	if (vd->vdev_ops == &vdev_replacing_ops) {
8997 		ASSERT(vd->vdev_children > 1);
8998 
8999 		newvd = vd->vdev_child[vd->vdev_children - 1];
9000 		oldvd = vd->vdev_child[0];
9001 
9002 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
9003 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
9004 		    !vdev_dtl_required(oldvd))
9005 			return (oldvd);
9006 	}
9007 
9008 	/*
9009 	 * Check for a completed resilver with the 'unspare' flag set.
9010 	 * Also potentially update faulted state.
9011 	 */
9012 	if (vd->vdev_ops == &vdev_spare_ops) {
9013 		vdev_t *first = vd->vdev_child[0];
9014 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
9015 
9016 		if (last->vdev_unspare) {
9017 			oldvd = first;
9018 			newvd = last;
9019 		} else if (first->vdev_unspare) {
9020 			oldvd = last;
9021 			newvd = first;
9022 		} else {
9023 			oldvd = NULL;
9024 		}
9025 
9026 		if (oldvd != NULL &&
9027 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
9028 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
9029 		    !vdev_dtl_required(oldvd))
9030 			return (oldvd);
9031 
9032 		vdev_propagate_state(vd);
9033 
9034 		/*
9035 		 * If there are more than two spares attached to a disk,
9036 		 * and those spares are not required, then we want to
9037 		 * attempt to free them up now so that they can be used
9038 		 * by other pools.  Once we're back down to a single
9039 		 * disk+spare, we stop removing them.
9040 		 */
9041 		if (vd->vdev_children > 2) {
9042 			newvd = vd->vdev_child[1];
9043 
9044 			if (newvd->vdev_isspare && last->vdev_isspare &&
9045 			    vdev_dtl_empty(last, DTL_MISSING) &&
9046 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
9047 			    !vdev_dtl_required(newvd))
9048 				return (newvd);
9049 		}
9050 	}
9051 
9052 	return (NULL);
9053 }
9054 
9055 static void
9056 spa_vdev_resilver_done(spa_t *spa)
9057 {
9058 	vdev_t *vd, *pvd, *ppvd;
9059 	uint64_t guid, sguid, pguid, ppguid;
9060 
9061 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9062 
9063 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
9064 		pvd = vd->vdev_parent;
9065 		ppvd = pvd->vdev_parent;
9066 		guid = vd->vdev_guid;
9067 		pguid = pvd->vdev_guid;
9068 		ppguid = ppvd->vdev_guid;
9069 		sguid = 0;
9070 		/*
9071 		 * If we have just finished replacing a hot spared device, then
9072 		 * we need to detach the parent's first child (the original hot
9073 		 * spare) as well.
9074 		 */
9075 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
9076 		    ppvd->vdev_children == 2) {
9077 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
9078 			sguid = ppvd->vdev_child[1]->vdev_guid;
9079 		}
9080 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
9081 
9082 		spa_config_exit(spa, SCL_ALL, FTAG);
9083 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
9084 			return;
9085 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
9086 			return;
9087 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9088 	}
9089 
9090 	spa_config_exit(spa, SCL_ALL, FTAG);
9091 
9092 	/*
9093 	 * If a detach was not performed above replace waiters will not have
9094 	 * been notified.  In which case we must do so now.
9095 	 */
9096 	spa_notify_waiters(spa);
9097 }
9098 
9099 /*
9100  * Update the stored path or FRU for this vdev.
9101  */
9102 static int
9103 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
9104     boolean_t ispath)
9105 {
9106 	vdev_t *vd;
9107 	boolean_t sync = B_FALSE;
9108 
9109 	ASSERT(spa_writeable(spa));
9110 
9111 	spa_vdev_state_enter(spa, SCL_ALL);
9112 
9113 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
9114 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
9115 
9116 	if (!vd->vdev_ops->vdev_op_leaf)
9117 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
9118 
9119 	if (ispath) {
9120 		if (strcmp(value, vd->vdev_path) != 0) {
9121 			spa_strfree(vd->vdev_path);
9122 			vd->vdev_path = spa_strdup(value);
9123 			sync = B_TRUE;
9124 		}
9125 	} else {
9126 		if (vd->vdev_fru == NULL) {
9127 			vd->vdev_fru = spa_strdup(value);
9128 			sync = B_TRUE;
9129 		} else if (strcmp(value, vd->vdev_fru) != 0) {
9130 			spa_strfree(vd->vdev_fru);
9131 			vd->vdev_fru = spa_strdup(value);
9132 			sync = B_TRUE;
9133 		}
9134 	}
9135 
9136 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
9137 }
9138 
9139 int
9140 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
9141 {
9142 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
9143 }
9144 
9145 int
9146 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
9147 {
9148 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
9149 }
9150 
9151 /*
9152  * ==========================================================================
9153  * SPA Scanning
9154  * ==========================================================================
9155  */
9156 int
9157 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
9158 {
9159 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9160 
9161 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
9162 		return (SET_ERROR(EBUSY));
9163 
9164 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
9165 }
9166 
9167 int
9168 spa_scan_stop(spa_t *spa)
9169 {
9170 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9171 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
9172 		return (SET_ERROR(EBUSY));
9173 
9174 	return (dsl_scan_cancel(spa->spa_dsl_pool));
9175 }
9176 
9177 int
9178 spa_scan(spa_t *spa, pool_scan_func_t func)
9179 {
9180 	return (spa_scan_range(spa, func, 0, 0));
9181 }
9182 
9183 int
9184 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
9185     uint64_t txgend)
9186 {
9187 	ASSERT0(spa_config_held(spa, SCL_ALL, RW_WRITER));
9188 
9189 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
9190 		return (SET_ERROR(ENOTSUP));
9191 
9192 	if (func == POOL_SCAN_RESILVER &&
9193 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
9194 		return (SET_ERROR(ENOTSUP));
9195 
9196 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
9197 		return (SET_ERROR(ENOTSUP));
9198 
9199 	/*
9200 	 * If a resilver was requested, but there is no DTL on a
9201 	 * writeable leaf device, we have nothing to do.
9202 	 */
9203 	if (func == POOL_SCAN_RESILVER &&
9204 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
9205 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
9206 		return (0);
9207 	}
9208 
9209 	if (func == POOL_SCAN_ERRORSCRUB &&
9210 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
9211 		return (SET_ERROR(ENOTSUP));
9212 
9213 	return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
9214 }
9215 
9216 /*
9217  * ==========================================================================
9218  * SPA async task processing
9219  * ==========================================================================
9220  */
9221 
9222 static void
9223 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel)
9224 {
9225 	if (vd->vdev_remove_wanted) {
9226 		vd->vdev_remove_wanted = B_FALSE;
9227 		vd->vdev_delayed_close = B_FALSE;
9228 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
9229 
9230 		/*
9231 		 * We want to clear the stats, but we don't want to do a full
9232 		 * vdev_clear() as that will cause us to throw away
9233 		 * degraded/faulted state as well as attempt to reopen the
9234 		 * device, all of which is a waste.
9235 		 */
9236 		vd->vdev_stat.vs_read_errors = 0;
9237 		vd->vdev_stat.vs_write_errors = 0;
9238 		vd->vdev_stat.vs_checksum_errors = 0;
9239 
9240 		vdev_state_dirty(vd->vdev_top);
9241 
9242 		/* Tell userspace that the vdev is gone. */
9243 		zfs_post_remove(spa, vd, by_kernel);
9244 	}
9245 
9246 	for (int c = 0; c < vd->vdev_children; c++)
9247 		spa_async_remove(spa, vd->vdev_child[c], by_kernel);
9248 }
9249 
9250 static void
9251 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
9252 {
9253 	if (vd->vdev_fault_wanted) {
9254 		vdev_state_t newstate = VDEV_STATE_FAULTED;
9255 		vd->vdev_fault_wanted = B_FALSE;
9256 
9257 		/*
9258 		 * If this device has the only valid copy of the data, then
9259 		 * back off and simply mark the vdev as degraded instead.
9260 		 */
9261 		if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
9262 		    vdev_dtl_required(vd)) {
9263 			newstate = VDEV_STATE_DEGRADED;
9264 			/* A required disk is missing so suspend the pool */
9265 			*suspend = B_TRUE;
9266 		}
9267 		vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
9268 	}
9269 	for (int c = 0; c < vd->vdev_children; c++)
9270 		spa_async_fault_vdev(vd->vdev_child[c], suspend);
9271 }
9272 
9273 static void
9274 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
9275 {
9276 	if (!spa->spa_autoexpand)
9277 		return;
9278 
9279 	for (int c = 0; c < vd->vdev_children; c++) {
9280 		vdev_t *cvd = vd->vdev_child[c];
9281 		spa_async_autoexpand(spa, cvd);
9282 	}
9283 
9284 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
9285 		return;
9286 
9287 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
9288 }
9289 
9290 static __attribute__((noreturn)) void
9291 spa_async_thread(void *arg)
9292 {
9293 	spa_t *spa = (spa_t *)arg;
9294 	dsl_pool_t *dp = spa->spa_dsl_pool;
9295 	int tasks;
9296 
9297 	ASSERT(spa->spa_sync_on);
9298 
9299 	mutex_enter(&spa->spa_async_lock);
9300 	tasks = spa->spa_async_tasks;
9301 	spa->spa_async_tasks = 0;
9302 	mutex_exit(&spa->spa_async_lock);
9303 
9304 	/*
9305 	 * See if the config needs to be updated.
9306 	 */
9307 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9308 		uint64_t old_space, new_space;
9309 
9310 		spa_namespace_enter(FTAG);
9311 		old_space = metaslab_class_get_space(spa_normal_class(spa));
9312 		old_space += metaslab_class_get_space(spa_special_class(spa));
9313 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
9314 		old_space += metaslab_class_get_space(
9315 		    spa_embedded_log_class(spa));
9316 		old_space += metaslab_class_get_space(
9317 		    spa_special_embedded_log_class(spa));
9318 
9319 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9320 
9321 		new_space = metaslab_class_get_space(spa_normal_class(spa));
9322 		new_space += metaslab_class_get_space(spa_special_class(spa));
9323 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
9324 		new_space += metaslab_class_get_space(
9325 		    spa_embedded_log_class(spa));
9326 		new_space += metaslab_class_get_space(
9327 		    spa_special_embedded_log_class(spa));
9328 		spa_namespace_exit(FTAG);
9329 
9330 		/*
9331 		 * If the pool grew as a result of the config update,
9332 		 * then log an internal history event.
9333 		 */
9334 		if (new_space != old_space) {
9335 			spa_history_log_internal(spa, "vdev online", NULL,
9336 			    "pool '%s' size: %llu(+%llu)",
9337 			    spa_name(spa), (u_longlong_t)new_space,
9338 			    (u_longlong_t)(new_space - old_space));
9339 		}
9340 	}
9341 
9342 	/*
9343 	 * See if any devices need to be marked REMOVED.
9344 	 */
9345 	if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) {
9346 		boolean_t by_kernel = B_TRUE;
9347 		if (tasks & SPA_ASYNC_REMOVE_BY_USER)
9348 			by_kernel = B_FALSE;
9349 		spa_vdev_state_enter(spa, SCL_NONE);
9350 		spa_async_remove(spa, spa->spa_root_vdev, by_kernel);
9351 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9352 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i],
9353 			    by_kernel);
9354 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9355 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i],
9356 			    by_kernel);
9357 		(void) spa_vdev_state_exit(spa, NULL, 0);
9358 	}
9359 
9360 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9361 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9362 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9363 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9364 	}
9365 
9366 	/*
9367 	 * See if any devices need to be marked faulted.
9368 	 */
9369 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9370 		spa_vdev_state_enter(spa, SCL_NONE);
9371 		boolean_t suspend = B_FALSE;
9372 		spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9373 		(void) spa_vdev_state_exit(spa, NULL, 0);
9374 		if (suspend)
9375 			zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9376 	}
9377 
9378 	/*
9379 	 * If any devices are done replacing, detach them.
9380 	 */
9381 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9382 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9383 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9384 		spa_vdev_resilver_done(spa);
9385 	}
9386 
9387 	/*
9388 	 * Kick off a resilver.
9389 	 */
9390 	if (tasks & SPA_ASYNC_RESILVER &&
9391 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9392 	    (!dsl_scan_resilvering(dp) ||
9393 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9394 		dsl_scan_restart_resilver(dp, 0);
9395 
9396 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9397 		spa_namespace_enter(FTAG);
9398 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9399 		vdev_initialize_restart(spa->spa_root_vdev);
9400 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9401 		spa_namespace_exit(FTAG);
9402 	}
9403 
9404 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9405 		spa_namespace_enter(FTAG);
9406 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9407 		vdev_trim_restart(spa->spa_root_vdev);
9408 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9409 		spa_namespace_exit(FTAG);
9410 	}
9411 
9412 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9413 		spa_namespace_enter(FTAG);
9414 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9415 		vdev_autotrim_restart(spa);
9416 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9417 		spa_namespace_exit(FTAG);
9418 	}
9419 
9420 	/*
9421 	 * Kick off L2 cache whole device TRIM.
9422 	 */
9423 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9424 		spa_namespace_enter(FTAG);
9425 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9426 		vdev_trim_l2arc(spa);
9427 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9428 		spa_namespace_exit(FTAG);
9429 	}
9430 
9431 	/*
9432 	 * Kick off L2 cache rebuilding.
9433 	 */
9434 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9435 		spa_namespace_enter(FTAG);
9436 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9437 		l2arc_spa_rebuild_start(spa);
9438 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9439 		spa_namespace_exit(FTAG);
9440 	}
9441 
9442 	/*
9443 	 * Let the world know that we're done.
9444 	 */
9445 	mutex_enter(&spa->spa_async_lock);
9446 	spa->spa_async_thread = NULL;
9447 	cv_broadcast(&spa->spa_async_cv);
9448 	mutex_exit(&spa->spa_async_lock);
9449 	thread_exit();
9450 }
9451 
9452 void
9453 spa_async_suspend(spa_t *spa)
9454 {
9455 	mutex_enter(&spa->spa_async_lock);
9456 	spa->spa_async_suspended++;
9457 	while (spa->spa_async_thread != NULL)
9458 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9459 	mutex_exit(&spa->spa_async_lock);
9460 
9461 	spa_vdev_remove_suspend(spa);
9462 
9463 	zthr_t *condense_thread = spa->spa_condense_zthr;
9464 	if (condense_thread != NULL)
9465 		zthr_cancel(condense_thread);
9466 
9467 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9468 	if (raidz_expand_thread != NULL)
9469 		zthr_cancel(raidz_expand_thread);
9470 
9471 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9472 	if (discard_thread != NULL)
9473 		zthr_cancel(discard_thread);
9474 
9475 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9476 	if (ll_delete_thread != NULL)
9477 		zthr_cancel(ll_delete_thread);
9478 
9479 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9480 	if (ll_condense_thread != NULL)
9481 		zthr_cancel(ll_condense_thread);
9482 }
9483 
9484 void
9485 spa_async_resume(spa_t *spa)
9486 {
9487 	mutex_enter(&spa->spa_async_lock);
9488 	ASSERT(spa->spa_async_suspended != 0);
9489 	spa->spa_async_suspended--;
9490 	mutex_exit(&spa->spa_async_lock);
9491 	spa_restart_removal(spa);
9492 
9493 	zthr_t *condense_thread = spa->spa_condense_zthr;
9494 	if (condense_thread != NULL)
9495 		zthr_resume(condense_thread);
9496 
9497 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9498 	if (raidz_expand_thread != NULL)
9499 		zthr_resume(raidz_expand_thread);
9500 
9501 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9502 	if (discard_thread != NULL)
9503 		zthr_resume(discard_thread);
9504 
9505 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9506 	if (ll_delete_thread != NULL)
9507 		zthr_resume(ll_delete_thread);
9508 
9509 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9510 	if (ll_condense_thread != NULL)
9511 		zthr_resume(ll_condense_thread);
9512 }
9513 
9514 static boolean_t
9515 spa_async_tasks_pending(spa_t *spa)
9516 {
9517 	uint_t non_config_tasks;
9518 	uint_t config_task;
9519 	boolean_t config_task_suspended;
9520 
9521 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9522 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9523 	if (spa->spa_ccw_fail_time == 0) {
9524 		config_task_suspended = B_FALSE;
9525 	} else {
9526 		config_task_suspended =
9527 		    (gethrtime() - spa->spa_ccw_fail_time) <
9528 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9529 	}
9530 
9531 	return (non_config_tasks || (config_task && !config_task_suspended));
9532 }
9533 
9534 static void
9535 spa_async_dispatch(spa_t *spa)
9536 {
9537 	mutex_enter(&spa->spa_async_lock);
9538 	if (spa_async_tasks_pending(spa) &&
9539 	    !spa->spa_async_suspended &&
9540 	    spa->spa_async_thread == NULL)
9541 		spa->spa_async_thread = thread_create(NULL, 0,
9542 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9543 	mutex_exit(&spa->spa_async_lock);
9544 }
9545 
9546 void
9547 spa_async_request(spa_t *spa, int task)
9548 {
9549 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9550 	mutex_enter(&spa->spa_async_lock);
9551 	spa->spa_async_tasks |= task;
9552 	mutex_exit(&spa->spa_async_lock);
9553 }
9554 
9555 int
9556 spa_async_tasks(spa_t *spa)
9557 {
9558 	return (spa->spa_async_tasks);
9559 }
9560 
9561 /*
9562  * ==========================================================================
9563  * SPA syncing routines
9564  * ==========================================================================
9565  */
9566 
9567 
9568 static int
9569 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9570     dmu_tx_t *tx)
9571 {
9572 	bpobj_t *bpo = arg;
9573 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9574 	return (0);
9575 }
9576 
9577 int
9578 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9579 {
9580 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9581 }
9582 
9583 int
9584 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9585 {
9586 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9587 }
9588 
9589 static int
9590 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9591 {
9592 	zio_t *pio = arg;
9593 
9594 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9595 	    pio->io_flags));
9596 	return (0);
9597 }
9598 
9599 static int
9600 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9601     dmu_tx_t *tx)
9602 {
9603 	ASSERT(!bp_freed);
9604 	return (spa_free_sync_cb(arg, bp, tx));
9605 }
9606 
9607 /*
9608  * Note: this simple function is not inlined to make it easier to dtrace the
9609  * amount of time spent syncing frees.
9610  */
9611 static void
9612 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9613 {
9614 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9615 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9616 	VERIFY0(zio_wait(zio));
9617 }
9618 
9619 /*
9620  * Note: this simple function is not inlined to make it easier to dtrace the
9621  * amount of time spent syncing deferred frees.
9622  */
9623 static void
9624 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9625 {
9626 	if (spa_sync_pass(spa) != 1)
9627 		return;
9628 
9629 	/*
9630 	 * Note:
9631 	 * If the log space map feature is active, we stop deferring
9632 	 * frees to the next TXG and therefore running this function
9633 	 * would be considered a no-op as spa_deferred_bpobj should
9634 	 * not have any entries.
9635 	 *
9636 	 * That said we run this function anyway (instead of returning
9637 	 * immediately) for the edge-case scenario where we just
9638 	 * activated the log space map feature in this TXG but we have
9639 	 * deferred frees from the previous TXG.
9640 	 */
9641 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9642 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9643 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9644 	VERIFY0(zio_wait(zio));
9645 }
9646 
9647 static void
9648 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9649 {
9650 	char *packed = NULL;
9651 	size_t bufsize;
9652 	size_t nvsize = 0;
9653 	dmu_buf_t *db;
9654 
9655 	VERIFY0(nvlist_size(nv, &nvsize, NV_ENCODE_XDR));
9656 
9657 	/*
9658 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9659 	 * information.  This avoids the dmu_buf_will_dirty() path and
9660 	 * saves us a pre-read to get data we don't actually care about.
9661 	 */
9662 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9663 	packed = vmem_alloc(bufsize, KM_SLEEP);
9664 
9665 	VERIFY0(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9666 	    KM_SLEEP));
9667 	memset(packed + nvsize, 0, bufsize - nvsize);
9668 
9669 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx,
9670 	    DMU_READ_NO_PREFETCH);
9671 
9672 	vmem_free(packed, bufsize);
9673 
9674 	VERIFY0(dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9675 	dmu_buf_will_dirty(db, tx);
9676 	*(uint64_t *)db->db_data = nvsize;
9677 	dmu_buf_rele(db, FTAG);
9678 }
9679 
9680 static void
9681 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9682     const char *config, const char *entry)
9683 {
9684 	nvlist_t *nvroot;
9685 	nvlist_t **list;
9686 	int i;
9687 
9688 	if (!sav->sav_sync)
9689 		return;
9690 
9691 	/*
9692 	 * Update the MOS nvlist describing the list of available devices.
9693 	 * spa_validate_aux() will have already made sure this nvlist is
9694 	 * valid and the vdevs are labeled appropriately.
9695 	 */
9696 	if (sav->sav_object == 0) {
9697 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9698 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9699 		    sizeof (uint64_t), tx);
9700 		VERIFY(zap_update(spa->spa_meta_objset,
9701 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9702 		    &sav->sav_object, tx) == 0);
9703 	}
9704 
9705 	nvroot = fnvlist_alloc();
9706 	if (sav->sav_count == 0) {
9707 		fnvlist_add_nvlist_array(nvroot, config,
9708 		    (const nvlist_t * const *)NULL, 0);
9709 	} else {
9710 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9711 		for (i = 0; i < sav->sav_count; i++)
9712 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9713 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9714 		fnvlist_add_nvlist_array(nvroot, config,
9715 		    (const nvlist_t * const *)list, sav->sav_count);
9716 		for (i = 0; i < sav->sav_count; i++)
9717 			nvlist_free(list[i]);
9718 		kmem_free(list, sav->sav_count * sizeof (void *));
9719 	}
9720 
9721 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9722 	nvlist_free(nvroot);
9723 
9724 	sav->sav_sync = B_FALSE;
9725 }
9726 
9727 /*
9728  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9729  * The all-vdev ZAP must be empty.
9730  */
9731 static void
9732 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9733 {
9734 	spa_t *spa = vd->vdev_spa;
9735 
9736 	if (vd->vdev_root_zap != 0 &&
9737 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9738 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9739 		    vd->vdev_root_zap, tx));
9740 	}
9741 	if (vd->vdev_top_zap != 0) {
9742 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9743 		    vd->vdev_top_zap, tx));
9744 	}
9745 	if (vd->vdev_leaf_zap != 0) {
9746 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9747 		    vd->vdev_leaf_zap, tx));
9748 	}
9749 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9750 		spa_avz_build(vd->vdev_child[i], avz, tx);
9751 	}
9752 }
9753 
9754 static void
9755 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9756 {
9757 	nvlist_t *config;
9758 
9759 	/*
9760 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9761 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9762 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9763 	 * need to rebuild the AVZ although the config may not be dirty.
9764 	 */
9765 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9766 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9767 		return;
9768 
9769 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9770 
9771 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9772 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9773 	    spa->spa_all_vdev_zaps != 0);
9774 
9775 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9776 		/* Make and build the new AVZ */
9777 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9778 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9779 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9780 
9781 		/* Diff old AVZ with new one */
9782 		zap_cursor_t zc;
9783 		zap_attribute_t *za = zap_attribute_alloc();
9784 
9785 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9786 		    spa->spa_all_vdev_zaps);
9787 		    zap_cursor_retrieve(&zc, za) == 0;
9788 		    zap_cursor_advance(&zc)) {
9789 			uint64_t vdzap = za->za_first_integer;
9790 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9791 			    vdzap) == ENOENT) {
9792 				/*
9793 				 * ZAP is listed in old AVZ but not in new one;
9794 				 * destroy it
9795 				 */
9796 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9797 				    tx));
9798 			}
9799 		}
9800 
9801 		zap_cursor_fini(&zc);
9802 		zap_attribute_free(za);
9803 
9804 		/* Destroy the old AVZ */
9805 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9806 		    spa->spa_all_vdev_zaps, tx));
9807 
9808 		/* Replace the old AVZ in the dir obj with the new one */
9809 		VERIFY0(zap_update(spa->spa_meta_objset,
9810 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9811 		    sizeof (new_avz), 1, &new_avz, tx));
9812 
9813 		spa->spa_all_vdev_zaps = new_avz;
9814 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9815 		zap_cursor_t zc;
9816 		zap_attribute_t *za = zap_attribute_alloc();
9817 
9818 		/* Walk through the AVZ and destroy all listed ZAPs */
9819 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9820 		    spa->spa_all_vdev_zaps);
9821 		    zap_cursor_retrieve(&zc, za) == 0;
9822 		    zap_cursor_advance(&zc)) {
9823 			uint64_t zap = za->za_first_integer;
9824 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9825 		}
9826 
9827 		zap_cursor_fini(&zc);
9828 		zap_attribute_free(za);
9829 
9830 		/* Destroy and unlink the AVZ itself */
9831 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9832 		    spa->spa_all_vdev_zaps, tx));
9833 		VERIFY0(zap_remove(spa->spa_meta_objset,
9834 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9835 		spa->spa_all_vdev_zaps = 0;
9836 	}
9837 
9838 	if (spa->spa_all_vdev_zaps == 0) {
9839 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9840 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9841 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9842 	}
9843 	spa->spa_avz_action = AVZ_ACTION_NONE;
9844 
9845 	/* Create ZAPs for vdevs that don't have them. */
9846 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9847 
9848 	config = spa_config_generate(spa, spa->spa_root_vdev,
9849 	    dmu_tx_get_txg(tx), B_FALSE);
9850 
9851 	/*
9852 	 * If we're upgrading the spa version then make sure that
9853 	 * the config object gets updated with the correct version.
9854 	 */
9855 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9856 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9857 		    spa->spa_uberblock.ub_version);
9858 
9859 	spa_config_exit(spa, SCL_STATE, FTAG);
9860 
9861 	nvlist_free(spa->spa_config_syncing);
9862 	spa->spa_config_syncing = config;
9863 
9864 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9865 }
9866 
9867 static void
9868 spa_sync_version(void *arg, dmu_tx_t *tx)
9869 {
9870 	uint64_t *versionp = arg;
9871 	uint64_t version = *versionp;
9872 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9873 
9874 	/*
9875 	 * Setting the version is special cased when first creating the pool.
9876 	 */
9877 	ASSERT(tx->tx_txg != TXG_INITIAL);
9878 
9879 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9880 	ASSERT(version >= spa_version(spa));
9881 
9882 	spa->spa_uberblock.ub_version = version;
9883 	vdev_config_dirty(spa->spa_root_vdev);
9884 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9885 	    (longlong_t)version);
9886 }
9887 
9888 /*
9889  * Set zpool properties.
9890  */
9891 static void
9892 spa_sync_props(void *arg, dmu_tx_t *tx)
9893 {
9894 	nvlist_t *nvp = arg;
9895 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9896 	objset_t *mos = spa->spa_meta_objset;
9897 	nvpair_t *elem = NULL;
9898 
9899 	mutex_enter(&spa->spa_props_lock);
9900 
9901 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9902 		uint64_t intval;
9903 		const char *strval, *fname;
9904 		zpool_prop_t prop;
9905 		const char *propname;
9906 		const char *elemname = nvpair_name(elem);
9907 		zprop_type_t proptype;
9908 		spa_feature_t fid;
9909 
9910 		switch (prop = zpool_name_to_prop(elemname)) {
9911 		case ZPOOL_PROP_VERSION:
9912 			intval = fnvpair_value_uint64(elem);
9913 			/*
9914 			 * The version is synced separately before other
9915 			 * properties and should be correct by now.
9916 			 */
9917 			ASSERT3U(spa_version(spa), >=, intval);
9918 			break;
9919 
9920 		case ZPOOL_PROP_ALTROOT:
9921 			/*
9922 			 * 'altroot' is a non-persistent property. It should
9923 			 * have been set temporarily at creation or import time.
9924 			 */
9925 			ASSERT(spa->spa_root != NULL);
9926 			break;
9927 
9928 		case ZPOOL_PROP_READONLY:
9929 		case ZPOOL_PROP_CACHEFILE:
9930 			/*
9931 			 * 'readonly' and 'cachefile' are also non-persistent
9932 			 * properties.
9933 			 */
9934 			break;
9935 		case ZPOOL_PROP_COMMENT:
9936 			strval = fnvpair_value_string(elem);
9937 			if (spa->spa_comment != NULL)
9938 				spa_strfree(spa->spa_comment);
9939 			spa->spa_comment = spa_strdup(strval);
9940 			/*
9941 			 * We need to dirty the configuration on all the vdevs
9942 			 * so that their labels get updated.  We also need to
9943 			 * update the cache file to keep it in sync with the
9944 			 * MOS version. It's unnecessary to do this for pool
9945 			 * creation since the vdev's configuration has already
9946 			 * been dirtied.
9947 			 */
9948 			if (tx->tx_txg != TXG_INITIAL) {
9949 				vdev_config_dirty(spa->spa_root_vdev);
9950 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9951 			}
9952 			spa_history_log_internal(spa, "set", tx,
9953 			    "%s=%s", elemname, strval);
9954 			break;
9955 		case ZPOOL_PROP_COMPATIBILITY:
9956 			strval = fnvpair_value_string(elem);
9957 			if (spa->spa_compatibility != NULL)
9958 				spa_strfree(spa->spa_compatibility);
9959 			spa->spa_compatibility = spa_strdup(strval);
9960 			/*
9961 			 * Dirty the configuration on vdevs as above.
9962 			 */
9963 			if (tx->tx_txg != TXG_INITIAL) {
9964 				vdev_config_dirty(spa->spa_root_vdev);
9965 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9966 			}
9967 
9968 			spa_history_log_internal(spa, "set", tx,
9969 			    "%s=%s", nvpair_name(elem), strval);
9970 			break;
9971 
9972 		case ZPOOL_PROP_INVAL:
9973 			if (zpool_prop_feature(elemname)) {
9974 				fname = strchr(elemname, '@') + 1;
9975 				VERIFY0(zfeature_lookup_name(fname, &fid));
9976 
9977 				spa_feature_enable(spa, fid, tx);
9978 				spa_history_log_internal(spa, "set", tx,
9979 				    "%s=enabled", elemname);
9980 				break;
9981 			} else if (!zfs_prop_user(elemname)) {
9982 				ASSERT(zpool_prop_feature(elemname));
9983 				break;
9984 			}
9985 			zfs_fallthrough;
9986 		default:
9987 			/*
9988 			 * Set pool property values in the poolprops mos object.
9989 			 */
9990 			if (spa->spa_pool_props_object == 0) {
9991 				spa->spa_pool_props_object =
9992 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9993 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9994 				    tx);
9995 			}
9996 
9997 			/* normalize the property name */
9998 			if (prop == ZPOOL_PROP_INVAL) {
9999 				propname = elemname;
10000 				proptype = PROP_TYPE_STRING;
10001 			} else {
10002 				propname = zpool_prop_to_name(prop);
10003 				proptype = zpool_prop_get_type(prop);
10004 			}
10005 
10006 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
10007 				ASSERT(proptype == PROP_TYPE_STRING);
10008 				strval = fnvpair_value_string(elem);
10009 				if (strlen(strval) == 0) {
10010 					/* remove the property if value == "" */
10011 					(void) zap_remove(mos,
10012 					    spa->spa_pool_props_object,
10013 					    propname, tx);
10014 				} else {
10015 					VERIFY0(zap_update(mos,
10016 					    spa->spa_pool_props_object,
10017 					    propname, 1, strlen(strval) + 1,
10018 					    strval, tx));
10019 				}
10020 				spa_history_log_internal(spa, "set", tx,
10021 				    "%s=%s", elemname, strval);
10022 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
10023 				intval = fnvpair_value_uint64(elem);
10024 
10025 				if (proptype == PROP_TYPE_INDEX) {
10026 					const char *unused;
10027 					VERIFY0(zpool_prop_index_to_string(
10028 					    prop, intval, &unused));
10029 				}
10030 				VERIFY0(zap_update(mos,
10031 				    spa->spa_pool_props_object, propname,
10032 				    8, 1, &intval, tx));
10033 				spa_history_log_internal(spa, "set", tx,
10034 				    "%s=%lld", elemname,
10035 				    (longlong_t)intval);
10036 
10037 				switch (prop) {
10038 				case ZPOOL_PROP_DELEGATION:
10039 					spa->spa_delegation = intval;
10040 					break;
10041 				case ZPOOL_PROP_BOOTFS:
10042 					spa->spa_bootfs = intval;
10043 					break;
10044 				case ZPOOL_PROP_FAILUREMODE:
10045 					spa->spa_failmode = intval;
10046 					break;
10047 				case ZPOOL_PROP_AUTOTRIM:
10048 					spa->spa_autotrim = intval;
10049 					spa_async_request(spa,
10050 					    SPA_ASYNC_AUTOTRIM_RESTART);
10051 					break;
10052 				case ZPOOL_PROP_AUTOEXPAND:
10053 					spa->spa_autoexpand = intval;
10054 					if (tx->tx_txg != TXG_INITIAL)
10055 						spa_async_request(spa,
10056 						    SPA_ASYNC_AUTOEXPAND);
10057 					break;
10058 				case ZPOOL_PROP_MULTIHOST:
10059 					spa->spa_multihost = intval;
10060 					break;
10061 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
10062 					spa->spa_dedup_table_quota = intval;
10063 					break;
10064 				default:
10065 					break;
10066 				}
10067 			} else {
10068 				ASSERT(0); /* not allowed */
10069 			}
10070 		}
10071 
10072 	}
10073 
10074 	mutex_exit(&spa->spa_props_lock);
10075 }
10076 
10077 /*
10078  * Perform one-time upgrade on-disk changes.  spa_version() does not
10079  * reflect the new version this txg, so there must be no changes this
10080  * txg to anything that the upgrade code depends on after it executes.
10081  * Therefore this must be called after dsl_pool_sync() does the sync
10082  * tasks.
10083  */
10084 static void
10085 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
10086 {
10087 	if (spa_sync_pass(spa) != 1)
10088 		return;
10089 
10090 	dsl_pool_t *dp = spa->spa_dsl_pool;
10091 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
10092 
10093 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
10094 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
10095 		dsl_pool_create_origin(dp, tx);
10096 
10097 		/* Keeping the origin open increases spa_minref */
10098 		spa->spa_minref += 3;
10099 	}
10100 
10101 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
10102 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
10103 		dsl_pool_upgrade_clones(dp, tx);
10104 	}
10105 
10106 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
10107 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
10108 		dsl_pool_upgrade_dir_clones(dp, tx);
10109 
10110 		/* Keeping the freedir open increases spa_minref */
10111 		spa->spa_minref += 3;
10112 	}
10113 
10114 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
10115 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10116 		spa_feature_create_zap_objects(spa, tx);
10117 	}
10118 
10119 	/*
10120 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
10121 	 * when possibility to use lz4 compression for metadata was added
10122 	 * Old pools that have this feature enabled must be upgraded to have
10123 	 * this feature active
10124 	 */
10125 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
10126 		boolean_t lz4_en = spa_feature_is_enabled(spa,
10127 		    SPA_FEATURE_LZ4_COMPRESS);
10128 		boolean_t lz4_ac = spa_feature_is_active(spa,
10129 		    SPA_FEATURE_LZ4_COMPRESS);
10130 
10131 		if (lz4_en && !lz4_ac)
10132 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
10133 	}
10134 
10135 	/*
10136 	 * If we haven't written the salt, do so now.  Note that the
10137 	 * feature may not be activated yet, but that's fine since
10138 	 * the presence of this ZAP entry is backwards compatible.
10139 	 */
10140 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
10141 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
10142 		VERIFY0(zap_add(spa->spa_meta_objset,
10143 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
10144 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
10145 		    spa->spa_cksum_salt.zcs_bytes, tx));
10146 	}
10147 
10148 	rrw_exit(&dp->dp_config_rwlock, FTAG);
10149 }
10150 
10151 static void
10152 vdev_indirect_state_sync_verify(vdev_t *vd)
10153 {
10154 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
10155 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
10156 
10157 	if (vd->vdev_ops == &vdev_indirect_ops) {
10158 		ASSERT(vim != NULL);
10159 		ASSERT(vib != NULL);
10160 	}
10161 
10162 	uint64_t obsolete_sm_object = 0;
10163 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
10164 	if (obsolete_sm_object != 0) {
10165 		ASSERT(vd->vdev_obsolete_sm != NULL);
10166 		ASSERT(vd->vdev_removing ||
10167 		    vd->vdev_ops == &vdev_indirect_ops);
10168 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
10169 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
10170 		ASSERT3U(obsolete_sm_object, ==,
10171 		    space_map_object(vd->vdev_obsolete_sm));
10172 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
10173 		    space_map_allocated(vd->vdev_obsolete_sm));
10174 	}
10175 	ASSERT(vd->vdev_obsolete_segments != NULL);
10176 
10177 	/*
10178 	 * Since frees / remaps to an indirect vdev can only
10179 	 * happen in syncing context, the obsolete segments
10180 	 * tree must be empty when we start syncing.
10181 	 */
10182 	ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments));
10183 }
10184 
10185 /*
10186  * Set the top-level vdev's max queue depth. Evaluate each top-level's
10187  * async write queue depth in case it changed. The max queue depth will
10188  * not change in the middle of syncing out this txg.
10189  */
10190 static void
10191 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
10192 {
10193 	ASSERT(spa_writeable(spa));
10194 
10195 	metaslab_class_balance(spa_normal_class(spa), B_TRUE);
10196 	metaslab_class_balance(spa_special_class(spa), B_TRUE);
10197 	metaslab_class_balance(spa_dedup_class(spa), B_TRUE);
10198 }
10199 
10200 static void
10201 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
10202 {
10203 	ASSERT(spa_writeable(spa));
10204 
10205 	vdev_t *rvd = spa->spa_root_vdev;
10206 	for (int c = 0; c < rvd->vdev_children; c++) {
10207 		vdev_t *vd = rvd->vdev_child[c];
10208 		vdev_indirect_state_sync_verify(vd);
10209 
10210 		if (vdev_indirect_should_condense(vd)) {
10211 			spa_condense_indirect_start_sync(vd, tx);
10212 			break;
10213 		}
10214 	}
10215 }
10216 
10217 static void
10218 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
10219 {
10220 	objset_t *mos = spa->spa_meta_objset;
10221 	dsl_pool_t *dp = spa->spa_dsl_pool;
10222 	uint64_t txg = tx->tx_txg;
10223 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
10224 
10225 	do {
10226 		int pass = ++spa->spa_sync_pass;
10227 
10228 		spa_sync_config_object(spa, tx);
10229 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
10230 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
10231 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
10232 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
10233 		spa_errlog_sync(spa, txg);
10234 		dsl_pool_sync(dp, txg);
10235 
10236 		if (pass < zfs_sync_pass_deferred_free ||
10237 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
10238 			/*
10239 			 * If the log space map feature is active we don't
10240 			 * care about deferred frees and the deferred bpobj
10241 			 * as the log space map should effectively have the
10242 			 * same results (i.e. appending only to one object).
10243 			 */
10244 			spa_sync_frees(spa, free_bpl, tx);
10245 		} else {
10246 			/*
10247 			 * We can not defer frees in pass 1, because
10248 			 * we sync the deferred frees later in pass 1.
10249 			 */
10250 			ASSERT3U(pass, >, 1);
10251 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
10252 			    &spa->spa_deferred_bpobj, tx);
10253 		}
10254 
10255 		brt_sync(spa, txg);
10256 		ddt_sync(spa, txg);
10257 		dsl_scan_sync(dp, tx);
10258 		dsl_errorscrub_sync(dp, tx);
10259 		svr_sync(spa, tx);
10260 		spa_sync_upgrades(spa, tx);
10261 
10262 		spa_flush_metaslabs(spa, tx);
10263 
10264 		vdev_t *vd = NULL;
10265 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10266 		    != NULL)
10267 			vdev_sync(vd, txg);
10268 
10269 		if (pass == 1) {
10270 			/*
10271 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10272 			 * the config. If that happens, this txg should not
10273 			 * be a no-op. So we must sync the config to the MOS
10274 			 * before checking for no-op.
10275 			 *
10276 			 * Note that when the config is dirty, it will
10277 			 * be written to the MOS (i.e. the MOS will be
10278 			 * dirtied) every time we call spa_sync_config_object()
10279 			 * in this txg.  Therefore we can't call this after
10280 			 * dsl_pool_sync() every pass, because it would
10281 			 * prevent us from converging, since we'd dirty
10282 			 * the MOS every pass.
10283 			 *
10284 			 * Sync tasks can only be processed in pass 1, so
10285 			 * there's no need to do this in later passes.
10286 			 */
10287 			spa_sync_config_object(spa, tx);
10288 		}
10289 
10290 		/*
10291 		 * Note: We need to check if the MOS is dirty because we could
10292 		 * have marked the MOS dirty without updating the uberblock
10293 		 * (e.g. if we have sync tasks but no dirty user data). We need
10294 		 * to check the uberblock's rootbp because it is updated if we
10295 		 * have synced out dirty data (though in this case the MOS will
10296 		 * most likely also be dirty due to second order effects, we
10297 		 * don't want to rely on that here).
10298 		 */
10299 		if (pass == 1 &&
10300 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10301 		    !dmu_objset_is_dirty(mos, txg)) {
10302 			/*
10303 			 * Nothing changed on the first pass, therefore this
10304 			 * TXG is a no-op. Avoid syncing deferred frees, so
10305 			 * that we can keep this TXG as a no-op.
10306 			 */
10307 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10308 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10309 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10310 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10311 			break;
10312 		}
10313 
10314 		spa_sync_deferred_frees(spa, tx);
10315 	} while (dmu_objset_is_dirty(mos, txg));
10316 }
10317 
10318 /*
10319  * Rewrite the vdev configuration (which includes the uberblock) to
10320  * commit the transaction group.
10321  *
10322  * If there are no dirty vdevs, we sync the uberblock to a few random
10323  * top-level vdevs that are known to be visible in the config cache
10324  * (see spa_vdev_add() for a complete description). If there *are* dirty
10325  * vdevs, sync the uberblock to all vdevs.
10326  */
10327 static void
10328 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10329 {
10330 	vdev_t *rvd = spa->spa_root_vdev;
10331 	uint64_t txg = tx->tx_txg;
10332 
10333 	for (;;) {
10334 		int error = 0;
10335 
10336 		/*
10337 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10338 		 * while we're attempting to write the vdev labels.
10339 		 */
10340 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10341 
10342 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10343 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10344 			int svdcount = 0;
10345 			int children = rvd->vdev_children;
10346 			int c0 = random_in_range(children);
10347 
10348 			for (int c = 0; c < children; c++) {
10349 				vdev_t *vd =
10350 				    rvd->vdev_child[(c0 + c) % children];
10351 
10352 				/* Stop when revisiting the first vdev */
10353 				if (c > 0 && svd[0] == vd)
10354 					break;
10355 
10356 				if (vd->vdev_ms_array == 0 ||
10357 				    vd->vdev_islog ||
10358 				    !vdev_is_concrete(vd))
10359 					continue;
10360 
10361 				svd[svdcount++] = vd;
10362 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10363 					break;
10364 			}
10365 			error = vdev_config_sync(svd, svdcount, txg);
10366 		} else {
10367 			error = vdev_config_sync(rvd->vdev_child,
10368 			    rvd->vdev_children, txg);
10369 		}
10370 
10371 		if (error == 0)
10372 			spa->spa_last_synced_guid = rvd->vdev_guid;
10373 
10374 		spa_config_exit(spa, SCL_STATE, FTAG);
10375 
10376 		if (error == 0)
10377 			break;
10378 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10379 		zio_resume_wait(spa);
10380 	}
10381 }
10382 
10383 /*
10384  * Sync the specified transaction group.  New blocks may be dirtied as
10385  * part of the process, so we iterate until it converges.
10386  */
10387 void
10388 spa_sync(spa_t *spa, uint64_t txg)
10389 {
10390 	vdev_t *vd = NULL;
10391 
10392 	VERIFY(spa_writeable(spa));
10393 
10394 	/*
10395 	 * Wait for i/os issued in open context that need to complete
10396 	 * before this txg syncs.
10397 	 */
10398 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10399 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10400 	    ZIO_FLAG_CANFAIL);
10401 
10402 	/*
10403 	 * Now that there can be no more cloning in this transaction group,
10404 	 * but we are still before issuing frees, we can process pending BRT
10405 	 * updates.
10406 	 */
10407 	brt_pending_apply(spa, txg);
10408 
10409 	spa_sync_time_logger(spa, txg);
10410 
10411 	/*
10412 	 * Lock out configuration changes.
10413 	 */
10414 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10415 
10416 	spa->spa_syncing_txg = txg;
10417 	spa->spa_sync_pass = 0;
10418 
10419 	/*
10420 	 * If there are any pending vdev state changes, convert them
10421 	 * into config changes that go out with this transaction group.
10422 	 */
10423 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10424 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10425 		/* Avoid holding the write lock unless actually necessary */
10426 		if (vd->vdev_aux == NULL) {
10427 			vdev_state_clean(vd);
10428 			vdev_config_dirty(vd);
10429 			continue;
10430 		}
10431 		/*
10432 		 * We need the write lock here because, for aux vdevs,
10433 		 * calling vdev_config_dirty() modifies sav_config.
10434 		 * This is ugly and will become unnecessary when we
10435 		 * eliminate the aux vdev wart by integrating all vdevs
10436 		 * into the root vdev tree.
10437 		 */
10438 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10439 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10440 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10441 			vdev_state_clean(vd);
10442 			vdev_config_dirty(vd);
10443 		}
10444 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10445 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10446 	}
10447 	spa_config_exit(spa, SCL_STATE, FTAG);
10448 
10449 	dsl_pool_t *dp = spa->spa_dsl_pool;
10450 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10451 
10452 	spa->spa_sync_starttime = gethrtime();
10453 
10454 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10455 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10456 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10457 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10458 
10459 	/*
10460 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10461 	 * set spa_deflate if we have no raid-z vdevs.
10462 	 */
10463 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10464 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10465 		vdev_t *rvd = spa->spa_root_vdev;
10466 
10467 		int i;
10468 		for (i = 0; i < rvd->vdev_children; i++) {
10469 			vd = rvd->vdev_child[i];
10470 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10471 				break;
10472 		}
10473 		if (i == rvd->vdev_children) {
10474 			spa->spa_deflate = TRUE;
10475 			VERIFY0(zap_add(spa->spa_meta_objset,
10476 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10477 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10478 		}
10479 	}
10480 
10481 	spa_sync_adjust_vdev_max_queue_depth(spa);
10482 
10483 	spa_sync_condense_indirect(spa, tx);
10484 
10485 	spa_sync_iterate_to_convergence(spa, tx);
10486 
10487 #ifdef ZFS_DEBUG
10488 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10489 	/*
10490 	 * Make sure that the number of ZAPs for all the vdevs matches
10491 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10492 	 * called if the config is dirty; otherwise there may be
10493 	 * outstanding AVZ operations that weren't completed in
10494 	 * spa_sync_config_object.
10495 	 */
10496 		uint64_t all_vdev_zap_entry_count;
10497 		ASSERT0(zap_count(spa->spa_meta_objset,
10498 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10499 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10500 		    all_vdev_zap_entry_count);
10501 	}
10502 #endif
10503 
10504 	if (spa->spa_vdev_removal != NULL) {
10505 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10506 	}
10507 
10508 	spa_sync_rewrite_vdev_config(spa, tx);
10509 	dmu_tx_commit(tx);
10510 
10511 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10512 	spa->spa_deadman_tqid = 0;
10513 
10514 	/*
10515 	 * Clear the dirty config list.
10516 	 */
10517 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10518 		vdev_config_clean(vd);
10519 
10520 	/*
10521 	 * Now that the new config has synced transactionally,
10522 	 * let it become visible to the config cache.
10523 	 */
10524 	if (spa->spa_config_syncing != NULL) {
10525 		spa_config_set(spa, spa->spa_config_syncing);
10526 		spa->spa_config_txg = txg;
10527 		spa->spa_config_syncing = NULL;
10528 	}
10529 
10530 	dsl_pool_sync_done(dp, txg);
10531 
10532 	/*
10533 	 * Update usable space statistics.
10534 	 */
10535 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10536 	    != NULL)
10537 		vdev_sync_done(vd, txg);
10538 
10539 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10540 	metaslab_class_evict_old(spa->spa_log_class, txg);
10541 	/* Embedded log classes have only one metaslab per vdev. */
10542 	metaslab_class_evict_old(spa->spa_special_class, txg);
10543 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10544 
10545 	spa_sync_close_syncing_log_sm(spa);
10546 
10547 	spa_update_dspace(spa);
10548 
10549 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10550 		vdev_autotrim_kick(spa);
10551 
10552 	/*
10553 	 * It had better be the case that we didn't dirty anything
10554 	 * since vdev_config_sync().
10555 	 */
10556 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10557 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10558 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10559 
10560 	while (zfs_pause_spa_sync)
10561 		delay(1);
10562 
10563 	spa->spa_sync_pass = 0;
10564 
10565 	/*
10566 	 * Update the last synced uberblock here. We want to do this at
10567 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10568 	 * will be guaranteed that all the processing associated with
10569 	 * that txg has been completed.
10570 	 */
10571 	spa->spa_ubsync = spa->spa_uberblock;
10572 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10573 
10574 	spa_handle_ignored_writes(spa);
10575 
10576 	/*
10577 	 * If any async tasks have been requested, kick them off.
10578 	 */
10579 	spa_async_dispatch(spa);
10580 }
10581 
10582 /*
10583  * Sync all pools.  We don't want to hold the namespace lock across these
10584  * operations, so we take a reference on the spa_t and drop the lock during the
10585  * sync.
10586  */
10587 void
10588 spa_sync_allpools(void)
10589 {
10590 	spa_t *spa = NULL;
10591 	spa_namespace_enter(FTAG);
10592 	while ((spa = spa_next(spa)) != NULL) {
10593 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10594 		    !spa_writeable(spa) || spa_suspended(spa))
10595 			continue;
10596 		spa_open_ref(spa, FTAG);
10597 		spa_namespace_exit(FTAG);
10598 		txg_wait_synced(spa_get_dsl(spa), 0);
10599 		spa_namespace_enter(FTAG);
10600 		spa_close(spa, FTAG);
10601 	}
10602 	spa_namespace_exit(FTAG);
10603 }
10604 
10605 taskq_t *
10606 spa_sync_tq_create(spa_t *spa, const char *name)
10607 {
10608 	kthread_t **kthreads;
10609 
10610 	ASSERT0P(spa->spa_sync_tq);
10611 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10612 
10613 	/*
10614 	 * - do not allow more allocators than cpus.
10615 	 * - there may be more cpus than allocators.
10616 	 * - do not allow more sync taskq threads than allocators or cpus.
10617 	 */
10618 	int nthreads = spa->spa_alloc_count;
10619 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10620 	    nthreads, KM_SLEEP);
10621 
10622 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10623 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10624 	VERIFY(spa->spa_sync_tq != NULL);
10625 	VERIFY(kthreads != NULL);
10626 
10627 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10628 	for (int i = 0; i < nthreads; i++, ti++) {
10629 		ti->sti_thread = kthreads[i];
10630 		ti->sti_allocator = i;
10631 	}
10632 
10633 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10634 	return (spa->spa_sync_tq);
10635 }
10636 
10637 void
10638 spa_sync_tq_destroy(spa_t *spa)
10639 {
10640 	ASSERT(spa->spa_sync_tq != NULL);
10641 
10642 	taskq_wait(spa->spa_sync_tq);
10643 	taskq_destroy(spa->spa_sync_tq);
10644 	kmem_free(spa->spa_syncthreads,
10645 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10646 	spa->spa_sync_tq = NULL;
10647 }
10648 
10649 uint_t
10650 spa_acq_allocator(spa_t *spa)
10651 {
10652 	int i;
10653 
10654 	if (spa->spa_alloc_count == 1)
10655 		return (0);
10656 
10657 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10658 	uint_t r = spa->spa_allocs_use->sau_rotor;
10659 	do {
10660 		if (++r == spa->spa_alloc_count)
10661 			r = 0;
10662 	} while (spa->spa_allocs_use->sau_inuse[r]);
10663 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10664 	spa->spa_allocs_use->sau_rotor = r;
10665 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10666 
10667 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10668 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10669 		if (ti->sti_thread == curthread) {
10670 			ti->sti_allocator = r;
10671 			break;
10672 		}
10673 	}
10674 	ASSERT3S(i, <, spa->spa_alloc_count);
10675 	return (r);
10676 }
10677 
10678 void
10679 spa_rel_allocator(spa_t *spa, uint_t allocator)
10680 {
10681 	if (spa->spa_alloc_count > 1)
10682 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10683 }
10684 
10685 void
10686 spa_select_allocator(zio_t *zio)
10687 {
10688 	zbookmark_phys_t *bm = &zio->io_bookmark;
10689 	spa_t *spa = zio->io_spa;
10690 
10691 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10692 
10693 	/*
10694 	 * A gang block (for example) may have inherited its parent's
10695 	 * allocator, in which case there is nothing further to do here.
10696 	 */
10697 	if (ZIO_HAS_ALLOCATOR(zio))
10698 		return;
10699 
10700 	ASSERT(spa != NULL);
10701 	ASSERT(bm != NULL);
10702 
10703 	/*
10704 	 * First try to use an allocator assigned to the syncthread, and set
10705 	 * the corresponding write issue taskq for the allocator.
10706 	 * Note, we must have an open pool to do this.
10707 	 */
10708 	if (spa->spa_sync_tq != NULL) {
10709 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10710 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10711 			if (ti->sti_thread == curthread) {
10712 				zio->io_allocator = ti->sti_allocator;
10713 				return;
10714 			}
10715 		}
10716 	}
10717 
10718 	/*
10719 	 * We want to try to use as many allocators as possible to help improve
10720 	 * performance, but we also want logically adjacent IOs to be physically
10721 	 * adjacent to improve sequential read performance. We chunk each object
10722 	 * into 2^20 block regions, and then hash based on the objset, object,
10723 	 * level, and region to accomplish both of these goals.
10724 	 */
10725 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10726 	    bm->zb_blkid >> 20);
10727 
10728 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10729 }
10730 
10731 /*
10732  * ==========================================================================
10733  * Miscellaneous routines
10734  * ==========================================================================
10735  */
10736 
10737 /*
10738  * Remove all pools in the system.
10739  */
10740 void
10741 spa_evict_all(void)
10742 {
10743 	spa_t *spa;
10744 
10745 	/*
10746 	 * Remove all cached state.  All pools should be closed now,
10747 	 * so every spa in the AVL tree should be unreferenced.
10748 	 */
10749 	spa_namespace_enter(FTAG);
10750 	while ((spa = spa_next(NULL)) != NULL) {
10751 		/*
10752 		 * Stop async tasks.  The async thread may need to detach
10753 		 * a device that's been replaced, which requires grabbing
10754 		 * spa_namespace_lock, so we must drop it here.
10755 		 */
10756 		spa_open_ref(spa, FTAG);
10757 		spa_namespace_exit(FTAG);
10758 		spa_async_suspend(spa);
10759 		spa_namespace_enter(FTAG);
10760 		spa_close(spa, FTAG);
10761 
10762 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10763 			spa_unload(spa);
10764 			spa_deactivate(spa);
10765 		}
10766 		spa_remove(spa);
10767 	}
10768 	spa_namespace_exit(FTAG);
10769 }
10770 
10771 vdev_t *
10772 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10773 {
10774 	vdev_t *vd;
10775 	int i;
10776 
10777 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10778 		return (vd);
10779 
10780 	if (aux) {
10781 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10782 			vd = spa->spa_l2cache.sav_vdevs[i];
10783 			if (vd->vdev_guid == guid)
10784 				return (vd);
10785 		}
10786 
10787 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10788 			vd = spa->spa_spares.sav_vdevs[i];
10789 			if (vd->vdev_guid == guid)
10790 				return (vd);
10791 		}
10792 	}
10793 
10794 	return (NULL);
10795 }
10796 
10797 void
10798 spa_upgrade(spa_t *spa, uint64_t version)
10799 {
10800 	ASSERT(spa_writeable(spa));
10801 
10802 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10803 
10804 	/*
10805 	 * This should only be called for a non-faulted pool, and since a
10806 	 * future version would result in an unopenable pool, this shouldn't be
10807 	 * possible.
10808 	 */
10809 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10810 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10811 
10812 	spa->spa_uberblock.ub_version = version;
10813 	vdev_config_dirty(spa->spa_root_vdev);
10814 
10815 	spa_config_exit(spa, SCL_ALL, FTAG);
10816 
10817 	txg_wait_synced(spa_get_dsl(spa), 0);
10818 }
10819 
10820 static boolean_t
10821 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10822 {
10823 	(void) spa;
10824 	int i;
10825 	uint64_t vdev_guid;
10826 
10827 	for (i = 0; i < sav->sav_count; i++)
10828 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10829 			return (B_TRUE);
10830 
10831 	for (i = 0; i < sav->sav_npending; i++) {
10832 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10833 		    &vdev_guid) == 0 && vdev_guid == guid)
10834 			return (B_TRUE);
10835 	}
10836 
10837 	return (B_FALSE);
10838 }
10839 
10840 boolean_t
10841 spa_has_l2cache(spa_t *spa, uint64_t guid)
10842 {
10843 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10844 }
10845 
10846 boolean_t
10847 spa_has_spare(spa_t *spa, uint64_t guid)
10848 {
10849 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10850 }
10851 
10852 /*
10853  * Check if a pool has an active shared spare device.
10854  * Note: reference count of an active spare is 2, as a spare and as a replace
10855  */
10856 static boolean_t
10857 spa_has_active_shared_spare(spa_t *spa)
10858 {
10859 	int i, refcnt;
10860 	uint64_t pool;
10861 	spa_aux_vdev_t *sav = &spa->spa_spares;
10862 
10863 	for (i = 0; i < sav->sav_count; i++) {
10864 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10865 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10866 		    refcnt > 2)
10867 			return (B_TRUE);
10868 	}
10869 
10870 	return (B_FALSE);
10871 }
10872 
10873 uint64_t
10874 spa_total_metaslabs(spa_t *spa)
10875 {
10876 	vdev_t *rvd = spa->spa_root_vdev;
10877 
10878 	uint64_t m = 0;
10879 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10880 		vdev_t *vd = rvd->vdev_child[c];
10881 		if (!vdev_is_concrete(vd))
10882 			continue;
10883 		m += vd->vdev_ms_count;
10884 	}
10885 	return (m);
10886 }
10887 
10888 /*
10889  * Notify any waiting threads that some activity has switched from being in-
10890  * progress to not-in-progress so that the thread can wake up and determine
10891  * whether it is finished waiting.
10892  */
10893 void
10894 spa_notify_waiters(spa_t *spa)
10895 {
10896 	/*
10897 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10898 	 * happening between the waiting thread's check and cv_wait.
10899 	 */
10900 	mutex_enter(&spa->spa_activities_lock);
10901 	cv_broadcast(&spa->spa_activities_cv);
10902 	mutex_exit(&spa->spa_activities_lock);
10903 }
10904 
10905 /*
10906  * Notify any waiting threads that the pool is exporting, and then block until
10907  * they are finished using the spa_t.
10908  */
10909 void
10910 spa_wake_waiters(spa_t *spa)
10911 {
10912 	mutex_enter(&spa->spa_activities_lock);
10913 	spa->spa_waiters_cancel = B_TRUE;
10914 	cv_broadcast(&spa->spa_activities_cv);
10915 	while (spa->spa_waiters != 0)
10916 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10917 	spa->spa_waiters_cancel = B_FALSE;
10918 	mutex_exit(&spa->spa_activities_lock);
10919 }
10920 
10921 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10922 static boolean_t
10923 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10924 {
10925 	spa_t *spa = vd->vdev_spa;
10926 
10927 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10928 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10929 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10930 	    activity == ZPOOL_WAIT_TRIM);
10931 
10932 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10933 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10934 
10935 	mutex_exit(&spa->spa_activities_lock);
10936 	mutex_enter(lock);
10937 	mutex_enter(&spa->spa_activities_lock);
10938 
10939 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10940 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10941 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10942 	mutex_exit(lock);
10943 
10944 	if (in_progress)
10945 		return (B_TRUE);
10946 
10947 	for (int i = 0; i < vd->vdev_children; i++) {
10948 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10949 		    activity))
10950 			return (B_TRUE);
10951 	}
10952 
10953 	return (B_FALSE);
10954 }
10955 
10956 /*
10957  * If use_guid is true, this checks whether the vdev specified by guid is
10958  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10959  * is being initialized/trimmed. The caller must hold the config lock and
10960  * spa_activities_lock.
10961  */
10962 static int
10963 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10964     zpool_wait_activity_t activity, boolean_t *in_progress)
10965 {
10966 	mutex_exit(&spa->spa_activities_lock);
10967 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10968 	mutex_enter(&spa->spa_activities_lock);
10969 
10970 	vdev_t *vd;
10971 	if (use_guid) {
10972 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10973 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10974 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10975 			return (EINVAL);
10976 		}
10977 	} else {
10978 		vd = spa->spa_root_vdev;
10979 	}
10980 
10981 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10982 
10983 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10984 	return (0);
10985 }
10986 
10987 /*
10988  * Locking for waiting threads
10989  * ---------------------------
10990  *
10991  * Waiting threads need a way to check whether a given activity is in progress,
10992  * and then, if it is, wait for it to complete. Each activity will have some
10993  * in-memory representation of the relevant on-disk state which can be used to
10994  * determine whether or not the activity is in progress. The in-memory state and
10995  * the locking used to protect it will be different for each activity, and may
10996  * not be suitable for use with a cvar (e.g., some state is protected by the
10997  * config lock). To allow waiting threads to wait without any races, another
10998  * lock, spa_activities_lock, is used.
10999  *
11000  * When the state is checked, both the activity-specific lock (if there is one)
11001  * and spa_activities_lock are held. In some cases, the activity-specific lock
11002  * is acquired explicitly (e.g. the config lock). In others, the locking is
11003  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
11004  * thread releases the activity-specific lock and, if the activity is in
11005  * progress, then cv_waits using spa_activities_lock.
11006  *
11007  * The waiting thread is woken when another thread, one completing some
11008  * activity, updates the state of the activity and then calls
11009  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
11010  * needs to hold its activity-specific lock when updating the state, and this
11011  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
11012  *
11013  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
11014  * and because it is held when the waiting thread checks the state of the
11015  * activity, it can never be the case that the completing thread both updates
11016  * the activity state and cv_broadcasts in between the waiting thread's check
11017  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
11018  *
11019  * In order to prevent deadlock, when the waiting thread does its check, in some
11020  * cases it will temporarily drop spa_activities_lock in order to acquire the
11021  * activity-specific lock. The order in which spa_activities_lock and the
11022  * activity specific lock are acquired in the waiting thread is determined by
11023  * the order in which they are acquired in the completing thread; if the
11024  * completing thread calls spa_notify_waiters with the activity-specific lock
11025  * held, then the waiting thread must also acquire the activity-specific lock
11026  * first.
11027  */
11028 
11029 static int
11030 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
11031     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
11032 {
11033 	int error = 0;
11034 
11035 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
11036 
11037 	switch (activity) {
11038 	case ZPOOL_WAIT_CKPT_DISCARD:
11039 		*in_progress =
11040 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
11041 		    zap_contains(spa_meta_objset(spa),
11042 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
11043 		    ENOENT);
11044 		break;
11045 	case ZPOOL_WAIT_FREE:
11046 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
11047 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
11048 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
11049 		    spa_livelist_delete_check(spa));
11050 		break;
11051 	case ZPOOL_WAIT_INITIALIZE:
11052 	case ZPOOL_WAIT_TRIM:
11053 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
11054 		    activity, in_progress);
11055 		break;
11056 	case ZPOOL_WAIT_REPLACE:
11057 		mutex_exit(&spa->spa_activities_lock);
11058 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
11059 		mutex_enter(&spa->spa_activities_lock);
11060 
11061 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
11062 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
11063 		break;
11064 	case ZPOOL_WAIT_REMOVE:
11065 		*in_progress = (spa->spa_removing_phys.sr_state ==
11066 		    DSS_SCANNING);
11067 		break;
11068 	case ZPOOL_WAIT_RESILVER:
11069 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
11070 		if (*in_progress)
11071 			break;
11072 		zfs_fallthrough;
11073 	case ZPOOL_WAIT_SCRUB:
11074 	{
11075 		boolean_t scanning, paused, is_scrub;
11076 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
11077 
11078 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
11079 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
11080 		paused = dsl_scan_is_paused_scrub(scn);
11081 		*in_progress = (scanning && !paused &&
11082 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
11083 		break;
11084 	}
11085 	case ZPOOL_WAIT_RAIDZ_EXPAND:
11086 	{
11087 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
11088 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
11089 		break;
11090 	}
11091 	default:
11092 		panic("unrecognized value for activity %d", activity);
11093 	}
11094 
11095 	return (error);
11096 }
11097 
11098 static int
11099 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
11100     boolean_t use_tag, uint64_t tag, boolean_t *waited)
11101 {
11102 	/*
11103 	 * The tag is used to distinguish between instances of an activity.
11104 	 * 'initialize' and 'trim' are the only activities that we use this for.
11105 	 * The other activities can only have a single instance in progress in a
11106 	 * pool at one time, making the tag unnecessary.
11107 	 *
11108 	 * There can be multiple devices being replaced at once, but since they
11109 	 * all finish once resilvering finishes, we don't bother keeping track
11110 	 * of them individually, we just wait for them all to finish.
11111 	 */
11112 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
11113 	    activity != ZPOOL_WAIT_TRIM)
11114 		return (EINVAL);
11115 
11116 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
11117 		return (EINVAL);
11118 
11119 	spa_t *spa;
11120 	int error = spa_open(pool, &spa, FTAG);
11121 	if (error != 0)
11122 		return (error);
11123 
11124 	/*
11125 	 * Increment the spa's waiter count so that we can call spa_close and
11126 	 * still ensure that the spa_t doesn't get freed before this thread is
11127 	 * finished with it when the pool is exported. We want to call spa_close
11128 	 * before we start waiting because otherwise the additional ref would
11129 	 * prevent the pool from being exported or destroyed throughout the
11130 	 * potentially long wait.
11131 	 */
11132 	mutex_enter(&spa->spa_activities_lock);
11133 	spa->spa_waiters++;
11134 	spa_close(spa, FTAG);
11135 
11136 	*waited = B_FALSE;
11137 	for (;;) {
11138 		boolean_t in_progress;
11139 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
11140 		    &in_progress);
11141 
11142 		if (error || !in_progress || spa->spa_waiters_cancel)
11143 			break;
11144 
11145 		*waited = B_TRUE;
11146 
11147 		if (cv_wait_sig(&spa->spa_activities_cv,
11148 		    &spa->spa_activities_lock) == 0) {
11149 			error = EINTR;
11150 			break;
11151 		}
11152 	}
11153 
11154 	spa->spa_waiters--;
11155 	cv_signal(&spa->spa_waiters_cv);
11156 	mutex_exit(&spa->spa_activities_lock);
11157 
11158 	return (error);
11159 }
11160 
11161 /*
11162  * Wait for a particular instance of the specified activity to complete, where
11163  * the instance is identified by 'tag'
11164  */
11165 int
11166 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
11167     boolean_t *waited)
11168 {
11169 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
11170 }
11171 
11172 /*
11173  * Wait for all instances of the specified activity complete
11174  */
11175 int
11176 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
11177 {
11178 
11179 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
11180 }
11181 
11182 sysevent_t *
11183 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11184 {
11185 	sysevent_t *ev = NULL;
11186 #ifdef _KERNEL
11187 	nvlist_t *resource;
11188 
11189 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
11190 	if (resource) {
11191 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
11192 		ev->resource = resource;
11193 	}
11194 #else
11195 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
11196 #endif
11197 	return (ev);
11198 }
11199 
11200 void
11201 spa_event_post(sysevent_t *ev)
11202 {
11203 #ifdef _KERNEL
11204 	if (ev) {
11205 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
11206 		kmem_free(ev, sizeof (*ev));
11207 	}
11208 #else
11209 	(void) ev;
11210 #endif
11211 }
11212 
11213 /*
11214  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
11215  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
11216  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
11217  * in the userland libzpool, as we don't want consumers to misinterpret ztest
11218  * or zdb as real changes.
11219  */
11220 void
11221 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
11222 {
11223 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
11224 }
11225 
11226 /* state manipulation functions */
11227 EXPORT_SYMBOL(spa_open);
11228 EXPORT_SYMBOL(spa_open_rewind);
11229 EXPORT_SYMBOL(spa_get_stats);
11230 EXPORT_SYMBOL(spa_create);
11231 EXPORT_SYMBOL(spa_import);
11232 EXPORT_SYMBOL(spa_tryimport);
11233 EXPORT_SYMBOL(spa_destroy);
11234 EXPORT_SYMBOL(spa_export);
11235 EXPORT_SYMBOL(spa_reset);
11236 EXPORT_SYMBOL(spa_async_request);
11237 EXPORT_SYMBOL(spa_async_suspend);
11238 EXPORT_SYMBOL(spa_async_resume);
11239 EXPORT_SYMBOL(spa_inject_addref);
11240 EXPORT_SYMBOL(spa_inject_delref);
11241 EXPORT_SYMBOL(spa_scan_stat_init);
11242 EXPORT_SYMBOL(spa_scan_get_stats);
11243 
11244 /* device manipulation */
11245 EXPORT_SYMBOL(spa_vdev_add);
11246 EXPORT_SYMBOL(spa_vdev_attach);
11247 EXPORT_SYMBOL(spa_vdev_detach);
11248 EXPORT_SYMBOL(spa_vdev_setpath);
11249 EXPORT_SYMBOL(spa_vdev_setfru);
11250 EXPORT_SYMBOL(spa_vdev_split_mirror);
11251 
11252 /* spare statech is global across all pools) */
11253 EXPORT_SYMBOL(spa_spare_add);
11254 EXPORT_SYMBOL(spa_spare_remove);
11255 EXPORT_SYMBOL(spa_spare_exists);
11256 EXPORT_SYMBOL(spa_spare_activate);
11257 
11258 /* L2ARC statech is global across all pools) */
11259 EXPORT_SYMBOL(spa_l2cache_add);
11260 EXPORT_SYMBOL(spa_l2cache_remove);
11261 EXPORT_SYMBOL(spa_l2cache_exists);
11262 EXPORT_SYMBOL(spa_l2cache_activate);
11263 EXPORT_SYMBOL(spa_l2cache_drop);
11264 
11265 /* scanning */
11266 EXPORT_SYMBOL(spa_scan);
11267 EXPORT_SYMBOL(spa_scan_range);
11268 EXPORT_SYMBOL(spa_scan_stop);
11269 
11270 /* spa syncing */
11271 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11272 EXPORT_SYMBOL(spa_sync_allpools);
11273 
11274 /* properties */
11275 EXPORT_SYMBOL(spa_prop_set);
11276 EXPORT_SYMBOL(spa_prop_get);
11277 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11278 
11279 /* asynchronous event notification */
11280 EXPORT_SYMBOL(spa_event_notify);
11281 
11282 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11283 	"Percentage of CPUs to run a metaslab preload taskq");
11284 
11285 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11286 	"log2 fraction of arc that can be used by inflight I/Os when "
11287 	"verifying pool during import");
11288 
11289 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11290 	"Set to traverse metadata on pool import");
11291 
11292 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11293 	"Set to traverse data on pool import");
11294 
11295 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11296 	"Print vdev tree to zfs_dbgmsg during pool import");
11297 
11298 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11299 	"Percentage of CPUs to run an IO worker thread");
11300 
11301 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11302 	"Number of threads per IO worker taskqueue");
11303 
11304 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11305 	"Allow importing pool with up to this number of missing top-level "
11306 	"vdevs (in read-only mode)");
11307 
11308 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11309 	ZMOD_RW, "Set the livelist condense zthr to pause");
11310 
11311 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11312 	ZMOD_RW, "Set the livelist condense synctask to pause");
11313 
11314 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11315 	INT, ZMOD_RW,
11316 	"Whether livelist condensing was canceled in the synctask");
11317 
11318 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11319 	INT, ZMOD_RW,
11320 	"Whether livelist condensing was canceled in the zthr function");
11321 
11322 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11323 	ZMOD_RW,
11324 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11325 	"was being condensed");
11326 
11327 ZFS_MODULE_PARAM(zfs_spa, spa_, note_txg_time, UINT, ZMOD_RW,
11328 	"How frequently TXG timestamps are stored internally (in seconds)");
11329 
11330 ZFS_MODULE_PARAM(zfs_spa, spa_, flush_txg_time, UINT, ZMOD_RW,
11331 	"How frequently the TXG timestamps database should be flushed "
11332 	"to disk (in seconds)");
11333 
11334 #ifdef _KERNEL
11335 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11336 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11337 	"Configure IO queues for read IO");
11338 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11339 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11340 	"Configure IO queues for write IO");
11341 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_free,
11342 	spa_taskq_free_param_set, spa_taskq_free_param_get, ZMOD_RW,
11343 	"Configure IO queues for free IO");
11344 #endif
11345 
11346 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11347 	"Number of CPUs per write issue taskq");
11348