1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Portions Copyright (c) 2010, Oracle and/or its affiliates.
23 * All rights reserved.
24 */
25 /*
26 * Copyright (c) 2009, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
31 * Copyright 2017 Joyent, Inc.
32 */
33
34 /*
35 * DVMA code
36 * This file contains Intel IOMMU code that deals with DVMA
37 * i.e. DMA remapping.
38 */
39
40 #include <sys/sysmacros.h>
41 #include <sys/pcie.h>
42 #include <sys/pci_cfgspace.h>
43 #include <vm/hat_i86.h>
44 #include <sys/memlist.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/modhash.h>
48 #include <sys/immu.h>
49 #include <sys/x86_archext.h>
50 #include <sys/archsystm.h>
51
52 #undef TEST
53
54 /*
55 * Macros based on PCI spec
56 */
57 #define IMMU_PCI_REV2CLASS(r) ((r) >> 8) /* classcode from revid */
58 #define IMMU_PCI_CLASS2BASE(c) ((c) >> 16) /* baseclass from classcode */
59 #define IMMU_PCI_CLASS2SUB(c) (((c) >> 8) & 0xff); /* classcode */
60
61 #define IMMU_CONTIG_PADDR(d, p) \
62 ((d).dck_paddr && ((d).dck_paddr + (d).dck_npages * IMMU_PAGESIZE) \
63 == (p))
64
65 typedef struct dvma_arg {
66 immu_t *dva_immu;
67 dev_info_t *dva_rdip;
68 dev_info_t *dva_ddip;
69 domain_t *dva_domain;
70 int dva_level;
71 immu_flags_t dva_flags;
72 list_t *dva_list;
73 int dva_error;
74 } dvma_arg_t;
75
76 static domain_t *domain_create(immu_t *immu, dev_info_t *ddip,
77 dev_info_t *rdip, immu_flags_t immu_flags);
78 static immu_devi_t *create_immu_devi(dev_info_t *rdip, int bus,
79 int dev, int func, immu_flags_t immu_flags);
80 static void destroy_immu_devi(immu_devi_t *immu_devi);
81 static boolean_t dvma_map(domain_t *domain, uint64_t sdvma,
82 uint64_t nvpages, immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
83 immu_flags_t immu_flags);
84
85 /* Extern globals */
86 extern struct memlist *phys_install;
87
88 /*
89 * iommulib interface functions.
90 */
91 static int immu_probe(iommulib_handle_t unitp, dev_info_t *dip);
92 static int immu_allochdl(iommulib_handle_t handle,
93 dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
94 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep);
95 static int immu_freehdl(iommulib_handle_t handle,
96 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
97 static int immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
98 dev_info_t *rdip, ddi_dma_handle_t dma_handle, struct ddi_dma_req *dma_req,
99 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
100 static int immu_unbindhdl(iommulib_handle_t handle,
101 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
102 static int immu_sync(iommulib_handle_t handle, dev_info_t *dip,
103 dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off, size_t len,
104 uint_t cachefl);
105 static int immu_win(iommulib_handle_t handle, dev_info_t *dip,
106 dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
107 off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
108 static int immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
109 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
110 struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao);
111 static int immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
112 dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao);
113
114 /* static Globals */
115
116 /*
117 * Used to setup DMA objects (memory regions)
118 * for DMA reads by IOMMU units
119 */
120 static ddi_dma_attr_t immu_dma_attr = {
121 DMA_ATTR_V0,
122 0U,
123 0xffffffffffffffffULL,
124 0xffffffffU,
125 MMU_PAGESIZE, /* MMU page aligned */
126 0x1,
127 0x1,
128 0xffffffffU,
129 0xffffffffffffffffULL,
130 1,
131 4,
132 0
133 };
134
135 static ddi_device_acc_attr_t immu_acc_attr = {
136 DDI_DEVICE_ATTR_V0,
137 DDI_NEVERSWAP_ACC,
138 DDI_STRICTORDER_ACC
139 };
140
141 struct iommulib_ops immulib_ops = {
142 IOMMU_OPS_VERSION,
143 INTEL_IOMMU,
144 "Intel IOMMU",
145 NULL,
146 immu_probe,
147 immu_allochdl,
148 immu_freehdl,
149 immu_bindhdl,
150 immu_unbindhdl,
151 immu_sync,
152 immu_win,
153 immu_mapobject,
154 immu_unmapobject,
155 };
156
157 /*
158 * Fake physical address range used to set up initial prealloc mappings.
159 * This memory is never actually accessed. It is mapped read-only,
160 * and is overwritten as soon as the first DMA bind operation is
161 * performed. Since 0 is a special case, just start at the 2nd
162 * physical page.
163 */
164
165 static immu_dcookie_t immu_precookie = { MMU_PAGESIZE, IMMU_NPREPTES };
166
167 /* globals private to this file */
168 static kmutex_t immu_domain_lock;
169 static list_t immu_unity_domain_list;
170 static list_t immu_xlate_domain_list;
171
172 /* structure used to store idx into each level of the page tables */
173 typedef struct xlate {
174 int xlt_level;
175 uint_t xlt_idx;
176 pgtable_t *xlt_pgtable;
177 } xlate_t;
178
179 /* 0 is reserved by Vt-d spec. Solaris reserves 1 */
180 #define IMMU_UNITY_DID 1
181
182 static mod_hash_t *bdf_domain_hash;
183
184 int immu_use_alh;
185 int immu_use_tm;
186
187 static domain_t *
bdf_domain_lookup(immu_devi_t * immu_devi)188 bdf_domain_lookup(immu_devi_t *immu_devi)
189 {
190 domain_t *domain;
191 int16_t seg = immu_devi->imd_seg;
192 int16_t bus = immu_devi->imd_bus;
193 int16_t devfunc = immu_devi->imd_devfunc;
194 uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
195
196 if (seg < 0 || bus < 0 || devfunc < 0) {
197 return (NULL);
198 }
199
200 domain = NULL;
201 if (mod_hash_find(bdf_domain_hash,
202 (void *)bdf, (void *)&domain) == 0) {
203 ASSERT(domain);
204 ASSERT(domain->dom_did > 0);
205 return (domain);
206 } else {
207 return (NULL);
208 }
209 }
210
211 static void
bdf_domain_insert(immu_devi_t * immu_devi,domain_t * domain)212 bdf_domain_insert(immu_devi_t *immu_devi, domain_t *domain)
213 {
214 int16_t seg = immu_devi->imd_seg;
215 int16_t bus = immu_devi->imd_bus;
216 int16_t devfunc = immu_devi->imd_devfunc;
217 uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
218
219 if (seg < 0 || bus < 0 || devfunc < 0) {
220 return;
221 }
222
223 (void) mod_hash_insert(bdf_domain_hash, (void *)bdf, (void *)domain);
224 }
225
226 static int
match_lpc(dev_info_t * pdip,void * arg)227 match_lpc(dev_info_t *pdip, void *arg)
228 {
229 immu_devi_t *immu_devi;
230 dvma_arg_t *dvap = (dvma_arg_t *)arg;
231
232 if (list_is_empty(dvap->dva_list)) {
233 return (DDI_WALK_TERMINATE);
234 }
235
236 immu_devi = list_head(dvap->dva_list);
237 for (; immu_devi; immu_devi = list_next(dvap->dva_list,
238 immu_devi)) {
239 if (immu_devi->imd_dip == pdip) {
240 dvap->dva_ddip = pdip;
241 dvap->dva_error = DDI_SUCCESS;
242 return (DDI_WALK_TERMINATE);
243 }
244 }
245
246 return (DDI_WALK_CONTINUE);
247 }
248
249 static void
immu_devi_set_spclist(dev_info_t * dip,immu_t * immu)250 immu_devi_set_spclist(dev_info_t *dip, immu_t *immu)
251 {
252 list_t *spclist = NULL;
253 immu_devi_t *immu_devi;
254
255 immu_devi = IMMU_DEVI(dip);
256 if (immu_devi->imd_display == B_TRUE) {
257 spclist = &(immu->immu_dvma_gfx_list);
258 } else if (immu_devi->imd_lpc == B_TRUE) {
259 spclist = &(immu->immu_dvma_lpc_list);
260 }
261
262 if (spclist) {
263 mutex_enter(&(immu->immu_lock));
264 list_insert_head(spclist, immu_devi);
265 mutex_exit(&(immu->immu_lock));
266 }
267 }
268
269 /*
270 * Set the immu_devi struct in the immu_devi field of a devinfo node
271 */
272 int
immu_devi_set(dev_info_t * dip,immu_flags_t immu_flags)273 immu_devi_set(dev_info_t *dip, immu_flags_t immu_flags)
274 {
275 int bus, dev, func;
276 immu_devi_t *new_imd;
277 immu_devi_t *immu_devi;
278
279 immu_devi = immu_devi_get(dip);
280 if (immu_devi != NULL) {
281 return (DDI_SUCCESS);
282 }
283
284 bus = dev = func = -1;
285
286 /*
287 * Assume a new immu_devi struct is needed
288 */
289 if (!DEVI_IS_PCI(dip) || acpica_get_bdf(dip, &bus, &dev, &func) != 0) {
290 /*
291 * No BDF. Set bus = -1 to indicate this.
292 * We still need to create a immu_devi struct
293 * though
294 */
295 bus = -1;
296 dev = 0;
297 func = 0;
298 }
299
300 new_imd = create_immu_devi(dip, bus, dev, func, immu_flags);
301 if (new_imd == NULL) {
302 ddi_err(DER_WARN, dip, "Failed to create immu_devi "
303 "structure");
304 return (DDI_FAILURE);
305 }
306
307 /*
308 * Check if some other thread allocated a immu_devi while we
309 * didn't own the lock.
310 */
311 mutex_enter(&(DEVI(dip)->devi_lock));
312 if (IMMU_DEVI(dip) == NULL) {
313 IMMU_DEVI_SET(dip, new_imd);
314 } else {
315 destroy_immu_devi(new_imd);
316 }
317 mutex_exit(&(DEVI(dip)->devi_lock));
318
319 return (DDI_SUCCESS);
320 }
321
322 static dev_info_t *
get_lpc_devinfo(immu_t * immu,dev_info_t * rdip,immu_flags_t immu_flags)323 get_lpc_devinfo(immu_t *immu, dev_info_t *rdip, immu_flags_t immu_flags)
324 {
325 dvma_arg_t dvarg = {0};
326 dvarg.dva_list = &(immu->immu_dvma_lpc_list);
327 dvarg.dva_rdip = rdip;
328 dvarg.dva_error = DDI_FAILURE;
329
330 if (immu_walk_ancestor(rdip, NULL, match_lpc,
331 &dvarg, NULL, immu_flags) != DDI_SUCCESS) {
332 ddi_err(DER_MODE, rdip, "Could not walk ancestors to "
333 "find lpc_devinfo for ISA device");
334 return (NULL);
335 }
336
337 if (dvarg.dva_error != DDI_SUCCESS || dvarg.dva_ddip == NULL) {
338 ddi_err(DER_MODE, rdip, "Could not find lpc_devinfo for "
339 "ISA device");
340 return (NULL);
341 }
342
343 return (dvarg.dva_ddip);
344 }
345
346 static dev_info_t *
get_gfx_devinfo(dev_info_t * rdip)347 get_gfx_devinfo(dev_info_t *rdip)
348 {
349 immu_t *immu;
350 immu_devi_t *immu_devi;
351 list_t *list_gfx;
352
353 /*
354 * The GFX device may not be on the same iommu unit as "agpgart"
355 * so search globally
356 */
357 immu_devi = NULL;
358 immu = list_head(&immu_list);
359 for (; immu; immu = list_next(&immu_list, immu)) {
360 list_gfx = &(immu->immu_dvma_gfx_list);
361 if (!list_is_empty(list_gfx)) {
362 immu_devi = list_head(list_gfx);
363 break;
364 }
365 }
366
367 if (immu_devi == NULL) {
368 ddi_err(DER_WARN, rdip, "iommu: No GFX device. "
369 "Cannot redirect agpgart");
370 return (NULL);
371 }
372
373 ddi_err(DER_LOG, rdip, "iommu: GFX redirect to %s",
374 ddi_node_name(immu_devi->imd_dip));
375
376 return (immu_devi->imd_dip);
377 }
378
379 static immu_flags_t
dma_to_immu_flags(struct ddi_dma_req * dmareq)380 dma_to_immu_flags(struct ddi_dma_req *dmareq)
381 {
382 immu_flags_t flags = 0;
383
384 if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
385 flags |= IMMU_FLAGS_SLEEP;
386 } else {
387 flags |= IMMU_FLAGS_NOSLEEP;
388 }
389
390 #ifdef BUGGY_DRIVERS
391
392 flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
393
394 #else
395 /*
396 * Read and write flags need to be reversed.
397 * DMA_READ means read from device and write
398 * to memory. So DMA read means DVMA write.
399 */
400 if (dmareq->dmar_flags & DDI_DMA_READ)
401 flags |= IMMU_FLAGS_WRITE;
402
403 if (dmareq->dmar_flags & DDI_DMA_WRITE)
404 flags |= IMMU_FLAGS_READ;
405
406 /*
407 * Some buggy drivers specify neither READ or WRITE
408 * For such drivers set both read and write permissions
409 */
410 if ((dmareq->dmar_flags & (DDI_DMA_READ | DDI_DMA_WRITE)) == 0) {
411 flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
412 }
413 #endif
414
415 return (flags);
416 }
417
418 /*ARGSUSED*/
419 int
pgtable_ctor(void * buf,void * arg,int kmflag)420 pgtable_ctor(void *buf, void *arg, int kmflag)
421 {
422 size_t actual_size = 0;
423 pgtable_t *pgtable;
424 int (*dmafp)(caddr_t);
425 caddr_t vaddr;
426 void *next;
427 uint_t flags;
428 immu_t *immu = arg;
429
430 pgtable = (pgtable_t *)buf;
431
432 dmafp = (kmflag & KM_NOSLEEP) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
433
434 next = kmem_zalloc(IMMU_PAGESIZE, kmflag);
435 if (next == NULL) {
436 return (-1);
437 }
438
439 if (ddi_dma_alloc_handle(root_devinfo, &immu_dma_attr,
440 dmafp, NULL, &pgtable->hwpg_dmahdl) != DDI_SUCCESS) {
441 kmem_free(next, IMMU_PAGESIZE);
442 return (-1);
443 }
444
445 flags = DDI_DMA_CONSISTENT;
446 if (!immu->immu_dvma_coherent)
447 flags |= IOMEM_DATA_UC_WR_COMBINE;
448
449 if (ddi_dma_mem_alloc(pgtable->hwpg_dmahdl, IMMU_PAGESIZE,
450 &immu_acc_attr, flags,
451 dmafp, NULL, &vaddr, &actual_size,
452 &pgtable->hwpg_memhdl) != DDI_SUCCESS) {
453 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
454 kmem_free(next, IMMU_PAGESIZE);
455 return (-1);
456 }
457
458 /*
459 * Memory allocation failure. Maybe a temporary condition
460 * so return error rather than panic, so we can try again
461 */
462 if (actual_size < IMMU_PAGESIZE) {
463 ddi_dma_mem_free(&pgtable->hwpg_memhdl);
464 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
465 kmem_free(next, IMMU_PAGESIZE);
466 return (-1);
467 }
468
469 pgtable->hwpg_paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, vaddr));
470 pgtable->hwpg_vaddr = vaddr;
471 pgtable->swpg_next_array = next;
472
473 rw_init(&(pgtable->swpg_rwlock), NULL, RW_DEFAULT, NULL);
474
475 return (0);
476 }
477
478 /*ARGSUSED*/
479 void
pgtable_dtor(void * buf,void * arg)480 pgtable_dtor(void *buf, void *arg)
481 {
482 pgtable_t *pgtable;
483
484 pgtable = (pgtable_t *)buf;
485
486 /* destroy will panic if lock is held. */
487 rw_destroy(&(pgtable->swpg_rwlock));
488
489 ddi_dma_mem_free(&pgtable->hwpg_memhdl);
490 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
491 kmem_free(pgtable->swpg_next_array, IMMU_PAGESIZE);
492 }
493
494 /*
495 * pgtable_alloc()
496 * alloc a IOMMU pgtable structure.
497 * This same struct is used for root and context tables as well.
498 * This routine allocs the f/ollowing:
499 * - a pgtable_t struct
500 * - a HW page which holds PTEs/entries which is accesssed by HW
501 * so we set up DMA for this page
502 * - a SW page which is only for our bookeeping
503 * (for example to hold pointers to the next level pgtable).
504 * So a simple kmem_alloc suffices
505 */
506 static pgtable_t *
pgtable_alloc(immu_t * immu,immu_flags_t immu_flags)507 pgtable_alloc(immu_t *immu, immu_flags_t immu_flags)
508 {
509 pgtable_t *pgtable;
510 int kmflags;
511
512 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
513
514 pgtable = kmem_cache_alloc(immu->immu_pgtable_cache, kmflags);
515 if (pgtable == NULL) {
516 return (NULL);
517 }
518 return (pgtable);
519 }
520
521 static void
pgtable_zero(pgtable_t * pgtable)522 pgtable_zero(pgtable_t *pgtable)
523 {
524 bzero(pgtable->hwpg_vaddr, IMMU_PAGESIZE);
525 bzero(pgtable->swpg_next_array, IMMU_PAGESIZE);
526 }
527
528 static void
pgtable_free(immu_t * immu,pgtable_t * pgtable)529 pgtable_free(immu_t *immu, pgtable_t *pgtable)
530 {
531 kmem_cache_free(immu->immu_pgtable_cache, pgtable);
532 }
533
534 /*
535 * Function to identify a display device from the PCI class code
536 */
537 static boolean_t
device_is_display(uint_t classcode)538 device_is_display(uint_t classcode)
539 {
540 static uint_t disp_classes[] = {
541 0x000100,
542 0x030000,
543 0x030001
544 };
545 int i, nclasses = sizeof (disp_classes) / sizeof (uint_t);
546
547 for (i = 0; i < nclasses; i++) {
548 if (classcode == disp_classes[i])
549 return (B_TRUE);
550 }
551 return (B_FALSE);
552 }
553
554 /*
555 * Function that determines if device is PCIEX and/or PCIEX bridge
556 */
557 static boolean_t
device_is_pciex(uchar_t bus,uchar_t dev,uchar_t func,boolean_t * is_pcib)558 device_is_pciex(
559 uchar_t bus, uchar_t dev, uchar_t func, boolean_t *is_pcib)
560 {
561 ushort_t cap;
562 ushort_t capsp;
563 ushort_t cap_count = PCI_CAP_MAX_PTR;
564 ushort_t status;
565 boolean_t is_pciex = B_FALSE;
566
567 *is_pcib = B_FALSE;
568
569 status = pci_getw_func(bus, dev, func, PCI_CONF_STAT);
570 if (!(status & PCI_STAT_CAP))
571 return (B_FALSE);
572
573 capsp = pci_getb_func(bus, dev, func, PCI_CONF_CAP_PTR);
574 while (cap_count-- && capsp >= PCI_CAP_PTR_OFF) {
575 capsp &= PCI_CAP_PTR_MASK;
576 cap = pci_getb_func(bus, dev, func, capsp);
577
578 if (cap == PCI_CAP_ID_PCI_E) {
579 status = pci_getw_func(bus, dev, func, capsp + 2);
580 /*
581 * See section 7.8.2 of PCI-Express Base Spec v1.0a
582 * for Device/Port Type.
583 * PCIE_PCIECAP_DEV_TYPE_PCIE2PCI implies that the
584 * device is a PCIE2PCI bridge
585 */
586 *is_pcib =
587 ((status & PCIE_PCIECAP_DEV_TYPE_MASK) ==
588 PCIE_PCIECAP_DEV_TYPE_PCIE2PCI) ? B_TRUE : B_FALSE;
589 is_pciex = B_TRUE;
590 }
591
592 capsp = (*pci_getb_func)(bus, dev, func,
593 capsp + PCI_CAP_NEXT_PTR);
594 }
595
596 return (is_pciex);
597 }
598
599 static boolean_t
device_use_premap(uint_t classcode)600 device_use_premap(uint_t classcode)
601 {
602 if (IMMU_PCI_CLASS2BASE(classcode) == PCI_CLASS_NET)
603 return (B_TRUE);
604 return (B_FALSE);
605 }
606
607
608 /*
609 * immu_dvma_get_immu()
610 * get the immu unit structure for a dev_info node
611 */
612 immu_t *
immu_dvma_get_immu(dev_info_t * dip,immu_flags_t immu_flags)613 immu_dvma_get_immu(dev_info_t *dip, immu_flags_t immu_flags)
614 {
615 immu_devi_t *immu_devi;
616 immu_t *immu;
617
618 /*
619 * check if immu unit was already found earlier.
620 * If yes, then it will be stashed in immu_devi struct.
621 */
622 immu_devi = immu_devi_get(dip);
623 if (immu_devi == NULL) {
624 if (immu_devi_set(dip, immu_flags) != DDI_SUCCESS) {
625 /*
626 * May fail because of low memory. Return error rather
627 * than panic as we want driver to rey again later
628 */
629 ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
630 "No immu_devi structure");
631 /*NOTREACHED*/
632 }
633 immu_devi = immu_devi_get(dip);
634 }
635
636 mutex_enter(&(DEVI(dip)->devi_lock));
637 if (immu_devi->imd_immu) {
638 immu = immu_devi->imd_immu;
639 mutex_exit(&(DEVI(dip)->devi_lock));
640 return (immu);
641 }
642 mutex_exit(&(DEVI(dip)->devi_lock));
643
644 immu = immu_dmar_get_immu(dip);
645 if (immu == NULL) {
646 ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
647 "Cannot find immu_t for device");
648 /*NOTREACHED*/
649 }
650
651 /*
652 * Check if some other thread found immu
653 * while lock was not held
654 */
655 immu_devi = immu_devi_get(dip);
656 /* immu_devi should be present as we found it earlier */
657 if (immu_devi == NULL) {
658 ddi_err(DER_PANIC, dip,
659 "immu_dvma_get_immu: No immu_devi structure");
660 /*NOTREACHED*/
661 }
662
663 mutex_enter(&(DEVI(dip)->devi_lock));
664 if (immu_devi->imd_immu == NULL) {
665 /* nobody else set it, so we should do it */
666 immu_devi->imd_immu = immu;
667 immu_devi_set_spclist(dip, immu);
668 } else {
669 /*
670 * if some other thread got immu before
671 * us, it should get the same results
672 */
673 if (immu_devi->imd_immu != immu) {
674 ddi_err(DER_PANIC, dip, "Multiple "
675 "immu units found for device. Expected (%p), "
676 "actual (%p)", (void *)immu,
677 (void *)immu_devi->imd_immu);
678 /*NOTREACHED*/
679 }
680 }
681 mutex_exit(&(DEVI(dip)->devi_lock));
682
683 return (immu);
684 }
685
686
687 /* ############################# IMMU_DEVI code ############################ */
688
689 /*
690 * Allocate a immu_devi structure and initialize it
691 */
692 static immu_devi_t *
create_immu_devi(dev_info_t * rdip,int bus,int dev,int func,immu_flags_t immu_flags)693 create_immu_devi(dev_info_t *rdip, int bus, int dev, int func,
694 immu_flags_t immu_flags)
695 {
696 uchar_t baseclass, subclass;
697 uint_t classcode, revclass;
698 immu_devi_t *immu_devi;
699 boolean_t pciex = B_FALSE;
700 int kmflags;
701 boolean_t is_pcib = B_FALSE;
702
703 /* bus == -1 indicate non-PCI device (no BDF) */
704 ASSERT(bus == -1 || bus >= 0);
705 ASSERT(dev >= 0);
706 ASSERT(func >= 0);
707
708 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
709 immu_devi = kmem_zalloc(sizeof (immu_devi_t), kmflags);
710 if (immu_devi == NULL) {
711 ddi_err(DER_WARN, rdip, "Failed to allocate memory for "
712 "Intel IOMMU immu_devi structure");
713 return (NULL);
714 }
715 immu_devi->imd_dip = rdip;
716 immu_devi->imd_seg = 0; /* Currently seg can only be 0 */
717 immu_devi->imd_bus = bus;
718 immu_devi->imd_pcib_type = IMMU_PCIB_BAD;
719
720 if (bus == -1) {
721 immu_devi->imd_pcib_type = IMMU_PCIB_NOBDF;
722 return (immu_devi);
723 }
724
725 immu_devi->imd_devfunc = IMMU_PCI_DEVFUNC(dev, func);
726 immu_devi->imd_sec = 0;
727 immu_devi->imd_sub = 0;
728
729 revclass = pci_getl_func(bus, dev, func, PCI_CONF_REVID);
730
731 classcode = IMMU_PCI_REV2CLASS(revclass);
732 baseclass = IMMU_PCI_CLASS2BASE(classcode);
733 subclass = IMMU_PCI_CLASS2SUB(classcode);
734
735 if (baseclass == PCI_CLASS_BRIDGE && subclass == PCI_BRIDGE_PCI) {
736
737 immu_devi->imd_sec = pci_getb_func(bus, dev, func,
738 PCI_BCNF_SECBUS);
739 immu_devi->imd_sub = pci_getb_func(bus, dev, func,
740 PCI_BCNF_SUBBUS);
741
742 pciex = device_is_pciex(bus, dev, func, &is_pcib);
743 if (pciex == B_TRUE && is_pcib == B_TRUE) {
744 immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCI;
745 } else if (pciex == B_TRUE) {
746 immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCIE;
747 } else {
748 immu_devi->imd_pcib_type = IMMU_PCIB_PCI_PCI;
749 }
750 } else {
751 immu_devi->imd_pcib_type = IMMU_PCIB_ENDPOINT;
752 }
753
754 /* check for certain special devices */
755 immu_devi->imd_display = device_is_display(classcode);
756 immu_devi->imd_lpc = ((baseclass == PCI_CLASS_BRIDGE) &&
757 (subclass == PCI_BRIDGE_ISA)) ? B_TRUE : B_FALSE;
758 immu_devi->imd_use_premap = device_use_premap(classcode);
759
760 immu_devi->imd_domain = NULL;
761
762 immu_devi->imd_dvma_flags = immu_global_dvma_flags;
763
764 return (immu_devi);
765 }
766
767 static void
destroy_immu_devi(immu_devi_t * immu_devi)768 destroy_immu_devi(immu_devi_t *immu_devi)
769 {
770 kmem_free(immu_devi, sizeof (immu_devi_t));
771 }
772
773 static domain_t *
immu_devi_domain(dev_info_t * rdip,dev_info_t ** ddipp)774 immu_devi_domain(dev_info_t *rdip, dev_info_t **ddipp)
775 {
776 immu_devi_t *immu_devi;
777 domain_t *domain;
778 dev_info_t *ddip;
779
780 *ddipp = NULL;
781
782 immu_devi = immu_devi_get(rdip);
783 if (immu_devi == NULL) {
784 return (NULL);
785 }
786
787 mutex_enter(&(DEVI(rdip)->devi_lock));
788 domain = immu_devi->imd_domain;
789 ddip = immu_devi->imd_ddip;
790 mutex_exit(&(DEVI(rdip)->devi_lock));
791
792 if (domain)
793 *ddipp = ddip;
794
795 return (domain);
796
797 }
798
799 /* ############################# END IMMU_DEVI code ######################## */
800 /* ############################# DOMAIN code ############################### */
801
802 /*
803 * This routine always succeeds
804 */
805 static int
did_alloc(immu_t * immu,dev_info_t * rdip,dev_info_t * ddip,immu_flags_t immu_flags)806 did_alloc(immu_t *immu, dev_info_t *rdip,
807 dev_info_t *ddip, immu_flags_t immu_flags)
808 {
809 int did;
810
811 did = (uintptr_t)vmem_alloc(immu->immu_did_arena, 1,
812 (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP);
813
814 if (did == 0) {
815 ddi_err(DER_WARN, rdip, "device domain-id alloc error"
816 " domain-device: %s%d. immu unit is %s. Using "
817 "unity domain with domain-id (%d)",
818 ddi_driver_name(ddip), ddi_get_instance(ddip),
819 immu->immu_name, immu->immu_unity_domain->dom_did);
820 did = immu->immu_unity_domain->dom_did;
821 }
822
823 return (did);
824 }
825
826 static int
get_branch_domain(dev_info_t * pdip,void * arg)827 get_branch_domain(dev_info_t *pdip, void *arg)
828 {
829 immu_devi_t *immu_devi;
830 domain_t *domain;
831 dev_info_t *ddip;
832 immu_t *immu;
833 dvma_arg_t *dvp = (dvma_arg_t *)arg;
834
835 /*
836 * The field dvp->dva_rdip is a work-in-progress
837 * and gets updated as we walk up the ancestor
838 * tree. The final ddip is set only when we reach
839 * the top of the tree. So the dvp->dva_ddip field cannot
840 * be relied on until we reach the top of the field.
841 */
842
843 /* immu_devi may not be set. */
844 immu_devi = immu_devi_get(pdip);
845 if (immu_devi == NULL) {
846 if (immu_devi_set(pdip, dvp->dva_flags) != DDI_SUCCESS) {
847 dvp->dva_error = DDI_FAILURE;
848 return (DDI_WALK_TERMINATE);
849 }
850 }
851
852 immu_devi = immu_devi_get(pdip);
853 immu = immu_devi->imd_immu;
854 if (immu == NULL)
855 immu = immu_dvma_get_immu(pdip, dvp->dva_flags);
856
857 /*
858 * If we encounter a PCIE_PCIE bridge *ANCESTOR* we need to
859 * terminate the walk (since the device under the PCIE bridge
860 * is a PCIE device and has an independent entry in the
861 * root/context table)
862 */
863 if (dvp->dva_rdip != pdip &&
864 immu_devi->imd_pcib_type == IMMU_PCIB_PCIE_PCIE) {
865 return (DDI_WALK_TERMINATE);
866 }
867
868 /*
869 * In order to be a domain-dim, it must be a PCI device i.e.
870 * must have valid BDF. This also eliminates the root complex.
871 */
872 if (immu_devi->imd_pcib_type != IMMU_PCIB_BAD &&
873 immu_devi->imd_pcib_type != IMMU_PCIB_NOBDF) {
874 ASSERT(immu_devi->imd_bus >= 0);
875 ASSERT(immu_devi->imd_devfunc >= 0);
876 dvp->dva_ddip = pdip;
877 }
878
879 if (immu_devi->imd_display == B_TRUE ||
880 (dvp->dva_flags & IMMU_FLAGS_UNITY)) {
881 dvp->dva_domain = immu->immu_unity_domain;
882 /* continue walking to find ddip */
883 return (DDI_WALK_CONTINUE);
884 }
885
886 mutex_enter(&(DEVI(pdip)->devi_lock));
887 domain = immu_devi->imd_domain;
888 ddip = immu_devi->imd_ddip;
889 mutex_exit(&(DEVI(pdip)->devi_lock));
890
891 if (domain && ddip) {
892 /* if domain is set, it must be the same */
893 if (dvp->dva_domain) {
894 ASSERT(domain == dvp->dva_domain);
895 }
896 dvp->dva_domain = domain;
897 dvp->dva_ddip = ddip;
898 return (DDI_WALK_TERMINATE);
899 }
900
901 /* Domain may already be set, continue walking so that ddip gets set */
902 if (dvp->dva_domain) {
903 return (DDI_WALK_CONTINUE);
904 }
905
906 /* domain is not set in either immu_devi or dvp */
907 domain = bdf_domain_lookup(immu_devi);
908 if (domain == NULL) {
909 return (DDI_WALK_CONTINUE);
910 }
911
912 /* ok, the BDF hash had a domain for this BDF. */
913
914 /* Grab lock again to check if something else set immu_devi fields */
915 mutex_enter(&(DEVI(pdip)->devi_lock));
916 if (immu_devi->imd_domain != NULL) {
917 dvp->dva_domain = domain;
918 } else {
919 dvp->dva_domain = domain;
920 }
921 mutex_exit(&(DEVI(pdip)->devi_lock));
922
923 /*
924 * walk upwards until the topmost PCI bridge is found
925 */
926 return (DDI_WALK_CONTINUE);
927
928 }
929
930 static void
map_unity_domain(domain_t * domain)931 map_unity_domain(domain_t *domain)
932 {
933 struct memlist *mp;
934 uint64_t start;
935 uint64_t npages;
936 immu_dcookie_t dcookies[1] = {0};
937 int dcount = 0;
938
939 /*
940 * UNITY arenas are a mirror of the physical memory
941 * installed on the system.
942 */
943
944 #ifdef BUGGY_DRIVERS
945 /*
946 * Dont skip page0. Some broken HW/FW access it.
947 */
948 dcookies[0].dck_paddr = 0;
949 dcookies[0].dck_npages = 1;
950 dcount = 1;
951 (void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
952 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
953 #endif
954
955 memlist_read_lock();
956
957 mp = phys_install;
958
959 if (mp->ml_address == 0) {
960 /* since we already mapped page1 above */
961 start = IMMU_PAGESIZE;
962 } else {
963 start = mp->ml_address;
964 }
965 npages = mp->ml_size/IMMU_PAGESIZE + 1;
966
967 dcookies[0].dck_paddr = start;
968 dcookies[0].dck_npages = npages;
969 dcount = 1;
970 (void) dvma_map(domain, start, npages, dcookies,
971 dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
972
973 ddi_err(DER_LOG, domain->dom_dip, "iommu: mapping PHYS span [0x%" PRIx64
974 " - 0x%" PRIx64 "]", start, start + mp->ml_size);
975
976 mp = mp->ml_next;
977 while (mp) {
978 ddi_err(DER_LOG, domain->dom_dip,
979 "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
980 mp->ml_address, mp->ml_address + mp->ml_size);
981
982 start = mp->ml_address;
983 npages = mp->ml_size/IMMU_PAGESIZE + 1;
984
985 dcookies[0].dck_paddr = start;
986 dcookies[0].dck_npages = npages;
987 dcount = 1;
988 (void) dvma_map(domain, start, npages,
989 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
990 mp = mp->ml_next;
991 }
992
993 mp = bios_rsvd;
994 while (mp) {
995 ddi_err(DER_LOG, domain->dom_dip,
996 "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
997 mp->ml_address, mp->ml_address + mp->ml_size);
998
999 start = mp->ml_address;
1000 npages = mp->ml_size/IMMU_PAGESIZE + 1;
1001
1002 dcookies[0].dck_paddr = start;
1003 dcookies[0].dck_npages = npages;
1004 dcount = 1;
1005 (void) dvma_map(domain, start, npages,
1006 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
1007
1008 mp = mp->ml_next;
1009 }
1010
1011 memlist_read_unlock();
1012 }
1013
1014 /*
1015 * create_xlate_arena()
1016 * Create the dvma arena for a domain with translation
1017 * mapping
1018 */
1019 static void
create_xlate_arena(immu_t * immu,domain_t * domain,dev_info_t * rdip,immu_flags_t immu_flags)1020 create_xlate_arena(immu_t *immu, domain_t *domain,
1021 dev_info_t *rdip, immu_flags_t immu_flags)
1022 {
1023 char *arena_name;
1024 struct memlist *mp;
1025 int vmem_flags;
1026 uint64_t start;
1027 uint_t mgaw;
1028 uint64_t size;
1029 uint64_t maxaddr;
1030 void *vmem_ret;
1031
1032 arena_name = domain->dom_dvma_arena_name;
1033
1034 /* Note, don't do sizeof (arena_name) - it is just a pointer */
1035 (void) snprintf(arena_name,
1036 sizeof (domain->dom_dvma_arena_name),
1037 "%s-domain-%d-xlate-DVMA-arena", immu->immu_name,
1038 domain->dom_did);
1039
1040 vmem_flags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP;
1041
1042 /* Restrict mgaddr (max guest addr) to MGAW */
1043 mgaw = IMMU_CAP_MGAW(immu->immu_regs_cap);
1044
1045 /*
1046 * To ensure we avoid ioapic and PCI MMIO ranges we just
1047 * use the physical memory address range of the system as the
1048 * range
1049 */
1050 maxaddr = ((uint64_t)1 << mgaw);
1051
1052 memlist_read_lock();
1053
1054 mp = phys_install;
1055
1056 if (mp->ml_address == 0)
1057 start = MMU_PAGESIZE;
1058 else
1059 start = mp->ml_address;
1060
1061 if (start + mp->ml_size > maxaddr)
1062 size = maxaddr - start;
1063 else
1064 size = mp->ml_size;
1065
1066 ddi_err(DER_VERB, rdip,
1067 "iommu: %s: Creating dvma vmem arena [0x%" PRIx64
1068 " - 0x%" PRIx64 "]", arena_name, start, start + size);
1069
1070 /*
1071 * We always allocate in quanta of IMMU_PAGESIZE
1072 */
1073 domain->dom_dvma_arena = vmem_create(arena_name,
1074 (void *)(uintptr_t)start, /* start addr */
1075 size, /* size */
1076 IMMU_PAGESIZE, /* quantum */
1077 NULL, /* afunc */
1078 NULL, /* ffunc */
1079 NULL, /* source */
1080 0, /* qcache_max */
1081 vmem_flags);
1082
1083 if (domain->dom_dvma_arena == NULL) {
1084 ddi_err(DER_PANIC, rdip,
1085 "Failed to allocate DVMA arena(%s) "
1086 "for domain ID (%d)", arena_name, domain->dom_did);
1087 /*NOTREACHED*/
1088 }
1089
1090 mp = mp->ml_next;
1091 while (mp) {
1092
1093 if (mp->ml_address == 0)
1094 start = MMU_PAGESIZE;
1095 else
1096 start = mp->ml_address;
1097
1098 if (start + mp->ml_size > maxaddr)
1099 size = maxaddr - start;
1100 else
1101 size = mp->ml_size;
1102
1103 ddi_err(DER_VERB, rdip,
1104 "iommu: %s: Adding dvma vmem span [0x%" PRIx64
1105 " - 0x%" PRIx64 "]", arena_name, start,
1106 start + size);
1107
1108 vmem_ret = vmem_add(domain->dom_dvma_arena,
1109 (void *)(uintptr_t)start, size, vmem_flags);
1110
1111 if (vmem_ret == NULL) {
1112 ddi_err(DER_PANIC, rdip,
1113 "Failed to allocate DVMA arena(%s) "
1114 "for domain ID (%d)",
1115 arena_name, domain->dom_did);
1116 /*NOTREACHED*/
1117 }
1118 mp = mp->ml_next;
1119 }
1120 memlist_read_unlock();
1121 }
1122
1123 /* ################################### DOMAIN CODE ######################### */
1124
1125 /*
1126 * Set the domain and domain-dip for a dip
1127 */
1128 static void
set_domain(dev_info_t * dip,dev_info_t * ddip,domain_t * domain)1129 set_domain(
1130 dev_info_t *dip,
1131 dev_info_t *ddip,
1132 domain_t *domain)
1133 {
1134 immu_devi_t *immu_devi;
1135 domain_t *fdomain;
1136 dev_info_t *fddip;
1137
1138 immu_devi = immu_devi_get(dip);
1139
1140 mutex_enter(&(DEVI(dip)->devi_lock));
1141 fddip = immu_devi->imd_ddip;
1142 fdomain = immu_devi->imd_domain;
1143
1144 if (fddip) {
1145 ASSERT(fddip == ddip);
1146 } else {
1147 immu_devi->imd_ddip = ddip;
1148 }
1149
1150 if (fdomain) {
1151 ASSERT(fdomain == domain);
1152 } else {
1153 immu_devi->imd_domain = domain;
1154 }
1155 mutex_exit(&(DEVI(dip)->devi_lock));
1156 }
1157
1158 /*
1159 * device_domain()
1160 * Get domain for a device. The domain may be global in which case it
1161 * is shared between all IOMMU units. Due to potential AGAW differences
1162 * between IOMMU units, such global domains *have to be* UNITY mapping
1163 * domains. Alternatively, the domain may be local to a IOMMU unit.
1164 * Local domains may be shared or immu_devi, although the
1165 * scope of sharing
1166 * is restricted to devices controlled by the IOMMU unit to
1167 * which the domain
1168 * belongs. If shared, they (currently) have to be UNITY domains. If
1169 * immu_devi a domain may be either UNITY or translation (XLATE) domain.
1170 */
1171 static domain_t *
device_domain(dev_info_t * rdip,dev_info_t ** ddipp,immu_flags_t immu_flags)1172 device_domain(dev_info_t *rdip, dev_info_t **ddipp, immu_flags_t immu_flags)
1173 {
1174 dev_info_t *ddip; /* topmost dip in domain i.e. domain owner */
1175 immu_t *immu;
1176 domain_t *domain;
1177 dvma_arg_t dvarg = {0};
1178 int level;
1179
1180 *ddipp = NULL;
1181
1182 /*
1183 * Check if the domain is already set. This is usually true
1184 * if this is not the first DVMA transaction.
1185 */
1186 ddip = NULL;
1187 domain = immu_devi_domain(rdip, &ddip);
1188 if (domain) {
1189 *ddipp = ddip;
1190 return (domain);
1191 }
1192
1193 immu = immu_dvma_get_immu(rdip, immu_flags);
1194 if (immu == NULL) {
1195 /*
1196 * possible that there is no IOMMU unit for this device
1197 * - BIOS bugs are one example.
1198 */
1199 ddi_err(DER_WARN, rdip, "No iommu unit found for device");
1200 return (NULL);
1201 }
1202
1203 immu_flags |= immu_devi_get(rdip)->imd_dvma_flags;
1204
1205 dvarg.dva_rdip = rdip;
1206 dvarg.dva_ddip = NULL;
1207 dvarg.dva_domain = NULL;
1208 dvarg.dva_flags = immu_flags;
1209 level = 0;
1210 if (immu_walk_ancestor(rdip, NULL, get_branch_domain,
1211 &dvarg, &level, immu_flags) != DDI_SUCCESS) {
1212 /*
1213 * maybe low memory. return error,
1214 * so driver tries again later
1215 */
1216 return (NULL);
1217 }
1218
1219 /* should have walked at least 1 dip (i.e. edip) */
1220 ASSERT(level > 0);
1221
1222 ddip = dvarg.dva_ddip; /* must be present */
1223 domain = dvarg.dva_domain; /* may be NULL */
1224
1225 /*
1226 * We may find the domain during our ancestor walk on any one of our
1227 * ancestor dips, If the domain is found then the domain-dip
1228 * (i.e. ddip) will also be found in the same immu_devi struct.
1229 * The domain-dip is the highest ancestor dip which shares the
1230 * same domain with edip.
1231 * The domain may or may not be found, but the domain dip must
1232 * be found.
1233 */
1234 if (ddip == NULL) {
1235 ddi_err(DER_MODE, rdip, "Cannot find domain dip for device.");
1236 return (NULL);
1237 }
1238
1239 /*
1240 * Did we find a domain ?
1241 */
1242 if (domain) {
1243 goto found;
1244 }
1245
1246 /* nope, so allocate */
1247 domain = domain_create(immu, ddip, rdip, immu_flags);
1248 if (domain == NULL) {
1249 return (NULL);
1250 }
1251
1252 /*FALLTHROUGH*/
1253 found:
1254 /*
1255 * We know *domain *is* the right domain, so panic if
1256 * another domain is set for either the request-dip or
1257 * effective dip.
1258 */
1259 set_domain(ddip, ddip, domain);
1260 set_domain(rdip, ddip, domain);
1261
1262 *ddipp = ddip;
1263 return (domain);
1264 }
1265
1266 static void
create_unity_domain(immu_t * immu)1267 create_unity_domain(immu_t *immu)
1268 {
1269 domain_t *domain;
1270
1271 /* domain created during boot and always use sleep flag */
1272 domain = kmem_zalloc(sizeof (domain_t), KM_SLEEP);
1273
1274 rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1275
1276 domain->dom_did = IMMU_UNITY_DID;
1277 domain->dom_maptype = IMMU_MAPTYPE_UNITY;
1278
1279 domain->dom_immu = immu;
1280 immu->immu_unity_domain = domain;
1281
1282 /*
1283 * Setup the domain's initial page table
1284 * should never fail.
1285 */
1286 domain->dom_pgtable_root = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1287 pgtable_zero(domain->dom_pgtable_root);
1288
1289 /*
1290 * Only map all physical memory in to the unity domain
1291 * if passthrough is not supported. If it is supported,
1292 * passthrough is set in the context entry instead.
1293 */
1294 if (!IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1295 map_unity_domain(domain);
1296
1297
1298 /*
1299 * put it on the system-wide UNITY domain list
1300 */
1301 mutex_enter(&(immu_domain_lock));
1302 list_insert_tail(&immu_unity_domain_list, domain);
1303 mutex_exit(&(immu_domain_lock));
1304 }
1305
1306 /*
1307 * ddip is the domain-dip - the topmost dip in a domain
1308 * rdip is the requesting-dip - the device which is
1309 * requesting DVMA setup
1310 * if domain is a non-shared domain rdip == ddip
1311 */
1312 static domain_t *
domain_create(immu_t * immu,dev_info_t * ddip,dev_info_t * rdip,immu_flags_t immu_flags)1313 domain_create(immu_t *immu, dev_info_t *ddip, dev_info_t *rdip,
1314 immu_flags_t immu_flags)
1315 {
1316 int kmflags;
1317 domain_t *domain;
1318 char mod_hash_name[128];
1319 immu_devi_t *immu_devi;
1320 int did;
1321 immu_dcookie_t dcookies[1] = {0};
1322 int dcount = 0;
1323
1324 immu_devi = immu_devi_get(rdip);
1325
1326 /*
1327 * First allocate a domainid.
1328 * This routine will never fail, since if we run out
1329 * of domains the unity domain will be allocated.
1330 */
1331 did = did_alloc(immu, rdip, ddip, immu_flags);
1332 if (did == IMMU_UNITY_DID) {
1333 /* domain overflow */
1334 ASSERT(immu->immu_unity_domain);
1335 return (immu->immu_unity_domain);
1336 }
1337
1338 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1339 domain = kmem_zalloc(sizeof (domain_t), kmflags);
1340 if (domain == NULL) {
1341 ddi_err(DER_PANIC, rdip, "Failed to alloc DVMA domain "
1342 "structure for device. IOMMU unit: %s", immu->immu_name);
1343 /*NOTREACHED*/
1344 }
1345
1346 rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1347
1348 (void) snprintf(mod_hash_name, sizeof (mod_hash_name),
1349 "immu%s-domain%d-pava-hash", immu->immu_name, did);
1350
1351 domain->dom_did = did;
1352 domain->dom_immu = immu;
1353 domain->dom_maptype = IMMU_MAPTYPE_XLATE;
1354 domain->dom_dip = ddip;
1355
1356 /*
1357 * Create xlate DVMA arena for this domain.
1358 */
1359 create_xlate_arena(immu, domain, rdip, immu_flags);
1360
1361 /*
1362 * Setup the domain's initial page table
1363 */
1364 domain->dom_pgtable_root = pgtable_alloc(immu, immu_flags);
1365 if (domain->dom_pgtable_root == NULL) {
1366 ddi_err(DER_PANIC, rdip, "Failed to alloc root "
1367 "pgtable for domain (%d). IOMMU unit: %s",
1368 domain->dom_did, immu->immu_name);
1369 /*NOTREACHED*/
1370 }
1371 pgtable_zero(domain->dom_pgtable_root);
1372
1373 /*
1374 * Since this is a immu unit-specific domain, put it on
1375 * the per-immu domain list.
1376 */
1377 mutex_enter(&(immu->immu_lock));
1378 list_insert_head(&immu->immu_domain_list, domain);
1379 mutex_exit(&(immu->immu_lock));
1380
1381 /*
1382 * Also put it on the system-wide xlate domain list
1383 */
1384 mutex_enter(&(immu_domain_lock));
1385 list_insert_head(&immu_xlate_domain_list, domain);
1386 mutex_exit(&(immu_domain_lock));
1387
1388 bdf_domain_insert(immu_devi, domain);
1389
1390 #ifdef BUGGY_DRIVERS
1391 /*
1392 * Map page0. Some broken HW/FW access it.
1393 */
1394 dcookies[0].dck_paddr = 0;
1395 dcookies[0].dck_npages = 1;
1396 dcount = 1;
1397 (void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
1398 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
1399 #endif
1400 return (domain);
1401 }
1402
1403 /*
1404 * Create domainid arena.
1405 * Domainid 0 is reserved by Vt-d spec and cannot be used by
1406 * system software.
1407 * Domainid 1 is reserved by solaris and used for *all* of the following:
1408 * as the "uninitialized" domain - For devices not yet controlled
1409 * by Solaris
1410 * as the "unity" domain - For devices that will always belong
1411 * to the unity domain
1412 * as the "overflow" domain - Used for any new device after we
1413 * run out of domains
1414 * All of the above domains map into a single domain with
1415 * domainid 1 and UNITY DVMA mapping
1416 * Each IMMU unity has its own unity/uninit/overflow domain
1417 */
1418 static void
did_init(immu_t * immu)1419 did_init(immu_t *immu)
1420 {
1421 (void) snprintf(immu->immu_did_arena_name,
1422 sizeof (immu->immu_did_arena_name),
1423 "%s_domainid_arena", immu->immu_name);
1424
1425 ddi_err(DER_VERB, immu->immu_dip, "creating domainid arena %s",
1426 immu->immu_did_arena_name);
1427
1428 immu->immu_did_arena = vmem_create(
1429 immu->immu_did_arena_name,
1430 (void *)(uintptr_t)(IMMU_UNITY_DID + 1), /* start addr */
1431 immu->immu_max_domains - IMMU_UNITY_DID,
1432 1, /* quantum */
1433 NULL, /* afunc */
1434 NULL, /* ffunc */
1435 NULL, /* source */
1436 0, /* qcache_max */
1437 VM_SLEEP);
1438
1439 /* Even with SLEEP flag, vmem_create() can fail */
1440 if (immu->immu_did_arena == NULL) {
1441 ddi_err(DER_PANIC, NULL, "%s: Failed to create Intel "
1442 "IOMMU domainid allocator: %s", immu->immu_name,
1443 immu->immu_did_arena_name);
1444 }
1445 }
1446
1447 /* ######################### CONTEXT CODE ################################# */
1448
1449 static void
context_set(immu_t * immu,domain_t * domain,pgtable_t * root_table,int bus,int devfunc)1450 context_set(immu_t *immu, domain_t *domain, pgtable_t *root_table,
1451 int bus, int devfunc)
1452 {
1453 pgtable_t *context;
1454 pgtable_t *pgtable_root;
1455 hw_rce_t *hw_rent;
1456 hw_rce_t *hw_cent;
1457 hw_rce_t *ctxp;
1458 int sid;
1459 krw_t rwtype;
1460 boolean_t fill_root;
1461 boolean_t fill_ctx;
1462
1463 pgtable_root = domain->dom_pgtable_root;
1464
1465 ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1466 context = *(pgtable_t **)(ctxp + bus);
1467 hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr) + bus;
1468
1469 fill_root = B_FALSE;
1470 fill_ctx = B_FALSE;
1471
1472 /* Check the most common case first with reader lock */
1473 rw_enter(&(immu->immu_ctx_rwlock), RW_READER);
1474 rwtype = RW_READER;
1475 again:
1476 if (ROOT_GET_P(hw_rent)) {
1477 hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1478 if (CONT_GET_AVAIL(hw_cent) == IMMU_CONT_INITED) {
1479 rw_exit(&(immu->immu_ctx_rwlock));
1480 return;
1481 } else {
1482 fill_ctx = B_TRUE;
1483 }
1484 } else {
1485 fill_root = B_TRUE;
1486 fill_ctx = B_TRUE;
1487 }
1488
1489 if (rwtype == RW_READER &&
1490 rw_tryupgrade(&(immu->immu_ctx_rwlock)) == 0) {
1491 rw_exit(&(immu->immu_ctx_rwlock));
1492 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1493 rwtype = RW_WRITER;
1494 goto again;
1495 }
1496 rwtype = RW_WRITER;
1497
1498 if (fill_root == B_TRUE) {
1499 ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1500 ROOT_SET_P(hw_rent);
1501 immu_regs_cpu_flush(immu, (caddr_t)hw_rent, sizeof (hw_rce_t));
1502 }
1503
1504 if (fill_ctx == B_TRUE) {
1505 hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1506 /* need to disable context entry before reprogramming it */
1507 bzero(hw_cent, sizeof (hw_rce_t));
1508
1509 /* flush caches */
1510 immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1511
1512 sid = ((bus << 8) | devfunc);
1513 immu_flush_context_fsi(immu, 0, sid, domain->dom_did,
1514 &immu->immu_ctx_inv_wait);
1515
1516 CONT_SET_AVAIL(hw_cent, IMMU_CONT_INITED);
1517 CONT_SET_DID(hw_cent, domain->dom_did);
1518 CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1519 CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1520 if (domain->dom_did == IMMU_UNITY_DID &&
1521 IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1522 CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1523 else
1524 /*LINTED*/
1525 CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1526 CONT_SET_P(hw_cent);
1527 if (IMMU_ECAP_GET_CH(immu->immu_regs_excap)) {
1528 CONT_SET_EH(hw_cent);
1529 if (immu_use_alh)
1530 CONT_SET_ALH(hw_cent);
1531 }
1532 immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1533 }
1534 rw_exit(&(immu->immu_ctx_rwlock));
1535 }
1536
1537 static pgtable_t *
context_create(immu_t * immu)1538 context_create(immu_t *immu)
1539 {
1540 int bus;
1541 int devfunc;
1542 pgtable_t *root_table;
1543 pgtable_t *context;
1544 pgtable_t *pgtable_root;
1545 hw_rce_t *ctxp;
1546 hw_rce_t *hw_rent;
1547 hw_rce_t *hw_cent;
1548
1549 /* Allocate a zeroed root table (4K 256b entries) */
1550 root_table = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1551 pgtable_zero(root_table);
1552
1553 /*
1554 * Setup context tables for all possible root table entries.
1555 * Start out with unity domains for all entries.
1556 */
1557 ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1558 hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr);
1559 for (bus = 0; bus < IMMU_ROOT_NUM; bus++, ctxp++, hw_rent++) {
1560 context = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1561 pgtable_zero(context);
1562 ROOT_SET_P(hw_rent);
1563 ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1564 hw_cent = (hw_rce_t *)(context->hwpg_vaddr);
1565 for (devfunc = 0; devfunc < IMMU_CONT_NUM;
1566 devfunc++, hw_cent++) {
1567 pgtable_root =
1568 immu->immu_unity_domain->dom_pgtable_root;
1569 CONT_SET_DID(hw_cent,
1570 immu->immu_unity_domain->dom_did);
1571 CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1572 CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1573 if (IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1574 CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1575 else
1576 /*LINTED*/
1577 CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1578 CONT_SET_AVAIL(hw_cent, IMMU_CONT_UNINITED);
1579 CONT_SET_P(hw_cent);
1580 }
1581 immu_regs_cpu_flush(immu, context->hwpg_vaddr, IMMU_PAGESIZE);
1582 *((pgtable_t **)ctxp) = context;
1583 }
1584
1585 return (root_table);
1586 }
1587
1588 /*
1589 * Called during rootnex attach, so no locks needed
1590 */
1591 static void
context_init(immu_t * immu)1592 context_init(immu_t *immu)
1593 {
1594 rw_init(&(immu->immu_ctx_rwlock), NULL, RW_DEFAULT, NULL);
1595
1596 immu_init_inv_wait(&immu->immu_ctx_inv_wait, "ctxglobal", B_TRUE);
1597
1598 immu_regs_wbf_flush(immu);
1599
1600 immu->immu_ctx_root = context_create(immu);
1601
1602 immu_regs_set_root_table(immu);
1603
1604 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1605 immu_flush_context_gbl(immu, &immu->immu_ctx_inv_wait);
1606 immu_flush_iotlb_gbl(immu, &immu->immu_ctx_inv_wait);
1607 rw_exit(&(immu->immu_ctx_rwlock));
1608 }
1609
1610
1611 /*
1612 * Find top pcib
1613 */
1614 static int
find_top_pcib(dev_info_t * dip,void * arg)1615 find_top_pcib(dev_info_t *dip, void *arg)
1616 {
1617 immu_devi_t *immu_devi;
1618 dev_info_t **pcibdipp = (dev_info_t **)arg;
1619
1620 immu_devi = immu_devi_get(dip);
1621
1622 if (immu_devi->imd_pcib_type == IMMU_PCIB_PCI_PCI) {
1623 *pcibdipp = dip;
1624 }
1625
1626 return (DDI_WALK_CONTINUE);
1627 }
1628
1629 static int
immu_context_update(immu_t * immu,domain_t * domain,dev_info_t * ddip,dev_info_t * rdip,immu_flags_t immu_flags)1630 immu_context_update(immu_t *immu, domain_t *domain, dev_info_t *ddip,
1631 dev_info_t *rdip, immu_flags_t immu_flags)
1632 {
1633 immu_devi_t *r_immu_devi;
1634 immu_devi_t *d_immu_devi;
1635 int r_bus;
1636 int d_bus;
1637 int r_devfunc;
1638 int d_devfunc;
1639 immu_pcib_t d_pcib_type;
1640 dev_info_t *pcibdip;
1641
1642 if (ddip == NULL || rdip == NULL ||
1643 ddip == root_devinfo || rdip == root_devinfo) {
1644 ddi_err(DER_MODE, rdip, "immu_contexts_update: domain-dip or "
1645 "request-dip are NULL or are root devinfo");
1646 return (DDI_FAILURE);
1647 }
1648
1649 /*
1650 * We need to set the context fields
1651 * based on what type of device rdip and ddip are.
1652 * To do that we need the immu_devi field.
1653 * Set the immu_devi field (if not already set)
1654 */
1655 if (immu_devi_set(ddip, immu_flags) == DDI_FAILURE) {
1656 ddi_err(DER_MODE, rdip,
1657 "immu_context_update: failed to set immu_devi for ddip");
1658 return (DDI_FAILURE);
1659 }
1660
1661 if (immu_devi_set(rdip, immu_flags) == DDI_FAILURE) {
1662 ddi_err(DER_MODE, rdip,
1663 "immu_context_update: failed to set immu_devi for rdip");
1664 return (DDI_FAILURE);
1665 }
1666
1667 d_immu_devi = immu_devi_get(ddip);
1668 r_immu_devi = immu_devi_get(rdip);
1669
1670 d_bus = d_immu_devi->imd_bus;
1671 d_devfunc = d_immu_devi->imd_devfunc;
1672 d_pcib_type = d_immu_devi->imd_pcib_type;
1673 r_bus = r_immu_devi->imd_bus;
1674 r_devfunc = r_immu_devi->imd_devfunc;
1675
1676 if (rdip == ddip) {
1677 /* rdip is a PCIE device. set context for it only */
1678 context_set(immu, domain, immu->immu_ctx_root, r_bus,
1679 r_devfunc);
1680 #ifdef BUGGY_DRIVERS
1681 } else if (r_immu_devi == d_immu_devi) {
1682 #ifdef TEST
1683 ddi_err(DER_WARN, rdip, "Driver bug: Devices 0x%lx and "
1684 "0x%lx are identical", rdip, ddip);
1685 #endif
1686 /* rdip is a PCIE device. set context for it only */
1687 context_set(immu, domain, immu->immu_ctx_root, r_bus,
1688 r_devfunc);
1689 #endif
1690 } else if (d_pcib_type == IMMU_PCIB_PCIE_PCI) {
1691 /*
1692 * ddip is a PCIE_PCI bridge. Set context for ddip's
1693 * secondary bus. If rdip is on ddip's secondary
1694 * bus, set context for rdip. Else, set context
1695 * for rdip's PCI bridge on ddip's secondary bus.
1696 */
1697 context_set(immu, domain, immu->immu_ctx_root,
1698 d_immu_devi->imd_sec, 0);
1699 if (d_immu_devi->imd_sec == r_bus) {
1700 context_set(immu, domain, immu->immu_ctx_root,
1701 r_bus, r_devfunc);
1702 } else {
1703 pcibdip = NULL;
1704 if (immu_walk_ancestor(rdip, ddip, find_top_pcib,
1705 &pcibdip, NULL, immu_flags) == DDI_SUCCESS &&
1706 pcibdip != NULL) {
1707 r_immu_devi = immu_devi_get(pcibdip);
1708 r_bus = r_immu_devi->imd_bus;
1709 r_devfunc = r_immu_devi->imd_devfunc;
1710 context_set(immu, domain, immu->immu_ctx_root,
1711 r_bus, r_devfunc);
1712 } else {
1713 ddi_err(DER_PANIC, rdip, "Failed to find PCI "
1714 " bridge for PCI device");
1715 /*NOTREACHED*/
1716 }
1717 }
1718 } else if (d_pcib_type == IMMU_PCIB_PCI_PCI) {
1719 context_set(immu, domain, immu->immu_ctx_root, d_bus,
1720 d_devfunc);
1721 } else if (d_pcib_type == IMMU_PCIB_ENDPOINT) {
1722 /*
1723 * ddip is a PCIE device which has a non-PCI device under it
1724 * i.e. it is a PCI-nonPCI bridge. Example: pciicde-ata
1725 */
1726 context_set(immu, domain, immu->immu_ctx_root, d_bus,
1727 d_devfunc);
1728 } else {
1729 ddi_err(DER_PANIC, rdip, "unknown device type. Cannot "
1730 "set iommu context.");
1731 /*NOTREACHED*/
1732 }
1733
1734 /* XXX do we need a membar_producer() here */
1735 return (DDI_SUCCESS);
1736 }
1737
1738 /* ##################### END CONTEXT CODE ################################## */
1739 /* ##################### MAPPING CODE ################################## */
1740
1741
1742 #ifdef DEBUG
1743 static boolean_t
PDTE_check(immu_t * immu,hw_pdte_t pdte,pgtable_t * next,paddr_t paddr,dev_info_t * rdip,immu_flags_t immu_flags)1744 PDTE_check(immu_t *immu, hw_pdte_t pdte, pgtable_t *next, paddr_t paddr,
1745 dev_info_t *rdip, immu_flags_t immu_flags)
1746 {
1747 /* The PDTE must be set i.e. present bit is set */
1748 if (!PDTE_P(pdte)) {
1749 ddi_err(DER_MODE, rdip, "No present flag");
1750 return (B_FALSE);
1751 }
1752
1753 /*
1754 * Just assert to check most significant system software field
1755 * (PDTE_SW4) as it is same as present bit and we
1756 * checked that above
1757 */
1758 ASSERT(PDTE_SW4(pdte));
1759
1760 /*
1761 * TM field should be clear if not reserved.
1762 * non-leaf is always reserved
1763 */
1764 if (next == NULL && immu->immu_TM_reserved == B_FALSE) {
1765 if (PDTE_TM(pdte)) {
1766 ddi_err(DER_MODE, rdip, "TM flag set");
1767 return (B_FALSE);
1768 }
1769 }
1770
1771 /*
1772 * The SW3 field is not used and must be clear
1773 */
1774 if (PDTE_SW3(pdte)) {
1775 ddi_err(DER_MODE, rdip, "SW3 set");
1776 return (B_FALSE);
1777 }
1778
1779 /*
1780 * PFN (for PTE) or next level pgtable-paddr (for PDE) must be set
1781 */
1782 if (next == NULL) {
1783 ASSERT(paddr % IMMU_PAGESIZE == 0);
1784 if (PDTE_PADDR(pdte) != paddr) {
1785 ddi_err(DER_MODE, rdip,
1786 "PTE paddr mismatch: %lx != %lx",
1787 PDTE_PADDR(pdte), paddr);
1788 return (B_FALSE);
1789 }
1790 } else {
1791 if (PDTE_PADDR(pdte) != next->hwpg_paddr) {
1792 ddi_err(DER_MODE, rdip,
1793 "PDE paddr mismatch: %lx != %lx",
1794 PDTE_PADDR(pdte), next->hwpg_paddr);
1795 return (B_FALSE);
1796 }
1797 }
1798
1799 /*
1800 * SNP field should be clear if not reserved.
1801 * non-leaf is always reserved
1802 */
1803 if (next == NULL && immu->immu_SNP_reserved == B_FALSE) {
1804 if (PDTE_SNP(pdte)) {
1805 ddi_err(DER_MODE, rdip, "SNP set");
1806 return (B_FALSE);
1807 }
1808 }
1809
1810 /* second field available for system software should be clear */
1811 if (PDTE_SW2(pdte)) {
1812 ddi_err(DER_MODE, rdip, "SW2 set");
1813 return (B_FALSE);
1814 }
1815
1816 /* Super pages field should be clear */
1817 if (PDTE_SP(pdte)) {
1818 ddi_err(DER_MODE, rdip, "SP set");
1819 return (B_FALSE);
1820 }
1821
1822 /*
1823 * least significant field available for
1824 * system software should be clear
1825 */
1826 if (PDTE_SW1(pdte)) {
1827 ddi_err(DER_MODE, rdip, "SW1 set");
1828 return (B_FALSE);
1829 }
1830
1831 if ((immu_flags & IMMU_FLAGS_READ) && !PDTE_READ(pdte)) {
1832 ddi_err(DER_MODE, rdip, "READ not set");
1833 return (B_FALSE);
1834 }
1835
1836 if ((immu_flags & IMMU_FLAGS_WRITE) && !PDTE_WRITE(pdte)) {
1837 ddi_err(DER_MODE, rdip, "WRITE not set");
1838 return (B_FALSE);
1839 }
1840
1841 return (B_TRUE);
1842 }
1843 #endif
1844
1845 /*ARGSUSED*/
1846 static void
PTE_clear_all(immu_t * immu,domain_t * domain,xlate_t * xlate,uint64_t * dvma_ptr,uint64_t * npages_ptr,dev_info_t * rdip)1847 PTE_clear_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
1848 uint64_t *dvma_ptr, uint64_t *npages_ptr, dev_info_t *rdip)
1849 {
1850 uint64_t npages;
1851 uint64_t dvma;
1852 pgtable_t *pgtable;
1853 hw_pdte_t *hwp;
1854 hw_pdte_t *shwp;
1855 int idx;
1856
1857 pgtable = xlate->xlt_pgtable;
1858 idx = xlate->xlt_idx;
1859
1860 dvma = *dvma_ptr;
1861 npages = *npages_ptr;
1862
1863 /*
1864 * since a caller gets a unique dvma for a physical address,
1865 * no other concurrent thread will be writing to the same
1866 * PTE even if it has the same paddr. So no locks needed.
1867 */
1868 shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
1869
1870 hwp = shwp;
1871 for (; npages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
1872 PDTE_CLEAR_P(*hwp);
1873 dvma += IMMU_PAGESIZE;
1874 npages--;
1875 }
1876
1877 *dvma_ptr = dvma;
1878 *npages_ptr = npages;
1879
1880 xlate->xlt_idx = idx;
1881 }
1882
1883 static void
xlate_setup(uint64_t dvma,xlate_t * xlate,int nlevels)1884 xlate_setup(uint64_t dvma, xlate_t *xlate, int nlevels)
1885 {
1886 int level;
1887 uint64_t offbits;
1888
1889 /*
1890 * Skip the first 12 bits which is the offset into
1891 * 4K PFN (phys page frame based on IMMU_PAGESIZE)
1892 */
1893 offbits = dvma >> IMMU_PAGESHIFT;
1894
1895 /* skip to level 1 i.e. leaf PTE */
1896 for (level = 1, xlate++; level <= nlevels; level++, xlate++) {
1897 xlate->xlt_level = level;
1898 xlate->xlt_idx = (offbits & IMMU_PGTABLE_LEVEL_MASK);
1899 ASSERT(xlate->xlt_idx <= IMMU_PGTABLE_MAXIDX);
1900 xlate->xlt_pgtable = NULL;
1901 offbits >>= IMMU_PGTABLE_LEVEL_STRIDE;
1902 }
1903 }
1904
1905 /*
1906 * Read the pgtables
1907 */
1908 static boolean_t
PDE_lookup(domain_t * domain,xlate_t * xlate,int nlevels)1909 PDE_lookup(domain_t *domain, xlate_t *xlate, int nlevels)
1910 {
1911 pgtable_t *pgtable;
1912 pgtable_t *next;
1913 uint_t idx;
1914
1915 /* start with highest level pgtable i.e. root */
1916 xlate += nlevels;
1917
1918 if (xlate->xlt_pgtable == NULL) {
1919 xlate->xlt_pgtable = domain->dom_pgtable_root;
1920 }
1921
1922 for (; xlate->xlt_level > 1; xlate--) {
1923 idx = xlate->xlt_idx;
1924 pgtable = xlate->xlt_pgtable;
1925
1926 if ((xlate - 1)->xlt_pgtable) {
1927 continue;
1928 }
1929
1930 /* Lock the pgtable in read mode */
1931 rw_enter(&(pgtable->swpg_rwlock), RW_READER);
1932
1933 /*
1934 * since we are unmapping, the pgtable should
1935 * already point to a leafier pgtable.
1936 */
1937 next = *(pgtable->swpg_next_array + idx);
1938 (xlate - 1)->xlt_pgtable = next;
1939 rw_exit(&(pgtable->swpg_rwlock));
1940 if (next == NULL)
1941 return (B_FALSE);
1942 }
1943
1944 return (B_TRUE);
1945 }
1946
1947 static void
immu_fault_walk(void * arg,void * base,size_t len)1948 immu_fault_walk(void *arg, void *base, size_t len)
1949 {
1950 uint64_t dvma, start;
1951
1952 dvma = *(uint64_t *)arg;
1953 start = (uint64_t)(uintptr_t)base;
1954
1955 if (dvma >= start && dvma < (start + len)) {
1956 ddi_err(DER_WARN, NULL,
1957 "faulting DVMA address is in vmem arena "
1958 "(%" PRIx64 "-%" PRIx64 ")",
1959 start, start + len);
1960 *(uint64_t *)arg = ~0ULL;
1961 }
1962 }
1963
1964 void
immu_print_fault_info(uint_t sid,uint64_t dvma)1965 immu_print_fault_info(uint_t sid, uint64_t dvma)
1966 {
1967 int nlevels;
1968 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
1969 xlate_t *xlatep;
1970 hw_pdte_t pte;
1971 domain_t *domain;
1972 immu_t *immu;
1973 uint64_t dvma_arg;
1974
1975 if (mod_hash_find(bdf_domain_hash,
1976 (void *)(uintptr_t)sid, (void *)&domain) != 0) {
1977 ddi_err(DER_WARN, NULL,
1978 "no domain for faulting SID %08x", sid);
1979 return;
1980 }
1981
1982 immu = domain->dom_immu;
1983
1984 dvma_arg = dvma;
1985 vmem_walk(domain->dom_dvma_arena, VMEM_ALLOC, immu_fault_walk,
1986 (void *)&dvma_arg);
1987 if (dvma_arg != ~0ULL)
1988 ddi_err(DER_WARN, domain->dom_dip,
1989 "faulting DVMA address is not in vmem arena");
1990
1991 nlevels = immu->immu_dvma_nlevels;
1992 xlate_setup(dvma, xlate, nlevels);
1993
1994 if (!PDE_lookup(domain, xlate, nlevels)) {
1995 ddi_err(DER_WARN, domain->dom_dip,
1996 "pte not found in domid %d for faulting addr %" PRIx64,
1997 domain->dom_did, dvma);
1998 return;
1999 }
2000
2001 xlatep = &xlate[1];
2002 pte = *((hw_pdte_t *)
2003 (xlatep->xlt_pgtable->hwpg_vaddr) + xlatep->xlt_idx);
2004
2005 ddi_err(DER_WARN, domain->dom_dip,
2006 "domid %d pte: %" PRIx64 "(paddr %" PRIx64 ")", domain->dom_did,
2007 (unsigned long long)pte, (unsigned long long)PDTE_PADDR(pte));
2008 }
2009
2010 /*ARGSUSED*/
2011 static void
PTE_set_one(immu_t * immu,hw_pdte_t * hwp,paddr_t paddr,dev_info_t * rdip,immu_flags_t immu_flags)2012 PTE_set_one(immu_t *immu, hw_pdte_t *hwp, paddr_t paddr,
2013 dev_info_t *rdip, immu_flags_t immu_flags)
2014 {
2015 hw_pdte_t pte;
2016
2017 #ifndef DEBUG
2018 pte = immu->immu_ptemask;
2019 PDTE_SET_PADDR(pte, paddr);
2020 #else
2021 pte = *hwp;
2022
2023 if (PDTE_P(pte)) {
2024 if (PDTE_PADDR(pte) != paddr) {
2025 ddi_err(DER_MODE, rdip, "PTE paddr %lx != paddr %lx",
2026 PDTE_PADDR(pte), paddr);
2027 }
2028 #ifdef BUGGY_DRIVERS
2029 return;
2030 #else
2031 goto out;
2032 #endif
2033 }
2034
2035 /* clear TM field if not reserved */
2036 if (immu->immu_TM_reserved == B_FALSE) {
2037 PDTE_CLEAR_TM(pte);
2038 }
2039
2040 /* Clear 3rd field for system software - not used */
2041 PDTE_CLEAR_SW3(pte);
2042
2043 /* Set paddr */
2044 ASSERT(paddr % IMMU_PAGESIZE == 0);
2045 PDTE_CLEAR_PADDR(pte);
2046 PDTE_SET_PADDR(pte, paddr);
2047
2048 /* clear SNP field if not reserved. */
2049 if (immu->immu_SNP_reserved == B_FALSE) {
2050 PDTE_CLEAR_SNP(pte);
2051 }
2052
2053 /* Clear SW2 field available for software */
2054 PDTE_CLEAR_SW2(pte);
2055
2056
2057 /* SP is don't care for PTEs. Clear it for cleanliness */
2058 PDTE_CLEAR_SP(pte);
2059
2060 /* Clear SW1 field available for software */
2061 PDTE_CLEAR_SW1(pte);
2062
2063 /*
2064 * Now that we are done writing the PTE
2065 * set the "present" flag. Note this present
2066 * flag is a bit in the PDE/PTE that the
2067 * spec says is available for system software.
2068 * This is an implementation detail of Solaris
2069 * bare-metal Intel IOMMU.
2070 * The present field in a PDE/PTE is not defined
2071 * by the Vt-d spec
2072 */
2073
2074 PDTE_SET_P(pte);
2075
2076 pte |= immu->immu_ptemask;
2077
2078 out:
2079 #endif /* DEBUG */
2080 #ifdef BUGGY_DRIVERS
2081 PDTE_SET_READ(pte);
2082 PDTE_SET_WRITE(pte);
2083 #else
2084 if (immu_flags & IMMU_FLAGS_READ)
2085 PDTE_SET_READ(pte);
2086 if (immu_flags & IMMU_FLAGS_WRITE)
2087 PDTE_SET_WRITE(pte);
2088 #endif /* BUGGY_DRIVERS */
2089
2090 *hwp = pte;
2091 }
2092
2093 /*ARGSUSED*/
2094 static void
PTE_set_all(immu_t * immu,domain_t * domain,xlate_t * xlate,uint64_t * dvma_ptr,uint64_t * nvpages_ptr,immu_dcookie_t * dcookies,int dcount,dev_info_t * rdip,immu_flags_t immu_flags)2095 PTE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
2096 uint64_t *dvma_ptr, uint64_t *nvpages_ptr, immu_dcookie_t *dcookies,
2097 int dcount, dev_info_t *rdip, immu_flags_t immu_flags)
2098 {
2099 paddr_t paddr;
2100 uint64_t nvpages;
2101 uint64_t nppages;
2102 uint64_t dvma;
2103 pgtable_t *pgtable;
2104 hw_pdte_t *hwp;
2105 hw_pdte_t *shwp;
2106 int idx, nset;
2107 int j;
2108
2109 pgtable = xlate->xlt_pgtable;
2110 idx = xlate->xlt_idx;
2111
2112 dvma = *dvma_ptr;
2113 nvpages = *nvpages_ptr;
2114
2115 /*
2116 * since a caller gets a unique dvma for a physical address,
2117 * no other concurrent thread will be writing to the same
2118 * PTE even if it has the same paddr. So no locks needed.
2119 */
2120 shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2121
2122 hwp = shwp;
2123 for (j = dcount - 1; j >= 0; j--) {
2124 if (nvpages <= dcookies[j].dck_npages)
2125 break;
2126 nvpages -= dcookies[j].dck_npages;
2127 }
2128
2129 VERIFY(j >= 0);
2130 nppages = nvpages;
2131 paddr = dcookies[j].dck_paddr +
2132 (dcookies[j].dck_npages - nppages) * IMMU_PAGESIZE;
2133
2134 nvpages = *nvpages_ptr;
2135 nset = 0;
2136 for (; nvpages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
2137 PTE_set_one(immu, hwp, paddr, rdip, immu_flags);
2138 nset++;
2139
2140 ASSERT(PDTE_check(immu, *hwp, NULL, paddr, rdip, immu_flags)
2141 == B_TRUE);
2142 nppages--;
2143 nvpages--;
2144 paddr += IMMU_PAGESIZE;
2145 dvma += IMMU_PAGESIZE;
2146
2147 if (nppages == 0) {
2148 j++;
2149 }
2150
2151 if (j == dcount)
2152 break;
2153
2154 if (nppages == 0) {
2155 nppages = dcookies[j].dck_npages;
2156 paddr = dcookies[j].dck_paddr;
2157 }
2158 }
2159
2160 if (nvpages) {
2161 *dvma_ptr = dvma;
2162 *nvpages_ptr = nvpages;
2163 } else {
2164 *dvma_ptr = 0;
2165 *nvpages_ptr = 0;
2166 }
2167
2168 xlate->xlt_idx = idx;
2169 }
2170
2171 /*ARGSUSED*/
2172 static void
PDE_set_one(immu_t * immu,hw_pdte_t * hwp,pgtable_t * next,dev_info_t * rdip,immu_flags_t immu_flags)2173 PDE_set_one(immu_t *immu, hw_pdte_t *hwp, pgtable_t *next,
2174 dev_info_t *rdip, immu_flags_t immu_flags)
2175 {
2176 hw_pdte_t pde;
2177
2178 pde = *hwp;
2179
2180 /* if PDE is already set, make sure it is correct */
2181 if (PDTE_P(pde)) {
2182 ASSERT(PDTE_PADDR(pde) == next->hwpg_paddr);
2183 #ifdef BUGGY_DRIVERS
2184 return;
2185 #else
2186 goto out;
2187 #endif
2188 }
2189
2190 /* Dont touch SW4, it is the present bit */
2191
2192 /* don't touch TM field it is reserved for PDEs */
2193
2194 /* 3rd field available for system software is not used */
2195 PDTE_CLEAR_SW3(pde);
2196
2197 /* Set next level pgtable-paddr for PDE */
2198 PDTE_CLEAR_PADDR(pde);
2199 PDTE_SET_PADDR(pde, next->hwpg_paddr);
2200
2201 /* don't touch SNP field it is reserved for PDEs */
2202
2203 /* Clear second field available for system software */
2204 PDTE_CLEAR_SW2(pde);
2205
2206 /* No super pages for PDEs */
2207 PDTE_CLEAR_SP(pde);
2208
2209 /* Clear SW1 for software */
2210 PDTE_CLEAR_SW1(pde);
2211
2212 /*
2213 * Now that we are done writing the PDE
2214 * set the "present" flag. Note this present
2215 * flag is a bit in the PDE/PTE that the
2216 * spec says is available for system software.
2217 * This is an implementation detail of Solaris
2218 * base-metal Intel IOMMU.
2219 * The present field in a PDE/PTE is not defined
2220 * by the Vt-d spec
2221 */
2222
2223 out:
2224 #ifdef BUGGY_DRIVERS
2225 PDTE_SET_READ(pde);
2226 PDTE_SET_WRITE(pde);
2227 #else
2228 if (immu_flags & IMMU_FLAGS_READ)
2229 PDTE_SET_READ(pde);
2230 if (immu_flags & IMMU_FLAGS_WRITE)
2231 PDTE_SET_WRITE(pde);
2232 #endif
2233
2234 PDTE_SET_P(pde);
2235
2236 *hwp = pde;
2237 }
2238
2239 /*
2240 * Used to set PDEs
2241 */
2242 static boolean_t
PDE_set_all(immu_t * immu,domain_t * domain,xlate_t * xlate,int nlevels,dev_info_t * rdip,immu_flags_t immu_flags)2243 PDE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate, int nlevels,
2244 dev_info_t *rdip, immu_flags_t immu_flags)
2245 {
2246 pgtable_t *pgtable;
2247 pgtable_t *new;
2248 pgtable_t *next;
2249 hw_pdte_t *hwp;
2250 int level;
2251 uint_t idx;
2252 krw_t rwtype;
2253 boolean_t set = B_FALSE;
2254
2255 /* start with highest level pgtable i.e. root */
2256 xlate += nlevels;
2257
2258 new = NULL;
2259 xlate->xlt_pgtable = domain->dom_pgtable_root;
2260 for (level = nlevels; level > 1; level--, xlate--) {
2261 idx = xlate->xlt_idx;
2262 pgtable = xlate->xlt_pgtable;
2263
2264 /* Lock the pgtable in READ mode first */
2265 rw_enter(&(pgtable->swpg_rwlock), RW_READER);
2266 rwtype = RW_READER;
2267 again:
2268 hwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2269 next = (pgtable->swpg_next_array)[idx];
2270
2271 /*
2272 * check if leafier level already has a pgtable
2273 * if yes, verify
2274 */
2275 if (next == NULL) {
2276 if (new == NULL) {
2277
2278 IMMU_DPROBE2(immu__pdp__alloc, dev_info_t *,
2279 rdip, int, level);
2280
2281 new = pgtable_alloc(immu, immu_flags);
2282 if (new == NULL) {
2283 ddi_err(DER_PANIC, rdip,
2284 "pgtable alloc err");
2285 }
2286 pgtable_zero(new);
2287 }
2288
2289 /* Change to a write lock */
2290 if (rwtype == RW_READER &&
2291 rw_tryupgrade(&(pgtable->swpg_rwlock)) == 0) {
2292 rw_exit(&(pgtable->swpg_rwlock));
2293 rw_enter(&(pgtable->swpg_rwlock), RW_WRITER);
2294 rwtype = RW_WRITER;
2295 goto again;
2296 }
2297 rwtype = RW_WRITER;
2298 next = new;
2299 (pgtable->swpg_next_array)[idx] = next;
2300 new = NULL;
2301 PDE_set_one(immu, hwp, next, rdip, immu_flags);
2302 set = B_TRUE;
2303 rw_downgrade(&(pgtable->swpg_rwlock));
2304 rwtype = RW_READER;
2305 }
2306 #ifndef BUGGY_DRIVERS
2307 else {
2308 hw_pdte_t pde = *hwp;
2309
2310 /*
2311 * If buggy driver we already set permission
2312 * READ+WRITE so nothing to do for that case
2313 * XXX Check that read writer perms change before
2314 * actually setting perms. Also need to hold lock
2315 */
2316 if (immu_flags & IMMU_FLAGS_READ)
2317 PDTE_SET_READ(pde);
2318 if (immu_flags & IMMU_FLAGS_WRITE)
2319 PDTE_SET_WRITE(pde);
2320
2321 *hwp = pde;
2322 }
2323 #endif
2324
2325 ASSERT(PDTE_check(immu, *hwp, next, 0, rdip, immu_flags)
2326 == B_TRUE);
2327
2328 (xlate - 1)->xlt_pgtable = next;
2329 rw_exit(&(pgtable->swpg_rwlock));
2330 }
2331
2332 if (new) {
2333 pgtable_free(immu, new);
2334 }
2335
2336 return (set);
2337 }
2338
2339 /*
2340 * dvma_map()
2341 * map a contiguous range of DVMA pages
2342 *
2343 * immu: IOMMU unit for which we are generating DVMA cookies
2344 * domain: domain
2345 * sdvma: Starting dvma
2346 * spaddr: Starting paddr
2347 * npages: Number of pages
2348 * rdip: requesting device
2349 * immu_flags: flags
2350 */
2351 static boolean_t
dvma_map(domain_t * domain,uint64_t sdvma,uint64_t snvpages,immu_dcookie_t * dcookies,int dcount,dev_info_t * rdip,immu_flags_t immu_flags)2352 dvma_map(domain_t *domain, uint64_t sdvma, uint64_t snvpages,
2353 immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
2354 immu_flags_t immu_flags)
2355 {
2356 uint64_t dvma;
2357 uint64_t n;
2358 immu_t *immu = domain->dom_immu;
2359 int nlevels = immu->immu_dvma_nlevels;
2360 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2361 boolean_t pde_set = B_FALSE;
2362
2363 n = snvpages;
2364 dvma = sdvma;
2365
2366 while (n > 0) {
2367 xlate_setup(dvma, xlate, nlevels);
2368
2369 /* Lookup or allocate PGDIRs and PGTABLEs if necessary */
2370 if (PDE_set_all(immu, domain, xlate, nlevels, rdip, immu_flags)
2371 == B_TRUE) {
2372 pde_set = B_TRUE;
2373 }
2374
2375 /* set all matching ptes that fit into this leaf pgtable */
2376 PTE_set_all(immu, domain, &xlate[1], &dvma, &n, dcookies,
2377 dcount, rdip, immu_flags);
2378 }
2379
2380 return (pde_set);
2381 }
2382
2383 /*
2384 * dvma_unmap()
2385 * unmap a range of DVMAs
2386 *
2387 * immu: IOMMU unit state
2388 * domain: domain for requesting device
2389 * ddip: domain-dip
2390 * dvma: starting DVMA
2391 * npages: Number of IMMU pages to be unmapped
2392 * rdip: requesting device
2393 */
2394 static void
dvma_unmap(domain_t * domain,uint64_t sdvma,uint64_t snpages,dev_info_t * rdip)2395 dvma_unmap(domain_t *domain, uint64_t sdvma, uint64_t snpages,
2396 dev_info_t *rdip)
2397 {
2398 immu_t *immu = domain->dom_immu;
2399 int nlevels = immu->immu_dvma_nlevels;
2400 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2401 uint64_t n;
2402 uint64_t dvma;
2403
2404 dvma = sdvma;
2405 n = snpages;
2406
2407 while (n > 0) {
2408 /* setup the xlate array */
2409 xlate_setup(dvma, xlate, nlevels);
2410
2411 /* just lookup existing pgtables. Should never fail */
2412 if (!PDE_lookup(domain, xlate, nlevels))
2413 ddi_err(DER_PANIC, rdip,
2414 "PTE not found for addr %" PRIx64,
2415 (unsigned long long)dvma);
2416
2417 /* clear all matching ptes that fit into this leaf pgtable */
2418 PTE_clear_all(immu, domain, &xlate[1], &dvma, &n, rdip);
2419 }
2420
2421 /* No need to flush IOTLB after unmap */
2422 }
2423
2424 static uint64_t
dvma_alloc(domain_t * domain,ddi_dma_attr_t * dma_attr,uint_t npages,int kmf)2425 dvma_alloc(domain_t *domain, ddi_dma_attr_t *dma_attr, uint_t npages, int kmf)
2426 {
2427 uint64_t dvma;
2428 size_t xsize, align;
2429 uint64_t minaddr, maxaddr;
2430
2431 /* parameters */
2432 xsize = npages * IMMU_PAGESIZE;
2433 align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2434 minaddr = dma_attr->dma_attr_addr_lo;
2435 maxaddr = dma_attr->dma_attr_addr_hi + 1;
2436
2437 /* handle the rollover cases */
2438 if (maxaddr < dma_attr->dma_attr_addr_hi) {
2439 maxaddr = dma_attr->dma_attr_addr_hi;
2440 }
2441
2442 /*
2443 * allocate from vmem arena.
2444 */
2445 dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2446 xsize, align, 0, 0, (void *)(uintptr_t)minaddr,
2447 (void *)(uintptr_t)maxaddr, kmf);
2448
2449 return (dvma);
2450 }
2451
2452 static void
dvma_prealloc(dev_info_t * rdip,immu_hdl_priv_t * ihp,ddi_dma_attr_t * dma_attr)2453 dvma_prealloc(dev_info_t *rdip, immu_hdl_priv_t *ihp, ddi_dma_attr_t *dma_attr)
2454 {
2455 int nlevels;
2456 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0}, *xlp;
2457 uint64_t dvma, n;
2458 size_t xsize, align;
2459 uint64_t minaddr, maxaddr, dmamax;
2460 int on, npte, pindex;
2461 hw_pdte_t *shwp;
2462 immu_t *immu;
2463 domain_t *domain;
2464
2465 /* parameters */
2466 domain = IMMU_DEVI(rdip)->imd_domain;
2467 immu = domain->dom_immu;
2468 nlevels = immu->immu_dvma_nlevels;
2469 xsize = IMMU_NPREPTES * IMMU_PAGESIZE;
2470 align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2471 minaddr = dma_attr->dma_attr_addr_lo;
2472 if (dma_attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)
2473 dmamax = dma_attr->dma_attr_seg;
2474 else
2475 dmamax = dma_attr->dma_attr_addr_hi;
2476 maxaddr = dmamax + 1;
2477
2478 if (maxaddr < dmamax)
2479 maxaddr = dmamax;
2480
2481 dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2482 xsize, align, 0, dma_attr->dma_attr_seg + 1,
2483 (void *)(uintptr_t)minaddr, (void *)(uintptr_t)maxaddr, VM_NOSLEEP);
2484
2485 ihp->ihp_predvma = dvma;
2486 ihp->ihp_npremapped = 0;
2487 if (dvma == 0)
2488 return;
2489
2490 n = IMMU_NPREPTES;
2491 pindex = 0;
2492
2493 /*
2494 * Set up a mapping at address 0, just so that all PDPs get allocated
2495 * now. Although this initial mapping should never be used,
2496 * explicitly set it to read-only, just to be safe.
2497 */
2498 while (n > 0) {
2499 xlate_setup(dvma, xlate, nlevels);
2500
2501 (void) PDE_set_all(immu, domain, xlate, nlevels, rdip,
2502 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2503
2504 xlp = &xlate[1];
2505 shwp = (hw_pdte_t *)(xlp->xlt_pgtable->hwpg_vaddr)
2506 + xlp->xlt_idx;
2507 on = n;
2508
2509 PTE_set_all(immu, domain, xlp, &dvma, &n, &immu_precookie,
2510 1, rdip, IMMU_FLAGS_READ);
2511
2512 npte = on - n;
2513
2514 while (npte > 0) {
2515 ihp->ihp_preptes[pindex++] = shwp;
2516 #ifdef BUGGY_DRIVERS
2517 PDTE_CLEAR_WRITE(*shwp);
2518 #endif
2519 shwp++;
2520 npte--;
2521 }
2522 }
2523 }
2524
2525 static void
dvma_prefree(dev_info_t * rdip,immu_hdl_priv_t * ihp)2526 dvma_prefree(dev_info_t *rdip, immu_hdl_priv_t *ihp)
2527 {
2528 domain_t *domain;
2529
2530 domain = IMMU_DEVI(rdip)->imd_domain;
2531
2532 if (ihp->ihp_predvma != 0) {
2533 dvma_unmap(domain, ihp->ihp_predvma, IMMU_NPREPTES, rdip);
2534 vmem_free(domain->dom_dvma_arena,
2535 (void *)(uintptr_t)ihp->ihp_predvma,
2536 IMMU_NPREPTES * IMMU_PAGESIZE);
2537 }
2538 }
2539
2540 static void
dvma_free(domain_t * domain,uint64_t dvma,uint64_t npages)2541 dvma_free(domain_t *domain, uint64_t dvma, uint64_t npages)
2542 {
2543 uint64_t size = npages * IMMU_PAGESIZE;
2544
2545 if (domain->dom_maptype != IMMU_MAPTYPE_XLATE)
2546 return;
2547
2548 vmem_free(domain->dom_dvma_arena, (void *)(uintptr_t)dvma, size);
2549 }
2550
2551 static int
immu_map_dvmaseg(dev_info_t * rdip,ddi_dma_handle_t handle,immu_hdl_priv_t * ihp,struct ddi_dma_req * dmareq,ddi_dma_obj_t * dma_out)2552 immu_map_dvmaseg(dev_info_t *rdip, ddi_dma_handle_t handle,
2553 immu_hdl_priv_t *ihp, struct ddi_dma_req *dmareq,
2554 ddi_dma_obj_t *dma_out)
2555 {
2556 domain_t *domain;
2557 immu_t *immu;
2558 immu_flags_t immu_flags;
2559 ddi_dma_atyp_t buftype;
2560 ddi_dma_obj_t *dmar_object;
2561 ddi_dma_attr_t *attrp;
2562 uint64_t offset, paddr, dvma, sdvma, rwmask;
2563 size_t npages, npgalloc;
2564 uint_t psize, size, pcnt, dmax;
2565 page_t **pparray;
2566 caddr_t vaddr;
2567 page_t *page;
2568 struct as *vas;
2569 immu_dcookie_t *dcookies;
2570 int pde_set;
2571
2572 rwmask = 0;
2573 page = NULL;
2574 domain = IMMU_DEVI(rdip)->imd_domain;
2575 immu = domain->dom_immu;
2576 immu_flags = dma_to_immu_flags(dmareq);
2577
2578 attrp = &((ddi_dma_impl_t *)handle)->dmai_attr;
2579
2580 dmar_object = &dmareq->dmar_object;
2581 pparray = dmar_object->dmao_obj.virt_obj.v_priv;
2582 vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2583 buftype = dmar_object->dmao_type;
2584 size = dmar_object->dmao_size;
2585
2586 IMMU_DPROBE3(immu__map__dvma, dev_info_t *, rdip, ddi_dma_atyp_t,
2587 buftype, uint_t, size);
2588
2589 dcookies = &ihp->ihp_dcookies[0];
2590
2591 pcnt = dmax = 0;
2592
2593 /* retrieve paddr, psize, offset from dmareq */
2594 if (buftype == DMA_OTYP_PAGES) {
2595 page = dmar_object->dmao_obj.pp_obj.pp_pp;
2596 offset = dmar_object->dmao_obj.pp_obj.pp_offset &
2597 MMU_PAGEOFFSET;
2598 paddr = pfn_to_pa(page->p_pagenum) + offset;
2599 psize = MIN((MMU_PAGESIZE - offset), size);
2600 page = page->p_next;
2601 vas = dmar_object->dmao_obj.virt_obj.v_as;
2602 } else {
2603 if (vas == NULL) {
2604 vas = &kas;
2605 }
2606 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2607 if (pparray != NULL) {
2608 paddr = pfn_to_pa(pparray[pcnt]->p_pagenum) + offset;
2609 psize = MIN((MMU_PAGESIZE - offset), size);
2610 pcnt++;
2611 } else {
2612 paddr = pfn_to_pa(hat_getpfnum(vas->a_hat,
2613 vaddr)) + offset;
2614 psize = MIN(size, (MMU_PAGESIZE - offset));
2615 vaddr += psize;
2616 }
2617 }
2618
2619 npgalloc = IMMU_BTOPR(size + offset);
2620
2621 if (npgalloc <= IMMU_NPREPTES && ihp->ihp_predvma != 0) {
2622 #ifdef BUGGY_DRIVERS
2623 rwmask = PDTE_MASK_R | PDTE_MASK_W | immu->immu_ptemask;
2624 #else
2625 rwmask = immu->immu_ptemask;
2626 if (immu_flags & IMMU_FLAGS_READ)
2627 rwmask |= PDTE_MASK_R;
2628 if (immu_flags & IMMU_FLAGS_WRITE)
2629 rwmask |= PDTE_MASK_W;
2630 #endif
2631 #ifdef DEBUG
2632 rwmask |= PDTE_MASK_P;
2633 #endif
2634 sdvma = ihp->ihp_predvma;
2635 ihp->ihp_npremapped = npgalloc;
2636 *ihp->ihp_preptes[0] =
2637 PDTE_PADDR(paddr & ~MMU_PAGEOFFSET) | rwmask;
2638 } else {
2639 ihp->ihp_npremapped = 0;
2640 sdvma = dvma_alloc(domain, attrp, npgalloc,
2641 dmareq->dmar_fp == DDI_DMA_SLEEP ? VM_SLEEP : VM_NOSLEEP);
2642 if (sdvma == 0)
2643 return (DDI_DMA_NORESOURCES);
2644
2645 dcookies[0].dck_paddr = (paddr & ~MMU_PAGEOFFSET);
2646 dcookies[0].dck_npages = 1;
2647 }
2648
2649 IMMU_DPROBE3(immu__dvma__alloc, dev_info_t *, rdip, uint64_t, npgalloc,
2650 uint64_t, sdvma);
2651
2652 dvma = sdvma;
2653 pde_set = 0;
2654 npages = 1;
2655 size -= psize;
2656 while (size > 0) {
2657 /* get the size for this page (i.e. partial or full page) */
2658 psize = MIN(size, MMU_PAGESIZE);
2659 if (buftype == DMA_OTYP_PAGES) {
2660 /* get the paddr from the page_t */
2661 paddr = pfn_to_pa(page->p_pagenum);
2662 page = page->p_next;
2663 } else if (pparray != NULL) {
2664 /* index into the array of page_t's to get the paddr */
2665 paddr = pfn_to_pa(pparray[pcnt]->p_pagenum);
2666 pcnt++;
2667 } else {
2668 /* call into the VM to get the paddr */
2669 paddr = pfn_to_pa(hat_getpfnum(vas->a_hat, vaddr));
2670 vaddr += psize;
2671 }
2672
2673 if (ihp->ihp_npremapped > 0) {
2674 *ihp->ihp_preptes[npages] =
2675 PDTE_PADDR(paddr) | rwmask;
2676 } else if (IMMU_CONTIG_PADDR(dcookies[dmax], paddr)) {
2677 dcookies[dmax].dck_npages++;
2678 } else {
2679 /* No, we need a new dcookie */
2680 if (dmax == (IMMU_NDCK - 1)) {
2681 /*
2682 * Ran out of dcookies. Map them now.
2683 */
2684 if (dvma_map(domain, dvma,
2685 npages, dcookies, dmax + 1, rdip,
2686 immu_flags))
2687 pde_set++;
2688
2689 IMMU_DPROBE4(immu__dvmamap__early,
2690 dev_info_t *, rdip, uint64_t, dvma,
2691 uint_t, npages, uint_t, dmax+1);
2692
2693 dvma += (npages << IMMU_PAGESHIFT);
2694 npages = 0;
2695 dmax = 0;
2696 } else {
2697 dmax++;
2698 }
2699 dcookies[dmax].dck_paddr = paddr;
2700 dcookies[dmax].dck_npages = 1;
2701 }
2702 size -= psize;
2703 if (npages != 0)
2704 npages++;
2705 }
2706
2707 /*
2708 * Finish up, mapping all, or all of the remaining,
2709 * physical memory ranges.
2710 */
2711 if (ihp->ihp_npremapped == 0 && npages > 0) {
2712 IMMU_DPROBE4(immu__dvmamap__late, dev_info_t *, rdip, \
2713 uint64_t, dvma, uint_t, npages, uint_t, dmax+1);
2714
2715 if (dvma_map(domain, dvma, npages, dcookies,
2716 dmax + 1, rdip, immu_flags))
2717 pde_set++;
2718 }
2719
2720 /* Invalidate the IOTLB */
2721 immu_flush_iotlb_psi(immu, domain->dom_did, sdvma, npgalloc,
2722 pde_set > 0 ? TLB_IVA_WHOLE : TLB_IVA_LEAF,
2723 &ihp->ihp_inv_wait);
2724
2725 ihp->ihp_ndvseg = 1;
2726 ihp->ihp_dvseg[0].dvs_start = sdvma;
2727 ihp->ihp_dvseg[0].dvs_len = dmar_object->dmao_size;
2728
2729 dma_out->dmao_size = dmar_object->dmao_size;
2730 dma_out->dmao_obj.dvma_obj.dv_off = offset & IMMU_PAGEOFFSET;
2731 dma_out->dmao_obj.dvma_obj.dv_nseg = 1;
2732 dma_out->dmao_obj.dvma_obj.dv_seg = &ihp->ihp_dvseg[0];
2733 dma_out->dmao_type = DMA_OTYP_DVADDR;
2734
2735 return (DDI_DMA_MAPPED);
2736 }
2737
2738 static int
immu_unmap_dvmaseg(dev_info_t * rdip,ddi_dma_obj_t * dmao)2739 immu_unmap_dvmaseg(dev_info_t *rdip, ddi_dma_obj_t *dmao)
2740 {
2741 uint64_t dvma, npages;
2742 domain_t *domain;
2743 struct dvmaseg *dvs;
2744
2745 domain = IMMU_DEVI(rdip)->imd_domain;
2746 dvs = dmao->dmao_obj.dvma_obj.dv_seg;
2747
2748 dvma = dvs[0].dvs_start;
2749 npages = IMMU_BTOPR(dvs[0].dvs_len + dmao->dmao_obj.dvma_obj.dv_off);
2750
2751 #ifdef DEBUG
2752 /* Unmap only in DEBUG mode */
2753 dvma_unmap(domain, dvma, npages, rdip);
2754 #endif
2755 dvma_free(domain, dvma, npages);
2756
2757 IMMU_DPROBE3(immu__dvma__free, dev_info_t *, rdip, uint_t, npages,
2758 uint64_t, dvma);
2759
2760 #ifdef DEBUG
2761 /*
2762 * In the DEBUG case, the unmap was actually done,
2763 * but an IOTLB flush was not done. So, an explicit
2764 * write back flush is needed.
2765 */
2766 immu_regs_wbf_flush(domain->dom_immu);
2767 #endif
2768
2769 return (DDI_SUCCESS);
2770 }
2771
2772 /* ############################# Functions exported ######################## */
2773
2774 /*
2775 * setup the DVMA subsystem
2776 * this code runs only for the first IOMMU unit
2777 */
2778 void
immu_dvma_setup(list_t * listp)2779 immu_dvma_setup(list_t *listp)
2780 {
2781 immu_t *immu;
2782 uint_t kval;
2783 size_t nchains;
2784
2785 /* locks */
2786 mutex_init(&immu_domain_lock, NULL, MUTEX_DEFAULT, NULL);
2787
2788 /* Create lists */
2789 list_create(&immu_unity_domain_list, sizeof (domain_t),
2790 offsetof(domain_t, dom_maptype_node));
2791 list_create(&immu_xlate_domain_list, sizeof (domain_t),
2792 offsetof(domain_t, dom_maptype_node));
2793
2794 /* Setup BDF domain hash */
2795 nchains = 0xff;
2796 kval = mod_hash_iddata_gen(nchains);
2797
2798 bdf_domain_hash = mod_hash_create_extended("BDF-DOMAIN_HASH",
2799 nchains, mod_hash_null_keydtor, mod_hash_null_valdtor,
2800 mod_hash_byid, (void *)(uintptr_t)kval, mod_hash_idkey_cmp,
2801 KM_NOSLEEP);
2802
2803 immu = list_head(listp);
2804 for (; immu; immu = list_next(listp, immu)) {
2805 create_unity_domain(immu);
2806 did_init(immu);
2807 context_init(immu);
2808 immu->immu_dvma_setup = B_TRUE;
2809 }
2810 }
2811
2812 /*
2813 * Startup up one DVMA unit
2814 */
2815 void
immu_dvma_startup(immu_t * immu)2816 immu_dvma_startup(immu_t *immu)
2817 {
2818 if (immu_gfxdvma_enable == B_FALSE &&
2819 immu->immu_dvma_gfx_only == B_TRUE) {
2820 return;
2821 }
2822
2823 /*
2824 * DVMA will start once IOMMU is "running"
2825 */
2826 immu->immu_dvma_running = B_TRUE;
2827 }
2828
2829 /*
2830 * immu_dvma_physmem_update()
2831 * called when the installed memory on a
2832 * system increases, to expand domain DVMA
2833 * for domains with UNITY mapping
2834 */
2835 void
immu_dvma_physmem_update(uint64_t addr,uint64_t size)2836 immu_dvma_physmem_update(uint64_t addr, uint64_t size)
2837 {
2838 uint64_t start;
2839 uint64_t npages;
2840 int dcount;
2841 immu_dcookie_t dcookies[1] = {0};
2842 domain_t *domain;
2843
2844 /*
2845 * Just walk the system-wide list of domains with
2846 * UNITY mapping. Both the list of *all* domains
2847 * and *UNITY* domains is protected by the same
2848 * single lock
2849 */
2850 mutex_enter(&immu_domain_lock);
2851 domain = list_head(&immu_unity_domain_list);
2852 for (; domain; domain = list_next(&immu_unity_domain_list, domain)) {
2853 /*
2854 * Nothing to do if the IOMMU supports passthrough.
2855 */
2856 if (IMMU_ECAP_GET_PT(domain->dom_immu->immu_regs_excap))
2857 continue;
2858
2859 /* There is no vmem_arena for unity domains. Just map it */
2860 ddi_err(DER_LOG, domain->dom_dip,
2861 "iommu: unity-domain: Adding map "
2862 "[0x%" PRIx64 " - 0x%" PRIx64 "]", addr, addr + size);
2863
2864 start = IMMU_ROUNDOWN(addr);
2865 npages = (IMMU_ROUNDUP(size) / IMMU_PAGESIZE) + 1;
2866
2867 dcookies[0].dck_paddr = start;
2868 dcookies[0].dck_npages = npages;
2869 dcount = 1;
2870 (void) dvma_map(domain, start, npages,
2871 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2872
2873 }
2874 mutex_exit(&immu_domain_lock);
2875 }
2876
2877 int
immu_dvma_device_setup(dev_info_t * rdip,immu_flags_t immu_flags)2878 immu_dvma_device_setup(dev_info_t *rdip, immu_flags_t immu_flags)
2879 {
2880 dev_info_t *ddip, *odip;
2881 immu_t *immu;
2882 domain_t *domain;
2883
2884 odip = rdip;
2885
2886 immu = immu_dvma_get_immu(rdip, immu_flags);
2887 if (immu == NULL) {
2888 /*
2889 * possible that there is no IOMMU unit for this device
2890 * - BIOS bugs are one example.
2891 */
2892 ddi_err(DER_WARN, rdip, "No iommu unit found for device");
2893 return (DDI_DMA_NORESOURCES);
2894 }
2895
2896 /*
2897 * redirect isa devices attached under lpc to lpc dip
2898 */
2899 if (strcmp(ddi_node_name(ddi_get_parent(rdip)), "isa") == 0) {
2900 rdip = get_lpc_devinfo(immu, rdip, immu_flags);
2901 if (rdip == NULL) {
2902 ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2903 /*NOTREACHED*/
2904 }
2905 }
2906
2907 /* Reset immu, as redirection can change IMMU */
2908 immu = NULL;
2909
2910 /*
2911 * for gart, redirect to the real graphic devinfo
2912 */
2913 if (strcmp(ddi_node_name(rdip), "agpgart") == 0) {
2914 rdip = get_gfx_devinfo(rdip);
2915 if (rdip == NULL) {
2916 ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2917 /*NOTREACHED*/
2918 }
2919 }
2920
2921 /*
2922 * Setup DVMA domain for the device. This does
2923 * work only the first time we do DVMA for a
2924 * device.
2925 */
2926 ddip = NULL;
2927 domain = device_domain(rdip, &ddip, immu_flags);
2928 if (domain == NULL) {
2929 ddi_err(DER_MODE, rdip, "Intel IOMMU setup failed for device");
2930 return (DDI_DMA_NORESOURCES);
2931 }
2932
2933 immu = domain->dom_immu;
2934
2935 /*
2936 * If a domain is found, we must also have a domain dip
2937 * which is the topmost ancestor dip of rdip that shares
2938 * the same domain with rdip.
2939 */
2940 if (domain->dom_did == 0 || ddip == NULL) {
2941 ddi_err(DER_MODE, rdip, "domain did 0(%d) or ddip NULL(%p)",
2942 domain->dom_did, ddip);
2943 return (DDI_DMA_NORESOURCES);
2944 }
2945
2946 if (odip != rdip)
2947 set_domain(odip, ddip, domain);
2948
2949 /*
2950 * Update the root and context entries
2951 */
2952 if (immu_context_update(immu, domain, ddip, rdip, immu_flags)
2953 != DDI_SUCCESS) {
2954 ddi_err(DER_MODE, rdip, "DVMA map: context update failed");
2955 return (DDI_DMA_NORESOURCES);
2956 }
2957
2958 return (DDI_SUCCESS);
2959 }
2960
2961 int
immu_map_memrange(dev_info_t * rdip,memrng_t * mrng)2962 immu_map_memrange(dev_info_t *rdip, memrng_t *mrng)
2963 {
2964 immu_dcookie_t dcookies[1] = {0};
2965 boolean_t pde_set;
2966 immu_t *immu;
2967 domain_t *domain;
2968 immu_inv_wait_t iw;
2969
2970 dcookies[0].dck_paddr = mrng->mrng_start;
2971 dcookies[0].dck_npages = mrng->mrng_npages;
2972
2973 domain = IMMU_DEVI(rdip)->imd_domain;
2974 immu = domain->dom_immu;
2975
2976 pde_set = dvma_map(domain, mrng->mrng_start,
2977 mrng->mrng_npages, dcookies, 1, rdip,
2978 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2979
2980 immu_init_inv_wait(&iw, "memrange", B_TRUE);
2981
2982 immu_flush_iotlb_psi(immu, domain->dom_did, mrng->mrng_start,
2983 mrng->mrng_npages, pde_set == B_TRUE ?
2984 TLB_IVA_WHOLE : TLB_IVA_LEAF, &iw);
2985
2986 return (DDI_SUCCESS);
2987 }
2988
2989 immu_devi_t *
immu_devi_get(dev_info_t * rdip)2990 immu_devi_get(dev_info_t *rdip)
2991 {
2992 immu_devi_t *immu_devi;
2993 volatile uintptr_t *vptr = (uintptr_t *)&(DEVI(rdip)->devi_iommu);
2994
2995 /* Just want atomic reads. No need for lock */
2996 immu_devi = (immu_devi_t *)(uintptr_t)atomic_or_64_nv((uint64_t *)vptr,
2997 0);
2998 return (immu_devi);
2999 }
3000
3001 /*ARGSUSED*/
3002 int
immu_hdl_priv_ctor(void * buf,void * arg,int kmf)3003 immu_hdl_priv_ctor(void *buf, void *arg, int kmf)
3004 {
3005 immu_hdl_priv_t *ihp;
3006
3007 ihp = buf;
3008 immu_init_inv_wait(&ihp->ihp_inv_wait, "dmahandle", B_FALSE);
3009
3010 return (0);
3011 }
3012
3013 /*
3014 * iommulib interface functions
3015 */
3016 static int
immu_probe(iommulib_handle_t handle,dev_info_t * dip)3017 immu_probe(iommulib_handle_t handle, dev_info_t *dip)
3018 {
3019 immu_devi_t *immu_devi;
3020 int ret;
3021
3022 if (!immu_enable)
3023 return (DDI_FAILURE);
3024
3025 /*
3026 * Make sure the device has all the IOMMU structures
3027 * initialized. If this device goes through an IOMMU
3028 * unit (e.g. this probe function returns success),
3029 * this will be called at most N times, with N being
3030 * the number of IOMMUs in the system.
3031 *
3032 * After that, when iommulib_nex_open succeeds,
3033 * we can always assume that this device has all
3034 * the structures initialized. IOMMU_USED(dip) will
3035 * be true. There is no need to find the controlling
3036 * IOMMU/domain again.
3037 */
3038 ret = immu_dvma_device_setup(dip, IMMU_FLAGS_NOSLEEP);
3039 if (ret != DDI_SUCCESS)
3040 return (ret);
3041
3042 immu_devi = IMMU_DEVI(dip);
3043
3044 /*
3045 * For unity domains, there is no need to call in to
3046 * the IOMMU code.
3047 */
3048 if (immu_devi->imd_domain->dom_did == IMMU_UNITY_DID)
3049 return (DDI_FAILURE);
3050
3051 if (immu_devi->imd_immu->immu_dip == iommulib_iommu_getdip(handle))
3052 return (DDI_SUCCESS);
3053
3054 return (DDI_FAILURE);
3055 }
3056
3057 /*ARGSUSED*/
3058 static int
immu_allochdl(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_attr_t * attr,int (* waitfp)(caddr_t),caddr_t arg,ddi_dma_handle_t * dma_handlep)3059 immu_allochdl(iommulib_handle_t handle,
3060 dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
3061 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep)
3062 {
3063 int ret;
3064 immu_hdl_priv_t *ihp;
3065 immu_t *immu;
3066
3067 ret = iommulib_iommu_dma_allochdl(dip, rdip, attr, waitfp,
3068 arg, dma_handlep);
3069 if (ret == DDI_SUCCESS) {
3070 immu = IMMU_DEVI(rdip)->imd_immu;
3071
3072 ihp = kmem_cache_alloc(immu->immu_hdl_cache,
3073 waitfp == DDI_DMA_SLEEP ? KM_SLEEP : KM_NOSLEEP);
3074 if (ihp == NULL) {
3075 (void) iommulib_iommu_dma_freehdl(dip, rdip,
3076 *dma_handlep);
3077 return (DDI_DMA_NORESOURCES);
3078 }
3079
3080 if (IMMU_DEVI(rdip)->imd_use_premap)
3081 dvma_prealloc(rdip, ihp, attr);
3082 else {
3083 ihp->ihp_npremapped = 0;
3084 ihp->ihp_predvma = 0;
3085 }
3086 ret = iommulib_iommu_dmahdl_setprivate(dip, rdip, *dma_handlep,
3087 ihp);
3088 }
3089 return (ret);
3090 }
3091
3092 /*ARGSUSED*/
3093 static int
immu_freehdl(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle)3094 immu_freehdl(iommulib_handle_t handle,
3095 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3096 {
3097 immu_hdl_priv_t *ihp;
3098
3099 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3100 if (ihp != NULL) {
3101 if (IMMU_DEVI(rdip)->imd_use_premap)
3102 dvma_prefree(rdip, ihp);
3103 kmem_cache_free(IMMU_DEVI(rdip)->imd_immu->immu_hdl_cache, ihp);
3104 }
3105
3106 return (iommulib_iommu_dma_freehdl(dip, rdip, dma_handle));
3107 }
3108
3109
3110 /*ARGSUSED*/
3111 static int
immu_bindhdl(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle,struct ddi_dma_req * dma_req,ddi_dma_cookie_t * cookiep,uint_t * ccountp)3112 immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
3113 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3114 struct ddi_dma_req *dma_req, ddi_dma_cookie_t *cookiep,
3115 uint_t *ccountp)
3116 {
3117 int ret;
3118 immu_hdl_priv_t *ihp;
3119
3120 ret = iommulib_iommu_dma_bindhdl(dip, rdip, dma_handle,
3121 dma_req, cookiep, ccountp);
3122
3123 if (ret == DDI_DMA_MAPPED) {
3124 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3125 immu_flush_wait(IMMU_DEVI(rdip)->imd_immu, &ihp->ihp_inv_wait);
3126 }
3127
3128 return (ret);
3129 }
3130
3131 /*ARGSUSED*/
3132 static int
immu_unbindhdl(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle)3133 immu_unbindhdl(iommulib_handle_t handle,
3134 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3135 {
3136 return (iommulib_iommu_dma_unbindhdl(dip, rdip, dma_handle));
3137 }
3138
3139 /*ARGSUSED*/
3140 static int
immu_sync(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle,off_t off,size_t len,uint_t cachefl)3141 immu_sync(iommulib_handle_t handle, dev_info_t *dip,
3142 dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off,
3143 size_t len, uint_t cachefl)
3144 {
3145 return (iommulib_iommu_dma_sync(dip, rdip, dma_handle, off, len,
3146 cachefl));
3147 }
3148
3149 /*ARGSUSED*/
3150 static int
immu_win(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle,uint_t win,off_t * offp,size_t * lenp,ddi_dma_cookie_t * cookiep,uint_t * ccountp)3151 immu_win(iommulib_handle_t handle, dev_info_t *dip,
3152 dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
3153 off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
3154 uint_t *ccountp)
3155 {
3156 return (iommulib_iommu_dma_win(dip, rdip, dma_handle, win, offp,
3157 lenp, cookiep, ccountp));
3158 }
3159
3160 /*ARGSUSED*/
3161 static int
immu_mapobject(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle,struct ddi_dma_req * dmareq,ddi_dma_obj_t * dmao)3162 immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
3163 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3164 struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao)
3165 {
3166 immu_hdl_priv_t *ihp;
3167
3168 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3169
3170 return (immu_map_dvmaseg(rdip, dma_handle, ihp, dmareq, dmao));
3171 }
3172
3173 /*ARGSUSED*/
3174 static int
immu_unmapobject(iommulib_handle_t handle,dev_info_t * dip,dev_info_t * rdip,ddi_dma_handle_t dma_handle,ddi_dma_obj_t * dmao)3175 immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
3176 dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao)
3177 {
3178 immu_hdl_priv_t *ihp;
3179
3180 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3181 if (ihp->ihp_npremapped > 0)
3182 return (DDI_SUCCESS);
3183 return (immu_unmap_dvmaseg(rdip, dmao));
3184 }
3185