1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
25
26 struct intel_dpll_funcs {
27 int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 struct intel_crtc *crtc);
29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 struct intel_crtc *crtc);
31 };
32
33 struct intel_limit {
34 struct {
35 int min, max;
36 } dot, vco, n, m, m1, m2, p, p1;
37
38 struct {
39 int dot_limit;
40 int p2_slow, p2_fast;
41 } p2;
42 };
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 .dot = { .min = 25000, .max = 350000 },
45 .vco = { .min = 908000, .max = 1512000 },
46 .n = { .min = 2, .max = 16 },
47 .m = { .min = 96, .max = 140 },
48 .m1 = { .min = 18, .max = 26 },
49 .m2 = { .min = 6, .max = 16 },
50 .p = { .min = 4, .max = 128 },
51 .p1 = { .min = 2, .max = 33 },
52 .p2 = { .dot_limit = 165000,
53 .p2_slow = 4, .p2_fast = 2 },
54 };
55
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 .dot = { .min = 25000, .max = 350000 },
58 .vco = { .min = 908000, .max = 1512000 },
59 .n = { .min = 2, .max = 16 },
60 .m = { .min = 96, .max = 140 },
61 .m1 = { .min = 18, .max = 26 },
62 .m2 = { .min = 6, .max = 16 },
63 .p = { .min = 4, .max = 128 },
64 .p1 = { .min = 2, .max = 33 },
65 .p2 = { .dot_limit = 165000,
66 .p2_slow = 4, .p2_fast = 4 },
67 };
68
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 .dot = { .min = 25000, .max = 350000 },
71 .vco = { .min = 908000, .max = 1512000 },
72 .n = { .min = 2, .max = 16 },
73 .m = { .min = 96, .max = 140 },
74 .m1 = { .min = 18, .max = 26 },
75 .m2 = { .min = 6, .max = 16 },
76 .p = { .min = 4, .max = 128 },
77 .p1 = { .min = 1, .max = 6 },
78 .p2 = { .dot_limit = 165000,
79 .p2_slow = 14, .p2_fast = 7 },
80 };
81
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 .dot = { .min = 20000, .max = 400000 },
84 .vco = { .min = 1400000, .max = 2800000 },
85 .n = { .min = 1, .max = 6 },
86 .m = { .min = 70, .max = 120 },
87 .m1 = { .min = 8, .max = 18 },
88 .m2 = { .min = 3, .max = 7 },
89 .p = { .min = 5, .max = 80 },
90 .p1 = { .min = 1, .max = 8 },
91 .p2 = { .dot_limit = 200000,
92 .p2_slow = 10, .p2_fast = 5 },
93 };
94
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 .dot = { .min = 20000, .max = 400000 },
97 .vco = { .min = 1400000, .max = 2800000 },
98 .n = { .min = 1, .max = 6 },
99 .m = { .min = 70, .max = 120 },
100 .m1 = { .min = 8, .max = 18 },
101 .m2 = { .min = 3, .max = 7 },
102 .p = { .min = 7, .max = 98 },
103 .p1 = { .min = 1, .max = 8 },
104 .p2 = { .dot_limit = 112000,
105 .p2_slow = 14, .p2_fast = 7 },
106 };
107
108
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 .dot = { .min = 25000, .max = 270000 },
111 .vco = { .min = 1750000, .max = 3500000},
112 .n = { .min = 1, .max = 4 },
113 .m = { .min = 104, .max = 138 },
114 .m1 = { .min = 17, .max = 23 },
115 .m2 = { .min = 5, .max = 11 },
116 .p = { .min = 10, .max = 30 },
117 .p1 = { .min = 1, .max = 3},
118 .p2 = { .dot_limit = 270000,
119 .p2_slow = 10,
120 .p2_fast = 10
121 },
122 };
123
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 .dot = { .min = 22000, .max = 400000 },
126 .vco = { .min = 1750000, .max = 3500000},
127 .n = { .min = 1, .max = 4 },
128 .m = { .min = 104, .max = 138 },
129 .m1 = { .min = 16, .max = 23 },
130 .m2 = { .min = 5, .max = 11 },
131 .p = { .min = 5, .max = 80 },
132 .p1 = { .min = 1, .max = 8},
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 10, .p2_fast = 5 },
135 };
136
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 .dot = { .min = 20000, .max = 115000 },
139 .vco = { .min = 1750000, .max = 3500000 },
140 .n = { .min = 1, .max = 3 },
141 .m = { .min = 104, .max = 138 },
142 .m1 = { .min = 17, .max = 23 },
143 .m2 = { .min = 5, .max = 11 },
144 .p = { .min = 28, .max = 112 },
145 .p1 = { .min = 2, .max = 8 },
146 .p2 = { .dot_limit = 0,
147 .p2_slow = 14, .p2_fast = 14
148 },
149 };
150
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 .dot = { .min = 80000, .max = 224000 },
153 .vco = { .min = 1750000, .max = 3500000 },
154 .n = { .min = 1, .max = 3 },
155 .m = { .min = 104, .max = 138 },
156 .m1 = { .min = 17, .max = 23 },
157 .m2 = { .min = 5, .max = 11 },
158 .p = { .min = 14, .max = 42 },
159 .p1 = { .min = 2, .max = 6 },
160 .p2 = { .dot_limit = 0,
161 .p2_slow = 7, .p2_fast = 7
162 },
163 };
164
165 static const struct intel_limit pnv_limits_sdvo = {
166 .dot = { .min = 20000, .max = 400000},
167 .vco = { .min = 1700000, .max = 3500000 },
168 /* Pineview's Ncounter is a ring counter */
169 .n = { .min = 3, .max = 6 },
170 .m = { .min = 2, .max = 256 },
171 /* Pineview only has one combined m divider, which we treat as m2. */
172 .m1 = { .min = 0, .max = 0 },
173 .m2 = { .min = 0, .max = 254 },
174 .p = { .min = 5, .max = 80 },
175 .p1 = { .min = 1, .max = 8 },
176 .p2 = { .dot_limit = 200000,
177 .p2_slow = 10, .p2_fast = 5 },
178 };
179
180 static const struct intel_limit pnv_limits_lvds = {
181 .dot = { .min = 20000, .max = 400000 },
182 .vco = { .min = 1700000, .max = 3500000 },
183 .n = { .min = 3, .max = 6 },
184 .m = { .min = 2, .max = 256 },
185 .m1 = { .min = 0, .max = 0 },
186 .m2 = { .min = 0, .max = 254 },
187 .p = { .min = 7, .max = 112 },
188 .p1 = { .min = 1, .max = 8 },
189 .p2 = { .dot_limit = 112000,
190 .p2_slow = 14, .p2_fast = 14 },
191 };
192
193 /* Ironlake / Sandybridge
194 *
195 * We calculate clock using (register_value + 2) for N/M1/M2, so here
196 * the range value for them is (actual_value - 2).
197 */
198 static const struct intel_limit ilk_limits_dac = {
199 .dot = { .min = 25000, .max = 350000 },
200 .vco = { .min = 1760000, .max = 3510000 },
201 .n = { .min = 1, .max = 5 },
202 .m = { .min = 79, .max = 127 },
203 .m1 = { .min = 12, .max = 22 },
204 .m2 = { .min = 5, .max = 9 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 225000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const struct intel_limit ilk_limits_single_lvds = {
212 .dot = { .min = 25000, .max = 350000 },
213 .vco = { .min = 1760000, .max = 3510000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 79, .max = 118 },
216 .m1 = { .min = 12, .max = 22 },
217 .m2 = { .min = 5, .max = 9 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 225000,
221 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 .dot = { .min = 25000, .max = 350000 },
226 .vco = { .min = 1760000, .max = 3510000 },
227 .n = { .min = 1, .max = 3 },
228 .m = { .min = 79, .max = 127 },
229 .m1 = { .min = 12, .max = 22 },
230 .m2 = { .min = 5, .max = 9 },
231 .p = { .min = 14, .max = 56 },
232 .p1 = { .min = 2, .max = 8 },
233 .p2 = { .dot_limit = 225000,
234 .p2_slow = 7, .p2_fast = 7 },
235 };
236
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 .dot = { .min = 25000, .max = 350000 },
240 .vco = { .min = 1760000, .max = 3510000 },
241 .n = { .min = 1, .max = 2 },
242 .m = { .min = 79, .max = 126 },
243 .m1 = { .min = 12, .max = 22 },
244 .m2 = { .min = 5, .max = 9 },
245 .p = { .min = 28, .max = 112 },
246 .p1 = { .min = 2, .max = 8 },
247 .p2 = { .dot_limit = 225000,
248 .p2_slow = 14, .p2_fast = 14 },
249 };
250
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 .dot = { .min = 25000, .max = 350000 },
253 .vco = { .min = 1760000, .max = 3510000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 79, .max = 126 },
256 .m1 = { .min = 12, .max = 22 },
257 .m2 = { .min = 5, .max = 9 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 225000,
261 .p2_slow = 7, .p2_fast = 7 },
262 };
263
264 static const struct intel_limit intel_limits_vlv = {
265 /*
266 * These are based on the data rate limits (measured in fast clocks)
267 * since those are the strictest limits we have. The fast
268 * clock and actual rate limits are more relaxed, so checking
269 * them would make no difference.
270 */
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 4000000, .max = 6000000 },
273 .n = { .min = 1, .max = 7 },
274 .m1 = { .min = 2, .max = 3 },
275 .m2 = { .min = 11, .max = 156 },
276 .p1 = { .min = 2, .max = 3 },
277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
278 };
279
280 static const struct intel_limit intel_limits_chv = {
281 /*
282 * These are based on the data rate limits (measured in fast clocks)
283 * since those are the strictest limits we have. The fast
284 * clock and actual rate limits are more relaxed, so checking
285 * them would make no difference.
286 */
287 .dot = { .min = 25000, .max = 540000 },
288 .vco = { .min = 4800000, .max = 6480000 },
289 .n = { .min = 1, .max = 1 },
290 .m1 = { .min = 2, .max = 2 },
291 .m2 = { .min = 24 << 22, .max = 175 << 22 },
292 .p1 = { .min = 2, .max = 4 },
293 .p2 = { .p2_slow = 1, .p2_fast = 14 },
294 };
295
296 static const struct intel_limit intel_limits_bxt = {
297 .dot = { .min = 25000, .max = 594000 },
298 .vco = { .min = 4800000, .max = 6700000 },
299 .n = { .min = 1, .max = 1 },
300 .m1 = { .min = 2, .max = 2 },
301 /* FIXME: find real m2 limits */
302 .m2 = { .min = 2 << 22, .max = 255 << 22 },
303 .p1 = { .min = 2, .max = 4 },
304 .p2 = { .p2_slow = 1, .p2_fast = 20 },
305 };
306
307 /*
308 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311 * The helpers' return value is the rate of the clock that is fed to the
312 * display engine's pipe which can be the above fast dot clock rate or a
313 * divided-down version of it.
314 */
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
317 {
318 clock->m = clock->m2 + 2;
319 clock->p = clock->p1 * clock->p2;
320
321 clock->vco = clock->n == 0 ? 0 :
322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 clock->dot = clock->p == 0 ? 0 :
324 DIV_ROUND_CLOSEST(clock->vco, clock->p);
325
326 return clock->dot;
327 }
328
i9xx_dpll_compute_m(const struct dpll * dpll)329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
330 {
331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
332 }
333
i9xx_calc_dpll_params(int refclk,struct dpll * clock)334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
335 {
336 clock->m = i9xx_dpll_compute_m(clock);
337 clock->p = clock->p1 * clock->p2;
338
339 clock->vco = clock->n + 2 == 0 ? 0 :
340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 clock->dot = clock->p == 0 ? 0 :
342 DIV_ROUND_CLOSEST(clock->vco, clock->p);
343
344 return clock->dot;
345 }
346
vlv_calc_dpll_params(int refclk,struct dpll * clock)347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
348 {
349 clock->m = clock->m1 * clock->m2;
350 clock->p = clock->p1 * clock->p2 * 5;
351
352 clock->vco = clock->n == 0 ? 0 :
353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 clock->dot = clock->p == 0 ? 0 :
355 DIV_ROUND_CLOSEST(clock->vco, clock->p);
356
357 return clock->dot;
358 }
359
chv_calc_dpll_params(int refclk,struct dpll * clock)360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
361 {
362 clock->m = clock->m1 * clock->m2;
363 clock->p = clock->p1 * clock->p2 * 5;
364
365 clock->vco = clock->n == 0 ? 0 :
366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 clock->dot = clock->p == 0 ? 0 :
368 DIV_ROUND_CLOSEST(clock->vco, clock->p);
369
370 return clock->dot;
371 }
372
i9xx_pll_refclk(const struct intel_crtc_state * crtc_state)373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
374 {
375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
377
378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 return i915->display.vbt.lvds_ssc_freq;
380 else if (HAS_PCH_SPLIT(i915))
381 return 120000;
382 else if (DISPLAY_VER(i915) != 2)
383 return 96000;
384 else
385 return 48000;
386 }
387
i9xx_dpll_get_hw_state(struct intel_crtc * crtc,struct intel_dpll_hw_state * dpll_hw_state)388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 struct intel_dpll_hw_state *dpll_hw_state)
390 {
391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
393
394 if (DISPLAY_VER(dev_priv) >= 4) {
395 u32 tmp;
396
397 /* No way to read it out on pipes B and C */
398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
400 else
401 tmp = intel_de_read(dev_priv,
402 DPLL_MD(dev_priv, crtc->pipe));
403
404 hw_state->dpll_md = tmp;
405 }
406
407 hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe));
408
409 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
410 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
411 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
412 } else {
413 /* Mask out read-only status bits. */
414 hw_state->dpll &= ~(DPLL_LOCK_VLV |
415 DPLL_PORTC_READY_MASK |
416 DPLL_PORTB_READY_MASK);
417 }
418 }
419
420 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc_state * crtc_state)421 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
422 {
423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
425 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
426 u32 dpll = hw_state->dpll;
427 u32 fp;
428 struct dpll clock;
429 int port_clock;
430 int refclk = i9xx_pll_refclk(crtc_state);
431
432 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
433 fp = hw_state->fp0;
434 else
435 fp = hw_state->fp1;
436
437 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
438 if (IS_PINEVIEW(dev_priv)) {
439 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
440 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
441 } else {
442 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
443 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
444 }
445
446 if (DISPLAY_VER(dev_priv) != 2) {
447 if (IS_PINEVIEW(dev_priv))
448 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
449 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
450 else
451 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
452 DPLL_FPA01_P1_POST_DIV_SHIFT);
453
454 switch (dpll & DPLL_MODE_MASK) {
455 case DPLLB_MODE_DAC_SERIAL:
456 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
457 5 : 10;
458 break;
459 case DPLLB_MODE_LVDS:
460 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
461 7 : 14;
462 break;
463 default:
464 drm_dbg_kms(&dev_priv->drm,
465 "Unknown DPLL mode %08x in programmed "
466 "mode\n", (int)(dpll & DPLL_MODE_MASK));
467 return;
468 }
469
470 if (IS_PINEVIEW(dev_priv))
471 port_clock = pnv_calc_dpll_params(refclk, &clock);
472 else
473 port_clock = i9xx_calc_dpll_params(refclk, &clock);
474 } else {
475 enum pipe lvds_pipe;
476
477 if (IS_I85X(dev_priv) &&
478 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
479 lvds_pipe == crtc->pipe) {
480 u32 lvds = intel_de_read(dev_priv, LVDS);
481
482 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
483 DPLL_FPA01_P1_POST_DIV_SHIFT);
484
485 if (lvds & LVDS_CLKB_POWER_UP)
486 clock.p2 = 7;
487 else
488 clock.p2 = 14;
489 } else {
490 if (dpll & PLL_P1_DIVIDE_BY_TWO)
491 clock.p1 = 2;
492 else {
493 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
494 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
495 }
496 if (dpll & PLL_P2_DIVIDE_BY_4)
497 clock.p2 = 4;
498 else
499 clock.p2 = 2;
500 }
501
502 port_clock = i9xx_calc_dpll_params(refclk, &clock);
503 }
504
505 /*
506 * This value includes pixel_multiplier. We will use
507 * port_clock to compute adjusted_mode.crtc_clock in the
508 * encoder's get_config() function.
509 */
510 crtc_state->port_clock = port_clock;
511 }
512
vlv_crtc_clock_get(struct intel_crtc_state * crtc_state)513 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
514 {
515 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
517 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
518 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
519 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
520 int refclk = 100000;
521 struct dpll clock;
522 u32 tmp;
523
524 /* In case of DSI, DPLL will not be used */
525 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
526 return;
527
528 vlv_dpio_get(dev_priv);
529 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
530 vlv_dpio_put(dev_priv);
531
532 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
533 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
534 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
535 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
536 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
537
538 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
539 }
540
chv_crtc_clock_get(struct intel_crtc_state * crtc_state)541 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
542 {
543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
545 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
546 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
547 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
548 struct dpll clock;
549 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
550 int refclk = 100000;
551
552 /* In case of DSI, DPLL will not be used */
553 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
554 return;
555
556 vlv_dpio_get(dev_priv);
557 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
558 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
559 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
560 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
561 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
562 vlv_dpio_put(dev_priv);
563
564 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
565 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
566 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
567 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
568 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
569 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
570 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
571
572 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
573 }
574
575 /*
576 * Returns whether the given set of divisors are valid for a given refclk with
577 * the given connectors.
578 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)579 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
580 const struct intel_limit *limit,
581 const struct dpll *clock)
582 {
583 if (clock->n < limit->n.min || limit->n.max < clock->n)
584 return false;
585 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
586 return false;
587 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
588 return false;
589 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
590 return false;
591
592 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
593 if (clock->m1 <= clock->m2)
594 return false;
595
596 if (!IS_LP(dev_priv)) {
597 if (clock->p < limit->p.min || limit->p.max < clock->p)
598 return false;
599 if (clock->m < limit->m.min || limit->m.max < clock->m)
600 return false;
601 }
602
603 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
604 return false;
605 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
606 * connector, etc., rather than just a single range.
607 */
608 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
609 return false;
610
611 return true;
612 }
613
614 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)615 i9xx_select_p2_div(const struct intel_limit *limit,
616 const struct intel_crtc_state *crtc_state,
617 int target)
618 {
619 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
620
621 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
622 /*
623 * For LVDS just rely on its current settings for dual-channel.
624 * We haven't figured out how to reliably set up different
625 * single/dual channel state, if we even can.
626 */
627 if (intel_is_dual_link_lvds(dev_priv))
628 return limit->p2.p2_fast;
629 else
630 return limit->p2.p2_slow;
631 } else {
632 if (target < limit->p2.dot_limit)
633 return limit->p2.p2_slow;
634 else
635 return limit->p2.p2_fast;
636 }
637 }
638
639 /*
640 * Returns a set of divisors for the desired target clock with the given
641 * refclk, or FALSE.
642 *
643 * Target and reference clocks are specified in kHz.
644 *
645 * If match_clock is provided, then best_clock P divider must match the P
646 * divider from @match_clock used for LVDS downclocking.
647 */
648 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)649 i9xx_find_best_dpll(const struct intel_limit *limit,
650 struct intel_crtc_state *crtc_state,
651 int target, int refclk,
652 const struct dpll *match_clock,
653 struct dpll *best_clock)
654 {
655 struct drm_device *dev = crtc_state->uapi.crtc->dev;
656 struct dpll clock;
657 int err = target;
658
659 memset(best_clock, 0, sizeof(*best_clock));
660
661 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
662
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
667 if (clock.m2 >= clock.m1)
668 break;
669 for (clock.n = limit->n.min;
670 clock.n <= limit->n.max; clock.n++) {
671 for (clock.p1 = limit->p1.min;
672 clock.p1 <= limit->p1.max; clock.p1++) {
673 int this_err;
674
675 i9xx_calc_dpll_params(refclk, &clock);
676 if (!intel_pll_is_valid(to_i915(dev),
677 limit,
678 &clock))
679 continue;
680 if (match_clock &&
681 clock.p != match_clock->p)
682 continue;
683
684 this_err = abs(clock.dot - target);
685 if (this_err < err) {
686 *best_clock = clock;
687 err = this_err;
688 }
689 }
690 }
691 }
692 }
693
694 return (err != target);
695 }
696
697 /*
698 * Returns a set of divisors for the desired target clock with the given
699 * refclk, or FALSE.
700 *
701 * Target and reference clocks are specified in kHz.
702 *
703 * If match_clock is provided, then best_clock P divider must match the P
704 * divider from @match_clock used for LVDS downclocking.
705 */
706 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)707 pnv_find_best_dpll(const struct intel_limit *limit,
708 struct intel_crtc_state *crtc_state,
709 int target, int refclk,
710 const struct dpll *match_clock,
711 struct dpll *best_clock)
712 {
713 struct drm_device *dev = crtc_state->uapi.crtc->dev;
714 struct dpll clock;
715 int err = target;
716
717 memset(best_clock, 0, sizeof(*best_clock));
718
719 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
720
721 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
722 clock.m1++) {
723 for (clock.m2 = limit->m2.min;
724 clock.m2 <= limit->m2.max; clock.m2++) {
725 for (clock.n = limit->n.min;
726 clock.n <= limit->n.max; clock.n++) {
727 for (clock.p1 = limit->p1.min;
728 clock.p1 <= limit->p1.max; clock.p1++) {
729 int this_err;
730
731 pnv_calc_dpll_params(refclk, &clock);
732 if (!intel_pll_is_valid(to_i915(dev),
733 limit,
734 &clock))
735 continue;
736 if (match_clock &&
737 clock.p != match_clock->p)
738 continue;
739
740 this_err = abs(clock.dot - target);
741 if (this_err < err) {
742 *best_clock = clock;
743 err = this_err;
744 }
745 }
746 }
747 }
748 }
749
750 return (err != target);
751 }
752
753 /*
754 * Returns a set of divisors for the desired target clock with the given
755 * refclk, or FALSE.
756 *
757 * Target and reference clocks are specified in kHz.
758 *
759 * If match_clock is provided, then best_clock P divider must match the P
760 * divider from @match_clock used for LVDS downclocking.
761 */
762 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)763 g4x_find_best_dpll(const struct intel_limit *limit,
764 struct intel_crtc_state *crtc_state,
765 int target, int refclk,
766 const struct dpll *match_clock,
767 struct dpll *best_clock)
768 {
769 struct drm_device *dev = crtc_state->uapi.crtc->dev;
770 struct dpll clock;
771 int max_n;
772 bool found = false;
773 /* approximately equals target * 0.00585 */
774 int err_most = (target >> 8) + (target >> 9);
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 max_n = limit->n.max;
781 /* based on hardware requirement, prefer smaller n to precision */
782 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
783 /* based on hardware requirement, prefere larger m1,m2 */
784 for (clock.m1 = limit->m1.max;
785 clock.m1 >= limit->m1.min; clock.m1--) {
786 for (clock.m2 = limit->m2.max;
787 clock.m2 >= limit->m2.min; clock.m2--) {
788 for (clock.p1 = limit->p1.max;
789 clock.p1 >= limit->p1.min; clock.p1--) {
790 int this_err;
791
792 i9xx_calc_dpll_params(refclk, &clock);
793 if (!intel_pll_is_valid(to_i915(dev),
794 limit,
795 &clock))
796 continue;
797
798 this_err = abs(clock.dot - target);
799 if (this_err < err_most) {
800 *best_clock = clock;
801 err_most = this_err;
802 max_n = clock.n;
803 found = true;
804 }
805 }
806 }
807 }
808 }
809 return found;
810 }
811
812 /*
813 * Check if the calculated PLL configuration is more optimal compared to the
814 * best configuration and error found so far. Return the calculated error.
815 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)816 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
817 const struct dpll *calculated_clock,
818 const struct dpll *best_clock,
819 unsigned int best_error_ppm,
820 unsigned int *error_ppm)
821 {
822 /*
823 * For CHV ignore the error and consider only the P value.
824 * Prefer a bigger P value based on HW requirements.
825 */
826 if (IS_CHERRYVIEW(to_i915(dev))) {
827 *error_ppm = 0;
828
829 return calculated_clock->p > best_clock->p;
830 }
831
832 if (drm_WARN_ON_ONCE(dev, !target_freq))
833 return false;
834
835 *error_ppm = div_u64(1000000ULL *
836 abs(target_freq - calculated_clock->dot),
837 target_freq);
838 /*
839 * Prefer a better P value over a better (smaller) error if the error
840 * is small. Ensure this preference for future configurations too by
841 * setting the error to 0.
842 */
843 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
844 *error_ppm = 0;
845
846 return true;
847 }
848
849 return *error_ppm + 10 < best_error_ppm;
850 }
851
852 /*
853 * Returns a set of divisors for the desired target clock with the given
854 * refclk, or FALSE.
855 */
856 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)857 vlv_find_best_dpll(const struct intel_limit *limit,
858 struct intel_crtc_state *crtc_state,
859 int target, int refclk,
860 const struct dpll *match_clock,
861 struct dpll *best_clock)
862 {
863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
864 struct drm_device *dev = crtc->base.dev;
865 struct dpll clock;
866 unsigned int bestppm = 1000000;
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
869 bool found = false;
870
871 memset(best_clock, 0, sizeof(*best_clock));
872
873 /* based on hardware requirement, prefer smaller n to precision */
874 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
875 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
876 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
877 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
878 clock.p = clock.p1 * clock.p2 * 5;
879 /* based on hardware requirement, prefer bigger m1,m2 values */
880 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
881 unsigned int ppm;
882
883 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
884 refclk * clock.m1);
885
886 vlv_calc_dpll_params(refclk, &clock);
887
888 if (!intel_pll_is_valid(to_i915(dev),
889 limit,
890 &clock))
891 continue;
892
893 if (!vlv_PLL_is_optimal(dev, target,
894 &clock,
895 best_clock,
896 bestppm, &ppm))
897 continue;
898
899 *best_clock = clock;
900 bestppm = ppm;
901 found = true;
902 }
903 }
904 }
905 }
906
907 return found;
908 }
909
910 /*
911 * Returns a set of divisors for the desired target clock with the given
912 * refclk, or FALSE.
913 */
914 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)915 chv_find_best_dpll(const struct intel_limit *limit,
916 struct intel_crtc_state *crtc_state,
917 int target, int refclk,
918 const struct dpll *match_clock,
919 struct dpll *best_clock)
920 {
921 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
922 struct drm_device *dev = crtc->base.dev;
923 unsigned int best_error_ppm;
924 struct dpll clock;
925 u64 m2;
926 int found = false;
927
928 memset(best_clock, 0, sizeof(*best_clock));
929 best_error_ppm = 1000000;
930
931 /*
932 * Based on hardware doc, the n always set to 1, and m1 always
933 * set to 2. If requires to support 200Mhz refclk, we need to
934 * revisit this because n may not 1 anymore.
935 */
936 clock.n = 1;
937 clock.m1 = 2;
938
939 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
940 for (clock.p2 = limit->p2.p2_fast;
941 clock.p2 >= limit->p2.p2_slow;
942 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
943 unsigned int error_ppm;
944
945 clock.p = clock.p1 * clock.p2 * 5;
946
947 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
948 refclk * clock.m1);
949
950 if (m2 > INT_MAX/clock.m1)
951 continue;
952
953 clock.m2 = m2;
954
955 chv_calc_dpll_params(refclk, &clock);
956
957 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
958 continue;
959
960 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
961 best_error_ppm, &error_ppm))
962 continue;
963
964 *best_clock = clock;
965 best_error_ppm = error_ppm;
966 found = true;
967 }
968 }
969
970 return found;
971 }
972
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)973 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
974 struct dpll *best_clock)
975 {
976 const struct intel_limit *limit = &intel_limits_bxt;
977 int refclk = 100000;
978
979 return chv_find_best_dpll(limit, crtc_state,
980 crtc_state->port_clock, refclk,
981 NULL, best_clock);
982 }
983
i9xx_dpll_compute_fp(const struct dpll * dpll)984 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
985 {
986 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
987 }
988
pnv_dpll_compute_fp(const struct dpll * dpll)989 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
990 {
991 return (1 << dpll->n) << 16 | dpll->m2;
992 }
993
i965_dpll_md(const struct intel_crtc_state * crtc_state)994 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
995 {
996 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
997 }
998
i9xx_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)999 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
1000 const struct dpll *clock,
1001 const struct dpll *reduced_clock)
1002 {
1003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1004 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1005 u32 dpll;
1006
1007 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1008
1009 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1010 dpll |= DPLLB_MODE_LVDS;
1011 else
1012 dpll |= DPLLB_MODE_DAC_SERIAL;
1013
1014 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1015 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1016 dpll |= (crtc_state->pixel_multiplier - 1)
1017 << SDVO_MULTIPLIER_SHIFT_HIRES;
1018 }
1019
1020 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1021 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1022 dpll |= DPLL_SDVO_HIGH_SPEED;
1023
1024 if (intel_crtc_has_dp_encoder(crtc_state))
1025 dpll |= DPLL_SDVO_HIGH_SPEED;
1026
1027 /* compute bitmask from p1 value */
1028 if (IS_G4X(dev_priv)) {
1029 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1030 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1031 } else if (IS_PINEVIEW(dev_priv)) {
1032 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1033 WARN_ON(reduced_clock->p1 != clock->p1);
1034 } else {
1035 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1036 WARN_ON(reduced_clock->p1 != clock->p1);
1037 }
1038
1039 switch (clock->p2) {
1040 case 5:
1041 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1042 break;
1043 case 7:
1044 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1045 break;
1046 case 10:
1047 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1048 break;
1049 case 14:
1050 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1051 break;
1052 }
1053 WARN_ON(reduced_clock->p2 != clock->p2);
1054
1055 if (DISPLAY_VER(dev_priv) >= 4)
1056 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1057
1058 if (crtc_state->sdvo_tv_clock)
1059 dpll |= PLL_REF_INPUT_TVCLKINBC;
1060 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1061 intel_panel_use_ssc(dev_priv))
1062 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1063 else
1064 dpll |= PLL_REF_INPUT_DREFCLK;
1065
1066 return dpll;
1067 }
1068
i9xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1069 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1070 const struct dpll *clock,
1071 const struct dpll *reduced_clock)
1072 {
1073 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1076
1077 if (IS_PINEVIEW(dev_priv)) {
1078 hw_state->fp0 = pnv_dpll_compute_fp(clock);
1079 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1080 } else {
1081 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1082 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1083 }
1084
1085 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1086
1087 if (DISPLAY_VER(dev_priv) >= 4)
1088 hw_state->dpll_md = i965_dpll_md(crtc_state);
1089 }
1090
i8xx_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1091 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1092 const struct dpll *clock,
1093 const struct dpll *reduced_clock)
1094 {
1095 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1096 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1097 u32 dpll;
1098
1099 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1100
1101 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1102 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1103 } else {
1104 if (clock->p1 == 2)
1105 dpll |= PLL_P1_DIVIDE_BY_TWO;
1106 else
1107 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1108 if (clock->p2 == 4)
1109 dpll |= PLL_P2_DIVIDE_BY_4;
1110 }
1111 WARN_ON(reduced_clock->p1 != clock->p1);
1112 WARN_ON(reduced_clock->p2 != clock->p2);
1113
1114 /*
1115 * Bspec:
1116 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1117 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1118 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1119 * Enable) must be set to “1” in both the DPLL A Control Register
1120 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1121 *
1122 * For simplicity We simply keep both bits always enabled in
1123 * both DPLLS. The spec says we should disable the DVO 2X clock
1124 * when not needed, but this seems to work fine in practice.
1125 */
1126 if (IS_I830(dev_priv) ||
1127 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1128 dpll |= DPLL_DVO_2X_MODE;
1129
1130 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1131 intel_panel_use_ssc(dev_priv))
1132 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1133 else
1134 dpll |= PLL_REF_INPUT_DREFCLK;
1135
1136 return dpll;
1137 }
1138
i8xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1139 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1140 const struct dpll *clock,
1141 const struct dpll *reduced_clock)
1142 {
1143 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1144
1145 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1146 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1147
1148 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1149 }
1150
hsw_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1151 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1152 struct intel_crtc *crtc)
1153 {
1154 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1155 struct intel_crtc_state *crtc_state =
1156 intel_atomic_get_new_crtc_state(state, crtc);
1157 struct intel_encoder *encoder =
1158 intel_get_crtc_new_encoder(state, crtc_state);
1159 int ret;
1160
1161 if (DISPLAY_VER(dev_priv) < 11 &&
1162 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1163 return 0;
1164
1165 ret = intel_compute_shared_dplls(state, crtc, encoder);
1166 if (ret)
1167 return ret;
1168
1169 /* FIXME this is a mess */
1170 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1171 return 0;
1172
1173 /* CRT dotclock is determined via other means */
1174 if (!crtc_state->has_pch_encoder)
1175 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1176
1177 return 0;
1178 }
1179
hsw_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1180 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1181 struct intel_crtc *crtc)
1182 {
1183 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1184 struct intel_crtc_state *crtc_state =
1185 intel_atomic_get_new_crtc_state(state, crtc);
1186 struct intel_encoder *encoder =
1187 intel_get_crtc_new_encoder(state, crtc_state);
1188
1189 if (DISPLAY_VER(dev_priv) < 11 &&
1190 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1191 return 0;
1192
1193 return intel_reserve_shared_dplls(state, crtc, encoder);
1194 }
1195
dg2_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1196 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1197 struct intel_crtc *crtc)
1198 {
1199 struct intel_crtc_state *crtc_state =
1200 intel_atomic_get_new_crtc_state(state, crtc);
1201 struct intel_encoder *encoder =
1202 intel_get_crtc_new_encoder(state, crtc_state);
1203 int ret;
1204
1205 ret = intel_mpllb_calc_state(crtc_state, encoder);
1206 if (ret)
1207 return ret;
1208
1209 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1210
1211 return 0;
1212 }
1213
mtl_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1214 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1215 struct intel_crtc *crtc)
1216 {
1217 struct intel_crtc_state *crtc_state =
1218 intel_atomic_get_new_crtc_state(state, crtc);
1219 struct intel_encoder *encoder =
1220 intel_get_crtc_new_encoder(state, crtc_state);
1221 int ret;
1222
1223 ret = intel_cx0pll_calc_state(crtc_state, encoder);
1224 if (ret)
1225 return ret;
1226
1227 /* TODO: Do the readback via intel_compute_shared_dplls() */
1228 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1229
1230 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1231
1232 return 0;
1233 }
1234
ilk_fb_cb_factor(const struct intel_crtc_state * crtc_state)1235 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1236 {
1237 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1238 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1239
1240 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1241 ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1242 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1243 return 25;
1244
1245 if (crtc_state->sdvo_tv_clock)
1246 return 20;
1247
1248 return 21;
1249 }
1250
ilk_needs_fb_cb_tune(const struct dpll * dpll,int factor)1251 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1252 {
1253 return dpll->m < factor * dpll->n;
1254 }
1255
ilk_dpll_compute_fp(const struct dpll * clock,int factor)1256 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1257 {
1258 u32 fp;
1259
1260 fp = i9xx_dpll_compute_fp(clock);
1261 if (ilk_needs_fb_cb_tune(clock, factor))
1262 fp |= FP_CB_TUNE;
1263
1264 return fp;
1265 }
1266
ilk_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1267 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1268 const struct dpll *clock,
1269 const struct dpll *reduced_clock)
1270 {
1271 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1272 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1273 u32 dpll;
1274
1275 dpll = DPLL_VCO_ENABLE;
1276
1277 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1278 dpll |= DPLLB_MODE_LVDS;
1279 else
1280 dpll |= DPLLB_MODE_DAC_SERIAL;
1281
1282 dpll |= (crtc_state->pixel_multiplier - 1)
1283 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1284
1285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1286 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1287 dpll |= DPLL_SDVO_HIGH_SPEED;
1288
1289 if (intel_crtc_has_dp_encoder(crtc_state))
1290 dpll |= DPLL_SDVO_HIGH_SPEED;
1291
1292 /*
1293 * The high speed IO clock is only really required for
1294 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1295 * possible to share the DPLL between CRT and HDMI. Enabling
1296 * the clock needlessly does no real harm, except use up a
1297 * bit of power potentially.
1298 *
1299 * We'll limit this to IVB with 3 pipes, since it has only two
1300 * DPLLs and so DPLL sharing is the only way to get three pipes
1301 * driving PCH ports at the same time. On SNB we could do this,
1302 * and potentially avoid enabling the second DPLL, but it's not
1303 * clear if it''s a win or loss power wise. No point in doing
1304 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1305 */
1306 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1307 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1308 dpll |= DPLL_SDVO_HIGH_SPEED;
1309
1310 /* compute bitmask from p1 value */
1311 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1312 /* also FPA1 */
1313 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1314
1315 switch (clock->p2) {
1316 case 5:
1317 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1318 break;
1319 case 7:
1320 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1321 break;
1322 case 10:
1323 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1324 break;
1325 case 14:
1326 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1327 break;
1328 }
1329 WARN_ON(reduced_clock->p2 != clock->p2);
1330
1331 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1332 intel_panel_use_ssc(dev_priv))
1333 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1334 else
1335 dpll |= PLL_REF_INPUT_DREFCLK;
1336
1337 return dpll;
1338 }
1339
ilk_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1340 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1341 const struct dpll *clock,
1342 const struct dpll *reduced_clock)
1343 {
1344 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1345 int factor = ilk_fb_cb_factor(crtc_state);
1346
1347 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1348 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1349
1350 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1351 }
1352
ilk_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1353 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1354 struct intel_crtc *crtc)
1355 {
1356 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1357 struct intel_crtc_state *crtc_state =
1358 intel_atomic_get_new_crtc_state(state, crtc);
1359 const struct intel_limit *limit;
1360 int refclk = 120000;
1361 int ret;
1362
1363 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1364 if (!crtc_state->has_pch_encoder)
1365 return 0;
1366
1367 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1368 if (intel_panel_use_ssc(dev_priv)) {
1369 drm_dbg_kms(&dev_priv->drm,
1370 "using SSC reference clock of %d kHz\n",
1371 dev_priv->display.vbt.lvds_ssc_freq);
1372 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1373 }
1374
1375 if (intel_is_dual_link_lvds(dev_priv)) {
1376 if (refclk == 100000)
1377 limit = &ilk_limits_dual_lvds_100m;
1378 else
1379 limit = &ilk_limits_dual_lvds;
1380 } else {
1381 if (refclk == 100000)
1382 limit = &ilk_limits_single_lvds_100m;
1383 else
1384 limit = &ilk_limits_single_lvds;
1385 }
1386 } else {
1387 limit = &ilk_limits_dac;
1388 }
1389
1390 if (!crtc_state->clock_set &&
1391 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1392 refclk, NULL, &crtc_state->dpll))
1393 return -EINVAL;
1394
1395 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1396
1397 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1398 &crtc_state->dpll);
1399
1400 ret = intel_compute_shared_dplls(state, crtc, NULL);
1401 if (ret)
1402 return ret;
1403
1404 crtc_state->port_clock = crtc_state->dpll.dot;
1405 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1406
1407 return ret;
1408 }
1409
ilk_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1410 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1411 struct intel_crtc *crtc)
1412 {
1413 struct intel_crtc_state *crtc_state =
1414 intel_atomic_get_new_crtc_state(state, crtc);
1415
1416 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1417 if (!crtc_state->has_pch_encoder)
1418 return 0;
1419
1420 return intel_reserve_shared_dplls(state, crtc, NULL);
1421 }
1422
vlv_dpll(const struct intel_crtc_state * crtc_state)1423 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1424 {
1425 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1426 u32 dpll;
1427
1428 dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1429 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1430
1431 if (crtc->pipe != PIPE_A)
1432 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1433
1434 /* DPLL not used with DSI, but still need the rest set up */
1435 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1436 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1437
1438 return dpll;
1439 }
1440
vlv_compute_dpll(struct intel_crtc_state * crtc_state)1441 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1442 {
1443 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1444
1445 hw_state->dpll = vlv_dpll(crtc_state);
1446 hw_state->dpll_md = i965_dpll_md(crtc_state);
1447 }
1448
chv_dpll(const struct intel_crtc_state * crtc_state)1449 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1450 {
1451 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1452 u32 dpll;
1453
1454 dpll = DPLL_SSC_REF_CLK_CHV |
1455 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1456
1457 if (crtc->pipe != PIPE_A)
1458 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1459
1460 /* DPLL not used with DSI, but still need the rest set up */
1461 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1462 dpll |= DPLL_VCO_ENABLE;
1463
1464 return dpll;
1465 }
1466
chv_compute_dpll(struct intel_crtc_state * crtc_state)1467 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1468 {
1469 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1470
1471 hw_state->dpll = chv_dpll(crtc_state);
1472 hw_state->dpll_md = i965_dpll_md(crtc_state);
1473 }
1474
chv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1475 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1476 struct intel_crtc *crtc)
1477 {
1478 struct intel_crtc_state *crtc_state =
1479 intel_atomic_get_new_crtc_state(state, crtc);
1480 const struct intel_limit *limit = &intel_limits_chv;
1481 int refclk = 100000;
1482
1483 if (!crtc_state->clock_set &&
1484 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1485 refclk, NULL, &crtc_state->dpll))
1486 return -EINVAL;
1487
1488 chv_calc_dpll_params(refclk, &crtc_state->dpll);
1489
1490 chv_compute_dpll(crtc_state);
1491
1492 /* FIXME this is a mess */
1493 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1494 return 0;
1495
1496 crtc_state->port_clock = crtc_state->dpll.dot;
1497 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1498
1499 return 0;
1500 }
1501
vlv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1502 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1503 struct intel_crtc *crtc)
1504 {
1505 struct intel_crtc_state *crtc_state =
1506 intel_atomic_get_new_crtc_state(state, crtc);
1507 const struct intel_limit *limit = &intel_limits_vlv;
1508 int refclk = 100000;
1509
1510 if (!crtc_state->clock_set &&
1511 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1512 refclk, NULL, &crtc_state->dpll))
1513 return -EINVAL;
1514
1515 vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1516
1517 vlv_compute_dpll(crtc_state);
1518
1519 /* FIXME this is a mess */
1520 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1521 return 0;
1522
1523 crtc_state->port_clock = crtc_state->dpll.dot;
1524 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1525
1526 return 0;
1527 }
1528
g4x_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1529 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1530 struct intel_crtc *crtc)
1531 {
1532 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1533 struct intel_crtc_state *crtc_state =
1534 intel_atomic_get_new_crtc_state(state, crtc);
1535 const struct intel_limit *limit;
1536 int refclk = 96000;
1537
1538 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1539 if (intel_panel_use_ssc(dev_priv)) {
1540 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1541 drm_dbg_kms(&dev_priv->drm,
1542 "using SSC reference clock of %d kHz\n",
1543 refclk);
1544 }
1545
1546 if (intel_is_dual_link_lvds(dev_priv))
1547 limit = &intel_limits_g4x_dual_channel_lvds;
1548 else
1549 limit = &intel_limits_g4x_single_channel_lvds;
1550 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1551 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1552 limit = &intel_limits_g4x_hdmi;
1553 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1554 limit = &intel_limits_g4x_sdvo;
1555 } else {
1556 /* The option is for other outputs */
1557 limit = &intel_limits_i9xx_sdvo;
1558 }
1559
1560 if (!crtc_state->clock_set &&
1561 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1562 refclk, NULL, &crtc_state->dpll))
1563 return -EINVAL;
1564
1565 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1566
1567 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1568 &crtc_state->dpll);
1569
1570 crtc_state->port_clock = crtc_state->dpll.dot;
1571 /* FIXME this is a mess */
1572 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1573 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1574
1575 return 0;
1576 }
1577
pnv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1578 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1579 struct intel_crtc *crtc)
1580 {
1581 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1582 struct intel_crtc_state *crtc_state =
1583 intel_atomic_get_new_crtc_state(state, crtc);
1584 const struct intel_limit *limit;
1585 int refclk = 96000;
1586
1587 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1588 if (intel_panel_use_ssc(dev_priv)) {
1589 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1590 drm_dbg_kms(&dev_priv->drm,
1591 "using SSC reference clock of %d kHz\n",
1592 refclk);
1593 }
1594
1595 limit = &pnv_limits_lvds;
1596 } else {
1597 limit = &pnv_limits_sdvo;
1598 }
1599
1600 if (!crtc_state->clock_set &&
1601 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1602 refclk, NULL, &crtc_state->dpll))
1603 return -EINVAL;
1604
1605 pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1606
1607 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1608 &crtc_state->dpll);
1609
1610 crtc_state->port_clock = crtc_state->dpll.dot;
1611 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1612
1613 return 0;
1614 }
1615
i9xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1616 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1617 struct intel_crtc *crtc)
1618 {
1619 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1620 struct intel_crtc_state *crtc_state =
1621 intel_atomic_get_new_crtc_state(state, crtc);
1622 const struct intel_limit *limit;
1623 int refclk = 96000;
1624
1625 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1626 if (intel_panel_use_ssc(dev_priv)) {
1627 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1628 drm_dbg_kms(&dev_priv->drm,
1629 "using SSC reference clock of %d kHz\n",
1630 refclk);
1631 }
1632
1633 limit = &intel_limits_i9xx_lvds;
1634 } else {
1635 limit = &intel_limits_i9xx_sdvo;
1636 }
1637
1638 if (!crtc_state->clock_set &&
1639 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1640 refclk, NULL, &crtc_state->dpll))
1641 return -EINVAL;
1642
1643 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1644
1645 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1646 &crtc_state->dpll);
1647
1648 crtc_state->port_clock = crtc_state->dpll.dot;
1649 /* FIXME this is a mess */
1650 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1651 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1652
1653 return 0;
1654 }
1655
i8xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1656 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1657 struct intel_crtc *crtc)
1658 {
1659 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1660 struct intel_crtc_state *crtc_state =
1661 intel_atomic_get_new_crtc_state(state, crtc);
1662 const struct intel_limit *limit;
1663 int refclk = 48000;
1664
1665 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1666 if (intel_panel_use_ssc(dev_priv)) {
1667 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1668 drm_dbg_kms(&dev_priv->drm,
1669 "using SSC reference clock of %d kHz\n",
1670 refclk);
1671 }
1672
1673 limit = &intel_limits_i8xx_lvds;
1674 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1675 limit = &intel_limits_i8xx_dvo;
1676 } else {
1677 limit = &intel_limits_i8xx_dac;
1678 }
1679
1680 if (!crtc_state->clock_set &&
1681 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1682 refclk, NULL, &crtc_state->dpll))
1683 return -EINVAL;
1684
1685 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1686
1687 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1688 &crtc_state->dpll);
1689
1690 crtc_state->port_clock = crtc_state->dpll.dot;
1691 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1692
1693 return 0;
1694 }
1695
1696 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1697 .crtc_compute_clock = mtl_crtc_compute_clock,
1698 };
1699
1700 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1701 .crtc_compute_clock = dg2_crtc_compute_clock,
1702 };
1703
1704 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1705 .crtc_compute_clock = hsw_crtc_compute_clock,
1706 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1707 };
1708
1709 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1710 .crtc_compute_clock = ilk_crtc_compute_clock,
1711 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1712 };
1713
1714 static const struct intel_dpll_funcs chv_dpll_funcs = {
1715 .crtc_compute_clock = chv_crtc_compute_clock,
1716 };
1717
1718 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1719 .crtc_compute_clock = vlv_crtc_compute_clock,
1720 };
1721
1722 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1723 .crtc_compute_clock = g4x_crtc_compute_clock,
1724 };
1725
1726 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1727 .crtc_compute_clock = pnv_crtc_compute_clock,
1728 };
1729
1730 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1731 .crtc_compute_clock = i9xx_crtc_compute_clock,
1732 };
1733
1734 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1735 .crtc_compute_clock = i8xx_crtc_compute_clock,
1736 };
1737
intel_dpll_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1738 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1739 struct intel_crtc *crtc)
1740 {
1741 struct drm_i915_private *i915 = to_i915(state->base.dev);
1742 struct intel_crtc_state *crtc_state =
1743 intel_atomic_get_new_crtc_state(state, crtc);
1744 int ret;
1745
1746 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1747
1748 memset(&crtc_state->dpll_hw_state, 0,
1749 sizeof(crtc_state->dpll_hw_state));
1750
1751 if (!crtc_state->hw.enable)
1752 return 0;
1753
1754 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1755 if (ret) {
1756 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1757 crtc->base.base.id, crtc->base.name);
1758 return ret;
1759 }
1760
1761 return 0;
1762 }
1763
intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1764 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1765 struct intel_crtc *crtc)
1766 {
1767 struct drm_i915_private *i915 = to_i915(state->base.dev);
1768 struct intel_crtc_state *crtc_state =
1769 intel_atomic_get_new_crtc_state(state, crtc);
1770 int ret;
1771
1772 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1773 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1774
1775 if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1776 return 0;
1777
1778 if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1779 return 0;
1780
1781 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1782 if (ret) {
1783 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1784 crtc->base.base.id, crtc->base.name);
1785 return ret;
1786 }
1787
1788 return 0;
1789 }
1790
1791 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1792 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1793 {
1794 if (DISPLAY_VER(dev_priv) >= 14)
1795 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1796 else if (IS_DG2(dev_priv))
1797 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1798 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1799 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1800 else if (HAS_PCH_SPLIT(dev_priv))
1801 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1802 else if (IS_CHERRYVIEW(dev_priv))
1803 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1804 else if (IS_VALLEYVIEW(dev_priv))
1805 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1806 else if (IS_G4X(dev_priv))
1807 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1808 else if (IS_PINEVIEW(dev_priv))
1809 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1810 else if (DISPLAY_VER(dev_priv) != 2)
1811 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1812 else
1813 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1814 }
1815
i9xx_has_pps(struct drm_i915_private * dev_priv)1816 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1817 {
1818 if (IS_I830(dev_priv))
1819 return false;
1820
1821 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1822 }
1823
i9xx_enable_pll(const struct intel_crtc_state * crtc_state)1824 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1825 {
1826 struct intel_display *display = to_intel_display(crtc_state);
1827 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1828 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1829 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1830 enum pipe pipe = crtc->pipe;
1831 int i;
1832
1833 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1834
1835 /* PLL is protected by panel, make sure we can write it */
1836 if (i9xx_has_pps(dev_priv))
1837 assert_pps_unlocked(display, pipe);
1838
1839 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1840 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1841
1842 /*
1843 * Apparently we need to have VGA mode enabled prior to changing
1844 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1845 * dividers, even though the register value does change.
1846 */
1847 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
1848 hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1849 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1850
1851 /* Wait for the clocks to stabilize. */
1852 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1853 udelay(150);
1854
1855 if (DISPLAY_VER(dev_priv) >= 4) {
1856 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
1857 hw_state->dpll_md);
1858 } else {
1859 /* The pixel multiplier can only be updated once the
1860 * DPLL is enabled and the clocks are stable.
1861 *
1862 * So write it again.
1863 */
1864 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1865 }
1866
1867 /* We do this three times for luck */
1868 for (i = 0; i < 3; i++) {
1869 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1870 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1871 udelay(150); /* wait for warmup */
1872 }
1873 }
1874
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum dpio_phy phy,enum dpio_channel ch)1875 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1876 enum dpio_phy phy, enum dpio_channel ch)
1877 {
1878 u32 tmp;
1879
1880 /*
1881 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1882 * and set it to a reasonable value instead.
1883 */
1884 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1885 tmp &= 0xffffff00;
1886 tmp |= 0x00000030;
1887 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1888
1889 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1890 tmp &= 0x00ffffff;
1891 tmp |= 0x8c000000;
1892 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1893
1894 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1895 tmp &= 0xffffff00;
1896 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1897
1898 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1899 tmp &= 0x00ffffff;
1900 tmp |= 0xb0000000;
1901 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1902 }
1903
vlv_prepare_pll(const struct intel_crtc_state * crtc_state)1904 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1905 {
1906 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1907 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1908 const struct dpll *clock = &crtc_state->dpll;
1909 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1910 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1911 enum pipe pipe = crtc->pipe;
1912 u32 tmp, coreclk;
1913
1914 vlv_dpio_get(dev_priv);
1915
1916 /* See eDP HDMI DPIO driver vbios notes doc */
1917
1918 /* PLL B needs special handling */
1919 if (pipe == PIPE_B)
1920 vlv_pllb_recal_opamp(dev_priv, phy, ch);
1921
1922 /* Set up Tx target for periodic Rcomp update */
1923 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1924
1925 /* Disable target IRef on PLL */
1926 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1927 tmp &= 0x00ffffff;
1928 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1929
1930 /* Disable fast lock */
1931 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1932
1933 /* Set idtafcrecal before PLL is enabled */
1934 tmp = DPIO_M1_DIV(clock->m1) |
1935 DPIO_M2_DIV(clock->m2) |
1936 DPIO_P1_DIV(clock->p1) |
1937 DPIO_P2_DIV(clock->p2) |
1938 DPIO_N_DIV(clock->n) |
1939 DPIO_K_DIV(1);
1940
1941 /*
1942 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1943 * but we don't support that).
1944 * Note: don't use the DAC post divider as it seems unstable.
1945 */
1946 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1947 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1948
1949 tmp |= DPIO_ENABLE_CALIBRATION;
1950 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1951
1952 /* Set HBR and RBR LPF coefficients */
1953 if (crtc_state->port_clock == 162000 ||
1954 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1955 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1956 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1957 0x009f0003);
1958 else
1959 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1960 0x00d0000f);
1961
1962 if (intel_crtc_has_dp_encoder(crtc_state)) {
1963 /* Use SSC source */
1964 if (pipe == PIPE_A)
1965 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1966 0x0df40000);
1967 else
1968 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1969 0x0df70000);
1970 } else { /* HDMI or VGA */
1971 /* Use bend source */
1972 if (pipe == PIPE_A)
1973 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1974 0x0df70000);
1975 else
1976 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1977 0x0df40000);
1978 }
1979
1980 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1981 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1982 if (intel_crtc_has_dp_encoder(crtc_state))
1983 coreclk |= 0x01000000;
1984 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1985
1986 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1987
1988 vlv_dpio_put(dev_priv);
1989 }
1990
_vlv_enable_pll(const struct intel_crtc_state * crtc_state)1991 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1992 {
1993 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1994 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1995 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1996 enum pipe pipe = crtc->pipe;
1997
1998 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1999 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2000 udelay(150);
2001
2002 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2003 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2004 }
2005
vlv_enable_pll(const struct intel_crtc_state * crtc_state)2006 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2007 {
2008 struct intel_display *display = to_intel_display(crtc_state);
2009 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2012 enum pipe pipe = crtc->pipe;
2013
2014 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2015
2016 /* PLL is protected by panel, make sure we can write it */
2017 assert_pps_unlocked(display, pipe);
2018
2019 /* Enable Refclk */
2020 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2021 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2022
2023 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2024 vlv_prepare_pll(crtc_state);
2025 _vlv_enable_pll(crtc_state);
2026 }
2027
2028 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md);
2029 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2030 }
2031
chv_prepare_pll(const struct intel_crtc_state * crtc_state)2032 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2033 {
2034 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2035 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2036 const struct dpll *clock = &crtc_state->dpll;
2037 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2038 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2039 u32 tmp, loopfilter, tribuf_calcntr;
2040 u32 m2_frac;
2041
2042 m2_frac = clock->m2 & 0x3fffff;
2043
2044 vlv_dpio_get(dev_priv);
2045
2046 /* p1 and p2 divider */
2047 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2048 DPIO_CHV_S1_DIV(5) |
2049 DPIO_CHV_P1_DIV(clock->p1) |
2050 DPIO_CHV_P2_DIV(clock->p2) |
2051 DPIO_CHV_K_DIV(1));
2052
2053 /* Feedback post-divider - m2 */
2054 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2055 DPIO_CHV_M2_DIV(clock->m2 >> 22));
2056
2057 /* Feedback refclk divider - n and m1 */
2058 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2059 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2060 DPIO_CHV_N_DIV(1));
2061
2062 /* M2 fraction division */
2063 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2064 DPIO_CHV_M2_FRAC_DIV(m2_frac));
2065
2066 /* M2 fraction division enable */
2067 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2068 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2069 tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2070 if (m2_frac)
2071 tmp |= DPIO_CHV_FRAC_DIV_EN;
2072 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2073
2074 /* Program digital lock detect threshold */
2075 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2076 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2077 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2078 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2079 if (!m2_frac)
2080 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2081 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2082
2083 /* Loop filter */
2084 if (clock->vco == 5400000) {
2085 loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2086 DPIO_CHV_INT_COEFF(0x8) |
2087 DPIO_CHV_GAIN_CTRL(0x1);
2088 tribuf_calcntr = 0x9;
2089 } else if (clock->vco <= 6200000) {
2090 loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2091 DPIO_CHV_INT_COEFF(0xB) |
2092 DPIO_CHV_GAIN_CTRL(0x3);
2093 tribuf_calcntr = 0x9;
2094 } else if (clock->vco <= 6480000) {
2095 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2096 DPIO_CHV_INT_COEFF(0x9) |
2097 DPIO_CHV_GAIN_CTRL(0x3);
2098 tribuf_calcntr = 0x8;
2099 } else {
2100 /* Not supported. Apply the same limits as in the max case */
2101 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2102 DPIO_CHV_INT_COEFF(0x9) |
2103 DPIO_CHV_GAIN_CTRL(0x3);
2104 tribuf_calcntr = 0;
2105 }
2106 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2107
2108 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2109 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2110 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2111 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2112
2113 /* AFC Recal */
2114 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2115 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2116 DPIO_AFC_RECAL);
2117
2118 vlv_dpio_put(dev_priv);
2119 }
2120
_chv_enable_pll(const struct intel_crtc_state * crtc_state)2121 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2122 {
2123 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2124 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2125 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2126 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2127 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2128 enum pipe pipe = crtc->pipe;
2129 u32 tmp;
2130
2131 vlv_dpio_get(dev_priv);
2132
2133 /* Enable back the 10bit clock to display controller */
2134 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2135 tmp |= DPIO_DCLKP_EN;
2136 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2137
2138 vlv_dpio_put(dev_priv);
2139
2140 /*
2141 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2142 */
2143 udelay(1);
2144
2145 /* Enable PLL */
2146 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2147
2148 /* Check PLL is locked */
2149 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2150 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2151 }
2152
chv_enable_pll(const struct intel_crtc_state * crtc_state)2153 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2154 {
2155 struct intel_display *display = to_intel_display(crtc_state);
2156 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2158 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2159 enum pipe pipe = crtc->pipe;
2160
2161 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2162
2163 /* PLL is protected by panel, make sure we can write it */
2164 assert_pps_unlocked(display, pipe);
2165
2166 /* Enable Refclk and SSC */
2167 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2168 hw_state->dpll & ~DPLL_VCO_ENABLE);
2169
2170 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2171 chv_prepare_pll(crtc_state);
2172 _chv_enable_pll(crtc_state);
2173 }
2174
2175 if (pipe != PIPE_A) {
2176 /*
2177 * WaPixelRepeatModeFixForC0:chv
2178 *
2179 * DPLLCMD is AWOL. Use chicken bits to propagate
2180 * the value from DPLLBMD to either pipe B or C.
2181 */
2182 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2183 intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B),
2184 hw_state->dpll_md);
2185 intel_de_write(dev_priv, CBR4_VLV, 0);
2186 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2187
2188 /*
2189 * DPLLB VGA mode also seems to cause problems.
2190 * We should always have it disabled.
2191 */
2192 drm_WARN_ON(&dev_priv->drm,
2193 (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) &
2194 DPLL_VGA_MODE_DIS) == 0);
2195 } else {
2196 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
2197 hw_state->dpll_md);
2198 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2199 }
2200 }
2201
2202 /**
2203 * vlv_force_pll_on - forcibly enable just the PLL
2204 * @dev_priv: i915 private structure
2205 * @pipe: pipe PLL to enable
2206 * @dpll: PLL configuration
2207 *
2208 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2209 * in cases where we need the PLL enabled even when @pipe is not going to
2210 * be enabled.
2211 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)2212 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2213 const struct dpll *dpll)
2214 {
2215 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2216 struct intel_crtc_state *crtc_state;
2217
2218 crtc_state = intel_crtc_state_alloc(crtc);
2219 if (!crtc_state)
2220 return -ENOMEM;
2221
2222 crtc_state->cpu_transcoder = (enum transcoder)pipe;
2223 crtc_state->pixel_multiplier = 1;
2224 crtc_state->dpll = *dpll;
2225 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2226
2227 if (IS_CHERRYVIEW(dev_priv)) {
2228 chv_compute_dpll(crtc_state);
2229 chv_enable_pll(crtc_state);
2230 } else {
2231 vlv_compute_dpll(crtc_state);
2232 vlv_enable_pll(crtc_state);
2233 }
2234
2235 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2236
2237 return 0;
2238 }
2239
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)2240 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2241 {
2242 u32 val;
2243
2244 /* Make sure the pipe isn't still relying on us */
2245 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2246
2247 val = DPLL_INTEGRATED_REF_CLK_VLV |
2248 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2249 if (pipe != PIPE_A)
2250 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2251
2252 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2253 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2254 }
2255
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)2256 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2257 {
2258 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2259 enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2260 u32 val;
2261
2262 /* Make sure the pipe isn't still relying on us */
2263 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2264
2265 val = DPLL_SSC_REF_CLK_CHV |
2266 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2267 if (pipe != PIPE_A)
2268 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2269
2270 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2271 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2272
2273 vlv_dpio_get(dev_priv);
2274
2275 /* Disable 10bit clock to display controller */
2276 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2277 val &= ~DPIO_DCLKP_EN;
2278 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2279
2280 vlv_dpio_put(dev_priv);
2281 }
2282
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)2283 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2284 {
2285 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2286 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2287 enum pipe pipe = crtc->pipe;
2288
2289 /* Don't disable pipe or pipe PLLs if needed */
2290 if (IS_I830(dev_priv))
2291 return;
2292
2293 /* Make sure the pipe isn't still relying on us */
2294 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2295
2296 intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS);
2297 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2298 }
2299
2300
2301 /**
2302 * vlv_force_pll_off - forcibly disable just the PLL
2303 * @dev_priv: i915 private structure
2304 * @pipe: pipe PLL to disable
2305 *
2306 * Disable the PLL for @pipe. To be used in cases where we need
2307 * the PLL enabled even when @pipe is not going to be enabled.
2308 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)2309 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2310 {
2311 if (IS_CHERRYVIEW(dev_priv))
2312 chv_disable_pll(dev_priv, pipe);
2313 else
2314 vlv_disable_pll(dev_priv, pipe);
2315 }
2316
2317 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)2318 static void assert_pll(struct drm_i915_private *dev_priv,
2319 enum pipe pipe, bool state)
2320 {
2321 bool cur_state;
2322
2323 cur_state = intel_de_read(dev_priv, DPLL(dev_priv, pipe)) & DPLL_VCO_ENABLE;
2324 I915_STATE_WARN(dev_priv, cur_state != state,
2325 "PLL state assertion failure (expected %s, current %s)\n",
2326 str_on_off(state), str_on_off(cur_state));
2327 }
2328
assert_pll_enabled(struct drm_i915_private * i915,enum pipe pipe)2329 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2330 {
2331 assert_pll(i915, pipe, true);
2332 }
2333
assert_pll_disabled(struct drm_i915_private * i915,enum pipe pipe)2334 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2335 {
2336 assert_pll(i915, pipe, false);
2337 }
2338