1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The industrial I/O core
4 *
5 * Copyright (c) 2008 Jonathan Cameron
6 *
7 * Based on elements of hwmon and input subsystems.
8 */
9
10 #define pr_fmt(fmt) "iio-core: " fmt
11
12 #include <linux/anon_inodes.h>
13 #include <linux/cdev.h>
14 #include <linux/cleanup.h>
15 #include <linux/debugfs.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/idr.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/poll.h>
25 #include <linux/property.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/wait.h>
29 #include <linux/wordpart.h>
30
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/buffer_impl.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/iio-opaque.h>
35 #include <linux/iio/iio.h>
36 #include <linux/iio/sysfs.h>
37
38 #include "iio_core.h"
39 #include "iio_core_trigger.h"
40
41 /* IDA to assign each registered device a unique id */
42 static DEFINE_IDA(iio_ida);
43
44 static dev_t iio_devt;
45
46 #define IIO_DEV_MAX 256
47 const struct bus_type iio_bus_type = {
48 .name = "iio",
49 };
50 EXPORT_SYMBOL(iio_bus_type);
51
52 static struct dentry *iio_debugfs_dentry;
53
54 static const char * const iio_direction[] = {
55 [0] = "in",
56 [1] = "out",
57 };
58
59 static const char * const iio_chan_type_name_spec[] = {
60 [IIO_VOLTAGE] = "voltage",
61 [IIO_CURRENT] = "current",
62 [IIO_POWER] = "power",
63 [IIO_ACCEL] = "accel",
64 [IIO_ANGL_VEL] = "anglvel",
65 [IIO_MAGN] = "magn",
66 [IIO_LIGHT] = "illuminance",
67 [IIO_INTENSITY] = "intensity",
68 [IIO_PROXIMITY] = "proximity",
69 [IIO_TEMP] = "temp",
70 [IIO_INCLI] = "incli",
71 [IIO_ROT] = "rot",
72 [IIO_ANGL] = "angl",
73 [IIO_TIMESTAMP] = "timestamp",
74 [IIO_CAPACITANCE] = "capacitance",
75 [IIO_ALTVOLTAGE] = "altvoltage",
76 [IIO_CCT] = "cct",
77 [IIO_PRESSURE] = "pressure",
78 [IIO_HUMIDITYRELATIVE] = "humidityrelative",
79 [IIO_ACTIVITY] = "activity",
80 [IIO_STEPS] = "steps",
81 [IIO_ENERGY] = "energy",
82 [IIO_DISTANCE] = "distance",
83 [IIO_VELOCITY] = "velocity",
84 [IIO_CONCENTRATION] = "concentration",
85 [IIO_RESISTANCE] = "resistance",
86 [IIO_PH] = "ph",
87 [IIO_UVINDEX] = "uvindex",
88 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
89 [IIO_COUNT] = "count",
90 [IIO_INDEX] = "index",
91 [IIO_GRAVITY] = "gravity",
92 [IIO_POSITIONRELATIVE] = "positionrelative",
93 [IIO_PHASE] = "phase",
94 [IIO_MASSCONCENTRATION] = "massconcentration",
95 [IIO_DELTA_ANGL] = "deltaangl",
96 [IIO_DELTA_VELOCITY] = "deltavelocity",
97 [IIO_COLORTEMP] = "colortemp",
98 [IIO_CHROMATICITY] = "chromaticity",
99 [IIO_ATTENTION] = "attention",
100 };
101
102 static const char * const iio_modifier_names[] = {
103 [IIO_MOD_X] = "x",
104 [IIO_MOD_Y] = "y",
105 [IIO_MOD_Z] = "z",
106 [IIO_MOD_X_AND_Y] = "x&y",
107 [IIO_MOD_X_AND_Z] = "x&z",
108 [IIO_MOD_Y_AND_Z] = "y&z",
109 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
110 [IIO_MOD_X_OR_Y] = "x|y",
111 [IIO_MOD_X_OR_Z] = "x|z",
112 [IIO_MOD_Y_OR_Z] = "y|z",
113 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
114 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
115 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
116 [IIO_MOD_LIGHT_BOTH] = "both",
117 [IIO_MOD_LIGHT_IR] = "ir",
118 [IIO_MOD_LIGHT_CLEAR] = "clear",
119 [IIO_MOD_LIGHT_RED] = "red",
120 [IIO_MOD_LIGHT_GREEN] = "green",
121 [IIO_MOD_LIGHT_BLUE] = "blue",
122 [IIO_MOD_LIGHT_UV] = "uv",
123 [IIO_MOD_LIGHT_UVA] = "uva",
124 [IIO_MOD_LIGHT_UVB] = "uvb",
125 [IIO_MOD_LIGHT_DUV] = "duv",
126 [IIO_MOD_QUATERNION] = "quaternion",
127 [IIO_MOD_TEMP_AMBIENT] = "ambient",
128 [IIO_MOD_TEMP_OBJECT] = "object",
129 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
130 [IIO_MOD_NORTH_TRUE] = "from_north_true",
131 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
132 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
133 [IIO_MOD_RUNNING] = "running",
134 [IIO_MOD_JOGGING] = "jogging",
135 [IIO_MOD_WALKING] = "walking",
136 [IIO_MOD_STILL] = "still",
137 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
138 [IIO_MOD_I] = "i",
139 [IIO_MOD_Q] = "q",
140 [IIO_MOD_CO2] = "co2",
141 [IIO_MOD_VOC] = "voc",
142 [IIO_MOD_PM1] = "pm1",
143 [IIO_MOD_PM2P5] = "pm2p5",
144 [IIO_MOD_PM4] = "pm4",
145 [IIO_MOD_PM10] = "pm10",
146 [IIO_MOD_ETHANOL] = "ethanol",
147 [IIO_MOD_H2] = "h2",
148 [IIO_MOD_O2] = "o2",
149 [IIO_MOD_LINEAR_X] = "linear_x",
150 [IIO_MOD_LINEAR_Y] = "linear_y",
151 [IIO_MOD_LINEAR_Z] = "linear_z",
152 [IIO_MOD_PITCH] = "pitch",
153 [IIO_MOD_YAW] = "yaw",
154 [IIO_MOD_ROLL] = "roll",
155 };
156
157 /* relies on pairs of these shared then separate */
158 static const char * const iio_chan_info_postfix[] = {
159 [IIO_CHAN_INFO_RAW] = "raw",
160 [IIO_CHAN_INFO_PROCESSED] = "input",
161 [IIO_CHAN_INFO_SCALE] = "scale",
162 [IIO_CHAN_INFO_OFFSET] = "offset",
163 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
164 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
165 [IIO_CHAN_INFO_PEAK] = "peak_raw",
166 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
167 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
168 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
169 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
170 = "filter_low_pass_3db_frequency",
171 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
172 = "filter_high_pass_3db_frequency",
173 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
174 [IIO_CHAN_INFO_FREQUENCY] = "frequency",
175 [IIO_CHAN_INFO_PHASE] = "phase",
176 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
177 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
178 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
179 [IIO_CHAN_INFO_INT_TIME] = "integration_time",
180 [IIO_CHAN_INFO_ENABLE] = "en",
181 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
182 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
183 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
184 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
185 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
186 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
187 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
188 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
189 [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
190 [IIO_CHAN_INFO_TROUGH] = "trough_raw",
191 };
192 /**
193 * iio_device_id() - query the unique ID for the device
194 * @indio_dev: Device structure whose ID is being queried
195 *
196 * The IIO device ID is a unique index used for example for the naming
197 * of the character device /dev/iio\:device[ID].
198 *
199 * Returns: Unique ID for the device.
200 */
iio_device_id(struct iio_dev * indio_dev)201 int iio_device_id(struct iio_dev *indio_dev)
202 {
203 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
204
205 return iio_dev_opaque->id;
206 }
207 EXPORT_SYMBOL_GPL(iio_device_id);
208
209 /**
210 * iio_buffer_enabled() - helper function to test if the buffer is enabled
211 * @indio_dev: IIO device structure for device
212 *
213 * Returns: True, if the buffer is enabled.
214 */
iio_buffer_enabled(struct iio_dev * indio_dev)215 bool iio_buffer_enabled(struct iio_dev *indio_dev)
216 {
217 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
218
219 return iio_dev_opaque->currentmode & INDIO_ALL_BUFFER_MODES;
220 }
221 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
222
223 #if defined(CONFIG_DEBUG_FS)
224 /*
225 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
226 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
227 */
iio_get_debugfs_dentry(struct iio_dev * indio_dev)228 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
229 {
230 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
231
232 return iio_dev_opaque->debugfs_dentry;
233 }
234 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
235 #endif
236
237 /**
238 * iio_find_channel_from_si() - get channel from its scan index
239 * @indio_dev: device
240 * @si: scan index to match
241 *
242 * Returns:
243 * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
244 */
245 const struct iio_chan_spec
iio_find_channel_from_si(struct iio_dev * indio_dev,int si)246 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
247 {
248 int i;
249
250 for (i = 0; i < indio_dev->num_channels; i++)
251 if (indio_dev->channels[i].scan_index == si)
252 return &indio_dev->channels[i];
253 return NULL;
254 }
255
256 /* This turns up an awful lot */
iio_read_const_attr(struct device * dev,struct device_attribute * attr,char * buf)257 ssize_t iio_read_const_attr(struct device *dev,
258 struct device_attribute *attr,
259 char *buf)
260 {
261 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
262 }
263 EXPORT_SYMBOL(iio_read_const_attr);
264
265 /**
266 * iio_device_set_clock() - Set current timestamping clock for the device
267 * @indio_dev: IIO device structure containing the device
268 * @clock_id: timestamping clock POSIX identifier to set.
269 *
270 * Returns: 0 on success, or a negative error code.
271 */
iio_device_set_clock(struct iio_dev * indio_dev,clockid_t clock_id)272 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
273 {
274 int ret;
275 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
276 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
277
278 ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
279 if (ret)
280 return ret;
281 if ((ev_int && iio_event_enabled(ev_int)) ||
282 iio_buffer_enabled(indio_dev)) {
283 mutex_unlock(&iio_dev_opaque->mlock);
284 return -EBUSY;
285 }
286 iio_dev_opaque->clock_id = clock_id;
287 mutex_unlock(&iio_dev_opaque->mlock);
288
289 return 0;
290 }
291 EXPORT_SYMBOL(iio_device_set_clock);
292
293 /**
294 * iio_device_get_clock() - Retrieve current timestamping clock for the device
295 * @indio_dev: IIO device structure containing the device
296 *
297 * Returns: Clock ID of the current timestamping clock for the device.
298 */
iio_device_get_clock(const struct iio_dev * indio_dev)299 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
300 {
301 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
302
303 return iio_dev_opaque->clock_id;
304 }
305 EXPORT_SYMBOL(iio_device_get_clock);
306
307 /**
308 * iio_get_time_ns() - utility function to get a time stamp for events etc
309 * @indio_dev: device
310 *
311 * Returns: Timestamp of the event in nanoseconds.
312 */
iio_get_time_ns(const struct iio_dev * indio_dev)313 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
314 {
315 struct timespec64 tp;
316
317 switch (iio_device_get_clock(indio_dev)) {
318 case CLOCK_REALTIME:
319 return ktime_get_real_ns();
320 case CLOCK_MONOTONIC:
321 return ktime_get_ns();
322 case CLOCK_MONOTONIC_RAW:
323 return ktime_get_raw_ns();
324 case CLOCK_REALTIME_COARSE:
325 return ktime_to_ns(ktime_get_coarse_real());
326 case CLOCK_MONOTONIC_COARSE:
327 ktime_get_coarse_ts64(&tp);
328 return timespec64_to_ns(&tp);
329 case CLOCK_BOOTTIME:
330 return ktime_get_boottime_ns();
331 case CLOCK_TAI:
332 return ktime_get_clocktai_ns();
333 default:
334 BUG();
335 }
336 }
337 EXPORT_SYMBOL(iio_get_time_ns);
338
iio_init(void)339 static int __init iio_init(void)
340 {
341 int ret;
342
343 /* Register sysfs bus */
344 ret = bus_register(&iio_bus_type);
345 if (ret < 0) {
346 pr_err("could not register bus type\n");
347 goto error_nothing;
348 }
349
350 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
351 if (ret < 0) {
352 pr_err("failed to allocate char dev region\n");
353 goto error_unregister_bus_type;
354 }
355
356 iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
357
358 return 0;
359
360 error_unregister_bus_type:
361 bus_unregister(&iio_bus_type);
362 error_nothing:
363 return ret;
364 }
365
iio_exit(void)366 static void __exit iio_exit(void)
367 {
368 if (iio_devt)
369 unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
370 bus_unregister(&iio_bus_type);
371 debugfs_remove(iio_debugfs_dentry);
372 }
373
374 #if defined(CONFIG_DEBUG_FS)
iio_debugfs_read_reg(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)375 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
376 size_t count, loff_t *ppos)
377 {
378 struct iio_dev *indio_dev = file->private_data;
379 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
380 unsigned int val = 0;
381 int ret;
382
383 if (*ppos > 0)
384 return simple_read_from_buffer(userbuf, count, ppos,
385 iio_dev_opaque->read_buf,
386 iio_dev_opaque->read_buf_len);
387
388 ret = indio_dev->info->debugfs_reg_access(indio_dev,
389 iio_dev_opaque->cached_reg_addr,
390 0, &val);
391 if (ret) {
392 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
393 return ret;
394 }
395
396 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
397 sizeof(iio_dev_opaque->read_buf),
398 "0x%X\n", val);
399
400 return simple_read_from_buffer(userbuf, count, ppos,
401 iio_dev_opaque->read_buf,
402 iio_dev_opaque->read_buf_len);
403 }
404
iio_debugfs_write_reg(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)405 static ssize_t iio_debugfs_write_reg(struct file *file,
406 const char __user *userbuf, size_t count, loff_t *ppos)
407 {
408 struct iio_dev *indio_dev = file->private_data;
409 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
410 unsigned int reg, val;
411 char buf[80];
412 int ret;
413
414 ret = simple_write_to_buffer(buf, sizeof(buf) - 1, ppos, userbuf,
415 count);
416 if (ret < 0)
417 return ret;
418
419 buf[count] = '\0';
420
421 ret = sscanf(buf, "%i %i", ®, &val);
422
423 switch (ret) {
424 case 1:
425 iio_dev_opaque->cached_reg_addr = reg;
426 break;
427 case 2:
428 iio_dev_opaque->cached_reg_addr = reg;
429 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
430 val, NULL);
431 if (ret) {
432 dev_err(indio_dev->dev.parent, "%s: write failed\n",
433 __func__);
434 return ret;
435 }
436 break;
437 default:
438 return -EINVAL;
439 }
440
441 return count;
442 }
443
444 static const struct file_operations iio_debugfs_reg_fops = {
445 .open = simple_open,
446 .read = iio_debugfs_read_reg,
447 .write = iio_debugfs_write_reg,
448 };
449
iio_device_unregister_debugfs(struct iio_dev * indio_dev)450 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
451 {
452 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
453
454 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
455 }
456
iio_device_register_debugfs(struct iio_dev * indio_dev)457 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
458 {
459 struct iio_dev_opaque *iio_dev_opaque;
460
461 if (indio_dev->info->debugfs_reg_access == NULL)
462 return;
463
464 if (!iio_debugfs_dentry)
465 return;
466
467 iio_dev_opaque = to_iio_dev_opaque(indio_dev);
468
469 iio_dev_opaque->debugfs_dentry =
470 debugfs_create_dir(dev_name(&indio_dev->dev),
471 iio_debugfs_dentry);
472
473 debugfs_create_file("direct_reg_access", 0644,
474 iio_dev_opaque->debugfs_dentry, indio_dev,
475 &iio_debugfs_reg_fops);
476 }
477 #else
iio_device_register_debugfs(struct iio_dev * indio_dev)478 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
479 {
480 }
481
iio_device_unregister_debugfs(struct iio_dev * indio_dev)482 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
483 {
484 }
485 #endif /* CONFIG_DEBUG_FS */
486
iio_read_channel_ext_info(struct device * dev,struct device_attribute * attr,char * buf)487 static ssize_t iio_read_channel_ext_info(struct device *dev,
488 struct device_attribute *attr,
489 char *buf)
490 {
491 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
492 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
493 const struct iio_chan_spec_ext_info *ext_info;
494
495 ext_info = &this_attr->c->ext_info[this_attr->address];
496
497 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
498 }
499
iio_write_channel_ext_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)500 static ssize_t iio_write_channel_ext_info(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t len)
503 {
504 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
505 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
506 const struct iio_chan_spec_ext_info *ext_info;
507
508 ext_info = &this_attr->c->ext_info[this_attr->address];
509
510 return ext_info->write(indio_dev, ext_info->private,
511 this_attr->c, buf, len);
512 }
513
iio_enum_available_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)514 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
515 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
516 {
517 const struct iio_enum *e = (const struct iio_enum *)priv;
518 unsigned int i;
519 size_t len = 0;
520
521 if (!e->num_items)
522 return 0;
523
524 for (i = 0; i < e->num_items; ++i) {
525 if (!e->items[i])
526 continue;
527 len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
528 }
529
530 /* replace last space with a newline */
531 buf[len - 1] = '\n';
532
533 return len;
534 }
535 EXPORT_SYMBOL_GPL(iio_enum_available_read);
536
iio_enum_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)537 ssize_t iio_enum_read(struct iio_dev *indio_dev,
538 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
539 {
540 const struct iio_enum *e = (const struct iio_enum *)priv;
541 int i;
542
543 if (!e->get)
544 return -EINVAL;
545
546 i = e->get(indio_dev, chan);
547 if (i < 0)
548 return i;
549 if (i >= e->num_items || !e->items[i])
550 return -EINVAL;
551
552 return sysfs_emit(buf, "%s\n", e->items[i]);
553 }
554 EXPORT_SYMBOL_GPL(iio_enum_read);
555
iio_enum_write(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)556 ssize_t iio_enum_write(struct iio_dev *indio_dev,
557 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
558 size_t len)
559 {
560 const struct iio_enum *e = (const struct iio_enum *)priv;
561 int ret;
562
563 if (!e->set)
564 return -EINVAL;
565
566 ret = __sysfs_match_string(e->items, e->num_items, buf);
567 if (ret < 0)
568 return ret;
569
570 ret = e->set(indio_dev, chan, ret);
571 return ret ? ret : len;
572 }
573 EXPORT_SYMBOL_GPL(iio_enum_write);
574
575 static const struct iio_mount_matrix iio_mount_idmatrix = {
576 .rotation = {
577 "1", "0", "0",
578 "0", "1", "0",
579 "0", "0", "1"
580 }
581 };
582
iio_setup_mount_idmatrix(const struct device * dev,struct iio_mount_matrix * matrix)583 static int iio_setup_mount_idmatrix(const struct device *dev,
584 struct iio_mount_matrix *matrix)
585 {
586 *matrix = iio_mount_idmatrix;
587 dev_info(dev, "mounting matrix not found: using identity...\n");
588 return 0;
589 }
590
iio_show_mount_matrix(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)591 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
592 const struct iio_chan_spec *chan, char *buf)
593 {
594 const struct iio_mount_matrix *mtx;
595
596 mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
597 if (IS_ERR(mtx))
598 return PTR_ERR(mtx);
599
600 if (!mtx)
601 mtx = &iio_mount_idmatrix;
602
603 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
604 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
605 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
606 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
607 }
608 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
609
610 /**
611 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
612 * device "mount-matrix" property
613 * @dev: device the mounting matrix property is assigned to
614 * @matrix: where to store retrieved matrix
615 *
616 * If device is assigned no mounting matrix property, a default 3x3 identity
617 * matrix will be filled in.
618 *
619 * Returns: 0 if success, or a negative error code on failure.
620 */
iio_read_mount_matrix(struct device * dev,struct iio_mount_matrix * matrix)621 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
622 {
623 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
624 int err;
625
626 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
627 if (err == len)
628 return 0;
629
630 if (err >= 0)
631 /* Invalid number of matrix entries. */
632 return -EINVAL;
633
634 if (err != -EINVAL)
635 /* Invalid matrix declaration format. */
636 return err;
637
638 /* Matrix was not declared at all: fallback to identity. */
639 return iio_setup_mount_idmatrix(dev, matrix);
640 }
641 EXPORT_SYMBOL(iio_read_mount_matrix);
642
__iio_format_value(char * buf,size_t offset,unsigned int type,int size,const int * vals)643 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
644 int size, const int *vals)
645 {
646 int tmp0, tmp1;
647 s64 tmp2;
648 bool scale_db = false;
649
650 switch (type) {
651 case IIO_VAL_INT:
652 return sysfs_emit_at(buf, offset, "%d", vals[0]);
653 case IIO_VAL_INT_PLUS_MICRO_DB:
654 scale_db = true;
655 fallthrough;
656 case IIO_VAL_INT_PLUS_MICRO:
657 if (vals[1] < 0)
658 return sysfs_emit_at(buf, offset, "-%d.%06u%s",
659 abs(vals[0]), -vals[1],
660 scale_db ? " dB" : "");
661 else
662 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
663 vals[1], scale_db ? " dB" : "");
664 case IIO_VAL_INT_PLUS_NANO:
665 if (vals[1] < 0)
666 return sysfs_emit_at(buf, offset, "-%d.%09u",
667 abs(vals[0]), -vals[1]);
668 else
669 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
670 vals[1]);
671 case IIO_VAL_FRACTIONAL:
672 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
673 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
674 if ((tmp2 < 0) && (tmp0 == 0))
675 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
676 else
677 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
678 abs(tmp1));
679 case IIO_VAL_FRACTIONAL_LOG2:
680 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
681 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
682 if (tmp0 == 0 && tmp2 < 0)
683 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
684 else
685 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
686 abs(tmp1));
687 case IIO_VAL_INT_MULTIPLE:
688 {
689 int i;
690 int l = 0;
691
692 for (i = 0; i < size; ++i)
693 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
694 return l;
695 }
696 case IIO_VAL_CHAR:
697 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
698 case IIO_VAL_INT_64:
699 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
700 return sysfs_emit_at(buf, offset, "%lld", tmp2);
701 default:
702 return 0;
703 }
704 }
705
706 /**
707 * iio_format_value() - Formats a IIO value into its string representation
708 * @buf: The buffer to which the formatted value gets written
709 * which is assumed to be big enough (i.e. PAGE_SIZE).
710 * @type: One of the IIO_VAL_* constants. This decides how the val
711 * and val2 parameters are formatted.
712 * @size: Number of IIO value entries contained in vals
713 * @vals: Pointer to the values, exact meaning depends on the
714 * type parameter.
715 *
716 * Returns:
717 * 0 by default, a negative number on failure or the total number of characters
718 * written for a type that belongs to the IIO_VAL_* constant.
719 */
iio_format_value(char * buf,unsigned int type,int size,int * vals)720 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
721 {
722 ssize_t len;
723
724 len = __iio_format_value(buf, 0, type, size, vals);
725 if (len >= PAGE_SIZE - 1)
726 return -EFBIG;
727
728 return len + sysfs_emit_at(buf, len, "\n");
729 }
730 EXPORT_SYMBOL_GPL(iio_format_value);
731
do_iio_read_channel_label(struct iio_dev * indio_dev,const struct iio_chan_spec * c,char * buf)732 ssize_t do_iio_read_channel_label(struct iio_dev *indio_dev,
733 const struct iio_chan_spec *c,
734 char *buf)
735 {
736 if (indio_dev->info->read_label)
737 return indio_dev->info->read_label(indio_dev, c, buf);
738
739 if (c->extend_name)
740 return sysfs_emit(buf, "%s\n", c->extend_name);
741
742 return -EINVAL;
743 }
744
iio_read_channel_label(struct device * dev,struct device_attribute * attr,char * buf)745 static ssize_t iio_read_channel_label(struct device *dev,
746 struct device_attribute *attr,
747 char *buf)
748 {
749 return do_iio_read_channel_label(dev_to_iio_dev(dev),
750 to_iio_dev_attr(attr)->c, buf);
751 }
752
iio_read_channel_info(struct device * dev,struct device_attribute * attr,char * buf)753 static ssize_t iio_read_channel_info(struct device *dev,
754 struct device_attribute *attr,
755 char *buf)
756 {
757 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
758 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
759 int vals[INDIO_MAX_RAW_ELEMENTS];
760 int ret;
761 int val_len = 2;
762
763 if (indio_dev->info->read_raw_multi)
764 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
765 INDIO_MAX_RAW_ELEMENTS,
766 vals, &val_len,
767 this_attr->address);
768 else if (indio_dev->info->read_raw)
769 ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
770 &vals[0], &vals[1], this_attr->address);
771 else
772 return -EINVAL;
773
774 if (ret < 0)
775 return ret;
776
777 return iio_format_value(buf, ret, val_len, vals);
778 }
779
iio_format_list(char * buf,const int * vals,int type,int length,const char * prefix,const char * suffix)780 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
781 const char *prefix, const char *suffix)
782 {
783 ssize_t len;
784 int stride;
785 int i;
786
787 switch (type) {
788 case IIO_VAL_INT:
789 stride = 1;
790 break;
791 default:
792 stride = 2;
793 break;
794 }
795
796 len = sysfs_emit(buf, prefix);
797
798 for (i = 0; i <= length - stride; i += stride) {
799 if (i != 0) {
800 len += sysfs_emit_at(buf, len, " ");
801 if (len >= PAGE_SIZE)
802 return -EFBIG;
803 }
804
805 len += __iio_format_value(buf, len, type, stride, &vals[i]);
806 if (len >= PAGE_SIZE)
807 return -EFBIG;
808 }
809
810 len += sysfs_emit_at(buf, len, "%s\n", suffix);
811
812 return len;
813 }
814
iio_format_avail_list(char * buf,const int * vals,int type,int length)815 static ssize_t iio_format_avail_list(char *buf, const int *vals,
816 int type, int length)
817 {
818
819 return iio_format_list(buf, vals, type, length, "", "");
820 }
821
iio_format_avail_range(char * buf,const int * vals,int type)822 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
823 {
824 int length;
825
826 /*
827 * length refers to the array size , not the number of elements.
828 * The purpose is to print the range [min , step ,max] so length should
829 * be 3 in case of int, and 6 for other types.
830 */
831 switch (type) {
832 case IIO_VAL_INT:
833 length = 3;
834 break;
835 default:
836 length = 6;
837 break;
838 }
839
840 return iio_format_list(buf, vals, type, length, "[", "]");
841 }
842
iio_read_channel_info_avail(struct device * dev,struct device_attribute * attr,char * buf)843 static ssize_t iio_read_channel_info_avail(struct device *dev,
844 struct device_attribute *attr,
845 char *buf)
846 {
847 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
848 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
849 const int *vals;
850 int ret;
851 int length;
852 int type;
853
854 if (!indio_dev->info->read_avail)
855 return -EINVAL;
856
857 ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
858 &vals, &type, &length,
859 this_attr->address);
860
861 if (ret < 0)
862 return ret;
863 switch (ret) {
864 case IIO_AVAIL_LIST:
865 return iio_format_avail_list(buf, vals, type, length);
866 case IIO_AVAIL_RANGE:
867 return iio_format_avail_range(buf, vals, type);
868 default:
869 return -EINVAL;
870 }
871 }
872
873 /**
874 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
875 * @str: The string to parse
876 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
877 * @integer: The integer part of the number
878 * @fract: The fractional part of the number
879 * @scale_db: True if this should parse as dB
880 *
881 * Returns:
882 * 0 on success, or a negative error code if the string could not be parsed.
883 */
__iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract,bool scale_db)884 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
885 int *integer, int *fract, bool scale_db)
886 {
887 int i = 0, f = 0;
888 bool integer_part = true, negative = false;
889
890 if (fract_mult == 0) {
891 *fract = 0;
892
893 return kstrtoint(str, 0, integer);
894 }
895
896 if (str[0] == '-') {
897 negative = true;
898 str++;
899 } else if (str[0] == '+') {
900 str++;
901 }
902
903 while (*str) {
904 if ('0' <= *str && *str <= '9') {
905 if (integer_part) {
906 i = i * 10 + *str - '0';
907 } else {
908 f += fract_mult * (*str - '0');
909 fract_mult /= 10;
910 }
911 } else if (*str == '\n') {
912 if (*(str + 1) == '\0')
913 break;
914 return -EINVAL;
915 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
916 /* Ignore the dB suffix */
917 str += sizeof(" dB") - 1;
918 continue;
919 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
920 /* Ignore the dB suffix */
921 str += sizeof("dB") - 1;
922 continue;
923 } else if (*str == '.' && integer_part) {
924 integer_part = false;
925 } else {
926 return -EINVAL;
927 }
928 str++;
929 }
930
931 if (negative) {
932 if (i)
933 i = -i;
934 else
935 f = -f;
936 }
937
938 *integer = i;
939 *fract = f;
940
941 return 0;
942 }
943
944 /**
945 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
946 * @str: The string to parse
947 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
948 * @integer: The integer part of the number
949 * @fract: The fractional part of the number
950 *
951 * Returns:
952 * 0 on success, or a negative error code if the string could not be parsed.
953 */
iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract)954 int iio_str_to_fixpoint(const char *str, int fract_mult,
955 int *integer, int *fract)
956 {
957 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
958 }
959 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
960
iio_write_channel_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)961 static ssize_t iio_write_channel_info(struct device *dev,
962 struct device_attribute *attr,
963 const char *buf,
964 size_t len)
965 {
966 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
967 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
968 int ret, fract_mult = 100000;
969 int integer, fract = 0;
970 long long integer64;
971 bool is_char = false;
972 bool scale_db = false;
973 bool is_64bit = false;
974
975 /* Assumes decimal - precision based on number of digits */
976 if (!indio_dev->info->write_raw)
977 return -EINVAL;
978
979 if (indio_dev->info->write_raw_get_fmt)
980 switch (indio_dev->info->write_raw_get_fmt(indio_dev,
981 this_attr->c, this_attr->address)) {
982 case IIO_VAL_INT:
983 fract_mult = 0;
984 break;
985 case IIO_VAL_INT_PLUS_MICRO_DB:
986 scale_db = true;
987 fallthrough;
988 case IIO_VAL_INT_PLUS_MICRO:
989 fract_mult = 100000;
990 break;
991 case IIO_VAL_INT_PLUS_NANO:
992 fract_mult = 100000000;
993 break;
994 case IIO_VAL_CHAR:
995 is_char = true;
996 break;
997 case IIO_VAL_INT_64:
998 is_64bit = true;
999 break;
1000 default:
1001 return -EINVAL;
1002 }
1003
1004 if (is_char) {
1005 char ch;
1006
1007 if (sscanf(buf, "%c", &ch) != 1)
1008 return -EINVAL;
1009 integer = ch;
1010 } else if (is_64bit) {
1011 ret = kstrtoll(buf, 0, &integer64);
1012 if (ret)
1013 return ret;
1014
1015 fract = upper_32_bits(integer64);
1016 integer = lower_32_bits(integer64);
1017 } else {
1018 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1019 scale_db);
1020 if (ret)
1021 return ret;
1022 }
1023
1024 ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1025 integer, fract, this_attr->address);
1026 if (ret)
1027 return ret;
1028
1029 return len;
1030 }
1031
1032 static
__iio_device_attr_init(struct device_attribute * dev_attr,const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),enum iio_shared_by shared_by)1033 int __iio_device_attr_init(struct device_attribute *dev_attr,
1034 const char *postfix,
1035 struct iio_chan_spec const *chan,
1036 ssize_t (*readfunc)(struct device *dev,
1037 struct device_attribute *attr,
1038 char *buf),
1039 ssize_t (*writefunc)(struct device *dev,
1040 struct device_attribute *attr,
1041 const char *buf,
1042 size_t len),
1043 enum iio_shared_by shared_by)
1044 {
1045 int ret = 0;
1046 char *name = NULL;
1047 char *full_postfix;
1048
1049 sysfs_attr_init(&dev_attr->attr);
1050
1051 /* Build up postfix of <extend_name>_<modifier>_postfix */
1052 if (chan->modified && (shared_by == IIO_SEPARATE)) {
1053 if (chan->extend_name)
1054 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1055 iio_modifier_names[chan->channel2],
1056 chan->extend_name,
1057 postfix);
1058 else
1059 full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1060 iio_modifier_names[chan->channel2],
1061 postfix);
1062 } else {
1063 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1064 full_postfix = kstrdup(postfix, GFP_KERNEL);
1065 else
1066 full_postfix = kasprintf(GFP_KERNEL,
1067 "%s_%s",
1068 chan->extend_name,
1069 postfix);
1070 }
1071 if (full_postfix == NULL)
1072 return -ENOMEM;
1073
1074 if (chan->differential) { /* Differential can not have modifier */
1075 switch (shared_by) {
1076 case IIO_SHARED_BY_ALL:
1077 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1078 break;
1079 case IIO_SHARED_BY_DIR:
1080 name = kasprintf(GFP_KERNEL, "%s_%s",
1081 iio_direction[chan->output],
1082 full_postfix);
1083 break;
1084 case IIO_SHARED_BY_TYPE:
1085 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1086 iio_direction[chan->output],
1087 iio_chan_type_name_spec[chan->type],
1088 iio_chan_type_name_spec[chan->type],
1089 full_postfix);
1090 break;
1091 case IIO_SEPARATE:
1092 if (!chan->indexed) {
1093 WARN(1, "Differential channels must be indexed\n");
1094 ret = -EINVAL;
1095 goto error_free_full_postfix;
1096 }
1097 name = kasprintf(GFP_KERNEL,
1098 "%s_%s%d-%s%d_%s",
1099 iio_direction[chan->output],
1100 iio_chan_type_name_spec[chan->type],
1101 chan->channel,
1102 iio_chan_type_name_spec[chan->type],
1103 chan->channel2,
1104 full_postfix);
1105 break;
1106 }
1107 } else { /* Single ended */
1108 switch (shared_by) {
1109 case IIO_SHARED_BY_ALL:
1110 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1111 break;
1112 case IIO_SHARED_BY_DIR:
1113 name = kasprintf(GFP_KERNEL, "%s_%s",
1114 iio_direction[chan->output],
1115 full_postfix);
1116 break;
1117 case IIO_SHARED_BY_TYPE:
1118 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1119 iio_direction[chan->output],
1120 iio_chan_type_name_spec[chan->type],
1121 full_postfix);
1122 break;
1123
1124 case IIO_SEPARATE:
1125 if (chan->indexed)
1126 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1127 iio_direction[chan->output],
1128 iio_chan_type_name_spec[chan->type],
1129 chan->channel,
1130 full_postfix);
1131 else
1132 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1133 iio_direction[chan->output],
1134 iio_chan_type_name_spec[chan->type],
1135 full_postfix);
1136 break;
1137 }
1138 }
1139 if (name == NULL) {
1140 ret = -ENOMEM;
1141 goto error_free_full_postfix;
1142 }
1143 dev_attr->attr.name = name;
1144
1145 if (readfunc) {
1146 dev_attr->attr.mode |= 0444;
1147 dev_attr->show = readfunc;
1148 }
1149
1150 if (writefunc) {
1151 dev_attr->attr.mode |= 0200;
1152 dev_attr->store = writefunc;
1153 }
1154
1155 error_free_full_postfix:
1156 kfree(full_postfix);
1157
1158 return ret;
1159 }
1160
__iio_device_attr_deinit(struct device_attribute * dev_attr)1161 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1162 {
1163 kfree(dev_attr->attr.name);
1164 }
1165
__iio_add_chan_devattr(const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),u64 mask,enum iio_shared_by shared_by,struct device * dev,struct iio_buffer * buffer,struct list_head * attr_list)1166 int __iio_add_chan_devattr(const char *postfix,
1167 struct iio_chan_spec const *chan,
1168 ssize_t (*readfunc)(struct device *dev,
1169 struct device_attribute *attr,
1170 char *buf),
1171 ssize_t (*writefunc)(struct device *dev,
1172 struct device_attribute *attr,
1173 const char *buf,
1174 size_t len),
1175 u64 mask,
1176 enum iio_shared_by shared_by,
1177 struct device *dev,
1178 struct iio_buffer *buffer,
1179 struct list_head *attr_list)
1180 {
1181 int ret;
1182 struct iio_dev_attr *iio_attr, *t;
1183
1184 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1185 if (iio_attr == NULL)
1186 return -ENOMEM;
1187 ret = __iio_device_attr_init(&iio_attr->dev_attr,
1188 postfix, chan,
1189 readfunc, writefunc, shared_by);
1190 if (ret)
1191 goto error_iio_dev_attr_free;
1192 iio_attr->c = chan;
1193 iio_attr->address = mask;
1194 iio_attr->buffer = buffer;
1195 list_for_each_entry(t, attr_list, l)
1196 if (strcmp(t->dev_attr.attr.name,
1197 iio_attr->dev_attr.attr.name) == 0) {
1198 if (shared_by == IIO_SEPARATE)
1199 dev_err(dev, "tried to double register : %s\n",
1200 t->dev_attr.attr.name);
1201 ret = -EBUSY;
1202 goto error_device_attr_deinit;
1203 }
1204 list_add(&iio_attr->l, attr_list);
1205
1206 return 0;
1207
1208 error_device_attr_deinit:
1209 __iio_device_attr_deinit(&iio_attr->dev_attr);
1210 error_iio_dev_attr_free:
1211 kfree(iio_attr);
1212 return ret;
1213 }
1214
iio_device_add_channel_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1215 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1216 struct iio_chan_spec const *chan)
1217 {
1218 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1219 int ret;
1220
1221 if (!indio_dev->info->read_label && !chan->extend_name)
1222 return 0;
1223
1224 ret = __iio_add_chan_devattr("label",
1225 chan,
1226 &iio_read_channel_label,
1227 NULL,
1228 0,
1229 IIO_SEPARATE,
1230 &indio_dev->dev,
1231 NULL,
1232 &iio_dev_opaque->channel_attr_list);
1233 if (ret < 0)
1234 return ret;
1235
1236 return 1;
1237 }
1238
iio_device_add_info_mask_type(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1239 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1240 struct iio_chan_spec const *chan,
1241 enum iio_shared_by shared_by,
1242 const long *infomask)
1243 {
1244 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1245 int i, ret, attrcount = 0;
1246
1247 for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1248 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1249 return -EINVAL;
1250 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1251 chan,
1252 &iio_read_channel_info,
1253 &iio_write_channel_info,
1254 i,
1255 shared_by,
1256 &indio_dev->dev,
1257 NULL,
1258 &iio_dev_opaque->channel_attr_list);
1259 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1260 continue;
1261 if (ret < 0)
1262 return ret;
1263 attrcount++;
1264 }
1265
1266 return attrcount;
1267 }
1268
iio_device_add_info_mask_type_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1269 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1270 struct iio_chan_spec const *chan,
1271 enum iio_shared_by shared_by,
1272 const long *infomask)
1273 {
1274 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1275 int i, ret, attrcount = 0;
1276 char *avail_postfix;
1277
1278 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1279 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1280 return -EINVAL;
1281 avail_postfix = kasprintf(GFP_KERNEL,
1282 "%s_available",
1283 iio_chan_info_postfix[i]);
1284 if (!avail_postfix)
1285 return -ENOMEM;
1286
1287 ret = __iio_add_chan_devattr(avail_postfix,
1288 chan,
1289 &iio_read_channel_info_avail,
1290 NULL,
1291 i,
1292 shared_by,
1293 &indio_dev->dev,
1294 NULL,
1295 &iio_dev_opaque->channel_attr_list);
1296 kfree(avail_postfix);
1297 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1298 continue;
1299 if (ret < 0)
1300 return ret;
1301 attrcount++;
1302 }
1303
1304 return attrcount;
1305 }
1306
iio_device_add_channel_sysfs(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1307 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1308 struct iio_chan_spec const *chan)
1309 {
1310 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1311 int ret, attrcount = 0;
1312 const struct iio_chan_spec_ext_info *ext_info;
1313
1314 if (chan->channel < 0)
1315 return 0;
1316 ret = iio_device_add_info_mask_type(indio_dev, chan,
1317 IIO_SEPARATE,
1318 &chan->info_mask_separate);
1319 if (ret < 0)
1320 return ret;
1321 attrcount += ret;
1322
1323 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1324 IIO_SEPARATE,
1325 &chan->info_mask_separate_available);
1326 if (ret < 0)
1327 return ret;
1328 attrcount += ret;
1329
1330 ret = iio_device_add_info_mask_type(indio_dev, chan,
1331 IIO_SHARED_BY_TYPE,
1332 &chan->info_mask_shared_by_type);
1333 if (ret < 0)
1334 return ret;
1335 attrcount += ret;
1336
1337 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1338 IIO_SHARED_BY_TYPE,
1339 &chan->info_mask_shared_by_type_available);
1340 if (ret < 0)
1341 return ret;
1342 attrcount += ret;
1343
1344 ret = iio_device_add_info_mask_type(indio_dev, chan,
1345 IIO_SHARED_BY_DIR,
1346 &chan->info_mask_shared_by_dir);
1347 if (ret < 0)
1348 return ret;
1349 attrcount += ret;
1350
1351 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1352 IIO_SHARED_BY_DIR,
1353 &chan->info_mask_shared_by_dir_available);
1354 if (ret < 0)
1355 return ret;
1356 attrcount += ret;
1357
1358 ret = iio_device_add_info_mask_type(indio_dev, chan,
1359 IIO_SHARED_BY_ALL,
1360 &chan->info_mask_shared_by_all);
1361 if (ret < 0)
1362 return ret;
1363 attrcount += ret;
1364
1365 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1366 IIO_SHARED_BY_ALL,
1367 &chan->info_mask_shared_by_all_available);
1368 if (ret < 0)
1369 return ret;
1370 attrcount += ret;
1371
1372 ret = iio_device_add_channel_label(indio_dev, chan);
1373 if (ret < 0)
1374 return ret;
1375 attrcount += ret;
1376
1377 if (chan->ext_info) {
1378 unsigned int i = 0;
1379
1380 for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1381 ret = __iio_add_chan_devattr(ext_info->name,
1382 chan,
1383 ext_info->read ?
1384 &iio_read_channel_ext_info : NULL,
1385 ext_info->write ?
1386 &iio_write_channel_ext_info : NULL,
1387 i,
1388 ext_info->shared,
1389 &indio_dev->dev,
1390 NULL,
1391 &iio_dev_opaque->channel_attr_list);
1392 i++;
1393 if (ret == -EBUSY && ext_info->shared)
1394 continue;
1395
1396 if (ret)
1397 return ret;
1398
1399 attrcount++;
1400 }
1401 }
1402
1403 return attrcount;
1404 }
1405
1406 /**
1407 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1408 * @attr_list: List of IIO device attributes
1409 *
1410 * This function frees the memory allocated for each of the IIO device
1411 * attributes in the list.
1412 */
iio_free_chan_devattr_list(struct list_head * attr_list)1413 void iio_free_chan_devattr_list(struct list_head *attr_list)
1414 {
1415 struct iio_dev_attr *p, *n;
1416
1417 list_for_each_entry_safe(p, n, attr_list, l) {
1418 kfree_const(p->dev_attr.attr.name);
1419 list_del(&p->l);
1420 kfree(p);
1421 }
1422 }
1423
name_show(struct device * dev,struct device_attribute * attr,char * buf)1424 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1425 char *buf)
1426 {
1427 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1428
1429 return sysfs_emit(buf, "%s\n", indio_dev->name);
1430 }
1431
1432 static DEVICE_ATTR_RO(name);
1433
label_show(struct device * dev,struct device_attribute * attr,char * buf)1434 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1435 char *buf)
1436 {
1437 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1438
1439 return sysfs_emit(buf, "%s\n", indio_dev->label);
1440 }
1441
1442 static DEVICE_ATTR_RO(label);
1443
1444 static const char * const clock_names[] = {
1445 [CLOCK_REALTIME] = "realtime",
1446 [CLOCK_MONOTONIC] = "monotonic",
1447 [CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id",
1448 [CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id",
1449 [CLOCK_MONOTONIC_RAW] = "monotonic_raw",
1450 [CLOCK_REALTIME_COARSE] = "realtime_coarse",
1451 [CLOCK_MONOTONIC_COARSE] = "monotonic_coarse",
1452 [CLOCK_BOOTTIME] = "boottime",
1453 [CLOCK_REALTIME_ALARM] = "realtime_alarm",
1454 [CLOCK_BOOTTIME_ALARM] = "boottime_alarm",
1455 [CLOCK_SGI_CYCLE] = "sgi_cycle",
1456 [CLOCK_TAI] = "tai",
1457 };
1458
current_timestamp_clock_show(struct device * dev,struct device_attribute * attr,char * buf)1459 static ssize_t current_timestamp_clock_show(struct device *dev,
1460 struct device_attribute *attr,
1461 char *buf)
1462 {
1463 const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1464 const clockid_t clk = iio_device_get_clock(indio_dev);
1465
1466 switch (clk) {
1467 case CLOCK_REALTIME:
1468 case CLOCK_MONOTONIC:
1469 case CLOCK_MONOTONIC_RAW:
1470 case CLOCK_REALTIME_COARSE:
1471 case CLOCK_MONOTONIC_COARSE:
1472 case CLOCK_BOOTTIME:
1473 case CLOCK_TAI:
1474 break;
1475 default:
1476 BUG();
1477 }
1478
1479 return sysfs_emit(buf, "%s\n", clock_names[clk]);
1480 }
1481
current_timestamp_clock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1482 static ssize_t current_timestamp_clock_store(struct device *dev,
1483 struct device_attribute *attr,
1484 const char *buf, size_t len)
1485 {
1486 clockid_t clk;
1487 int ret;
1488
1489 ret = sysfs_match_string(clock_names, buf);
1490 if (ret < 0)
1491 return ret;
1492 clk = ret;
1493
1494 switch (clk) {
1495 case CLOCK_REALTIME:
1496 case CLOCK_MONOTONIC:
1497 case CLOCK_MONOTONIC_RAW:
1498 case CLOCK_REALTIME_COARSE:
1499 case CLOCK_MONOTONIC_COARSE:
1500 case CLOCK_BOOTTIME:
1501 case CLOCK_TAI:
1502 break;
1503 default:
1504 return -EINVAL;
1505 }
1506
1507 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1508 if (ret)
1509 return ret;
1510
1511 return len;
1512 }
1513
iio_device_register_sysfs_group(struct iio_dev * indio_dev,const struct attribute_group * group)1514 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1515 const struct attribute_group *group)
1516 {
1517 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1518 const struct attribute_group **new, **old = iio_dev_opaque->groups;
1519 unsigned int cnt = iio_dev_opaque->groupcounter;
1520
1521 new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1522 if (!new)
1523 return -ENOMEM;
1524
1525 new[iio_dev_opaque->groupcounter++] = group;
1526 new[iio_dev_opaque->groupcounter] = NULL;
1527
1528 iio_dev_opaque->groups = new;
1529
1530 return 0;
1531 }
1532
1533 static DEVICE_ATTR_RW(current_timestamp_clock);
1534
iio_device_register_sysfs(struct iio_dev * indio_dev)1535 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1536 {
1537 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1538 int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1539 struct iio_dev_attr *p;
1540 struct attribute **attr, *clk = NULL;
1541
1542 /* First count elements in any existing group */
1543 if (indio_dev->info->attrs) {
1544 attr = indio_dev->info->attrs->attrs;
1545 while (*attr++ != NULL)
1546 attrcount_orig++;
1547 }
1548 attrcount = attrcount_orig;
1549 /*
1550 * New channel registration method - relies on the fact a group does
1551 * not need to be initialized if its name is NULL.
1552 */
1553 if (indio_dev->channels)
1554 for (i = 0; i < indio_dev->num_channels; i++) {
1555 const struct iio_chan_spec *chan =
1556 &indio_dev->channels[i];
1557
1558 if (chan->type == IIO_TIMESTAMP)
1559 clk = &dev_attr_current_timestamp_clock.attr;
1560
1561 ret = iio_device_add_channel_sysfs(indio_dev, chan);
1562 if (ret < 0)
1563 goto error_clear_attrs;
1564 attrcount += ret;
1565 }
1566
1567 if (iio_dev_opaque->event_interface)
1568 clk = &dev_attr_current_timestamp_clock.attr;
1569
1570 if (indio_dev->name)
1571 attrcount++;
1572 if (indio_dev->label)
1573 attrcount++;
1574 if (clk)
1575 attrcount++;
1576
1577 iio_dev_opaque->chan_attr_group.attrs =
1578 kcalloc(attrcount + 1,
1579 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1580 GFP_KERNEL);
1581 if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1582 ret = -ENOMEM;
1583 goto error_clear_attrs;
1584 }
1585 /* Copy across original attributes, and point to original binary attributes */
1586 if (indio_dev->info->attrs) {
1587 memcpy(iio_dev_opaque->chan_attr_group.attrs,
1588 indio_dev->info->attrs->attrs,
1589 sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1590 *attrcount_orig);
1591 iio_dev_opaque->chan_attr_group.is_visible =
1592 indio_dev->info->attrs->is_visible;
1593 iio_dev_opaque->chan_attr_group.bin_attrs =
1594 indio_dev->info->attrs->bin_attrs;
1595 }
1596 attrn = attrcount_orig;
1597 /* Add all elements from the list. */
1598 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1599 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1600 if (indio_dev->name)
1601 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1602 if (indio_dev->label)
1603 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1604 if (clk)
1605 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1606
1607 ret = iio_device_register_sysfs_group(indio_dev,
1608 &iio_dev_opaque->chan_attr_group);
1609 if (ret)
1610 goto error_free_chan_attrs;
1611
1612 return 0;
1613
1614 error_free_chan_attrs:
1615 kfree(iio_dev_opaque->chan_attr_group.attrs);
1616 iio_dev_opaque->chan_attr_group.attrs = NULL;
1617 error_clear_attrs:
1618 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1619
1620 return ret;
1621 }
1622
iio_device_unregister_sysfs(struct iio_dev * indio_dev)1623 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1624 {
1625 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1626
1627 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1628 kfree(iio_dev_opaque->chan_attr_group.attrs);
1629 iio_dev_opaque->chan_attr_group.attrs = NULL;
1630 kfree(iio_dev_opaque->groups);
1631 iio_dev_opaque->groups = NULL;
1632 }
1633
iio_dev_release(struct device * device)1634 static void iio_dev_release(struct device *device)
1635 {
1636 struct iio_dev *indio_dev = dev_to_iio_dev(device);
1637 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1638
1639 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1640 iio_device_unregister_trigger_consumer(indio_dev);
1641 iio_device_unregister_eventset(indio_dev);
1642 iio_device_unregister_sysfs(indio_dev);
1643
1644 iio_device_detach_buffers(indio_dev);
1645
1646 lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1647
1648 ida_free(&iio_ida, iio_dev_opaque->id);
1649 kfree(iio_dev_opaque);
1650 }
1651
1652 const struct device_type iio_device_type = {
1653 .name = "iio_device",
1654 .release = iio_dev_release,
1655 };
1656
1657 /**
1658 * iio_device_alloc() - allocate an iio_dev from a driver
1659 * @parent: Parent device.
1660 * @sizeof_priv: Space to allocate for private structure.
1661 *
1662 * Returns:
1663 * Pointer to allocated iio_dev on success, NULL on failure.
1664 */
iio_device_alloc(struct device * parent,int sizeof_priv)1665 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1666 {
1667 struct iio_dev_opaque *iio_dev_opaque;
1668 struct iio_dev *indio_dev;
1669 size_t alloc_size;
1670
1671 if (sizeof_priv)
1672 alloc_size = ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN) + sizeof_priv;
1673 else
1674 alloc_size = sizeof(*iio_dev_opaque);
1675
1676 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1677 if (!iio_dev_opaque)
1678 return NULL;
1679
1680 indio_dev = &iio_dev_opaque->indio_dev;
1681
1682 if (sizeof_priv)
1683 ACCESS_PRIVATE(indio_dev, priv) = (char *)iio_dev_opaque +
1684 ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN);
1685
1686 indio_dev->dev.parent = parent;
1687 indio_dev->dev.type = &iio_device_type;
1688 indio_dev->dev.bus = &iio_bus_type;
1689 device_initialize(&indio_dev->dev);
1690 mutex_init(&iio_dev_opaque->mlock);
1691 mutex_init(&iio_dev_opaque->info_exist_lock);
1692 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1693
1694 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1695 if (iio_dev_opaque->id < 0) {
1696 /* cannot use a dev_err as the name isn't available */
1697 pr_err("failed to get device id\n");
1698 kfree(iio_dev_opaque);
1699 return NULL;
1700 }
1701
1702 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1703 ida_free(&iio_ida, iio_dev_opaque->id);
1704 kfree(iio_dev_opaque);
1705 return NULL;
1706 }
1707
1708 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1709 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1710
1711 lockdep_register_key(&iio_dev_opaque->mlock_key);
1712 lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1713
1714 return indio_dev;
1715 }
1716 EXPORT_SYMBOL(iio_device_alloc);
1717
1718 /**
1719 * iio_device_free() - free an iio_dev from a driver
1720 * @dev: the iio_dev associated with the device
1721 */
iio_device_free(struct iio_dev * dev)1722 void iio_device_free(struct iio_dev *dev)
1723 {
1724 if (dev)
1725 put_device(&dev->dev);
1726 }
1727 EXPORT_SYMBOL(iio_device_free);
1728
devm_iio_device_release(void * iio_dev)1729 static void devm_iio_device_release(void *iio_dev)
1730 {
1731 iio_device_free(iio_dev);
1732 }
1733
1734 /**
1735 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1736 * @parent: Device to allocate iio_dev for, and parent for this IIO device
1737 * @sizeof_priv: Space to allocate for private structure.
1738 *
1739 * Managed iio_device_alloc. iio_dev allocated with this function is
1740 * automatically freed on driver detach.
1741 *
1742 * Returns:
1743 * Pointer to allocated iio_dev on success, NULL on failure.
1744 */
devm_iio_device_alloc(struct device * parent,int sizeof_priv)1745 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1746 {
1747 struct iio_dev *iio_dev;
1748 int ret;
1749
1750 iio_dev = iio_device_alloc(parent, sizeof_priv);
1751 if (!iio_dev)
1752 return NULL;
1753
1754 ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1755 iio_dev);
1756 if (ret)
1757 return NULL;
1758
1759 return iio_dev;
1760 }
1761 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1762
1763 /**
1764 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1765 * @inode: Inode structure for identifying the device in the file system
1766 * @filp: File structure for iio device used to keep and later access
1767 * private data
1768 *
1769 * Returns: 0 on success or -EBUSY if the device is already opened
1770 */
iio_chrdev_open(struct inode * inode,struct file * filp)1771 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1772 {
1773 struct iio_dev_opaque *iio_dev_opaque =
1774 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1775 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1776 struct iio_dev_buffer_pair *ib;
1777
1778 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1779 return -EBUSY;
1780
1781 iio_device_get(indio_dev);
1782
1783 ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1784 if (!ib) {
1785 iio_device_put(indio_dev);
1786 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1787 return -ENOMEM;
1788 }
1789
1790 ib->indio_dev = indio_dev;
1791 ib->buffer = indio_dev->buffer;
1792
1793 filp->private_data = ib;
1794
1795 return 0;
1796 }
1797
1798 /**
1799 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1800 * @inode: Inode structure pointer for the char device
1801 * @filp: File structure pointer for the char device
1802 *
1803 * Returns: 0 for successful release.
1804 */
iio_chrdev_release(struct inode * inode,struct file * filp)1805 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1806 {
1807 struct iio_dev_buffer_pair *ib = filp->private_data;
1808 struct iio_dev_opaque *iio_dev_opaque =
1809 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1810 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1811
1812 kfree(ib);
1813 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1814 iio_device_put(indio_dev);
1815
1816 return 0;
1817 }
1818
iio_device_ioctl_handler_register(struct iio_dev * indio_dev,struct iio_ioctl_handler * h)1819 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1820 struct iio_ioctl_handler *h)
1821 {
1822 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1823
1824 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1825 }
1826
iio_device_ioctl_handler_unregister(struct iio_ioctl_handler * h)1827 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1828 {
1829 list_del(&h->entry);
1830 }
1831
iio_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1832 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1833 {
1834 struct iio_dev_buffer_pair *ib = filp->private_data;
1835 struct iio_dev *indio_dev = ib->indio_dev;
1836 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1837 struct iio_ioctl_handler *h;
1838 int ret;
1839
1840 guard(mutex)(&iio_dev_opaque->info_exist_lock);
1841 /*
1842 * The NULL check here is required to prevent crashing when a device
1843 * is being removed while userspace would still have open file handles
1844 * to try to access this device.
1845 */
1846 if (!indio_dev->info)
1847 return -ENODEV;
1848
1849 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1850 ret = h->ioctl(indio_dev, filp, cmd, arg);
1851 if (ret != IIO_IOCTL_UNHANDLED)
1852 return ret;
1853 }
1854
1855 return -ENODEV;
1856 }
1857
1858 static const struct file_operations iio_buffer_fileops = {
1859 .owner = THIS_MODULE,
1860 .llseek = noop_llseek,
1861 .read = iio_buffer_read_outer_addr,
1862 .write = iio_buffer_write_outer_addr,
1863 .poll = iio_buffer_poll_addr,
1864 .unlocked_ioctl = iio_ioctl,
1865 .compat_ioctl = compat_ptr_ioctl,
1866 .open = iio_chrdev_open,
1867 .release = iio_chrdev_release,
1868 };
1869
1870 static const struct file_operations iio_event_fileops = {
1871 .owner = THIS_MODULE,
1872 .llseek = noop_llseek,
1873 .unlocked_ioctl = iio_ioctl,
1874 .compat_ioctl = compat_ptr_ioctl,
1875 .open = iio_chrdev_open,
1876 .release = iio_chrdev_release,
1877 };
1878
iio_check_unique_scan_index(struct iio_dev * indio_dev)1879 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1880 {
1881 int i, j;
1882 const struct iio_chan_spec *channels = indio_dev->channels;
1883
1884 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1885 return 0;
1886
1887 for (i = 0; i < indio_dev->num_channels - 1; i++) {
1888 if (channels[i].scan_index < 0)
1889 continue;
1890 for (j = i + 1; j < indio_dev->num_channels; j++)
1891 if (channels[i].scan_index == channels[j].scan_index) {
1892 dev_err(&indio_dev->dev,
1893 "Duplicate scan index %d\n",
1894 channels[i].scan_index);
1895 return -EINVAL;
1896 }
1897 }
1898
1899 return 0;
1900 }
1901
iio_check_extended_name(const struct iio_dev * indio_dev)1902 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1903 {
1904 unsigned int i;
1905
1906 if (!indio_dev->info->read_label)
1907 return 0;
1908
1909 for (i = 0; i < indio_dev->num_channels; i++) {
1910 if (indio_dev->channels[i].extend_name) {
1911 dev_err(&indio_dev->dev,
1912 "Cannot use labels and extend_name at the same time\n");
1913 return -EINVAL;
1914 }
1915 }
1916
1917 return 0;
1918 }
1919
1920 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1921
iio_sanity_check_avail_scan_masks(struct iio_dev * indio_dev)1922 static void iio_sanity_check_avail_scan_masks(struct iio_dev *indio_dev)
1923 {
1924 unsigned int num_masks, masklength, longs_per_mask;
1925 const unsigned long *av_masks;
1926 int i;
1927
1928 av_masks = indio_dev->available_scan_masks;
1929 masklength = iio_get_masklength(indio_dev);
1930 longs_per_mask = BITS_TO_LONGS(masklength);
1931
1932 /*
1933 * The code determining how many available_scan_masks is in the array
1934 * will be assuming the end of masks when first long with all bits
1935 * zeroed is encountered. This is incorrect for masks where mask
1936 * consists of more than one long, and where some of the available masks
1937 * has long worth of bits zeroed (but has subsequent bit(s) set). This
1938 * is a safety measure against bug where array of masks is terminated by
1939 * a single zero while mask width is greater than width of a long.
1940 */
1941 if (longs_per_mask > 1)
1942 dev_warn(indio_dev->dev.parent,
1943 "multi long available scan masks not fully supported\n");
1944
1945 if (bitmap_empty(av_masks, masklength))
1946 dev_warn(indio_dev->dev.parent, "empty scan mask\n");
1947
1948 for (num_masks = 0; *av_masks; num_masks++)
1949 av_masks += longs_per_mask;
1950
1951 if (num_masks < 2)
1952 return;
1953
1954 av_masks = indio_dev->available_scan_masks;
1955
1956 /*
1957 * Go through all the masks from first to one before the last, and see
1958 * that no mask found later from the available_scan_masks array is a
1959 * subset of mask found earlier. If this happens, then the mask found
1960 * later will never get used because scanning the array is stopped when
1961 * the first suitable mask is found. Drivers should order the array of
1962 * available masks in the order of preference (presumably the least
1963 * costy to access masks first).
1964 */
1965 for (i = 0; i < num_masks - 1; i++) {
1966 const unsigned long *mask1;
1967 int j;
1968
1969 mask1 = av_masks + i * longs_per_mask;
1970 for (j = i + 1; j < num_masks; j++) {
1971 const unsigned long *mask2;
1972
1973 mask2 = av_masks + j * longs_per_mask;
1974 if (bitmap_subset(mask2, mask1, masklength))
1975 dev_warn(indio_dev->dev.parent,
1976 "available_scan_mask %d subset of %d. Never used\n",
1977 j, i);
1978 }
1979 }
1980 }
1981
1982 /**
1983 * iio_active_scan_mask_index - Get index of the active scan mask inside the
1984 * available scan masks array
1985 * @indio_dev: the IIO device containing the active and available scan masks
1986 *
1987 * Returns: the index or -EINVAL if active_scan_mask is not set
1988 */
iio_active_scan_mask_index(struct iio_dev * indio_dev)1989 int iio_active_scan_mask_index(struct iio_dev *indio_dev)
1990
1991 {
1992 const unsigned long *av_masks;
1993 unsigned int masklength = iio_get_masklength(indio_dev);
1994 int i = 0;
1995
1996 if (!indio_dev->active_scan_mask)
1997 return -EINVAL;
1998
1999 /*
2000 * As in iio_scan_mask_match and iio_sanity_check_avail_scan_masks,
2001 * the condition here do not handle multi-long masks correctly.
2002 * It only checks the first long to be zero, and will use such mask
2003 * as a terminator even if there was bits set after the first long.
2004 *
2005 * This should be fine since the available_scan_mask has already been
2006 * sanity tested using iio_sanity_check_avail_scan_masks.
2007 *
2008 * See iio_scan_mask_match and iio_sanity_check_avail_scan_masks for
2009 * more details
2010 */
2011 av_masks = indio_dev->available_scan_masks;
2012 while (*av_masks) {
2013 if (indio_dev->active_scan_mask == av_masks)
2014 return i;
2015 av_masks += BITS_TO_LONGS(masklength);
2016 i++;
2017 }
2018
2019 dev_warn(indio_dev->dev.parent,
2020 "active scan mask is not part of the available scan masks\n");
2021 return -EINVAL;
2022 }
2023 EXPORT_SYMBOL_GPL(iio_active_scan_mask_index);
2024
__iio_device_register(struct iio_dev * indio_dev,struct module * this_mod)2025 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
2026 {
2027 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2028 struct fwnode_handle *fwnode = NULL;
2029 int ret;
2030
2031 if (!indio_dev->info)
2032 return -EINVAL;
2033
2034 iio_dev_opaque->driver_module = this_mod;
2035
2036 /* If the calling driver did not initialize firmware node, do it here */
2037 if (dev_fwnode(&indio_dev->dev))
2038 fwnode = dev_fwnode(&indio_dev->dev);
2039 /* The default dummy IIO device has no parent */
2040 else if (indio_dev->dev.parent)
2041 fwnode = dev_fwnode(indio_dev->dev.parent);
2042 device_set_node(&indio_dev->dev, fwnode);
2043
2044 fwnode_property_read_string(fwnode, "label", &indio_dev->label);
2045
2046 ret = iio_check_unique_scan_index(indio_dev);
2047 if (ret < 0)
2048 return ret;
2049
2050 ret = iio_check_extended_name(indio_dev);
2051 if (ret < 0)
2052 return ret;
2053
2054 iio_device_register_debugfs(indio_dev);
2055
2056 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
2057 if (ret) {
2058 dev_err(indio_dev->dev.parent,
2059 "Failed to create buffer sysfs interfaces\n");
2060 goto error_unreg_debugfs;
2061 }
2062
2063 if (indio_dev->available_scan_masks)
2064 iio_sanity_check_avail_scan_masks(indio_dev);
2065
2066 ret = iio_device_register_sysfs(indio_dev);
2067 if (ret) {
2068 dev_err(indio_dev->dev.parent,
2069 "Failed to register sysfs interfaces\n");
2070 goto error_buffer_free_sysfs;
2071 }
2072 ret = iio_device_register_eventset(indio_dev);
2073 if (ret) {
2074 dev_err(indio_dev->dev.parent,
2075 "Failed to register event set\n");
2076 goto error_free_sysfs;
2077 }
2078 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
2079 iio_device_register_trigger_consumer(indio_dev);
2080
2081 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
2082 indio_dev->setup_ops == NULL)
2083 indio_dev->setup_ops = &noop_ring_setup_ops;
2084
2085 if (iio_dev_opaque->attached_buffers_cnt)
2086 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
2087 else if (iio_dev_opaque->event_interface)
2088 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
2089
2090 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
2091 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
2092 iio_dev_opaque->chrdev.owner = this_mod;
2093 }
2094
2095 /* assign device groups now; they should be all registered now */
2096 indio_dev->dev.groups = iio_dev_opaque->groups;
2097
2098 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
2099 if (ret < 0)
2100 goto error_unreg_eventset;
2101
2102 return 0;
2103
2104 error_unreg_eventset:
2105 iio_device_unregister_eventset(indio_dev);
2106 error_free_sysfs:
2107 iio_device_unregister_sysfs(indio_dev);
2108 error_buffer_free_sysfs:
2109 iio_buffers_free_sysfs_and_mask(indio_dev);
2110 error_unreg_debugfs:
2111 iio_device_unregister_debugfs(indio_dev);
2112 return ret;
2113 }
2114 EXPORT_SYMBOL(__iio_device_register);
2115
2116 /**
2117 * iio_device_unregister() - unregister a device from the IIO subsystem
2118 * @indio_dev: Device structure representing the device.
2119 */
iio_device_unregister(struct iio_dev * indio_dev)2120 void iio_device_unregister(struct iio_dev *indio_dev)
2121 {
2122 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2123
2124 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2125
2126 scoped_guard(mutex, &iio_dev_opaque->info_exist_lock) {
2127 iio_device_unregister_debugfs(indio_dev);
2128
2129 iio_disable_all_buffers(indio_dev);
2130
2131 indio_dev->info = NULL;
2132
2133 iio_device_wakeup_eventset(indio_dev);
2134 iio_buffer_wakeup_poll(indio_dev);
2135 }
2136
2137 iio_buffers_free_sysfs_and_mask(indio_dev);
2138 }
2139 EXPORT_SYMBOL(iio_device_unregister);
2140
devm_iio_device_unreg(void * indio_dev)2141 static void devm_iio_device_unreg(void *indio_dev)
2142 {
2143 iio_device_unregister(indio_dev);
2144 }
2145
__devm_iio_device_register(struct device * dev,struct iio_dev * indio_dev,struct module * this_mod)2146 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2147 struct module *this_mod)
2148 {
2149 int ret;
2150
2151 ret = __iio_device_register(indio_dev, this_mod);
2152 if (ret)
2153 return ret;
2154
2155 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2156 }
2157 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2158
2159 /**
2160 * __iio_device_claim_direct - Keep device in direct mode
2161 * @indio_dev: the iio_dev associated with the device
2162 *
2163 * If the device is in direct mode it is guaranteed to stay
2164 * that way until __iio_device_release_direct() is called.
2165 *
2166 * Use with __iio_device_release_direct().
2167 *
2168 * Drivers should only call iio_device_claim_direct().
2169 *
2170 * Returns: true on success, false on failure.
2171 */
__iio_device_claim_direct(struct iio_dev * indio_dev)2172 bool __iio_device_claim_direct(struct iio_dev *indio_dev)
2173 {
2174 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2175
2176 mutex_lock(&iio_dev_opaque->mlock);
2177
2178 if (iio_buffer_enabled(indio_dev)) {
2179 mutex_unlock(&iio_dev_opaque->mlock);
2180 return false;
2181 }
2182 return true;
2183 }
2184 EXPORT_SYMBOL_GPL(__iio_device_claim_direct);
2185
2186 /**
2187 * __iio_device_release_direct - releases claim on direct mode
2188 * @indio_dev: the iio_dev associated with the device
2189 *
2190 * Release the claim. Device is no longer guaranteed to stay
2191 * in direct mode.
2192 *
2193 * Drivers should only call iio_device_release_direct().
2194 *
2195 * Use with __iio_device_claim_direct()
2196 */
__iio_device_release_direct(struct iio_dev * indio_dev)2197 void __iio_device_release_direct(struct iio_dev *indio_dev)
2198 {
2199 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2200 }
2201 EXPORT_SYMBOL_GPL(__iio_device_release_direct);
2202
2203 /**
2204 * iio_device_claim_buffer_mode - Keep device in buffer mode
2205 * @indio_dev: the iio_dev associated with the device
2206 *
2207 * If the device is in buffer mode it is guaranteed to stay
2208 * that way until iio_device_release_buffer_mode() is called.
2209 *
2210 * Use with iio_device_release_buffer_mode().
2211 *
2212 * Returns: 0 on success, -EBUSY on failure.
2213 */
iio_device_claim_buffer_mode(struct iio_dev * indio_dev)2214 int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2215 {
2216 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2217
2218 mutex_lock(&iio_dev_opaque->mlock);
2219
2220 if (iio_buffer_enabled(indio_dev))
2221 return 0;
2222
2223 mutex_unlock(&iio_dev_opaque->mlock);
2224 return -EBUSY;
2225 }
2226 EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2227
2228 /**
2229 * iio_device_release_buffer_mode - releases claim on buffer mode
2230 * @indio_dev: the iio_dev associated with the device
2231 *
2232 * Release the claim. Device is no longer guaranteed to stay
2233 * in buffer mode.
2234 *
2235 * Use with iio_device_claim_buffer_mode().
2236 */
iio_device_release_buffer_mode(struct iio_dev * indio_dev)2237 void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2238 {
2239 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2240 }
2241 EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2242
2243 /**
2244 * iio_device_get_current_mode() - helper function providing read-only access to
2245 * the opaque @currentmode variable
2246 * @indio_dev: IIO device structure for device
2247 */
iio_device_get_current_mode(struct iio_dev * indio_dev)2248 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2249 {
2250 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2251
2252 return iio_dev_opaque->currentmode;
2253 }
2254 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2255
2256 subsys_initcall(iio_init);
2257 module_exit(iio_exit);
2258
2259 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2260 MODULE_DESCRIPTION("Industrial I/O core");
2261 MODULE_LICENSE("GPL");
2262