1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2021-2024 Rubicon Communications, LLC (Netgate)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "if_igc.h"
32 #include <sys/sbuf.h>
33 #include <machine/_inttypes.h>
34
35 #include <net/rss_config.h>
36 #include <netinet/in_rss.h>
37
38
39 /*********************************************************************
40 * PCI Device ID Table
41 *
42 * Used by probe to select devices to load on
43 * Last entry must be all 0s
44 *
45 * { Vendor ID, Device ID, String }
46 *********************************************************************/
47
48 static const pci_vendor_info_t igc_vendor_info_array[] =
49 {
50 /* Intel(R) PRO/1000 Network Connection - igc */
51 PVID(0x8086, IGC_DEV_ID_I225_LM,
52 "Intel(R) Ethernet Controller I225-LM"),
53 PVID(0x8086, IGC_DEV_ID_I225_V,
54 "Intel(R) Ethernet Controller I225-V"),
55 PVID(0x8086, IGC_DEV_ID_I225_K,
56 "Intel(R) Ethernet Controller I225-K"),
57 PVID(0x8086, IGC_DEV_ID_I225_I,
58 "Intel(R) Ethernet Controller I225-IT"),
59 PVID(0x8086, IGC_DEV_ID_I220_V,
60 "Intel(R) Ethernet Controller I220-V"),
61 PVID(0x8086, IGC_DEV_ID_I225_K2,
62 "Intel(R) Ethernet Controller I225-K(2)"),
63 PVID(0x8086, IGC_DEV_ID_I225_LMVP,
64 "Intel(R) Ethernet Controller I225-LMvP(2)"),
65 PVID(0x8086, IGC_DEV_ID_I226_K,
66 "Intel(R) Ethernet Controller I226-K"),
67 PVID(0x8086, IGC_DEV_ID_I226_LMVP,
68 "Intel(R) Ethernet Controller I226-LMvP"),
69 PVID(0x8086, IGC_DEV_ID_I225_IT,
70 "Intel(R) Ethernet Controller I225-IT(2)"),
71 PVID(0x8086, IGC_DEV_ID_I226_LM,
72 "Intel(R) Ethernet Controller I226-LM"),
73 PVID(0x8086, IGC_DEV_ID_I226_V,
74 "Intel(R) Ethernet Controller I226-V"),
75 PVID(0x8086, IGC_DEV_ID_I226_IT,
76 "Intel(R) Ethernet Controller I226-IT"),
77 PVID(0x8086, IGC_DEV_ID_I221_V,
78 "Intel(R) Ethernet Controller I221-V"),
79 PVID(0x8086, IGC_DEV_ID_I226_BLANK_NVM,
80 "Intel(R) Ethernet Controller I226(blankNVM)"),
81 PVID(0x8086, IGC_DEV_ID_I225_BLANK_NVM,
82 "Intel(R) Ethernet Controller I225(blankNVM)"),
83 /* required last entry */
84 PVID_END
85 };
86
87 /*********************************************************************
88 * Function prototypes
89 *********************************************************************/
90 static void *igc_register(device_t);
91 static int igc_if_attach_pre(if_ctx_t);
92 static int igc_if_attach_post(if_ctx_t);
93 static int igc_if_detach(if_ctx_t);
94 static int igc_if_shutdown(if_ctx_t);
95 static int igc_if_suspend(if_ctx_t);
96 static int igc_if_resume(if_ctx_t);
97
98 static int igc_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
99 int);
100 static int igc_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
101 int);
102 static void igc_if_queues_free(if_ctx_t);
103
104 static uint64_t igc_if_get_counter(if_ctx_t, ift_counter);
105 static void igc_if_init(if_ctx_t);
106 static void igc_if_stop(if_ctx_t);
107 static void igc_if_media_status(if_ctx_t, struct ifmediareq *);
108 static int igc_if_media_change(if_ctx_t);
109 static int igc_if_mtu_set(if_ctx_t, uint32_t);
110 static void igc_if_timer(if_ctx_t, uint16_t);
111 static void igc_if_watchdog_reset(if_ctx_t);
112 static bool igc_if_needs_restart(if_ctx_t, enum iflib_restart_event);
113
114 static void igc_identify_hardware(if_ctx_t);
115 static int igc_allocate_pci_resources(if_ctx_t);
116 static void igc_free_pci_resources(if_ctx_t);
117 static void igc_reset(if_ctx_t);
118 static int igc_setup_interface(if_ctx_t);
119 static int igc_setup_msix(if_ctx_t);
120
121 static void igc_initialize_transmit_unit(if_ctx_t);
122 static void igc_initialize_receive_unit(if_ctx_t);
123
124 static void igc_if_intr_enable(if_ctx_t);
125 static void igc_if_intr_disable(if_ctx_t);
126 static int igc_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
127 static int igc_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
128 static void igc_if_multi_set(if_ctx_t);
129 static void igc_if_update_admin_status(if_ctx_t);
130 static void igc_if_debug(if_ctx_t);
131 static void igc_update_stats_counters(struct igc_softc *);
132 static void igc_add_hw_stats(struct igc_softc *);
133 static int igc_if_set_promisc(if_ctx_t, int);
134 static void igc_setup_vlan_hw_support(if_ctx_t);
135 static void igc_fw_version(struct igc_softc *);
136 static void igc_sbuf_fw_version(struct igc_fw_version *, struct sbuf *);
137 static void igc_print_fw_version(struct igc_softc *);
138 static int igc_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
139 static int igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
140 static void igc_print_nvm_info(struct igc_softc *);
141 static int igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
142 static int igc_get_rs(SYSCTL_HANDLER_ARGS);
143 static void igc_print_debug_info(struct igc_softc *);
144 static int igc_is_valid_ether_addr(u8 *);
145 static void igc_neweitr(struct igc_softc *, struct igc_rx_queue *,
146 struct tx_ring *, struct rx_ring *);
147 static int igc_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
148 /* Management and WOL Support */
149 static void igc_get_hw_control(struct igc_softc *);
150 static void igc_release_hw_control(struct igc_softc *);
151 static void igc_get_wakeup(if_ctx_t);
152 static void igc_enable_wakeup(if_ctx_t);
153
154 int igc_intr(void *);
155
156 /* MSI-X handlers */
157 static int igc_if_msix_intr_assign(if_ctx_t, int);
158 static int igc_msix_link(void *);
159 static void igc_handle_link(void *context);
160
161 static int igc_set_flowcntl(SYSCTL_HANDLER_ARGS);
162 static int igc_sysctl_dmac(SYSCTL_HANDLER_ARGS);
163 static int igc_sysctl_eee(SYSCTL_HANDLER_ARGS);
164
165 static int igc_get_regs(SYSCTL_HANDLER_ARGS);
166
167 static void igc_configure_queues(struct igc_softc *);
168
169
170 /*********************************************************************
171 * FreeBSD Device Interface Entry Points
172 *********************************************************************/
173 static device_method_t igc_methods[] = {
174 /* Device interface */
175 DEVMETHOD(device_register, igc_register),
176 DEVMETHOD(device_probe, iflib_device_probe),
177 DEVMETHOD(device_attach, iflib_device_attach),
178 DEVMETHOD(device_detach, iflib_device_detach),
179 DEVMETHOD(device_shutdown, iflib_device_shutdown),
180 DEVMETHOD(device_suspend, iflib_device_suspend),
181 DEVMETHOD(device_resume, iflib_device_resume),
182 DEVMETHOD_END
183 };
184
185 static driver_t igc_driver = {
186 "igc", igc_methods, sizeof(struct igc_softc),
187 };
188
189 DRIVER_MODULE(igc, pci, igc_driver, 0, 0);
190
191 MODULE_DEPEND(igc, pci, 1, 1, 1);
192 MODULE_DEPEND(igc, ether, 1, 1, 1);
193 MODULE_DEPEND(igc, iflib, 1, 1, 1);
194
195 IFLIB_PNP_INFO(pci, igc, igc_vendor_info_array);
196
197 static device_method_t igc_if_methods[] = {
198 DEVMETHOD(ifdi_attach_pre, igc_if_attach_pre),
199 DEVMETHOD(ifdi_attach_post, igc_if_attach_post),
200 DEVMETHOD(ifdi_detach, igc_if_detach),
201 DEVMETHOD(ifdi_shutdown, igc_if_shutdown),
202 DEVMETHOD(ifdi_suspend, igc_if_suspend),
203 DEVMETHOD(ifdi_resume, igc_if_resume),
204 DEVMETHOD(ifdi_init, igc_if_init),
205 DEVMETHOD(ifdi_stop, igc_if_stop),
206 DEVMETHOD(ifdi_msix_intr_assign, igc_if_msix_intr_assign),
207 DEVMETHOD(ifdi_intr_enable, igc_if_intr_enable),
208 DEVMETHOD(ifdi_intr_disable, igc_if_intr_disable),
209 DEVMETHOD(ifdi_tx_queues_alloc, igc_if_tx_queues_alloc),
210 DEVMETHOD(ifdi_rx_queues_alloc, igc_if_rx_queues_alloc),
211 DEVMETHOD(ifdi_queues_free, igc_if_queues_free),
212 DEVMETHOD(ifdi_update_admin_status, igc_if_update_admin_status),
213 DEVMETHOD(ifdi_multi_set, igc_if_multi_set),
214 DEVMETHOD(ifdi_media_status, igc_if_media_status),
215 DEVMETHOD(ifdi_media_change, igc_if_media_change),
216 DEVMETHOD(ifdi_mtu_set, igc_if_mtu_set),
217 DEVMETHOD(ifdi_promisc_set, igc_if_set_promisc),
218 DEVMETHOD(ifdi_timer, igc_if_timer),
219 DEVMETHOD(ifdi_watchdog_reset, igc_if_watchdog_reset),
220 DEVMETHOD(ifdi_get_counter, igc_if_get_counter),
221 DEVMETHOD(ifdi_rx_queue_intr_enable, igc_if_rx_queue_intr_enable),
222 DEVMETHOD(ifdi_tx_queue_intr_enable, igc_if_tx_queue_intr_enable),
223 DEVMETHOD(ifdi_debug, igc_if_debug),
224 DEVMETHOD(ifdi_needs_restart, igc_if_needs_restart),
225 DEVMETHOD_END
226 };
227
228 static driver_t igc_if_driver = {
229 "igc_if", igc_if_methods, sizeof(struct igc_softc)
230 };
231
232 /*********************************************************************
233 * Tunable default values.
234 *********************************************************************/
235
236 /* Allow common code without TSO */
237 #ifndef CSUM_TSO
238 #define CSUM_TSO 0
239 #endif
240
241 static SYSCTL_NODE(_hw, OID_AUTO, igc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
242 "igc driver parameters");
243
244 static int igc_disable_crc_stripping = 0;
245 SYSCTL_INT(_hw_igc, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
246 &igc_disable_crc_stripping, 0, "Disable CRC Stripping");
247
248 static int igc_smart_pwr_down = false;
249 SYSCTL_INT(_hw_igc, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
250 &igc_smart_pwr_down,
251 0, "Set to true to leave smart power down enabled on newer adapters");
252
253 /* Controls whether promiscuous also shows bad packets */
254 static int igc_debug_sbp = false;
255 SYSCTL_INT(_hw_igc, OID_AUTO, sbp, CTLFLAG_RDTUN, &igc_debug_sbp, 0,
256 "Show bad packets in promiscuous mode");
257
258 /* Energy efficient ethernet - default to OFF */
259 static int igc_eee_setting = 1;
260 SYSCTL_INT(_hw_igc, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &igc_eee_setting, 0,
261 "Enable Energy Efficient Ethernet");
262
263 /*
264 * AIM: Adaptive Interrupt Moderation
265 * which means that the interrupt rate is varied over time based on the
266 * traffic for that interrupt vector
267 */
268 static int igc_enable_aim = 1;
269 SYSCTL_INT(_hw_igc, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &igc_enable_aim,
270 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
271
272 /*
273 ** Tuneable Interrupt rate
274 */
275 static int igc_max_interrupt_rate = IGC_INTS_DEFAULT;
276 SYSCTL_INT(_hw_igc, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
277 &igc_max_interrupt_rate, 0, "Maximum interrupts per second");
278
279 extern struct if_txrx igc_txrx;
280
281 static struct if_shared_ctx igc_sctx_init = {
282 .isc_magic = IFLIB_MAGIC,
283 .isc_q_align = PAGE_SIZE,
284 .isc_tx_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
285 .isc_tx_maxsegsize = PAGE_SIZE,
286 .isc_tso_maxsize = IGC_TSO_SIZE + sizeof(struct ether_vlan_header),
287 .isc_tso_maxsegsize = IGC_TSO_SEG_SIZE,
288 .isc_rx_maxsize = MAX_JUMBO_FRAME_SIZE,
289 .isc_rx_nsegments = 1,
290 .isc_rx_maxsegsize = MJUM9BYTES,
291 .isc_nfl = 1,
292 .isc_nrxqs = 1,
293 .isc_ntxqs = 1,
294 .isc_admin_intrcnt = 1,
295 .isc_vendor_info = igc_vendor_info_array,
296 .isc_driver_version = "1",
297 .isc_driver = &igc_if_driver,
298 .isc_flags =
299 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
300
301 .isc_nrxd_min = {IGC_MIN_RXD},
302 .isc_ntxd_min = {IGC_MIN_TXD},
303 .isc_nrxd_max = {IGC_MAX_RXD},
304 .isc_ntxd_max = {IGC_MAX_TXD},
305 .isc_nrxd_default = {IGC_DEFAULT_RXD},
306 .isc_ntxd_default = {IGC_DEFAULT_TXD},
307 };
308
309 /*****************************************************************
310 *
311 * Dump Registers
312 *
313 ****************************************************************/
314 #define IGC_REGS_LEN 739
315
igc_get_regs(SYSCTL_HANDLER_ARGS)316 static int igc_get_regs(SYSCTL_HANDLER_ARGS)
317 {
318 struct igc_softc *sc = (struct igc_softc *)arg1;
319 struct igc_hw *hw = &sc->hw;
320 struct sbuf *sb;
321 u32 *regs_buff;
322 int rc;
323
324 regs_buff = malloc(sizeof(u32) * IGC_REGS_LEN, M_DEVBUF, M_WAITOK);
325 memset(regs_buff, 0, IGC_REGS_LEN * sizeof(u32));
326
327 rc = sysctl_wire_old_buffer(req, 0);
328 MPASS(rc == 0);
329 if (rc != 0) {
330 free(regs_buff, M_DEVBUF);
331 return (rc);
332 }
333
334 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
335 MPASS(sb != NULL);
336 if (sb == NULL) {
337 free(regs_buff, M_DEVBUF);
338 return (ENOMEM);
339 }
340
341 /* General Registers */
342 regs_buff[0] = IGC_READ_REG(hw, IGC_CTRL);
343 regs_buff[1] = IGC_READ_REG(hw, IGC_STATUS);
344 regs_buff[2] = IGC_READ_REG(hw, IGC_CTRL_EXT);
345 regs_buff[3] = IGC_READ_REG(hw, IGC_ICR);
346 regs_buff[4] = IGC_READ_REG(hw, IGC_RCTL);
347 regs_buff[5] = IGC_READ_REG(hw, IGC_RDLEN(0));
348 regs_buff[6] = IGC_READ_REG(hw, IGC_RDH(0));
349 regs_buff[7] = IGC_READ_REG(hw, IGC_RDT(0));
350 regs_buff[8] = IGC_READ_REG(hw, IGC_RXDCTL(0));
351 regs_buff[9] = IGC_READ_REG(hw, IGC_RDBAL(0));
352 regs_buff[10] = IGC_READ_REG(hw, IGC_RDBAH(0));
353 regs_buff[11] = IGC_READ_REG(hw, IGC_TCTL);
354 regs_buff[12] = IGC_READ_REG(hw, IGC_TDBAL(0));
355 regs_buff[13] = IGC_READ_REG(hw, IGC_TDBAH(0));
356 regs_buff[14] = IGC_READ_REG(hw, IGC_TDLEN(0));
357 regs_buff[15] = IGC_READ_REG(hw, IGC_TDH(0));
358 regs_buff[16] = IGC_READ_REG(hw, IGC_TDT(0));
359 regs_buff[17] = IGC_READ_REG(hw, IGC_TXDCTL(0));
360
361 sbuf_printf(sb, "General Registers\n");
362 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
363 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
364 sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
365
366 sbuf_printf(sb, "Interrupt Registers\n");
367 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
368
369 sbuf_printf(sb, "RX Registers\n");
370 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
371 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
372 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
373 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
374 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
375 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
376 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
377
378 sbuf_printf(sb, "TX Registers\n");
379 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
380 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
381 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
382 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
383 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
384 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
385 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
386 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
387 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
388 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
389 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
390
391 free(regs_buff, M_DEVBUF);
392
393 #ifdef DUMP_DESCS
394 {
395 if_softc_ctx_t scctx = sc->shared;
396 struct rx_ring *rxr = &rx_que->rxr;
397 struct tx_ring *txr = &tx_que->txr;
398 int ntxd = scctx->isc_ntxd[0];
399 int nrxd = scctx->isc_nrxd[0];
400 int j;
401
402 for (j = 0; j < nrxd; j++) {
403 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
404 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
405 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
406 PRIx64 " Error:%d Length:%d\n",
407 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
408 }
409
410 for (j = 0; j < min(ntxd, 256); j++) {
411 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
412
413 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x"
414 "[3]: %08x eop: %d DD=%d\n",
415 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
416 buf->eop != -1 ?
417 txr->tx_base[buf->eop].upper.fields.status &
418 IGC_TXD_STAT_DD : 0);
419
420 }
421 }
422 #endif
423
424 rc = sbuf_finish(sb);
425 sbuf_delete(sb);
426 return(rc);
427 }
428
429 static void *
igc_register(device_t dev)430 igc_register(device_t dev)
431 {
432 return (&igc_sctx_init);
433 }
434
435 static int
igc_set_num_queues(if_ctx_t ctx)436 igc_set_num_queues(if_ctx_t ctx)
437 {
438 int maxqueues;
439
440 maxqueues = 4;
441
442 return (maxqueues);
443 }
444
445 #define IGC_CAPS \
446 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
447 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_TSO4 | IFCAP_LRO | \
448 IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | IFCAP_TSO6
449
450 /*********************************************************************
451 * Device initialization routine
452 *
453 * The attach entry point is called when the driver is being loaded.
454 * This routine identifies the type of hardware, allocates all resources
455 * and initializes the hardware.
456 *
457 * return 0 on success, positive on failure
458 *********************************************************************/
459 static int
igc_if_attach_pre(if_ctx_t ctx)460 igc_if_attach_pre(if_ctx_t ctx)
461 {
462 struct igc_softc *sc;
463 if_softc_ctx_t scctx;
464 device_t dev;
465 struct igc_hw *hw;
466 int error = 0;
467
468 INIT_DEBUGOUT("igc_if_attach_pre: begin");
469 dev = iflib_get_dev(ctx);
470 sc = iflib_get_softc(ctx);
471
472 sc->ctx = sc->osdep.ctx = ctx;
473 sc->dev = sc->osdep.dev = dev;
474 scctx = sc->shared = iflib_get_softc_ctx(ctx);
475 sc->media = iflib_get_media(ctx);
476 hw = &sc->hw;
477
478 /* SYSCTL stuff */
479 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
480 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
481 OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
482 sc, 0, igc_sysctl_nvm_info, "I", "NVM Information");
483
484 sc->enable_aim = igc_enable_aim;
485 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
486 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
487 OID_AUTO, "enable_aim", CTLFLAG_RW,
488 &sc->enable_aim, 0,
489 "Interrupt Moderation (1=normal, 2=lowlatency)");
490
491 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
492 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
493 OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD,
494 sc, 0, igc_sysctl_print_fw_version, "A",
495 "Prints FW/NVM Versions");
496
497 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
498 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
499 OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
500 sc, 0, igc_sysctl_debug_info, "I", "Debug Information");
501
502 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
503 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
504 OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
505 sc, 0, igc_set_flowcntl, "I", "Flow Control");
506
507 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
508 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
509 OID_AUTO, "reg_dump",
510 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
511 igc_get_regs, "A", "Dump Registers");
512
513 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
514 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
515 OID_AUTO, "rs_dump",
516 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
517 igc_get_rs, "I", "Dump RS indexes");
518
519 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
520 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
521 OID_AUTO, "dmac",
522 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
523 igc_sysctl_dmac, "I", "DMA Coalesce");
524
525 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
526 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
527 OID_AUTO, "tso_tcp_flags_mask_first_segment",
528 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
529 sc, 0, igc_sysctl_tso_tcp_flags_mask, "IU",
530 "TSO TCP flags mask for first segment");
531
532 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
533 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
534 OID_AUTO, "tso_tcp_flags_mask_middle_segment",
535 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
536 sc, 1, igc_sysctl_tso_tcp_flags_mask, "IU",
537 "TSO TCP flags mask for middle segment");
538
539 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
540 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
541 OID_AUTO, "tso_tcp_flags_mask_last_segment",
542 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
543 sc, 2, igc_sysctl_tso_tcp_flags_mask, "IU",
544 "TSO TCP flags mask for last segment");
545
546 /* Determine hardware and mac info */
547 igc_identify_hardware(ctx);
548
549 scctx->isc_tx_nsegments = IGC_MAX_SCATTER;
550 scctx->isc_nrxqsets_max =
551 scctx->isc_ntxqsets_max = igc_set_num_queues(ctx);
552 if (bootverbose)
553 device_printf(dev, "attach_pre capping queues at %d\n",
554 scctx->isc_ntxqsets_max);
555
556 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
557 sizeof(union igc_adv_tx_desc), IGC_DBA_ALIGN);
558 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
559 sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
560 scctx->isc_txd_size[0] = sizeof(union igc_adv_tx_desc);
561 scctx->isc_rxd_size[0] = sizeof(union igc_adv_rx_desc);
562 scctx->isc_txrx = &igc_txrx;
563 scctx->isc_tx_tso_segments_max = IGC_MAX_SCATTER;
564 scctx->isc_tx_tso_size_max = IGC_TSO_SIZE;
565 scctx->isc_tx_tso_segsize_max = IGC_TSO_SEG_SIZE;
566 scctx->isc_capabilities = scctx->isc_capenable = IGC_CAPS;
567 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
568 CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_SCTP | CSUM_IP6_SCTP;
569
570 /*
571 ** Some new devices, as with ixgbe, now may
572 ** use a different BAR, so we need to keep
573 ** track of which is used.
574 */
575 scctx->isc_msix_bar = PCIR_BAR(IGC_MSIX_BAR);
576 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
577 scctx->isc_msix_bar += 4;
578
579 /* Setup PCI resources */
580 if (igc_allocate_pci_resources(ctx)) {
581 device_printf(dev, "Allocation of PCI resources failed\n");
582 error = ENXIO;
583 goto err_pci;
584 }
585
586 /* Do Shared Code initialization */
587 error = igc_setup_init_funcs(hw, true);
588 if (error) {
589 device_printf(dev, "Setup of Shared code failed, error %d\n",
590 error);
591 error = ENXIO;
592 goto err_pci;
593 }
594
595 igc_setup_msix(ctx);
596 igc_get_bus_info(hw);
597
598 hw->mac.autoneg = DO_AUTO_NEG;
599 hw->phy.autoneg_wait_to_complete = false;
600 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
601
602 /* Copper options */
603 if (hw->phy.media_type == igc_media_type_copper) {
604 hw->phy.mdix = AUTO_ALL_MODES;
605 }
606
607 /*
608 * Set the frame limits assuming
609 * standard ethernet sized frames.
610 */
611 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
612 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
613
614 /* Allocate multicast array memory. */
615 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
616 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
617 if (sc->mta == NULL) {
618 device_printf(dev,
619 "Can not allocate multicast setup array\n");
620 error = ENOMEM;
621 goto err_late;
622 }
623
624 /* Check SOL/IDER usage */
625 if (igc_check_reset_block(hw))
626 device_printf(dev, "PHY reset is blocked"
627 " due to SOL/IDER session.\n");
628
629 /* Sysctl for setting Energy Efficient Ethernet */
630 sc->hw.dev_spec._i225.eee_disable = igc_eee_setting;
631 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
632 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
633 OID_AUTO, "eee_control",
634 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
635 sc, 0, igc_sysctl_eee, "I",
636 "Disable Energy Efficient Ethernet");
637
638 /*
639 ** Start from a known state, this is
640 ** important in reading the nvm and
641 ** mac from that.
642 */
643 igc_reset_hw(hw);
644
645 /* Make sure we have a good EEPROM before we read from it */
646 if (igc_validate_nvm_checksum(hw) < 0) {
647 /*
648 ** Some PCI-E parts fail the first check due to
649 ** the link being in sleep state, call it again,
650 ** if it fails a second time its a real issue.
651 */
652 if (igc_validate_nvm_checksum(hw) < 0) {
653 device_printf(dev,
654 "The EEPROM Checksum Is Not Valid\n");
655 error = EIO;
656 goto err_late;
657 }
658 }
659
660 /* Copy the permanent MAC address out of the EEPROM */
661 if (igc_read_mac_addr(hw) < 0) {
662 device_printf(dev, "EEPROM read error while reading MAC"
663 " address\n");
664 error = EIO;
665 goto err_late;
666 }
667
668 if (!igc_is_valid_ether_addr(hw->mac.addr)) {
669 device_printf(dev, "Invalid MAC address\n");
670 error = EIO;
671 goto err_late;
672 }
673
674 /* Save the EEPROM/NVM versions */
675 igc_fw_version(sc);
676
677 igc_print_fw_version(sc);
678
679 /*
680 * Get Wake-on-Lan and Management info for later use
681 */
682 igc_get_wakeup(ctx);
683
684 /* Enable only WOL MAGIC by default */
685 scctx->isc_capenable &= ~IFCAP_WOL;
686 if (sc->wol != 0)
687 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
688
689 iflib_set_mac(ctx, hw->mac.addr);
690
691 return (0);
692
693 err_late:
694 igc_release_hw_control(sc);
695 err_pci:
696 igc_free_pci_resources(ctx);
697 free(sc->mta, M_DEVBUF);
698
699 return (error);
700 }
701
702 static int
igc_if_attach_post(if_ctx_t ctx)703 igc_if_attach_post(if_ctx_t ctx)
704 {
705 struct igc_softc *sc = iflib_get_softc(ctx);
706 struct igc_hw *hw = &sc->hw;
707 int error = 0;
708
709 /* Setup OS specific network interface */
710 error = igc_setup_interface(ctx);
711 if (error != 0) {
712 goto err_late;
713 }
714
715 igc_reset(ctx);
716
717 /* Initialize statistics */
718 igc_update_stats_counters(sc);
719 hw->mac.get_link_status = true;
720 igc_if_update_admin_status(ctx);
721 igc_add_hw_stats(sc);
722
723 /* the driver can now take control from firmware */
724 igc_get_hw_control(sc);
725
726 INIT_DEBUGOUT("igc_if_attach_post: end");
727
728 return (error);
729
730 err_late:
731 igc_release_hw_control(sc);
732 igc_free_pci_resources(ctx);
733 igc_if_queues_free(ctx);
734 free(sc->mta, M_DEVBUF);
735
736 return (error);
737 }
738
739 /*********************************************************************
740 * Device removal routine
741 *
742 * The detach entry point is called when the driver is being removed.
743 * This routine stops the adapter and deallocates all the resources
744 * that were allocated for driver operation.
745 *
746 * return 0 on success, positive on failure
747 *********************************************************************/
748 static int
igc_if_detach(if_ctx_t ctx)749 igc_if_detach(if_ctx_t ctx)
750 {
751 struct igc_softc *sc = iflib_get_softc(ctx);
752
753 INIT_DEBUGOUT("igc_if_detach: begin");
754
755 igc_phy_hw_reset(&sc->hw);
756
757 igc_release_hw_control(sc);
758 igc_free_pci_resources(ctx);
759
760 return (0);
761 }
762
763 /*********************************************************************
764 *
765 * Shutdown entry point
766 *
767 **********************************************************************/
768
769 static int
igc_if_shutdown(if_ctx_t ctx)770 igc_if_shutdown(if_ctx_t ctx)
771 {
772 return igc_if_suspend(ctx);
773 }
774
775 /*
776 * Suspend/resume device methods.
777 */
778 static int
igc_if_suspend(if_ctx_t ctx)779 igc_if_suspend(if_ctx_t ctx)
780 {
781 struct igc_softc *sc = iflib_get_softc(ctx);
782
783 igc_release_hw_control(sc);
784 igc_enable_wakeup(ctx);
785 return (0);
786 }
787
788 static int
igc_if_resume(if_ctx_t ctx)789 igc_if_resume(if_ctx_t ctx)
790 {
791 igc_if_init(ctx);
792
793 return(0);
794 }
795
796 static int
igc_if_mtu_set(if_ctx_t ctx,uint32_t mtu)797 igc_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
798 {
799 int max_frame_size;
800 struct igc_softc *sc = iflib_get_softc(ctx);
801 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
802
803 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
804
805 /* 9K Jumbo Frame size */
806 max_frame_size = 9234;
807
808 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
809 return (EINVAL);
810 }
811
812 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
813 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
814 return (0);
815 }
816
817 /*********************************************************************
818 * Init entry point
819 *
820 * This routine is used in two ways. It is used by the stack as
821 * init entry point in network interface structure. It is also used
822 * by the driver as a hw/sw initialization routine to get to a
823 * consistent state.
824 *
825 **********************************************************************/
826 static void
igc_if_init(if_ctx_t ctx)827 igc_if_init(if_ctx_t ctx)
828 {
829 struct igc_softc *sc = iflib_get_softc(ctx);
830 if_softc_ctx_t scctx = sc->shared;
831 if_t ifp = iflib_get_ifp(ctx);
832 struct igc_tx_queue *tx_que;
833 int i;
834
835 INIT_DEBUGOUT("igc_if_init: begin");
836
837 /* Get the latest mac address, User can use a LAA */
838 bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
839 ETHER_ADDR_LEN);
840
841 /* Put the address into the Receive Address Array */
842 igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
843
844 /* Initialize the hardware */
845 igc_reset(ctx);
846 igc_if_update_admin_status(ctx);
847
848 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
849 i++, tx_que++) {
850 struct tx_ring *txr = &tx_que->txr;
851
852 txr->tx_rs_cidx = txr->tx_rs_pidx;
853
854 /* Initialize the last processed descriptor to be the end of
855 * the ring, rather than the start, so that we avoid an
856 * off-by-one error when calculating how many descriptors are
857 * done in the credits_update function.
858 */
859 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
860 }
861
862 /* Setup VLAN support, basic and offload if available */
863 IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
864
865 /* Prepare transmit descriptors and buffers */
866 igc_initialize_transmit_unit(ctx);
867
868 /* Setup Multicast table */
869 igc_if_multi_set(ctx);
870
871 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
872 igc_initialize_receive_unit(ctx);
873
874 /* Set up VLAN support */
875 igc_setup_vlan_hw_support(ctx);
876
877 /* Don't lose promiscuous settings */
878 igc_if_set_promisc(ctx, if_getflags(ifp));
879 igc_clear_hw_cntrs_base_generic(&sc->hw);
880
881 if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
882 igc_configure_queues(sc);
883
884 /* this clears any pending interrupts */
885 IGC_READ_REG(&sc->hw, IGC_ICR);
886 IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
887
888 /* the driver can now take control from firmware */
889 igc_get_hw_control(sc);
890
891 /* Set Energy Efficient Ethernet */
892 igc_set_eee_i225(&sc->hw, true, true, true);
893 }
894
895 enum eitr_latency_target {
896 eitr_latency_disabled = 0,
897 eitr_latency_lowest = 1,
898 eitr_latency_low = 2,
899 eitr_latency_bulk = 3
900 };
901 /*********************************************************************
902 *
903 * Helper to calculate next EITR value for AIM
904 *
905 *********************************************************************/
906 static void
igc_neweitr(struct igc_softc * sc,struct igc_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)907 igc_neweitr(struct igc_softc *sc, struct igc_rx_queue *que,
908 struct tx_ring *txr, struct rx_ring *rxr)
909 {
910 struct igc_hw *hw = &sc->hw;
911 unsigned long bytes, bytes_per_packet, packets;
912 unsigned long rxbytes, rxpackets, txbytes, txpackets;
913 u32 neweitr;
914 u8 nextlatency;
915
916 rxbytes = atomic_load_long(&rxr->rx_bytes);
917 txbytes = atomic_load_long(&txr->tx_bytes);
918
919 /* Idle, do nothing */
920 if (txbytes == 0 && rxbytes == 0)
921 return;
922
923 neweitr = 0;
924
925 if (sc->enable_aim) {
926 nextlatency = rxr->rx_nextlatency;
927
928 /* Use half default (4K) ITR if sub-gig */
929 if (sc->link_speed < 1000) {
930 neweitr = IGC_INTS_4K;
931 goto igc_set_next_eitr;
932 }
933 /* Want at least enough packet buffer for two frames to AIM */
934 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
935 neweitr = igc_max_interrupt_rate;
936 sc->enable_aim = 0;
937 goto igc_set_next_eitr;
938 }
939
940 bytes = bytes_per_packet = 0;
941 /* Get largest values from the associated tx and rx ring */
942 txpackets = atomic_load_long(&txr->tx_packets);
943 if (txpackets != 0) {
944 bytes = txbytes;
945 bytes_per_packet = txbytes / txpackets;
946 packets = txpackets;
947 }
948 rxpackets = atomic_load_long(&rxr->rx_packets);
949 if (rxpackets != 0) {
950 bytes = lmax(bytes, rxbytes);
951 bytes_per_packet =
952 lmax(bytes_per_packet, rxbytes / rxpackets);
953 packets = lmax(packets, rxpackets);
954 }
955
956 /* Latency state machine */
957 switch (nextlatency) {
958 case eitr_latency_disabled: /* Bootstrapping */
959 nextlatency = eitr_latency_low;
960 break;
961 case eitr_latency_lowest: /* 70k ints/s */
962 /* TSO and jumbo frames */
963 if (bytes_per_packet > 8000)
964 nextlatency = eitr_latency_bulk;
965 else if ((packets < 5) && (bytes > 512))
966 nextlatency = eitr_latency_low;
967 break;
968 case eitr_latency_low: /* 20k ints/s */
969 if (bytes > 10000) {
970 /* Handle TSO */
971 if (bytes_per_packet > 8000)
972 nextlatency = eitr_latency_bulk;
973 else if ((packets < 10) ||
974 (bytes_per_packet > 1200))
975 nextlatency = eitr_latency_bulk;
976 else if (packets > 35)
977 nextlatency = eitr_latency_lowest;
978 } else if (bytes_per_packet > 2000) {
979 nextlatency = eitr_latency_bulk;
980 } else if (packets < 3 && bytes < 512) {
981 nextlatency = eitr_latency_lowest;
982 }
983 break;
984 case eitr_latency_bulk: /* 4k ints/s */
985 if (bytes > 25000) {
986 if (packets > 35)
987 nextlatency = eitr_latency_low;
988 } else if (bytes < 1500)
989 nextlatency = eitr_latency_low;
990 break;
991 default:
992 nextlatency = eitr_latency_low;
993 device_printf(sc->dev,
994 "Unexpected neweitr transition %d\n",
995 nextlatency);
996 break;
997 }
998
999 /* Trim itr_latency_lowest for default AIM setting */
1000 if (sc->enable_aim == 1 && nextlatency == eitr_latency_lowest)
1001 nextlatency = eitr_latency_low;
1002
1003 /* Request new latency */
1004 rxr->rx_nextlatency = nextlatency;
1005 } else {
1006 /* We may have toggled to AIM disabled */
1007 nextlatency = eitr_latency_disabled;
1008 rxr->rx_nextlatency = nextlatency;
1009 }
1010
1011 /* ITR state machine */
1012 switch(nextlatency) {
1013 case eitr_latency_lowest:
1014 neweitr = IGC_INTS_70K;
1015 break;
1016 case eitr_latency_low:
1017 neweitr = IGC_INTS_20K;
1018 break;
1019 case eitr_latency_bulk:
1020 neweitr = IGC_INTS_4K;
1021 break;
1022 case eitr_latency_disabled:
1023 default:
1024 neweitr = igc_max_interrupt_rate;
1025 break;
1026 }
1027
1028 igc_set_next_eitr:
1029 neweitr = IGC_INTS_TO_EITR(neweitr);
1030
1031 neweitr |= IGC_EITR_CNT_IGNR;
1032
1033 if (neweitr != que->eitr_setting) {
1034 que->eitr_setting = neweitr;
1035 IGC_WRITE_REG(hw, IGC_EITR(que->msix), que->eitr_setting);
1036 }
1037 }
1038
1039 /*********************************************************************
1040 *
1041 * Fast Legacy/MSI Combined Interrupt Service routine
1042 *
1043 *********************************************************************/
1044 int
igc_intr(void * arg)1045 igc_intr(void *arg)
1046 {
1047 struct igc_softc *sc = arg;
1048 struct igc_hw *hw = &sc->hw;
1049 struct igc_rx_queue *que = &sc->rx_queues[0];
1050 struct tx_ring *txr = &sc->tx_queues[0].txr;
1051 struct rx_ring *rxr = &que->rxr;
1052 if_ctx_t ctx = sc->ctx;
1053 u32 reg_icr;
1054
1055 reg_icr = IGC_READ_REG(hw, IGC_ICR);
1056
1057 /* Hot eject? */
1058 if (reg_icr == 0xffffffff)
1059 return FILTER_STRAY;
1060
1061 /* Definitely not our interrupt. */
1062 if (reg_icr == 0x0)
1063 return FILTER_STRAY;
1064
1065 if ((reg_icr & IGC_ICR_INT_ASSERTED) == 0)
1066 return FILTER_STRAY;
1067
1068 /*
1069 * Only MSI-X interrupts have one-shot behavior by taking advantage
1070 * of the EIAC register. Thus, explicitly disable interrupts. This
1071 * also works around the MSI message reordering errata on certain
1072 * systems.
1073 */
1074 IFDI_INTR_DISABLE(ctx);
1075
1076 /* Link status change */
1077 if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC))
1078 igc_handle_link(ctx);
1079
1080 if (reg_icr & IGC_ICR_RXO)
1081 sc->rx_overruns++;
1082
1083 igc_neweitr(sc, que, txr, rxr);
1084
1085 /* Reset state */
1086 txr->tx_bytes = 0;
1087 txr->tx_packets = 0;
1088 rxr->rx_bytes = 0;
1089 rxr->rx_packets = 0;
1090
1091 return (FILTER_SCHEDULE_THREAD);
1092 }
1093
1094 static int
igc_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1095 igc_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1096 {
1097 struct igc_softc *sc = iflib_get_softc(ctx);
1098 struct igc_rx_queue *rxq = &sc->rx_queues[rxqid];
1099
1100 IGC_WRITE_REG(&sc->hw, IGC_EIMS, rxq->eims);
1101 return (0);
1102 }
1103
1104 static int
igc_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1105 igc_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1106 {
1107 struct igc_softc *sc = iflib_get_softc(ctx);
1108 struct igc_tx_queue *txq = &sc->tx_queues[txqid];
1109
1110 IGC_WRITE_REG(&sc->hw, IGC_EIMS, txq->eims);
1111 return (0);
1112 }
1113
1114 /*********************************************************************
1115 *
1116 * MSI-X RX Interrupt Service routine
1117 *
1118 **********************************************************************/
1119 static int
igc_msix_que(void * arg)1120 igc_msix_que(void *arg)
1121 {
1122 struct igc_rx_queue *que = arg;
1123 struct igc_softc *sc = que->sc;
1124 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1125 struct rx_ring *rxr = &que->rxr;
1126
1127 ++que->irqs;
1128
1129 igc_neweitr(sc, que, txr, rxr);
1130
1131 /* Reset state */
1132 txr->tx_bytes = 0;
1133 txr->tx_packets = 0;
1134 rxr->rx_bytes = 0;
1135 rxr->rx_packets = 0;
1136
1137 return (FILTER_SCHEDULE_THREAD);
1138 }
1139
1140 /*********************************************************************
1141 *
1142 * MSI-X Link Fast Interrupt Service routine
1143 *
1144 **********************************************************************/
1145 static int
igc_msix_link(void * arg)1146 igc_msix_link(void *arg)
1147 {
1148 struct igc_softc *sc = arg;
1149 u32 reg_icr;
1150
1151 ++sc->link_irq;
1152 MPASS(sc->hw.back != NULL);
1153 reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
1154
1155 if (reg_icr & IGC_ICR_RXO)
1156 sc->rx_overruns++;
1157
1158 if (reg_icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
1159 igc_handle_link(sc->ctx);
1160 }
1161
1162 IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
1163 IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->link_mask);
1164
1165 return (FILTER_HANDLED);
1166 }
1167
1168 static void
igc_handle_link(void * context)1169 igc_handle_link(void *context)
1170 {
1171 if_ctx_t ctx = context;
1172 struct igc_softc *sc = iflib_get_softc(ctx);
1173
1174 sc->hw.mac.get_link_status = true;
1175 iflib_admin_intr_deferred(ctx);
1176 }
1177
1178 /*********************************************************************
1179 *
1180 * Media Ioctl callback
1181 *
1182 * This routine is called whenever the user queries the status of
1183 * the interface using ifconfig.
1184 *
1185 **********************************************************************/
1186 static void
igc_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1187 igc_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1188 {
1189 struct igc_softc *sc = iflib_get_softc(ctx);
1190
1191 INIT_DEBUGOUT("igc_if_media_status: begin");
1192
1193 iflib_admin_intr_deferred(ctx);
1194
1195 ifmr->ifm_status = IFM_AVALID;
1196 ifmr->ifm_active = IFM_ETHER;
1197
1198 if (!sc->link_active) {
1199 return;
1200 }
1201
1202 ifmr->ifm_status |= IFM_ACTIVE;
1203
1204 switch (sc->link_speed) {
1205 case 10:
1206 ifmr->ifm_active |= IFM_10_T;
1207 break;
1208 case 100:
1209 ifmr->ifm_active |= IFM_100_TX;
1210 break;
1211 case 1000:
1212 ifmr->ifm_active |= IFM_1000_T;
1213 break;
1214 case 2500:
1215 ifmr->ifm_active |= IFM_2500_T;
1216 break;
1217 }
1218
1219 if (sc->link_duplex == FULL_DUPLEX)
1220 ifmr->ifm_active |= IFM_FDX;
1221 else
1222 ifmr->ifm_active |= IFM_HDX;
1223 }
1224
1225 /*********************************************************************
1226 *
1227 * Media Ioctl callback
1228 *
1229 * This routine is called when the user changes speed/duplex using
1230 * media/mediopt option with ifconfig.
1231 *
1232 **********************************************************************/
1233 static int
igc_if_media_change(if_ctx_t ctx)1234 igc_if_media_change(if_ctx_t ctx)
1235 {
1236 struct igc_softc *sc = iflib_get_softc(ctx);
1237 struct ifmedia *ifm = iflib_get_media(ctx);
1238
1239 INIT_DEBUGOUT("igc_if_media_change: begin");
1240
1241 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1242 return (EINVAL);
1243
1244 sc->hw.mac.autoneg = DO_AUTO_NEG;
1245
1246 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1247 case IFM_AUTO:
1248 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1249 break;
1250 case IFM_2500_T:
1251 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
1252 break;
1253 case IFM_1000_T:
1254 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1255 break;
1256 case IFM_100_TX:
1257 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1258 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1259 else
1260 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1261 break;
1262 case IFM_10_T:
1263 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1264 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1265 else
1266 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1267 break;
1268 default:
1269 device_printf(sc->dev, "Unsupported media type\n");
1270 }
1271
1272 igc_if_init(ctx);
1273
1274 return (0);
1275 }
1276
1277 static int
igc_if_set_promisc(if_ctx_t ctx,int flags)1278 igc_if_set_promisc(if_ctx_t ctx, int flags)
1279 {
1280 struct igc_softc *sc = iflib_get_softc(ctx);
1281 if_t ifp = iflib_get_ifp(ctx);
1282 u32 reg_rctl;
1283 int mcnt = 0;
1284
1285 reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1286 reg_rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_UPE);
1287 if (flags & IFF_ALLMULTI)
1288 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1289 else
1290 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1291
1292 /* Don't disable if in MAX groups */
1293 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1294 reg_rctl &= (~IGC_RCTL_MPE);
1295 IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1296
1297 if (flags & IFF_PROMISC) {
1298 reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
1299 /* Turn this on if you want to see bad packets */
1300 if (igc_debug_sbp)
1301 reg_rctl |= IGC_RCTL_SBP;
1302 IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1303 } else if (flags & IFF_ALLMULTI) {
1304 reg_rctl |= IGC_RCTL_MPE;
1305 reg_rctl &= ~IGC_RCTL_UPE;
1306 IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1307 }
1308 return (0);
1309 }
1310
1311 static u_int
igc_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)1312 igc_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1313 {
1314 u8 *mta = arg;
1315
1316 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1317 return (0);
1318
1319 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1320
1321 return (1);
1322 }
1323
1324 /*********************************************************************
1325 * Multicast Update
1326 *
1327 * This routine is called whenever multicast address list is updated.
1328 *
1329 **********************************************************************/
1330
1331 static void
igc_if_multi_set(if_ctx_t ctx)1332 igc_if_multi_set(if_ctx_t ctx)
1333 {
1334 struct igc_softc *sc = iflib_get_softc(ctx);
1335 if_t ifp = iflib_get_ifp(ctx);
1336 u8 *mta; /* Multicast array memory */
1337 u32 reg_rctl = 0;
1338 int mcnt = 0;
1339
1340 IOCTL_DEBUGOUT("igc_set_multi: begin");
1341
1342 mta = sc->mta;
1343 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1344
1345 mcnt = if_foreach_llmaddr(ifp, igc_copy_maddr, mta);
1346
1347 reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1348
1349 if (if_getflags(ifp) & IFF_PROMISC) {
1350 reg_rctl |= (IGC_RCTL_UPE | IGC_RCTL_MPE);
1351 /* Turn this on if you want to see bad packets */
1352 if (igc_debug_sbp)
1353 reg_rctl |= IGC_RCTL_SBP;
1354 } else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1355 if_getflags(ifp) & IFF_ALLMULTI) {
1356 reg_rctl |= IGC_RCTL_MPE;
1357 reg_rctl &= ~IGC_RCTL_UPE;
1358 } else
1359 reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
1360
1361 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1362 igc_update_mc_addr_list(&sc->hw, mta, mcnt);
1363
1364 IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1365 }
1366
1367 /*********************************************************************
1368 * Timer routine
1369 *
1370 * This routine schedules igc_if_update_admin_status() to check for
1371 * link status and to gather statistics as well as to perform some
1372 * controller-specific hardware patting.
1373 *
1374 **********************************************************************/
1375 static void
igc_if_timer(if_ctx_t ctx,uint16_t qid)1376 igc_if_timer(if_ctx_t ctx, uint16_t qid)
1377 {
1378
1379 if (qid != 0)
1380 return;
1381
1382 iflib_admin_intr_deferred(ctx);
1383 }
1384
1385 static void
igc_if_update_admin_status(if_ctx_t ctx)1386 igc_if_update_admin_status(if_ctx_t ctx)
1387 {
1388 struct igc_softc *sc = iflib_get_softc(ctx);
1389 struct igc_hw *hw = &sc->hw;
1390 device_t dev = iflib_get_dev(ctx);
1391 u32 link_check, thstat, ctrl;
1392
1393 link_check = thstat = ctrl = 0;
1394 /* Get the cached link value or read phy for real */
1395 switch (hw->phy.media_type) {
1396 case igc_media_type_copper:
1397 if (hw->mac.get_link_status == true) {
1398 /* Do the work to read phy */
1399 igc_check_for_link(hw);
1400 link_check = !hw->mac.get_link_status;
1401 } else
1402 link_check = true;
1403 break;
1404 case igc_media_type_unknown:
1405 igc_check_for_link(hw);
1406 link_check = !hw->mac.get_link_status;
1407 /* FALLTHROUGH */
1408 default:
1409 break;
1410 }
1411
1412 /* Now check for a transition */
1413 if (link_check && (sc->link_active == 0)) {
1414 igc_get_speed_and_duplex(hw, &sc->link_speed,
1415 &sc->link_duplex);
1416 if (bootverbose)
1417 device_printf(dev, "Link is up %d Mbps %s\n",
1418 sc->link_speed,
1419 ((sc->link_duplex == FULL_DUPLEX) ?
1420 "Full Duplex" : "Half Duplex"));
1421 sc->link_active = 1;
1422 iflib_link_state_change(ctx, LINK_STATE_UP,
1423 IF_Mbps(sc->link_speed));
1424 } else if (!link_check && (sc->link_active == 1)) {
1425 sc->link_speed = 0;
1426 sc->link_duplex = 0;
1427 sc->link_active = 0;
1428 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1429 }
1430 igc_update_stats_counters(sc);
1431 }
1432
1433 static void
igc_if_watchdog_reset(if_ctx_t ctx)1434 igc_if_watchdog_reset(if_ctx_t ctx)
1435 {
1436 struct igc_softc *sc = iflib_get_softc(ctx);
1437
1438 /*
1439 * Just count the event; iflib(4) will already trigger a
1440 * sufficient reset of the controller.
1441 */
1442 sc->watchdog_events++;
1443 }
1444
1445 /*********************************************************************
1446 *
1447 * This routine disables all traffic on the adapter by issuing a
1448 * global reset on the MAC.
1449 *
1450 **********************************************************************/
1451 static void
igc_if_stop(if_ctx_t ctx)1452 igc_if_stop(if_ctx_t ctx)
1453 {
1454 struct igc_softc *sc = iflib_get_softc(ctx);
1455
1456 INIT_DEBUGOUT("igc_if_stop: begin");
1457
1458 igc_reset_hw(&sc->hw);
1459 IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1460 }
1461
1462 /*********************************************************************
1463 *
1464 * Determine hardware revision.
1465 *
1466 **********************************************************************/
1467 static void
igc_identify_hardware(if_ctx_t ctx)1468 igc_identify_hardware(if_ctx_t ctx)
1469 {
1470 device_t dev = iflib_get_dev(ctx);
1471 struct igc_softc *sc = iflib_get_softc(ctx);
1472
1473 /* Make sure our PCI config space has the necessary stuff set */
1474 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1475
1476 /* Save off the information about this board */
1477 sc->hw.vendor_id = pci_get_vendor(dev);
1478 sc->hw.device_id = pci_get_device(dev);
1479 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1480 sc->hw.subsystem_vendor_id =
1481 pci_read_config(dev, PCIR_SUBVEND_0, 2);
1482 sc->hw.subsystem_device_id =
1483 pci_read_config(dev, PCIR_SUBDEV_0, 2);
1484
1485 /* Do Shared Code Init and Setup */
1486 if (igc_set_mac_type(&sc->hw)) {
1487 device_printf(dev, "Setup init failure\n");
1488 return;
1489 }
1490 }
1491
1492 static int
igc_allocate_pci_resources(if_ctx_t ctx)1493 igc_allocate_pci_resources(if_ctx_t ctx)
1494 {
1495 struct igc_softc *sc = iflib_get_softc(ctx);
1496 device_t dev = iflib_get_dev(ctx);
1497 int rid;
1498
1499 rid = PCIR_BAR(0);
1500 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1501 &rid, RF_ACTIVE);
1502 if (sc->memory == NULL) {
1503 device_printf(dev,
1504 "Unable to allocate bus resource: memory\n");
1505 return (ENXIO);
1506 }
1507 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
1508 sc->osdep.mem_bus_space_handle =
1509 rman_get_bushandle(sc->memory);
1510 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
1511
1512 sc->hw.back = &sc->osdep;
1513
1514 return (0);
1515 }
1516
1517 /*********************************************************************
1518 *
1519 * Set up the MSI-X Interrupt handlers
1520 *
1521 **********************************************************************/
1522 static int
igc_if_msix_intr_assign(if_ctx_t ctx,int msix)1523 igc_if_msix_intr_assign(if_ctx_t ctx, int msix)
1524 {
1525 struct igc_softc *sc = iflib_get_softc(ctx);
1526 struct igc_rx_queue *rx_que = sc->rx_queues;
1527 struct igc_tx_queue *tx_que = sc->tx_queues;
1528 int error, rid, i, vector = 0, rx_vectors;
1529 char buf[16];
1530
1531 /* First set up ring resources */
1532 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
1533 rid = vector + 1;
1534 snprintf(buf, sizeof(buf), "rxq%d", i);
1535 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
1536 IFLIB_INTR_RXTX, igc_msix_que, rx_que, rx_que->me, buf);
1537 if (error) {
1538 device_printf(iflib_get_dev(ctx),
1539 "Failed to allocate que int %d err: %d",
1540 i, error);
1541 sc->rx_num_queues = i + 1;
1542 goto fail;
1543 }
1544
1545 rx_que->msix = vector;
1546
1547 /*
1548 * Set the bit to enable interrupt
1549 * in IGC_IMS -- bits 20 and 21
1550 * are for RX0 and RX1, note this has
1551 * NOTHING to do with the MSI-X vector
1552 */
1553 rx_que->eims = 1 << vector;
1554 }
1555 rx_vectors = vector;
1556
1557 vector = 0;
1558 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
1559 snprintf(buf, sizeof(buf), "txq%d", i);
1560 tx_que = &sc->tx_queues[i];
1561 iflib_softirq_alloc_generic(ctx,
1562 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
1563 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1564
1565 tx_que->msix = (vector % sc->rx_num_queues);
1566
1567 /*
1568 * Set the bit to enable interrupt
1569 * in IGC_IMS -- bits 22 and 23
1570 * are for TX0 and TX1, note this has
1571 * NOTHING to do with the MSI-X vector
1572 */
1573 tx_que->eims = 1 << i;
1574 }
1575
1576 /* Link interrupt */
1577 rid = rx_vectors + 1;
1578 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
1579 igc_msix_link, sc, 0, "aq");
1580
1581 if (error) {
1582 device_printf(iflib_get_dev(ctx),
1583 "Failed to register admin handler");
1584 goto fail;
1585 }
1586 sc->linkvec = rx_vectors;
1587 return (0);
1588 fail:
1589 iflib_irq_free(ctx, &sc->irq);
1590 rx_que = sc->rx_queues;
1591 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
1592 iflib_irq_free(ctx, &rx_que->que_irq);
1593 return (error);
1594 }
1595
1596 static void
igc_configure_queues(struct igc_softc * sc)1597 igc_configure_queues(struct igc_softc *sc)
1598 {
1599 struct igc_hw *hw = &sc->hw;
1600 struct igc_rx_queue *rx_que;
1601 struct igc_tx_queue *tx_que;
1602 u32 ivar = 0, newitr = 0;
1603
1604 /* First turn on RSS capability */
1605 IGC_WRITE_REG(hw, IGC_GPIE,
1606 IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME | IGC_GPIE_PBA |
1607 IGC_GPIE_NSICR);
1608
1609 /* Turn on MSI-X */
1610 /* RX entries */
1611 for (int i = 0; i < sc->rx_num_queues; i++) {
1612 u32 index = i >> 1;
1613 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1614 rx_que = &sc->rx_queues[i];
1615 if (i & 1) {
1616 ivar &= 0xFF00FFFF;
1617 ivar |= (rx_que->msix | IGC_IVAR_VALID) << 16;
1618 } else {
1619 ivar &= 0xFFFFFF00;
1620 ivar |= rx_que->msix | IGC_IVAR_VALID;
1621 }
1622 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1623 }
1624 /* TX entries */
1625 for (int i = 0; i < sc->tx_num_queues; i++) {
1626 u32 index = i >> 1;
1627 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1628 tx_que = &sc->tx_queues[i];
1629 if (i & 1) {
1630 ivar &= 0x00FFFFFF;
1631 ivar |= (tx_que->msix | IGC_IVAR_VALID) << 24;
1632 } else {
1633 ivar &= 0xFFFF00FF;
1634 ivar |= (tx_que->msix | IGC_IVAR_VALID) << 8;
1635 }
1636 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1637 sc->que_mask |= tx_que->eims;
1638 }
1639
1640 /* And for the link interrupt */
1641 ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
1642 sc->link_mask = 1 << sc->linkvec;
1643 IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
1644
1645 /* Set the starting interrupt rate */
1646 if (igc_max_interrupt_rate > 0)
1647 newitr = IGC_INTS_TO_EITR(igc_max_interrupt_rate);
1648
1649 newitr |= IGC_EITR_CNT_IGNR;
1650
1651 for (int i = 0; i < sc->rx_num_queues; i++) {
1652 rx_que = &sc->rx_queues[i];
1653 IGC_WRITE_REG(hw, IGC_EITR(rx_que->msix), newitr);
1654 }
1655
1656 return;
1657 }
1658
1659 static void
igc_free_pci_resources(if_ctx_t ctx)1660 igc_free_pci_resources(if_ctx_t ctx)
1661 {
1662 struct igc_softc *sc = iflib_get_softc(ctx);
1663 struct igc_rx_queue *que = sc->rx_queues;
1664 device_t dev = iflib_get_dev(ctx);
1665
1666 /* Release all MSI-X queue resources */
1667 if (sc->intr_type == IFLIB_INTR_MSIX)
1668 iflib_irq_free(ctx, &sc->irq);
1669
1670 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
1671 iflib_irq_free(ctx, &que->que_irq);
1672 }
1673
1674 if (sc->memory != NULL) {
1675 bus_release_resource(dev, SYS_RES_MEMORY,
1676 rman_get_rid(sc->memory), sc->memory);
1677 sc->memory = NULL;
1678 }
1679
1680 if (sc->flash != NULL) {
1681 bus_release_resource(dev, SYS_RES_MEMORY,
1682 rman_get_rid(sc->flash), sc->flash);
1683 sc->flash = NULL;
1684 }
1685
1686 if (sc->ioport != NULL) {
1687 bus_release_resource(dev, SYS_RES_IOPORT,
1688 rman_get_rid(sc->ioport), sc->ioport);
1689 sc->ioport = NULL;
1690 }
1691 }
1692
1693 /* Set up MSI or MSI-X */
1694 static int
igc_setup_msix(if_ctx_t ctx)1695 igc_setup_msix(if_ctx_t ctx)
1696 {
1697 return (0);
1698 }
1699
1700 /*********************************************************************
1701 *
1702 * Initialize the DMA Coalescing feature
1703 *
1704 **********************************************************************/
1705 static void
igc_init_dmac(struct igc_softc * sc,u32 pba)1706 igc_init_dmac(struct igc_softc *sc, u32 pba)
1707 {
1708 device_t dev = sc->dev;
1709 struct igc_hw *hw = &sc->hw;
1710 u32 dmac, reg = ~IGC_DMACR_DMAC_EN;
1711 u16 hwm;
1712 u16 max_frame_size;
1713 int status;
1714
1715 max_frame_size = sc->shared->isc_max_frame_size;
1716
1717 if (sc->dmac == 0) { /* Disabling it */
1718 IGC_WRITE_REG(hw, IGC_DMACR, reg);
1719 return;
1720 } else
1721 device_printf(dev, "DMA Coalescing enabled\n");
1722
1723 /* Set starting threshold */
1724 IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
1725
1726 hwm = 64 * pba - max_frame_size / 16;
1727 if (hwm < 64 * (pba - 6))
1728 hwm = 64 * (pba - 6);
1729 reg = IGC_READ_REG(hw, IGC_FCRTC);
1730 reg &= ~IGC_FCRTC_RTH_COAL_MASK;
1731 reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
1732 & IGC_FCRTC_RTH_COAL_MASK);
1733 IGC_WRITE_REG(hw, IGC_FCRTC, reg);
1734
1735 dmac = pba - max_frame_size / 512;
1736 if (dmac < pba - 10)
1737 dmac = pba - 10;
1738 reg = IGC_READ_REG(hw, IGC_DMACR);
1739 reg &= ~IGC_DMACR_DMACTHR_MASK;
1740 reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
1741 & IGC_DMACR_DMACTHR_MASK);
1742
1743 /* transition to L0x or L1 if available..*/
1744 reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
1745
1746 /* Check if status is 2.5Gb backplane connection
1747 * before configuration of watchdog timer, which is
1748 * in msec values in 12.8usec intervals
1749 * watchdog timer= msec values in 32usec intervals
1750 * for non 2.5Gb connection
1751 */
1752 status = IGC_READ_REG(hw, IGC_STATUS);
1753 if ((status & IGC_STATUS_2P5_SKU) &&
1754 (!(status & IGC_STATUS_2P5_SKU_OVER)))
1755 reg |= ((sc->dmac * 5) >> 6);
1756 else
1757 reg |= (sc->dmac >> 5);
1758
1759 IGC_WRITE_REG(hw, IGC_DMACR, reg);
1760
1761 IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
1762
1763 /* Set the interval before transition */
1764 reg = IGC_READ_REG(hw, IGC_DMCTLX);
1765 reg |= IGC_DMCTLX_DCFLUSH_DIS;
1766
1767 /*
1768 ** in 2.5Gb connection, TTLX unit is 0.4 usec
1769 ** which is 0x4*2 = 0xA. But delay is still 4 usec
1770 */
1771 status = IGC_READ_REG(hw, IGC_STATUS);
1772 if ((status & IGC_STATUS_2P5_SKU) &&
1773 (!(status & IGC_STATUS_2P5_SKU_OVER)))
1774 reg |= 0xA;
1775 else
1776 reg |= 0x4;
1777
1778 IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
1779
1780 /* free space in tx packet buffer to wake from DMA coal */
1781 IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
1782 (2 * max_frame_size)) >> 6);
1783
1784 /* make low power state decision controlled by DMA coal */
1785 reg = IGC_READ_REG(hw, IGC_PCIEMISC);
1786 reg &= ~IGC_PCIEMISC_LX_DECISION;
1787 IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
1788 }
1789
1790 /*********************************************************************
1791 *
1792 * Initialize the hardware to a configuration as specified by the
1793 * softc structure.
1794 *
1795 **********************************************************************/
1796 static void
igc_reset(if_ctx_t ctx)1797 igc_reset(if_ctx_t ctx)
1798 {
1799 device_t dev = iflib_get_dev(ctx);
1800 struct igc_softc *sc = iflib_get_softc(ctx);
1801 struct igc_hw *hw = &sc->hw;
1802 u32 rx_buffer_size;
1803 u32 pba;
1804
1805 INIT_DEBUGOUT("igc_reset: begin");
1806 /* Let the firmware know the OS is in control */
1807 igc_get_hw_control(sc);
1808
1809 /*
1810 * Packet Buffer Allocation (PBA)
1811 * Writing PBA sets the receive portion of the buffer
1812 * the remainder is used for the transmit buffer.
1813 */
1814 pba = IGC_PBA_34K;
1815
1816 INIT_DEBUGOUT1("igc_reset: pba=%dK",pba);
1817
1818 /*
1819 * These parameters control the automatic generation (Tx) and
1820 * response (Rx) to Ethernet PAUSE frames.
1821 * - High water mark should allow for at least two frames to be
1822 * received after sending an XOFF.
1823 * - Low water mark works best when it is very near the high water
1824 * mark.
1825 * This allows the receiver to restart by sending XON when it has
1826 * drained a bit. Here we use an arbitrary value of 1500 which will
1827 * restart after one full frame is pulled from the buffer. There
1828 * could be several smaller frames in the buffer and if so they will
1829 * not trigger the XON until their total number reduces the buffer
1830 * by 1500.
1831 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1832 */
1833 rx_buffer_size = (pba & 0xffff) << 10;
1834 hw->fc.high_water = rx_buffer_size -
1835 roundup2(sc->hw.mac.max_frame_size, 1024);
1836 /* 16-byte granularity */
1837 hw->fc.low_water = hw->fc.high_water - 16;
1838
1839 if (sc->fc) /* locally set flow control value? */
1840 hw->fc.requested_mode = sc->fc;
1841 else
1842 hw->fc.requested_mode = igc_fc_full;
1843
1844 hw->fc.pause_time = IGC_FC_PAUSE_TIME;
1845
1846 hw->fc.send_xon = true;
1847
1848 /* Issue a global reset */
1849 igc_reset_hw(hw);
1850 IGC_WRITE_REG(hw, IGC_WUC, 0);
1851
1852 /* and a re-init */
1853 if (igc_init_hw(hw) < 0) {
1854 device_printf(dev, "Hardware Initialization Failed\n");
1855 return;
1856 }
1857
1858 /* Setup DMA Coalescing */
1859 igc_init_dmac(sc, pba);
1860
1861 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
1862 sc->pba = pba;
1863
1864 IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
1865 igc_get_phy_info(hw);
1866 igc_check_for_link(hw);
1867 }
1868
1869 /*
1870 * Initialise the RSS mapping for NICs that support multiple transmit/
1871 * receive rings.
1872 */
1873
1874 #define RSSKEYLEN 10
1875 static void
igc_initialize_rss_mapping(struct igc_softc * sc)1876 igc_initialize_rss_mapping(struct igc_softc *sc)
1877 {
1878 struct igc_hw *hw = &sc->hw;
1879 int i;
1880 int queue_id;
1881 u32 reta;
1882 u32 rss_key[RSSKEYLEN], mrqc, shift = 0;
1883
1884 /*
1885 * The redirection table controls which destination
1886 * queue each bucket redirects traffic to.
1887 * Each DWORD represents four queues, with the LSB
1888 * being the first queue in the DWORD.
1889 *
1890 * This just allocates buckets to queues using round-robin
1891 * allocation.
1892 *
1893 * NOTE: It Just Happens to line up with the default
1894 * RSS allocation method.
1895 */
1896
1897 /* Warning FM follows */
1898 reta = 0;
1899 for (i = 0; i < 128; i++) {
1900 #ifdef RSS
1901 queue_id = rss_get_indirection_to_bucket(i);
1902 /*
1903 * If we have more queues than buckets, we'll
1904 * end up mapping buckets to a subset of the
1905 * queues.
1906 *
1907 * If we have more buckets than queues, we'll
1908 * end up instead assigning multiple buckets
1909 * to queues.
1910 *
1911 * Both are suboptimal, but we need to handle
1912 * the case so we don't go out of bounds
1913 * indexing arrays and such.
1914 */
1915 queue_id = queue_id % sc->rx_num_queues;
1916 #else
1917 queue_id = (i % sc->rx_num_queues);
1918 #endif
1919 /* Adjust if required */
1920 queue_id = queue_id << shift;
1921
1922 /*
1923 * The low 8 bits are for hash value (n+0);
1924 * The next 8 bits are for hash value (n+1), etc.
1925 */
1926 reta = reta >> 8;
1927 reta = reta | ( ((uint32_t) queue_id) << 24);
1928 if ((i & 3) == 3) {
1929 IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
1930 reta = 0;
1931 }
1932 }
1933
1934 /* Now fill in hash table */
1935
1936 /*
1937 * MRQC: Multiple Receive Queues Command
1938 * Set queuing to RSS control, number depends on the device.
1939 */
1940 mrqc = IGC_MRQC_ENABLE_RSS_4Q;
1941
1942 /* XXX ew typecasting */
1943 rss_getkey((uint8_t *) &rss_key);
1944 for (i = 0; i < RSSKEYLEN; i++)
1945 IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
1946
1947 /*
1948 * Configure the RSS fields to hash upon.
1949 */
1950 mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 |
1951 IGC_MRQC_RSS_FIELD_IPV4_TCP);
1952 mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 |
1953 IGC_MRQC_RSS_FIELD_IPV6_TCP);
1954 mrqc |=( IGC_MRQC_RSS_FIELD_IPV4_UDP |
1955 IGC_MRQC_RSS_FIELD_IPV6_UDP);
1956 mrqc |=( IGC_MRQC_RSS_FIELD_IPV6_UDP_EX |
1957 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX);
1958
1959 IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
1960 }
1961
1962 /*********************************************************************
1963 *
1964 * Setup networking device structure and register interface media.
1965 *
1966 **********************************************************************/
1967 static int
igc_setup_interface(if_ctx_t ctx)1968 igc_setup_interface(if_ctx_t ctx)
1969 {
1970 if_t ifp = iflib_get_ifp(ctx);
1971 struct igc_softc *sc = iflib_get_softc(ctx);
1972 if_softc_ctx_t scctx = sc->shared;
1973
1974 INIT_DEBUGOUT("igc_setup_interface: begin");
1975
1976 /* Single Queue */
1977 if (sc->tx_num_queues == 1) {
1978 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
1979 if_setsendqready(ifp);
1980 }
1981
1982 /*
1983 * Specify the media types supported by this adapter and register
1984 * callbacks to update media and link information
1985 */
1986 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1987 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1988 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1989 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1990 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1991 ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
1992 ifmedia_add(sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
1993
1994 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1995 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
1996 return (0);
1997 }
1998
1999 static int
igc_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)2000 igc_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
2001 int ntxqs, int ntxqsets)
2002 {
2003 struct igc_softc *sc = iflib_get_softc(ctx);
2004 if_softc_ctx_t scctx = sc->shared;
2005 int error = IGC_SUCCESS;
2006 struct igc_tx_queue *que;
2007 int i, j;
2008
2009 MPASS(sc->tx_num_queues > 0);
2010 MPASS(sc->tx_num_queues == ntxqsets);
2011
2012 /* First allocate the top level queue structs */
2013 if (!(sc->tx_queues =
2014 (struct igc_tx_queue *) malloc(sizeof(struct igc_tx_queue) *
2015 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2016 device_printf(iflib_get_dev(ctx),
2017 "Unable to allocate queue memory\n");
2018 return(ENOMEM);
2019 }
2020
2021 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
2022 /* Set up some basics */
2023
2024 struct tx_ring *txr = &que->txr;
2025 txr->sc = que->sc = sc;
2026 que->me = txr->me = i;
2027
2028 /* Allocate report status array */
2029 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) *
2030 scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2031 device_printf(iflib_get_dev(ctx),
2032 "failed to allocate rs_idxs memory\n");
2033 error = ENOMEM;
2034 goto fail;
2035 }
2036 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2037 txr->tx_rsq[j] = QIDX_INVALID;
2038 /* get virtual and physical address of the hardware queues */
2039 txr->tx_base = (struct igc_tx_desc *)vaddrs[i*ntxqs];
2040 txr->tx_paddr = paddrs[i*ntxqs];
2041 }
2042
2043 if (bootverbose)
2044 device_printf(iflib_get_dev(ctx),
2045 "allocated for %d tx_queues\n", sc->tx_num_queues);
2046 return (0);
2047 fail:
2048 igc_if_queues_free(ctx);
2049 return (error);
2050 }
2051
2052 static int
igc_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)2053 igc_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
2054 int nrxqs, int nrxqsets)
2055 {
2056 struct igc_softc *sc = iflib_get_softc(ctx);
2057 int error = IGC_SUCCESS;
2058 struct igc_rx_queue *que;
2059 int i;
2060
2061 MPASS(sc->rx_num_queues > 0);
2062 MPASS(sc->rx_num_queues == nrxqsets);
2063
2064 /* First allocate the top level queue structs */
2065 if (!(sc->rx_queues =
2066 (struct igc_rx_queue *) malloc(sizeof(struct igc_rx_queue) *
2067 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2068 device_printf(iflib_get_dev(ctx),
2069 "Unable to allocate queue memory\n");
2070 error = ENOMEM;
2071 goto fail;
2072 }
2073
2074 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
2075 /* Set up some basics */
2076 struct rx_ring *rxr = &que->rxr;
2077 rxr->sc = que->sc = sc;
2078 rxr->que = que;
2079 que->me = rxr->me = i;
2080
2081 /* get virtual and physical address of the hardware queues */
2082 rxr->rx_base = (union igc_rx_desc_extended *)vaddrs[i*nrxqs];
2083 rxr->rx_paddr = paddrs[i*nrxqs];
2084 }
2085
2086 if (bootverbose)
2087 device_printf(iflib_get_dev(ctx),
2088 "allocated for %d rx_queues\n", sc->rx_num_queues);
2089
2090 return (0);
2091 fail:
2092 igc_if_queues_free(ctx);
2093 return (error);
2094 }
2095
2096 static void
igc_if_queues_free(if_ctx_t ctx)2097 igc_if_queues_free(if_ctx_t ctx)
2098 {
2099 struct igc_softc *sc = iflib_get_softc(ctx);
2100 struct igc_tx_queue *tx_que = sc->tx_queues;
2101 struct igc_rx_queue *rx_que = sc->rx_queues;
2102
2103 if (tx_que != NULL) {
2104 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
2105 struct tx_ring *txr = &tx_que->txr;
2106 if (txr->tx_rsq == NULL)
2107 break;
2108
2109 free(txr->tx_rsq, M_DEVBUF);
2110 txr->tx_rsq = NULL;
2111 }
2112 free(sc->tx_queues, M_DEVBUF);
2113 sc->tx_queues = NULL;
2114 }
2115
2116 if (rx_que != NULL) {
2117 free(sc->rx_queues, M_DEVBUF);
2118 sc->rx_queues = NULL;
2119 }
2120
2121 if (sc->mta != NULL) {
2122 free(sc->mta, M_DEVBUF);
2123 }
2124 }
2125
2126 /*********************************************************************
2127 *
2128 * Enable transmit unit.
2129 *
2130 **********************************************************************/
2131 static void
igc_initialize_transmit_unit(if_ctx_t ctx)2132 igc_initialize_transmit_unit(if_ctx_t ctx)
2133 {
2134 struct igc_softc *sc = iflib_get_softc(ctx);
2135 if_softc_ctx_t scctx = sc->shared;
2136 struct igc_tx_queue *que;
2137 struct tx_ring *txr;
2138 struct igc_hw *hw = &sc->hw;
2139 u32 tctl, txdctl = 0;
2140
2141 INIT_DEBUGOUT("igc_initialize_transmit_unit: begin");
2142
2143 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
2144 u64 bus_addr;
2145 caddr_t offp, endp;
2146
2147 que = &sc->tx_queues[i];
2148 txr = &que->txr;
2149 bus_addr = txr->tx_paddr;
2150
2151 /* Clear checksum offload context. */
2152 offp = (caddr_t)&txr->csum_flags;
2153 endp = (caddr_t)(txr + 1);
2154 bzero(offp, endp - offp);
2155
2156 /* Base and Len of TX Ring */
2157 IGC_WRITE_REG(hw, IGC_TDLEN(i),
2158 scctx->isc_ntxd[0] * sizeof(struct igc_tx_desc));
2159 IGC_WRITE_REG(hw, IGC_TDBAH(i),
2160 (u32)(bus_addr >> 32));
2161 IGC_WRITE_REG(hw, IGC_TDBAL(i),
2162 (u32)bus_addr);
2163 /* Init the HEAD/TAIL indices */
2164 IGC_WRITE_REG(hw, IGC_TDT(i), 0);
2165 IGC_WRITE_REG(hw, IGC_TDH(i), 0);
2166
2167 HW_DEBUGOUT2("Base = %x, Length = %x\n",
2168 IGC_READ_REG(&sc->hw, IGC_TDBAL(i)),
2169 IGC_READ_REG(&sc->hw, IGC_TDLEN(i)));
2170
2171 txdctl = 0; /* clear txdctl */
2172 txdctl |= 0x1f; /* PTHRESH */
2173 txdctl |= 1 << 8; /* HTHRESH */
2174 txdctl |= 1 << 16;/* WTHRESH */
2175 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2176 txdctl |= IGC_TXDCTL_GRAN;
2177 txdctl |= 1 << 25; /* LWTHRESH */
2178
2179 IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
2180 }
2181
2182 /* Program the Transmit Control Register */
2183 tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
2184 tctl &= ~IGC_TCTL_CT;
2185 tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
2186 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
2187
2188 /* This write will effectively turn on the transmit unit. */
2189 IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
2190 }
2191
2192 /*********************************************************************
2193 *
2194 * Enable receive unit.
2195 *
2196 **********************************************************************/
2197 #define BSIZEPKT_ROUNDUP ((1<<IGC_SRRCTL_BSIZEPKT_SHIFT)-1)
2198
2199 static void
igc_initialize_receive_unit(if_ctx_t ctx)2200 igc_initialize_receive_unit(if_ctx_t ctx)
2201 {
2202 struct igc_softc *sc = iflib_get_softc(ctx);
2203 if_softc_ctx_t scctx = sc->shared;
2204 if_t ifp = iflib_get_ifp(ctx);
2205 struct igc_hw *hw = &sc->hw;
2206 struct igc_rx_queue *que;
2207 int i;
2208 u32 psize, rctl, rxcsum, srrctl = 0;
2209
2210 INIT_DEBUGOUT("igc_initialize_receive_units: begin");
2211
2212 /*
2213 * Make sure receives are disabled while setting
2214 * up the descriptor ring
2215 */
2216 rctl = IGC_READ_REG(hw, IGC_RCTL);
2217 IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
2218
2219 /* Setup the Receive Control Register */
2220 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
2221 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM |
2222 IGC_RCTL_LBM_NO | IGC_RCTL_RDMTS_HALF |
2223 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
2224
2225 /* Do not store bad packets */
2226 rctl &= ~IGC_RCTL_SBP;
2227
2228 /* Enable Long Packet receive */
2229 if (if_getmtu(ifp) > ETHERMTU)
2230 rctl |= IGC_RCTL_LPE;
2231 else
2232 rctl &= ~IGC_RCTL_LPE;
2233
2234 /* Strip the CRC */
2235 if (!igc_disable_crc_stripping)
2236 rctl |= IGC_RCTL_SECRC;
2237
2238 rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
2239 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2240 rxcsum |= IGC_RXCSUM_CRCOFL;
2241 if (sc->tx_num_queues > 1)
2242 rxcsum |= IGC_RXCSUM_PCSD;
2243 else
2244 rxcsum |= IGC_RXCSUM_IPPCSE;
2245 } else {
2246 if (sc->tx_num_queues > 1)
2247 rxcsum |= IGC_RXCSUM_PCSD;
2248 else
2249 rxcsum &= ~IGC_RXCSUM_TUOFL;
2250 }
2251 IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
2252
2253 if (sc->rx_num_queues > 1)
2254 igc_initialize_rss_mapping(sc);
2255
2256 if (if_getmtu(ifp) > ETHERMTU) {
2257 psize = scctx->isc_max_frame_size;
2258 /* are we on a vlan? */
2259 if (if_vlantrunkinuse(ifp))
2260 psize += VLAN_TAG_SIZE;
2261 IGC_WRITE_REG(&sc->hw, IGC_RLPML, psize);
2262 }
2263
2264 /* Set maximum packet buffer len */
2265 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
2266 IGC_SRRCTL_BSIZEPKT_SHIFT;
2267 /* srrctl above overrides this but set the register to a sane value */
2268 rctl |= IGC_RCTL_SZ_2048;
2269
2270 /*
2271 * If TX flow control is disabled and there's >1 queue defined,
2272 * enable DROP.
2273 *
2274 * This drops frames rather than hanging the RX MAC for all queues.
2275 */
2276 if ((sc->rx_num_queues > 1) &&
2277 (sc->fc == igc_fc_none ||
2278 sc->fc == igc_fc_rx_pause)) {
2279 srrctl |= IGC_SRRCTL_DROP_EN;
2280 }
2281
2282 /* Setup the Base and Length of the Rx Descriptor Rings */
2283 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
2284 struct rx_ring *rxr = &que->rxr;
2285 u64 bus_addr = rxr->rx_paddr;
2286 u32 rxdctl;
2287
2288 #ifdef notyet
2289 /* Configure for header split? -- ignore for now */
2290 rxr->hdr_split = igc_header_split;
2291 #else
2292 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
2293 #endif
2294
2295 IGC_WRITE_REG(hw, IGC_RDLEN(i),
2296 scctx->isc_nrxd[0] * sizeof(struct igc_rx_desc));
2297 IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
2298 IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
2299 IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
2300 /* Setup the Head and Tail Descriptor Pointers */
2301 IGC_WRITE_REG(hw, IGC_RDH(i), 0);
2302 IGC_WRITE_REG(hw, IGC_RDT(i), 0);
2303 /* Enable this Queue */
2304 rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
2305 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
2306 rxdctl &= 0xFFF00000;
2307 rxdctl |= IGC_RX_PTHRESH;
2308 rxdctl |= IGC_RX_HTHRESH << 8;
2309 rxdctl |= IGC_RX_WTHRESH << 16;
2310 IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
2311 }
2312
2313 /* Make sure VLAN Filters are off */
2314 rctl &= ~IGC_RCTL_VFE;
2315
2316 /* Write out the settings */
2317 IGC_WRITE_REG(hw, IGC_RCTL, rctl);
2318
2319 return;
2320 }
2321
2322 static void
igc_setup_vlan_hw_support(if_ctx_t ctx)2323 igc_setup_vlan_hw_support(if_ctx_t ctx)
2324 {
2325 struct igc_softc *sc = iflib_get_softc(ctx);
2326 struct igc_hw *hw = &sc->hw;
2327 struct ifnet *ifp = iflib_get_ifp(ctx);
2328 u32 reg;
2329
2330 /* igc hardware doesn't seem to implement VFTA for HWFILTER */
2331
2332 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
2333 !igc_disable_crc_stripping) {
2334 reg = IGC_READ_REG(hw, IGC_CTRL);
2335 reg |= IGC_CTRL_VME;
2336 IGC_WRITE_REG(hw, IGC_CTRL, reg);
2337 } else {
2338 reg = IGC_READ_REG(hw, IGC_CTRL);
2339 reg &= ~IGC_CTRL_VME;
2340 IGC_WRITE_REG(hw, IGC_CTRL, reg);
2341 }
2342 }
2343
2344 static void
igc_if_intr_enable(if_ctx_t ctx)2345 igc_if_intr_enable(if_ctx_t ctx)
2346 {
2347 struct igc_softc *sc = iflib_get_softc(ctx);
2348 struct igc_hw *hw = &sc->hw;
2349 u32 mask;
2350
2351 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
2352 mask = (sc->que_mask | sc->link_mask);
2353 IGC_WRITE_REG(hw, IGC_EIAC, mask);
2354 IGC_WRITE_REG(hw, IGC_EIAM, mask);
2355 IGC_WRITE_REG(hw, IGC_EIMS, mask);
2356 IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2357 } else
2358 IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2359 IGC_WRITE_FLUSH(hw);
2360 }
2361
2362 static void
igc_if_intr_disable(if_ctx_t ctx)2363 igc_if_intr_disable(if_ctx_t ctx)
2364 {
2365 struct igc_softc *sc = iflib_get_softc(ctx);
2366 struct igc_hw *hw = &sc->hw;
2367
2368 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
2369 IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2370 IGC_WRITE_REG(hw, IGC_EIAC, 0);
2371 }
2372 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2373 IGC_WRITE_FLUSH(hw);
2374 }
2375
2376 /*
2377 * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
2378 * For ASF and Pass Through versions of f/w this means
2379 * that the driver is loaded. For AMT version type f/w
2380 * this means that the network i/f is open.
2381 */
2382 static void
igc_get_hw_control(struct igc_softc * sc)2383 igc_get_hw_control(struct igc_softc *sc)
2384 {
2385 u32 ctrl_ext;
2386
2387 if (sc->vf_ifp)
2388 return;
2389
2390 ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2391 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT,
2392 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
2393 }
2394
2395 /*
2396 * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2397 * For ASF and Pass Through versions of f/w this means that
2398 * the driver is no longer loaded. For AMT versions of the
2399 * f/w this means that the network i/f is closed.
2400 */
2401 static void
igc_release_hw_control(struct igc_softc * sc)2402 igc_release_hw_control(struct igc_softc *sc)
2403 {
2404 u32 ctrl_ext;
2405
2406 ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2407 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT,
2408 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
2409 return;
2410 }
2411
2412 static int
igc_is_valid_ether_addr(u8 * addr)2413 igc_is_valid_ether_addr(u8 *addr)
2414 {
2415 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2416
2417 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
2418 return (false);
2419 }
2420
2421 return (true);
2422 }
2423
2424 /*
2425 ** Parse the interface capabilities with regard
2426 ** to both system management and wake-on-lan for
2427 ** later use.
2428 */
2429 static void
igc_get_wakeup(if_ctx_t ctx)2430 igc_get_wakeup(if_ctx_t ctx)
2431 {
2432 struct igc_softc *sc = iflib_get_softc(ctx);
2433 u16 eeprom_data = 0, apme_mask;
2434
2435 apme_mask = IGC_WUC_APME;
2436 eeprom_data = IGC_READ_REG(&sc->hw, IGC_WUC);
2437
2438 if (eeprom_data & apme_mask)
2439 sc->wol = IGC_WUFC_LNKC;
2440 }
2441
2442
2443 /*
2444 * Enable PCI Wake On Lan capability
2445 */
2446 static void
igc_enable_wakeup(if_ctx_t ctx)2447 igc_enable_wakeup(if_ctx_t ctx)
2448 {
2449 struct igc_softc *sc = iflib_get_softc(ctx);
2450 device_t dev = iflib_get_dev(ctx);
2451 if_t ifp = iflib_get_ifp(ctx);
2452 int error = 0;
2453 u32 ctrl, rctl;
2454
2455 if (!pci_has_pm(dev))
2456 return;
2457
2458 /*
2459 * Determine type of Wakeup: note that wol
2460 * is set with all bits on by default.
2461 */
2462 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
2463 sc->wol &= ~IGC_WUFC_MAG;
2464
2465 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
2466 sc->wol &= ~IGC_WUFC_EX;
2467
2468 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
2469 sc->wol &= ~IGC_WUFC_MC;
2470 else {
2471 rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2472 rctl |= IGC_RCTL_MPE;
2473 IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2474 }
2475
2476 if (!(sc->wol & (IGC_WUFC_EX | IGC_WUFC_MAG | IGC_WUFC_MC)))
2477 goto pme;
2478
2479 /* Advertise the wakeup capability */
2480 ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
2481 ctrl |= IGC_CTRL_ADVD3WUC;
2482 IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
2483
2484 /* Enable wakeup by the MAC */
2485 IGC_WRITE_REG(&sc->hw, IGC_WUC, IGC_WUC_PME_EN);
2486 IGC_WRITE_REG(&sc->hw, IGC_WUFC, sc->wol);
2487
2488 pme:
2489 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
2490 pci_enable_pme(dev);
2491
2492 return;
2493 }
2494
2495 /**********************************************************************
2496 *
2497 * Update the board statistics counters.
2498 *
2499 **********************************************************************/
2500 static void
igc_update_stats_counters(struct igc_softc * sc)2501 igc_update_stats_counters(struct igc_softc *sc)
2502 {
2503 u64 prev_xoffrxc = sc->stats.xoffrxc;
2504
2505 sc->stats.crcerrs += IGC_READ_REG(&sc->hw, IGC_CRCERRS);
2506 sc->stats.mpc += IGC_READ_REG(&sc->hw, IGC_MPC);
2507 sc->stats.scc += IGC_READ_REG(&sc->hw, IGC_SCC);
2508 sc->stats.ecol += IGC_READ_REG(&sc->hw, IGC_ECOL);
2509
2510 sc->stats.mcc += IGC_READ_REG(&sc->hw, IGC_MCC);
2511 sc->stats.latecol += IGC_READ_REG(&sc->hw, IGC_LATECOL);
2512 sc->stats.colc += IGC_READ_REG(&sc->hw, IGC_COLC);
2513 sc->stats.colc += IGC_READ_REG(&sc->hw, IGC_RERC);
2514 sc->stats.dc += IGC_READ_REG(&sc->hw, IGC_DC);
2515 sc->stats.rlec += IGC_READ_REG(&sc->hw, IGC_RLEC);
2516 sc->stats.xonrxc += IGC_READ_REG(&sc->hw, IGC_XONRXC);
2517 sc->stats.xontxc += IGC_READ_REG(&sc->hw, IGC_XONTXC);
2518 sc->stats.xoffrxc += IGC_READ_REG(&sc->hw, IGC_XOFFRXC);
2519 /*
2520 * For watchdog management we need to know if we have been
2521 * paused during the last interval, so capture that here.
2522 */
2523 if (sc->stats.xoffrxc != prev_xoffrxc)
2524 sc->shared->isc_pause_frames = 1;
2525 sc->stats.xofftxc += IGC_READ_REG(&sc->hw, IGC_XOFFTXC);
2526 sc->stats.fcruc += IGC_READ_REG(&sc->hw, IGC_FCRUC);
2527 sc->stats.prc64 += IGC_READ_REG(&sc->hw, IGC_PRC64);
2528 sc->stats.prc127 += IGC_READ_REG(&sc->hw, IGC_PRC127);
2529 sc->stats.prc255 += IGC_READ_REG(&sc->hw, IGC_PRC255);
2530 sc->stats.prc511 += IGC_READ_REG(&sc->hw, IGC_PRC511);
2531 sc->stats.prc1023 += IGC_READ_REG(&sc->hw, IGC_PRC1023);
2532 sc->stats.prc1522 += IGC_READ_REG(&sc->hw, IGC_PRC1522);
2533 sc->stats.tlpic += IGC_READ_REG(&sc->hw, IGC_TLPIC);
2534 sc->stats.rlpic += IGC_READ_REG(&sc->hw, IGC_RLPIC);
2535 sc->stats.gprc += IGC_READ_REG(&sc->hw, IGC_GPRC);
2536 sc->stats.bprc += IGC_READ_REG(&sc->hw, IGC_BPRC);
2537 sc->stats.mprc += IGC_READ_REG(&sc->hw, IGC_MPRC);
2538 sc->stats.gptc += IGC_READ_REG(&sc->hw, IGC_GPTC);
2539
2540 /* For the 64-bit byte counters the low dword must be read first. */
2541 /* Both registers clear on the read of the high dword */
2542
2543 sc->stats.gorc += IGC_READ_REG(&sc->hw, IGC_GORCL) +
2544 ((u64)IGC_READ_REG(&sc->hw, IGC_GORCH) << 32);
2545 sc->stats.gotc += IGC_READ_REG(&sc->hw, IGC_GOTCL) +
2546 ((u64)IGC_READ_REG(&sc->hw, IGC_GOTCH) << 32);
2547
2548 sc->stats.rnbc += IGC_READ_REG(&sc->hw, IGC_RNBC);
2549 sc->stats.ruc += IGC_READ_REG(&sc->hw, IGC_RUC);
2550 sc->stats.rfc += IGC_READ_REG(&sc->hw, IGC_RFC);
2551 sc->stats.roc += IGC_READ_REG(&sc->hw, IGC_ROC);
2552 sc->stats.rjc += IGC_READ_REG(&sc->hw, IGC_RJC);
2553
2554 sc->stats.mgprc += IGC_READ_REG(&sc->hw, IGC_MGTPRC);
2555 sc->stats.mgpdc += IGC_READ_REG(&sc->hw, IGC_MGTPDC);
2556 sc->stats.mgptc += IGC_READ_REG(&sc->hw, IGC_MGTPTC);
2557
2558 sc->stats.tor += IGC_READ_REG(&sc->hw, IGC_TORH);
2559 sc->stats.tot += IGC_READ_REG(&sc->hw, IGC_TOTH);
2560
2561 sc->stats.tpr += IGC_READ_REG(&sc->hw, IGC_TPR);
2562 sc->stats.tpt += IGC_READ_REG(&sc->hw, IGC_TPT);
2563 sc->stats.ptc64 += IGC_READ_REG(&sc->hw, IGC_PTC64);
2564 sc->stats.ptc127 += IGC_READ_REG(&sc->hw, IGC_PTC127);
2565 sc->stats.ptc255 += IGC_READ_REG(&sc->hw, IGC_PTC255);
2566 sc->stats.ptc511 += IGC_READ_REG(&sc->hw, IGC_PTC511);
2567 sc->stats.ptc1023 += IGC_READ_REG(&sc->hw, IGC_PTC1023);
2568 sc->stats.ptc1522 += IGC_READ_REG(&sc->hw, IGC_PTC1522);
2569 sc->stats.mptc += IGC_READ_REG(&sc->hw, IGC_MPTC);
2570 sc->stats.bptc += IGC_READ_REG(&sc->hw, IGC_BPTC);
2571
2572 /* Interrupt Counts */
2573 sc->stats.iac += IGC_READ_REG(&sc->hw, IGC_IAC);
2574 sc->stats.rxdmtc += IGC_READ_REG(&sc->hw, IGC_RXDMTC);
2575
2576 sc->stats.algnerrc += IGC_READ_REG(&sc->hw, IGC_ALGNERRC);
2577 sc->stats.tncrs += IGC_READ_REG(&sc->hw, IGC_TNCRS);
2578 sc->stats.htdpmc += IGC_READ_REG(&sc->hw, IGC_HTDPMC);
2579 sc->stats.tsctc += IGC_READ_REG(&sc->hw, IGC_TSCTC);
2580 }
2581
2582 static uint64_t
igc_if_get_counter(if_ctx_t ctx,ift_counter cnt)2583 igc_if_get_counter(if_ctx_t ctx, ift_counter cnt)
2584 {
2585 struct igc_softc *sc = iflib_get_softc(ctx);
2586 if_t ifp = iflib_get_ifp(ctx);
2587
2588 switch (cnt) {
2589 case IFCOUNTER_COLLISIONS:
2590 return (sc->stats.colc);
2591 case IFCOUNTER_IERRORS:
2592 return (sc->dropped_pkts + sc->stats.rxerrc +
2593 sc->stats.crcerrs + sc->stats.algnerrc +
2594 sc->stats.ruc + sc->stats.roc +
2595 sc->stats.mpc + sc->stats.htdpmc);
2596 case IFCOUNTER_OERRORS:
2597 return (if_get_counter_default(ifp, cnt) +
2598 sc->stats.ecol + sc->stats.latecol + sc->watchdog_events);
2599 default:
2600 return (if_get_counter_default(ifp, cnt));
2601 }
2602 }
2603
2604 /* igc_if_needs_restart - Tell iflib when the driver needs to be reinitialized
2605 * @ctx: iflib context
2606 * @event: event code to check
2607 *
2608 * Defaults to returning false for unknown events.
2609 *
2610 * @returns true if iflib needs to reinit the interface
2611 */
2612 static bool
igc_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)2613 igc_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
2614 {
2615 switch (event) {
2616 case IFLIB_RESTART_VLAN_CONFIG:
2617 default:
2618 return (false);
2619 }
2620 }
2621
2622 /* Export a single 32-bit register via a read-only sysctl. */
2623 static int
igc_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)2624 igc_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
2625 {
2626 struct igc_softc *sc;
2627 u_int val;
2628
2629 sc = oidp->oid_arg1;
2630 val = IGC_READ_REG(&sc->hw, oidp->oid_arg2);
2631 return (sysctl_handle_int(oidp, &val, 0, req));
2632 }
2633
2634 /* Per queue holdoff interrupt rate handler */
2635 static int
igc_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)2636 igc_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
2637 {
2638 struct igc_rx_queue *rque;
2639 struct igc_tx_queue *tque;
2640 struct igc_hw *hw;
2641 int error;
2642 u32 reg, usec, rate;
2643
2644 bool tx = oidp->oid_arg2;
2645
2646 if (tx) {
2647 tque = oidp->oid_arg1;
2648 hw = &tque->sc->hw;
2649 reg = IGC_READ_REG(hw, IGC_EITR(tque->me));
2650 } else {
2651 rque = oidp->oid_arg1;
2652 hw = &rque->sc->hw;
2653 reg = IGC_READ_REG(hw, IGC_EITR(rque->msix));
2654 }
2655
2656 usec = (reg & IGC_QVECTOR_MASK);
2657 if (usec > 0)
2658 rate = IGC_INTS_TO_EITR(usec);
2659 else
2660 rate = 0;
2661
2662 error = sysctl_handle_int(oidp, &rate, 0, req);
2663 if (error || !req->newptr)
2664 return error;
2665 return 0;
2666 }
2667
2668 /*
2669 * Add sysctl variables, one per statistic, to the system.
2670 */
2671 static void
igc_add_hw_stats(struct igc_softc * sc)2672 igc_add_hw_stats(struct igc_softc *sc)
2673 {
2674 device_t dev = iflib_get_dev(sc->ctx);
2675 struct igc_tx_queue *tx_que = sc->tx_queues;
2676 struct igc_rx_queue *rx_que = sc->rx_queues;
2677
2678 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
2679 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
2680 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
2681 struct igc_hw_stats *stats = &sc->stats;
2682
2683 struct sysctl_oid *stat_node, *queue_node, *int_node;
2684 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
2685
2686 #define QUEUE_NAME_LEN 32
2687 char namebuf[QUEUE_NAME_LEN];
2688
2689 /* Driver Statistics */
2690 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
2691 CTLFLAG_RD, &sc->dropped_pkts,
2692 "Driver dropped packets");
2693 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
2694 CTLFLAG_RD, &sc->link_irq,
2695 "Link MSI-X IRQ Handled");
2696 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
2697 CTLFLAG_RD, &sc->rx_overruns,
2698 "RX overruns");
2699 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
2700 CTLFLAG_RD, &sc->watchdog_events,
2701 "Watchdog timeouts");
2702 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
2703 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2704 sc, IGC_CTRL, igc_sysctl_reg_handler, "IU",
2705 "Device Control Register");
2706 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
2707 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
2708 sc, IGC_RCTL, igc_sysctl_reg_handler, "IU",
2709 "Receiver Control Register");
2710 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
2711 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
2712 "Flow Control High Watermark");
2713 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
2714 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
2715 "Flow Control Low Watermark");
2716
2717 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
2718 struct tx_ring *txr = &tx_que->txr;
2719 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
2720 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
2721 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
2722 queue_list = SYSCTL_CHILDREN(queue_node);
2723
2724 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
2725 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
2726 true, igc_sysctl_interrupt_rate_handler, "IU",
2727 "Interrupt Rate");
2728 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
2729 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2730 IGC_TDH(txr->me), igc_sysctl_reg_handler, "IU",
2731 "Transmit Descriptor Head");
2732 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
2733 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2734 IGC_TDT(txr->me), igc_sysctl_reg_handler, "IU",
2735 "Transmit Descriptor Tail");
2736 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
2737 CTLFLAG_RD, &txr->tx_irq,
2738 "Queue MSI-X Transmit Interrupts");
2739 }
2740
2741 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
2742 struct rx_ring *rxr = &rx_que->rxr;
2743 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
2744 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
2745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
2746 queue_list = SYSCTL_CHILDREN(queue_node);
2747
2748 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
2749 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
2750 false, igc_sysctl_interrupt_rate_handler, "IU",
2751 "Interrupt Rate");
2752 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
2753 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2754 IGC_RDH(rxr->me), igc_sysctl_reg_handler, "IU",
2755 "Receive Descriptor Head");
2756 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
2757 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
2758 IGC_RDT(rxr->me), igc_sysctl_reg_handler, "IU",
2759 "Receive Descriptor Tail");
2760 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
2761 CTLFLAG_RD, &rxr->rx_irq,
2762 "Queue MSI-X Receive Interrupts");
2763 }
2764
2765 /* MAC stats get their own sub node */
2766 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
2767 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
2768 stat_list = SYSCTL_CHILDREN(stat_node);
2769
2770 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
2771 CTLFLAG_RD, &stats->ecol,
2772 "Excessive collisions");
2773 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
2774 CTLFLAG_RD, &stats->scc,
2775 "Single collisions");
2776 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
2777 CTLFLAG_RD, &stats->mcc,
2778 "Multiple collisions");
2779 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
2780 CTLFLAG_RD, &stats->latecol,
2781 "Late collisions");
2782 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
2783 CTLFLAG_RD, &stats->colc,
2784 "Collision Count");
2785 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
2786 CTLFLAG_RD, &sc->stats.symerrs,
2787 "Symbol Errors");
2788 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
2789 CTLFLAG_RD, &sc->stats.sec,
2790 "Sequence Errors");
2791 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
2792 CTLFLAG_RD, &sc->stats.dc,
2793 "Defer Count");
2794 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
2795 CTLFLAG_RD, &sc->stats.mpc,
2796 "Missed Packets");
2797 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
2798 CTLFLAG_RD, &sc->stats.rlec,
2799 "Receive Length Errors");
2800 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
2801 CTLFLAG_RD, &sc->stats.rnbc,
2802 "Receive No Buffers");
2803 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
2804 CTLFLAG_RD, &sc->stats.ruc,
2805 "Receive Undersize");
2806 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
2807 CTLFLAG_RD, &sc->stats.rfc,
2808 "Fragmented Packets Received ");
2809 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
2810 CTLFLAG_RD, &sc->stats.roc,
2811 "Oversized Packets Received");
2812 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
2813 CTLFLAG_RD, &sc->stats.rjc,
2814 "Received Jabber");
2815 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
2816 CTLFLAG_RD, &sc->stats.rxerrc,
2817 "Receive Errors");
2818 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
2819 CTLFLAG_RD, &sc->stats.crcerrs,
2820 "CRC errors");
2821 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
2822 CTLFLAG_RD, &sc->stats.algnerrc,
2823 "Alignment Errors");
2824 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
2825 CTLFLAG_RD, &sc->stats.xonrxc,
2826 "XON Received");
2827 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
2828 CTLFLAG_RD, &sc->stats.xontxc,
2829 "XON Transmitted");
2830 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
2831 CTLFLAG_RD, &sc->stats.xoffrxc,
2832 "XOFF Received");
2833 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
2834 CTLFLAG_RD, &sc->stats.xofftxc,
2835 "XOFF Transmitted");
2836 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
2837 CTLFLAG_RD, &sc->stats.fcruc,
2838 "Unsupported Flow Control Received");
2839 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
2840 CTLFLAG_RD, &sc->stats.mgprc,
2841 "Management Packets Received");
2842 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
2843 CTLFLAG_RD, &sc->stats.mgpdc,
2844 "Management Packets Dropped");
2845 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
2846 CTLFLAG_RD, &sc->stats.mgptc,
2847 "Management Packets Transmitted");
2848
2849 /* Packet Reception Stats */
2850 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
2851 CTLFLAG_RD, &sc->stats.tpr,
2852 "Total Packets Received ");
2853 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
2854 CTLFLAG_RD, &sc->stats.gprc,
2855 "Good Packets Received");
2856 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
2857 CTLFLAG_RD, &sc->stats.bprc,
2858 "Broadcast Packets Received");
2859 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
2860 CTLFLAG_RD, &sc->stats.mprc,
2861 "Multicast Packets Received");
2862 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
2863 CTLFLAG_RD, &sc->stats.prc64,
2864 "64 byte frames received ");
2865 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
2866 CTLFLAG_RD, &sc->stats.prc127,
2867 "65-127 byte frames received");
2868 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
2869 CTLFLAG_RD, &sc->stats.prc255,
2870 "128-255 byte frames received");
2871 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
2872 CTLFLAG_RD, &sc->stats.prc511,
2873 "256-511 byte frames received");
2874 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
2875 CTLFLAG_RD, &sc->stats.prc1023,
2876 "512-1023 byte frames received");
2877 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
2878 CTLFLAG_RD, &sc->stats.prc1522,
2879 "1023-1522 byte frames received");
2880 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
2881 CTLFLAG_RD, &sc->stats.gorc,
2882 "Good Octets Received");
2883
2884 /* Packet Transmission Stats */
2885 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
2886 CTLFLAG_RD, &sc->stats.gotc,
2887 "Good Octets Transmitted");
2888 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
2889 CTLFLAG_RD, &sc->stats.tpt,
2890 "Total Packets Transmitted");
2891 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
2892 CTLFLAG_RD, &sc->stats.gptc,
2893 "Good Packets Transmitted");
2894 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
2895 CTLFLAG_RD, &sc->stats.bptc,
2896 "Broadcast Packets Transmitted");
2897 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
2898 CTLFLAG_RD, &sc->stats.mptc,
2899 "Multicast Packets Transmitted");
2900 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
2901 CTLFLAG_RD, &sc->stats.ptc64,
2902 "64 byte frames transmitted ");
2903 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
2904 CTLFLAG_RD, &sc->stats.ptc127,
2905 "65-127 byte frames transmitted");
2906 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
2907 CTLFLAG_RD, &sc->stats.ptc255,
2908 "128-255 byte frames transmitted");
2909 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
2910 CTLFLAG_RD, &sc->stats.ptc511,
2911 "256-511 byte frames transmitted");
2912 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
2913 CTLFLAG_RD, &sc->stats.ptc1023,
2914 "512-1023 byte frames transmitted");
2915 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
2916 CTLFLAG_RD, &sc->stats.ptc1522,
2917 "1024-1522 byte frames transmitted");
2918 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
2919 CTLFLAG_RD, &sc->stats.tsctc,
2920 "TSO Contexts Transmitted");
2921
2922 /* Interrupt Stats */
2923 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
2924 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
2925 int_list = SYSCTL_CHILDREN(int_node);
2926
2927 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
2928 CTLFLAG_RD, &sc->stats.iac,
2929 "Interrupt Assertion Count");
2930
2931 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
2932 CTLFLAG_RD, &sc->stats.rxdmtc,
2933 "Rx Desc Min Thresh Count");
2934 }
2935
2936 static void
igc_fw_version(struct igc_softc * sc)2937 igc_fw_version(struct igc_softc *sc)
2938 {
2939 struct igc_hw *hw = &sc->hw;
2940 struct igc_fw_version *fw_ver = &sc->fw_ver;
2941
2942 *fw_ver = (struct igc_fw_version){0};
2943
2944 igc_get_fw_version(hw, fw_ver);
2945 }
2946
2947 static void
igc_sbuf_fw_version(struct igc_fw_version * fw_ver,struct sbuf * buf)2948 igc_sbuf_fw_version(struct igc_fw_version *fw_ver, struct sbuf *buf)
2949 {
2950 const char *space = "";
2951
2952 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
2953 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
2954 fw_ver->eep_minor, fw_ver->eep_build);
2955 space = " ";
2956 }
2957
2958 if (fw_ver->invm_major || fw_ver->invm_minor ||
2959 fw_ver->invm_img_type) {
2960 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
2961 space, fw_ver->invm_major, fw_ver->invm_minor,
2962 fw_ver->invm_img_type);
2963 space = " ";
2964 }
2965
2966 if (fw_ver->or_valid) {
2967 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
2968 space, fw_ver->or_major, fw_ver->or_build,
2969 fw_ver->or_patch);
2970 space = " ";
2971 }
2972
2973 if (fw_ver->etrack_id)
2974 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
2975 }
2976
2977 static void
igc_print_fw_version(struct igc_softc * sc)2978 igc_print_fw_version(struct igc_softc *sc )
2979 {
2980 device_t dev = sc->dev;
2981 struct sbuf *buf;
2982 int error = 0;
2983
2984 buf = sbuf_new_auto();
2985 if (!buf) {
2986 device_printf(dev, "Could not allocate sbuf for output.\n");
2987 return;
2988 }
2989
2990 igc_sbuf_fw_version(&sc->fw_ver, buf);
2991
2992 error = sbuf_finish(buf);
2993 if (error)
2994 device_printf(dev, "Error finishing sbuf: %d\n", error);
2995 else if (sbuf_len(buf))
2996 device_printf(dev, "%s\n", sbuf_data(buf));
2997
2998 sbuf_delete(buf);
2999 }
3000
3001 static int
igc_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)3002 igc_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
3003 {
3004 struct igc_softc *sc = (struct igc_softc *)arg1;
3005 device_t dev = sc->dev;
3006 struct sbuf *buf;
3007 int error = 0;
3008
3009 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
3010 if (!buf) {
3011 device_printf(dev, "Could not allocate sbuf for output.\n");
3012 return (ENOMEM);
3013 }
3014
3015 igc_sbuf_fw_version(&sc->fw_ver, buf);
3016
3017 error = sbuf_finish(buf);
3018 if (error)
3019 device_printf(dev, "Error finishing sbuf: %d\n", error);
3020
3021 sbuf_delete(buf);
3022
3023 return (0);
3024 }
3025
3026 /**********************************************************************
3027 *
3028 * This routine provides a way to dump out the adapter eeprom,
3029 * often a useful debug/service tool. This only dumps the first
3030 * 32 words, stuff that matters is in that extent.
3031 *
3032 **********************************************************************/
3033 static int
igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)3034 igc_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
3035 {
3036 struct igc_softc *sc = (struct igc_softc *)arg1;
3037 int error;
3038 int result;
3039
3040 result = -1;
3041 error = sysctl_handle_int(oidp, &result, 0, req);
3042
3043 if (error || !req->newptr)
3044 return (error);
3045
3046 /*
3047 * This value will cause a hex dump of the
3048 * first 32 16-bit words of the EEPROM to
3049 * the screen.
3050 */
3051 if (result == 1)
3052 igc_print_nvm_info(sc);
3053
3054 return (error);
3055 }
3056
3057 static void
igc_print_nvm_info(struct igc_softc * sc)3058 igc_print_nvm_info(struct igc_softc *sc)
3059 {
3060 u16 eeprom_data;
3061 int i, j, row = 0;
3062
3063 /* Its a bit crude, but it gets the job done */
3064 printf("\nInterface EEPROM Dump:\n");
3065 printf("Offset\n0x0000 ");
3066 for (i = 0, j = 0; i < 32; i++, j++) {
3067 if (j == 8) { /* Make the offset block */
3068 j = 0; ++row;
3069 printf("\n0x00%x0 ",row);
3070 }
3071 igc_read_nvm(&sc->hw, i, 1, &eeprom_data);
3072 printf("%04x ", eeprom_data);
3073 }
3074 printf("\n");
3075 }
3076
3077 static int
igc_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)3078 igc_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
3079 {
3080 struct igc_softc *sc;
3081 u32 reg, val, shift;
3082 int error, mask;
3083
3084 sc = oidp->oid_arg1;
3085 switch (oidp->oid_arg2) {
3086 case 0:
3087 reg = IGC_DTXTCPFLGL;
3088 shift = 0;
3089 break;
3090 case 1:
3091 reg = IGC_DTXTCPFLGL;
3092 shift = 16;
3093 break;
3094 case 2:
3095 reg = IGC_DTXTCPFLGH;
3096 shift = 0;
3097 break;
3098 default:
3099 return (EINVAL);
3100 break;
3101 }
3102 val = IGC_READ_REG(&sc->hw, reg);
3103 mask = (val >> shift) & 0xfff;
3104 error = sysctl_handle_int(oidp, &mask, 0, req);
3105 if (error != 0 || req->newptr == NULL)
3106 return (error);
3107 if (mask < 0 || mask > 0xfff)
3108 return (EINVAL);
3109 val = (val & ~(0xfff << shift)) | (mask << shift);
3110 IGC_WRITE_REG(&sc->hw, reg, val);
3111 return (0);
3112 }
3113
3114 /*
3115 * Set flow control using sysctl:
3116 * Flow control values:
3117 * 0 - off
3118 * 1 - rx pause
3119 * 2 - tx pause
3120 * 3 - full
3121 */
3122 static int
igc_set_flowcntl(SYSCTL_HANDLER_ARGS)3123 igc_set_flowcntl(SYSCTL_HANDLER_ARGS)
3124 {
3125 int error;
3126 static int input = 3; /* default is full */
3127 struct igc_softc *sc = (struct igc_softc *) arg1;
3128
3129 error = sysctl_handle_int(oidp, &input, 0, req);
3130
3131 if ((error) || (req->newptr == NULL))
3132 return (error);
3133
3134 if (input == sc->fc) /* no change? */
3135 return (error);
3136
3137 switch (input) {
3138 case igc_fc_rx_pause:
3139 case igc_fc_tx_pause:
3140 case igc_fc_full:
3141 case igc_fc_none:
3142 sc->hw.fc.requested_mode = input;
3143 sc->fc = input;
3144 break;
3145 default:
3146 /* Do nothing */
3147 return (error);
3148 }
3149
3150 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
3151 igc_force_mac_fc(&sc->hw);
3152 return (error);
3153 }
3154
3155 /*
3156 * Manage DMA Coalesce:
3157 * Control values:
3158 * 0/1 - off/on
3159 * Legal timer values are:
3160 * 250,500,1000-10000 in thousands
3161 */
3162 static int
igc_sysctl_dmac(SYSCTL_HANDLER_ARGS)3163 igc_sysctl_dmac(SYSCTL_HANDLER_ARGS)
3164 {
3165 struct igc_softc *sc = (struct igc_softc *) arg1;
3166 int error;
3167
3168 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
3169
3170 if ((error) || (req->newptr == NULL))
3171 return (error);
3172
3173 switch (sc->dmac) {
3174 case 0:
3175 /* Disabling */
3176 break;
3177 case 1: /* Just enable and use default */
3178 sc->dmac = 1000;
3179 break;
3180 case 250:
3181 case 500:
3182 case 1000:
3183 case 2000:
3184 case 3000:
3185 case 4000:
3186 case 5000:
3187 case 6000:
3188 case 7000:
3189 case 8000:
3190 case 9000:
3191 case 10000:
3192 /* Legal values - allow */
3193 break;
3194 default:
3195 /* Do nothing, illegal value */
3196 sc->dmac = 0;
3197 return (EINVAL);
3198 }
3199 /* Reinit the interface */
3200 igc_if_init(sc->ctx);
3201 return (error);
3202 }
3203
3204 /*
3205 * Manage Energy Efficient Ethernet:
3206 * Control values:
3207 * 0/1 - enabled/disabled
3208 */
3209 static int
igc_sysctl_eee(SYSCTL_HANDLER_ARGS)3210 igc_sysctl_eee(SYSCTL_HANDLER_ARGS)
3211 {
3212 struct igc_softc *sc = (struct igc_softc *) arg1;
3213 int error, value;
3214
3215 value = sc->hw.dev_spec._i225.eee_disable;
3216 error = sysctl_handle_int(oidp, &value, 0, req);
3217 if (error || req->newptr == NULL)
3218 return (error);
3219
3220 sc->hw.dev_spec._i225.eee_disable = (value != 0);
3221 igc_if_init(sc->ctx);
3222
3223 return (0);
3224 }
3225
3226 static int
igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS)3227 igc_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3228 {
3229 struct igc_softc *sc;
3230 int error;
3231 int result;
3232
3233 result = -1;
3234 error = sysctl_handle_int(oidp, &result, 0, req);
3235
3236 if (error || !req->newptr)
3237 return (error);
3238
3239 if (result == 1) {
3240 sc = (struct igc_softc *) arg1;
3241 igc_print_debug_info(sc);
3242 }
3243
3244 return (error);
3245 }
3246
3247 static int
igc_get_rs(SYSCTL_HANDLER_ARGS)3248 igc_get_rs(SYSCTL_HANDLER_ARGS)
3249 {
3250 struct igc_softc *sc = (struct igc_softc *) arg1;
3251 int error;
3252 int result;
3253
3254 result = 0;
3255 error = sysctl_handle_int(oidp, &result, 0, req);
3256
3257 if (error || !req->newptr || result != 1)
3258 return (error);
3259 igc_dump_rs(sc);
3260
3261 return (error);
3262 }
3263
3264 static void
igc_if_debug(if_ctx_t ctx)3265 igc_if_debug(if_ctx_t ctx)
3266 {
3267 igc_dump_rs(iflib_get_softc(ctx));
3268 }
3269
3270 /*
3271 * This routine is meant to be fluid, add whatever is
3272 * needed for debugging a problem. -jfv
3273 */
3274 static void
igc_print_debug_info(struct igc_softc * sc)3275 igc_print_debug_info(struct igc_softc *sc)
3276 {
3277 device_t dev = iflib_get_dev(sc->ctx);
3278 if_t ifp = iflib_get_ifp(sc->ctx);
3279 struct tx_ring *txr = &sc->tx_queues->txr;
3280 struct rx_ring *rxr = &sc->rx_queues->rxr;
3281
3282 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3283 printf("Interface is RUNNING ");
3284 else
3285 printf("Interface is NOT RUNNING\n");
3286
3287 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
3288 printf("and INACTIVE\n");
3289 else
3290 printf("and ACTIVE\n");
3291
3292 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3293 device_printf(dev, "TX Queue %d ------\n", i);
3294 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3295 IGC_READ_REG(&sc->hw, IGC_TDH(i)),
3296 IGC_READ_REG(&sc->hw, IGC_TDT(i)));
3297
3298 }
3299 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
3300 device_printf(dev, "RX Queue %d ------\n", j);
3301 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3302 IGC_READ_REG(&sc->hw, IGC_RDH(j)),
3303 IGC_READ_REG(&sc->hw, IGC_RDT(j)));
3304 }
3305 }
3306