xref: /freebsd/sys/dev/e1000/igb_txrx.c (revision e07b4a2e9bc4f6b2e129f3a101dfce2027694bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "if_em.h"
30 
31 #include <net/rss_config.h>
32 #include <netinet/in_rss.h>
33 
34 #ifdef VERBOSE_DEBUG
35 #define DPRINTF device_printf
36 #else
37 #define DPRINTF(...)
38 #endif
39 
40 /*********************************************************************
41  *  Local Function prototypes
42  *********************************************************************/
43 static int igb_isc_txd_encap(void *, if_pkt_info_t);
44 static void igb_isc_txd_flush(void *, uint16_t, qidx_t);
45 static int igb_isc_txd_credits_update(void *, uint16_t, bool);
46 
47 static void igb_isc_rxd_refill(void *, if_rxd_update_t);
48 
49 static void igb_isc_rxd_flush(void *, uint16_t, uint8_t, qidx_t);
50 static int igb_isc_rxd_available(void *, uint16_t, qidx_t, qidx_t);
51 
52 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
53 
54 static int igb_tx_ctx_setup(struct tx_ring *, if_pkt_info_t, uint32_t *,
55     uint32_t *);
56 static int igb_tso_setup(struct tx_ring *, if_pkt_info_t, uint32_t *,
57     uint32_t *);
58 
59 static void igb_rx_checksum(uint32_t, if_rxd_info_t, uint32_t);
60 static int igb_determine_rsstype(uint16_t);
61 
62 extern void igb_if_enable_intr(if_ctx_t);
63 extern int em_intr(void *);
64 
65 struct if_txrx igb_txrx = {
66 	.ift_txd_encap = igb_isc_txd_encap,
67 	.ift_txd_flush = igb_isc_txd_flush,
68 	.ift_txd_credits_update = igb_isc_txd_credits_update,
69 	.ift_rxd_available = igb_isc_rxd_available,
70 	.ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
71 	.ift_rxd_refill = igb_isc_rxd_refill,
72 	.ift_rxd_flush = igb_isc_rxd_flush,
73 	.ift_legacy_intr = em_intr
74 };
75 
76 /**********************************************************************
77  *
78  *  Setup work for hardware segmentation offload (TSO) on
79  *  adapters using advanced tx descriptors
80  *
81  **********************************************************************/
82 static int
igb_tso_setup(struct tx_ring * txr,if_pkt_info_t pi,uint32_t * cmd_type_len,uint32_t * olinfo_status)83 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
84     uint32_t *olinfo_status)
85 {
86 	struct e1000_adv_tx_context_desc *TXD;
87 	struct e1000_softc *sc = txr->sc;
88 	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
89 	uint32_t mss_l4len_idx = 0;
90 	uint32_t paylen;
91 
92 	switch(pi->ipi_etype) {
93 	case ETHERTYPE_IPV6:
94 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
95 		break;
96 	case ETHERTYPE_IP:
97 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
98 		/* Tell transmit desc to also do IPv4 checksum. */
99 		*olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
100 		break;
101 	default:
102 		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
103 		    __func__, ntohs(pi->ipi_etype));
104 		break;
105 	}
106 
107 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[pi->ipi_pidx];
108 
109 	/* This is used in the transmit desc in encap */
110 	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen -
111 	    pi->ipi_tcp_hlen;
112 
113 	/* VLAN MACLEN IPLEN */
114 	if (pi->ipi_mflags & M_VLANTAG) {
115 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
116 	}
117 
118 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
119 	vlan_macip_lens |= pi->ipi_ip_hlen;
120 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
121 
122 	/* ADV DTYPE TUCMD */
123 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
124 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
125 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
126 
127 	/* MSS L4LEN IDX */
128 	mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
129 	mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
130 	/* 82575 needs the queue index added */
131 	if (sc->hw.mac.type == e1000_82575)
132 		mss_l4len_idx |= txr->me << 4;
133 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
134 
135 	TXD->u.seqnum_seed = htole32(0);
136 	*cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
137 	*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
138 	*olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
139 
140 	return (1);
141 }
142 
143 /*********************************************************************
144  *
145  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
146  *
147  **********************************************************************/
148 static int
igb_tx_ctx_setup(struct tx_ring * txr,if_pkt_info_t pi,uint32_t * cmd_type_len,uint32_t * olinfo_status)149 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
150     uint32_t *cmd_type_len, uint32_t *olinfo_status)
151 {
152 	struct e1000_adv_tx_context_desc *TXD;
153 	struct e1000_softc *sc = txr->sc;
154 	uint32_t vlan_macip_lens, type_tucmd_mlhl;
155 	uint32_t mss_l4len_idx;
156 	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
157 
158 	/* First check if TSO is to be used */
159 	if (pi->ipi_csum_flags & CSUM_TSO)
160 		return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
161 
162 	/* Indicate the whole packet as payload when not doing TSO */
163 	*olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
164 
165 	/* Now ready a context descriptor */
166 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[pi->ipi_pidx];
167 
168 	/*
169 	** In advanced descriptors the vlan tag must
170 	** be placed into the context descriptor. Hence
171 	** we need to make one even if not doing offloads.
172 	*/
173 	if (pi->ipi_mflags & M_VLANTAG) {
174 		vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
175 	} else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
176 		return (0);
177 	}
178 
179 	/* Set the ether header length */
180 	vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
181 
182 	switch(pi->ipi_etype) {
183 	case ETHERTYPE_IP:
184 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
185 		break;
186 	case ETHERTYPE_IPV6:
187 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
188 		break;
189 	default:
190 		break;
191 	}
192 
193 	vlan_macip_lens |= pi->ipi_ip_hlen;
194 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
195 
196 	switch (pi->ipi_ipproto) {
197 	case IPPROTO_TCP:
198 		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
199 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
200 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
201 		}
202 		break;
203 	case IPPROTO_UDP:
204 		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
205 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
206 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
207 		}
208 		break;
209 	case IPPROTO_SCTP:
210 		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
211 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
212 			*olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
213 		}
214 		break;
215 	default:
216 		break;
217 	}
218 
219 	/* 82575 needs the queue index added */
220 	if (sc->hw.mac.type == e1000_82575)
221 		mss_l4len_idx = txr->me << 4;
222 
223 	/* Now copy bits into descriptor */
224 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
225 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
226 	TXD->u.seqnum_seed = htole32(0);
227 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
228 
229 	return (1);
230 }
231 
232 static int
igb_isc_txd_encap(void * arg,if_pkt_info_t pi)233 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
234 {
235 	struct e1000_softc *sc = arg;
236 	if_softc_ctx_t scctx = sc->shared;
237 	struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
238 	struct tx_ring *txr = &que->txr;
239 	int nsegs = pi->ipi_nsegs;
240 	bus_dma_segment_t *segs = pi->ipi_segs;
241 	union e1000_adv_tx_desc *txd = NULL;
242 	int i, j, pidx_last;
243 	uint32_t olinfo_status, cmd_type_len, txd_flags;
244 	qidx_t ntxd;
245 
246 	pidx_last = olinfo_status = 0;
247 	/* Basic descriptor defines */
248 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
249 	    E1000_ADVTXD_DCMD_DEXT);
250 
251 	if (pi->ipi_mflags & M_VLANTAG)
252 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
253 
254 	i = pi->ipi_pidx;
255 	ntxd = scctx->isc_ntxd[0];
256 	txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
257 	/* Consume the first descriptor */
258 	i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
259 	if (i == scctx->isc_ntxd[0])
260 		i = 0;
261 
262 	/* 82575 needs the queue index added */
263 	if (sc->hw.mac.type == e1000_82575)
264 		olinfo_status |= txr->me << 4;
265 
266 	for (j = 0; j < nsegs; j++) {
267 		bus_size_t seglen;
268 		bus_addr_t segaddr;
269 
270 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
271 		seglen = segs[j].ds_len;
272 		segaddr = htole64(segs[j].ds_addr);
273 
274 		txd->read.buffer_addr = segaddr;
275 		txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
276 		    cmd_type_len | seglen);
277 		txd->read.olinfo_status = htole32(olinfo_status);
278 		pidx_last = i;
279 		if (++i == scctx->isc_ntxd[0]) {
280 			i = 0;
281 		}
282 	}
283 	if (txd_flags) {
284 		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
285 		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
286 		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
287 	}
288 
289 	txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
290 	pi->ipi_new_pidx = i;
291 
292 	/* Sent data accounting for AIM */
293 	txr->tx_bytes += pi->ipi_len;
294 	++txr->tx_packets;
295 
296 	return (0);
297 }
298 
299 static void
igb_isc_txd_flush(void * arg,uint16_t txqid,qidx_t pidx)300 igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
301 {
302 	struct e1000_softc *sc = arg;
303 	struct em_tx_queue *que = &sc->tx_queues[txqid];
304 	struct tx_ring *txr = &que->txr;
305 
306 	E1000_WRITE_REG(&sc->hw, E1000_TDT(txr->me), pidx);
307 }
308 
309 static int
igb_isc_txd_credits_update(void * arg,uint16_t txqid,bool clear)310 igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
311 {
312 	struct e1000_softc *sc = arg;
313 	if_softc_ctx_t scctx = sc->shared;
314 	struct em_tx_queue *que = &sc->tx_queues[txqid];
315 	struct tx_ring *txr = &que->txr;
316 
317 	qidx_t processed = 0;
318 	int updated;
319 	qidx_t cur, prev, ntxd, rs_cidx;
320 	int32_t delta;
321 	uint8_t status;
322 
323 	rs_cidx = txr->tx_rs_cidx;
324 	if (rs_cidx == txr->tx_rs_pidx)
325 		return (0);
326 	cur = txr->tx_rsq[rs_cidx];
327 	status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
328 	updated = !!(status & E1000_TXD_STAT_DD);
329 
330 	if (!updated)
331 		return (0);
332 
333 	/* If clear is false just let caller know that there
334 	 * are descriptors to reclaim */
335 	if (!clear)
336 		return (1);
337 
338 	prev = txr->tx_cidx_processed;
339 	ntxd = scctx->isc_ntxd[0];
340 	do {
341 		MPASS(prev != cur);
342 		delta = (int32_t)cur - (int32_t)prev;
343 		if (delta < 0)
344 			delta += ntxd;
345 		MPASS(delta > 0);
346 
347 		processed += delta;
348 		prev  = cur;
349 		rs_cidx = (rs_cidx + 1) & (ntxd-1);
350 		if (rs_cidx  == txr->tx_rs_pidx)
351 			break;
352 		cur = txr->tx_rsq[rs_cidx];
353 		status = ((union e1000_adv_tx_desc *)
354 		    &txr->tx_base[cur])->wb.status;
355 	} while ((status & E1000_TXD_STAT_DD));
356 
357 	txr->tx_rs_cidx = rs_cidx;
358 	txr->tx_cidx_processed = prev;
359 	return (processed);
360 }
361 
362 static void
igb_isc_rxd_refill(void * arg,if_rxd_update_t iru)363 igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
364 {
365 	struct e1000_softc *sc = arg;
366 	if_softc_ctx_t scctx = sc->shared;
367 	uint16_t rxqid = iru->iru_qsidx;
368 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
369 	union e1000_adv_rx_desc *rxd;
370 	struct rx_ring *rxr = &que->rxr;
371 	uint64_t *paddrs;
372 	uint32_t next_pidx, pidx;
373 	uint16_t count;
374 	int i;
375 
376 	paddrs = iru->iru_paddrs;
377 	pidx = iru->iru_pidx;
378 	count = iru->iru_count;
379 
380 	for (i = 0, next_pidx = pidx; i < count; i++) {
381 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
382 
383 		rxd->read.pkt_addr = htole64(paddrs[i]);
384 		if (++next_pidx == scctx->isc_nrxd[0])
385 			next_pidx = 0;
386 	}
387 }
388 
389 static void
igb_isc_rxd_flush(void * arg,uint16_t rxqid,uint8_t flid __unused,qidx_t pidx)390 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
391     qidx_t pidx)
392 {
393 	struct e1000_softc *sc = arg;
394 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
395 	struct rx_ring *rxr = &que->rxr;
396 
397 	E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
398 }
399 
400 static int
igb_isc_rxd_available(void * arg,uint16_t rxqid,qidx_t idx,qidx_t budget)401 igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
402 {
403 	struct e1000_softc *sc = arg;
404 	if_softc_ctx_t scctx = sc->shared;
405 	struct em_rx_queue *que = &sc->rx_queues[rxqid];
406 	struct rx_ring *rxr = &que->rxr;
407 	union e1000_adv_rx_desc *rxd;
408 	uint32_t staterr = 0;
409 	int cnt, i;
410 
411 	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
412 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
413 		staterr = le32toh(rxd->wb.upper.status_error);
414 
415 		if ((staterr & E1000_RXD_STAT_DD) == 0)
416 			break;
417 		if (++i == scctx->isc_nrxd[0])
418 			i = 0;
419 		if (staterr & E1000_RXD_STAT_EOP)
420 			cnt++;
421 	}
422 	return (cnt);
423 }
424 
425 /****************************************************************
426  * Routine sends data which has been dma'ed into host memory
427  * to upper layer. Initialize ri structure.
428  *
429  * Returns 0 upon success, errno on failure
430  ***************************************************************/
431 
432 static int
igb_isc_rxd_pkt_get(void * arg,if_rxd_info_t ri)433 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
434 {
435 	struct e1000_softc *sc = arg;
436 	if_softc_ctx_t scctx = sc->shared;
437 	struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
438 	struct rx_ring *rxr = &que->rxr;
439 	union e1000_adv_rx_desc *rxd;
440 
441 	uint16_t pkt_info, len;
442 	uint32_t ptype, staterr;
443 	int i, cidx;
444 	bool eop;
445 
446 	staterr = i = 0;
447 	cidx = ri->iri_cidx;
448 
449 	do {
450 		rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
451 		staterr = le32toh(rxd->wb.upper.status_error);
452 		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
453 
454 		MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
455 
456 		len = le16toh(rxd->wb.upper.length);
457 		ptype =
458 		    le32toh(rxd->wb.lower.lo_dword.data) &  IGB_PKTTYPE_MASK;
459 
460 		ri->iri_len += len;
461 		rxr->rx_bytes += ri->iri_len;
462 
463 		rxd->wb.upper.status_error = 0;
464 		eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
465 
466 		/* Make sure bad packets are discarded */
467 		if (eop &&
468 		    ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
469 			sc->dropped_pkts++;
470 			++rxr->rx_discarded;
471 			return (EBADMSG);
472 		}
473 		ri->iri_frags[i].irf_flid = 0;
474 		ri->iri_frags[i].irf_idx = cidx;
475 		ri->iri_frags[i].irf_len = len;
476 
477 		if (++cidx == scctx->isc_nrxd[0])
478 			cidx = 0;
479 #ifdef notyet
480 		if (rxr->hdr_split == true) {
481 			ri->iri_frags[i].irf_flid = 1;
482 			ri->iri_frags[i].irf_idx = cidx;
483 			if (++cidx == scctx->isc_nrxd[0])
484 				cidx = 0;
485 		}
486 #endif
487 		i++;
488 	} while (!eop);
489 
490 	rxr->rx_packets++;
491 
492 	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
493 		igb_rx_checksum(staterr, ri, ptype);
494 
495 	if (staterr & E1000_RXD_STAT_VP) {
496 		if (((sc->hw.mac.type == e1000_i350) ||
497 		    (sc->hw.mac.type == e1000_i354)) &&
498 		    (staterr & E1000_RXDEXT_STATERR_LB))
499 			ri->iri_vtag = be16toh(rxd->wb.upper.vlan);
500 		else
501 			ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
502 		ri->iri_flags |= M_VLANTAG;
503 	}
504 
505 	ri->iri_flowid =
506 		le32toh(rxd->wb.lower.hi_dword.rss);
507 	ri->iri_rsstype = igb_determine_rsstype(pkt_info);
508 	ri->iri_nfrags = i;
509 
510 	return (0);
511 }
512 
513 /*********************************************************************
514  *
515  *  Verify that the hardware indicated that the checksum is valid.
516  *  Inform the stack about the status of checksum so that stack
517  *  doesn't spend time verifying the checksum.
518  *
519  *********************************************************************/
520 static void
igb_rx_checksum(uint32_t staterr,if_rxd_info_t ri,uint32_t ptype)521 igb_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
522 {
523 	uint16_t status = (uint16_t)staterr;
524 	uint8_t errors = (uint8_t)(staterr >> 24);
525 
526 	if (__predict_false(status & E1000_RXD_STAT_IXSM))
527 		return;
528 
529 	/* If there is a layer 3 or 4 error we are done */
530 	if (__predict_false(errors &
531 	    (E1000_RXD_ERR_IPE | E1000_RXD_ERR_TCPE)))
532 		return;
533 
534 	/* IP Checksum Good */
535 	if (status & E1000_RXD_STAT_IPCS)
536 		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
537 
538 	/* Valid L4E checksum */
539 	if (__predict_true(status &
540 	    (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) {
541 		/* SCTP header present */
542 		if (__predict_false(
543 		    (ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
544 		    (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)) {
545 			ri->iri_csum_flags |= CSUM_SCTP_VALID;
546 		} else {
547 			ri->iri_csum_flags |=
548 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
549 			ri->iri_csum_data = htons(0xffff);
550 		}
551 	}
552 }
553 
554 /********************************************************************
555  *
556  *  Parse the packet type to determine the appropriate hash
557  *
558  ******************************************************************/
559 static int
igb_determine_rsstype(uint16_t pkt_info)560 igb_determine_rsstype(uint16_t pkt_info)
561 {
562 	switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
563 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
564 		return M_HASHTYPE_RSS_TCP_IPV4;
565 	case E1000_RXDADV_RSSTYPE_IPV4:
566 		return M_HASHTYPE_RSS_IPV4;
567 	case E1000_RXDADV_RSSTYPE_IPV6_TCP:
568 		return M_HASHTYPE_RSS_TCP_IPV6;
569 	case E1000_RXDADV_RSSTYPE_IPV6_EX:
570 		return M_HASHTYPE_RSS_IPV6_EX;
571 	case E1000_RXDADV_RSSTYPE_IPV6:
572 		return M_HASHTYPE_RSS_IPV6;
573 	case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
574 		return M_HASHTYPE_RSS_TCP_IPV6_EX;
575 	default:
576 		return M_HASHTYPE_OPAQUE;
577 	}
578 }
579