1 /*- 2 * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Neither the name of Matthew Macy nor the names of its 12 * contributors may be used to endorse or promote products derived from 13 * this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_acpi.h" 32 #include "opt_sched.h" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/bus.h> 37 #include <sys/eventhandler.h> 38 #include <sys/kernel.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/module.h> 42 #include <sys/kobj.h> 43 #include <sys/rman.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/sockio.h> 48 #include <sys/sysctl.h> 49 #include <sys/syslog.h> 50 #include <sys/taskqueue.h> 51 #include <sys/limits.h> 52 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_private.h> 56 #include <net/if_types.h> 57 #include <net/if_media.h> 58 #include <net/bpf.h> 59 #include <net/ethernet.h> 60 #include <net/mp_ring.h> 61 #include <net/debugnet.h> 62 #include <net/pfil.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/tcp_lro.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/if_ether.h> 70 #include <netinet/ip.h> 71 #include <netinet/ip6.h> 72 #include <netinet/tcp.h> 73 #include <netinet/ip_var.h> 74 #include <netinet6/ip6_var.h> 75 76 #include <machine/bus.h> 77 #include <machine/in_cksum.h> 78 79 #include <vm/vm.h> 80 #include <vm/pmap.h> 81 82 #include <dev/led/led.h> 83 #include <dev/pci/pcireg.h> 84 #include <dev/pci/pcivar.h> 85 #include <dev/pci/pci_private.h> 86 87 #include <net/iflib.h> 88 89 #include "ifdi_if.h" 90 91 #ifdef PCI_IOV 92 #include <dev/pci/pci_iov.h> 93 #endif 94 95 #include <sys/bitstring.h> 96 /* 97 * enable accounting of every mbuf as it comes in to and goes out of 98 * iflib's software descriptor references 99 */ 100 #define MEMORY_LOGGING 0 101 /* 102 * Enable mbuf vectors for compressing long mbuf chains 103 */ 104 105 /* 106 * NB: 107 * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead 108 * we prefetch needs to be determined by the time spent in m_free vis a vis 109 * the cost of a prefetch. This will of course vary based on the workload: 110 * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which 111 * is quite expensive, thus suggesting very little prefetch. 112 * - small packet forwarding which is just returning a single mbuf to 113 * UMA will typically be very fast vis a vis the cost of a memory 114 * access. 115 */ 116 117 /* 118 * File organization: 119 * - private structures 120 * - iflib private utility functions 121 * - ifnet functions 122 * - vlan registry and other exported functions 123 * - iflib public core functions 124 * 125 * 126 */ 127 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library"); 128 129 #define IFLIB_RXEOF_MORE (1U << 0) 130 #define IFLIB_RXEOF_EMPTY (2U << 0) 131 132 struct iflib_txq; 133 typedef struct iflib_txq *iflib_txq_t; 134 struct iflib_rxq; 135 typedef struct iflib_rxq *iflib_rxq_t; 136 struct iflib_fl; 137 typedef struct iflib_fl *iflib_fl_t; 138 139 struct iflib_ctx; 140 141 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid); 142 static void iflib_timer(void *arg); 143 static void iflib_tqg_detach(if_ctx_t ctx); 144 145 typedef struct iflib_filter_info { 146 driver_filter_t *ifi_filter; 147 void *ifi_filter_arg; 148 struct grouptask *ifi_task; 149 void *ifi_ctx; 150 } *iflib_filter_info_t; 151 152 struct iflib_ctx { 153 KOBJ_FIELDS; 154 /* 155 * Pointer to hardware driver's softc 156 */ 157 void *ifc_softc; 158 device_t ifc_dev; 159 if_t ifc_ifp; 160 161 cpuset_t ifc_cpus; 162 if_shared_ctx_t ifc_sctx; 163 struct if_softc_ctx ifc_softc_ctx; 164 165 struct sx ifc_ctx_sx; 166 struct mtx ifc_state_mtx; 167 168 iflib_txq_t ifc_txqs; 169 iflib_rxq_t ifc_rxqs; 170 uint32_t ifc_if_flags; 171 uint32_t ifc_flags; 172 uint32_t ifc_max_fl_buf_size; 173 uint32_t ifc_rx_mbuf_sz; 174 175 int ifc_link_state; 176 int ifc_watchdog_events; 177 struct cdev *ifc_led_dev; 178 struct resource *ifc_msix_mem; 179 180 struct if_irq ifc_legacy_irq; 181 struct task ifc_admin_task; 182 struct task ifc_vflr_task; 183 struct taskqueue *ifc_tq; 184 struct iflib_filter_info ifc_filter_info; 185 struct ifmedia ifc_media; 186 struct ifmedia *ifc_mediap; 187 188 struct sysctl_oid *ifc_sysctl_node; 189 uint16_t ifc_sysctl_ntxqs; 190 uint16_t ifc_sysctl_nrxqs; 191 uint16_t ifc_sysctl_qs_eq_override; 192 uint16_t ifc_sysctl_rx_budget; 193 uint16_t ifc_sysctl_tx_abdicate; 194 uint16_t ifc_sysctl_core_offset; 195 #define CORE_OFFSET_UNSPECIFIED 0xffff 196 uint8_t ifc_sysctl_separate_txrx; 197 uint8_t ifc_sysctl_use_logical_cores; 198 uint16_t ifc_sysctl_extra_msix_vectors; 199 bool ifc_cpus_are_physical_cores; 200 201 qidx_t ifc_sysctl_ntxds[8]; 202 qidx_t ifc_sysctl_nrxds[8]; 203 struct if_txrx ifc_txrx; 204 #define isc_txd_encap ifc_txrx.ift_txd_encap 205 #define isc_txd_flush ifc_txrx.ift_txd_flush 206 #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update 207 #define isc_rxd_available ifc_txrx.ift_rxd_available 208 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get 209 #define isc_rxd_refill ifc_txrx.ift_rxd_refill 210 #define isc_rxd_flush ifc_txrx.ift_rxd_flush 211 #define isc_legacy_intr ifc_txrx.ift_legacy_intr 212 #define isc_txq_select ifc_txrx.ift_txq_select 213 #define isc_txq_select_v2 ifc_txrx.ift_txq_select_v2 214 215 eventhandler_tag ifc_vlan_attach_event; 216 eventhandler_tag ifc_vlan_detach_event; 217 struct ether_addr ifc_mac; 218 }; 219 220 void * 221 iflib_get_softc(if_ctx_t ctx) 222 { 223 224 return (ctx->ifc_softc); 225 } 226 227 device_t 228 iflib_get_dev(if_ctx_t ctx) 229 { 230 231 return (ctx->ifc_dev); 232 } 233 234 if_t 235 iflib_get_ifp(if_ctx_t ctx) 236 { 237 238 return (ctx->ifc_ifp); 239 } 240 241 struct ifmedia * 242 iflib_get_media(if_ctx_t ctx) 243 { 244 245 return (ctx->ifc_mediap); 246 } 247 248 void 249 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN]) 250 { 251 252 bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN); 253 } 254 255 if_softc_ctx_t 256 iflib_get_softc_ctx(if_ctx_t ctx) 257 { 258 259 return (&ctx->ifc_softc_ctx); 260 } 261 262 if_shared_ctx_t 263 iflib_get_sctx(if_ctx_t ctx) 264 { 265 266 return (ctx->ifc_sctx); 267 } 268 269 uint16_t 270 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx) 271 { 272 273 return (ctx->ifc_sysctl_extra_msix_vectors); 274 } 275 276 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2) 277 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE / sizeof(void *)) 278 #define CACHE_PTR_NEXT(ptr) ((void *)(roundup2(ptr, CACHE_LINE_SIZE))) 279 280 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP) 281 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF) 282 283 typedef struct iflib_sw_rx_desc_array { 284 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ 285 struct mbuf **ifsd_m; /* pkthdr mbufs */ 286 caddr_t *ifsd_cl; /* direct cluster pointer for rx */ 287 bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */ 288 } iflib_rxsd_array_t; 289 290 typedef struct iflib_sw_tx_desc_array { 291 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ 292 bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */ 293 struct mbuf **ifsd_m; /* pkthdr mbufs */ 294 } if_txsd_vec_t; 295 296 /* magic number that should be high enough for any hardware */ 297 #define IFLIB_MAX_TX_SEGS 128 298 #define IFLIB_RX_COPY_THRESH 128 299 #define IFLIB_MAX_RX_REFRESH 32 300 /* The minimum descriptors per second before we start coalescing */ 301 #define IFLIB_MIN_DESC_SEC 16384 302 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16 303 #define IFLIB_QUEUE_IDLE 0 304 #define IFLIB_QUEUE_HUNG 1 305 #define IFLIB_QUEUE_WORKING 2 306 /* maximum number of txqs that can share an rx interrupt */ 307 #define IFLIB_MAX_TX_SHARED_INTR 4 308 309 /* this should really scale with ring size - this is a fairly arbitrary value */ 310 #define TX_BATCH_SIZE 32 311 312 #define IFLIB_RESTART_BUDGET 8 313 314 #define IFC_LEGACY 0x001 315 #define IFC_QFLUSH 0x002 316 #define IFC_MULTISEG 0x004 317 #define IFC_SPARE1 0x008 318 #define IFC_SC_ALLOCATED 0x010 319 #define IFC_INIT_DONE 0x020 320 #define IFC_PREFETCH 0x040 321 #define IFC_DO_RESET 0x080 322 #define IFC_DO_WATCHDOG 0x100 323 #define IFC_SPARE0 0x200 324 #define IFC_SPARE2 0x400 325 #define IFC_IN_DETACH 0x800 326 327 #define IFC_NETMAP_TX_IRQ 0x80000000 328 329 #define CSUM_OFFLOAD (CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \ 330 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 331 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP) 332 333 struct iflib_txq { 334 qidx_t ift_in_use; 335 qidx_t ift_cidx; 336 qidx_t ift_cidx_processed; 337 qidx_t ift_pidx; 338 uint8_t ift_gen; 339 uint8_t ift_br_offset; 340 uint16_t ift_npending; 341 uint16_t ift_db_pending; 342 uint16_t ift_rs_pending; 343 /* implicit pad */ 344 uint8_t ift_txd_size[8]; 345 uint64_t ift_processed; 346 uint64_t ift_cleaned; 347 uint64_t ift_cleaned_prev; 348 #if MEMORY_LOGGING 349 uint64_t ift_enqueued; 350 uint64_t ift_dequeued; 351 #endif 352 uint64_t ift_no_tx_dma_setup; 353 uint64_t ift_no_desc_avail; 354 uint64_t ift_mbuf_defrag_failed; 355 uint64_t ift_mbuf_defrag; 356 uint64_t ift_map_failed; 357 uint64_t ift_txd_encap_efbig; 358 uint64_t ift_pullups; 359 uint64_t ift_last_timer_tick; 360 361 struct mtx ift_mtx; 362 struct mtx ift_db_mtx; 363 364 /* constant values */ 365 if_ctx_t ift_ctx; 366 struct ifmp_ring *ift_br; 367 struct grouptask ift_task; 368 qidx_t ift_size; 369 uint16_t ift_id; 370 struct callout ift_timer; 371 #ifdef DEV_NETMAP 372 struct callout ift_netmap_timer; 373 #endif /* DEV_NETMAP */ 374 375 if_txsd_vec_t ift_sds; 376 uint8_t ift_qstatus; 377 uint8_t ift_closed; 378 uint8_t ift_update_freq; 379 struct iflib_filter_info ift_filter_info; 380 bus_dma_tag_t ift_buf_tag; 381 bus_dma_tag_t ift_tso_buf_tag; 382 iflib_dma_info_t ift_ifdi; 383 #define MTX_NAME_LEN 32 384 char ift_mtx_name[MTX_NAME_LEN]; 385 bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE); 386 #ifdef IFLIB_DIAGNOSTICS 387 uint64_t ift_cpu_exec_count[256]; 388 #endif 389 } __aligned(CACHE_LINE_SIZE); 390 391 struct iflib_fl { 392 qidx_t ifl_cidx; 393 qidx_t ifl_pidx; 394 qidx_t ifl_credits; 395 uint8_t ifl_gen; 396 uint8_t ifl_rxd_size; 397 #if MEMORY_LOGGING 398 uint64_t ifl_m_enqueued; 399 uint64_t ifl_m_dequeued; 400 uint64_t ifl_cl_enqueued; 401 uint64_t ifl_cl_dequeued; 402 #endif 403 /* implicit pad */ 404 bitstr_t *ifl_rx_bitmap; 405 qidx_t ifl_fragidx; 406 /* constant */ 407 qidx_t ifl_size; 408 uint16_t ifl_buf_size; 409 uint16_t ifl_cltype; 410 uma_zone_t ifl_zone; 411 iflib_rxsd_array_t ifl_sds; 412 iflib_rxq_t ifl_rxq; 413 uint8_t ifl_id; 414 bus_dma_tag_t ifl_buf_tag; 415 iflib_dma_info_t ifl_ifdi; 416 uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE); 417 qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH]; 418 } __aligned(CACHE_LINE_SIZE); 419 420 static inline qidx_t 421 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen) 422 { 423 qidx_t used; 424 425 if (pidx > cidx) 426 used = pidx - cidx; 427 else if (pidx < cidx) 428 used = size - cidx + pidx; 429 else if (gen == 0 && pidx == cidx) 430 used = 0; 431 else if (gen == 1 && pidx == cidx) 432 used = size; 433 else 434 panic("bad state"); 435 436 return (used); 437 } 438 439 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen)) 440 441 #define IDXDIFF(head, tail, wrap) \ 442 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) 443 444 struct iflib_rxq { 445 if_ctx_t ifr_ctx; 446 iflib_fl_t ifr_fl; 447 uint64_t ifr_rx_irq; 448 struct pfil_head *pfil; 449 /* 450 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is 451 * the completion queue consumer index. Otherwise it's unused. 452 */ 453 qidx_t ifr_cq_cidx; 454 uint16_t ifr_id; 455 uint8_t ifr_nfl; 456 uint8_t ifr_ntxqirq; 457 uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR]; 458 uint8_t ifr_fl_offset; 459 struct lro_ctrl ifr_lc; 460 struct grouptask ifr_task; 461 struct callout ifr_watchdog; 462 struct iflib_filter_info ifr_filter_info; 463 iflib_dma_info_t ifr_ifdi; 464 465 /* dynamically allocate if any drivers need a value substantially larger than this */ 466 struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE); 467 #ifdef IFLIB_DIAGNOSTICS 468 uint64_t ifr_cpu_exec_count[256]; 469 #endif 470 } __aligned(CACHE_LINE_SIZE); 471 472 typedef struct if_rxsd { 473 caddr_t *ifsd_cl; 474 iflib_fl_t ifsd_fl; 475 } *if_rxsd_t; 476 477 /* multiple of word size */ 478 #ifdef __LP64__ 479 #define PKT_INFO_SIZE 6 480 #define RXD_INFO_SIZE 5 481 #define PKT_TYPE uint64_t 482 #else 483 #define PKT_INFO_SIZE 11 484 #define RXD_INFO_SIZE 8 485 #define PKT_TYPE uint32_t 486 #endif 487 #define PKT_LOOP_BOUND ((PKT_INFO_SIZE / 3) * 3) 488 #define RXD_LOOP_BOUND ((RXD_INFO_SIZE / 4) * 4) 489 490 typedef struct if_pkt_info_pad { 491 PKT_TYPE pkt_val[PKT_INFO_SIZE]; 492 } *if_pkt_info_pad_t; 493 typedef struct if_rxd_info_pad { 494 PKT_TYPE rxd_val[RXD_INFO_SIZE]; 495 } *if_rxd_info_pad_t; 496 497 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info)); 498 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info)); 499 500 static inline void 501 pkt_info_zero(if_pkt_info_t pi) 502 { 503 if_pkt_info_pad_t pi_pad; 504 505 pi_pad = (if_pkt_info_pad_t)pi; 506 pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0; 507 pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0; 508 #ifndef __LP64__ 509 pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0; 510 pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0; 511 #endif 512 } 513 514 static inline void 515 rxd_info_zero(if_rxd_info_t ri) 516 { 517 if_rxd_info_pad_t ri_pad; 518 int i; 519 520 ri_pad = (if_rxd_info_pad_t)ri; 521 for (i = 0; i < RXD_LOOP_BOUND; i += 4) { 522 ri_pad->rxd_val[i] = 0; 523 ri_pad->rxd_val[i + 1] = 0; 524 ri_pad->rxd_val[i + 2] = 0; 525 ri_pad->rxd_val[i + 3] = 0; 526 } 527 #ifdef __LP64__ 528 ri_pad->rxd_val[RXD_INFO_SIZE - 1] = 0; 529 #endif 530 } 531 532 /* 533 * Only allow a single packet to take up most 1/nth of the tx ring 534 */ 535 #define MAX_SINGLE_PACKET_FRACTION 12 536 #define IF_BAD_DMA ((bus_addr_t)-1) 537 538 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING)) 539 540 #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock") 541 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx) 542 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx) 543 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx) 544 545 #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF) 546 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx) 547 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx) 548 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx) 549 550 #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx) 551 #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx) 552 553 /* Our boot-time initialization hook */ 554 static int iflib_module_event_handler(module_t, int, void *); 555 556 static moduledata_t iflib_moduledata = { 557 "iflib", 558 iflib_module_event_handler, 559 NULL 560 }; 561 562 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY); 563 MODULE_VERSION(iflib, 1); 564 565 MODULE_DEPEND(iflib, pci, 1, 1, 1); 566 MODULE_DEPEND(iflib, ether, 1, 1, 1); 567 568 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1); 569 TASKQGROUP_DEFINE(if_config_tqg, 1, 1); 570 571 #ifndef IFLIB_DEBUG_COUNTERS 572 #ifdef INVARIANTS 573 #define IFLIB_DEBUG_COUNTERS 1 574 #else 575 #define IFLIB_DEBUG_COUNTERS 0 576 #endif /* !INVARIANTS */ 577 #endif 578 579 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 580 "iflib driver parameters"); 581 582 /* 583 * XXX need to ensure that this can't accidentally cause the head to be moved backwards 584 */ 585 static int iflib_min_tx_latency = 0; 586 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW, 587 &iflib_min_tx_latency, 0, 588 "minimize transmit latency at the possible expense of throughput"); 589 static int iflib_no_tx_batch = 0; 590 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW, 591 &iflib_no_tx_batch, 0, 592 "minimize transmit latency at the possible expense of throughput"); 593 static int iflib_timer_default = 1000; 594 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW, 595 &iflib_timer_default, 0, "number of ticks between iflib_timer calls"); 596 597 598 #if IFLIB_DEBUG_COUNTERS 599 600 static int iflib_tx_seen; 601 static int iflib_tx_sent; 602 static int iflib_tx_encap; 603 static int iflib_rx_allocs; 604 static int iflib_fl_refills; 605 static int iflib_fl_refills_large; 606 static int iflib_tx_frees; 607 608 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0, 609 "# TX mbufs seen"); 610 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0, 611 "# TX mbufs sent"); 612 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0, 613 "# TX mbufs encapped"); 614 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0, 615 "# TX frees"); 616 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0, 617 "# RX allocations"); 618 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0, 619 "# refills"); 620 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD, 621 &iflib_fl_refills_large, 0, "# large refills"); 622 623 static int iflib_txq_drain_flushing; 624 static int iflib_txq_drain_oactive; 625 static int iflib_txq_drain_notready; 626 627 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD, 628 &iflib_txq_drain_flushing, 0, "# drain flushes"); 629 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD, 630 &iflib_txq_drain_oactive, 0, "# drain oactives"); 631 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD, 632 &iflib_txq_drain_notready, 0, "# drain notready"); 633 634 static int iflib_encap_load_mbuf_fail; 635 static int iflib_encap_pad_mbuf_fail; 636 static int iflib_encap_txq_avail_fail; 637 static int iflib_encap_txd_encap_fail; 638 639 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD, 640 &iflib_encap_load_mbuf_fail, 0, "# busdma load failures"); 641 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD, 642 &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures"); 643 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD, 644 &iflib_encap_txq_avail_fail, 0, "# txq avail failures"); 645 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD, 646 &iflib_encap_txd_encap_fail, 0, "# driver encap failures"); 647 648 static int iflib_task_fn_rxs; 649 static int iflib_rx_intr_enables; 650 static int iflib_fast_intrs; 651 static int iflib_rx_unavail; 652 static int iflib_rx_ctx_inactive; 653 static int iflib_rx_if_input; 654 static int iflib_rxd_flush; 655 656 static int iflib_verbose_debug; 657 658 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0, 659 "# task_fn_rx calls"); 660 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD, 661 &iflib_rx_intr_enables, 0, "# RX intr enables"); 662 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0, 663 "# fast_intr calls"); 664 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0, 665 "# times rxeof called with no available data"); 666 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD, 667 &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context"); 668 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input, 669 0, "# times rxeof called if_input"); 670 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0, 671 "# times rxd_flush called"); 672 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW, 673 &iflib_verbose_debug, 0, "enable verbose debugging"); 674 675 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1) 676 static void 677 iflib_debug_reset(void) 678 { 679 iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs = 680 iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees = 681 iflib_txq_drain_flushing = iflib_txq_drain_oactive = 682 iflib_txq_drain_notready = 683 iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail = 684 iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail = 685 iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs = 686 iflib_rx_unavail = 687 iflib_rx_ctx_inactive = iflib_rx_if_input = 688 iflib_rxd_flush = 0; 689 } 690 691 #else 692 #define DBG_COUNTER_INC(name) 693 static void iflib_debug_reset(void) {} 694 #endif 695 696 #define IFLIB_DEBUG 0 697 698 static void iflib_tx_structures_free(if_ctx_t ctx); 699 static void iflib_rx_structures_free(if_ctx_t ctx); 700 static int iflib_queues_alloc(if_ctx_t ctx); 701 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq); 702 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget); 703 static int iflib_qset_structures_setup(if_ctx_t ctx); 704 static int iflib_msix_init(if_ctx_t ctx); 705 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str); 706 static void iflib_txq_check_drain(iflib_txq_t txq, int budget); 707 static uint32_t iflib_txq_can_drain(struct ifmp_ring *); 708 #ifdef ALTQ 709 static void iflib_altq_if_start(if_t ifp); 710 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m); 711 #endif 712 static int iflib_register(if_ctx_t); 713 static void iflib_deregister(if_ctx_t); 714 static void iflib_unregister_vlan_handlers(if_ctx_t ctx); 715 static uint16_t iflib_get_mbuf_size_for(unsigned int size); 716 static void iflib_init_locked(if_ctx_t ctx); 717 static void iflib_add_device_sysctl_pre(if_ctx_t ctx); 718 static void iflib_add_device_sysctl_post(if_ctx_t ctx); 719 static void iflib_ifmp_purge(iflib_txq_t txq); 720 static void _iflib_pre_assert(if_softc_ctx_t scctx); 721 static void iflib_stop(if_ctx_t ctx); 722 static void iflib_if_init_locked(if_ctx_t ctx); 723 static void iflib_free_intr_mem(if_ctx_t ctx); 724 #ifndef __NO_STRICT_ALIGNMENT 725 static struct mbuf *iflib_fixup_rx(struct mbuf *m); 726 #endif 727 728 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets = 729 SLIST_HEAD_INITIALIZER(cpu_offsets); 730 struct cpu_offset { 731 SLIST_ENTRY(cpu_offset) entries; 732 cpuset_t set; 733 unsigned int refcount; 734 uint16_t next_cpuid; 735 }; 736 static struct mtx cpu_offset_mtx; 737 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock", 738 MTX_DEF); 739 740 DEBUGNET_DEFINE(iflib); 741 742 static int 743 iflib_num_rx_descs(if_ctx_t ctx) 744 { 745 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 746 if_shared_ctx_t sctx = ctx->ifc_sctx; 747 uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; 748 749 return (scctx->isc_nrxd[first_rxq]); 750 } 751 752 static int 753 iflib_num_tx_descs(if_ctx_t ctx) 754 { 755 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 756 if_shared_ctx_t sctx = ctx->ifc_sctx; 757 uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; 758 759 return (scctx->isc_ntxd[first_txq]); 760 } 761 762 #ifdef DEV_NETMAP 763 #include <sys/selinfo.h> 764 #include <net/netmap.h> 765 #include <dev/netmap/netmap_kern.h> 766 767 MODULE_DEPEND(iflib, netmap, 1, 1, 1); 768 769 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init); 770 static void iflib_netmap_timer(void *arg); 771 772 /* 773 * device-specific sysctl variables: 774 * 775 * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it. 776 * During regular operations the CRC is stripped, but on some 777 * hardware reception of frames not multiple of 64 is slower, 778 * so using crcstrip=0 helps in benchmarks. 779 * 780 * iflib_rx_miss, iflib_rx_miss_bufs: 781 * count packets that might be missed due to lost interrupts. 782 */ 783 SYSCTL_DECL(_dev_netmap); 784 /* 785 * The xl driver by default strips CRCs and we do not override it. 786 */ 787 788 int iflib_crcstrip = 1; 789 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip, 790 CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames"); 791 792 int iflib_rx_miss, iflib_rx_miss_bufs; 793 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss, 794 CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr"); 795 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs, 796 CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs"); 797 798 /* 799 * Register/unregister. We are already under netmap lock. 800 * Only called on the first register or the last unregister. 801 */ 802 static int 803 iflib_netmap_register(struct netmap_adapter *na, int onoff) 804 { 805 if_t ifp = na->ifp; 806 if_ctx_t ctx = if_getsoftc(ifp); 807 int status; 808 809 CTX_LOCK(ctx); 810 if (!CTX_IS_VF(ctx)) 811 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); 812 813 iflib_stop(ctx); 814 815 /* 816 * Enable (or disable) netmap flags, and intercept (or restore) 817 * ifp->if_transmit. This is done once the device has been stopped 818 * to prevent race conditions. Also, this must be done after 819 * calling netmap_disable_all_rings() and before calling 820 * netmap_enable_all_rings(), so that these two functions see the 821 * updated state of the NAF_NETMAP_ON bit. 822 */ 823 if (onoff) { 824 nm_set_native_flags(na); 825 } else { 826 nm_clear_native_flags(na); 827 } 828 829 iflib_init_locked(ctx); 830 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ? 831 status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1; 832 if (status) 833 nm_clear_native_flags(na); 834 CTX_UNLOCK(ctx); 835 return (status); 836 } 837 838 static int 839 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info) 840 { 841 if_t ifp = na->ifp; 842 if_ctx_t ctx = if_getsoftc(ifp); 843 iflib_rxq_t rxq = &ctx->ifc_rxqs[0]; 844 iflib_fl_t fl = &rxq->ifr_fl[0]; 845 846 info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; 847 info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; 848 info->num_tx_descs = iflib_num_tx_descs(ctx); 849 info->num_rx_descs = iflib_num_rx_descs(ctx); 850 info->rx_buf_maxsize = fl->ifl_buf_size; 851 nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u", 852 info->num_tx_rings, info->num_rx_rings, info->num_tx_descs, 853 info->num_rx_descs, info->rx_buf_maxsize); 854 855 return (0); 856 } 857 858 static int 859 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init) 860 { 861 struct netmap_adapter *na = kring->na; 862 u_int const lim = kring->nkr_num_slots - 1; 863 struct netmap_ring *ring = kring->ring; 864 bus_dmamap_t *map; 865 struct if_rxd_update iru; 866 if_ctx_t ctx = rxq->ifr_ctx; 867 iflib_fl_t fl = &rxq->ifr_fl[0]; 868 u_int nic_i_first, nic_i; 869 u_int nm_i; 870 int i, n; 871 #if IFLIB_DEBUG_COUNTERS 872 int rf_count = 0; 873 #endif 874 875 /* 876 * This function is used both at initialization and in rxsync. 877 * At initialization we need to prepare (with isc_rxd_refill()) 878 * all the netmap buffers currently owned by the kernel, in 879 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync 880 * (except for kring->nkr_hwofs). These may be less than 881 * kring->nkr_num_slots if netmap_reset() was called while 882 * an application using the kring that still owned some 883 * buffers. 884 * At rxsync time, both indexes point to the next buffer to be 885 * refilled. 886 * In any case we publish (with isc_rxd_flush()) up to 887 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod 888 * pointer to overrun the head/cons pointer, although this is 889 * not necessary for some NICs (e.g. vmx). 890 */ 891 if (__predict_false(init)) { 892 n = kring->nkr_num_slots - nm_kr_rxspace(kring); 893 } else { 894 n = kring->rhead - kring->nr_hwcur; 895 if (n == 0) 896 return (0); /* Nothing to do. */ 897 if (n < 0) 898 n += kring->nkr_num_slots; 899 } 900 901 iru_init(&iru, rxq, 0 /* flid */); 902 map = fl->ifl_sds.ifsd_map; 903 nic_i = fl->ifl_pidx; 904 nm_i = netmap_idx_n2k(kring, nic_i); 905 if (__predict_false(init)) { 906 /* 907 * On init/reset, nic_i must be 0, and we must 908 * start to refill from hwtail (see netmap_reset()). 909 */ 910 MPASS(nic_i == 0); 911 MPASS(nm_i == kring->nr_hwtail); 912 } else 913 MPASS(nm_i == kring->nr_hwcur); 914 DBG_COUNTER_INC(fl_refills); 915 while (n > 0) { 916 #if IFLIB_DEBUG_COUNTERS 917 if (++rf_count == 9) 918 DBG_COUNTER_INC(fl_refills_large); 919 #endif 920 nic_i_first = nic_i; 921 for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) { 922 struct netmap_slot *slot = &ring->slot[nm_i]; 923 uint64_t paddr; 924 void *addr = PNMB(na, slot, &paddr); 925 926 MPASS(i < IFLIB_MAX_RX_REFRESH); 927 928 if (addr == NETMAP_BUF_BASE(na)) /* bad buf */ 929 return (netmap_ring_reinit(kring)); 930 931 fl->ifl_bus_addrs[i] = paddr + 932 nm_get_offset(kring, slot); 933 fl->ifl_rxd_idxs[i] = nic_i; 934 935 if (__predict_false(init)) { 936 netmap_load_map(na, fl->ifl_buf_tag, 937 map[nic_i], addr); 938 } else if (slot->flags & NS_BUF_CHANGED) { 939 /* buffer has changed, reload map */ 940 netmap_reload_map(na, fl->ifl_buf_tag, 941 map[nic_i], addr); 942 } 943 bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i], 944 BUS_DMASYNC_PREREAD); 945 slot->flags &= ~NS_BUF_CHANGED; 946 947 nm_i = nm_next(nm_i, lim); 948 nic_i = nm_next(nic_i, lim); 949 } 950 951 iru.iru_pidx = nic_i_first; 952 iru.iru_count = i; 953 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 954 } 955 fl->ifl_pidx = nic_i; 956 /* 957 * At the end of the loop we must have refilled everything 958 * we could possibly refill. 959 */ 960 MPASS(nm_i == kring->rhead); 961 kring->nr_hwcur = nm_i; 962 963 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 964 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 965 ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, 966 nm_prev(nic_i, lim)); 967 DBG_COUNTER_INC(rxd_flush); 968 969 return (0); 970 } 971 972 #define NETMAP_TX_TIMER_US 90 973 974 /* 975 * Reconcile kernel and user view of the transmit ring. 976 * 977 * All information is in the kring. 978 * Userspace wants to send packets up to the one before kring->rhead, 979 * kernel knows kring->nr_hwcur is the first unsent packet. 980 * 981 * Here we push packets out (as many as possible), and possibly 982 * reclaim buffers from previously completed transmission. 983 * 984 * The caller (netmap) guarantees that there is only one instance 985 * running at any time. Any interference with other driver 986 * methods should be handled by the individual drivers. 987 */ 988 static int 989 iflib_netmap_txsync(struct netmap_kring *kring, int flags) 990 { 991 struct netmap_adapter *na = kring->na; 992 if_t ifp = na->ifp; 993 struct netmap_ring *ring = kring->ring; 994 u_int nm_i; /* index into the netmap kring */ 995 u_int nic_i; /* index into the NIC ring */ 996 u_int const lim = kring->nkr_num_slots - 1; 997 u_int const head = kring->rhead; 998 struct if_pkt_info pi; 999 int tx_pkts = 0, tx_bytes = 0; 1000 1001 /* 1002 * interrupts on every tx packet are expensive so request 1003 * them every half ring, or where NS_REPORT is set 1004 */ 1005 u_int report_frequency = kring->nkr_num_slots >> 1; 1006 /* device-specific */ 1007 if_ctx_t ctx = if_getsoftc(ifp); 1008 iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id]; 1009 1010 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 1011 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1012 1013 /* 1014 * First part: process new packets to send. 1015 * nm_i is the current index in the netmap kring, 1016 * nic_i is the corresponding index in the NIC ring. 1017 * 1018 * If we have packets to send (nm_i != head) 1019 * iterate over the netmap ring, fetch length and update 1020 * the corresponding slot in the NIC ring. Some drivers also 1021 * need to update the buffer's physical address in the NIC slot 1022 * even NS_BUF_CHANGED is not set (PNMB computes the addresses). 1023 * 1024 * The netmap_reload_map() calls is especially expensive, 1025 * even when (as in this case) the tag is 0, so do only 1026 * when the buffer has actually changed. 1027 * 1028 * If possible do not set the report/intr bit on all slots, 1029 * but only a few times per ring or when NS_REPORT is set. 1030 * 1031 * Finally, on 10G and faster drivers, it might be useful 1032 * to prefetch the next slot and txr entry. 1033 */ 1034 1035 nm_i = kring->nr_hwcur; 1036 if (nm_i != head) { /* we have new packets to send */ 1037 uint32_t pkt_len = 0, seg_idx = 0; 1038 int nic_i_start = -1, flags = 0; 1039 pkt_info_zero(&pi); 1040 pi.ipi_segs = txq->ift_segs; 1041 pi.ipi_qsidx = kring->ring_id; 1042 nic_i = netmap_idx_k2n(kring, nm_i); 1043 1044 __builtin_prefetch(&ring->slot[nm_i]); 1045 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]); 1046 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]); 1047 1048 while (nm_i != head) { 1049 struct netmap_slot *slot = &ring->slot[nm_i]; 1050 uint64_t offset = nm_get_offset(kring, slot); 1051 u_int len = slot->len; 1052 uint64_t paddr; 1053 void *addr = PNMB(na, slot, &paddr); 1054 1055 flags |= (slot->flags & NS_REPORT || 1056 nic_i == 0 || nic_i == report_frequency) ? 1057 IPI_TX_INTR : 0; 1058 1059 /* 1060 * If this is the first packet fragment, save the 1061 * index of the first NIC slot for later. 1062 */ 1063 if (nic_i_start < 0) 1064 nic_i_start = nic_i; 1065 1066 pi.ipi_segs[seg_idx].ds_addr = paddr + offset; 1067 pi.ipi_segs[seg_idx].ds_len = len; 1068 if (len) { 1069 pkt_len += len; 1070 seg_idx++; 1071 } 1072 1073 if (!(slot->flags & NS_MOREFRAG)) { 1074 pi.ipi_len = pkt_len; 1075 pi.ipi_nsegs = seg_idx; 1076 pi.ipi_pidx = nic_i_start; 1077 pi.ipi_ndescs = 0; 1078 pi.ipi_flags = flags; 1079 1080 /* Prepare the NIC TX ring. */ 1081 ctx->isc_txd_encap(ctx->ifc_softc, &pi); 1082 DBG_COUNTER_INC(tx_encap); 1083 1084 /* Update transmit counters */ 1085 tx_bytes += pi.ipi_len; 1086 tx_pkts++; 1087 1088 /* Reinit per-packet info for the next one. */ 1089 flags = seg_idx = pkt_len = 0; 1090 nic_i_start = -1; 1091 } 1092 1093 /* prefetch for next round */ 1094 __builtin_prefetch(&ring->slot[nm_i + 1]); 1095 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]); 1096 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]); 1097 1098 NM_CHECK_ADDR_LEN_OFF(na, len, offset); 1099 1100 if (slot->flags & NS_BUF_CHANGED) { 1101 /* buffer has changed, reload map */ 1102 netmap_reload_map(na, txq->ift_buf_tag, 1103 txq->ift_sds.ifsd_map[nic_i], addr); 1104 } 1105 /* make sure changes to the buffer are synced */ 1106 bus_dmamap_sync(txq->ift_buf_tag, 1107 txq->ift_sds.ifsd_map[nic_i], 1108 BUS_DMASYNC_PREWRITE); 1109 1110 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG); 1111 nm_i = nm_next(nm_i, lim); 1112 nic_i = nm_next(nic_i, lim); 1113 } 1114 kring->nr_hwcur = nm_i; 1115 1116 /* synchronize the NIC ring */ 1117 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 1118 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1119 1120 /* (re)start the tx unit up to slot nic_i (excluded) */ 1121 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i); 1122 } 1123 1124 /* 1125 * Second part: reclaim buffers for completed transmissions. 1126 * 1127 * If there are unclaimed buffers, attempt to reclaim them. 1128 * If we don't manage to reclaim them all, and TX IRQs are not in use, 1129 * trigger a per-tx-queue timer to try again later. 1130 */ 1131 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { 1132 if (iflib_tx_credits_update(ctx, txq)) { 1133 /* some tx completed, increment avail */ 1134 nic_i = txq->ift_cidx_processed; 1135 kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim); 1136 } 1137 } 1138 1139 if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) 1140 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { 1141 callout_reset_sbt_on(&txq->ift_netmap_timer, 1142 NETMAP_TX_TIMER_US * SBT_1US, SBT_1US, 1143 iflib_netmap_timer, txq, 1144 txq->ift_netmap_timer.c_cpu, 0); 1145 } 1146 1147 if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes); 1148 if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts); 1149 1150 return (0); 1151 } 1152 1153 /* 1154 * Reconcile kernel and user view of the receive ring. 1155 * Same as for the txsync, this routine must be efficient. 1156 * The caller guarantees a single invocations, but races against 1157 * the rest of the driver should be handled here. 1158 * 1159 * On call, kring->rhead is the first packet that userspace wants 1160 * to keep, and kring->rcur is the wakeup point. 1161 * The kernel has previously reported packets up to kring->rtail. 1162 * 1163 * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective 1164 * of whether or not we received an interrupt. 1165 */ 1166 static int 1167 iflib_netmap_rxsync(struct netmap_kring *kring, int flags) 1168 { 1169 struct netmap_adapter *na = kring->na; 1170 struct netmap_ring *ring = kring->ring; 1171 if_t ifp = na->ifp; 1172 uint32_t nm_i; /* index into the netmap ring */ 1173 uint32_t nic_i; /* index into the NIC ring */ 1174 u_int n; 1175 u_int const lim = kring->nkr_num_slots - 1; 1176 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 1177 int i = 0, rx_bytes = 0, rx_pkts = 0; 1178 1179 if_ctx_t ctx = if_getsoftc(ifp); 1180 if_shared_ctx_t sctx = ctx->ifc_sctx; 1181 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1182 iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id]; 1183 iflib_fl_t fl = &rxq->ifr_fl[0]; 1184 struct if_rxd_info ri; 1185 qidx_t *cidxp; 1186 1187 /* 1188 * netmap only uses free list 0, to avoid out of order consumption 1189 * of receive buffers 1190 */ 1191 1192 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 1193 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1194 1195 /* 1196 * First part: import newly received packets. 1197 * 1198 * nm_i is the index of the next free slot in the netmap ring, 1199 * nic_i is the index of the next received packet in the NIC ring 1200 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may 1201 * differ in case if_init() has been called while 1202 * in netmap mode. For the receive ring we have 1203 * 1204 * nic_i = fl->ifl_cidx; 1205 * nm_i = kring->nr_hwtail (previous) 1206 * and 1207 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size 1208 * 1209 * fl->ifl_cidx is set to 0 on a ring reinit 1210 */ 1211 if (netmap_no_pendintr || force_update) { 1212 uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim); 1213 bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ; 1214 int crclen = iflib_crcstrip ? 0 : 4; 1215 int error, avail; 1216 1217 /* 1218 * For the free list consumer index, we use the same 1219 * logic as in iflib_rxeof(). 1220 */ 1221 if (have_rxcq) 1222 cidxp = &rxq->ifr_cq_cidx; 1223 else 1224 cidxp = &fl->ifl_cidx; 1225 avail = ctx->isc_rxd_available(ctx->ifc_softc, 1226 rxq->ifr_id, *cidxp, USHRT_MAX); 1227 1228 nic_i = fl->ifl_cidx; 1229 nm_i = netmap_idx_n2k(kring, nic_i); 1230 MPASS(nm_i == kring->nr_hwtail); 1231 for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) { 1232 rxd_info_zero(&ri); 1233 ri.iri_frags = rxq->ifr_frags; 1234 ri.iri_qsidx = kring->ring_id; 1235 ri.iri_ifp = ctx->ifc_ifp; 1236 ri.iri_cidx = *cidxp; 1237 1238 error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); 1239 for (i = 0; i < ri.iri_nfrags; i++) { 1240 if (error) { 1241 ring->slot[nm_i].len = 0; 1242 ring->slot[nm_i].flags = 0; 1243 } else { 1244 ring->slot[nm_i].len = ri.iri_frags[i].irf_len; 1245 if (i == (ri.iri_nfrags - 1)) { 1246 ring->slot[nm_i].len -= crclen; 1247 ring->slot[nm_i].flags = 0; 1248 1249 /* Update receive counters */ 1250 rx_bytes += ri.iri_len; 1251 rx_pkts++; 1252 } else 1253 ring->slot[nm_i].flags = NS_MOREFRAG; 1254 } 1255 1256 bus_dmamap_sync(fl->ifl_buf_tag, 1257 fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD); 1258 nm_i = nm_next(nm_i, lim); 1259 fl->ifl_cidx = nic_i = nm_next(nic_i, lim); 1260 } 1261 1262 if (have_rxcq) { 1263 *cidxp = ri.iri_cidx; 1264 while (*cidxp >= scctx->isc_nrxd[0]) 1265 *cidxp -= scctx->isc_nrxd[0]; 1266 } 1267 1268 } 1269 if (n) { /* update the state variables */ 1270 if (netmap_no_pendintr && !force_update) { 1271 /* diagnostics */ 1272 iflib_rx_miss++; 1273 iflib_rx_miss_bufs += n; 1274 } 1275 kring->nr_hwtail = nm_i; 1276 } 1277 kring->nr_kflags &= ~NKR_PENDINTR; 1278 } 1279 /* 1280 * Second part: skip past packets that userspace has released. 1281 * (kring->nr_hwcur to head excluded), 1282 * and make the buffers available for reception. 1283 * As usual nm_i is the index in the netmap ring, 1284 * nic_i is the index in the NIC ring, and 1285 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size 1286 */ 1287 netmap_fl_refill(rxq, kring, false); 1288 1289 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); 1290 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); 1291 1292 return (0); 1293 } 1294 1295 static void 1296 iflib_netmap_intr(struct netmap_adapter *na, int onoff) 1297 { 1298 if_ctx_t ctx = if_getsoftc(na->ifp); 1299 1300 CTX_LOCK(ctx); 1301 if (onoff) { 1302 IFDI_INTR_ENABLE(ctx); 1303 } else { 1304 IFDI_INTR_DISABLE(ctx); 1305 } 1306 CTX_UNLOCK(ctx); 1307 } 1308 1309 static int 1310 iflib_netmap_attach(if_ctx_t ctx) 1311 { 1312 struct netmap_adapter na; 1313 1314 bzero(&na, sizeof(na)); 1315 1316 na.ifp = ctx->ifc_ifp; 1317 na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS; 1318 MPASS(ctx->ifc_softc_ctx.isc_ntxqsets); 1319 MPASS(ctx->ifc_softc_ctx.isc_nrxqsets); 1320 1321 na.num_tx_desc = iflib_num_tx_descs(ctx); 1322 na.num_rx_desc = iflib_num_rx_descs(ctx); 1323 na.nm_txsync = iflib_netmap_txsync; 1324 na.nm_rxsync = iflib_netmap_rxsync; 1325 na.nm_register = iflib_netmap_register; 1326 na.nm_intr = iflib_netmap_intr; 1327 na.nm_config = iflib_netmap_config; 1328 na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; 1329 na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; 1330 return (netmap_attach(&na)); 1331 } 1332 1333 static int 1334 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq) 1335 { 1336 struct netmap_adapter *na = NA(ctx->ifc_ifp); 1337 struct netmap_slot *slot; 1338 1339 slot = netmap_reset(na, NR_TX, txq->ift_id, 0); 1340 if (slot == NULL) 1341 return (0); 1342 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) { 1343 /* 1344 * In netmap mode, set the map for the packet buffer. 1345 * NOTE: Some drivers (not this one) also need to set 1346 * the physical buffer address in the NIC ring. 1347 * netmap_idx_n2k() maps a nic index, i, into the corresponding 1348 * netmap slot index, si 1349 */ 1350 int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i); 1351 netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], 1352 NMB(na, slot + si)); 1353 } 1354 return (1); 1355 } 1356 1357 static int 1358 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq) 1359 { 1360 struct netmap_adapter *na = NA(ctx->ifc_ifp); 1361 struct netmap_kring *kring; 1362 struct netmap_slot *slot; 1363 1364 slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0); 1365 if (slot == NULL) 1366 return (0); 1367 kring = na->rx_rings[rxq->ifr_id]; 1368 netmap_fl_refill(rxq, kring, true); 1369 return (1); 1370 } 1371 1372 static void 1373 iflib_netmap_timer(void *arg) 1374 { 1375 iflib_txq_t txq = arg; 1376 if_ctx_t ctx = txq->ift_ctx; 1377 1378 /* 1379 * Wake up the netmap application, to give it a chance to 1380 * call txsync and reclaim more completed TX buffers. 1381 */ 1382 netmap_tx_irq(ctx->ifc_ifp, txq->ift_id); 1383 } 1384 1385 #define iflib_netmap_detach(ifp) netmap_detach(ifp) 1386 1387 #else 1388 #define iflib_netmap_txq_init(ctx, txq) (0) 1389 #define iflib_netmap_rxq_init(ctx, rxq) (0) 1390 #define iflib_netmap_detach(ifp) 1391 #define netmap_enable_all_rings(ifp) 1392 #define netmap_disable_all_rings(ifp) 1393 1394 #define iflib_netmap_attach(ctx) (0) 1395 #define netmap_rx_irq(ifp, qid, budget) (0) 1396 #endif 1397 1398 #if defined(__i386__) || defined(__amd64__) 1399 static __inline void 1400 prefetch(void *x) 1401 { 1402 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 1403 } 1404 1405 static __inline void 1406 prefetch2cachelines(void *x) 1407 { 1408 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 1409 #if (CACHE_LINE_SIZE < 128) 1410 __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long))))); 1411 #endif 1412 } 1413 #else 1414 static __inline void 1415 prefetch(void *x) 1416 { 1417 } 1418 1419 static __inline void 1420 prefetch2cachelines(void *x) 1421 { 1422 } 1423 #endif 1424 1425 static void 1426 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid) 1427 { 1428 iflib_fl_t fl; 1429 1430 fl = &rxq->ifr_fl[flid]; 1431 iru->iru_paddrs = fl->ifl_bus_addrs; 1432 iru->iru_idxs = fl->ifl_rxd_idxs; 1433 iru->iru_qsidx = rxq->ifr_id; 1434 iru->iru_buf_size = fl->ifl_buf_size; 1435 iru->iru_flidx = fl->ifl_id; 1436 } 1437 1438 static void 1439 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) 1440 { 1441 if (err) 1442 return; 1443 *(bus_addr_t *) arg = segs[0].ds_addr; 1444 } 1445 1446 #define DMA_WIDTH_TO_BUS_LOWADDR(width) \ 1447 (((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ? \ 1448 BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL) 1449 1450 int 1451 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags) 1452 { 1453 int err; 1454 device_t dev = ctx->ifc_dev; 1455 bus_addr_t lowaddr; 1456 1457 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width); 1458 1459 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1460 align, 0, /* alignment, bounds */ 1461 lowaddr, /* lowaddr */ 1462 BUS_SPACE_MAXADDR, /* highaddr */ 1463 NULL, NULL, /* filter, filterarg */ 1464 size, /* maxsize */ 1465 1, /* nsegments */ 1466 size, /* maxsegsize */ 1467 BUS_DMA_ALLOCNOW, /* flags */ 1468 NULL, /* lockfunc */ 1469 NULL, /* lockarg */ 1470 &dma->idi_tag); 1471 if (err) { 1472 device_printf(dev, 1473 "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n", 1474 __func__, err, size, align); 1475 goto fail_0; 1476 } 1477 1478 err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr, 1479 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map); 1480 if (err) { 1481 device_printf(dev, 1482 "%s: bus_dmamem_alloc(%ju) failed: %d\n", 1483 __func__, (uintmax_t)size, err); 1484 goto fail_1; 1485 } 1486 1487 dma->idi_paddr = IF_BAD_DMA; 1488 err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr, 1489 size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT); 1490 if (err || dma->idi_paddr == IF_BAD_DMA) { 1491 device_printf(dev, 1492 "%s: bus_dmamap_load failed: %d\n", 1493 __func__, err); 1494 goto fail_2; 1495 } 1496 1497 dma->idi_size = size; 1498 return (0); 1499 1500 fail_2: 1501 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); 1502 fail_1: 1503 bus_dma_tag_destroy(dma->idi_tag); 1504 fail_0: 1505 dma->idi_tag = NULL; 1506 1507 return (err); 1508 } 1509 1510 int 1511 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags) 1512 { 1513 if_shared_ctx_t sctx = ctx->ifc_sctx; 1514 1515 KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized")); 1516 1517 return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags)); 1518 } 1519 1520 int 1521 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count) 1522 { 1523 int i, err; 1524 iflib_dma_info_t *dmaiter; 1525 1526 dmaiter = dmalist; 1527 for (i = 0; i < count; i++, dmaiter++) { 1528 if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0) 1529 break; 1530 } 1531 if (err) 1532 iflib_dma_free_multi(dmalist, i); 1533 return (err); 1534 } 1535 1536 void 1537 iflib_dma_free(iflib_dma_info_t dma) 1538 { 1539 if (dma->idi_tag == NULL) 1540 return; 1541 if (dma->idi_paddr != IF_BAD_DMA) { 1542 bus_dmamap_sync(dma->idi_tag, dma->idi_map, 1543 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1544 bus_dmamap_unload(dma->idi_tag, dma->idi_map); 1545 dma->idi_paddr = IF_BAD_DMA; 1546 } 1547 if (dma->idi_vaddr != NULL) { 1548 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); 1549 dma->idi_vaddr = NULL; 1550 } 1551 bus_dma_tag_destroy(dma->idi_tag); 1552 dma->idi_tag = NULL; 1553 } 1554 1555 void 1556 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count) 1557 { 1558 int i; 1559 iflib_dma_info_t *dmaiter = dmalist; 1560 1561 for (i = 0; i < count; i++, dmaiter++) 1562 iflib_dma_free(*dmaiter); 1563 } 1564 1565 static int 1566 iflib_fast_intr(void *arg) 1567 { 1568 iflib_filter_info_t info = arg; 1569 struct grouptask *gtask = info->ifi_task; 1570 int result; 1571 1572 DBG_COUNTER_INC(fast_intrs); 1573 if (info->ifi_filter != NULL) { 1574 result = info->ifi_filter(info->ifi_filter_arg); 1575 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1576 return (result); 1577 } 1578 1579 GROUPTASK_ENQUEUE(gtask); 1580 return (FILTER_HANDLED); 1581 } 1582 1583 static int 1584 iflib_fast_intr_rxtx(void *arg) 1585 { 1586 iflib_filter_info_t info = arg; 1587 struct grouptask *gtask = info->ifi_task; 1588 if_ctx_t ctx; 1589 iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx; 1590 iflib_txq_t txq; 1591 void *sc; 1592 int i, cidx, result; 1593 qidx_t txqid; 1594 bool intr_enable, intr_legacy; 1595 1596 DBG_COUNTER_INC(fast_intrs); 1597 if (info->ifi_filter != NULL) { 1598 result = info->ifi_filter(info->ifi_filter_arg); 1599 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1600 return (result); 1601 } 1602 1603 ctx = rxq->ifr_ctx; 1604 sc = ctx->ifc_softc; 1605 intr_enable = false; 1606 intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY); 1607 MPASS(rxq->ifr_ntxqirq); 1608 for (i = 0; i < rxq->ifr_ntxqirq; i++) { 1609 txqid = rxq->ifr_txqid[i]; 1610 txq = &ctx->ifc_txqs[txqid]; 1611 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 1612 BUS_DMASYNC_POSTREAD); 1613 if (!ctx->isc_txd_credits_update(sc, txqid, false)) { 1614 if (intr_legacy) 1615 intr_enable = true; 1616 else 1617 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid); 1618 continue; 1619 } 1620 GROUPTASK_ENQUEUE(&txq->ift_task); 1621 } 1622 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ) 1623 cidx = rxq->ifr_cq_cidx; 1624 else 1625 cidx = rxq->ifr_fl[0].ifl_cidx; 1626 if (iflib_rxd_avail(ctx, rxq, cidx, 1)) 1627 GROUPTASK_ENQUEUE(gtask); 1628 else { 1629 if (intr_legacy) 1630 intr_enable = true; 1631 else 1632 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); 1633 DBG_COUNTER_INC(rx_intr_enables); 1634 } 1635 if (intr_enable) 1636 IFDI_INTR_ENABLE(ctx); 1637 return (FILTER_HANDLED); 1638 } 1639 1640 static int 1641 iflib_fast_intr_ctx(void *arg) 1642 { 1643 iflib_filter_info_t info = arg; 1644 if_ctx_t ctx = info->ifi_ctx; 1645 int result; 1646 1647 DBG_COUNTER_INC(fast_intrs); 1648 if (info->ifi_filter != NULL) { 1649 result = info->ifi_filter(info->ifi_filter_arg); 1650 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1651 return (result); 1652 } 1653 1654 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task); 1655 return (FILTER_HANDLED); 1656 } 1657 1658 static int 1659 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, 1660 driver_filter_t filter, driver_intr_t handler, void *arg, 1661 const char *name) 1662 { 1663 struct resource *res; 1664 void *tag = NULL; 1665 device_t dev = ctx->ifc_dev; 1666 int flags, i, rc; 1667 1668 flags = RF_ACTIVE; 1669 if (ctx->ifc_flags & IFC_LEGACY) 1670 flags |= RF_SHAREABLE; 1671 MPASS(rid < 512); 1672 i = rid; 1673 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags); 1674 if (res == NULL) { 1675 device_printf(dev, 1676 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 1677 return (ENOMEM); 1678 } 1679 irq->ii_res = res; 1680 KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL")); 1681 rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET, 1682 filter, handler, arg, &tag); 1683 if (rc != 0) { 1684 device_printf(dev, 1685 "failed to setup interrupt for rid %d, name %s: %d\n", 1686 rid, name ? name : "unknown", rc); 1687 return (rc); 1688 } else if (name) 1689 bus_describe_intr(dev, res, tag, "%s", name); 1690 1691 irq->ii_tag = tag; 1692 return (0); 1693 } 1694 1695 /********************************************************************* 1696 * 1697 * Allocate DMA resources for TX buffers as well as memory for the TX 1698 * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a 1699 * iflib_sw_tx_desc_array structure, storing all the information that 1700 * is needed to transmit a packet on the wire. This is called only 1701 * once at attach, setup is done every reset. 1702 * 1703 **********************************************************************/ 1704 static int 1705 iflib_txsd_alloc(iflib_txq_t txq) 1706 { 1707 if_ctx_t ctx = txq->ift_ctx; 1708 if_shared_ctx_t sctx = ctx->ifc_sctx; 1709 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1710 device_t dev = ctx->ifc_dev; 1711 bus_size_t tsomaxsize; 1712 bus_addr_t lowaddr; 1713 int err, nsegments, ntsosegments; 1714 bool tso; 1715 1716 nsegments = scctx->isc_tx_nsegments; 1717 ntsosegments = scctx->isc_tx_tso_segments_max; 1718 tsomaxsize = scctx->isc_tx_tso_size_max; 1719 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU) 1720 tsomaxsize += sizeof(struct ether_vlan_header); 1721 MPASS(scctx->isc_ntxd[0] > 0); 1722 MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0); 1723 MPASS(nsegments > 0); 1724 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) { 1725 MPASS(ntsosegments > 0); 1726 MPASS(sctx->isc_tso_maxsize >= tsomaxsize); 1727 } 1728 1729 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width); 1730 1731 /* 1732 * Set up DMA tags for TX buffers. 1733 */ 1734 if ((err = bus_dma_tag_create(bus_get_dma_tag(dev), 1735 1, 0, /* alignment, bounds */ 1736 lowaddr, /* lowaddr */ 1737 BUS_SPACE_MAXADDR, /* highaddr */ 1738 NULL, NULL, /* filter, filterarg */ 1739 sctx->isc_tx_maxsize, /* maxsize */ 1740 nsegments, /* nsegments */ 1741 sctx->isc_tx_maxsegsize, /* maxsegsize */ 1742 0, /* flags */ 1743 NULL, /* lockfunc */ 1744 NULL, /* lockfuncarg */ 1745 &txq->ift_buf_tag))) { 1746 device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err); 1747 device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n", 1748 (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize); 1749 goto fail; 1750 } 1751 tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0; 1752 if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev), 1753 1, 0, /* alignment, bounds */ 1754 lowaddr, /* lowaddr */ 1755 BUS_SPACE_MAXADDR, /* highaddr */ 1756 NULL, NULL, /* filter, filterarg */ 1757 tsomaxsize, /* maxsize */ 1758 ntsosegments, /* nsegments */ 1759 sctx->isc_tso_maxsegsize,/* maxsegsize */ 1760 0, /* flags */ 1761 NULL, /* lockfunc */ 1762 NULL, /* lockfuncarg */ 1763 &txq->ift_tso_buf_tag))) { 1764 device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n", 1765 err); 1766 goto fail; 1767 } 1768 1769 /* Allocate memory for the TX mbuf map. */ 1770 if (!(txq->ift_sds.ifsd_m = 1771 (struct mbuf **) malloc(sizeof(struct mbuf *) * 1772 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1773 device_printf(dev, "Unable to allocate TX mbuf map memory\n"); 1774 err = ENOMEM; 1775 goto fail; 1776 } 1777 1778 /* 1779 * Create the DMA maps for TX buffers. 1780 */ 1781 if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc( 1782 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], 1783 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 1784 device_printf(dev, 1785 "Unable to allocate TX buffer DMA map memory\n"); 1786 err = ENOMEM; 1787 goto fail; 1788 } 1789 if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc( 1790 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], 1791 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 1792 device_printf(dev, 1793 "Unable to allocate TSO TX buffer map memory\n"); 1794 err = ENOMEM; 1795 goto fail; 1796 } 1797 for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) { 1798 err = bus_dmamap_create(txq->ift_buf_tag, 0, 1799 &txq->ift_sds.ifsd_map[i]); 1800 if (err != 0) { 1801 device_printf(dev, "Unable to create TX DMA map\n"); 1802 goto fail; 1803 } 1804 if (!tso) 1805 continue; 1806 err = bus_dmamap_create(txq->ift_tso_buf_tag, 0, 1807 &txq->ift_sds.ifsd_tso_map[i]); 1808 if (err != 0) { 1809 device_printf(dev, "Unable to create TSO TX DMA map\n"); 1810 goto fail; 1811 } 1812 } 1813 return (0); 1814 fail: 1815 /* We free all, it handles case where we are in the middle */ 1816 iflib_tx_structures_free(ctx); 1817 return (err); 1818 } 1819 1820 static void 1821 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i) 1822 { 1823 bus_dmamap_t map; 1824 1825 if (txq->ift_sds.ifsd_map != NULL) { 1826 map = txq->ift_sds.ifsd_map[i]; 1827 bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE); 1828 bus_dmamap_unload(txq->ift_buf_tag, map); 1829 bus_dmamap_destroy(txq->ift_buf_tag, map); 1830 txq->ift_sds.ifsd_map[i] = NULL; 1831 } 1832 1833 if (txq->ift_sds.ifsd_tso_map != NULL) { 1834 map = txq->ift_sds.ifsd_tso_map[i]; 1835 bus_dmamap_sync(txq->ift_tso_buf_tag, map, 1836 BUS_DMASYNC_POSTWRITE); 1837 bus_dmamap_unload(txq->ift_tso_buf_tag, map); 1838 bus_dmamap_destroy(txq->ift_tso_buf_tag, map); 1839 txq->ift_sds.ifsd_tso_map[i] = NULL; 1840 } 1841 } 1842 1843 static void 1844 iflib_txq_destroy(iflib_txq_t txq) 1845 { 1846 if_ctx_t ctx = txq->ift_ctx; 1847 1848 for (int i = 0; i < txq->ift_size; i++) 1849 iflib_txsd_destroy(ctx, txq, i); 1850 1851 if (txq->ift_br != NULL) { 1852 ifmp_ring_free(txq->ift_br); 1853 txq->ift_br = NULL; 1854 } 1855 1856 mtx_destroy(&txq->ift_mtx); 1857 1858 if (txq->ift_sds.ifsd_map != NULL) { 1859 free(txq->ift_sds.ifsd_map, M_IFLIB); 1860 txq->ift_sds.ifsd_map = NULL; 1861 } 1862 if (txq->ift_sds.ifsd_tso_map != NULL) { 1863 free(txq->ift_sds.ifsd_tso_map, M_IFLIB); 1864 txq->ift_sds.ifsd_tso_map = NULL; 1865 } 1866 if (txq->ift_sds.ifsd_m != NULL) { 1867 free(txq->ift_sds.ifsd_m, M_IFLIB); 1868 txq->ift_sds.ifsd_m = NULL; 1869 } 1870 if (txq->ift_buf_tag != NULL) { 1871 bus_dma_tag_destroy(txq->ift_buf_tag); 1872 txq->ift_buf_tag = NULL; 1873 } 1874 if (txq->ift_tso_buf_tag != NULL) { 1875 bus_dma_tag_destroy(txq->ift_tso_buf_tag); 1876 txq->ift_tso_buf_tag = NULL; 1877 } 1878 if (txq->ift_ifdi != NULL) { 1879 free(txq->ift_ifdi, M_IFLIB); 1880 } 1881 } 1882 1883 static void 1884 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i) 1885 { 1886 struct mbuf **mp; 1887 1888 mp = &txq->ift_sds.ifsd_m[i]; 1889 if (*mp == NULL) 1890 return; 1891 1892 if (txq->ift_sds.ifsd_map != NULL) { 1893 bus_dmamap_sync(txq->ift_buf_tag, 1894 txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE); 1895 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]); 1896 } 1897 if (txq->ift_sds.ifsd_tso_map != NULL) { 1898 bus_dmamap_sync(txq->ift_tso_buf_tag, 1899 txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE); 1900 bus_dmamap_unload(txq->ift_tso_buf_tag, 1901 txq->ift_sds.ifsd_tso_map[i]); 1902 } 1903 m_freem(*mp); 1904 DBG_COUNTER_INC(tx_frees); 1905 *mp = NULL; 1906 } 1907 1908 static int 1909 iflib_txq_setup(iflib_txq_t txq) 1910 { 1911 if_ctx_t ctx = txq->ift_ctx; 1912 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1913 if_shared_ctx_t sctx = ctx->ifc_sctx; 1914 iflib_dma_info_t di; 1915 int i; 1916 1917 /* Set number of descriptors available */ 1918 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 1919 /* XXX make configurable */ 1920 txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ; 1921 1922 /* Reset indices */ 1923 txq->ift_cidx_processed = 0; 1924 txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0; 1925 txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset]; 1926 1927 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) 1928 bzero((void *)di->idi_vaddr, di->idi_size); 1929 1930 IFDI_TXQ_SETUP(ctx, txq->ift_id); 1931 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) 1932 bus_dmamap_sync(di->idi_tag, di->idi_map, 1933 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1934 return (0); 1935 } 1936 1937 /********************************************************************* 1938 * 1939 * Allocate DMA resources for RX buffers as well as memory for the RX 1940 * mbuf map, direct RX cluster pointer map and RX cluster bus address 1941 * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and 1942 * RX cluster map are kept in a iflib_sw_rx_desc_array structure. 1943 * Since we use use one entry in iflib_sw_rx_desc_array per received 1944 * packet, the maximum number of entries we'll need is equal to the 1945 * number of hardware receive descriptors that we've allocated. 1946 * 1947 **********************************************************************/ 1948 static int 1949 iflib_rxsd_alloc(iflib_rxq_t rxq) 1950 { 1951 if_ctx_t ctx = rxq->ifr_ctx; 1952 if_shared_ctx_t sctx = ctx->ifc_sctx; 1953 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1954 device_t dev = ctx->ifc_dev; 1955 iflib_fl_t fl; 1956 bus_addr_t lowaddr; 1957 int err; 1958 1959 MPASS(scctx->isc_nrxd[0] > 0); 1960 MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0); 1961 1962 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width); 1963 1964 fl = rxq->ifr_fl; 1965 for (int i = 0; i < rxq->ifr_nfl; i++, fl++) { 1966 fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */ 1967 /* Set up DMA tag for RX buffers. */ 1968 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1969 1, 0, /* alignment, bounds */ 1970 lowaddr, /* lowaddr */ 1971 BUS_SPACE_MAXADDR, /* highaddr */ 1972 NULL, NULL, /* filter, filterarg */ 1973 sctx->isc_rx_maxsize, /* maxsize */ 1974 sctx->isc_rx_nsegments, /* nsegments */ 1975 sctx->isc_rx_maxsegsize, /* maxsegsize */ 1976 0, /* flags */ 1977 NULL, /* lockfunc */ 1978 NULL, /* lockarg */ 1979 &fl->ifl_buf_tag); 1980 if (err) { 1981 device_printf(dev, 1982 "Unable to allocate RX DMA tag: %d\n", err); 1983 goto fail; 1984 } 1985 1986 /* Allocate memory for the RX mbuf map. */ 1987 if (!(fl->ifl_sds.ifsd_m = 1988 (struct mbuf **) malloc(sizeof(struct mbuf *) * 1989 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1990 device_printf(dev, 1991 "Unable to allocate RX mbuf map memory\n"); 1992 err = ENOMEM; 1993 goto fail; 1994 } 1995 1996 /* Allocate memory for the direct RX cluster pointer map. */ 1997 if (!(fl->ifl_sds.ifsd_cl = 1998 (caddr_t *) malloc(sizeof(caddr_t) * 1999 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 2000 device_printf(dev, 2001 "Unable to allocate RX cluster map memory\n"); 2002 err = ENOMEM; 2003 goto fail; 2004 } 2005 2006 /* Allocate memory for the RX cluster bus address map. */ 2007 if (!(fl->ifl_sds.ifsd_ba = 2008 (bus_addr_t *) malloc(sizeof(bus_addr_t) * 2009 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 2010 device_printf(dev, 2011 "Unable to allocate RX bus address map memory\n"); 2012 err = ENOMEM; 2013 goto fail; 2014 } 2015 2016 /* 2017 * Create the DMA maps for RX buffers. 2018 */ 2019 if (!(fl->ifl_sds.ifsd_map = 2020 (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 2021 device_printf(dev, 2022 "Unable to allocate RX buffer DMA map memory\n"); 2023 err = ENOMEM; 2024 goto fail; 2025 } 2026 for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) { 2027 err = bus_dmamap_create(fl->ifl_buf_tag, 0, 2028 &fl->ifl_sds.ifsd_map[i]); 2029 if (err != 0) { 2030 device_printf(dev, "Unable to create RX buffer DMA map\n"); 2031 goto fail; 2032 } 2033 } 2034 } 2035 return (0); 2036 2037 fail: 2038 iflib_rx_structures_free(ctx); 2039 return (err); 2040 } 2041 2042 /* 2043 * Internal service routines 2044 */ 2045 2046 struct rxq_refill_cb_arg { 2047 int error; 2048 bus_dma_segment_t seg; 2049 int nseg; 2050 }; 2051 2052 static void 2053 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2054 { 2055 struct rxq_refill_cb_arg *cb_arg = arg; 2056 2057 cb_arg->error = error; 2058 cb_arg->seg = segs[0]; 2059 cb_arg->nseg = nseg; 2060 } 2061 2062 /** 2063 * iflib_fl_refill - refill an rxq free-buffer list 2064 * @ctx: the iflib context 2065 * @fl: the free list to refill 2066 * @count: the number of new buffers to allocate 2067 * 2068 * (Re)populate an rxq free-buffer list with up to @count new packet buffers. 2069 * The caller must assure that @count does not exceed the queue's capacity 2070 * minus one (since we always leave a descriptor unavailable). 2071 */ 2072 static uint8_t 2073 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count) 2074 { 2075 struct if_rxd_update iru; 2076 struct rxq_refill_cb_arg cb_arg; 2077 struct mbuf *m; 2078 caddr_t cl, *sd_cl; 2079 struct mbuf **sd_m; 2080 bus_dmamap_t *sd_map; 2081 bus_addr_t bus_addr, *sd_ba; 2082 int err, frag_idx, i, idx, n, pidx; 2083 qidx_t credits; 2084 2085 MPASS(count <= fl->ifl_size - fl->ifl_credits - 1); 2086 2087 sd_m = fl->ifl_sds.ifsd_m; 2088 sd_map = fl->ifl_sds.ifsd_map; 2089 sd_cl = fl->ifl_sds.ifsd_cl; 2090 sd_ba = fl->ifl_sds.ifsd_ba; 2091 pidx = fl->ifl_pidx; 2092 idx = pidx; 2093 frag_idx = fl->ifl_fragidx; 2094 credits = fl->ifl_credits; 2095 2096 i = 0; 2097 n = count; 2098 MPASS(n > 0); 2099 MPASS(credits + n <= fl->ifl_size); 2100 2101 if (pidx < fl->ifl_cidx) 2102 MPASS(pidx + n <= fl->ifl_cidx); 2103 if (pidx == fl->ifl_cidx && (credits < fl->ifl_size)) 2104 MPASS(fl->ifl_gen == 0); 2105 if (pidx > fl->ifl_cidx) 2106 MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx); 2107 2108 DBG_COUNTER_INC(fl_refills); 2109 if (n > 8) 2110 DBG_COUNTER_INC(fl_refills_large); 2111 iru_init(&iru, fl->ifl_rxq, fl->ifl_id); 2112 while (n-- > 0) { 2113 /* 2114 * We allocate an uninitialized mbuf + cluster, mbuf is 2115 * initialized after rx. 2116 * 2117 * If the cluster is still set then we know a minimum sized 2118 * packet was received 2119 */ 2120 bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size, 2121 &frag_idx); 2122 if (frag_idx < 0) 2123 bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx); 2124 MPASS(frag_idx >= 0); 2125 if ((cl = sd_cl[frag_idx]) == NULL) { 2126 cl = uma_zalloc(fl->ifl_zone, M_NOWAIT); 2127 if (__predict_false(cl == NULL)) 2128 break; 2129 2130 cb_arg.error = 0; 2131 MPASS(sd_map != NULL); 2132 err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx], 2133 cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg, 2134 BUS_DMA_NOWAIT); 2135 if (__predict_false(err != 0 || cb_arg.error)) { 2136 uma_zfree(fl->ifl_zone, cl); 2137 break; 2138 } 2139 2140 sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr; 2141 sd_cl[frag_idx] = cl; 2142 #if MEMORY_LOGGING 2143 fl->ifl_cl_enqueued++; 2144 #endif 2145 } else { 2146 bus_addr = sd_ba[frag_idx]; 2147 } 2148 bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx], 2149 BUS_DMASYNC_PREREAD); 2150 2151 if (sd_m[frag_idx] == NULL) { 2152 m = m_gethdr_raw(M_NOWAIT, 0); 2153 if (__predict_false(m == NULL)) 2154 break; 2155 sd_m[frag_idx] = m; 2156 } 2157 bit_set(fl->ifl_rx_bitmap, frag_idx); 2158 #if MEMORY_LOGGING 2159 fl->ifl_m_enqueued++; 2160 #endif 2161 2162 DBG_COUNTER_INC(rx_allocs); 2163 fl->ifl_rxd_idxs[i] = frag_idx; 2164 fl->ifl_bus_addrs[i] = bus_addr; 2165 credits++; 2166 i++; 2167 MPASS(credits <= fl->ifl_size); 2168 if (++idx == fl->ifl_size) { 2169 #ifdef INVARIANTS 2170 fl->ifl_gen = 1; 2171 #endif 2172 idx = 0; 2173 } 2174 if (n == 0 || i == IFLIB_MAX_RX_REFRESH) { 2175 iru.iru_pidx = pidx; 2176 iru.iru_count = i; 2177 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 2178 fl->ifl_pidx = idx; 2179 fl->ifl_credits = credits; 2180 pidx = idx; 2181 i = 0; 2182 } 2183 } 2184 2185 if (n < count - 1) { 2186 if (i != 0) { 2187 iru.iru_pidx = pidx; 2188 iru.iru_count = i; 2189 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 2190 fl->ifl_pidx = idx; 2191 fl->ifl_credits = credits; 2192 } 2193 DBG_COUNTER_INC(rxd_flush); 2194 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 2195 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2196 ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, 2197 fl->ifl_id, fl->ifl_pidx); 2198 if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) { 2199 fl->ifl_fragidx = frag_idx + 1; 2200 if (fl->ifl_fragidx == fl->ifl_size) 2201 fl->ifl_fragidx = 0; 2202 } else { 2203 fl->ifl_fragidx = frag_idx; 2204 } 2205 } 2206 2207 return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY); 2208 } 2209 2210 static inline uint8_t 2211 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl) 2212 { 2213 /* 2214 * We leave an unused descriptor to avoid pidx to catch up with cidx. 2215 * This is important as it confuses most NICs. For instance, 2216 * Intel NICs have (per receive ring) RDH and RDT registers, where 2217 * RDH points to the next receive descriptor to be used by the NIC, 2218 * and RDT for the next receive descriptor to be published by the 2219 * driver to the NIC (RDT - 1 is thus the last valid one). 2220 * The condition RDH == RDT means no descriptors are available to 2221 * the NIC, and thus it would be ambiguous if it also meant that 2222 * all the descriptors are available to the NIC. 2223 */ 2224 int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1; 2225 #ifdef INVARIANTS 2226 int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1; 2227 #endif 2228 2229 MPASS(fl->ifl_credits <= fl->ifl_size); 2230 MPASS(reclaimable == delta); 2231 2232 if (reclaimable > 0) 2233 return (iflib_fl_refill(ctx, fl, reclaimable)); 2234 return (0); 2235 } 2236 2237 uint8_t 2238 iflib_in_detach(if_ctx_t ctx) 2239 { 2240 bool in_detach; 2241 2242 STATE_LOCK(ctx); 2243 in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH); 2244 STATE_UNLOCK(ctx); 2245 return (in_detach); 2246 } 2247 2248 static void 2249 iflib_fl_bufs_free(iflib_fl_t fl) 2250 { 2251 iflib_dma_info_t idi = fl->ifl_ifdi; 2252 bus_dmamap_t sd_map; 2253 uint32_t i; 2254 2255 for (i = 0; i < fl->ifl_size; i++) { 2256 struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i]; 2257 caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i]; 2258 2259 if (*sd_cl != NULL) { 2260 sd_map = fl->ifl_sds.ifsd_map[i]; 2261 bus_dmamap_sync(fl->ifl_buf_tag, sd_map, 2262 BUS_DMASYNC_POSTREAD); 2263 bus_dmamap_unload(fl->ifl_buf_tag, sd_map); 2264 uma_zfree(fl->ifl_zone, *sd_cl); 2265 *sd_cl = NULL; 2266 if (*sd_m != NULL) { 2267 m_init(*sd_m, M_NOWAIT, MT_DATA, 0); 2268 m_free_raw(*sd_m); 2269 *sd_m = NULL; 2270 } 2271 } else { 2272 MPASS(*sd_m == NULL); 2273 } 2274 #if MEMORY_LOGGING 2275 fl->ifl_m_dequeued++; 2276 fl->ifl_cl_dequeued++; 2277 #endif 2278 } 2279 #ifdef INVARIANTS 2280 for (i = 0; i < fl->ifl_size; i++) { 2281 MPASS(fl->ifl_sds.ifsd_cl[i] == NULL); 2282 MPASS(fl->ifl_sds.ifsd_m[i] == NULL); 2283 } 2284 #endif 2285 /* 2286 * Reset free list values 2287 */ 2288 fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0; 2289 bzero(idi->idi_vaddr, idi->idi_size); 2290 } 2291 2292 /********************************************************************* 2293 * 2294 * Initialize a free list and its buffers. 2295 * 2296 **********************************************************************/ 2297 static int 2298 iflib_fl_setup(iflib_fl_t fl) 2299 { 2300 iflib_rxq_t rxq = fl->ifl_rxq; 2301 if_ctx_t ctx = rxq->ifr_ctx; 2302 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2303 int qidx; 2304 2305 bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1); 2306 /* 2307 * Free current RX buffer structs and their mbufs 2308 */ 2309 iflib_fl_bufs_free(fl); 2310 /* Now replenish the mbufs */ 2311 MPASS(fl->ifl_credits == 0); 2312 qidx = rxq->ifr_fl_offset + fl->ifl_id; 2313 if (scctx->isc_rxd_buf_size[qidx] != 0) 2314 fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx]; 2315 else 2316 fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz; 2317 /* 2318 * ifl_buf_size may be a driver-supplied value, so pull it up 2319 * to the selected mbuf size. 2320 */ 2321 fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size); 2322 if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size) 2323 ctx->ifc_max_fl_buf_size = fl->ifl_buf_size; 2324 fl->ifl_cltype = m_gettype(fl->ifl_buf_size); 2325 fl->ifl_zone = m_getzone(fl->ifl_buf_size); 2326 2327 /* 2328 * Avoid pre-allocating zillions of clusters to an idle card 2329 * potentially speeding up attach. In any case make sure 2330 * to leave a descriptor unavailable. See the comment in 2331 * iflib_fl_refill_all(). 2332 */ 2333 MPASS(fl->ifl_size > 0); 2334 (void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1)); 2335 if (min(128, fl->ifl_size - 1) != fl->ifl_credits) 2336 return (ENOBUFS); 2337 /* 2338 * handle failure 2339 */ 2340 MPASS(rxq != NULL); 2341 MPASS(fl->ifl_ifdi != NULL); 2342 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 2343 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2344 return (0); 2345 } 2346 2347 /********************************************************************* 2348 * 2349 * Free receive ring data structures 2350 * 2351 **********************************************************************/ 2352 static void 2353 iflib_rx_sds_free(iflib_rxq_t rxq) 2354 { 2355 iflib_fl_t fl; 2356 int i, j; 2357 2358 if (rxq->ifr_fl != NULL) { 2359 for (i = 0; i < rxq->ifr_nfl; i++) { 2360 fl = &rxq->ifr_fl[i]; 2361 if (fl->ifl_buf_tag != NULL) { 2362 if (fl->ifl_sds.ifsd_map != NULL) { 2363 for (j = 0; j < fl->ifl_size; j++) { 2364 bus_dmamap_sync( 2365 fl->ifl_buf_tag, 2366 fl->ifl_sds.ifsd_map[j], 2367 BUS_DMASYNC_POSTREAD); 2368 bus_dmamap_unload( 2369 fl->ifl_buf_tag, 2370 fl->ifl_sds.ifsd_map[j]); 2371 bus_dmamap_destroy( 2372 fl->ifl_buf_tag, 2373 fl->ifl_sds.ifsd_map[j]); 2374 } 2375 } 2376 bus_dma_tag_destroy(fl->ifl_buf_tag); 2377 fl->ifl_buf_tag = NULL; 2378 } 2379 free(fl->ifl_sds.ifsd_m, M_IFLIB); 2380 free(fl->ifl_sds.ifsd_cl, M_IFLIB); 2381 free(fl->ifl_sds.ifsd_ba, M_IFLIB); 2382 free(fl->ifl_sds.ifsd_map, M_IFLIB); 2383 free(fl->ifl_rx_bitmap, M_IFLIB); 2384 fl->ifl_sds.ifsd_m = NULL; 2385 fl->ifl_sds.ifsd_cl = NULL; 2386 fl->ifl_sds.ifsd_ba = NULL; 2387 fl->ifl_sds.ifsd_map = NULL; 2388 fl->ifl_rx_bitmap = NULL; 2389 } 2390 free(rxq->ifr_fl, M_IFLIB); 2391 rxq->ifr_fl = NULL; 2392 free(rxq->ifr_ifdi, M_IFLIB); 2393 rxq->ifr_ifdi = NULL; 2394 rxq->ifr_cq_cidx = 0; 2395 } 2396 } 2397 2398 /* 2399 * Timer routine 2400 */ 2401 static void 2402 iflib_timer(void *arg) 2403 { 2404 iflib_txq_t txq = arg; 2405 if_ctx_t ctx = txq->ift_ctx; 2406 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 2407 uint64_t this_tick = ticks; 2408 2409 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) 2410 return; 2411 2412 /* 2413 ** Check on the state of the TX queue(s), this 2414 ** can be done without the lock because its RO 2415 ** and the HUNG state will be static if set. 2416 */ 2417 if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) { 2418 txq->ift_last_timer_tick = this_tick; 2419 IFDI_TIMER(ctx, txq->ift_id); 2420 if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) && 2421 ((txq->ift_cleaned_prev == txq->ift_cleaned) || 2422 (sctx->isc_pause_frames == 0))) 2423 goto hung; 2424 2425 if (txq->ift_qstatus != IFLIB_QUEUE_IDLE && 2426 ifmp_ring_is_stalled(txq->ift_br)) { 2427 KASSERT(ctx->ifc_link_state == LINK_STATE_UP, 2428 ("queue can't be marked as hung if interface is down")); 2429 txq->ift_qstatus = IFLIB_QUEUE_HUNG; 2430 } 2431 txq->ift_cleaned_prev = txq->ift_cleaned; 2432 } 2433 /* handle any laggards */ 2434 if (txq->ift_db_pending) 2435 GROUPTASK_ENQUEUE(&txq->ift_task); 2436 2437 sctx->isc_pause_frames = 0; 2438 if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) 2439 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, 2440 txq, txq->ift_timer.c_cpu); 2441 return; 2442 2443 hung: 2444 device_printf(ctx->ifc_dev, 2445 "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n", 2446 txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx); 2447 STATE_LOCK(ctx); 2448 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2449 ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET); 2450 iflib_admin_intr_deferred(ctx); 2451 STATE_UNLOCK(ctx); 2452 } 2453 2454 static uint16_t 2455 iflib_get_mbuf_size_for(unsigned int size) 2456 { 2457 2458 if (size <= MCLBYTES) 2459 return (MCLBYTES); 2460 else 2461 return (MJUMPAGESIZE); 2462 } 2463 2464 static void 2465 iflib_calc_rx_mbuf_sz(if_ctx_t ctx) 2466 { 2467 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 2468 2469 /* 2470 * XXX don't set the max_frame_size to larger 2471 * than the hardware can handle 2472 */ 2473 ctx->ifc_rx_mbuf_sz = 2474 iflib_get_mbuf_size_for(sctx->isc_max_frame_size); 2475 } 2476 2477 uint32_t 2478 iflib_get_rx_mbuf_sz(if_ctx_t ctx) 2479 { 2480 2481 return (ctx->ifc_rx_mbuf_sz); 2482 } 2483 2484 static void 2485 iflib_init_locked(if_ctx_t ctx) 2486 { 2487 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2488 if_t ifp = ctx->ifc_ifp; 2489 iflib_fl_t fl; 2490 iflib_txq_t txq; 2491 iflib_rxq_t rxq; 2492 int i, j, tx_ip_csum_flags, tx_ip6_csum_flags; 2493 2494 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2495 IFDI_INTR_DISABLE(ctx); 2496 2497 /* 2498 * See iflib_stop(). Useful in case iflib_init_locked() is 2499 * called without first calling iflib_stop(). 2500 */ 2501 netmap_disable_all_rings(ifp); 2502 2503 tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); 2504 tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP); 2505 /* Set hardware offload abilities */ 2506 if_clearhwassist(ifp); 2507 if (if_getcapenable(ifp) & IFCAP_TXCSUM) 2508 if_sethwassistbits(ifp, tx_ip_csum_flags, 0); 2509 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) 2510 if_sethwassistbits(ifp, tx_ip6_csum_flags, 0); 2511 if (if_getcapenable(ifp) & IFCAP_TSO4) 2512 if_sethwassistbits(ifp, CSUM_IP_TSO, 0); 2513 if (if_getcapenable(ifp) & IFCAP_TSO6) 2514 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0); 2515 2516 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { 2517 CALLOUT_LOCK(txq); 2518 callout_stop(&txq->ift_timer); 2519 #ifdef DEV_NETMAP 2520 callout_stop(&txq->ift_netmap_timer); 2521 #endif /* DEV_NETMAP */ 2522 CALLOUT_UNLOCK(txq); 2523 (void)iflib_netmap_txq_init(ctx, txq); 2524 } 2525 2526 /* 2527 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so 2528 * that drivers can use the value when setting up the hardware receive 2529 * buffers. 2530 */ 2531 iflib_calc_rx_mbuf_sz(ctx); 2532 2533 #ifdef INVARIANTS 2534 i = if_getdrvflags(ifp); 2535 #endif 2536 IFDI_INIT(ctx); 2537 MPASS(if_getdrvflags(ifp) == i); 2538 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { 2539 if (iflib_netmap_rxq_init(ctx, rxq) > 0) { 2540 /* This rxq is in netmap mode. Skip normal init. */ 2541 continue; 2542 } 2543 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { 2544 if (iflib_fl_setup(fl)) { 2545 device_printf(ctx->ifc_dev, 2546 "setting up free list %d failed - " 2547 "check cluster settings\n", j); 2548 goto done; 2549 } 2550 } 2551 } 2552 done: 2553 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 2554 IFDI_INTR_ENABLE(ctx); 2555 txq = ctx->ifc_txqs; 2556 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) 2557 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq, 2558 txq->ift_timer.c_cpu); 2559 2560 /* Re-enable txsync/rxsync. */ 2561 netmap_enable_all_rings(ifp); 2562 } 2563 2564 static int 2565 iflib_media_change(if_t ifp) 2566 { 2567 if_ctx_t ctx = if_getsoftc(ifp); 2568 int err; 2569 2570 CTX_LOCK(ctx); 2571 if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0) 2572 iflib_if_init_locked(ctx); 2573 CTX_UNLOCK(ctx); 2574 return (err); 2575 } 2576 2577 static void 2578 iflib_media_status(if_t ifp, struct ifmediareq *ifmr) 2579 { 2580 if_ctx_t ctx = if_getsoftc(ifp); 2581 2582 CTX_LOCK(ctx); 2583 IFDI_UPDATE_ADMIN_STATUS(ctx); 2584 IFDI_MEDIA_STATUS(ctx, ifmr); 2585 CTX_UNLOCK(ctx); 2586 } 2587 2588 static void 2589 iflib_stop(if_ctx_t ctx) 2590 { 2591 iflib_txq_t txq = ctx->ifc_txqs; 2592 iflib_rxq_t rxq = ctx->ifc_rxqs; 2593 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2594 if_shared_ctx_t sctx = ctx->ifc_sctx; 2595 iflib_dma_info_t di; 2596 iflib_fl_t fl; 2597 int i, j; 2598 2599 /* Tell the stack that the interface is no longer active */ 2600 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2601 2602 IFDI_INTR_DISABLE(ctx); 2603 DELAY(1000); 2604 IFDI_STOP(ctx); 2605 DELAY(1000); 2606 2607 /* 2608 * Stop any pending txsync/rxsync and prevent new ones 2609 * form starting. Processes blocked in poll() will get 2610 * POLLERR. 2611 */ 2612 netmap_disable_all_rings(ctx->ifc_ifp); 2613 2614 iflib_debug_reset(); 2615 /* Wait for current tx queue users to exit to disarm watchdog timer. */ 2616 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) { 2617 /* make sure all transmitters have completed before proceeding XXX */ 2618 2619 CALLOUT_LOCK(txq); 2620 callout_stop(&txq->ift_timer); 2621 #ifdef DEV_NETMAP 2622 callout_stop(&txq->ift_netmap_timer); 2623 #endif /* DEV_NETMAP */ 2624 CALLOUT_UNLOCK(txq); 2625 2626 /* clean any enqueued buffers */ 2627 iflib_ifmp_purge(txq); 2628 /* Free any existing tx buffers. */ 2629 for (j = 0; j < txq->ift_size; j++) { 2630 iflib_txsd_free(ctx, txq, j); 2631 } 2632 txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0; 2633 txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0; 2634 if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES) 2635 txq->ift_cidx = txq->ift_pidx; 2636 else 2637 txq->ift_cidx = txq->ift_pidx = 0; 2638 2639 txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0; 2640 txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0; 2641 txq->ift_pullups = 0; 2642 ifmp_ring_reset_stats(txq->ift_br); 2643 for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++) 2644 bzero((void *)di->idi_vaddr, di->idi_size); 2645 } 2646 for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) { 2647 if (rxq->ifr_task.gt_taskqueue != NULL) 2648 gtaskqueue_drain(rxq->ifr_task.gt_taskqueue, 2649 &rxq->ifr_task.gt_task); 2650 2651 rxq->ifr_cq_cidx = 0; 2652 for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++) 2653 bzero((void *)di->idi_vaddr, di->idi_size); 2654 /* also resets the free lists pidx/cidx */ 2655 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) 2656 iflib_fl_bufs_free(fl); 2657 } 2658 } 2659 2660 static inline caddr_t 2661 calc_next_rxd(iflib_fl_t fl, int cidx) 2662 { 2663 qidx_t size; 2664 int nrxd; 2665 caddr_t start, end, cur, next; 2666 2667 nrxd = fl->ifl_size; 2668 size = fl->ifl_rxd_size; 2669 start = fl->ifl_ifdi->idi_vaddr; 2670 2671 if (__predict_false(size == 0)) 2672 return (start); 2673 cur = start + size * cidx; 2674 end = start + size * nrxd; 2675 next = CACHE_PTR_NEXT(cur); 2676 return (next < end ? next : start); 2677 } 2678 2679 static inline void 2680 prefetch_pkts(iflib_fl_t fl, int cidx) 2681 { 2682 int nextptr; 2683 int nrxd = fl->ifl_size; 2684 caddr_t next_rxd; 2685 2686 nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1); 2687 prefetch(&fl->ifl_sds.ifsd_m[nextptr]); 2688 prefetch(&fl->ifl_sds.ifsd_cl[nextptr]); 2689 next_rxd = calc_next_rxd(fl, cidx); 2690 prefetch(next_rxd); 2691 prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]); 2692 prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]); 2693 prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]); 2694 prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]); 2695 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]); 2696 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]); 2697 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]); 2698 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]); 2699 } 2700 2701 static struct mbuf * 2702 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd, 2703 int *pf_rv, if_rxd_info_t ri) 2704 { 2705 bus_dmamap_t map; 2706 iflib_fl_t fl; 2707 caddr_t payload; 2708 struct mbuf *m; 2709 int flid, cidx, len, next; 2710 2711 map = NULL; 2712 flid = irf->irf_flid; 2713 cidx = irf->irf_idx; 2714 fl = &rxq->ifr_fl[flid]; 2715 sd->ifsd_fl = fl; 2716 sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx]; 2717 fl->ifl_credits--; 2718 #if MEMORY_LOGGING 2719 fl->ifl_m_dequeued++; 2720 #endif 2721 if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH) 2722 prefetch_pkts(fl, cidx); 2723 next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1); 2724 prefetch(&fl->ifl_sds.ifsd_map[next]); 2725 map = fl->ifl_sds.ifsd_map[cidx]; 2726 2727 bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD); 2728 2729 if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL && 2730 irf->irf_len != 0) { 2731 payload = *sd->ifsd_cl; 2732 payload += ri->iri_pad; 2733 len = ri->iri_len - ri->iri_pad; 2734 *pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m); 2735 switch (*pf_rv) { 2736 case PFIL_DROPPED: 2737 case PFIL_CONSUMED: 2738 /* 2739 * The filter ate it. Everything is recycled. 2740 */ 2741 m = NULL; 2742 unload = 0; 2743 break; 2744 case PFIL_REALLOCED: 2745 /* 2746 * The filter copied it. Everything is recycled. 2747 * 'm' points at new mbuf. 2748 */ 2749 unload = 0; 2750 break; 2751 case PFIL_PASS: 2752 /* 2753 * Filter said it was OK, so receive like 2754 * normal 2755 */ 2756 m = fl->ifl_sds.ifsd_m[cidx]; 2757 fl->ifl_sds.ifsd_m[cidx] = NULL; 2758 break; 2759 default: 2760 MPASS(0); 2761 } 2762 } else { 2763 m = fl->ifl_sds.ifsd_m[cidx]; 2764 fl->ifl_sds.ifsd_m[cidx] = NULL; 2765 if (pf_rv != NULL) 2766 *pf_rv = PFIL_PASS; 2767 } 2768 2769 if (unload && irf->irf_len != 0) 2770 bus_dmamap_unload(fl->ifl_buf_tag, map); 2771 fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1); 2772 if (__predict_false(fl->ifl_cidx == 0)) 2773 fl->ifl_gen = 0; 2774 bit_clear(fl->ifl_rx_bitmap, cidx); 2775 return (m); 2776 } 2777 2778 static struct mbuf * 2779 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv) 2780 { 2781 struct mbuf *m, *mh, *mt; 2782 caddr_t cl; 2783 int *pf_rv_ptr, flags, i, padlen; 2784 bool consumed; 2785 2786 i = 0; 2787 mh = NULL; 2788 consumed = false; 2789 *pf_rv = PFIL_PASS; 2790 pf_rv_ptr = pf_rv; 2791 do { 2792 m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd, 2793 pf_rv_ptr, ri); 2794 2795 MPASS(*sd->ifsd_cl != NULL); 2796 2797 /* 2798 * Exclude zero-length frags & frags from 2799 * packets the filter has consumed or dropped 2800 */ 2801 if (ri->iri_frags[i].irf_len == 0 || consumed || 2802 *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) { 2803 if (mh == NULL) { 2804 /* everything saved here */ 2805 consumed = true; 2806 pf_rv_ptr = NULL; 2807 continue; 2808 } 2809 /* XXX we can save the cluster here, but not the mbuf */ 2810 m_init(m, M_NOWAIT, MT_DATA, 0); 2811 m_free(m); 2812 continue; 2813 } 2814 if (mh == NULL) { 2815 flags = M_PKTHDR | M_EXT; 2816 mh = mt = m; 2817 padlen = ri->iri_pad; 2818 } else { 2819 flags = M_EXT; 2820 mt->m_next = m; 2821 mt = m; 2822 /* assuming padding is only on the first fragment */ 2823 padlen = 0; 2824 } 2825 cl = *sd->ifsd_cl; 2826 *sd->ifsd_cl = NULL; 2827 2828 /* Can these two be made one ? */ 2829 m_init(m, M_NOWAIT, MT_DATA, flags); 2830 m_cljset(m, cl, sd->ifsd_fl->ifl_cltype); 2831 /* 2832 * These must follow m_init and m_cljset 2833 */ 2834 m->m_data += padlen; 2835 ri->iri_len -= padlen; 2836 m->m_len = ri->iri_frags[i].irf_len; 2837 } while (++i < ri->iri_nfrags); 2838 2839 return (mh); 2840 } 2841 2842 /* 2843 * Process one software descriptor 2844 */ 2845 static struct mbuf * 2846 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri) 2847 { 2848 struct if_rxsd sd; 2849 struct mbuf *m; 2850 int pf_rv; 2851 2852 /* should I merge this back in now that the two paths are basically duplicated? */ 2853 if (ri->iri_nfrags == 1 && 2854 ri->iri_frags[0].irf_len != 0 && 2855 ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) { 2856 m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd, 2857 &pf_rv, ri); 2858 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED) 2859 return (m); 2860 if (pf_rv == PFIL_PASS) { 2861 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); 2862 #ifndef __NO_STRICT_ALIGNMENT 2863 if (!IP_ALIGNED(m) && ri->iri_pad == 0) 2864 m->m_data += 2; 2865 #endif 2866 memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len); 2867 m->m_len = ri->iri_frags[0].irf_len; 2868 m->m_data += ri->iri_pad; 2869 ri->iri_len -= ri->iri_pad; 2870 } 2871 } else { 2872 m = assemble_segments(rxq, ri, &sd, &pf_rv); 2873 if (m == NULL) 2874 return (NULL); 2875 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED) 2876 return (m); 2877 } 2878 m->m_pkthdr.len = ri->iri_len; 2879 m->m_pkthdr.rcvif = ri->iri_ifp; 2880 m->m_flags |= ri->iri_flags; 2881 m->m_pkthdr.ether_vtag = ri->iri_vtag; 2882 m->m_pkthdr.flowid = ri->iri_flowid; 2883 #ifdef NUMA 2884 m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp); 2885 #endif 2886 M_HASHTYPE_SET(m, ri->iri_rsstype); 2887 m->m_pkthdr.csum_flags = ri->iri_csum_flags; 2888 m->m_pkthdr.csum_data = ri->iri_csum_data; 2889 return (m); 2890 } 2891 2892 #if defined(INET6) || defined(INET) 2893 static void 2894 iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6) 2895 { 2896 CURVNET_SET(if_getvnet(lc->ifp)); 2897 #if defined(INET6) 2898 *v6 = V_ip6_forwarding; 2899 #endif 2900 #if defined(INET) 2901 *v4 = V_ipforwarding; 2902 #endif 2903 CURVNET_RESTORE(); 2904 } 2905 2906 /* 2907 * Returns true if it's possible this packet could be LROed. 2908 * if it returns false, it is guaranteed that tcp_lro_rx() 2909 * would not return zero. 2910 */ 2911 static bool 2912 iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding) 2913 { 2914 struct ether_header *eh; 2915 2916 eh = mtod(m, struct ether_header *); 2917 switch (eh->ether_type) { 2918 #if defined(INET6) 2919 case htons(ETHERTYPE_IPV6): 2920 return (!v6_forwarding); 2921 #endif 2922 #if defined(INET) 2923 case htons(ETHERTYPE_IP): 2924 return (!v4_forwarding); 2925 #endif 2926 } 2927 2928 return (false); 2929 } 2930 #else 2931 static void 2932 iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused) 2933 { 2934 } 2935 #endif 2936 2937 static void 2938 _task_fn_rx_watchdog(void *context) 2939 { 2940 iflib_rxq_t rxq = context; 2941 2942 GROUPTASK_ENQUEUE(&rxq->ifr_task); 2943 } 2944 2945 static uint8_t 2946 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget) 2947 { 2948 if_t ifp; 2949 if_ctx_t ctx = rxq->ifr_ctx; 2950 if_shared_ctx_t sctx = ctx->ifc_sctx; 2951 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2952 int avail, i; 2953 qidx_t *cidxp; 2954 struct if_rxd_info ri; 2955 int err, budget_left, rx_bytes, rx_pkts; 2956 iflib_fl_t fl; 2957 int lro_enabled; 2958 bool v4_forwarding, v6_forwarding, lro_possible; 2959 uint8_t retval = 0; 2960 2961 /* 2962 * XXX early demux data packets so that if_input processing only handles 2963 * acks in interrupt context 2964 */ 2965 struct mbuf *m, *mh, *mt, *mf; 2966 2967 NET_EPOCH_ASSERT(); 2968 2969 lro_possible = v4_forwarding = v6_forwarding = false; 2970 ifp = ctx->ifc_ifp; 2971 mh = mt = NULL; 2972 MPASS(budget > 0); 2973 rx_pkts = rx_bytes = 0; 2974 if (sctx->isc_flags & IFLIB_HAS_RXCQ) 2975 cidxp = &rxq->ifr_cq_cidx; 2976 else 2977 cidxp = &rxq->ifr_fl[0].ifl_cidx; 2978 if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) { 2979 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) 2980 retval |= iflib_fl_refill_all(ctx, fl); 2981 DBG_COUNTER_INC(rx_unavail); 2982 return (retval); 2983 } 2984 2985 /* pfil needs the vnet to be set */ 2986 CURVNET_SET_QUIET(if_getvnet(ifp)); 2987 for (budget_left = budget; budget_left > 0 && avail > 0;) { 2988 if (__predict_false(!CTX_ACTIVE(ctx))) { 2989 DBG_COUNTER_INC(rx_ctx_inactive); 2990 break; 2991 } 2992 /* 2993 * Reset client set fields to their default values 2994 */ 2995 rxd_info_zero(&ri); 2996 ri.iri_qsidx = rxq->ifr_id; 2997 ri.iri_cidx = *cidxp; 2998 ri.iri_ifp = ifp; 2999 ri.iri_frags = rxq->ifr_frags; 3000 err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); 3001 3002 if (err) 3003 goto err; 3004 rx_pkts += 1; 3005 rx_bytes += ri.iri_len; 3006 if (sctx->isc_flags & IFLIB_HAS_RXCQ) { 3007 *cidxp = ri.iri_cidx; 3008 /* Update our consumer index */ 3009 /* XXX NB: shurd - check if this is still safe */ 3010 while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0]) 3011 rxq->ifr_cq_cidx -= scctx->isc_nrxd[0]; 3012 /* was this only a completion queue message? */ 3013 if (__predict_false(ri.iri_nfrags == 0)) 3014 continue; 3015 } 3016 MPASS(ri.iri_nfrags != 0); 3017 MPASS(ri.iri_len != 0); 3018 3019 /* will advance the cidx on the corresponding free lists */ 3020 m = iflib_rxd_pkt_get(rxq, &ri); 3021 avail--; 3022 budget_left--; 3023 if (avail == 0 && budget_left) 3024 avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left); 3025 3026 if (__predict_false(m == NULL)) 3027 continue; 3028 3029 /* imm_pkt: -- cxgb */ 3030 if (mh == NULL) 3031 mh = mt = m; 3032 else { 3033 mt->m_nextpkt = m; 3034 mt = m; 3035 } 3036 } 3037 CURVNET_RESTORE(); 3038 /* make sure that we can refill faster than drain */ 3039 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) 3040 retval |= iflib_fl_refill_all(ctx, fl); 3041 3042 lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO); 3043 if (lro_enabled) 3044 iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding); 3045 mt = mf = NULL; 3046 while (mh != NULL) { 3047 m = mh; 3048 mh = mh->m_nextpkt; 3049 m->m_nextpkt = NULL; 3050 #ifndef __NO_STRICT_ALIGNMENT 3051 if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL) 3052 continue; 3053 #endif 3054 #if defined(INET6) || defined(INET) 3055 if (lro_enabled) { 3056 if (!lro_possible) { 3057 lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding); 3058 if (lro_possible && mf != NULL) { 3059 if_input(ifp, mf); 3060 DBG_COUNTER_INC(rx_if_input); 3061 mt = mf = NULL; 3062 } 3063 } 3064 if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC | CSUM_L4_VALID)) == 3065 (CSUM_L4_CALC | CSUM_L4_VALID)) { 3066 if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0) 3067 continue; 3068 } 3069 } 3070 #endif 3071 if (lro_possible) { 3072 if_input(ifp, m); 3073 DBG_COUNTER_INC(rx_if_input); 3074 continue; 3075 } 3076 3077 if (mf == NULL) 3078 mf = m; 3079 if (mt != NULL) 3080 mt->m_nextpkt = m; 3081 mt = m; 3082 } 3083 if (mf != NULL) { 3084 if_input(ifp, mf); 3085 DBG_COUNTER_INC(rx_if_input); 3086 } 3087 3088 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); 3089 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); 3090 3091 /* 3092 * Flush any outstanding LRO work 3093 */ 3094 #if defined(INET6) || defined(INET) 3095 tcp_lro_flush_all(&rxq->ifr_lc); 3096 #endif 3097 if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0) 3098 retval |= IFLIB_RXEOF_MORE; 3099 return (retval); 3100 err: 3101 STATE_LOCK(ctx); 3102 ctx->ifc_flags |= IFC_DO_RESET; 3103 iflib_admin_intr_deferred(ctx); 3104 STATE_UNLOCK(ctx); 3105 return (0); 3106 } 3107 3108 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1) 3109 static inline qidx_t 3110 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use) 3111 { 3112 qidx_t notify_count = TXD_NOTIFY_COUNT(txq); 3113 qidx_t minthresh = txq->ift_size / 8; 3114 if (in_use > 4 * minthresh) 3115 return (notify_count); 3116 if (in_use > 2 * minthresh) 3117 return (notify_count >> 1); 3118 if (in_use > minthresh) 3119 return (notify_count >> 3); 3120 return (0); 3121 } 3122 3123 static inline qidx_t 3124 txq_max_rs_deferred(iflib_txq_t txq) 3125 { 3126 qidx_t notify_count = TXD_NOTIFY_COUNT(txq); 3127 qidx_t minthresh = txq->ift_size / 8; 3128 if (txq->ift_in_use > 4 * minthresh) 3129 return (notify_count); 3130 if (txq->ift_in_use > 2 * minthresh) 3131 return (notify_count >> 1); 3132 if (txq->ift_in_use > minthresh) 3133 return (notify_count >> 2); 3134 return (2); 3135 } 3136 3137 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags) 3138 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG) 3139 3140 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use)) 3141 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq) 3142 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4) 3143 3144 /* forward compatibility for cxgb */ 3145 #define FIRST_QSET(ctx) 0 3146 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets) 3147 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets) 3148 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx)) 3149 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments)) 3150 3151 /* XXX we should be setting this to something other than zero */ 3152 #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh) 3153 #define MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \ 3154 (ctx)->ifc_softc_ctx.isc_tx_nsegments) 3155 3156 static inline bool 3157 iflib_txd_db_check(iflib_txq_t txq, int ring) 3158 { 3159 if_ctx_t ctx = txq->ift_ctx; 3160 qidx_t dbval, max; 3161 3162 max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use); 3163 3164 /* force || threshold exceeded || at the edge of the ring */ 3165 if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) { 3166 3167 /* 3168 * 'npending' is used if the card's doorbell is in terms of the number of descriptors 3169 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the 3170 * producer index explicitly (INTC). 3171 */ 3172 dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx; 3173 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 3174 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3175 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval); 3176 3177 /* 3178 * Absent bugs there are zero packets pending so reset pending counts to zero. 3179 */ 3180 txq->ift_db_pending = txq->ift_npending = 0; 3181 return (true); 3182 } 3183 return (false); 3184 } 3185 3186 #ifdef PKT_DEBUG 3187 static void 3188 print_pkt(if_pkt_info_t pi) 3189 { 3190 printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n", 3191 pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx); 3192 printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n", 3193 pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag); 3194 printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n", 3195 pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto); 3196 } 3197 #endif 3198 3199 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO) 3200 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO)) 3201 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO) 3202 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO)) 3203 3204 /** 3205 * Parses out ethernet header information in the given mbuf. 3206 * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length) 3207 * 3208 * This will account for the VLAN header if present. 3209 * 3210 * XXX: This doesn't handle QinQ, which could prevent TX offloads for those 3211 * types of packets. 3212 */ 3213 static int 3214 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups) 3215 { 3216 struct ether_vlan_header *eh; 3217 struct mbuf *m; 3218 3219 m = *mp; 3220 if (__predict_false(m->m_len < sizeof(*eh))) { 3221 (*pullups)++; 3222 if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL)) 3223 return (ENOMEM); 3224 } 3225 eh = mtod(m, struct ether_vlan_header *); 3226 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 3227 pi->ipi_etype = ntohs(eh->evl_proto); 3228 pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 3229 } else { 3230 pi->ipi_etype = ntohs(eh->evl_encap_proto); 3231 pi->ipi_ehdrlen = ETHER_HDR_LEN; 3232 } 3233 *mp = m; 3234 3235 return (0); 3236 } 3237 3238 /** 3239 * Parse up to the L3 header and extract IPv4/IPv6 header information into pi. 3240 * Currently this information includes: IP ToS value, IP header version/presence 3241 * 3242 * This is missing some checks and doesn't edit the packet content as it goes, 3243 * unlike iflib_parse_header(), in order to keep the amount of code here minimal. 3244 */ 3245 static int 3246 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups) 3247 { 3248 struct mbuf *m; 3249 int err; 3250 3251 *pullups = 0; 3252 m = *mp; 3253 if (!M_WRITABLE(m)) { 3254 if ((m = m_dup(m, M_NOWAIT)) == NULL) { 3255 return (ENOMEM); 3256 } else { 3257 m_freem(*mp); 3258 DBG_COUNTER_INC(tx_frees); 3259 *mp = m; 3260 } 3261 } 3262 3263 /* Fills out pi->ipi_etype */ 3264 err = iflib_parse_ether_header(pi, mp, pullups); 3265 if (err) 3266 return (err); 3267 m = *mp; 3268 3269 switch (pi->ipi_etype) { 3270 #ifdef INET 3271 case ETHERTYPE_IP: 3272 { 3273 struct mbuf *n; 3274 struct ip *ip = NULL; 3275 int miniplen; 3276 3277 miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip)); 3278 if (__predict_false(m->m_len < miniplen)) { 3279 /* 3280 * Check for common case where the first mbuf only contains 3281 * the Ethernet header 3282 */ 3283 if (m->m_len == pi->ipi_ehdrlen) { 3284 n = m->m_next; 3285 MPASS(n); 3286 /* If next mbuf contains at least the minimal IP header, then stop */ 3287 if (n->m_len >= sizeof(*ip)) { 3288 ip = (struct ip *)n->m_data; 3289 } else { 3290 (*pullups)++; 3291 if (__predict_false((m = m_pullup(m, miniplen)) == NULL)) 3292 return (ENOMEM); 3293 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3294 } 3295 } else { 3296 (*pullups)++; 3297 if (__predict_false((m = m_pullup(m, miniplen)) == NULL)) 3298 return (ENOMEM); 3299 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3300 } 3301 } else { 3302 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3303 } 3304 3305 /* Have the IPv4 header w/ no options here */ 3306 pi->ipi_ip_hlen = ip->ip_hl << 2; 3307 pi->ipi_ipproto = ip->ip_p; 3308 pi->ipi_ip_tos = ip->ip_tos; 3309 pi->ipi_flags |= IPI_TX_IPV4; 3310 3311 break; 3312 } 3313 #endif 3314 #ifdef INET6 3315 case ETHERTYPE_IPV6: 3316 { 3317 struct ip6_hdr *ip6; 3318 3319 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { 3320 (*pullups)++; 3321 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) 3322 return (ENOMEM); 3323 } 3324 ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); 3325 3326 /* Have the IPv6 fixed header here */ 3327 pi->ipi_ip_hlen = sizeof(struct ip6_hdr); 3328 pi->ipi_ipproto = ip6->ip6_nxt; 3329 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6); 3330 pi->ipi_flags |= IPI_TX_IPV6; 3331 3332 break; 3333 } 3334 #endif 3335 default: 3336 pi->ipi_csum_flags &= ~CSUM_OFFLOAD; 3337 pi->ipi_ip_hlen = 0; 3338 break; 3339 } 3340 *mp = m; 3341 3342 return (0); 3343 3344 } 3345 3346 static int 3347 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp) 3348 { 3349 if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx; 3350 struct mbuf *m; 3351 int err; 3352 3353 m = *mp; 3354 if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) && 3355 M_WRITABLE(m) == 0) { 3356 if ((m = m_dup(m, M_NOWAIT)) == NULL) { 3357 return (ENOMEM); 3358 } else { 3359 m_freem(*mp); 3360 DBG_COUNTER_INC(tx_frees); 3361 *mp = m; 3362 } 3363 } 3364 3365 /* Fills out pi->ipi_etype */ 3366 err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups); 3367 if (__predict_false(err)) 3368 return (err); 3369 m = *mp; 3370 3371 switch (pi->ipi_etype) { 3372 #ifdef INET 3373 case ETHERTYPE_IP: 3374 { 3375 struct mbuf *n; 3376 struct ip *ip = NULL; 3377 struct tcphdr *th = NULL; 3378 int minthlen; 3379 3380 minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th)); 3381 if (__predict_false(m->m_len < minthlen)) { 3382 /* 3383 * if this code bloat is causing too much of a hit 3384 * move it to a separate function and mark it noinline 3385 */ 3386 if (m->m_len == pi->ipi_ehdrlen) { 3387 n = m->m_next; 3388 MPASS(n); 3389 if (n->m_len >= sizeof(*ip)) { 3390 ip = (struct ip *)n->m_data; 3391 if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th)) 3392 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 3393 } else { 3394 txq->ift_pullups++; 3395 if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) 3396 return (ENOMEM); 3397 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3398 } 3399 } else { 3400 txq->ift_pullups++; 3401 if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) 3402 return (ENOMEM); 3403 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3404 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) 3405 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 3406 } 3407 } else { 3408 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3409 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) 3410 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 3411 } 3412 pi->ipi_ip_hlen = ip->ip_hl << 2; 3413 pi->ipi_ipproto = ip->ip_p; 3414 pi->ipi_ip_tos = ip->ip_tos; 3415 pi->ipi_flags |= IPI_TX_IPV4; 3416 3417 /* TCP checksum offload may require TCP header length */ 3418 if (IS_TX_OFFLOAD4(pi)) { 3419 if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) { 3420 if (__predict_false(th == NULL)) { 3421 txq->ift_pullups++; 3422 if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL)) 3423 return (ENOMEM); 3424 th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen); 3425 } 3426 pi->ipi_tcp_hflags = tcp_get_flags(th); 3427 pi->ipi_tcp_hlen = th->th_off << 2; 3428 pi->ipi_tcp_seq = th->th_seq; 3429 } 3430 if (IS_TSO4(pi)) { 3431 if (__predict_false(ip->ip_p != IPPROTO_TCP)) 3432 return (ENXIO); 3433 /* 3434 * TSO always requires hardware checksum offload. 3435 */ 3436 pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP); 3437 th->th_sum = in_pseudo(ip->ip_src.s_addr, 3438 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 3439 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; 3440 if (sctx->isc_flags & IFLIB_TSO_INIT_IP) { 3441 ip->ip_sum = 0; 3442 ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz); 3443 } 3444 } 3445 } 3446 if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP)) 3447 ip->ip_sum = 0; 3448 3449 break; 3450 } 3451 #endif 3452 #ifdef INET6 3453 case ETHERTYPE_IPV6: 3454 { 3455 struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); 3456 struct tcphdr *th; 3457 pi->ipi_ip_hlen = sizeof(struct ip6_hdr); 3458 3459 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { 3460 txq->ift_pullups++; 3461 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) 3462 return (ENOMEM); 3463 } 3464 th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen); 3465 3466 /* XXX-BZ this will go badly in case of ext hdrs. */ 3467 pi->ipi_ipproto = ip6->ip6_nxt; 3468 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6); 3469 pi->ipi_flags |= IPI_TX_IPV6; 3470 3471 /* TCP checksum offload may require TCP header length */ 3472 if (IS_TX_OFFLOAD6(pi)) { 3473 if (pi->ipi_ipproto == IPPROTO_TCP) { 3474 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) { 3475 txq->ift_pullups++; 3476 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL)) 3477 return (ENOMEM); 3478 } 3479 pi->ipi_tcp_hflags = tcp_get_flags(th); 3480 pi->ipi_tcp_hlen = th->th_off << 2; 3481 pi->ipi_tcp_seq = th->th_seq; 3482 } 3483 if (IS_TSO6(pi)) { 3484 if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP)) 3485 return (ENXIO); 3486 /* 3487 * TSO always requires hardware checksum offload. 3488 */ 3489 pi->ipi_csum_flags |= CSUM_IP6_TCP; 3490 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); 3491 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; 3492 } 3493 } 3494 break; 3495 } 3496 #endif 3497 default: 3498 pi->ipi_csum_flags &= ~CSUM_OFFLOAD; 3499 pi->ipi_ip_hlen = 0; 3500 break; 3501 } 3502 *mp = m; 3503 3504 return (0); 3505 } 3506 3507 /* 3508 * If dodgy hardware rejects the scatter gather chain we've handed it 3509 * we'll need to remove the mbuf chain from ifsg_m[] before we can add the 3510 * m_defrag'd mbufs 3511 */ 3512 static __noinline struct mbuf * 3513 iflib_remove_mbuf(iflib_txq_t txq) 3514 { 3515 int ntxd, pidx; 3516 struct mbuf *m, **ifsd_m; 3517 3518 ifsd_m = txq->ift_sds.ifsd_m; 3519 ntxd = txq->ift_size; 3520 pidx = txq->ift_pidx & (ntxd - 1); 3521 ifsd_m = txq->ift_sds.ifsd_m; 3522 m = ifsd_m[pidx]; 3523 ifsd_m[pidx] = NULL; 3524 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]); 3525 if (txq->ift_sds.ifsd_tso_map != NULL) 3526 bus_dmamap_unload(txq->ift_tso_buf_tag, 3527 txq->ift_sds.ifsd_tso_map[pidx]); 3528 #if MEMORY_LOGGING 3529 txq->ift_dequeued++; 3530 #endif 3531 return (m); 3532 } 3533 3534 static inline caddr_t 3535 calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid) 3536 { 3537 qidx_t size; 3538 int ntxd; 3539 caddr_t start, end, cur, next; 3540 3541 ntxd = txq->ift_size; 3542 size = txq->ift_txd_size[qid]; 3543 start = txq->ift_ifdi[qid].idi_vaddr; 3544 3545 if (__predict_false(size == 0)) 3546 return (start); 3547 cur = start + size * cidx; 3548 end = start + size * ntxd; 3549 next = CACHE_PTR_NEXT(cur); 3550 return (next < end ? next : start); 3551 } 3552 3553 /* 3554 * Pad an mbuf to ensure a minimum ethernet frame size. 3555 * min_frame_size is the frame size (less CRC) to pad the mbuf to 3556 */ 3557 static __noinline int 3558 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size) 3559 { 3560 /* 3561 * 18 is enough bytes to pad an ARP packet to 46 bytes, and 3562 * and ARP message is the smallest common payload I can think of 3563 */ 3564 static char pad[18]; /* just zeros */ 3565 int n; 3566 struct mbuf *new_head; 3567 3568 if (!M_WRITABLE(*m_head)) { 3569 new_head = m_dup(*m_head, M_NOWAIT); 3570 if (new_head == NULL) { 3571 m_freem(*m_head); 3572 device_printf(dev, "cannot pad short frame, m_dup() failed"); 3573 DBG_COUNTER_INC(encap_pad_mbuf_fail); 3574 DBG_COUNTER_INC(tx_frees); 3575 return (ENOMEM); 3576 } 3577 m_freem(*m_head); 3578 *m_head = new_head; 3579 } 3580 3581 for (n = min_frame_size - (*m_head)->m_pkthdr.len; 3582 n > 0; n -= sizeof(pad)) 3583 if (!m_append(*m_head, min(n, sizeof(pad)), pad)) 3584 break; 3585 3586 if (n > 0) { 3587 m_freem(*m_head); 3588 device_printf(dev, "cannot pad short frame\n"); 3589 DBG_COUNTER_INC(encap_pad_mbuf_fail); 3590 DBG_COUNTER_INC(tx_frees); 3591 return (ENOBUFS); 3592 } 3593 3594 return (0); 3595 } 3596 3597 static int 3598 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp) 3599 { 3600 if_ctx_t ctx; 3601 if_shared_ctx_t sctx; 3602 if_softc_ctx_t scctx; 3603 bus_dma_tag_t buf_tag; 3604 bus_dma_segment_t *segs; 3605 struct mbuf *m_head, **ifsd_m; 3606 void *next_txd; 3607 bus_dmamap_t map; 3608 struct if_pkt_info pi; 3609 int remap = 0; 3610 int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd; 3611 3612 ctx = txq->ift_ctx; 3613 sctx = ctx->ifc_sctx; 3614 scctx = &ctx->ifc_softc_ctx; 3615 segs = txq->ift_segs; 3616 ntxd = txq->ift_size; 3617 m_head = *m_headp; 3618 map = NULL; 3619 3620 /* 3621 * If we're doing TSO the next descriptor to clean may be quite far ahead 3622 */ 3623 cidx = txq->ift_cidx; 3624 pidx = txq->ift_pidx; 3625 if (ctx->ifc_flags & IFC_PREFETCH) { 3626 next = (cidx + CACHE_PTR_INCREMENT) & (ntxd - 1); 3627 if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) { 3628 next_txd = calc_next_txd(txq, cidx, 0); 3629 prefetch(next_txd); 3630 } 3631 3632 /* prefetch the next cache line of mbuf pointers and flags */ 3633 prefetch(&txq->ift_sds.ifsd_m[next]); 3634 prefetch(&txq->ift_sds.ifsd_map[next]); 3635 next = (cidx + CACHE_LINE_SIZE) & (ntxd - 1); 3636 } 3637 map = txq->ift_sds.ifsd_map[pidx]; 3638 ifsd_m = txq->ift_sds.ifsd_m; 3639 3640 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { 3641 buf_tag = txq->ift_tso_buf_tag; 3642 max_segs = scctx->isc_tx_tso_segments_max; 3643 map = txq->ift_sds.ifsd_tso_map[pidx]; 3644 MPASS(buf_tag != NULL); 3645 MPASS(max_segs > 0); 3646 } else { 3647 buf_tag = txq->ift_buf_tag; 3648 max_segs = scctx->isc_tx_nsegments; 3649 map = txq->ift_sds.ifsd_map[pidx]; 3650 } 3651 if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) && 3652 __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) { 3653 err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size); 3654 if (err) { 3655 DBG_COUNTER_INC(encap_txd_encap_fail); 3656 return (err); 3657 } 3658 } 3659 m_head = *m_headp; 3660 3661 pkt_info_zero(&pi); 3662 pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST)); 3663 pi.ipi_pidx = pidx; 3664 pi.ipi_qsidx = txq->ift_id; 3665 pi.ipi_len = m_head->m_pkthdr.len; 3666 pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags; 3667 pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0; 3668 3669 /* deliberate bitwise OR to make one condition */ 3670 if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) { 3671 if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) { 3672 DBG_COUNTER_INC(encap_txd_encap_fail); 3673 return (err); 3674 } 3675 m_head = *m_headp; 3676 } 3677 3678 retry: 3679 err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs, 3680 BUS_DMA_NOWAIT); 3681 defrag: 3682 if (__predict_false(err)) { 3683 switch (err) { 3684 case EFBIG: 3685 /* try collapse once and defrag once */ 3686 if (remap == 0) { 3687 m_head = m_collapse(*m_headp, M_NOWAIT, max_segs); 3688 /* try defrag if collapsing fails */ 3689 if (m_head == NULL) 3690 remap++; 3691 } 3692 if (remap == 1) { 3693 txq->ift_mbuf_defrag++; 3694 m_head = m_defrag(*m_headp, M_NOWAIT); 3695 } 3696 /* 3697 * remap should never be >1 unless bus_dmamap_load_mbuf_sg 3698 * failed to map an mbuf that was run through m_defrag 3699 */ 3700 MPASS(remap <= 1); 3701 if (__predict_false(m_head == NULL || remap > 1)) 3702 goto defrag_failed; 3703 remap++; 3704 *m_headp = m_head; 3705 goto retry; 3706 break; 3707 case ENOMEM: 3708 txq->ift_no_tx_dma_setup++; 3709 break; 3710 default: 3711 txq->ift_no_tx_dma_setup++; 3712 m_freem(*m_headp); 3713 DBG_COUNTER_INC(tx_frees); 3714 *m_headp = NULL; 3715 break; 3716 } 3717 txq->ift_map_failed++; 3718 DBG_COUNTER_INC(encap_load_mbuf_fail); 3719 DBG_COUNTER_INC(encap_txd_encap_fail); 3720 return (err); 3721 } 3722 ifsd_m[pidx] = m_head; 3723 /* 3724 * XXX assumes a 1 to 1 relationship between segments and 3725 * descriptors - this does not hold true on all drivers, e.g. 3726 * cxgb 3727 */ 3728 if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) { 3729 txq->ift_no_desc_avail++; 3730 bus_dmamap_unload(buf_tag, map); 3731 DBG_COUNTER_INC(encap_txq_avail_fail); 3732 DBG_COUNTER_INC(encap_txd_encap_fail); 3733 if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0) 3734 GROUPTASK_ENQUEUE(&txq->ift_task); 3735 return (ENOBUFS); 3736 } 3737 /* 3738 * On Intel cards we can greatly reduce the number of TX interrupts 3739 * we see by only setting report status on every Nth descriptor. 3740 * However, this also means that the driver will need to keep track 3741 * of the descriptors that RS was set on to check them for the DD bit. 3742 */ 3743 txq->ift_rs_pending += nsegs + 1; 3744 if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) || 3745 iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) { 3746 pi.ipi_flags |= IPI_TX_INTR; 3747 txq->ift_rs_pending = 0; 3748 } 3749 3750 pi.ipi_segs = segs; 3751 pi.ipi_nsegs = nsegs; 3752 3753 MPASS(pidx >= 0 && pidx < txq->ift_size); 3754 #ifdef PKT_DEBUG 3755 print_pkt(&pi); 3756 #endif 3757 if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) { 3758 bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE); 3759 DBG_COUNTER_INC(tx_encap); 3760 MPASS(pi.ipi_new_pidx < txq->ift_size); 3761 3762 ndesc = pi.ipi_new_pidx - pi.ipi_pidx; 3763 if (pi.ipi_new_pidx < pi.ipi_pidx) { 3764 ndesc += txq->ift_size; 3765 txq->ift_gen = 1; 3766 } 3767 /* 3768 * drivers can need as many as 3769 * two sentinels 3770 */ 3771 MPASS(ndesc <= pi.ipi_nsegs + 2); 3772 MPASS(pi.ipi_new_pidx != pidx); 3773 MPASS(ndesc > 0); 3774 txq->ift_in_use += ndesc; 3775 txq->ift_db_pending += ndesc; 3776 3777 /* 3778 * We update the last software descriptor again here because there may 3779 * be a sentinel and/or there may be more mbufs than segments 3780 */ 3781 txq->ift_pidx = pi.ipi_new_pidx; 3782 txq->ift_npending += pi.ipi_ndescs; 3783 } else { 3784 *m_headp = m_head = iflib_remove_mbuf(txq); 3785 if (err == EFBIG) { 3786 txq->ift_txd_encap_efbig++; 3787 if (remap < 2) { 3788 remap = 1; 3789 goto defrag; 3790 } 3791 } 3792 goto defrag_failed; 3793 } 3794 /* 3795 * err can't possibly be non-zero here, so we don't neet to test it 3796 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail). 3797 */ 3798 return (err); 3799 3800 defrag_failed: 3801 txq->ift_mbuf_defrag_failed++; 3802 txq->ift_map_failed++; 3803 m_freem(*m_headp); 3804 DBG_COUNTER_INC(tx_frees); 3805 *m_headp = NULL; 3806 DBG_COUNTER_INC(encap_txd_encap_fail); 3807 return (ENOMEM); 3808 } 3809 3810 static void 3811 iflib_tx_desc_free(iflib_txq_t txq, int n) 3812 { 3813 uint32_t qsize, cidx, mask, gen; 3814 struct mbuf *m, **ifsd_m; 3815 bool do_prefetch; 3816 3817 cidx = txq->ift_cidx; 3818 gen = txq->ift_gen; 3819 qsize = txq->ift_size; 3820 mask = qsize - 1; 3821 ifsd_m = txq->ift_sds.ifsd_m; 3822 do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH); 3823 3824 while (n-- > 0) { 3825 if (do_prefetch) { 3826 prefetch(ifsd_m[(cidx + 3) & mask]); 3827 prefetch(ifsd_m[(cidx + 4) & mask]); 3828 } 3829 if ((m = ifsd_m[cidx]) != NULL) { 3830 prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]); 3831 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 3832 bus_dmamap_sync(txq->ift_tso_buf_tag, 3833 txq->ift_sds.ifsd_tso_map[cidx], 3834 BUS_DMASYNC_POSTWRITE); 3835 bus_dmamap_unload(txq->ift_tso_buf_tag, 3836 txq->ift_sds.ifsd_tso_map[cidx]); 3837 } else { 3838 bus_dmamap_sync(txq->ift_buf_tag, 3839 txq->ift_sds.ifsd_map[cidx], 3840 BUS_DMASYNC_POSTWRITE); 3841 bus_dmamap_unload(txq->ift_buf_tag, 3842 txq->ift_sds.ifsd_map[cidx]); 3843 } 3844 /* XXX we don't support any drivers that batch packets yet */ 3845 MPASS(m->m_nextpkt == NULL); 3846 m_freem(m); 3847 ifsd_m[cidx] = NULL; 3848 #if MEMORY_LOGGING 3849 txq->ift_dequeued++; 3850 #endif 3851 DBG_COUNTER_INC(tx_frees); 3852 } 3853 if (__predict_false(++cidx == qsize)) { 3854 cidx = 0; 3855 gen = 0; 3856 } 3857 } 3858 txq->ift_cidx = cidx; 3859 txq->ift_gen = gen; 3860 } 3861 3862 static __inline int 3863 iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh) 3864 { 3865 int reclaim; 3866 if_ctx_t ctx = txq->ift_ctx; 3867 3868 KASSERT(thresh >= 0, ("invalid threshold to reclaim")); 3869 MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size); 3870 3871 /* 3872 * Need a rate-limiting check so that this isn't called every time 3873 */ 3874 iflib_tx_credits_update(ctx, txq); 3875 reclaim = DESC_RECLAIMABLE(txq); 3876 3877 if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) { 3878 #ifdef INVARIANTS 3879 if (iflib_verbose_debug) { 3880 printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__, 3881 txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments, 3882 reclaim, thresh); 3883 } 3884 #endif 3885 return (0); 3886 } 3887 iflib_tx_desc_free(txq, reclaim); 3888 txq->ift_cleaned += reclaim; 3889 txq->ift_in_use -= reclaim; 3890 3891 return (reclaim); 3892 } 3893 3894 static struct mbuf ** 3895 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining) 3896 { 3897 int next, size; 3898 struct mbuf **items; 3899 3900 size = r->size; 3901 next = (cidx + CACHE_PTR_INCREMENT) & (size - 1); 3902 items = __DEVOLATILE(struct mbuf **, &r->items[0]); 3903 3904 prefetch(items[(cidx + offset) & (size - 1)]); 3905 if (remaining > 1) { 3906 prefetch2cachelines(&items[next]); 3907 prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]); 3908 prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]); 3909 prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]); 3910 } 3911 return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)])); 3912 } 3913 3914 static void 3915 iflib_txq_check_drain(iflib_txq_t txq, int budget) 3916 { 3917 3918 ifmp_ring_check_drainage(txq->ift_br, budget); 3919 } 3920 3921 static uint32_t 3922 iflib_txq_can_drain(struct ifmp_ring *r) 3923 { 3924 iflib_txq_t txq = r->cookie; 3925 if_ctx_t ctx = txq->ift_ctx; 3926 3927 if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2) 3928 return (1); 3929 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 3930 BUS_DMASYNC_POSTREAD); 3931 return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, 3932 false)); 3933 } 3934 3935 static uint32_t 3936 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) 3937 { 3938 iflib_txq_t txq = r->cookie; 3939 if_ctx_t ctx = txq->ift_ctx; 3940 if_t ifp = ctx->ifc_ifp; 3941 struct mbuf *m, **mp; 3942 int avail, bytes_sent, skipped, count, err, i; 3943 int mcast_sent, pkt_sent, reclaimed; 3944 bool do_prefetch, rang, ring; 3945 3946 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) || 3947 !LINK_ACTIVE(ctx))) { 3948 DBG_COUNTER_INC(txq_drain_notready); 3949 return (0); 3950 } 3951 reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); 3952 rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending); 3953 avail = IDXDIFF(pidx, cidx, r->size); 3954 3955 if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) { 3956 /* 3957 * The driver is unloading so we need to free all pending packets. 3958 */ 3959 DBG_COUNTER_INC(txq_drain_flushing); 3960 for (i = 0; i < avail; i++) { 3961 if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq)) 3962 m_freem(r->items[(cidx + i) & (r->size - 1)]); 3963 r->items[(cidx + i) & (r->size - 1)] = NULL; 3964 } 3965 return (avail); 3966 } 3967 3968 if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) { 3969 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 3970 CALLOUT_LOCK(txq); 3971 callout_stop(&txq->ift_timer); 3972 CALLOUT_UNLOCK(txq); 3973 DBG_COUNTER_INC(txq_drain_oactive); 3974 return (0); 3975 } 3976 3977 /* 3978 * If we've reclaimed any packets this queue cannot be hung. 3979 */ 3980 if (reclaimed) 3981 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 3982 skipped = mcast_sent = bytes_sent = pkt_sent = 0; 3983 count = MIN(avail, TX_BATCH_SIZE); 3984 #ifdef INVARIANTS 3985 if (iflib_verbose_debug) 3986 printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__, 3987 avail, ctx->ifc_flags, TXQ_AVAIL(txq)); 3988 #endif 3989 do_prefetch = (ctx->ifc_flags & IFC_PREFETCH); 3990 err = 0; 3991 for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) { 3992 int rem = do_prefetch ? count - i : 0; 3993 3994 mp = _ring_peek_one(r, cidx, i, rem); 3995 MPASS(mp != NULL && *mp != NULL); 3996 3997 /* 3998 * Completion interrupts will use the address of the txq 3999 * as a sentinel to enqueue _something_ in order to acquire 4000 * the lock on the mp_ring (there's no direct lock call). 4001 * We obviously whave to check for these sentinel cases 4002 * and skip them. 4003 */ 4004 if (__predict_false(*mp == (struct mbuf *)txq)) { 4005 skipped++; 4006 continue; 4007 } 4008 err = iflib_encap(txq, mp); 4009 if (__predict_false(err)) { 4010 /* no room - bail out */ 4011 if (err == ENOBUFS) 4012 break; 4013 skipped++; 4014 /* we can't send this packet - skip it */ 4015 continue; 4016 } 4017 pkt_sent++; 4018 m = *mp; 4019 DBG_COUNTER_INC(tx_sent); 4020 bytes_sent += m->m_pkthdr.len; 4021 mcast_sent += !!(m->m_flags & M_MCAST); 4022 4023 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))) 4024 break; 4025 ETHER_BPF_MTAP(ifp, m); 4026 rang = iflib_txd_db_check(txq, false); 4027 } 4028 4029 /* deliberate use of bitwise or to avoid gratuitous short-circuit */ 4030 ring = rang ? false : (iflib_min_tx_latency | err); 4031 iflib_txd_db_check(txq, ring); 4032 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent); 4033 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent); 4034 if (mcast_sent) 4035 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent); 4036 #ifdef INVARIANTS 4037 if (iflib_verbose_debug) 4038 printf("consumed=%d\n", skipped + pkt_sent); 4039 #endif 4040 return (skipped + pkt_sent); 4041 } 4042 4043 static uint32_t 4044 iflib_txq_drain_always(struct ifmp_ring *r) 4045 { 4046 return (1); 4047 } 4048 4049 static uint32_t 4050 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) 4051 { 4052 int i, avail; 4053 struct mbuf **mp; 4054 iflib_txq_t txq; 4055 4056 txq = r->cookie; 4057 4058 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 4059 CALLOUT_LOCK(txq); 4060 callout_stop(&txq->ift_timer); 4061 CALLOUT_UNLOCK(txq); 4062 4063 avail = IDXDIFF(pidx, cidx, r->size); 4064 for (i = 0; i < avail; i++) { 4065 mp = _ring_peek_one(r, cidx, i, avail - i); 4066 if (__predict_false(*mp == (struct mbuf *)txq)) 4067 continue; 4068 m_freem(*mp); 4069 DBG_COUNTER_INC(tx_frees); 4070 } 4071 MPASS(ifmp_ring_is_stalled(r) == 0); 4072 return (avail); 4073 } 4074 4075 static void 4076 iflib_ifmp_purge(iflib_txq_t txq) 4077 { 4078 struct ifmp_ring *r; 4079 4080 r = txq->ift_br; 4081 r->drain = iflib_txq_drain_free; 4082 r->can_drain = iflib_txq_drain_always; 4083 4084 ifmp_ring_check_drainage(r, r->size); 4085 4086 r->drain = iflib_txq_drain; 4087 r->can_drain = iflib_txq_can_drain; 4088 } 4089 4090 static void 4091 _task_fn_tx(void *context) 4092 { 4093 iflib_txq_t txq = context; 4094 if_ctx_t ctx = txq->ift_ctx; 4095 if_t ifp = ctx->ifc_ifp; 4096 int abdicate = ctx->ifc_sysctl_tx_abdicate; 4097 4098 #ifdef IFLIB_DIAGNOSTICS 4099 txq->ift_cpu_exec_count[curcpu]++; 4100 #endif 4101 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4102 return; 4103 #ifdef DEV_NETMAP 4104 if ((if_getcapenable(ifp) & IFCAP_NETMAP) && 4105 netmap_tx_irq(ifp, txq->ift_id)) 4106 goto skip_ifmp; 4107 #endif 4108 #ifdef ALTQ 4109 if (if_altq_is_enabled(ifp)) 4110 iflib_altq_if_start(ifp); 4111 #endif 4112 if (txq->ift_db_pending) 4113 ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate); 4114 else if (!abdicate) 4115 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4116 /* 4117 * When abdicating, we always need to check drainage, not just when we don't enqueue 4118 */ 4119 if (abdicate) 4120 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4121 #ifdef DEV_NETMAP 4122 skip_ifmp: 4123 #endif 4124 if (ctx->ifc_flags & IFC_LEGACY) 4125 IFDI_INTR_ENABLE(ctx); 4126 else 4127 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); 4128 } 4129 4130 static void 4131 _task_fn_rx(void *context) 4132 { 4133 iflib_rxq_t rxq = context; 4134 if_ctx_t ctx = rxq->ifr_ctx; 4135 uint8_t more; 4136 uint16_t budget; 4137 #ifdef DEV_NETMAP 4138 u_int work = 0; 4139 int nmirq; 4140 #endif 4141 4142 #ifdef IFLIB_DIAGNOSTICS 4143 rxq->ifr_cpu_exec_count[curcpu]++; 4144 #endif 4145 DBG_COUNTER_INC(task_fn_rxs); 4146 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) 4147 return; 4148 #ifdef DEV_NETMAP 4149 nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work); 4150 if (nmirq != NM_IRQ_PASS) { 4151 more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0; 4152 goto skip_rxeof; 4153 } 4154 #endif 4155 budget = ctx->ifc_sysctl_rx_budget; 4156 if (budget == 0) 4157 budget = 16; /* XXX */ 4158 more = iflib_rxeof(rxq, budget); 4159 #ifdef DEV_NETMAP 4160 skip_rxeof: 4161 #endif 4162 if ((more & IFLIB_RXEOF_MORE) == 0) { 4163 if (ctx->ifc_flags & IFC_LEGACY) 4164 IFDI_INTR_ENABLE(ctx); 4165 else 4166 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); 4167 DBG_COUNTER_INC(rx_intr_enables); 4168 } 4169 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) 4170 return; 4171 4172 if (more & IFLIB_RXEOF_MORE) 4173 GROUPTASK_ENQUEUE(&rxq->ifr_task); 4174 else if (more & IFLIB_RXEOF_EMPTY) 4175 callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq); 4176 } 4177 4178 static void 4179 _task_fn_admin(void *context, int pending) 4180 { 4181 if_ctx_t ctx = context; 4182 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 4183 iflib_txq_t txq; 4184 int i; 4185 bool oactive, running, do_reset, do_watchdog, in_detach; 4186 4187 STATE_LOCK(ctx); 4188 running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING); 4189 oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE); 4190 do_reset = (ctx->ifc_flags & IFC_DO_RESET); 4191 do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG); 4192 in_detach = (ctx->ifc_flags & IFC_IN_DETACH); 4193 ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG); 4194 STATE_UNLOCK(ctx); 4195 4196 if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) 4197 return; 4198 if (in_detach) 4199 return; 4200 4201 CTX_LOCK(ctx); 4202 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { 4203 CALLOUT_LOCK(txq); 4204 callout_stop(&txq->ift_timer); 4205 CALLOUT_UNLOCK(txq); 4206 } 4207 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ) 4208 IFDI_ADMIN_COMPLETION_HANDLE(ctx); 4209 if (do_watchdog) { 4210 ctx->ifc_watchdog_events++; 4211 IFDI_WATCHDOG_RESET(ctx); 4212 } 4213 IFDI_UPDATE_ADMIN_STATUS(ctx); 4214 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { 4215 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq, 4216 txq->ift_timer.c_cpu); 4217 } 4218 IFDI_LINK_INTR_ENABLE(ctx); 4219 if (do_reset) 4220 iflib_if_init_locked(ctx); 4221 CTX_UNLOCK(ctx); 4222 4223 if (LINK_ACTIVE(ctx) == 0) 4224 return; 4225 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) 4226 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); 4227 } 4228 4229 static void 4230 _task_fn_iov(void *context, int pending) 4231 { 4232 if_ctx_t ctx = context; 4233 4234 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) && 4235 !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) 4236 return; 4237 4238 CTX_LOCK(ctx); 4239 IFDI_VFLR_HANDLE(ctx); 4240 CTX_UNLOCK(ctx); 4241 } 4242 4243 static int 4244 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4245 { 4246 int err; 4247 if_int_delay_info_t info; 4248 if_ctx_t ctx; 4249 4250 info = (if_int_delay_info_t)arg1; 4251 ctx = info->iidi_ctx; 4252 info->iidi_req = req; 4253 info->iidi_oidp = oidp; 4254 CTX_LOCK(ctx); 4255 err = IFDI_SYSCTL_INT_DELAY(ctx, info); 4256 CTX_UNLOCK(ctx); 4257 return (err); 4258 } 4259 4260 /********************************************************************* 4261 * 4262 * IFNET FUNCTIONS 4263 * 4264 **********************************************************************/ 4265 4266 static void 4267 iflib_if_init_locked(if_ctx_t ctx) 4268 { 4269 iflib_stop(ctx); 4270 iflib_init_locked(ctx); 4271 } 4272 4273 static void 4274 iflib_if_init(void *arg) 4275 { 4276 if_ctx_t ctx = arg; 4277 4278 CTX_LOCK(ctx); 4279 iflib_if_init_locked(ctx); 4280 CTX_UNLOCK(ctx); 4281 } 4282 4283 static int 4284 iflib_if_transmit(if_t ifp, struct mbuf *m) 4285 { 4286 if_ctx_t ctx = if_getsoftc(ifp); 4287 iflib_txq_t txq; 4288 int err, qidx; 4289 int abdicate; 4290 4291 if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) { 4292 DBG_COUNTER_INC(tx_frees); 4293 m_freem(m); 4294 return (ENETDOWN); 4295 } 4296 4297 MPASS(m->m_nextpkt == NULL); 4298 /* ALTQ-enabled interfaces always use queue 0. */ 4299 qidx = 0; 4300 /* Use driver-supplied queue selection method if it exists */ 4301 if (ctx->isc_txq_select_v2) { 4302 struct if_pkt_info pi; 4303 uint64_t early_pullups = 0; 4304 pkt_info_zero(&pi); 4305 4306 err = iflib_parse_header_partial(&pi, &m, &early_pullups); 4307 if (__predict_false(err != 0)) { 4308 /* Assign pullups for bad pkts to default queue */ 4309 ctx->ifc_txqs[0].ift_pullups += early_pullups; 4310 DBG_COUNTER_INC(encap_txd_encap_fail); 4311 return (err); 4312 } 4313 /* Let driver make queueing decision */ 4314 qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi); 4315 ctx->ifc_txqs[qidx].ift_pullups += early_pullups; 4316 } 4317 /* Backwards compatibility w/ simpler queue select */ 4318 else if (ctx->isc_txq_select) 4319 qidx = ctx->isc_txq_select(ctx->ifc_softc, m); 4320 /* If not, use iflib's standard method */ 4321 else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp)) 4322 qidx = QIDX(ctx, m); 4323 4324 /* Set TX queue */ 4325 txq = &ctx->ifc_txqs[qidx]; 4326 4327 #ifdef DRIVER_BACKPRESSURE 4328 if (txq->ift_closed) { 4329 while (m != NULL) { 4330 next = m->m_nextpkt; 4331 m->m_nextpkt = NULL; 4332 m_freem(m); 4333 DBG_COUNTER_INC(tx_frees); 4334 m = next; 4335 } 4336 return (ENOBUFS); 4337 } 4338 #endif 4339 #ifdef notyet 4340 qidx = count = 0; 4341 mp = marr; 4342 next = m; 4343 do { 4344 count++; 4345 next = next->m_nextpkt; 4346 } while (next != NULL); 4347 4348 if (count > nitems(marr)) 4349 if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) { 4350 /* XXX check nextpkt */ 4351 m_freem(m); 4352 /* XXX simplify for now */ 4353 DBG_COUNTER_INC(tx_frees); 4354 return (ENOBUFS); 4355 } 4356 for (next = m, i = 0; next != NULL; i++) { 4357 mp[i] = next; 4358 next = next->m_nextpkt; 4359 mp[i]->m_nextpkt = NULL; 4360 } 4361 #endif 4362 DBG_COUNTER_INC(tx_seen); 4363 abdicate = ctx->ifc_sysctl_tx_abdicate; 4364 4365 err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate); 4366 4367 if (abdicate) 4368 GROUPTASK_ENQUEUE(&txq->ift_task); 4369 if (err) { 4370 if (!abdicate) 4371 GROUPTASK_ENQUEUE(&txq->ift_task); 4372 /* support forthcoming later */ 4373 #ifdef DRIVER_BACKPRESSURE 4374 txq->ift_closed = TRUE; 4375 #endif 4376 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4377 m_freem(m); 4378 DBG_COUNTER_INC(tx_frees); 4379 } 4380 4381 return (err); 4382 } 4383 4384 #ifdef ALTQ 4385 /* 4386 * The overall approach to integrating iflib with ALTQ is to continue to use 4387 * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware 4388 * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring 4389 * is redundant/unnecessary, but doing so minimizes the amount of 4390 * ALTQ-specific code required in iflib. It is assumed that the overhead of 4391 * redundantly queueing to an intermediate mp_ring is swamped by the 4392 * performance limitations inherent in using ALTQ. 4393 * 4394 * When ALTQ support is compiled in, all iflib drivers will use a transmit 4395 * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the 4396 * given interface. If ALTQ is enabled for an interface, then all 4397 * transmitted packets for that interface will be submitted to the ALTQ 4398 * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit() 4399 * implementation because it uses IFQ_HANDOFF(), which will duplicatively 4400 * update stats that the iflib machinery handles, and which is sensitve to 4401 * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start() 4402 * will be installed as the start routine for use by ALTQ facilities that 4403 * need to trigger queue drains on a scheduled basis. 4404 * 4405 */ 4406 static void 4407 iflib_altq_if_start(if_t ifp) 4408 { 4409 struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */ 4410 struct mbuf *m; 4411 4412 IFQ_LOCK(ifq); 4413 IFQ_DEQUEUE_NOLOCK(ifq, m); 4414 while (m != NULL) { 4415 iflib_if_transmit(ifp, m); 4416 IFQ_DEQUEUE_NOLOCK(ifq, m); 4417 } 4418 IFQ_UNLOCK(ifq); 4419 } 4420 4421 static int 4422 iflib_altq_if_transmit(if_t ifp, struct mbuf *m) 4423 { 4424 int err; 4425 4426 if (if_altq_is_enabled(ifp)) { 4427 IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */ 4428 if (err == 0) 4429 iflib_altq_if_start(ifp); 4430 } else 4431 err = iflib_if_transmit(ifp, m); 4432 4433 return (err); 4434 } 4435 #endif /* ALTQ */ 4436 4437 static void 4438 iflib_if_qflush(if_t ifp) 4439 { 4440 if_ctx_t ctx = if_getsoftc(ifp); 4441 iflib_txq_t txq = ctx->ifc_txqs; 4442 int i; 4443 4444 STATE_LOCK(ctx); 4445 ctx->ifc_flags |= IFC_QFLUSH; 4446 STATE_UNLOCK(ctx); 4447 for (i = 0; i < NTXQSETS(ctx); i++, txq++) 4448 while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br))) 4449 iflib_txq_check_drain(txq, 0); 4450 STATE_LOCK(ctx); 4451 ctx->ifc_flags &= ~IFC_QFLUSH; 4452 STATE_UNLOCK(ctx); 4453 4454 /* 4455 * When ALTQ is enabled, this will also take care of purging the 4456 * ALTQ queue(s). 4457 */ 4458 if_qflush(ifp); 4459 } 4460 4461 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \ 4462 IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \ 4463 IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \ 4464 IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG) 4465 4466 static int 4467 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data) 4468 { 4469 if_ctx_t ctx = if_getsoftc(ifp); 4470 struct ifreq *ifr = (struct ifreq *)data; 4471 #if defined(INET) || defined(INET6) 4472 struct ifaddr *ifa = (struct ifaddr *)data; 4473 #endif 4474 bool avoid_reset = false; 4475 int err = 0, reinit = 0, bits; 4476 4477 switch (command) { 4478 case SIOCSIFADDR: 4479 #ifdef INET 4480 if (ifa->ifa_addr->sa_family == AF_INET) 4481 avoid_reset = true; 4482 #endif 4483 #ifdef INET6 4484 if (ifa->ifa_addr->sa_family == AF_INET6) 4485 avoid_reset = true; 4486 #endif 4487 /* 4488 * Calling init results in link renegotiation, 4489 * so we avoid doing it when possible. 4490 */ 4491 if (avoid_reset) { 4492 if_setflagbits(ifp, IFF_UP, 0); 4493 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4494 reinit = 1; 4495 #ifdef INET 4496 if (!(if_getflags(ifp) & IFF_NOARP)) 4497 arp_ifinit(ifp, ifa); 4498 #endif 4499 } else 4500 err = ether_ioctl(ifp, command, data); 4501 break; 4502 case SIOCSIFMTU: 4503 CTX_LOCK(ctx); 4504 if (ifr->ifr_mtu == if_getmtu(ifp)) { 4505 CTX_UNLOCK(ctx); 4506 break; 4507 } 4508 bits = if_getdrvflags(ifp); 4509 /* stop the driver and free any clusters before proceeding */ 4510 iflib_stop(ctx); 4511 4512 if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) { 4513 STATE_LOCK(ctx); 4514 if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size) 4515 ctx->ifc_flags |= IFC_MULTISEG; 4516 else 4517 ctx->ifc_flags &= ~IFC_MULTISEG; 4518 STATE_UNLOCK(ctx); 4519 err = if_setmtu(ifp, ifr->ifr_mtu); 4520 } 4521 iflib_init_locked(ctx); 4522 STATE_LOCK(ctx); 4523 if_setdrvflags(ifp, bits); 4524 STATE_UNLOCK(ctx); 4525 CTX_UNLOCK(ctx); 4526 break; 4527 case SIOCSIFFLAGS: 4528 CTX_LOCK(ctx); 4529 if (if_getflags(ifp) & IFF_UP) { 4530 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4531 if ((if_getflags(ifp) ^ ctx->ifc_if_flags) & 4532 (IFF_PROMISC | IFF_ALLMULTI)) { 4533 CTX_UNLOCK(ctx); 4534 err = IFDI_PROMISC_SET(ctx, if_getflags(ifp)); 4535 CTX_LOCK(ctx); 4536 } 4537 } else 4538 reinit = 1; 4539 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4540 iflib_stop(ctx); 4541 } 4542 ctx->ifc_if_flags = if_getflags(ifp); 4543 CTX_UNLOCK(ctx); 4544 break; 4545 case SIOCADDMULTI: 4546 case SIOCDELMULTI: 4547 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4548 CTX_LOCK(ctx); 4549 IFDI_INTR_DISABLE(ctx); 4550 IFDI_MULTI_SET(ctx); 4551 IFDI_INTR_ENABLE(ctx); 4552 CTX_UNLOCK(ctx); 4553 } 4554 break; 4555 case SIOCSIFMEDIA: 4556 CTX_LOCK(ctx); 4557 IFDI_MEDIA_SET(ctx); 4558 CTX_UNLOCK(ctx); 4559 /* FALLTHROUGH */ 4560 case SIOCGIFMEDIA: 4561 case SIOCGIFXMEDIA: 4562 err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command); 4563 break; 4564 case SIOCGI2C: 4565 { 4566 struct ifi2creq i2c; 4567 4568 err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 4569 if (err != 0) 4570 break; 4571 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 4572 err = EINVAL; 4573 break; 4574 } 4575 if (i2c.len > sizeof(i2c.data)) { 4576 err = EINVAL; 4577 break; 4578 } 4579 4580 if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0) 4581 err = copyout(&i2c, ifr_data_get_ptr(ifr), 4582 sizeof(i2c)); 4583 break; 4584 } 4585 case SIOCSIFCAP: 4586 { 4587 int mask, setmask, oldmask; 4588 4589 oldmask = if_getcapenable(ifp); 4590 mask = ifr->ifr_reqcap ^ oldmask; 4591 mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG; 4592 setmask = 0; 4593 #ifdef TCP_OFFLOAD 4594 setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6); 4595 #endif 4596 setmask |= (mask & IFCAP_FLAGS); 4597 setmask |= (mask & IFCAP_WOL); 4598 4599 /* 4600 * If any RX csum has changed, change all the ones that 4601 * are supported by the driver. 4602 */ 4603 if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { 4604 setmask |= ctx->ifc_softc_ctx.isc_capabilities & 4605 (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); 4606 } 4607 4608 /* 4609 * want to ensure that traffic has stopped before we change any of the flags 4610 */ 4611 if (setmask) { 4612 CTX_LOCK(ctx); 4613 bits = if_getdrvflags(ifp); 4614 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) 4615 iflib_stop(ctx); 4616 STATE_LOCK(ctx); 4617 if_togglecapenable(ifp, setmask); 4618 ctx->ifc_softc_ctx.isc_capenable ^= setmask; 4619 STATE_UNLOCK(ctx); 4620 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) 4621 iflib_init_locked(ctx); 4622 STATE_LOCK(ctx); 4623 if_setdrvflags(ifp, bits); 4624 STATE_UNLOCK(ctx); 4625 CTX_UNLOCK(ctx); 4626 } 4627 if_vlancap(ifp); 4628 break; 4629 } 4630 case SIOCGPRIVATE_0: 4631 case SIOCSDRVSPEC: 4632 case SIOCGDRVSPEC: 4633 CTX_LOCK(ctx); 4634 err = IFDI_PRIV_IOCTL(ctx, command, data); 4635 CTX_UNLOCK(ctx); 4636 break; 4637 default: 4638 err = ether_ioctl(ifp, command, data); 4639 break; 4640 } 4641 if (reinit) 4642 iflib_if_init(ctx); 4643 return (err); 4644 } 4645 4646 static uint64_t 4647 iflib_if_get_counter(if_t ifp, ift_counter cnt) 4648 { 4649 if_ctx_t ctx = if_getsoftc(ifp); 4650 4651 return (IFDI_GET_COUNTER(ctx, cnt)); 4652 } 4653 4654 /********************************************************************* 4655 * 4656 * OTHER FUNCTIONS EXPORTED TO THE STACK 4657 * 4658 **********************************************************************/ 4659 4660 static void 4661 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag) 4662 { 4663 if_ctx_t ctx = if_getsoftc(ifp); 4664 4665 if ((void *)ctx != arg) 4666 return; 4667 4668 if ((vtag == 0) || (vtag > 4095)) 4669 return; 4670 4671 if (iflib_in_detach(ctx)) 4672 return; 4673 4674 CTX_LOCK(ctx); 4675 /* Driver may need all untagged packets to be flushed */ 4676 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4677 iflib_stop(ctx); 4678 IFDI_VLAN_REGISTER(ctx, vtag); 4679 /* Re-init to load the changes, if required */ 4680 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4681 iflib_init_locked(ctx); 4682 CTX_UNLOCK(ctx); 4683 } 4684 4685 static void 4686 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag) 4687 { 4688 if_ctx_t ctx = if_getsoftc(ifp); 4689 4690 if ((void *)ctx != arg) 4691 return; 4692 4693 if ((vtag == 0) || (vtag > 4095)) 4694 return; 4695 4696 CTX_LOCK(ctx); 4697 /* Driver may need all tagged packets to be flushed */ 4698 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4699 iflib_stop(ctx); 4700 IFDI_VLAN_UNREGISTER(ctx, vtag); 4701 /* Re-init to load the changes, if required */ 4702 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4703 iflib_init_locked(ctx); 4704 CTX_UNLOCK(ctx); 4705 } 4706 4707 static void 4708 iflib_led_func(void *arg, int onoff) 4709 { 4710 if_ctx_t ctx = arg; 4711 4712 CTX_LOCK(ctx); 4713 IFDI_LED_FUNC(ctx, onoff); 4714 CTX_UNLOCK(ctx); 4715 } 4716 4717 /********************************************************************* 4718 * 4719 * BUS FUNCTION DEFINITIONS 4720 * 4721 **********************************************************************/ 4722 4723 int 4724 iflib_device_probe(device_t dev) 4725 { 4726 const pci_vendor_info_t *ent; 4727 if_shared_ctx_t sctx; 4728 uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id; 4729 uint16_t pci_vendor_id; 4730 4731 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) 4732 return (ENOTSUP); 4733 4734 pci_vendor_id = pci_get_vendor(dev); 4735 pci_device_id = pci_get_device(dev); 4736 pci_subvendor_id = pci_get_subvendor(dev); 4737 pci_subdevice_id = pci_get_subdevice(dev); 4738 pci_rev_id = pci_get_revid(dev); 4739 if (sctx->isc_parse_devinfo != NULL) 4740 sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id); 4741 4742 ent = sctx->isc_vendor_info; 4743 while (ent->pvi_vendor_id != 0) { 4744 if (pci_vendor_id != ent->pvi_vendor_id) { 4745 ent++; 4746 continue; 4747 } 4748 if ((pci_device_id == ent->pvi_device_id) && 4749 ((pci_subvendor_id == ent->pvi_subvendor_id) || 4750 (ent->pvi_subvendor_id == 0)) && 4751 ((pci_subdevice_id == ent->pvi_subdevice_id) || 4752 (ent->pvi_subdevice_id == 0)) && 4753 ((pci_rev_id == ent->pvi_rev_id) || 4754 (ent->pvi_rev_id == 0))) { 4755 device_set_desc_copy(dev, ent->pvi_name); 4756 /* this needs to be changed to zero if the bus probing code 4757 * ever stops re-probing on best match because the sctx 4758 * may have its values over written by register calls 4759 * in subsequent probes 4760 */ 4761 return (BUS_PROBE_DEFAULT); 4762 } 4763 ent++; 4764 } 4765 return (ENXIO); 4766 } 4767 4768 int 4769 iflib_device_probe_vendor(device_t dev) 4770 { 4771 int probe; 4772 4773 probe = iflib_device_probe(dev); 4774 if (probe == BUS_PROBE_DEFAULT) 4775 return (BUS_PROBE_VENDOR); 4776 else 4777 return (probe); 4778 } 4779 4780 static void 4781 iflib_reset_qvalues(if_ctx_t ctx) 4782 { 4783 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 4784 if_shared_ctx_t sctx = ctx->ifc_sctx; 4785 device_t dev = ctx->ifc_dev; 4786 int i; 4787 4788 if (ctx->ifc_sysctl_ntxqs != 0) 4789 scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs; 4790 if (ctx->ifc_sysctl_nrxqs != 0) 4791 scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs; 4792 4793 for (i = 0; i < sctx->isc_ntxqs; i++) { 4794 if (ctx->ifc_sysctl_ntxds[i] != 0) 4795 scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i]; 4796 else 4797 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; 4798 } 4799 4800 for (i = 0; i < sctx->isc_nrxqs; i++) { 4801 if (ctx->ifc_sysctl_nrxds[i] != 0) 4802 scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i]; 4803 else 4804 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; 4805 } 4806 4807 for (i = 0; i < sctx->isc_nrxqs; i++) { 4808 if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) { 4809 device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n", 4810 i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]); 4811 scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i]; 4812 } 4813 if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) { 4814 device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n", 4815 i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]); 4816 scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i]; 4817 } 4818 if (!powerof2(scctx->isc_nrxd[i])) { 4819 device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n", 4820 i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]); 4821 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; 4822 } 4823 } 4824 4825 for (i = 0; i < sctx->isc_ntxqs; i++) { 4826 if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) { 4827 device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n", 4828 i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]); 4829 scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i]; 4830 } 4831 if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) { 4832 device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n", 4833 i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]); 4834 scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i]; 4835 } 4836 if (!powerof2(scctx->isc_ntxd[i])) { 4837 device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n", 4838 i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]); 4839 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; 4840 } 4841 } 4842 } 4843 4844 static void 4845 iflib_add_pfil(if_ctx_t ctx) 4846 { 4847 struct pfil_head *pfil; 4848 struct pfil_head_args pa; 4849 iflib_rxq_t rxq; 4850 int i; 4851 4852 pa.pa_version = PFIL_VERSION; 4853 pa.pa_flags = PFIL_IN; 4854 pa.pa_type = PFIL_TYPE_ETHERNET; 4855 pa.pa_headname = if_name(ctx->ifc_ifp); 4856 pfil = pfil_head_register(&pa); 4857 4858 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { 4859 rxq->pfil = pfil; 4860 } 4861 } 4862 4863 static void 4864 iflib_rem_pfil(if_ctx_t ctx) 4865 { 4866 struct pfil_head *pfil; 4867 iflib_rxq_t rxq; 4868 int i; 4869 4870 rxq = ctx->ifc_rxqs; 4871 pfil = rxq->pfil; 4872 for (i = 0; i < NRXQSETS(ctx); i++, rxq++) { 4873 rxq->pfil = NULL; 4874 } 4875 pfil_head_unregister(pfil); 4876 } 4877 4878 4879 /* 4880 * Advance forward by n members of the cpuset ctx->ifc_cpus starting from 4881 * cpuid and wrapping as necessary. 4882 */ 4883 static unsigned int 4884 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n) 4885 { 4886 unsigned int first_valid; 4887 unsigned int last_valid; 4888 4889 /* cpuid should always be in the valid set */ 4890 MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus)); 4891 4892 /* valid set should never be empty */ 4893 MPASS(!CPU_EMPTY(&ctx->ifc_cpus)); 4894 4895 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1; 4896 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1; 4897 n = n % CPU_COUNT(&ctx->ifc_cpus); 4898 while (n > 0) { 4899 do { 4900 cpuid++; 4901 if (cpuid > last_valid) 4902 cpuid = first_valid; 4903 } while (!CPU_ISSET(cpuid, &ctx->ifc_cpus)); 4904 n--; 4905 } 4906 4907 return (cpuid); 4908 } 4909 4910 #if defined(SMP) && defined(SCHED_ULE) 4911 extern struct cpu_group *cpu_top; /* CPU topology */ 4912 4913 static int 4914 find_child_with_core(int cpu, struct cpu_group *grp) 4915 { 4916 int i; 4917 4918 if (grp->cg_children == 0) 4919 return (-1); 4920 4921 MPASS(grp->cg_child); 4922 for (i = 0; i < grp->cg_children; i++) { 4923 if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask)) 4924 return (i); 4925 } 4926 4927 return (-1); 4928 } 4929 4930 4931 /* 4932 * Find an L2 neighbor of the given CPU or return -1 if none found. This 4933 * does not distinguish among multiple L2 neighbors if the given CPU has 4934 * more than one (it will always return the same result in that case). 4935 */ 4936 static int 4937 find_l2_neighbor(int cpu) 4938 { 4939 struct cpu_group *grp; 4940 int i; 4941 4942 grp = cpu_top; 4943 if (grp == NULL) 4944 return (-1); 4945 4946 /* 4947 * Find the smallest CPU group that contains the given core. 4948 */ 4949 i = 0; 4950 while ((i = find_child_with_core(cpu, grp)) != -1) { 4951 /* 4952 * If the smallest group containing the given CPU has less 4953 * than two members, we conclude the given CPU has no 4954 * L2 neighbor. 4955 */ 4956 if (grp->cg_child[i].cg_count <= 1) 4957 return (-1); 4958 grp = &grp->cg_child[i]; 4959 } 4960 4961 /* Must share L2. */ 4962 if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE) 4963 return (-1); 4964 4965 /* 4966 * Select the first member of the set that isn't the reference 4967 * CPU, which at this point is guaranteed to exist. 4968 */ 4969 for (i = 0; i < CPU_SETSIZE; i++) { 4970 if (CPU_ISSET(i, &grp->cg_mask) && i != cpu) 4971 return (i); 4972 } 4973 4974 /* Should never be reached */ 4975 return (-1); 4976 } 4977 4978 #else 4979 static int 4980 find_l2_neighbor(int cpu) 4981 { 4982 4983 return (-1); 4984 } 4985 #endif 4986 4987 /* 4988 * CPU mapping behaviors 4989 * --------------------- 4990 * 'separate txrx' refers to the separate_txrx sysctl 4991 * 'use logical' refers to the use_logical_cores sysctl 4992 * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded 4993 * 4994 * separate use INTR 4995 * txrx logical CPUS result 4996 * ---------- --------- ------ ------------------------------------------------ 4997 * - - X RX and TX queues mapped to consecutive physical 4998 * cores with RX/TX pairs on same core and excess 4999 * of either following 5000 * - X X RX and TX queues mapped to consecutive cores 5001 * of any type with RX/TX pairs on same core and 5002 * excess of either following 5003 * X - X RX and TX queues mapped to consecutive physical 5004 * cores; all RX then all TX 5005 * X X X RX queues mapped to consecutive physical cores 5006 * first, then TX queues mapped to L2 neighbor of 5007 * the corresponding RX queue if one exists, 5008 * otherwise to consecutive physical cores 5009 * - n/a - RX and TX queues mapped to consecutive cores of 5010 * any type with RX/TX pairs on same core and excess 5011 * of either following 5012 * X n/a - RX and TX queues mapped to consecutive cores of 5013 * any type; all RX then all TX 5014 */ 5015 static unsigned int 5016 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid, 5017 bool is_tx) 5018 { 5019 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 5020 unsigned int core_index; 5021 5022 if (ctx->ifc_sysctl_separate_txrx) { 5023 /* 5024 * When using separate CPUs for TX and RX, the assignment 5025 * will always be of a consecutive CPU out of the set of 5026 * context CPUs, except for the specific case where the 5027 * context CPUs are phsyical cores, the use of logical cores 5028 * has been enabled, the assignment is for TX, the TX qid 5029 * corresponds to an RX qid, and the CPU assigned to the 5030 * corresponding RX queue has an L2 neighbor. 5031 */ 5032 if (ctx->ifc_sysctl_use_logical_cores && 5033 ctx->ifc_cpus_are_physical_cores && 5034 is_tx && qid < scctx->isc_nrxqsets) { 5035 int l2_neighbor; 5036 unsigned int rx_cpuid; 5037 5038 rx_cpuid = cpuid_advance(ctx, base_cpuid, qid); 5039 l2_neighbor = find_l2_neighbor(rx_cpuid); 5040 if (l2_neighbor != -1) { 5041 return (l2_neighbor); 5042 } 5043 /* 5044 * ... else fall through to the normal 5045 * consecutive-after-RX assignment scheme. 5046 * 5047 * Note that we are assuming that all RX queue CPUs 5048 * have an L2 neighbor, or all do not. If a mixed 5049 * scenario is possible, we will have to keep track 5050 * separately of how many queues prior to this one 5051 * were not able to be assigned to an L2 neighbor. 5052 */ 5053 } 5054 if (is_tx) 5055 core_index = scctx->isc_nrxqsets + qid; 5056 else 5057 core_index = qid; 5058 } else { 5059 core_index = qid; 5060 } 5061 5062 return (cpuid_advance(ctx, base_cpuid, core_index)); 5063 } 5064 5065 static uint16_t 5066 get_ctx_core_offset(if_ctx_t ctx) 5067 { 5068 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 5069 struct cpu_offset *op; 5070 cpuset_t assigned_cpus; 5071 unsigned int cores_consumed; 5072 unsigned int base_cpuid = ctx->ifc_sysctl_core_offset; 5073 unsigned int first_valid; 5074 unsigned int last_valid; 5075 unsigned int i; 5076 5077 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1; 5078 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1; 5079 5080 if (base_cpuid != CORE_OFFSET_UNSPECIFIED) { 5081 /* 5082 * Align the user-chosen base CPU ID to the next valid CPU 5083 * for this device. If the chosen base CPU ID is smaller 5084 * than the first valid CPU or larger than the last valid 5085 * CPU, we assume the user does not know what the valid 5086 * range is for this device and is thinking in terms of a 5087 * zero-based reference frame, and so we shift the given 5088 * value into the valid range (and wrap accordingly) so the 5089 * intent is translated to the proper frame of reference. 5090 * If the base CPU ID is within the valid first/last, but 5091 * does not correspond to a valid CPU, it is advanced to the 5092 * next valid CPU (wrapping if necessary). 5093 */ 5094 if (base_cpuid < first_valid || base_cpuid > last_valid) { 5095 /* shift from zero-based to first_valid-based */ 5096 base_cpuid += first_valid; 5097 /* wrap to range [first_valid, last_valid] */ 5098 base_cpuid = (base_cpuid - first_valid) % 5099 (last_valid - first_valid + 1); 5100 } 5101 if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) { 5102 /* 5103 * base_cpuid is in [first_valid, last_valid], but 5104 * not a member of the valid set. In this case, 5105 * there will always be a member of the valid set 5106 * with a CPU ID that is greater than base_cpuid, 5107 * and we simply advance to it. 5108 */ 5109 while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) 5110 base_cpuid++; 5111 } 5112 return (base_cpuid); 5113 } 5114 5115 /* 5116 * Determine how many cores will be consumed by performing the CPU 5117 * assignments and counting how many of the assigned CPUs correspond 5118 * to CPUs in the set of context CPUs. This is done using the CPU 5119 * ID first_valid as the base CPU ID, as the base CPU must be within 5120 * the set of context CPUs. 5121 * 5122 * Note not all assigned CPUs will be in the set of context CPUs 5123 * when separate CPUs are being allocated to TX and RX queues, 5124 * assignment to logical cores has been enabled, the set of context 5125 * CPUs contains only physical CPUs, and TX queues are mapped to L2 5126 * neighbors of CPUs that RX queues have been mapped to - in this 5127 * case we do only want to count how many CPUs in the set of context 5128 * CPUs have been consumed, as that determines the next CPU in that 5129 * set to start allocating at for the next device for which 5130 * core_offset is not set. 5131 */ 5132 CPU_ZERO(&assigned_cpus); 5133 for (i = 0; i < scctx->isc_ntxqsets; i++) 5134 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true), 5135 &assigned_cpus); 5136 for (i = 0; i < scctx->isc_nrxqsets; i++) 5137 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false), 5138 &assigned_cpus); 5139 CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus); 5140 cores_consumed = CPU_COUNT(&assigned_cpus); 5141 5142 mtx_lock(&cpu_offset_mtx); 5143 SLIST_FOREACH(op, &cpu_offsets, entries) { 5144 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) { 5145 base_cpuid = op->next_cpuid; 5146 op->next_cpuid = cpuid_advance(ctx, op->next_cpuid, 5147 cores_consumed); 5148 MPASS(op->refcount < UINT_MAX); 5149 op->refcount++; 5150 break; 5151 } 5152 } 5153 if (base_cpuid == CORE_OFFSET_UNSPECIFIED) { 5154 base_cpuid = first_valid; 5155 op = malloc(sizeof(struct cpu_offset), M_IFLIB, 5156 M_NOWAIT | M_ZERO); 5157 if (op == NULL) { 5158 device_printf(ctx->ifc_dev, 5159 "allocation for cpu offset failed.\n"); 5160 } else { 5161 op->next_cpuid = cpuid_advance(ctx, base_cpuid, 5162 cores_consumed); 5163 op->refcount = 1; 5164 CPU_COPY(&ctx->ifc_cpus, &op->set); 5165 SLIST_INSERT_HEAD(&cpu_offsets, op, entries); 5166 } 5167 } 5168 mtx_unlock(&cpu_offset_mtx); 5169 5170 return (base_cpuid); 5171 } 5172 5173 static void 5174 unref_ctx_core_offset(if_ctx_t ctx) 5175 { 5176 struct cpu_offset *op, *top; 5177 5178 mtx_lock(&cpu_offset_mtx); 5179 SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) { 5180 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) { 5181 MPASS(op->refcount > 0); 5182 op->refcount--; 5183 if (op->refcount == 0) { 5184 SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries); 5185 free(op, M_IFLIB); 5186 } 5187 break; 5188 } 5189 } 5190 mtx_unlock(&cpu_offset_mtx); 5191 } 5192 5193 int 5194 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp) 5195 { 5196 if_ctx_t ctx; 5197 if_t ifp; 5198 if_softc_ctx_t scctx; 5199 kobjop_desc_t kobj_desc; 5200 kobj_method_t *kobj_method; 5201 int err, msix, rid; 5202 int num_txd, num_rxd; 5203 char namebuf[TASKQUEUE_NAMELEN]; 5204 5205 ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO); 5206 5207 if (sc == NULL) { 5208 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO); 5209 device_set_softc(dev, ctx); 5210 ctx->ifc_flags |= IFC_SC_ALLOCATED; 5211 } 5212 5213 ctx->ifc_sctx = sctx; 5214 ctx->ifc_dev = dev; 5215 ctx->ifc_softc = sc; 5216 5217 if ((err = iflib_register(ctx)) != 0) { 5218 device_printf(dev, "iflib_register failed %d\n", err); 5219 goto fail_ctx_free; 5220 } 5221 iflib_add_device_sysctl_pre(ctx); 5222 5223 scctx = &ctx->ifc_softc_ctx; 5224 ifp = ctx->ifc_ifp; 5225 5226 iflib_reset_qvalues(ctx); 5227 IFNET_WLOCK(); 5228 CTX_LOCK(ctx); 5229 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { 5230 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); 5231 goto fail_unlock; 5232 } 5233 _iflib_pre_assert(scctx); 5234 ctx->ifc_txrx = *scctx->isc_txrx; 5235 5236 MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR)); 5237 5238 if (sctx->isc_flags & IFLIB_DRIVER_MEDIA) 5239 ctx->ifc_mediap = scctx->isc_media; 5240 5241 #ifdef INVARIANTS 5242 if (scctx->isc_capabilities & IFCAP_TXCSUM) 5243 MPASS(scctx->isc_tx_csum_flags); 5244 #endif 5245 5246 if_setcapabilities(ifp, 5247 scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG); 5248 if_setcapenable(ifp, 5249 scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG); 5250 5251 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) 5252 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; 5253 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) 5254 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; 5255 5256 num_txd = iflib_num_tx_descs(ctx); 5257 num_rxd = iflib_num_rx_descs(ctx); 5258 5259 /* XXX change for per-queue sizes */ 5260 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n", 5261 num_txd, num_rxd); 5262 5263 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION) 5264 scctx->isc_tx_nsegments = max(1, num_txd / 5265 MAX_SINGLE_PACKET_FRACTION); 5266 if (scctx->isc_tx_tso_segments_max > num_txd / 5267 MAX_SINGLE_PACKET_FRACTION) 5268 scctx->isc_tx_tso_segments_max = max(1, 5269 num_txd / MAX_SINGLE_PACKET_FRACTION); 5270 5271 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ 5272 if (if_getcapabilities(ifp) & IFCAP_TSO) { 5273 /* 5274 * The stack can't handle a TSO size larger than IP_MAXPACKET, 5275 * but some MACs do. 5276 */ 5277 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, 5278 IP_MAXPACKET)); 5279 /* 5280 * Take maximum number of m_pullup(9)'s in iflib_parse_header() 5281 * into account. In the worst case, each of these calls will 5282 * add another mbuf and, thus, the requirement for another DMA 5283 * segment. So for best performance, it doesn't make sense to 5284 * advertize a maximum of TSO segments that typically will 5285 * require defragmentation in iflib_encap(). 5286 */ 5287 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); 5288 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); 5289 } 5290 if (scctx->isc_rss_table_size == 0) 5291 scctx->isc_rss_table_size = 64; 5292 scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1; 5293 5294 /* Create and start admin taskqueue */ 5295 snprintf(namebuf, TASKQUEUE_NAMELEN, "if_%s_tq", device_get_nameunit(dev)); 5296 ctx->ifc_tq = taskqueue_create_fast(namebuf, M_NOWAIT, 5297 taskqueue_thread_enqueue, &ctx->ifc_tq); 5298 if (ctx->ifc_tq == NULL) { 5299 device_printf(dev, "Unable to create admin taskqueue\n"); 5300 return (ENOMEM); 5301 } 5302 5303 err = taskqueue_start_threads(&ctx->ifc_tq, 1, PI_NET, "%s", namebuf); 5304 if (err) { 5305 device_printf(dev, 5306 "Unable to start admin taskqueue threads error: %d\n", 5307 err); 5308 taskqueue_free(ctx->ifc_tq); 5309 return (err); 5310 } 5311 5312 TASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); 5313 5314 /* Set up cpu set. If it fails, use the set of all CPUs. */ 5315 if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) { 5316 device_printf(dev, "Unable to fetch CPU list\n"); 5317 CPU_COPY(&all_cpus, &ctx->ifc_cpus); 5318 ctx->ifc_cpus_are_physical_cores = false; 5319 } else 5320 ctx->ifc_cpus_are_physical_cores = true; 5321 MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0); 5322 5323 /* 5324 * Now set up MSI or MSI-X, should return us the number of supported 5325 * vectors (will be 1 for a legacy interrupt and MSI). 5326 */ 5327 if (sctx->isc_flags & IFLIB_SKIP_MSIX) { 5328 msix = scctx->isc_vectors; 5329 } else if (scctx->isc_msix_bar != 0) 5330 /* 5331 * The simple fact that isc_msix_bar is not 0 does not mean we 5332 * we have a good value there that is known to work. 5333 */ 5334 msix = iflib_msix_init(ctx); 5335 else { 5336 scctx->isc_vectors = 1; 5337 scctx->isc_ntxqsets = 1; 5338 scctx->isc_nrxqsets = 1; 5339 scctx->isc_intr = IFLIB_INTR_LEGACY; 5340 msix = 0; 5341 } 5342 /* Get memory for the station queues */ 5343 if ((err = iflib_queues_alloc(ctx))) { 5344 device_printf(dev, "Unable to allocate queue memory\n"); 5345 goto fail_intr_free; 5346 } 5347 5348 if ((err = iflib_qset_structures_setup(ctx))) 5349 goto fail_queues; 5350 5351 /* 5352 * Now that we know how many queues there are, get the core offset. 5353 */ 5354 ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx); 5355 5356 if (msix > 1) { 5357 /* 5358 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable 5359 * aren't the default NULL implementation. 5360 */ 5361 kobj_desc = &ifdi_rx_queue_intr_enable_desc; 5362 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL, 5363 kobj_desc); 5364 if (kobj_method == &kobj_desc->deflt) { 5365 device_printf(dev, 5366 "MSI-X requires ifdi_rx_queue_intr_enable method"); 5367 err = EOPNOTSUPP; 5368 goto fail_queues; 5369 } 5370 kobj_desc = &ifdi_tx_queue_intr_enable_desc; 5371 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL, 5372 kobj_desc); 5373 if (kobj_method == &kobj_desc->deflt) { 5374 device_printf(dev, 5375 "MSI-X requires ifdi_tx_queue_intr_enable method"); 5376 err = EOPNOTSUPP; 5377 goto fail_queues; 5378 } 5379 5380 /* 5381 * Assign the MSI-X vectors. 5382 * Note that the default NULL ifdi_msix_intr_assign method will 5383 * fail here, too. 5384 */ 5385 err = IFDI_MSIX_INTR_ASSIGN(ctx, msix); 5386 if (err != 0) { 5387 device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n", 5388 err); 5389 goto fail_queues; 5390 } 5391 } else if (scctx->isc_intr != IFLIB_INTR_MSIX) { 5392 rid = 0; 5393 if (scctx->isc_intr == IFLIB_INTR_MSI) { 5394 MPASS(msix == 1); 5395 rid = 1; 5396 } 5397 if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) { 5398 device_printf(dev, "iflib_legacy_setup failed %d\n", err); 5399 goto fail_queues; 5400 } 5401 } else { 5402 device_printf(dev, 5403 "Cannot use iflib with only 1 MSI-X interrupt!\n"); 5404 err = ENODEV; 5405 goto fail_queues; 5406 } 5407 5408 /* 5409 * It prevents a double-locking panic with iflib_media_status when 5410 * the driver loads. 5411 */ 5412 CTX_UNLOCK(ctx); 5413 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet); 5414 CTX_LOCK(ctx); 5415 5416 if ((err = IFDI_ATTACH_POST(ctx)) != 0) { 5417 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); 5418 goto fail_detach; 5419 } 5420 5421 /* 5422 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. 5423 * This must appear after the call to ether_ifattach() because 5424 * ether_ifattach() sets if_hdrlen to the default value. 5425 */ 5426 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) 5427 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 5428 5429 if ((err = iflib_netmap_attach(ctx))) { 5430 device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err); 5431 goto fail_detach; 5432 } 5433 *ctxp = ctx; 5434 5435 DEBUGNET_SET(ctx->ifc_ifp, iflib); 5436 5437 if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); 5438 iflib_add_device_sysctl_post(ctx); 5439 iflib_add_pfil(ctx); 5440 ctx->ifc_flags |= IFC_INIT_DONE; 5441 CTX_UNLOCK(ctx); 5442 IFNET_WUNLOCK(); 5443 5444 return (0); 5445 5446 fail_detach: 5447 ether_ifdetach(ctx->ifc_ifp); 5448 fail_queues: 5449 taskqueue_free(ctx->ifc_tq); 5450 iflib_tqg_detach(ctx); 5451 iflib_tx_structures_free(ctx); 5452 iflib_rx_structures_free(ctx); 5453 IFDI_DETACH(ctx); 5454 IFDI_QUEUES_FREE(ctx); 5455 fail_intr_free: 5456 iflib_free_intr_mem(ctx); 5457 fail_unlock: 5458 CTX_UNLOCK(ctx); 5459 IFNET_WUNLOCK(); 5460 iflib_deregister(ctx); 5461 fail_ctx_free: 5462 device_set_softc(ctx->ifc_dev, NULL); 5463 if (ctx->ifc_flags & IFC_SC_ALLOCATED) 5464 free(ctx->ifc_softc, M_IFLIB); 5465 free(ctx, M_IFLIB); 5466 return (err); 5467 } 5468 5469 int 5470 iflib_device_attach(device_t dev) 5471 { 5472 if_ctx_t ctx; 5473 if_shared_ctx_t sctx; 5474 5475 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) 5476 return (ENOTSUP); 5477 5478 pci_enable_busmaster(dev); 5479 5480 return (iflib_device_register(dev, NULL, sctx, &ctx)); 5481 } 5482 5483 int 5484 iflib_device_deregister(if_ctx_t ctx) 5485 { 5486 if_t ifp = ctx->ifc_ifp; 5487 device_t dev = ctx->ifc_dev; 5488 5489 /* Make sure VLANS are not using driver */ 5490 if (if_vlantrunkinuse(ifp)) { 5491 device_printf(dev, "Vlan in use, detach first\n"); 5492 return (EBUSY); 5493 } 5494 #ifdef PCI_IOV 5495 if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) { 5496 device_printf(dev, "SR-IOV in use; detach first.\n"); 5497 return (EBUSY); 5498 } 5499 #endif 5500 5501 STATE_LOCK(ctx); 5502 ctx->ifc_flags |= IFC_IN_DETACH; 5503 STATE_UNLOCK(ctx); 5504 5505 /* Unregister VLAN handlers before calling iflib_stop() */ 5506 iflib_unregister_vlan_handlers(ctx); 5507 5508 iflib_netmap_detach(ifp); 5509 ether_ifdetach(ifp); 5510 5511 CTX_LOCK(ctx); 5512 iflib_stop(ctx); 5513 CTX_UNLOCK(ctx); 5514 5515 iflib_rem_pfil(ctx); 5516 if (ctx->ifc_led_dev != NULL) 5517 led_destroy(ctx->ifc_led_dev); 5518 5519 iflib_tqg_detach(ctx); 5520 iflib_tx_structures_free(ctx); 5521 iflib_rx_structures_free(ctx); 5522 5523 CTX_LOCK(ctx); 5524 IFDI_DETACH(ctx); 5525 IFDI_QUEUES_FREE(ctx); 5526 CTX_UNLOCK(ctx); 5527 5528 taskqueue_free(ctx->ifc_tq); 5529 ctx->ifc_tq = NULL; 5530 5531 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ 5532 iflib_free_intr_mem(ctx); 5533 5534 bus_generic_detach(dev); 5535 5536 iflib_deregister(ctx); 5537 5538 device_set_softc(ctx->ifc_dev, NULL); 5539 if (ctx->ifc_flags & IFC_SC_ALLOCATED) 5540 free(ctx->ifc_softc, M_IFLIB); 5541 unref_ctx_core_offset(ctx); 5542 free(ctx, M_IFLIB); 5543 return (0); 5544 } 5545 5546 static void 5547 iflib_tqg_detach(if_ctx_t ctx) 5548 { 5549 iflib_txq_t txq; 5550 iflib_rxq_t rxq; 5551 int i; 5552 struct taskqgroup *tqg; 5553 5554 /* XXX drain any dependent tasks */ 5555 tqg = qgroup_if_io_tqg; 5556 for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { 5557 callout_drain(&txq->ift_timer); 5558 #ifdef DEV_NETMAP 5559 callout_drain(&txq->ift_netmap_timer); 5560 #endif /* DEV_NETMAP */ 5561 if (txq->ift_task.gt_uniq != NULL) 5562 taskqgroup_detach(tqg, &txq->ift_task); 5563 } 5564 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { 5565 if (rxq->ifr_task.gt_uniq != NULL) 5566 taskqgroup_detach(tqg, &rxq->ifr_task); 5567 } 5568 } 5569 5570 static void 5571 iflib_free_intr_mem(if_ctx_t ctx) 5572 { 5573 5574 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) { 5575 iflib_irq_free(ctx, &ctx->ifc_legacy_irq); 5576 } 5577 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) { 5578 pci_release_msi(ctx->ifc_dev); 5579 } 5580 if (ctx->ifc_msix_mem != NULL) { 5581 bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY, 5582 rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem); 5583 ctx->ifc_msix_mem = NULL; 5584 } 5585 } 5586 5587 int 5588 iflib_device_detach(device_t dev) 5589 { 5590 if_ctx_t ctx = device_get_softc(dev); 5591 5592 return (iflib_device_deregister(ctx)); 5593 } 5594 5595 int 5596 iflib_device_suspend(device_t dev) 5597 { 5598 if_ctx_t ctx = device_get_softc(dev); 5599 5600 CTX_LOCK(ctx); 5601 IFDI_SUSPEND(ctx); 5602 CTX_UNLOCK(ctx); 5603 5604 return (bus_generic_suspend(dev)); 5605 } 5606 int 5607 iflib_device_shutdown(device_t dev) 5608 { 5609 if_ctx_t ctx = device_get_softc(dev); 5610 5611 CTX_LOCK(ctx); 5612 IFDI_SHUTDOWN(ctx); 5613 CTX_UNLOCK(ctx); 5614 5615 return (bus_generic_suspend(dev)); 5616 } 5617 5618 int 5619 iflib_device_resume(device_t dev) 5620 { 5621 if_ctx_t ctx = device_get_softc(dev); 5622 iflib_txq_t txq = ctx->ifc_txqs; 5623 5624 CTX_LOCK(ctx); 5625 IFDI_RESUME(ctx); 5626 iflib_if_init_locked(ctx); 5627 CTX_UNLOCK(ctx); 5628 for (int i = 0; i < NTXQSETS(ctx); i++, txq++) 5629 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); 5630 5631 return (bus_generic_resume(dev)); 5632 } 5633 5634 int 5635 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) 5636 { 5637 int error; 5638 if_ctx_t ctx = device_get_softc(dev); 5639 5640 CTX_LOCK(ctx); 5641 error = IFDI_IOV_INIT(ctx, num_vfs, params); 5642 CTX_UNLOCK(ctx); 5643 5644 return (error); 5645 } 5646 5647 void 5648 iflib_device_iov_uninit(device_t dev) 5649 { 5650 if_ctx_t ctx = device_get_softc(dev); 5651 5652 CTX_LOCK(ctx); 5653 IFDI_IOV_UNINIT(ctx); 5654 CTX_UNLOCK(ctx); 5655 } 5656 5657 int 5658 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) 5659 { 5660 int error; 5661 if_ctx_t ctx = device_get_softc(dev); 5662 5663 CTX_LOCK(ctx); 5664 error = IFDI_IOV_VF_ADD(ctx, vfnum, params); 5665 CTX_UNLOCK(ctx); 5666 5667 return (error); 5668 } 5669 5670 /********************************************************************* 5671 * 5672 * MODULE FUNCTION DEFINITIONS 5673 * 5674 **********************************************************************/ 5675 5676 /* 5677 * - Start a fast taskqueue thread for each core 5678 * - Start a taskqueue for control operations 5679 */ 5680 static int 5681 iflib_module_init(void) 5682 { 5683 iflib_timer_default = hz / 2; 5684 return (0); 5685 } 5686 5687 static int 5688 iflib_module_event_handler(module_t mod, int what, void *arg) 5689 { 5690 int err; 5691 5692 switch (what) { 5693 case MOD_LOAD: 5694 if ((err = iflib_module_init()) != 0) 5695 return (err); 5696 break; 5697 case MOD_UNLOAD: 5698 return (EBUSY); 5699 default: 5700 return (EOPNOTSUPP); 5701 } 5702 5703 return (0); 5704 } 5705 5706 /********************************************************************* 5707 * 5708 * PUBLIC FUNCTION DEFINITIONS 5709 * ordered as in iflib.h 5710 * 5711 **********************************************************************/ 5712 5713 static void 5714 _iflib_assert(if_shared_ctx_t sctx) 5715 { 5716 int i; 5717 5718 MPASS(sctx->isc_tx_maxsize); 5719 MPASS(sctx->isc_tx_maxsegsize); 5720 5721 MPASS(sctx->isc_rx_maxsize); 5722 MPASS(sctx->isc_rx_nsegments); 5723 MPASS(sctx->isc_rx_maxsegsize); 5724 5725 MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8); 5726 for (i = 0; i < sctx->isc_nrxqs; i++) { 5727 MPASS(sctx->isc_nrxd_min[i]); 5728 MPASS(powerof2(sctx->isc_nrxd_min[i])); 5729 MPASS(sctx->isc_nrxd_max[i]); 5730 MPASS(powerof2(sctx->isc_nrxd_max[i])); 5731 MPASS(sctx->isc_nrxd_default[i]); 5732 MPASS(powerof2(sctx->isc_nrxd_default[i])); 5733 } 5734 5735 MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8); 5736 for (i = 0; i < sctx->isc_ntxqs; i++) { 5737 MPASS(sctx->isc_ntxd_min[i]); 5738 MPASS(powerof2(sctx->isc_ntxd_min[i])); 5739 MPASS(sctx->isc_ntxd_max[i]); 5740 MPASS(powerof2(sctx->isc_ntxd_max[i])); 5741 MPASS(sctx->isc_ntxd_default[i]); 5742 MPASS(powerof2(sctx->isc_ntxd_default[i])); 5743 } 5744 } 5745 5746 static void 5747 _iflib_pre_assert(if_softc_ctx_t scctx) 5748 { 5749 5750 MPASS(scctx->isc_txrx->ift_txd_encap); 5751 MPASS(scctx->isc_txrx->ift_txd_flush); 5752 MPASS(scctx->isc_txrx->ift_txd_credits_update); 5753 MPASS(scctx->isc_txrx->ift_rxd_available); 5754 MPASS(scctx->isc_txrx->ift_rxd_pkt_get); 5755 MPASS(scctx->isc_txrx->ift_rxd_refill); 5756 MPASS(scctx->isc_txrx->ift_rxd_flush); 5757 } 5758 5759 static int 5760 iflib_register(if_ctx_t ctx) 5761 { 5762 if_shared_ctx_t sctx = ctx->ifc_sctx; 5763 driver_t *driver = sctx->isc_driver; 5764 device_t dev = ctx->ifc_dev; 5765 if_t ifp; 5766 5767 _iflib_assert(sctx); 5768 5769 CTX_LOCK_INIT(ctx); 5770 STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev)); 5771 ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev); 5772 5773 /* 5774 * Initialize our context's device specific methods 5775 */ 5776 kobj_init((kobj_t) ctx, (kobj_class_t) driver); 5777 kobj_class_compile((kobj_class_t) driver); 5778 5779 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 5780 if_setsoftc(ifp, ctx); 5781 if_setdev(ifp, dev); 5782 if_setinitfn(ifp, iflib_if_init); 5783 if_setioctlfn(ifp, iflib_if_ioctl); 5784 #ifdef ALTQ 5785 if_setstartfn(ifp, iflib_altq_if_start); 5786 if_settransmitfn(ifp, iflib_altq_if_transmit); 5787 if_setsendqready(ifp); 5788 #else 5789 if_settransmitfn(ifp, iflib_if_transmit); 5790 #endif 5791 if_setqflushfn(ifp, iflib_if_qflush); 5792 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 5793 ctx->ifc_vlan_attach_event = 5794 EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx, 5795 EVENTHANDLER_PRI_FIRST); 5796 ctx->ifc_vlan_detach_event = 5797 EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx, 5798 EVENTHANDLER_PRI_FIRST); 5799 5800 if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) { 5801 ctx->ifc_mediap = &ctx->ifc_media; 5802 ifmedia_init(ctx->ifc_mediap, IFM_IMASK, 5803 iflib_media_change, iflib_media_status); 5804 } 5805 return (0); 5806 } 5807 5808 static void 5809 iflib_unregister_vlan_handlers(if_ctx_t ctx) 5810 { 5811 /* Unregister VLAN events */ 5812 if (ctx->ifc_vlan_attach_event != NULL) { 5813 EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); 5814 ctx->ifc_vlan_attach_event = NULL; 5815 } 5816 if (ctx->ifc_vlan_detach_event != NULL) { 5817 EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); 5818 ctx->ifc_vlan_detach_event = NULL; 5819 } 5820 5821 } 5822 5823 static void 5824 iflib_deregister(if_ctx_t ctx) 5825 { 5826 if_t ifp = ctx->ifc_ifp; 5827 5828 /* Remove all media */ 5829 ifmedia_removeall(&ctx->ifc_media); 5830 5831 /* Ensure that VLAN event handlers are unregistered */ 5832 iflib_unregister_vlan_handlers(ctx); 5833 5834 /* Release kobject reference */ 5835 kobj_delete((kobj_t) ctx, NULL); 5836 5837 /* Free the ifnet structure */ 5838 if_free(ifp); 5839 5840 STATE_LOCK_DESTROY(ctx); 5841 5842 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ 5843 CTX_LOCK_DESTROY(ctx); 5844 } 5845 5846 static int 5847 iflib_queues_alloc(if_ctx_t ctx) 5848 { 5849 if_shared_ctx_t sctx = ctx->ifc_sctx; 5850 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 5851 device_t dev = ctx->ifc_dev; 5852 int nrxqsets = scctx->isc_nrxqsets; 5853 int ntxqsets = scctx->isc_ntxqsets; 5854 iflib_txq_t txq; 5855 iflib_rxq_t rxq; 5856 iflib_fl_t fl = NULL; 5857 int i, j, cpu, err, txconf, rxconf; 5858 iflib_dma_info_t ifdip; 5859 uint32_t *rxqsizes = scctx->isc_rxqsizes; 5860 uint32_t *txqsizes = scctx->isc_txqsizes; 5861 uint8_t nrxqs = sctx->isc_nrxqs; 5862 uint8_t ntxqs = sctx->isc_ntxqs; 5863 int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1; 5864 int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0); 5865 caddr_t *vaddrs; 5866 uint64_t *paddrs; 5867 5868 KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1")); 5869 KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1")); 5870 KASSERT(nrxqs >= fl_offset + nfree_lists, 5871 ("there must be at least a rxq for each free list")); 5872 5873 /* Allocate the TX ring struct memory */ 5874 if (!(ctx->ifc_txqs = 5875 (iflib_txq_t) malloc(sizeof(struct iflib_txq) * 5876 ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { 5877 device_printf(dev, "Unable to allocate TX ring memory\n"); 5878 err = ENOMEM; 5879 goto fail; 5880 } 5881 5882 /* Now allocate the RX */ 5883 if (!(ctx->ifc_rxqs = 5884 (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) * 5885 nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { 5886 device_printf(dev, "Unable to allocate RX ring memory\n"); 5887 err = ENOMEM; 5888 goto rx_fail; 5889 } 5890 5891 txq = ctx->ifc_txqs; 5892 rxq = ctx->ifc_rxqs; 5893 5894 /* 5895 * XXX handle allocation failure 5896 */ 5897 for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) { 5898 /* Set up some basics */ 5899 5900 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs, 5901 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 5902 device_printf(dev, 5903 "Unable to allocate TX DMA info memory\n"); 5904 err = ENOMEM; 5905 goto err_tx_desc; 5906 } 5907 txq->ift_ifdi = ifdip; 5908 for (j = 0; j < ntxqs; j++, ifdip++) { 5909 if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) { 5910 device_printf(dev, 5911 "Unable to allocate TX descriptors\n"); 5912 err = ENOMEM; 5913 goto err_tx_desc; 5914 } 5915 txq->ift_txd_size[j] = scctx->isc_txd_size[j]; 5916 bzero((void *)ifdip->idi_vaddr, txqsizes[j]); 5917 } 5918 txq->ift_ctx = ctx; 5919 txq->ift_id = i; 5920 if (sctx->isc_flags & IFLIB_HAS_TXCQ) { 5921 txq->ift_br_offset = 1; 5922 } else { 5923 txq->ift_br_offset = 0; 5924 } 5925 5926 if (iflib_txsd_alloc(txq)) { 5927 device_printf(dev, "Critical Failure setting up TX buffers\n"); 5928 err = ENOMEM; 5929 goto err_tx_desc; 5930 } 5931 5932 /* Initialize the TX lock */ 5933 snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout", 5934 device_get_nameunit(dev), txq->ift_id); 5935 mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF); 5936 callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0); 5937 txq->ift_timer.c_cpu = cpu; 5938 #ifdef DEV_NETMAP 5939 callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0); 5940 txq->ift_netmap_timer.c_cpu = cpu; 5941 #endif /* DEV_NETMAP */ 5942 5943 err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain, 5944 iflib_txq_can_drain, M_IFLIB, M_WAITOK); 5945 if (err) { 5946 /* XXX free any allocated rings */ 5947 device_printf(dev, "Unable to allocate buf_ring\n"); 5948 goto err_tx_desc; 5949 } 5950 } 5951 5952 for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) { 5953 /* Set up some basics */ 5954 callout_init(&rxq->ifr_watchdog, 1); 5955 5956 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs, 5957 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 5958 device_printf(dev, 5959 "Unable to allocate RX DMA info memory\n"); 5960 err = ENOMEM; 5961 goto err_tx_desc; 5962 } 5963 5964 rxq->ifr_ifdi = ifdip; 5965 /* XXX this needs to be changed if #rx queues != #tx queues */ 5966 rxq->ifr_ntxqirq = 1; 5967 rxq->ifr_txqid[0] = i; 5968 for (j = 0; j < nrxqs; j++, ifdip++) { 5969 if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) { 5970 device_printf(dev, 5971 "Unable to allocate RX descriptors\n"); 5972 err = ENOMEM; 5973 goto err_tx_desc; 5974 } 5975 bzero((void *)ifdip->idi_vaddr, rxqsizes[j]); 5976 } 5977 rxq->ifr_ctx = ctx; 5978 rxq->ifr_id = i; 5979 rxq->ifr_fl_offset = fl_offset; 5980 rxq->ifr_nfl = nfree_lists; 5981 if (!(fl = 5982 (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) { 5983 device_printf(dev, "Unable to allocate free list memory\n"); 5984 err = ENOMEM; 5985 goto err_tx_desc; 5986 } 5987 rxq->ifr_fl = fl; 5988 for (j = 0; j < nfree_lists; j++) { 5989 fl[j].ifl_rxq = rxq; 5990 fl[j].ifl_id = j; 5991 fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset]; 5992 fl[j].ifl_rxd_size = scctx->isc_rxd_size[j]; 5993 } 5994 /* Allocate receive buffers for the ring */ 5995 if (iflib_rxsd_alloc(rxq)) { 5996 device_printf(dev, 5997 "Critical Failure setting up receive buffers\n"); 5998 err = ENOMEM; 5999 goto err_rx_desc; 6000 } 6001 6002 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) 6003 fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB, 6004 M_WAITOK); 6005 } 6006 6007 /* TXQs */ 6008 vaddrs = malloc(sizeof(caddr_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK); 6009 paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK); 6010 for (i = 0; i < ntxqsets; i++) { 6011 iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi; 6012 6013 for (j = 0; j < ntxqs; j++, di++) { 6014 vaddrs[i * ntxqs + j] = di->idi_vaddr; 6015 paddrs[i * ntxqs + j] = di->idi_paddr; 6016 } 6017 } 6018 if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) { 6019 device_printf(ctx->ifc_dev, 6020 "Unable to allocate device TX queue\n"); 6021 iflib_tx_structures_free(ctx); 6022 free(vaddrs, M_IFLIB); 6023 free(paddrs, M_IFLIB); 6024 goto err_rx_desc; 6025 } 6026 free(vaddrs, M_IFLIB); 6027 free(paddrs, M_IFLIB); 6028 6029 /* RXQs */ 6030 vaddrs = malloc(sizeof(caddr_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK); 6031 paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK); 6032 for (i = 0; i < nrxqsets; i++) { 6033 iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi; 6034 6035 for (j = 0; j < nrxqs; j++, di++) { 6036 vaddrs[i * nrxqs + j] = di->idi_vaddr; 6037 paddrs[i * nrxqs + j] = di->idi_paddr; 6038 } 6039 } 6040 if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) { 6041 device_printf(ctx->ifc_dev, 6042 "Unable to allocate device RX queue\n"); 6043 iflib_tx_structures_free(ctx); 6044 free(vaddrs, M_IFLIB); 6045 free(paddrs, M_IFLIB); 6046 goto err_rx_desc; 6047 } 6048 free(vaddrs, M_IFLIB); 6049 free(paddrs, M_IFLIB); 6050 6051 return (0); 6052 6053 /* XXX handle allocation failure changes */ 6054 err_rx_desc: 6055 err_tx_desc: 6056 rx_fail: 6057 if (ctx->ifc_rxqs != NULL) 6058 free(ctx->ifc_rxqs, M_IFLIB); 6059 ctx->ifc_rxqs = NULL; 6060 if (ctx->ifc_txqs != NULL) 6061 free(ctx->ifc_txqs, M_IFLIB); 6062 ctx->ifc_txqs = NULL; 6063 fail: 6064 return (err); 6065 } 6066 6067 static int 6068 iflib_tx_structures_setup(if_ctx_t ctx) 6069 { 6070 iflib_txq_t txq = ctx->ifc_txqs; 6071 int i; 6072 6073 for (i = 0; i < NTXQSETS(ctx); i++, txq++) 6074 iflib_txq_setup(txq); 6075 6076 return (0); 6077 } 6078 6079 static void 6080 iflib_tx_structures_free(if_ctx_t ctx) 6081 { 6082 iflib_txq_t txq = ctx->ifc_txqs; 6083 if_shared_ctx_t sctx = ctx->ifc_sctx; 6084 int i, j; 6085 6086 for (i = 0; i < NTXQSETS(ctx); i++, txq++) { 6087 for (j = 0; j < sctx->isc_ntxqs; j++) 6088 iflib_dma_free(&txq->ift_ifdi[j]); 6089 iflib_txq_destroy(txq); 6090 } 6091 free(ctx->ifc_txqs, M_IFLIB); 6092 ctx->ifc_txqs = NULL; 6093 } 6094 6095 /********************************************************************* 6096 * 6097 * Initialize all receive rings. 6098 * 6099 **********************************************************************/ 6100 static int 6101 iflib_rx_structures_setup(if_ctx_t ctx) 6102 { 6103 iflib_rxq_t rxq = ctx->ifc_rxqs; 6104 int q; 6105 #if defined(INET6) || defined(INET) 6106 int err, i; 6107 #endif 6108 6109 for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) { 6110 #if defined(INET6) || defined(INET) 6111 err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp, 6112 TCP_LRO_ENTRIES, min(1024, 6113 ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset])); 6114 if (err != 0) { 6115 device_printf(ctx->ifc_dev, 6116 "LRO Initialization failed!\n"); 6117 goto fail; 6118 } 6119 #endif 6120 IFDI_RXQ_SETUP(ctx, rxq->ifr_id); 6121 } 6122 return (0); 6123 #if defined(INET6) || defined(INET) 6124 fail: 6125 /* 6126 * Free LRO resources allocated so far, we will only handle 6127 * the rings that completed, the failing case will have 6128 * cleaned up for itself. 'q' failed, so its the terminus. 6129 */ 6130 rxq = ctx->ifc_rxqs; 6131 for (i = 0; i < q; ++i, rxq++) { 6132 tcp_lro_free(&rxq->ifr_lc); 6133 } 6134 return (err); 6135 #endif 6136 } 6137 6138 /********************************************************************* 6139 * 6140 * Free all receive rings. 6141 * 6142 **********************************************************************/ 6143 static void 6144 iflib_rx_structures_free(if_ctx_t ctx) 6145 { 6146 iflib_rxq_t rxq = ctx->ifc_rxqs; 6147 if_shared_ctx_t sctx = ctx->ifc_sctx; 6148 int i, j; 6149 6150 for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) { 6151 for (j = 0; j < sctx->isc_nrxqs; j++) 6152 iflib_dma_free(&rxq->ifr_ifdi[j]); 6153 iflib_rx_sds_free(rxq); 6154 #if defined(INET6) || defined(INET) 6155 tcp_lro_free(&rxq->ifr_lc); 6156 #endif 6157 } 6158 free(ctx->ifc_rxqs, M_IFLIB); 6159 ctx->ifc_rxqs = NULL; 6160 } 6161 6162 static int 6163 iflib_qset_structures_setup(if_ctx_t ctx) 6164 { 6165 int err; 6166 6167 /* 6168 * It is expected that the caller takes care of freeing queues if this 6169 * fails. 6170 */ 6171 if ((err = iflib_tx_structures_setup(ctx)) != 0) { 6172 device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err); 6173 return (err); 6174 } 6175 6176 if ((err = iflib_rx_structures_setup(ctx)) != 0) 6177 device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err); 6178 6179 return (err); 6180 } 6181 6182 int 6183 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, 6184 driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name) 6185 { 6186 6187 return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name)); 6188 } 6189 6190 /* Just to avoid copy/paste */ 6191 static inline int 6192 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, 6193 int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq, 6194 const char *name) 6195 { 6196 device_t dev; 6197 unsigned int base_cpuid, cpuid; 6198 int err; 6199 6200 dev = ctx->ifc_dev; 6201 base_cpuid = ctx->ifc_sysctl_core_offset; 6202 cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX); 6203 err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev, 6204 irq ? irq->ii_res : NULL, name); 6205 if (err) { 6206 device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err); 6207 return (err); 6208 } 6209 #ifdef notyet 6210 if (cpuid > ctx->ifc_cpuid_highest) 6211 ctx->ifc_cpuid_highest = cpuid; 6212 #endif 6213 return (0); 6214 } 6215 6216 /* 6217 * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware 6218 * resources. 6219 * 6220 * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX 6221 * only. 6222 * 6223 * XXX: Could be removed if subctx's dev has its intr resource allocation 6224 * methods replaced with custom ones? 6225 */ 6226 int 6227 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq, 6228 int rid, iflib_intr_type_t type, 6229 driver_filter_t *filter, void *filter_arg, 6230 int qid, const char *name) 6231 { 6232 device_t dev, subdev; 6233 struct grouptask *gtask; 6234 struct taskqgroup *tqg; 6235 iflib_filter_info_t info; 6236 gtask_fn_t *fn; 6237 int tqrid, err; 6238 driver_filter_t *intr_fast; 6239 void *q; 6240 6241 MPASS(ctx != NULL); 6242 MPASS(subctx != NULL); 6243 6244 tqrid = rid; 6245 dev = ctx->ifc_dev; 6246 subdev = subctx->ifc_dev; 6247 6248 switch (type) { 6249 case IFLIB_INTR_RXTX: 6250 q = &subctx->ifc_rxqs[qid]; 6251 info = &subctx->ifc_rxqs[qid].ifr_filter_info; 6252 gtask = &subctx->ifc_rxqs[qid].ifr_task; 6253 tqg = qgroup_if_io_tqg; 6254 fn = _task_fn_rx; 6255 intr_fast = iflib_fast_intr_rxtx; 6256 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6257 break; 6258 default: 6259 device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n", 6260 __func__, device_get_nameunit(subdev), type); 6261 return (EINVAL); 6262 } 6263 6264 info->ifi_filter = filter; 6265 info->ifi_filter_arg = filter_arg; 6266 info->ifi_task = gtask; 6267 info->ifi_ctx = q; 6268 6269 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6270 6271 /* Allocate interrupts from hardware using parent context */ 6272 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); 6273 if (err != 0) { 6274 device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n", 6275 device_get_nameunit(subdev), err); 6276 return (err); 6277 } 6278 6279 if (tqrid != -1) { 6280 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, 6281 name); 6282 if (err) 6283 return (err); 6284 } else { 6285 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name); 6286 } 6287 6288 return (0); 6289 } 6290 6291 int 6292 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid, 6293 iflib_intr_type_t type, driver_filter_t *filter, 6294 void *filter_arg, int qid, const char *name) 6295 { 6296 device_t dev; 6297 struct grouptask *gtask; 6298 struct taskqgroup *tqg; 6299 iflib_filter_info_t info; 6300 gtask_fn_t *fn; 6301 int tqrid, err; 6302 driver_filter_t *intr_fast; 6303 void *q; 6304 6305 info = &ctx->ifc_filter_info; 6306 tqrid = rid; 6307 6308 switch (type) { 6309 /* XXX merge tx/rx for netmap? */ 6310 case IFLIB_INTR_TX: 6311 q = &ctx->ifc_txqs[qid]; 6312 info = &ctx->ifc_txqs[qid].ift_filter_info; 6313 gtask = &ctx->ifc_txqs[qid].ift_task; 6314 tqg = qgroup_if_io_tqg; 6315 fn = _task_fn_tx; 6316 intr_fast = iflib_fast_intr; 6317 GROUPTASK_INIT(gtask, 0, fn, q); 6318 ctx->ifc_flags |= IFC_NETMAP_TX_IRQ; 6319 break; 6320 case IFLIB_INTR_RX: 6321 q = &ctx->ifc_rxqs[qid]; 6322 info = &ctx->ifc_rxqs[qid].ifr_filter_info; 6323 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6324 tqg = qgroup_if_io_tqg; 6325 fn = _task_fn_rx; 6326 intr_fast = iflib_fast_intr; 6327 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6328 break; 6329 case IFLIB_INTR_RXTX: 6330 q = &ctx->ifc_rxqs[qid]; 6331 info = &ctx->ifc_rxqs[qid].ifr_filter_info; 6332 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6333 tqg = qgroup_if_io_tqg; 6334 fn = _task_fn_rx; 6335 intr_fast = iflib_fast_intr_rxtx; 6336 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6337 break; 6338 case IFLIB_INTR_ADMIN: 6339 q = ctx; 6340 tqrid = -1; 6341 info = &ctx->ifc_filter_info; 6342 gtask = NULL; 6343 intr_fast = iflib_fast_intr_ctx; 6344 break; 6345 default: 6346 device_printf(ctx->ifc_dev, "%s: unknown net intr type\n", 6347 __func__); 6348 return (EINVAL); 6349 } 6350 6351 info->ifi_filter = filter; 6352 info->ifi_filter_arg = filter_arg; 6353 info->ifi_task = gtask; 6354 info->ifi_ctx = q; 6355 6356 dev = ctx->ifc_dev; 6357 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); 6358 if (err != 0) { 6359 device_printf(dev, "_iflib_irq_alloc failed %d\n", err); 6360 return (err); 6361 } 6362 if (type == IFLIB_INTR_ADMIN) 6363 return (0); 6364 6365 if (tqrid != -1) { 6366 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, 6367 name); 6368 if (err) 6369 return (err); 6370 } else { 6371 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name); 6372 } 6373 6374 return (0); 6375 } 6376 6377 void 6378 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, 6379 void *arg, int qid, const char *name) 6380 { 6381 device_t dev; 6382 struct grouptask *gtask; 6383 struct taskqgroup *tqg; 6384 gtask_fn_t *fn; 6385 void *q; 6386 int err; 6387 6388 switch (type) { 6389 case IFLIB_INTR_TX: 6390 q = &ctx->ifc_txqs[qid]; 6391 gtask = &ctx->ifc_txqs[qid].ift_task; 6392 tqg = qgroup_if_io_tqg; 6393 fn = _task_fn_tx; 6394 GROUPTASK_INIT(gtask, 0, fn, q); 6395 break; 6396 case IFLIB_INTR_RX: 6397 q = &ctx->ifc_rxqs[qid]; 6398 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6399 tqg = qgroup_if_io_tqg; 6400 fn = _task_fn_rx; 6401 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6402 break; 6403 case IFLIB_INTR_IOV: 6404 TASK_INIT(&ctx->ifc_vflr_task, 0, _task_fn_iov, ctx); 6405 return; 6406 default: 6407 panic("unknown net intr type"); 6408 } 6409 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name); 6410 if (err) { 6411 dev = ctx->ifc_dev; 6412 taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL, 6413 name); 6414 } 6415 } 6416 6417 void 6418 iflib_irq_free(if_ctx_t ctx, if_irq_t irq) 6419 { 6420 6421 if (irq->ii_tag) 6422 bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag); 6423 6424 if (irq->ii_res) 6425 bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ, 6426 rman_get_rid(irq->ii_res), irq->ii_res); 6427 } 6428 6429 static int 6430 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name) 6431 { 6432 iflib_txq_t txq = ctx->ifc_txqs; 6433 iflib_rxq_t rxq = ctx->ifc_rxqs; 6434 if_irq_t irq = &ctx->ifc_legacy_irq; 6435 iflib_filter_info_t info; 6436 device_t dev; 6437 struct grouptask *gtask; 6438 struct resource *res; 6439 int err, tqrid; 6440 bool rx_only; 6441 6442 info = &rxq->ifr_filter_info; 6443 gtask = &rxq->ifr_task; 6444 tqrid = *rid; 6445 rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0; 6446 6447 ctx->ifc_flags |= IFC_LEGACY; 6448 info->ifi_filter = filter; 6449 info->ifi_filter_arg = filter_arg; 6450 info->ifi_task = gtask; 6451 info->ifi_ctx = rxq; 6452 6453 dev = ctx->ifc_dev; 6454 /* We allocate a single interrupt resource */ 6455 err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr : 6456 iflib_fast_intr_rxtx, NULL, info, name); 6457 if (err != 0) 6458 return (err); 6459 NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq); 6460 res = irq->ii_res; 6461 taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name); 6462 6463 GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq); 6464 taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res, 6465 "tx"); 6466 return (0); 6467 } 6468 6469 void 6470 iflib_led_create(if_ctx_t ctx) 6471 { 6472 6473 ctx->ifc_led_dev = led_create(iflib_led_func, ctx, 6474 device_get_nameunit(ctx->ifc_dev)); 6475 } 6476 6477 void 6478 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid) 6479 { 6480 6481 GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task); 6482 } 6483 6484 void 6485 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid) 6486 { 6487 6488 GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task); 6489 } 6490 6491 void 6492 iflib_admin_intr_deferred(if_ctx_t ctx) 6493 { 6494 6495 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task); 6496 } 6497 6498 void 6499 iflib_iov_intr_deferred(if_ctx_t ctx) 6500 { 6501 6502 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_vflr_task); 6503 } 6504 6505 void 6506 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name) 6507 { 6508 6509 taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL, 6510 name); 6511 } 6512 6513 void 6514 iflib_config_task_init(if_ctx_t ctx, struct task *config_task, task_fn_t *fn) 6515 { 6516 TASK_INIT(config_task, 0, fn, ctx); 6517 } 6518 6519 void 6520 iflib_config_task_enqueue(if_ctx_t ctx, struct task *config_task) 6521 { 6522 taskqueue_enqueue(ctx->ifc_tq, config_task); 6523 } 6524 6525 void 6526 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate) 6527 { 6528 if_t ifp = ctx->ifc_ifp; 6529 iflib_txq_t txq = ctx->ifc_txqs; 6530 6531 if_setbaudrate(ifp, baudrate); 6532 if (baudrate >= IF_Gbps(10)) { 6533 STATE_LOCK(ctx); 6534 ctx->ifc_flags |= IFC_PREFETCH; 6535 STATE_UNLOCK(ctx); 6536 } 6537 /* If link down, disable watchdog */ 6538 if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) { 6539 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++) 6540 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 6541 } 6542 ctx->ifc_link_state = link_state; 6543 if_link_state_change(ifp, link_state); 6544 } 6545 6546 static int 6547 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq) 6548 { 6549 int credits; 6550 #ifdef INVARIANTS 6551 int credits_pre = txq->ift_cidx_processed; 6552 #endif 6553 6554 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 6555 BUS_DMASYNC_POSTREAD); 6556 if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0) 6557 return (0); 6558 6559 txq->ift_processed += credits; 6560 txq->ift_cidx_processed += credits; 6561 6562 MPASS(credits_pre + credits == txq->ift_cidx_processed); 6563 if (txq->ift_cidx_processed >= txq->ift_size) 6564 txq->ift_cidx_processed -= txq->ift_size; 6565 return (credits); 6566 } 6567 6568 static int 6569 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget) 6570 { 6571 iflib_fl_t fl; 6572 u_int i; 6573 6574 for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++) 6575 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 6576 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6577 return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx, 6578 budget)); 6579 } 6580 6581 void 6582 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name, 6583 const char *description, if_int_delay_info_t info, 6584 int offset, int value) 6585 { 6586 info->iidi_ctx = ctx; 6587 info->iidi_offset = offset; 6588 info->iidi_value = value; 6589 SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev), 6590 SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)), 6591 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 6592 info, 0, iflib_sysctl_int_delay, "I", description); 6593 } 6594 6595 struct sx * 6596 iflib_ctx_lock_get(if_ctx_t ctx) 6597 { 6598 6599 return (&ctx->ifc_ctx_sx); 6600 } 6601 6602 static int 6603 iflib_msix_init(if_ctx_t ctx) 6604 { 6605 device_t dev = ctx->ifc_dev; 6606 if_shared_ctx_t sctx = ctx->ifc_sctx; 6607 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 6608 int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues; 6609 int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors; 6610 6611 iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs; 6612 iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs; 6613 6614 if (bootverbose) 6615 device_printf(dev, "msix_init qsets capped at %d\n", 6616 imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets)); 6617 6618 /* Override by tuneable */ 6619 if (scctx->isc_disable_msix) 6620 goto msi; 6621 6622 /* First try MSI-X */ 6623 if ((msgs = pci_msix_count(dev)) == 0) { 6624 if (bootverbose) 6625 device_printf(dev, "MSI-X not supported or disabled\n"); 6626 goto msi; 6627 } 6628 6629 bar = ctx->ifc_softc_ctx.isc_msix_bar; 6630 /* 6631 * bar == -1 => "trust me I know what I'm doing" 6632 * Some drivers are for hardware that is so shoddily 6633 * documented that no one knows which bars are which 6634 * so the developer has to map all bars. This hack 6635 * allows shoddy garbage to use MSI-X in this framework. 6636 */ 6637 if (bar != -1) { 6638 ctx->ifc_msix_mem = bus_alloc_resource_any(dev, 6639 SYS_RES_MEMORY, &bar, RF_ACTIVE); 6640 if (ctx->ifc_msix_mem == NULL) { 6641 device_printf(dev, "Unable to map MSI-X table\n"); 6642 goto msi; 6643 } 6644 } 6645 6646 admincnt = sctx->isc_admin_intrcnt; 6647 #if IFLIB_DEBUG 6648 /* use only 1 qset in debug mode */ 6649 queuemsgs = min(msgs - admincnt, 1); 6650 #else 6651 queuemsgs = msgs - admincnt; 6652 #endif 6653 #ifdef RSS 6654 queues = imin(queuemsgs, rss_getnumbuckets()); 6655 #else 6656 queues = queuemsgs; 6657 #endif 6658 queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues); 6659 if (bootverbose) 6660 device_printf(dev, 6661 "intr CPUs: %d queue msgs: %d admincnt: %d\n", 6662 CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt); 6663 #ifdef RSS 6664 /* If we're doing RSS, clamp at the number of RSS buckets */ 6665 if (queues > rss_getnumbuckets()) 6666 queues = rss_getnumbuckets(); 6667 #endif 6668 if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt) 6669 rx_queues = iflib_num_rx_queues; 6670 else 6671 rx_queues = queues; 6672 6673 if (rx_queues > scctx->isc_nrxqsets) 6674 rx_queues = scctx->isc_nrxqsets; 6675 6676 /* 6677 * We want this to be all logical CPUs by default 6678 */ 6679 if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues) 6680 tx_queues = iflib_num_tx_queues; 6681 else 6682 tx_queues = mp_ncpus; 6683 6684 if (tx_queues > scctx->isc_ntxqsets) 6685 tx_queues = scctx->isc_ntxqsets; 6686 6687 if (ctx->ifc_sysctl_qs_eq_override == 0) { 6688 #ifdef INVARIANTS 6689 if (tx_queues != rx_queues) 6690 device_printf(dev, 6691 "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n", 6692 min(rx_queues, tx_queues), min(rx_queues, tx_queues)); 6693 #endif 6694 tx_queues = min(rx_queues, tx_queues); 6695 rx_queues = min(rx_queues, tx_queues); 6696 } 6697 6698 vectors = rx_queues + admincnt; 6699 if (msgs < vectors) { 6700 device_printf(dev, 6701 "insufficient number of MSI-X vectors " 6702 "(supported %d, need %d)\n", msgs, vectors); 6703 goto msi; 6704 } 6705 6706 device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues, 6707 tx_queues); 6708 msgs = vectors; 6709 if ((err = pci_alloc_msix(dev, &vectors)) == 0) { 6710 if (vectors != msgs) { 6711 device_printf(dev, 6712 "Unable to allocate sufficient MSI-X vectors " 6713 "(got %d, need %d)\n", vectors, msgs); 6714 pci_release_msi(dev); 6715 if (bar != -1) { 6716 bus_release_resource(dev, SYS_RES_MEMORY, bar, 6717 ctx->ifc_msix_mem); 6718 ctx->ifc_msix_mem = NULL; 6719 } 6720 goto msi; 6721 } 6722 device_printf(dev, "Using MSI-X interrupts with %d vectors\n", 6723 vectors); 6724 scctx->isc_vectors = vectors; 6725 scctx->isc_nrxqsets = rx_queues; 6726 scctx->isc_ntxqsets = tx_queues; 6727 scctx->isc_intr = IFLIB_INTR_MSIX; 6728 6729 return (vectors); 6730 } else { 6731 device_printf(dev, 6732 "failed to allocate %d MSI-X vectors, err: %d\n", vectors, 6733 err); 6734 if (bar != -1) { 6735 bus_release_resource(dev, SYS_RES_MEMORY, bar, 6736 ctx->ifc_msix_mem); 6737 ctx->ifc_msix_mem = NULL; 6738 } 6739 } 6740 6741 msi: 6742 vectors = pci_msi_count(dev); 6743 scctx->isc_nrxqsets = 1; 6744 scctx->isc_ntxqsets = 1; 6745 scctx->isc_vectors = vectors; 6746 if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) { 6747 device_printf(dev, "Using an MSI interrupt\n"); 6748 scctx->isc_intr = IFLIB_INTR_MSI; 6749 } else { 6750 scctx->isc_vectors = 1; 6751 device_printf(dev, "Using a Legacy interrupt\n"); 6752 scctx->isc_intr = IFLIB_INTR_LEGACY; 6753 } 6754 6755 return (vectors); 6756 } 6757 6758 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" }; 6759 6760 static int 6761 mp_ring_state_handler(SYSCTL_HANDLER_ARGS) 6762 { 6763 int rc; 6764 uint16_t *state = ((uint16_t *)oidp->oid_arg1); 6765 struct sbuf *sb; 6766 const char *ring_state = "UNKNOWN"; 6767 6768 /* XXX needed ? */ 6769 rc = sysctl_wire_old_buffer(req, 0); 6770 MPASS(rc == 0); 6771 if (rc != 0) 6772 return (rc); 6773 sb = sbuf_new_for_sysctl(NULL, NULL, 80, req); 6774 MPASS(sb != NULL); 6775 if (sb == NULL) 6776 return (ENOMEM); 6777 if (state[3] <= 3) 6778 ring_state = ring_states[state[3]]; 6779 6780 sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s", 6781 state[0], state[1], state[2], ring_state); 6782 rc = sbuf_finish(sb); 6783 sbuf_delete(sb); 6784 return (rc); 6785 } 6786 6787 enum iflib_ndesc_handler { 6788 IFLIB_NTXD_HANDLER, 6789 IFLIB_NRXD_HANDLER, 6790 }; 6791 6792 static int 6793 mp_ndesc_handler(SYSCTL_HANDLER_ARGS) 6794 { 6795 if_ctx_t ctx = (void *)arg1; 6796 enum iflib_ndesc_handler type = arg2; 6797 char buf[256] = {0}; 6798 qidx_t *ndesc; 6799 char *p, *next; 6800 int nqs, rc, i; 6801 6802 nqs = 8; 6803 switch (type) { 6804 case IFLIB_NTXD_HANDLER: 6805 ndesc = ctx->ifc_sysctl_ntxds; 6806 if (ctx->ifc_sctx) 6807 nqs = ctx->ifc_sctx->isc_ntxqs; 6808 break; 6809 case IFLIB_NRXD_HANDLER: 6810 ndesc = ctx->ifc_sysctl_nrxds; 6811 if (ctx->ifc_sctx) 6812 nqs = ctx->ifc_sctx->isc_nrxqs; 6813 break; 6814 default: 6815 printf("%s: unhandled type\n", __func__); 6816 return (EINVAL); 6817 } 6818 if (nqs == 0) 6819 nqs = 8; 6820 6821 for (i = 0; i < 8; i++) { 6822 if (i >= nqs) 6823 break; 6824 if (i) 6825 strcat(buf, ","); 6826 sprintf(strchr(buf, 0), "%d", ndesc[i]); 6827 } 6828 6829 rc = sysctl_handle_string(oidp, buf, sizeof(buf), req); 6830 if (rc || req->newptr == NULL) 6831 return (rc); 6832 6833 for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p; 6834 i++, p = strsep(&next, " ,")) { 6835 ndesc[i] = strtoul(p, NULL, 10); 6836 } 6837 6838 return (rc); 6839 } 6840 6841 #define NAME_BUFLEN 32 6842 static void 6843 iflib_add_device_sysctl_pre(if_ctx_t ctx) 6844 { 6845 device_t dev = iflib_get_dev(ctx); 6846 struct sysctl_oid_list *child, *oid_list; 6847 struct sysctl_ctx_list *ctx_list; 6848 struct sysctl_oid *node; 6849 6850 ctx_list = device_get_sysctl_ctx(dev); 6851 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 6852 ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, 6853 OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 6854 "IFLIB fields"); 6855 oid_list = SYSCTL_CHILDREN(node); 6856 6857 SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version", 6858 CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version"); 6859 6860 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs", 6861 CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0, 6862 "# of txqs to use, 0 => use default #"); 6863 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs", 6864 CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0, 6865 "# of rxqs to use, 0 => use default #"); 6866 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable", 6867 CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0, 6868 "permit #txq != #rxq"); 6869 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix", 6870 CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0, 6871 "disable MSI-X (default 0)"); 6872 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget", 6873 CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget"); 6874 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate", 6875 CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0, 6876 "cause TX to abdicate instead of running to completion"); 6877 ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED; 6878 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset", 6879 CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0, 6880 "offset to start using cores at"); 6881 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx", 6882 CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0, 6883 "use separate cores for TX and RX"); 6884 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores", 6885 CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0, 6886 "try to make use of logical cores for TX and RX"); 6887 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors", 6888 CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0, 6889 "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later"); 6890 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors", 6891 CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0, 6892 "total # of MSI-X vectors allocated by driver"); 6893 6894 /* XXX change for per-queue sizes */ 6895 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds", 6896 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx, 6897 IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A", 6898 "list of # of TX descriptors to use, 0 = use default #"); 6899 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds", 6900 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx, 6901 IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A", 6902 "list of # of RX descriptors to use, 0 = use default #"); 6903 } 6904 6905 static void 6906 iflib_add_device_sysctl_post(if_ctx_t ctx) 6907 { 6908 if_shared_ctx_t sctx = ctx->ifc_sctx; 6909 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 6910 device_t dev = iflib_get_dev(ctx); 6911 struct sysctl_oid_list *child; 6912 struct sysctl_ctx_list *ctx_list; 6913 iflib_fl_t fl; 6914 iflib_txq_t txq; 6915 iflib_rxq_t rxq; 6916 int i, j; 6917 char namebuf[NAME_BUFLEN]; 6918 char *qfmt; 6919 struct sysctl_oid *queue_node, *fl_node, *node; 6920 struct sysctl_oid_list *queue_list, *fl_list; 6921 ctx_list = device_get_sysctl_ctx(dev); 6922 6923 node = ctx->ifc_sysctl_node; 6924 child = SYSCTL_CHILDREN(node); 6925 6926 if (scctx->isc_ntxqsets > 100) 6927 qfmt = "txq%03d"; 6928 else if (scctx->isc_ntxqsets > 10) 6929 qfmt = "txq%02d"; 6930 else 6931 qfmt = "txq%d"; 6932 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { 6933 snprintf(namebuf, NAME_BUFLEN, qfmt, i); 6934 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, 6935 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name"); 6936 queue_list = SYSCTL_CHILDREN(queue_node); 6937 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu", 6938 CTLFLAG_RD, &txq->ift_task.gt_cpu, 0, 6939 "cpu this queue is bound to"); 6940 #if MEMORY_LOGGING 6941 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued", 6942 CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed"); 6943 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued", 6944 CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued"); 6945 #endif 6946 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag", 6947 CTLFLAG_RD, &txq->ift_mbuf_defrag, 6948 "# of times m_defrag was called"); 6949 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups", 6950 CTLFLAG_RD, &txq->ift_pullups, 6951 "# of times m_pullup was called"); 6952 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6953 "mbuf_defrag_failed", CTLFLAG_RD, 6954 &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed"); 6955 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6956 "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail, 6957 "# of times no descriptors were available"); 6958 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6959 "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed, 6960 "# of times DMA map failed"); 6961 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6962 "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig, 6963 "# of times txd_encap returned EFBIG"); 6964 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6965 "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup, 6966 "# of times map failed for other than EFBIG"); 6967 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx", 6968 CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index"); 6969 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx", 6970 CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index"); 6971 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, 6972 "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed, 6973 1, "Consumer Index seen by credit update"); 6974 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use", 6975 CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use"); 6976 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6977 "txq_processed", CTLFLAG_RD, &txq->ift_processed, 6978 "descriptors procesed for clean"); 6979 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned", 6980 CTLFLAG_RD, &txq->ift_cleaned, "total cleaned"); 6981 SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state", 6982 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 6983 __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0, 6984 mp_ring_state_handler, "A", "soft ring state"); 6985 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 6986 "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues, 6987 "# of enqueues to the mp_ring for this queue"); 6988 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 6989 "r_drops", CTLFLAG_RD, &txq->ift_br->drops, 6990 "# of drops in the mp_ring for this queue"); 6991 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 6992 "r_starts", CTLFLAG_RD, &txq->ift_br->starts, 6993 "# of normal consumer starts in mp_ring for this queue"); 6994 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 6995 "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls, 6996 "# of consumer stalls in the mp_ring for this queue"); 6997 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 6998 "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts, 6999 "# of consumer restarts in the mp_ring for this queue"); 7000 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7001 "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications, 7002 "# of consumer abdications in the mp_ring for this queue"); 7003 } 7004 7005 if (scctx->isc_nrxqsets > 100) 7006 qfmt = "rxq%03d"; 7007 else if (scctx->isc_nrxqsets > 10) 7008 qfmt = "rxq%02d"; 7009 else 7010 qfmt = "rxq%d"; 7011 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { 7012 snprintf(namebuf, NAME_BUFLEN, qfmt, i); 7013 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, 7014 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name"); 7015 queue_list = SYSCTL_CHILDREN(queue_node); 7016 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu", 7017 CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0, 7018 "cpu this queue is bound to"); 7019 if (sctx->isc_flags & IFLIB_HAS_RXCQ) { 7020 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, 7021 "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1, 7022 "Consumer Index"); 7023 } 7024 7025 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { 7026 snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j); 7027 fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, 7028 OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, 7029 NULL, "freelist Name"); 7030 fl_list = SYSCTL_CHILDREN(fl_node); 7031 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx", 7032 CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index"); 7033 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx", 7034 CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index"); 7035 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits", 7036 CTLFLAG_RD, &fl->ifl_credits, 1, 7037 "credits available"); 7038 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size", 7039 CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size"); 7040 #if MEMORY_LOGGING 7041 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7042 "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued, 7043 "mbufs allocated"); 7044 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7045 "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued, 7046 "mbufs freed"); 7047 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7048 "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued, 7049 "clusters allocated"); 7050 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7051 "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued, 7052 "clusters freed"); 7053 #endif 7054 } 7055 } 7056 7057 } 7058 7059 void 7060 iflib_request_reset(if_ctx_t ctx) 7061 { 7062 7063 STATE_LOCK(ctx); 7064 ctx->ifc_flags |= IFC_DO_RESET; 7065 STATE_UNLOCK(ctx); 7066 } 7067 7068 #ifndef __NO_STRICT_ALIGNMENT 7069 static struct mbuf * 7070 iflib_fixup_rx(struct mbuf *m) 7071 { 7072 struct mbuf *n; 7073 7074 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { 7075 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); 7076 m->m_data += ETHER_HDR_LEN; 7077 n = m; 7078 } else { 7079 MGETHDR(n, M_NOWAIT, MT_DATA); 7080 if (n == NULL) { 7081 m_freem(m); 7082 return (NULL); 7083 } 7084 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); 7085 m->m_data += ETHER_HDR_LEN; 7086 m->m_len -= ETHER_HDR_LEN; 7087 n->m_len = ETHER_HDR_LEN; 7088 M_MOVE_PKTHDR(n, m); 7089 n->m_next = m; 7090 } 7091 return (n); 7092 } 7093 #endif 7094 7095 #ifdef DEBUGNET 7096 static void 7097 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 7098 { 7099 if_ctx_t ctx; 7100 7101 ctx = if_getsoftc(ifp); 7102 CTX_LOCK(ctx); 7103 *nrxr = NRXQSETS(ctx); 7104 *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size; 7105 *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size; 7106 CTX_UNLOCK(ctx); 7107 } 7108 7109 static void 7110 iflib_debugnet_event(if_t ifp, enum debugnet_ev event) 7111 { 7112 if_ctx_t ctx; 7113 if_softc_ctx_t scctx; 7114 iflib_fl_t fl; 7115 iflib_rxq_t rxq; 7116 int i, j; 7117 7118 ctx = if_getsoftc(ifp); 7119 scctx = &ctx->ifc_softc_ctx; 7120 7121 switch (event) { 7122 case DEBUGNET_START: 7123 for (i = 0; i < scctx->isc_nrxqsets; i++) { 7124 rxq = &ctx->ifc_rxqs[i]; 7125 for (j = 0; j < rxq->ifr_nfl; j++) { 7126 fl = rxq->ifr_fl; 7127 fl->ifl_zone = m_getzone(fl->ifl_buf_size); 7128 } 7129 } 7130 iflib_no_tx_batch = 1; 7131 break; 7132 default: 7133 break; 7134 } 7135 } 7136 7137 static int 7138 iflib_debugnet_transmit(if_t ifp, struct mbuf *m) 7139 { 7140 if_ctx_t ctx; 7141 iflib_txq_t txq; 7142 int error; 7143 7144 ctx = if_getsoftc(ifp); 7145 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 7146 IFF_DRV_RUNNING) 7147 return (EBUSY); 7148 7149 txq = &ctx->ifc_txqs[0]; 7150 error = iflib_encap(txq, &m); 7151 if (error == 0) 7152 (void)iflib_txd_db_check(txq, true); 7153 return (error); 7154 } 7155 7156 static int 7157 iflib_debugnet_poll(if_t ifp, int count) 7158 { 7159 struct epoch_tracker et; 7160 if_ctx_t ctx; 7161 if_softc_ctx_t scctx; 7162 iflib_txq_t txq; 7163 int i; 7164 7165 ctx = if_getsoftc(ifp); 7166 scctx = &ctx->ifc_softc_ctx; 7167 7168 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 7169 IFF_DRV_RUNNING) 7170 return (EBUSY); 7171 7172 txq = &ctx->ifc_txqs[0]; 7173 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); 7174 7175 NET_EPOCH_ENTER(et); 7176 for (i = 0; i < scctx->isc_nrxqsets; i++) 7177 (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */); 7178 NET_EPOCH_EXIT(et); 7179 return (0); 7180 } 7181 #endif /* DEBUGNET */ 7182