1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 * Copyright 2025 Oxide Computer Company
28 */
29
30 /*
31 * This file contains the interface control functions for IP.
32 */
33
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/dlpi.h>
37 #include <sys/stropts.h>
38 #include <sys/strsun.h>
39 #include <sys/sysmacros.h>
40 #include <sys/strsubr.h>
41 #include <sys/strlog.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/kstat.h>
46 #include <sys/debug.h>
47 #include <sys/zone.h>
48 #include <sys/sunldi.h>
49 #include <sys/file.h>
50 #include <sys/bitmap.h>
51 #include <sys/cpuvar.h>
52 #include <sys/time.h>
53 #include <sys/ctype.h>
54 #include <sys/kmem.h>
55 #include <sys/systm.h>
56 #include <sys/param.h>
57 #include <sys/socket.h>
58 #include <sys/isa_defs.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_types.h>
62 #include <net/if_dl.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <netinet/igmp_var.h>
69 #include <sys/policy.h>
70 #include <sys/ethernet.h>
71 #include <sys/callb.h>
72 #include <sys/md5.h>
73
74 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
75 #include <inet/mi.h>
76 #include <inet/nd.h>
77 #include <inet/tunables.h>
78 #include <inet/arp.h>
79 #include <inet/ip_arp.h>
80 #include <inet/mib2.h>
81 #include <inet/ip.h>
82 #include <inet/ip6.h>
83 #include <inet/ip6_asp.h>
84 #include <inet/tcp.h>
85 #include <inet/ip_multi.h>
86 #include <inet/ip_ire.h>
87 #include <inet/ip_ftable.h>
88 #include <inet/ip_rts.h>
89 #include <inet/ip_ndp.h>
90 #include <inet/ip_if.h>
91 #include <inet/ip_impl.h>
92 #include <inet/sctp_ip.h>
93 #include <inet/ip_netinfo.h>
94 #include <inet/ilb_ip.h>
95
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac_client.h>
100 #include <sys/dld.h>
101 #include <sys/mac_flow.h>
102
103 #include <sys/systeminfo.h>
104 #include <sys/bootconf.h>
105
106 #include <sys/tsol/tndb.h>
107 #include <sys/tsol/tnet.h>
108
109 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
110 #include <inet/udp_impl.h> /* needed for udp_stack_t */
111
112 /* The character which tells where the ill_name ends */
113 #define IPIF_SEPARATOR_CHAR ':'
114
115 /* IP ioctl function table entry */
116 typedef struct ipft_s {
117 int ipft_cmd;
118 pfi_t ipft_pfi;
119 int ipft_min_size;
120 int ipft_flags;
121 } ipft_t;
122 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
123 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */
124
125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
127 char *value, caddr_t cp, cred_t *ioc_cr);
128
129 static boolean_t ill_is_quiescent(ill_t *);
130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133 mblk_t *mp, boolean_t need_up);
134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
135 mblk_t *mp, boolean_t need_up);
136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
137 queue_t *q, mblk_t *mp, boolean_t need_up);
138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
139 mblk_t *mp);
140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
141 mblk_t *mp);
142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
143 queue_t *q, mblk_t *mp, boolean_t need_up);
144 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
145 int ioccmd, struct linkblk *li);
146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
148 static void ipsq_flush(ill_t *ill);
149
150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
151 queue_t *q, mblk_t *mp, boolean_t need_up);
152 static void ipsq_delete(ipsq_t *);
153
154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
155 boolean_t initialize, boolean_t insert, int *errorp);
156 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
157 static void ipif_delete_bcast_ires(ipif_t *ipif);
158 static int ipif_add_ires_v4(ipif_t *, boolean_t);
159 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
160 boolean_t isv6);
161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
162 static void ipif_free(ipif_t *ipif);
163 static void ipif_free_tail(ipif_t *ipif);
164 static void ipif_set_default(ipif_t *ipif);
165 static int ipif_set_values(queue_t *q, mblk_t *mp,
166 char *interf_name, uint_t *ppa);
167 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
168 queue_t *q);
169 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
170 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
171 ip_stack_t *);
172 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen,
173 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
174 int *error, ip_stack_t *);
175
176 static int ill_alloc_ppa(ill_if_t *, ill_t *);
177 static void ill_delete_interface_type(ill_if_t *);
178 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
179 static void ill_dl_down(ill_t *ill);
180 static void ill_down(ill_t *ill);
181 static void ill_down_ipifs(ill_t *, boolean_t);
182 static void ill_free_mib(ill_t *ill);
183 static void ill_glist_delete(ill_t *);
184 static void ill_phyint_reinit(ill_t *ill);
185 static void ill_set_nce_router_flags(ill_t *, boolean_t);
186 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
187 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
188
189 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
190 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
191 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
192 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
193 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
194 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
195 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
196 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
197 static ip_v4mapinfo_func_t ip_mbcast_mapping;
198 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
199 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
200 static void phyint_free(phyint_t *);
201
202 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
205 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
206 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
207 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
208 dl_capability_sub_t *);
209 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
210 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *);
211 static void ill_capability_dld_ack(ill_t *, mblk_t *,
212 dl_capability_sub_t *);
213 static void ill_capability_dld_enable(ill_t *);
214 static void ill_capability_ack_thr(void *);
215 static void ill_capability_lso_enable(ill_t *);
216
217 static ill_t *ill_prev_usesrc(ill_t *);
218 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
219 static void ill_disband_usesrc_group(ill_t *);
220 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
221
222 #ifdef DEBUG
223 static void ill_trace_cleanup(const ill_t *);
224 static void ipif_trace_cleanup(const ipif_t *);
225 #endif
226
227 static void ill_dlpi_clear_deferred(ill_t *ill);
228
229 static void phyint_flags_init(phyint_t *, t_uscalar_t);
230
231 /*
232 * if we go over the memory footprint limit more than once in this msec
233 * interval, we'll start pruning aggressively.
234 */
235 int ip_min_frag_prune_time = 0;
236
237 static ipft_t ip_ioctl_ftbl[] = {
238 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
239 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
240 IPFT_F_NO_REPLY },
241 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
242 { 0 }
243 };
244
245 /* Simple ICMP IP Header Template */
246 static ipha_t icmp_ipha = {
247 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
248 };
249
250 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
251
252 static ip_m_t ip_m_tbl[] = {
253 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
255 ip_nodef_v6intfid },
256 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
258 ip_nodef_v6intfid },
259 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
261 ip_nodef_v6intfid },
262 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
263 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
264 ip_nodef_v6intfid },
265 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
266 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
267 ip_nodef_v6intfid },
268 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
269 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
270 ip_nodef_v6intfid },
271 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
273 ip_ipv4_v6destintfid },
274 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
275 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
276 ip_ipv6_v6destintfid },
277 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
278 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
279 ip_nodef_v6intfid },
280 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
281 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
282 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
283 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
284 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
285 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
286 ip_nodef_v6intfid }
287 };
288
289 char ipif_loopback_name[] = "lo0";
290
291 /* These are used by all IP network modules. */
292 sin6_t sin6_null; /* Zero address for quick clears */
293 sin_t sin_null; /* Zero address for quick clears */
294
295 /* When set search for unused ipif_seqid */
296 static ipif_t ipif_zero;
297
298 /*
299 * ppa arena is created after these many
300 * interfaces have been plumbed.
301 */
302 uint_t ill_no_arena = 12; /* Setable in /etc/system */
303
304 /*
305 * Allocate per-interface mibs.
306 * Returns true if ok. False otherwise.
307 * ipsq may not yet be allocated (loopback case ).
308 */
309 static boolean_t
ill_allocate_mibs(ill_t * ill)310 ill_allocate_mibs(ill_t *ill)
311 {
312 /* Already allocated? */
313 if (ill->ill_ip_mib != NULL) {
314 if (ill->ill_isv6)
315 ASSERT(ill->ill_icmp6_mib != NULL);
316 return (B_TRUE);
317 }
318
319 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
320 KM_NOSLEEP);
321 if (ill->ill_ip_mib == NULL) {
322 return (B_FALSE);
323 }
324
325 /* Setup static information */
326 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
327 sizeof (mib2_ipIfStatsEntry_t));
328 if (ill->ill_isv6) {
329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
331 sizeof (mib2_ipv6AddrEntry_t));
332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
333 sizeof (mib2_ipv6RouteEntry_t));
334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
335 sizeof (mib2_ipv6NetToMediaEntry_t));
336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
337 sizeof (ipv6_member_t));
338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
339 sizeof (ipv6_grpsrc_t));
340 } else {
341 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
342 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
343 sizeof (mib2_ipAddrEntry_t));
344 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
345 sizeof (mib2_ipRouteEntry_t));
346 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
347 sizeof (mib2_ipNetToMediaEntry_t));
348 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
349 sizeof (ip_member_t));
350 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
351 sizeof (ip_grpsrc_t));
352
353 /*
354 * For a v4 ill, we are done at this point, because per ill
355 * icmp mibs are only used for v6.
356 */
357 return (B_TRUE);
358 }
359
360 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
361 KM_NOSLEEP);
362 if (ill->ill_icmp6_mib == NULL) {
363 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
364 ill->ill_ip_mib = NULL;
365 return (B_FALSE);
366 }
367 /* static icmp info */
368 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
369 sizeof (mib2_ipv6IfIcmpEntry_t);
370 /*
371 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
372 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
373 * -> ill_phyint_reinit
374 */
375 return (B_TRUE);
376 }
377
378 /*
379 * Completely vaporize a lower level tap and all associated interfaces.
380 * ill_delete is called only out of ip_close when the device control
381 * stream is being closed.
382 */
383 void
ill_delete(ill_t * ill)384 ill_delete(ill_t *ill)
385 {
386 ipif_t *ipif;
387 ill_t *prev_ill;
388 ip_stack_t *ipst = ill->ill_ipst;
389
390 /*
391 * ill_delete may be forcibly entering the ipsq. The previous
392 * ioctl may not have completed and may need to be aborted.
393 * ipsq_flush takes care of it. If we don't need to enter the
394 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
395 * ill_delete_tail is sufficient.
396 */
397 ipsq_flush(ill);
398
399 /*
400 * Nuke all interfaces. ipif_free will take down the interface,
401 * remove it from the list, and free the data structure.
402 * Walk down the ipif list and remove the logical interfaces
403 * first before removing the main ipif. We can't unplumb
404 * zeroth interface first in the case of IPv6 as update_conn_ill
405 * -> ip_ll_multireq de-references ill_ipif for checking
406 * POINTOPOINT.
407 *
408 * If ill_ipif was not properly initialized (i.e low on memory),
409 * then no interfaces to clean up. In this case just clean up the
410 * ill.
411 */
412 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
413 ipif_free(ipif);
414
415 /*
416 * clean out all the nce_t entries that depend on this
417 * ill for the ill_phys_addr.
418 */
419 nce_flush(ill, B_TRUE);
420
421 /* Clean up msgs on pending upcalls for mrouted */
422 reset_mrt_ill(ill);
423
424 update_conn_ill(ill, ipst);
425
426 /*
427 * Remove multicast references added as a result of calls to
428 * ip_join_allmulti().
429 */
430 ip_purge_allmulti(ill);
431
432 /*
433 * If the ill being deleted is under IPMP, boot it out of the illgrp.
434 */
435 if (IS_UNDER_IPMP(ill))
436 ipmp_ill_leave_illgrp(ill);
437
438 /*
439 * ill_down will arrange to blow off any IRE's dependent on this
440 * ILL, and shut down fragmentation reassembly.
441 */
442 ill_down(ill);
443
444 /* Let SCTP know, so that it can remove this from its list. */
445 sctp_update_ill(ill, SCTP_ILL_REMOVE);
446
447 /*
448 * Walk all CONNs that can have a reference on an ire or nce for this
449 * ill (we actually walk all that now have stale references).
450 */
451 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
452
453 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
454 if (ill->ill_isv6)
455 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
456
457 /*
458 * If an address on this ILL is being used as a source address then
459 * clear out the pointers in other ILLs that point to this ILL.
460 */
461 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
462 if (ill->ill_usesrc_grp_next != NULL) {
463 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
464 ill_disband_usesrc_group(ill);
465 } else { /* consumer of the usesrc ILL */
466 prev_ill = ill_prev_usesrc(ill);
467 prev_ill->ill_usesrc_grp_next =
468 ill->ill_usesrc_grp_next;
469 }
470 }
471 rw_exit(&ipst->ips_ill_g_usesrc_lock);
472 }
473
474 static void
ipif_non_duplicate(ipif_t * ipif)475 ipif_non_duplicate(ipif_t *ipif)
476 {
477 ill_t *ill = ipif->ipif_ill;
478 mutex_enter(&ill->ill_lock);
479 if (ipif->ipif_flags & IPIF_DUPLICATE) {
480 ipif->ipif_flags &= ~IPIF_DUPLICATE;
481 ASSERT(ill->ill_ipif_dup_count > 0);
482 ill->ill_ipif_dup_count--;
483 }
484 mutex_exit(&ill->ill_lock);
485 }
486
487 /*
488 * ill_delete_tail is called from ip_modclose after all references
489 * to the closing ill are gone. The wait is done in ip_modclose
490 */
491 void
ill_delete_tail(ill_t * ill)492 ill_delete_tail(ill_t *ill)
493 {
494 mblk_t **mpp;
495 ipif_t *ipif;
496 ip_stack_t *ipst = ill->ill_ipst;
497
498 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
499 ipif_non_duplicate(ipif);
500 (void) ipif_down_tail(ipif);
501 }
502
503 ASSERT(ill->ill_ipif_dup_count == 0);
504
505 /*
506 * If polling capability is enabled (which signifies direct
507 * upcall into IP and driver has ill saved as a handle),
508 * we need to make sure that unbind has completed before we
509 * let the ill disappear and driver no longer has any reference
510 * to this ill.
511 */
512 mutex_enter(&ill->ill_lock);
513 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
514 cv_wait(&ill->ill_cv, &ill->ill_lock);
515 mutex_exit(&ill->ill_lock);
516 ASSERT(!(ill->ill_capabilities &
517 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
518
519 if (ill->ill_net_type != IRE_LOOPBACK)
520 qprocsoff(ill->ill_rq);
521
522 /*
523 * We do an ipsq_flush once again now. New messages could have
524 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
525 * could also have landed up if an ioctl thread had looked up
526 * the ill before we set the ILL_CONDEMNED flag, but not yet
527 * enqueued the ioctl when we did the ipsq_flush last time.
528 */
529 ipsq_flush(ill);
530
531 /*
532 * Free capabilities.
533 */
534 if (ill->ill_hcksum_capab != NULL) {
535 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
536 ill->ill_hcksum_capab = NULL;
537 }
538
539 if (ill->ill_zerocopy_capab != NULL) {
540 kmem_free(ill->ill_zerocopy_capab,
541 sizeof (ill_zerocopy_capab_t));
542 ill->ill_zerocopy_capab = NULL;
543 }
544
545 if (ill->ill_lso_capab != NULL) {
546 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
547 ill->ill_lso_capab = NULL;
548 }
549
550 if (ill->ill_dld_capab != NULL) {
551 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
552 ill->ill_dld_capab = NULL;
553 }
554
555 /* Clean up ill_allowed_ips* related state */
556 if (ill->ill_allowed_ips != NULL) {
557 ASSERT(ill->ill_allowed_ips_cnt > 0);
558 kmem_free(ill->ill_allowed_ips,
559 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
560 ill->ill_allowed_ips = NULL;
561 ill->ill_allowed_ips_cnt = 0;
562 }
563
564 while (ill->ill_ipif != NULL)
565 ipif_free_tail(ill->ill_ipif);
566
567 /*
568 * We have removed all references to ilm from conn and the ones joined
569 * within the kernel.
570 *
571 * We don't walk conns, mrts and ires because
572 *
573 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
574 * 2) ill_down ->ill_downi walks all the ires and cleans up
575 * ill references.
576 */
577
578 /*
579 * If this ill is an IPMP meta-interface, blow away the illgrp. This
580 * is safe to do because the illgrp has already been unlinked from the
581 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
582 */
583 if (IS_IPMP(ill)) {
584 ipmp_illgrp_destroy(ill->ill_grp);
585 ill->ill_grp = NULL;
586 }
587
588 if (ill->ill_mphysaddr_list != NULL) {
589 multiphysaddr_t *mpa, *tmpa;
590
591 mpa = ill->ill_mphysaddr_list;
592 ill->ill_mphysaddr_list = NULL;
593 while (mpa) {
594 tmpa = mpa->mpa_next;
595 kmem_free(mpa, sizeof (*mpa));
596 mpa = tmpa;
597 }
598 }
599 /*
600 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
601 * could free the phyint. No more reference to the phyint after this
602 * point.
603 */
604 (void) ill_glist_delete(ill);
605
606 if (ill->ill_frag_ptr != NULL) {
607 uint_t count;
608
609 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
610 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
611 }
612 mi_free(ill->ill_frag_ptr);
613 ill->ill_frag_ptr = NULL;
614 ill->ill_frag_hash_tbl = NULL;
615 }
616
617 freemsg(ill->ill_nd_lla_mp);
618 /* Free all retained control messages. */
619 mpp = &ill->ill_first_mp_to_free;
620 do {
621 while (mpp[0]) {
622 mblk_t *mp;
623 mblk_t *mp1;
624
625 mp = mpp[0];
626 mpp[0] = mp->b_next;
627 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
628 mp1->b_next = NULL;
629 mp1->b_prev = NULL;
630 }
631 freemsg(mp);
632 }
633 } while (mpp++ != &ill->ill_last_mp_to_free);
634
635 ill_free_mib(ill);
636
637 #ifdef DEBUG
638 ill_trace_cleanup(ill);
639 #endif
640
641 /* The default multicast interface might have changed */
642 ire_increment_multicast_generation(ipst, ill->ill_isv6);
643
644 /* Drop refcnt here */
645 netstack_rele(ill->ill_ipst->ips_netstack);
646 ill->ill_ipst = NULL;
647 }
648
649 static void
ill_free_mib(ill_t * ill)650 ill_free_mib(ill_t *ill)
651 {
652 ip_stack_t *ipst = ill->ill_ipst;
653
654 /*
655 * MIB statistics must not be lost, so when an interface
656 * goes away the counter values will be added to the global
657 * MIBs.
658 */
659 if (ill->ill_ip_mib != NULL) {
660 if (ill->ill_isv6) {
661 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
662 ill->ill_ip_mib);
663 } else {
664 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
665 ill->ill_ip_mib);
666 }
667
668 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
669 ill->ill_ip_mib = NULL;
670 }
671 if (ill->ill_icmp6_mib != NULL) {
672 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
673 ill->ill_icmp6_mib);
674 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
675 ill->ill_icmp6_mib = NULL;
676 }
677 }
678
679 /*
680 * Concatenate together a physical address and a sap.
681 *
682 * Sap_lengths are interpreted as follows:
683 * sap_length == 0 ==> no sap
684 * sap_length > 0 ==> sap is at the head of the dlpi address
685 * sap_length < 0 ==> sap is at the tail of the dlpi address
686 */
687 static void
ill_dlur_copy_address(uchar_t * phys_src,uint_t phys_length,t_scalar_t sap_src,t_scalar_t sap_length,uchar_t * dst)688 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
689 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
690 {
691 uint16_t sap_addr = (uint16_t)sap_src;
692
693 if (sap_length == 0) {
694 if (phys_src == NULL)
695 bzero(dst, phys_length);
696 else
697 bcopy(phys_src, dst, phys_length);
698 } else if (sap_length < 0) {
699 if (phys_src == NULL)
700 bzero(dst, phys_length);
701 else
702 bcopy(phys_src, dst, phys_length);
703 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
704 } else {
705 bcopy(&sap_addr, dst, sizeof (sap_addr));
706 if (phys_src == NULL)
707 bzero((char *)dst + sap_length, phys_length);
708 else
709 bcopy(phys_src, (char *)dst + sap_length, phys_length);
710 }
711 }
712
713 /*
714 * Generate a dl_unitdata_req mblk for the device and address given.
715 * addr_length is the length of the physical portion of the address.
716 * If addr is NULL include an all zero address of the specified length.
717 * TRUE? In any case, addr_length is taken to be the entire length of the
718 * dlpi address, including the absolute value of sap_length.
719 */
720 mblk_t *
ill_dlur_gen(uchar_t * addr,uint_t addr_length,t_uscalar_t sap,t_scalar_t sap_length)721 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
722 t_scalar_t sap_length)
723 {
724 dl_unitdata_req_t *dlur;
725 mblk_t *mp;
726 t_scalar_t abs_sap_length; /* absolute value */
727
728 abs_sap_length = ABS(sap_length);
729 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
730 DL_UNITDATA_REQ);
731 if (mp == NULL)
732 return (NULL);
733 dlur = (dl_unitdata_req_t *)mp->b_rptr;
734 /* HACK: accomodate incompatible DLPI drivers */
735 if (addr_length == 8)
736 addr_length = 6;
737 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
738 dlur->dl_dest_addr_offset = sizeof (*dlur);
739 dlur->dl_priority.dl_min = 0;
740 dlur->dl_priority.dl_max = 0;
741 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
742 (uchar_t *)&dlur[1]);
743 return (mp);
744 }
745
746 /*
747 * Add the pending mp to the list. There can be only 1 pending mp
748 * in the list. Any exclusive ioctl that needs to wait for a response
749 * from another module or driver needs to use this function to set
750 * the ipx_pending_mp to the ioctl mblk and wait for the response from
751 * the other module/driver. This is also used while waiting for the
752 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
753 */
754 boolean_t
ipsq_pending_mp_add(conn_t * connp,ipif_t * ipif,queue_t * q,mblk_t * add_mp,int waitfor)755 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
756 int waitfor)
757 {
758 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
759
760 ASSERT(IAM_WRITER_IPIF(ipif));
761 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
762 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
763 ASSERT(ipx->ipx_pending_mp == NULL);
764 /*
765 * The caller may be using a different ipif than the one passed into
766 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
767 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT
768 * that `ipx_current_ipif == ipif'.
769 */
770 ASSERT(ipx->ipx_current_ipif != NULL);
771
772 /*
773 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
774 * driver.
775 */
776 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
777 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
778 (DB_TYPE(add_mp) == M_PCPROTO));
779
780 if (connp != NULL) {
781 ASSERT(MUTEX_HELD(&connp->conn_lock));
782 /*
783 * Return error if the conn has started closing. The conn
784 * could have finished cleaning up the pending mp list,
785 * If so we should not add another mp to the list negating
786 * the cleanup.
787 */
788 if (connp->conn_state_flags & CONN_CLOSING)
789 return (B_FALSE);
790 }
791 mutex_enter(&ipx->ipx_lock);
792 ipx->ipx_pending_ipif = ipif;
793 /*
794 * Note down the queue in b_queue. This will be returned by
795 * ipsq_pending_mp_get. Caller will then use these values to restart
796 * the processing
797 */
798 add_mp->b_next = NULL;
799 add_mp->b_queue = q;
800 ipx->ipx_pending_mp = add_mp;
801 ipx->ipx_waitfor = waitfor;
802 mutex_exit(&ipx->ipx_lock);
803
804 if (connp != NULL)
805 connp->conn_oper_pending_ill = ipif->ipif_ill;
806
807 return (B_TRUE);
808 }
809
810 /*
811 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
812 * queued in the list.
813 */
814 mblk_t *
ipsq_pending_mp_get(ipsq_t * ipsq,conn_t ** connpp)815 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
816 {
817 mblk_t *curr = NULL;
818 ipxop_t *ipx = ipsq->ipsq_xop;
819
820 *connpp = NULL;
821 mutex_enter(&ipx->ipx_lock);
822 if (ipx->ipx_pending_mp == NULL) {
823 mutex_exit(&ipx->ipx_lock);
824 return (NULL);
825 }
826
827 /* There can be only 1 such excl message */
828 curr = ipx->ipx_pending_mp;
829 ASSERT(curr->b_next == NULL);
830 ipx->ipx_pending_ipif = NULL;
831 ipx->ipx_pending_mp = NULL;
832 ipx->ipx_waitfor = 0;
833 mutex_exit(&ipx->ipx_lock);
834
835 if (CONN_Q(curr->b_queue)) {
836 /*
837 * This mp did a refhold on the conn, at the start of the ioctl.
838 * So we can safely return a pointer to the conn to the caller.
839 */
840 *connpp = Q_TO_CONN(curr->b_queue);
841 } else {
842 *connpp = NULL;
843 }
844 curr->b_next = NULL;
845 curr->b_prev = NULL;
846 return (curr);
847 }
848
849 /*
850 * Cleanup the ioctl mp queued in ipx_pending_mp
851 * - Called in the ill_delete path
852 * - Called in the M_ERROR or M_HANGUP path on the ill.
853 * - Called in the conn close path.
854 *
855 * Returns success on finding the pending mblk associated with the ioctl or
856 * exclusive operation in progress, failure otherwise.
857 */
858 boolean_t
ipsq_pending_mp_cleanup(ill_t * ill,conn_t * connp)859 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
860 {
861 mblk_t *mp;
862 ipxop_t *ipx;
863 queue_t *q;
864 ipif_t *ipif;
865 int cmd;
866
867 ASSERT(IAM_WRITER_ILL(ill));
868 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
869
870 mutex_enter(&ipx->ipx_lock);
871 mp = ipx->ipx_pending_mp;
872 if (connp != NULL) {
873 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
874 /*
875 * Nothing to clean since the conn that is closing
876 * does not have a matching pending mblk in
877 * ipx_pending_mp.
878 */
879 mutex_exit(&ipx->ipx_lock);
880 return (B_FALSE);
881 }
882 } else {
883 /*
884 * A non-zero ill_error signifies we are called in the
885 * M_ERROR or M_HANGUP path and we need to unconditionally
886 * abort any current ioctl and do the corresponding cleanup.
887 * A zero ill_error means we are in the ill_delete path and
888 * we do the cleanup only if there is a pending mp.
889 */
890 if (mp == NULL && ill->ill_error == 0) {
891 mutex_exit(&ipx->ipx_lock);
892 return (B_FALSE);
893 }
894 }
895
896 /* Now remove from the ipx_pending_mp */
897 ipx->ipx_pending_mp = NULL;
898 ipif = ipx->ipx_pending_ipif;
899 ipx->ipx_pending_ipif = NULL;
900 ipx->ipx_waitfor = 0;
901 ipx->ipx_current_ipif = NULL;
902 cmd = ipx->ipx_current_ioctl;
903 ipx->ipx_current_ioctl = 0;
904 ipx->ipx_current_done = B_TRUE;
905 mutex_exit(&ipx->ipx_lock);
906
907 if (mp == NULL)
908 return (B_FALSE);
909
910 q = mp->b_queue;
911 mp->b_next = NULL;
912 mp->b_prev = NULL;
913 mp->b_queue = NULL;
914
915 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
916 DTRACE_PROBE4(ipif__ioctl,
917 char *, "ipsq_pending_mp_cleanup",
918 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
919 ipif_t *, ipif);
920 if (connp == NULL) {
921 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
922 } else {
923 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
924 mutex_enter(&ipif->ipif_ill->ill_lock);
925 ipif->ipif_state_flags &= ~IPIF_CHANGING;
926 mutex_exit(&ipif->ipif_ill->ill_lock);
927 }
928 } else {
929 inet_freemsg(mp);
930 }
931 return (B_TRUE);
932 }
933
934 /*
935 * Called in the conn close path and ill delete path
936 */
937 static void
ipsq_xopq_mp_cleanup(ill_t * ill,conn_t * connp)938 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
939 {
940 ipsq_t *ipsq;
941 mblk_t *prev;
942 mblk_t *curr;
943 mblk_t *next;
944 queue_t *wq, *rq = NULL;
945 mblk_t *tmp_list = NULL;
946
947 ASSERT(IAM_WRITER_ILL(ill));
948 if (connp != NULL)
949 wq = CONNP_TO_WQ(connp);
950 else
951 wq = ill->ill_wq;
952
953 /*
954 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
955 * against this here.
956 */
957 if (wq != NULL)
958 rq = RD(wq);
959
960 ipsq = ill->ill_phyint->phyint_ipsq;
961 /*
962 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
963 * In the case of ioctl from a conn, there can be only 1 mp
964 * queued on the ipsq. If an ill is being unplumbed flush all
965 * the messages.
966 */
967 mutex_enter(&ipsq->ipsq_lock);
968 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
969 curr = next) {
970 next = curr->b_next;
971 if (connp == NULL ||
972 (curr->b_queue == wq || curr->b_queue == rq)) {
973 /* Unlink the mblk from the pending mp list */
974 if (prev != NULL) {
975 prev->b_next = curr->b_next;
976 } else {
977 ASSERT(ipsq->ipsq_xopq_mphead == curr);
978 ipsq->ipsq_xopq_mphead = curr->b_next;
979 }
980 if (ipsq->ipsq_xopq_mptail == curr)
981 ipsq->ipsq_xopq_mptail = prev;
982 /*
983 * Create a temporary list and release the ipsq lock
984 * New elements are added to the head of the tmp_list
985 */
986 curr->b_next = tmp_list;
987 tmp_list = curr;
988 } else {
989 prev = curr;
990 }
991 }
992 mutex_exit(&ipsq->ipsq_lock);
993
994 while (tmp_list != NULL) {
995 curr = tmp_list;
996 tmp_list = curr->b_next;
997 curr->b_next = NULL;
998 curr->b_prev = NULL;
999 wq = curr->b_queue;
1000 curr->b_queue = NULL;
1001 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1002 DTRACE_PROBE4(ipif__ioctl,
1003 char *, "ipsq_xopq_mp_cleanup",
1004 int, 0, ill_t *, NULL, ipif_t *, NULL);
1005 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1006 CONN_CLOSE : NO_COPYOUT, NULL);
1007 } else {
1008 /*
1009 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1010 * this can't be just inet_freemsg. we have to
1011 * restart it otherwise the thread will be stuck.
1012 */
1013 inet_freemsg(curr);
1014 }
1015 }
1016 }
1017
1018 /*
1019 * This conn has started closing. Cleanup any pending ioctl from this conn.
1020 * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1021 */
1022 void
conn_ioctl_cleanup(conn_t * connp)1023 conn_ioctl_cleanup(conn_t *connp)
1024 {
1025 ipsq_t *ipsq;
1026 ill_t *ill;
1027 boolean_t refheld;
1028
1029 /*
1030 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1031 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1032 * started the mp could be present in ipx_pending_mp. Note that if
1033 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1034 * not yet queued anywhere. In this case, the conn close code will wait
1035 * until the conn_ref is dropped. If the stream was a tcp stream, then
1036 * tcp_close will wait first until all ioctls have completed for this
1037 * conn.
1038 */
1039 mutex_enter(&connp->conn_lock);
1040 ill = connp->conn_oper_pending_ill;
1041 if (ill == NULL) {
1042 mutex_exit(&connp->conn_lock);
1043 return;
1044 }
1045
1046 /*
1047 * We may not be able to refhold the ill if the ill/ipif
1048 * is changing. But we need to make sure that the ill will
1049 * not vanish. So we just bump up the ill_waiter count.
1050 */
1051 refheld = ill_waiter_inc(ill);
1052 mutex_exit(&connp->conn_lock);
1053 if (refheld) {
1054 if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1055 ill_waiter_dcr(ill);
1056 /*
1057 * Check whether this ioctl has started and is
1058 * pending. If it is not found there then check
1059 * whether this ioctl has not even started and is in
1060 * the ipsq_xopq list.
1061 */
1062 if (!ipsq_pending_mp_cleanup(ill, connp))
1063 ipsq_xopq_mp_cleanup(ill, connp);
1064 ipsq = ill->ill_phyint->phyint_ipsq;
1065 ipsq_exit(ipsq);
1066 return;
1067 }
1068 }
1069
1070 /*
1071 * The ill is also closing and we could not bump up the
1072 * ill_waiter_count or we could not enter the ipsq. Leave
1073 * the cleanup to ill_delete
1074 */
1075 mutex_enter(&connp->conn_lock);
1076 while (connp->conn_oper_pending_ill != NULL)
1077 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1078 mutex_exit(&connp->conn_lock);
1079 if (refheld)
1080 ill_waiter_dcr(ill);
1081 }
1082
1083 /*
1084 * ipcl_walk function for cleaning up conn_*_ill fields.
1085 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1086 * conn_bound_if in place. We prefer dropping
1087 * packets instead of sending them out the wrong interface, or accepting
1088 * packets from the wrong ifindex.
1089 */
1090 static void
conn_cleanup_ill(conn_t * connp,caddr_t arg)1091 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1092 {
1093 ill_t *ill = (ill_t *)arg;
1094
1095 mutex_enter(&connp->conn_lock);
1096 if (connp->conn_dhcpinit_ill == ill) {
1097 connp->conn_dhcpinit_ill = NULL;
1098 ASSERT(ill->ill_dhcpinit != 0);
1099 atomic_dec_32(&ill->ill_dhcpinit);
1100 ill_set_inputfn(ill);
1101 }
1102 mutex_exit(&connp->conn_lock);
1103 }
1104
1105 static int
ill_down_ipifs_tail(ill_t * ill)1106 ill_down_ipifs_tail(ill_t *ill)
1107 {
1108 ipif_t *ipif;
1109 int err;
1110
1111 ASSERT(IAM_WRITER_ILL(ill));
1112 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1113 ipif_non_duplicate(ipif);
1114 /*
1115 * ipif_down_tail will call arp_ll_down on the last ipif
1116 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1117 */
1118 if ((err = ipif_down_tail(ipif)) != 0)
1119 return (err);
1120 }
1121 return (0);
1122 }
1123
1124 /* ARGSUSED */
1125 void
ipif_all_down_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)1126 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1127 {
1128 ASSERT(IAM_WRITER_IPSQ(ipsq));
1129 (void) ill_down_ipifs_tail(q->q_ptr);
1130 freemsg(mp);
1131 ipsq_current_finish(ipsq);
1132 }
1133
1134 /*
1135 * ill_down_start is called when we want to down this ill and bring it up again
1136 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1137 * all interfaces, but don't tear down any plumbing.
1138 */
1139 boolean_t
ill_down_start(queue_t * q,mblk_t * mp)1140 ill_down_start(queue_t *q, mblk_t *mp)
1141 {
1142 ill_t *ill = q->q_ptr;
1143 ipif_t *ipif;
1144
1145 ASSERT(IAM_WRITER_ILL(ill));
1146 /*
1147 * It is possible that some ioctl is already in progress while we
1148 * received the M_ERROR / M_HANGUP in which case, we need to abort
1149 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1150 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1151 * the in progress ioctl from ever completing.
1152 *
1153 * The thread that started the ioctl (if any) must have returned,
1154 * since we are now executing as writer. After the 2 calls below,
1155 * the state of the ipsq and the ill would reflect no trace of any
1156 * pending operation. Subsequently if there is any response to the
1157 * original ioctl from the driver, it would be discarded as an
1158 * unsolicited message from the driver.
1159 */
1160 (void) ipsq_pending_mp_cleanup(ill, NULL);
1161 ill_dlpi_clear_deferred(ill);
1162
1163 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1164 (void) ipif_down(ipif, NULL, NULL);
1165
1166 ill_down(ill);
1167
1168 /*
1169 * Walk all CONNs that can have a reference on an ire or nce for this
1170 * ill (we actually walk all that now have stale references).
1171 */
1172 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1173
1174 /* With IPv6 we have dce_ifindex. Cleanup for neatness */
1175 if (ill->ill_isv6)
1176 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1177
1178 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1179
1180 /*
1181 * Atomically test and add the pending mp if references are active.
1182 */
1183 mutex_enter(&ill->ill_lock);
1184 if (!ill_is_quiescent(ill)) {
1185 /* call cannot fail since `conn_t *' argument is NULL */
1186 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1187 mp, ILL_DOWN);
1188 mutex_exit(&ill->ill_lock);
1189 return (B_FALSE);
1190 }
1191 mutex_exit(&ill->ill_lock);
1192 return (B_TRUE);
1193 }
1194
1195 static void
ill_down(ill_t * ill)1196 ill_down(ill_t *ill)
1197 {
1198 mblk_t *mp;
1199 ip_stack_t *ipst = ill->ill_ipst;
1200
1201 /*
1202 * Blow off any IREs dependent on this ILL.
1203 * The caller needs to handle conn_ixa_cleanup
1204 */
1205 ill_delete_ires(ill);
1206
1207 ire_walk_ill(0, 0, ill_downi, ill, ill);
1208
1209 /* Remove any conn_*_ill depending on this ill */
1210 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1211
1212 /*
1213 * Free state for additional IREs.
1214 */
1215 mutex_enter(&ill->ill_saved_ire_lock);
1216 mp = ill->ill_saved_ire_mp;
1217 ill->ill_saved_ire_mp = NULL;
1218 ill->ill_saved_ire_cnt = 0;
1219 mutex_exit(&ill->ill_saved_ire_lock);
1220 freemsg(mp);
1221 }
1222
1223 /*
1224 * ire_walk routine used to delete every IRE that depends on
1225 * 'ill'. (Always called as writer, and may only be called from ire_walk.)
1226 *
1227 * Note: since the routes added by the kernel are deleted separately,
1228 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1229 *
1230 * We also remove references on ire_nce_cache entries that refer to the ill.
1231 */
1232 void
ill_downi(ire_t * ire,char * ill_arg)1233 ill_downi(ire_t *ire, char *ill_arg)
1234 {
1235 ill_t *ill = (ill_t *)ill_arg;
1236 nce_t *nce;
1237
1238 mutex_enter(&ire->ire_lock);
1239 nce = ire->ire_nce_cache;
1240 if (nce != NULL && nce->nce_ill == ill)
1241 ire->ire_nce_cache = NULL;
1242 else
1243 nce = NULL;
1244 mutex_exit(&ire->ire_lock);
1245 if (nce != NULL)
1246 nce_refrele(nce);
1247 if (ire->ire_ill == ill) {
1248 /*
1249 * The existing interface binding for ire must be
1250 * deleted before trying to bind the route to another
1251 * interface. However, since we are using the contents of the
1252 * ire after ire_delete, the caller has to ensure that
1253 * CONDEMNED (deleted) ire's are not removed from the list
1254 * when ire_delete() returns. Currently ill_downi() is
1255 * only called as part of ire_walk*() routines, so that
1256 * the irb_refhold() done by ire_walk*() will ensure that
1257 * ire_delete() does not lead to ire_inactive().
1258 */
1259 ASSERT(ire->ire_bucket->irb_refcnt > 0);
1260 ire_delete(ire);
1261 if (ire->ire_unbound)
1262 ire_rebind(ire);
1263 }
1264 }
1265
1266 /* Remove IRE_IF_CLONE on this ill */
1267 void
ill_downi_if_clone(ire_t * ire,char * ill_arg)1268 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1269 {
1270 ill_t *ill = (ill_t *)ill_arg;
1271
1272 ASSERT(ire->ire_type & IRE_IF_CLONE);
1273 if (ire->ire_ill == ill)
1274 ire_delete(ire);
1275 }
1276
1277 /* Consume an M_IOCACK of the fastpath probe. */
1278 void
ill_fastpath_ack(ill_t * ill,mblk_t * mp)1279 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1280 {
1281 mblk_t *mp1 = mp;
1282
1283 /*
1284 * If this was the first attempt turn on the fastpath probing.
1285 */
1286 mutex_enter(&ill->ill_lock);
1287 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1288 ill->ill_dlpi_fastpath_state = IDS_OK;
1289 mutex_exit(&ill->ill_lock);
1290
1291 /* Free the M_IOCACK mblk, hold on to the data */
1292 mp = mp->b_cont;
1293 freeb(mp1);
1294 if (mp == NULL)
1295 return;
1296 if (mp->b_cont != NULL)
1297 nce_fastpath_update(ill, mp);
1298 else
1299 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1300 freemsg(mp);
1301 }
1302
1303 /*
1304 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1305 * The data portion of the request is a dl_unitdata_req_t template for
1306 * what we would send downstream in the absence of a fastpath confirmation.
1307 */
1308 int
ill_fastpath_probe(ill_t * ill,mblk_t * dlur_mp)1309 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1310 {
1311 struct iocblk *ioc;
1312 mblk_t *mp;
1313
1314 if (dlur_mp == NULL)
1315 return (EINVAL);
1316
1317 mutex_enter(&ill->ill_lock);
1318 switch (ill->ill_dlpi_fastpath_state) {
1319 case IDS_FAILED:
1320 /*
1321 * Driver NAKed the first fastpath ioctl - assume it doesn't
1322 * support it.
1323 */
1324 mutex_exit(&ill->ill_lock);
1325 return (ENOTSUP);
1326 case IDS_UNKNOWN:
1327 /* This is the first probe */
1328 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1329 break;
1330 default:
1331 break;
1332 }
1333 mutex_exit(&ill->ill_lock);
1334
1335 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1336 return (EAGAIN);
1337
1338 mp->b_cont = copyb(dlur_mp);
1339 if (mp->b_cont == NULL) {
1340 freeb(mp);
1341 return (EAGAIN);
1342 }
1343
1344 ioc = (struct iocblk *)mp->b_rptr;
1345 ioc->ioc_count = msgdsize(mp->b_cont);
1346
1347 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1348 char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1349 putnext(ill->ill_wq, mp);
1350 return (0);
1351 }
1352
1353 void
ill_capability_probe(ill_t * ill)1354 ill_capability_probe(ill_t *ill)
1355 {
1356 mblk_t *mp;
1357
1358 ASSERT(IAM_WRITER_ILL(ill));
1359
1360 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1361 ill->ill_dlpi_capab_state != IDCS_FAILED)
1362 return;
1363
1364 /*
1365 * We are starting a new cycle of capability negotiation.
1366 * Free up the capab reset messages of any previous incarnation.
1367 * We will do a fresh allocation when we get the response to our probe
1368 */
1369 if (ill->ill_capab_reset_mp != NULL) {
1370 freemsg(ill->ill_capab_reset_mp);
1371 ill->ill_capab_reset_mp = NULL;
1372 }
1373
1374 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1375
1376 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1377 if (mp == NULL)
1378 return;
1379
1380 ill_capability_send(ill, mp);
1381 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1382 }
1383
1384 void
ill_capability_reset(ill_t * ill,boolean_t reneg)1385 ill_capability_reset(ill_t *ill, boolean_t reneg)
1386 {
1387 ASSERT(IAM_WRITER_ILL(ill));
1388
1389 if (ill->ill_dlpi_capab_state != IDCS_OK)
1390 return;
1391
1392 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1393
1394 ill_capability_send(ill, ill->ill_capab_reset_mp);
1395 ill->ill_capab_reset_mp = NULL;
1396 /*
1397 * We turn off all capabilities except those pertaining to
1398 * direct function call capabilities viz. ILL_CAPAB_DLD*
1399 * which will be turned off by the corresponding reset functions.
1400 */
1401 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY);
1402 }
1403
1404 static void
ill_capability_reset_alloc(ill_t * ill)1405 ill_capability_reset_alloc(ill_t *ill)
1406 {
1407 mblk_t *mp;
1408 size_t size = 0;
1409 int err;
1410 dl_capability_req_t *capb;
1411
1412 ASSERT(IAM_WRITER_ILL(ill));
1413 ASSERT(ill->ill_capab_reset_mp == NULL);
1414
1415 if (ILL_HCKSUM_CAPABLE(ill)) {
1416 size += sizeof (dl_capability_sub_t) +
1417 sizeof (dl_capab_hcksum_t);
1418 }
1419
1420 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1421 size += sizeof (dl_capability_sub_t) +
1422 sizeof (dl_capab_zerocopy_t);
1423 }
1424
1425 if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1426 size += sizeof (dl_capability_sub_t) +
1427 sizeof (dl_capab_dld_t);
1428 }
1429
1430 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1431 STR_NOSIG, &err);
1432
1433 mp->b_datap->db_type = M_PROTO;
1434 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1435
1436 capb = (dl_capability_req_t *)mp->b_rptr;
1437 capb->dl_primitive = DL_CAPABILITY_REQ;
1438 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1439 capb->dl_sub_length = size;
1440
1441 mp->b_wptr += sizeof (dl_capability_req_t);
1442
1443 /*
1444 * Each handler fills in the corresponding dl_capability_sub_t
1445 * inside the mblk,
1446 */
1447 ill_capability_hcksum_reset_fill(ill, mp);
1448 ill_capability_zerocopy_reset_fill(ill, mp);
1449 ill_capability_dld_reset_fill(ill, mp);
1450
1451 ill->ill_capab_reset_mp = mp;
1452 }
1453
1454 static void
ill_capability_id_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * outers)1455 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1456 {
1457 dl_capab_id_t *id_ic;
1458 uint_t sub_dl_cap = outers->dl_cap;
1459 dl_capability_sub_t *inners;
1460 uint8_t *capend;
1461
1462 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1463
1464 /*
1465 * Note: range checks here are not absolutely sufficient to
1466 * make us robust against malformed messages sent by drivers;
1467 * this is in keeping with the rest of IP's dlpi handling.
1468 * (Remember, it's coming from something else in the kernel
1469 * address space)
1470 */
1471
1472 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1473 if (capend > mp->b_wptr) {
1474 cmn_err(CE_WARN, "ill_capability_id_ack: "
1475 "malformed sub-capability too long for mblk");
1476 return;
1477 }
1478
1479 id_ic = (dl_capab_id_t *)(outers + 1);
1480
1481 inners = &id_ic->id_subcap;
1482 if (outers->dl_length < sizeof (*id_ic) ||
1483 inners->dl_length > (outers->dl_length - sizeof (*inners))) {
1484 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1485 "encapsulated capab type %d too long for mblk",
1486 inners->dl_cap);
1487 return;
1488 }
1489
1490 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1491 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1492 "isn't as expected; pass-thru module(s) detected, "
1493 "discarding capability\n", inners->dl_cap));
1494 return;
1495 }
1496
1497 /* Process the encapsulated sub-capability */
1498 ill_capability_dispatch(ill, mp, inners);
1499 }
1500
1501 static void
ill_capability_dld_reset_fill(ill_t * ill,mblk_t * mp)1502 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1503 {
1504 dl_capability_sub_t *dl_subcap;
1505
1506 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1507 return;
1508
1509 /*
1510 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1511 * initialized below since it is not used by DLD.
1512 */
1513 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1514 dl_subcap->dl_cap = DL_CAPAB_DLD;
1515 dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1516
1517 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1518 }
1519
1520 static void
ill_capability_dispatch(ill_t * ill,mblk_t * mp,dl_capability_sub_t * subp)1521 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1522 {
1523 /*
1524 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1525 * is only to get the VRRP capability.
1526 *
1527 * Note that we cannot check ill_ipif_up_count here since
1528 * ill_ipif_up_count is only incremented when the resolver is setup.
1529 * That is done asynchronously, and can race with this function.
1530 */
1531 if (!ill->ill_dl_up) {
1532 if (subp->dl_cap == DL_CAPAB_VRRP)
1533 ill_capability_vrrp_ack(ill, mp, subp);
1534 return;
1535 }
1536
1537 switch (subp->dl_cap) {
1538 case DL_CAPAB_HCKSUM:
1539 ill_capability_hcksum_ack(ill, mp, subp);
1540 break;
1541 case DL_CAPAB_ZEROCOPY:
1542 ill_capability_zerocopy_ack(ill, mp, subp);
1543 break;
1544 case DL_CAPAB_DLD:
1545 ill_capability_dld_ack(ill, mp, subp);
1546 break;
1547 case DL_CAPAB_VRRP:
1548 break;
1549 default:
1550 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1551 subp->dl_cap));
1552 }
1553 }
1554
1555 /*
1556 * Process the vrrp capability received from a DLS Provider. isub must point
1557 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1558 */
1559 static void
ill_capability_vrrp_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1560 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1561 {
1562 dl_capab_vrrp_t *vrrp;
1563 uint_t sub_dl_cap = isub->dl_cap;
1564 uint8_t *capend;
1565
1566 ASSERT(IAM_WRITER_ILL(ill));
1567 ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1568
1569 /*
1570 * Note: range checks here are not absolutely sufficient to
1571 * make us robust against malformed messages sent by drivers;
1572 * this is in keeping with the rest of IP's dlpi handling.
1573 * (Remember, it's coming from something else in the kernel
1574 * address space)
1575 */
1576 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1577 if (capend > mp->b_wptr) {
1578 cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1579 "malformed sub-capability too long for mblk");
1580 return;
1581 }
1582 vrrp = (dl_capab_vrrp_t *)(isub + 1);
1583
1584 /*
1585 * Compare the IP address family and set ILLF_VRRP for the right ill.
1586 */
1587 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1588 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1589 ill->ill_flags |= ILLF_VRRP;
1590 }
1591 }
1592
1593 /*
1594 * Process a hardware checksum offload capability negotiation ack received
1595 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1596 * of a DL_CAPABILITY_ACK message.
1597 */
1598 static void
ill_capability_hcksum_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1599 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1600 {
1601 dl_capability_req_t *ocap;
1602 dl_capab_hcksum_t *ihck, *ohck;
1603 ill_hcksum_capab_t **ill_hcksum;
1604 mblk_t *nmp = NULL;
1605 uint_t sub_dl_cap = isub->dl_cap;
1606 uint8_t *capend;
1607
1608 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1609
1610 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1611
1612 /*
1613 * Note: range checks here are not absolutely sufficient to
1614 * make us robust against malformed messages sent by drivers;
1615 * this is in keeping with the rest of IP's dlpi handling.
1616 * (Remember, it's coming from something else in the kernel
1617 * address space)
1618 */
1619 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1620 if (capend > mp->b_wptr) {
1621 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1622 "malformed sub-capability too long for mblk");
1623 return;
1624 }
1625
1626 /*
1627 * There are two types of acks we process here:
1628 * 1. acks in reply to a (first form) generic capability req
1629 * (no ENABLE flag set)
1630 * 2. acks in reply to a ENABLE capability req.
1631 * (ENABLE flag set)
1632 */
1633 ihck = (dl_capab_hcksum_t *)(isub + 1);
1634
1635 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1636 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1637 "unsupported hardware checksum "
1638 "sub-capability (version %d, expected %d)",
1639 ihck->hcksum_version, HCKSUM_VERSION_1);
1640 return;
1641 }
1642
1643 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1644 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1645 "checksum capability isn't as expected; pass-thru "
1646 "module(s) detected, discarding capability\n"));
1647 return;
1648 }
1649
1650 #define CURR_HCKSUM_CAPAB \
1651 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
1652 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1653
1654 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1655 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1656 /* do ENABLE processing */
1657 if (*ill_hcksum == NULL) {
1658 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1659 KM_NOSLEEP);
1660
1661 if (*ill_hcksum == NULL) {
1662 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1663 "could not enable hcksum version %d "
1664 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1665 ill->ill_name);
1666 return;
1667 }
1668 }
1669
1670 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1671 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1672 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1673 ip1dbg(("ill_capability_hcksum_ack: interface %s "
1674 "has enabled hardware checksumming\n ",
1675 ill->ill_name));
1676 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1677 /*
1678 * Enabling hardware checksum offload
1679 * Currently IP supports {TCP,UDP}/IPv4
1680 * partial and full cksum offload and
1681 * IPv4 header checksum offload.
1682 * Allocate new mblk which will
1683 * contain a new capability request
1684 * to enable hardware checksum offload.
1685 */
1686 uint_t size;
1687 uchar_t *rptr;
1688
1689 size = sizeof (dl_capability_req_t) +
1690 sizeof (dl_capability_sub_t) + isub->dl_length;
1691
1692 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1693 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1694 "could not enable hardware cksum for %s (ENOMEM)\n",
1695 ill->ill_name);
1696 return;
1697 }
1698
1699 rptr = nmp->b_rptr;
1700 /* initialize dl_capability_req_t */
1701 ocap = (dl_capability_req_t *)nmp->b_rptr;
1702 ocap->dl_sub_offset =
1703 sizeof (dl_capability_req_t);
1704 ocap->dl_sub_length =
1705 sizeof (dl_capability_sub_t) +
1706 isub->dl_length;
1707 nmp->b_rptr += sizeof (dl_capability_req_t);
1708
1709 /* initialize dl_capability_sub_t */
1710 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1711 nmp->b_rptr += sizeof (*isub);
1712
1713 /* initialize dl_capab_hcksum_t */
1714 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1715 bcopy(ihck, ohck, sizeof (*ihck));
1716
1717 nmp->b_rptr = rptr;
1718 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1719
1720 /* Set ENABLE flag */
1721 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1722 ohck->hcksum_txflags |= HCKSUM_ENABLE;
1723
1724 /*
1725 * nmp points to a DL_CAPABILITY_REQ message to enable
1726 * hardware checksum acceleration.
1727 */
1728 ill_capability_send(ill, nmp);
1729 } else {
1730 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1731 "advertised %x hardware checksum capability flags\n",
1732 ill->ill_name, ihck->hcksum_txflags));
1733 }
1734 }
1735
1736 static void
ill_capability_hcksum_reset_fill(ill_t * ill,mblk_t * mp)1737 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1738 {
1739 dl_capab_hcksum_t *hck_subcap;
1740 dl_capability_sub_t *dl_subcap;
1741
1742 if (!ILL_HCKSUM_CAPABLE(ill))
1743 return;
1744
1745 ASSERT(ill->ill_hcksum_capab != NULL);
1746
1747 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1748 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1749 dl_subcap->dl_length = sizeof (*hck_subcap);
1750
1751 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1752 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1753 hck_subcap->hcksum_txflags = 0;
1754
1755 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1756 }
1757
1758 static void
ill_capability_zerocopy_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1759 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1760 {
1761 mblk_t *nmp = NULL;
1762 dl_capability_req_t *oc;
1763 dl_capab_zerocopy_t *zc_ic, *zc_oc;
1764 ill_zerocopy_capab_t **ill_zerocopy_capab;
1765 uint_t sub_dl_cap = isub->dl_cap;
1766 uint8_t *capend;
1767
1768 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1769
1770 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1771
1772 /*
1773 * Note: range checks here are not absolutely sufficient to
1774 * make us robust against malformed messages sent by drivers;
1775 * this is in keeping with the rest of IP's dlpi handling.
1776 * (Remember, it's coming from something else in the kernel
1777 * address space)
1778 */
1779 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1780 if (capend > mp->b_wptr) {
1781 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1782 "malformed sub-capability too long for mblk");
1783 return;
1784 }
1785
1786 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1787 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1788 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1789 "unsupported ZEROCOPY sub-capability (version %d, "
1790 "expected %d)", zc_ic->zerocopy_version,
1791 ZEROCOPY_VERSION_1);
1792 return;
1793 }
1794
1795 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1796 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1797 "capability isn't as expected; pass-thru module(s) "
1798 "detected, discarding capability\n"));
1799 return;
1800 }
1801
1802 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1803 if (*ill_zerocopy_capab == NULL) {
1804 *ill_zerocopy_capab =
1805 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1806 KM_NOSLEEP);
1807
1808 if (*ill_zerocopy_capab == NULL) {
1809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1810 "could not enable Zero-copy version %d "
1811 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1812 ill->ill_name);
1813 return;
1814 }
1815 }
1816
1817 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1818 "supports Zero-copy version %d\n", ill->ill_name,
1819 ZEROCOPY_VERSION_1));
1820
1821 (*ill_zerocopy_capab)->ill_zerocopy_version =
1822 zc_ic->zerocopy_version;
1823 (*ill_zerocopy_capab)->ill_zerocopy_flags =
1824 zc_ic->zerocopy_flags;
1825
1826 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1827 } else {
1828 uint_t size;
1829 uchar_t *rptr;
1830
1831 size = sizeof (dl_capability_req_t) +
1832 sizeof (dl_capability_sub_t) +
1833 sizeof (dl_capab_zerocopy_t);
1834
1835 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1836 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1837 "could not enable zerocopy for %s (ENOMEM)\n",
1838 ill->ill_name);
1839 return;
1840 }
1841
1842 rptr = nmp->b_rptr;
1843 /* initialize dl_capability_req_t */
1844 oc = (dl_capability_req_t *)rptr;
1845 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1846 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1847 sizeof (dl_capab_zerocopy_t);
1848 rptr += sizeof (dl_capability_req_t);
1849
1850 /* initialize dl_capability_sub_t */
1851 bcopy(isub, rptr, sizeof (*isub));
1852 rptr += sizeof (*isub);
1853
1854 /* initialize dl_capab_zerocopy_t */
1855 zc_oc = (dl_capab_zerocopy_t *)rptr;
1856 *zc_oc = *zc_ic;
1857
1858 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1859 "to enable zero-copy version %d\n", ill->ill_name,
1860 ZEROCOPY_VERSION_1));
1861
1862 /* set VMSAFE_MEM flag */
1863 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1864
1865 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1866 ill_capability_send(ill, nmp);
1867 }
1868 }
1869
1870 static void
ill_capability_zerocopy_reset_fill(ill_t * ill,mblk_t * mp)1871 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1872 {
1873 dl_capab_zerocopy_t *zerocopy_subcap;
1874 dl_capability_sub_t *dl_subcap;
1875
1876 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1877 return;
1878
1879 ASSERT(ill->ill_zerocopy_capab != NULL);
1880
1881 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1882 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1883 dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1884
1885 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1886 zerocopy_subcap->zerocopy_version =
1887 ill->ill_zerocopy_capab->ill_zerocopy_version;
1888 zerocopy_subcap->zerocopy_flags = 0;
1889
1890 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1891 }
1892
1893 /*
1894 * DLD capability
1895 * Refer to dld.h for more information regarding the purpose and usage
1896 * of this capability.
1897 */
1898 static void
ill_capability_dld_ack(ill_t * ill,mblk_t * mp,dl_capability_sub_t * isub)1899 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1900 {
1901 dl_capab_dld_t *dld_ic, dld;
1902 uint_t sub_dl_cap = isub->dl_cap;
1903 uint8_t *capend;
1904 ill_dld_capab_t *idc;
1905
1906 ASSERT(IAM_WRITER_ILL(ill));
1907 ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1908
1909 /*
1910 * Note: range checks here are not absolutely sufficient to
1911 * make us robust against malformed messages sent by drivers;
1912 * this is in keeping with the rest of IP's dlpi handling.
1913 * (Remember, it's coming from something else in the kernel
1914 * address space)
1915 */
1916 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1917 if (capend > mp->b_wptr) {
1918 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1919 "malformed sub-capability too long for mblk");
1920 return;
1921 }
1922 dld_ic = (dl_capab_dld_t *)(isub + 1);
1923 if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1924 cmn_err(CE_CONT, "ill_capability_dld_ack: "
1925 "unsupported DLD sub-capability (version %d, "
1926 "expected %d)", dld_ic->dld_version,
1927 DLD_CURRENT_VERSION);
1928 return;
1929 }
1930 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1931 ip1dbg(("ill_capability_dld_ack: mid token for dld "
1932 "capability isn't as expected; pass-thru module(s) "
1933 "detected, discarding capability\n"));
1934 return;
1935 }
1936
1937 /*
1938 * Copy locally to ensure alignment.
1939 */
1940 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1941
1942 if ((idc = ill->ill_dld_capab) == NULL) {
1943 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1944 if (idc == NULL) {
1945 cmn_err(CE_WARN, "ill_capability_dld_ack: "
1946 "could not enable DLD version %d "
1947 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1948 ill->ill_name);
1949 return;
1950 }
1951 ill->ill_dld_capab = idc;
1952 }
1953 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1954 idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1955 ip1dbg(("ill_capability_dld_ack: interface %s "
1956 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1957
1958 ill_capability_dld_enable(ill);
1959 }
1960
1961 /*
1962 * Typically capability negotiation between IP and the driver happens via
1963 * DLPI message exchange. However GLD also offers a direct function call
1964 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1965 * But arbitrary function calls into IP or GLD are not permitted, since both
1966 * of them are protected by their own perimeter mechanism. The perimeter can
1967 * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1968 * these perimeters is IP -> MAC. Thus for example to enable the squeue
1969 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1970 * to enter the mac perimeter and then do the direct function calls into
1971 * GLD to enable squeue polling. The ring related callbacks from the mac into
1972 * the stack to add, bind, quiesce, restart or cleanup a ring are all
1973 * protected by the mac perimeter.
1974 */
1975 static void
ill_mac_perim_enter(ill_t * ill,mac_perim_handle_t * mphp)1976 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1977 {
1978 ill_dld_capab_t *idc = ill->ill_dld_capab;
1979 int err;
1980
1981 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1982 DLD_ENABLE);
1983 ASSERT(err == 0);
1984 }
1985
1986 static void
ill_mac_perim_exit(ill_t * ill,mac_perim_handle_t mph)1987 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1988 {
1989 ill_dld_capab_t *idc = ill->ill_dld_capab;
1990 int err;
1991
1992 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1993 DLD_DISABLE);
1994 ASSERT(err == 0);
1995 }
1996
1997 boolean_t
ill_mac_perim_held(ill_t * ill)1998 ill_mac_perim_held(ill_t *ill)
1999 {
2000 ill_dld_capab_t *idc = ill->ill_dld_capab;
2001
2002 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2003 DLD_QUERY));
2004 }
2005
2006 static void
ill_capability_direct_enable(ill_t * ill)2007 ill_capability_direct_enable(ill_t *ill)
2008 {
2009 ill_dld_capab_t *idc = ill->ill_dld_capab;
2010 ill_dld_direct_t *idd = &idc->idc_direct;
2011 dld_capab_direct_t direct;
2012 int rc;
2013
2014 ASSERT(IAM_WRITER_ILL(ill));
2015
2016 bzero(&direct, sizeof (direct));
2017 if (ill->ill_isv6) {
2018 direct.di_rx_cf = (uintptr_t)ip_input_v6;
2019 } else {
2020 direct.di_rx_cf = (uintptr_t)ip_input;
2021 }
2022 direct.di_rx_ch = ill;
2023
2024 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2025 DLD_ENABLE);
2026 if (rc == 0) {
2027 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2028 idd->idd_tx_dh = direct.di_tx_dh;
2029 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2030 idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2031 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2032 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2033 ASSERT(idd->idd_tx_cb_df != NULL);
2034 ASSERT(idd->idd_tx_fctl_df != NULL);
2035 ASSERT(idd->idd_tx_df != NULL);
2036 /*
2037 * One time registration of flow enable callback function
2038 */
2039 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2040 ill_flow_enable, ill);
2041 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2042 DTRACE_PROBE1(direct_on, (ill_t *), ill);
2043 } else {
2044 cmn_err(CE_WARN, "warning: could not enable DIRECT "
2045 "capability, rc = %d\n", rc);
2046 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2047 }
2048 }
2049
2050 static void
ill_capability_poll_enable(ill_t * ill)2051 ill_capability_poll_enable(ill_t *ill)
2052 {
2053 ill_dld_capab_t *idc = ill->ill_dld_capab;
2054 dld_capab_poll_t poll;
2055 int rc;
2056
2057 ASSERT(IAM_WRITER_ILL(ill));
2058
2059 bzero(&poll, sizeof (poll));
2060 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2061 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2062 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2063 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2064 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2065 poll.poll_ring_ch = ill;
2066 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2067 DLD_ENABLE);
2068 if (rc == 0) {
2069 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2070 DTRACE_PROBE1(poll_on, (ill_t *), ill);
2071 } else {
2072 ip1dbg(("warning: could not enable POLL "
2073 "capability, rc = %d\n", rc));
2074 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2075 }
2076 }
2077
2078 /*
2079 * Enable the LSO capability.
2080 */
2081 static void
ill_capability_lso_enable(ill_t * ill)2082 ill_capability_lso_enable(ill_t *ill)
2083 {
2084 ill_dld_capab_t *idc = ill->ill_dld_capab;
2085 dld_capab_lso_t lso;
2086 int rc;
2087
2088 ASSERT(IAM_WRITER_ILL(ill));
2089
2090 if (ill->ill_lso_capab == NULL) {
2091 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2092 KM_NOSLEEP);
2093 if (ill->ill_lso_capab == NULL) {
2094 cmn_err(CE_WARN, "ill_capability_lso_enable: "
2095 "could not enable LSO for %s (ENOMEM)\n",
2096 ill->ill_name);
2097 return;
2098 }
2099 }
2100
2101 bzero(&lso, sizeof (lso));
2102 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2103 DLD_ENABLE)) == 0) {
2104 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2105 ill->ill_lso_capab->ill_lso_max_tcpv4 = lso.lso_max_tcpv4;
2106 ill->ill_lso_capab->ill_lso_max_tcpv6 = lso.lso_max_tcpv6;
2107 ill->ill_capabilities |= ILL_CAPAB_LSO;
2108 ip1dbg(("ill_capability_lso_enable: interface %s "
2109 "has enabled LSO\n ", ill->ill_name));
2110 } else {
2111 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2112 ill->ill_lso_capab = NULL;
2113 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2114 }
2115 }
2116
2117 static void
ill_capability_dld_enable(ill_t * ill)2118 ill_capability_dld_enable(ill_t *ill)
2119 {
2120 mac_perim_handle_t mph;
2121
2122 ASSERT(IAM_WRITER_ILL(ill));
2123
2124 ill_mac_perim_enter(ill, &mph);
2125 ill_capability_direct_enable(ill);
2126 ill_capability_poll_enable(ill);
2127 ill_capability_lso_enable(ill);
2128 ill->ill_capabilities |= ILL_CAPAB_DLD;
2129 ill_mac_perim_exit(ill, mph);
2130 }
2131
2132 static void
ill_capability_dld_disable(ill_t * ill)2133 ill_capability_dld_disable(ill_t *ill)
2134 {
2135 ill_dld_capab_t *idc;
2136 ill_dld_direct_t *idd;
2137 mac_perim_handle_t mph;
2138
2139 ASSERT(IAM_WRITER_ILL(ill));
2140
2141 if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2142 return;
2143
2144 ill_mac_perim_enter(ill, &mph);
2145
2146 idc = ill->ill_dld_capab;
2147 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2148 /*
2149 * For performance we avoid locks in the transmit data path
2150 * and don't maintain a count of the number of threads using
2151 * direct calls. Thus some threads could be using direct
2152 * transmit calls to GLD, even after the capability mechanism
2153 * turns it off. This is still safe since the handles used in
2154 * the direct calls continue to be valid until the unplumb is
2155 * completed. Remove the callback that was added (1-time) at
2156 * capab enable time.
2157 */
2158 mutex_enter(&ill->ill_lock);
2159 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2160 mutex_exit(&ill->ill_lock);
2161 if (ill->ill_flownotify_mh != NULL) {
2162 idd = &idc->idc_direct;
2163 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2164 ill->ill_flownotify_mh);
2165 ill->ill_flownotify_mh = NULL;
2166 }
2167 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2168 NULL, DLD_DISABLE);
2169 }
2170
2171 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2172 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2173 ip_squeue_clean_all(ill);
2174 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2175 NULL, DLD_DISABLE);
2176 }
2177
2178 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2179 ASSERT(ill->ill_lso_capab != NULL);
2180 /*
2181 * Clear the capability flag for LSO but retain the
2182 * ill_lso_capab structure since it's possible that another
2183 * thread is still referring to it. The structure only gets
2184 * deallocated when we destroy the ill.
2185 */
2186
2187 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2188 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2189 NULL, DLD_DISABLE);
2190 }
2191
2192 ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2193 ill_mac_perim_exit(ill, mph);
2194 }
2195
2196 /*
2197 * Capability Negotiation protocol
2198 *
2199 * We don't wait for DLPI capability operations to finish during interface
2200 * bringup or teardown. Doing so would introduce more asynchrony and the
2201 * interface up/down operations will need multiple return and restarts.
2202 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2203 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2204 * exclusive operation won't start until the DLPI operations of the previous
2205 * exclusive operation complete.
2206 *
2207 * The capability state machine is shown below.
2208 *
2209 * state next state event, action
2210 *
2211 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe
2212 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack
2213 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack)
2214 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG
2215 * IDCS_OK IDCS_RESET_SENT ill_capability_reset
2216 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr
2217 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr ->
2218 * ill_capability_probe.
2219 */
2220
2221 /*
2222 * Dedicated thread started from ip_stack_init that handles capability
2223 * disable. This thread ensures the taskq dispatch does not fail by waiting
2224 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2225 * that direct calls to DLD are done in a cv_waitable context.
2226 */
2227 void
ill_taskq_dispatch(ip_stack_t * ipst)2228 ill_taskq_dispatch(ip_stack_t *ipst)
2229 {
2230 callb_cpr_t cprinfo;
2231 char name[64];
2232 mblk_t *mp;
2233
2234 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2235 ipst->ips_netstack->netstack_stackid);
2236 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2237 name);
2238 mutex_enter(&ipst->ips_capab_taskq_lock);
2239
2240 for (;;) {
2241 mp = ipst->ips_capab_taskq_head;
2242 while (mp != NULL) {
2243 ipst->ips_capab_taskq_head = mp->b_next;
2244 if (ipst->ips_capab_taskq_head == NULL)
2245 ipst->ips_capab_taskq_tail = NULL;
2246 mutex_exit(&ipst->ips_capab_taskq_lock);
2247 mp->b_next = NULL;
2248
2249 VERIFY(taskq_dispatch(system_taskq,
2250 ill_capability_ack_thr, mp, TQ_SLEEP) !=
2251 TASKQID_INVALID);
2252 mutex_enter(&ipst->ips_capab_taskq_lock);
2253 mp = ipst->ips_capab_taskq_head;
2254 }
2255
2256 if (ipst->ips_capab_taskq_quit)
2257 break;
2258 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2259 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2260 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2261 }
2262 VERIFY(ipst->ips_capab_taskq_head == NULL);
2263 VERIFY(ipst->ips_capab_taskq_tail == NULL);
2264 CALLB_CPR_EXIT(&cprinfo);
2265 thread_exit();
2266 }
2267
2268 /*
2269 * Consume a new-style hardware capabilities negotiation ack.
2270 * Called via taskq on receipt of DL_CAPABILITY_ACK.
2271 */
2272 static void
ill_capability_ack_thr(void * arg)2273 ill_capability_ack_thr(void *arg)
2274 {
2275 mblk_t *mp = arg;
2276 dl_capability_ack_t *capp;
2277 dl_capability_sub_t *subp, *endp;
2278 ill_t *ill;
2279 boolean_t reneg;
2280
2281 ill = (ill_t *)mp->b_prev;
2282 mp->b_prev = NULL;
2283
2284 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2285
2286 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2287 ill->ill_dlpi_capab_state == IDCS_RENEG) {
2288 /*
2289 * We have received the ack for our DL_CAPAB reset request.
2290 * There isnt' anything in the message that needs processing.
2291 * All message based capabilities have been disabled, now
2292 * do the function call based capability disable.
2293 */
2294 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2295 ill_capability_dld_disable(ill);
2296 ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2297 if (reneg)
2298 ill_capability_probe(ill);
2299 goto done;
2300 }
2301
2302 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2303 ill->ill_dlpi_capab_state = IDCS_OK;
2304
2305 capp = (dl_capability_ack_t *)mp->b_rptr;
2306
2307 if (capp->dl_sub_length == 0) {
2308 /* no new-style capabilities */
2309 goto done;
2310 }
2311
2312 /* make sure the driver supplied correct dl_sub_length */
2313 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2314 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2315 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2316 goto done;
2317 }
2318
2319 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2320 /*
2321 * There are sub-capabilities. Process the ones we know about.
2322 * Loop until we don't have room for another sub-cap header..
2323 */
2324 for (subp = SC(capp, capp->dl_sub_offset),
2325 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2326 subp <= endp;
2327 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2328
2329 switch (subp->dl_cap) {
2330 case DL_CAPAB_ID_WRAPPER:
2331 ill_capability_id_ack(ill, mp, subp);
2332 break;
2333 default:
2334 ill_capability_dispatch(ill, mp, subp);
2335 break;
2336 }
2337 }
2338 #undef SC
2339 done:
2340 inet_freemsg(mp);
2341 ill_capability_done(ill);
2342 ipsq_exit(ill->ill_phyint->phyint_ipsq);
2343 }
2344
2345 /*
2346 * This needs to be started in a taskq thread to provide a cv_waitable
2347 * context.
2348 */
2349 void
ill_capability_ack(ill_t * ill,mblk_t * mp)2350 ill_capability_ack(ill_t *ill, mblk_t *mp)
2351 {
2352 ip_stack_t *ipst = ill->ill_ipst;
2353
2354 mp->b_prev = (mblk_t *)ill;
2355 ASSERT(mp->b_next == NULL);
2356
2357 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2358 TQ_NOSLEEP) != TASKQID_INVALID)
2359 return;
2360
2361 /*
2362 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2363 * which will do the dispatch using TQ_SLEEP to guarantee success.
2364 */
2365 mutex_enter(&ipst->ips_capab_taskq_lock);
2366 if (ipst->ips_capab_taskq_head == NULL) {
2367 ASSERT(ipst->ips_capab_taskq_tail == NULL);
2368 ipst->ips_capab_taskq_head = mp;
2369 } else {
2370 ipst->ips_capab_taskq_tail->b_next = mp;
2371 }
2372 ipst->ips_capab_taskq_tail = mp;
2373
2374 cv_signal(&ipst->ips_capab_taskq_cv);
2375 mutex_exit(&ipst->ips_capab_taskq_lock);
2376 }
2377
2378 /*
2379 * This routine is called to scan the fragmentation reassembly table for
2380 * the specified ILL for any packets that are starting to smell.
2381 * dead_interval is the maximum time in seconds that will be tolerated. It
2382 * will either be the value specified in ip_g_frag_timeout, or zero if the
2383 * ILL is shutting down and it is time to blow everything off.
2384 *
2385 * It returns the number of seconds (as a time_t) that the next frag timer
2386 * should be scheduled for, 0 meaning that the timer doesn't need to be
2387 * re-started. Note that the method of calculating next_timeout isn't
2388 * entirely accurate since time will flow between the time we grab
2389 * current_time and the time we schedule the next timeout. This isn't a
2390 * big problem since this is the timer for sending an ICMP reassembly time
2391 * exceeded messages, and it doesn't have to be exactly accurate.
2392 *
2393 * This function is
2394 * sometimes called as writer, although this is not required.
2395 */
2396 time_t
ill_frag_timeout(ill_t * ill,time_t dead_interval)2397 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2398 {
2399 ipfb_t *ipfb;
2400 ipfb_t *endp;
2401 ipf_t *ipf;
2402 ipf_t *ipfnext;
2403 mblk_t *mp;
2404 time_t current_time = gethrestime_sec();
2405 time_t next_timeout = 0;
2406 uint32_t hdr_length;
2407 mblk_t *send_icmp_head;
2408 mblk_t *send_icmp_head_v6;
2409 ip_stack_t *ipst = ill->ill_ipst;
2410 ip_recv_attr_t iras;
2411
2412 bzero(&iras, sizeof (iras));
2413 iras.ira_flags = 0;
2414 iras.ira_ill = iras.ira_rill = ill;
2415 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2416 iras.ira_rifindex = iras.ira_ruifindex;
2417
2418 ipfb = ill->ill_frag_hash_tbl;
2419 if (ipfb == NULL)
2420 return (B_FALSE);
2421 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2422 /* Walk the frag hash table. */
2423 for (; ipfb < endp; ipfb++) {
2424 send_icmp_head = NULL;
2425 send_icmp_head_v6 = NULL;
2426 mutex_enter(&ipfb->ipfb_lock);
2427 while ((ipf = ipfb->ipfb_ipf) != 0) {
2428 time_t frag_time = current_time - ipf->ipf_timestamp;
2429 time_t frag_timeout;
2430
2431 if (frag_time < dead_interval) {
2432 /*
2433 * There are some outstanding fragments
2434 * that will timeout later. Make note of
2435 * the time so that we can reschedule the
2436 * next timeout appropriately.
2437 */
2438 frag_timeout = dead_interval - frag_time;
2439 if (next_timeout == 0 ||
2440 frag_timeout < next_timeout) {
2441 next_timeout = frag_timeout;
2442 }
2443 break;
2444 }
2445 /* Time's up. Get it out of here. */
2446 hdr_length = ipf->ipf_nf_hdr_len;
2447 ipfnext = ipf->ipf_hash_next;
2448 if (ipfnext)
2449 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2450 *ipf->ipf_ptphn = ipfnext;
2451 mp = ipf->ipf_mp->b_cont;
2452 for (; mp; mp = mp->b_cont) {
2453 /* Extra points for neatness. */
2454 IP_REASS_SET_START(mp, 0);
2455 IP_REASS_SET_END(mp, 0);
2456 }
2457 mp = ipf->ipf_mp->b_cont;
2458 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2459 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2460 ipfb->ipfb_count -= ipf->ipf_count;
2461 ASSERT(ipfb->ipfb_frag_pkts > 0);
2462 ipfb->ipfb_frag_pkts--;
2463 /*
2464 * We do not send any icmp message from here because
2465 * we currently are holding the ipfb_lock for this
2466 * hash chain. If we try and send any icmp messages
2467 * from here we may end up via a put back into ip
2468 * trying to get the same lock, causing a recursive
2469 * mutex panic. Instead we build a list and send all
2470 * the icmp messages after we have dropped the lock.
2471 */
2472 if (ill->ill_isv6) {
2473 if (hdr_length != 0) {
2474 mp->b_next = send_icmp_head_v6;
2475 send_icmp_head_v6 = mp;
2476 } else {
2477 freemsg(mp);
2478 }
2479 } else {
2480 if (hdr_length != 0) {
2481 mp->b_next = send_icmp_head;
2482 send_icmp_head = mp;
2483 } else {
2484 freemsg(mp);
2485 }
2486 }
2487 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2488 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2489 freeb(ipf->ipf_mp);
2490 }
2491 mutex_exit(&ipfb->ipfb_lock);
2492 /*
2493 * Now need to send any icmp messages that we delayed from
2494 * above.
2495 */
2496 while (send_icmp_head_v6 != NULL) {
2497 ip6_t *ip6h;
2498
2499 mp = send_icmp_head_v6;
2500 send_icmp_head_v6 = send_icmp_head_v6->b_next;
2501 mp->b_next = NULL;
2502 ip6h = (ip6_t *)mp->b_rptr;
2503 iras.ira_flags = 0;
2504 /*
2505 * This will result in an incorrect ALL_ZONES zoneid
2506 * for multicast packets, but we
2507 * don't send ICMP errors for those in any case.
2508 */
2509 iras.ira_zoneid =
2510 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2511 ill, ipst);
2512 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2513 icmp_time_exceeded_v6(mp,
2514 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2515 &iras);
2516 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2517 }
2518 while (send_icmp_head != NULL) {
2519 ipaddr_t dst;
2520
2521 mp = send_icmp_head;
2522 send_icmp_head = send_icmp_head->b_next;
2523 mp->b_next = NULL;
2524
2525 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2526
2527 iras.ira_flags = IRAF_IS_IPV4;
2528 /*
2529 * This will result in an incorrect ALL_ZONES zoneid
2530 * for broadcast and multicast packets, but we
2531 * don't send ICMP errors for those in any case.
2532 */
2533 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2534 ill, ipst);
2535 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2536 icmp_time_exceeded(mp,
2537 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2538 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2539 }
2540 }
2541 /*
2542 * A non-dying ILL will use the return value to decide whether to
2543 * restart the frag timer, and for how long.
2544 */
2545 return (next_timeout);
2546 }
2547
2548 /*
2549 * This routine is called when the approximate count of mblk memory used
2550 * for the specified ILL has exceeded max_count.
2551 */
2552 void
ill_frag_prune(ill_t * ill,uint_t max_count)2553 ill_frag_prune(ill_t *ill, uint_t max_count)
2554 {
2555 ipfb_t *ipfb;
2556 ipf_t *ipf;
2557 size_t count;
2558 clock_t now;
2559
2560 /*
2561 * If we are here within ip_min_frag_prune_time msecs remove
2562 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2563 * ill_frag_free_num_pkts.
2564 */
2565 mutex_enter(&ill->ill_lock);
2566 now = ddi_get_lbolt();
2567 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2568 (ip_min_frag_prune_time != 0 ?
2569 ip_min_frag_prune_time : msec_per_tick)) {
2570
2571 ill->ill_frag_free_num_pkts++;
2572
2573 } else {
2574 ill->ill_frag_free_num_pkts = 0;
2575 }
2576 ill->ill_last_frag_clean_time = now;
2577 mutex_exit(&ill->ill_lock);
2578
2579 /*
2580 * free ill_frag_free_num_pkts oldest packets from each bucket.
2581 */
2582 if (ill->ill_frag_free_num_pkts != 0) {
2583 int ix;
2584
2585 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2586 ipfb = &ill->ill_frag_hash_tbl[ix];
2587 mutex_enter(&ipfb->ipfb_lock);
2588 if (ipfb->ipfb_ipf != NULL) {
2589 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2590 ill->ill_frag_free_num_pkts);
2591 }
2592 mutex_exit(&ipfb->ipfb_lock);
2593 }
2594 }
2595 /*
2596 * While the reassembly list for this ILL is too big, prune a fragment
2597 * queue by age, oldest first.
2598 */
2599 while (ill->ill_frag_count > max_count) {
2600 int ix;
2601 ipfb_t *oipfb = NULL;
2602 uint_t oldest = UINT_MAX;
2603
2604 count = 0;
2605 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2606 ipfb = &ill->ill_frag_hash_tbl[ix];
2607 mutex_enter(&ipfb->ipfb_lock);
2608 ipf = ipfb->ipfb_ipf;
2609 if (ipf != NULL && ipf->ipf_gen < oldest) {
2610 oldest = ipf->ipf_gen;
2611 oipfb = ipfb;
2612 }
2613 count += ipfb->ipfb_count;
2614 mutex_exit(&ipfb->ipfb_lock);
2615 }
2616 if (oipfb == NULL)
2617 break;
2618
2619 if (count <= max_count)
2620 return; /* Somebody beat us to it, nothing to do */
2621 mutex_enter(&oipfb->ipfb_lock);
2622 ipf = oipfb->ipfb_ipf;
2623 if (ipf != NULL) {
2624 ill_frag_free_pkts(ill, oipfb, ipf, 1);
2625 }
2626 mutex_exit(&oipfb->ipfb_lock);
2627 }
2628 }
2629
2630 /*
2631 * free 'free_cnt' fragmented packets starting at ipf.
2632 */
2633 void
ill_frag_free_pkts(ill_t * ill,ipfb_t * ipfb,ipf_t * ipf,int free_cnt)2634 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2635 {
2636 size_t count;
2637 mblk_t *mp;
2638 mblk_t *tmp;
2639 ipf_t **ipfp = ipf->ipf_ptphn;
2640
2641 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2642 ASSERT(ipfp != NULL);
2643 ASSERT(ipf != NULL);
2644
2645 while (ipf != NULL && free_cnt-- > 0) {
2646 count = ipf->ipf_count;
2647 mp = ipf->ipf_mp;
2648 ipf = ipf->ipf_hash_next;
2649 for (tmp = mp; tmp; tmp = tmp->b_cont) {
2650 IP_REASS_SET_START(tmp, 0);
2651 IP_REASS_SET_END(tmp, 0);
2652 }
2653 atomic_add_32(&ill->ill_frag_count, -count);
2654 ASSERT(ipfb->ipfb_count >= count);
2655 ipfb->ipfb_count -= count;
2656 ASSERT(ipfb->ipfb_frag_pkts > 0);
2657 ipfb->ipfb_frag_pkts--;
2658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2659 ip_drop_input("ipIfStatsReasmFails", mp, ill);
2660 freemsg(mp);
2661 }
2662
2663 if (ipf)
2664 ipf->ipf_ptphn = ipfp;
2665 ipfp[0] = ipf;
2666 }
2667
2668 /*
2669 * Helper function for ill_forward_set().
2670 */
2671 static void
ill_forward_set_on_ill(ill_t * ill,boolean_t enable)2672 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2673 {
2674 ip_stack_t *ipst = ill->ill_ipst;
2675
2676 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2677
2678 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2679 (enable ? "Enabling" : "Disabling"),
2680 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2681 mutex_enter(&ill->ill_lock);
2682 if (enable)
2683 ill->ill_flags |= ILLF_ROUTER;
2684 else
2685 ill->ill_flags &= ~ILLF_ROUTER;
2686 mutex_exit(&ill->ill_lock);
2687 if (ill->ill_isv6)
2688 ill_set_nce_router_flags(ill, enable);
2689 /* Notify routing socket listeners of this change. */
2690 if (ill->ill_ipif != NULL)
2691 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2692 }
2693
2694 /*
2695 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing
2696 * socket messages for each interface whose flags we change.
2697 */
2698 int
ill_forward_set(ill_t * ill,boolean_t enable)2699 ill_forward_set(ill_t *ill, boolean_t enable)
2700 {
2701 ipmp_illgrp_t *illg;
2702 ip_stack_t *ipst = ill->ill_ipst;
2703
2704 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2705
2706 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2707 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2708 return (0);
2709
2710 if (IS_LOOPBACK(ill))
2711 return (EINVAL);
2712
2713 if (enable && ill->ill_allowed_ips_cnt > 0)
2714 return (EPERM);
2715
2716 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2717 /*
2718 * Update all of the interfaces in the group.
2719 */
2720 illg = ill->ill_grp;
2721 ill = list_head(&illg->ig_if);
2722 for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2723 ill_forward_set_on_ill(ill, enable);
2724
2725 /*
2726 * Update the IPMP meta-interface.
2727 */
2728 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2729 return (0);
2730 }
2731
2732 ill_forward_set_on_ill(ill, enable);
2733 return (0);
2734 }
2735
2736 /*
2737 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2738 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2739 * set or clear.
2740 */
2741 static void
ill_set_nce_router_flags(ill_t * ill,boolean_t enable)2742 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2743 {
2744 ipif_t *ipif;
2745 ncec_t *ncec;
2746 nce_t *nce;
2747
2748 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2749 /*
2750 * NOTE: we match across the illgrp because nce's for
2751 * addresses on IPMP interfaces have an nce_ill that points to
2752 * the bound underlying ill.
2753 */
2754 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2755 if (nce != NULL) {
2756 ncec = nce->nce_common;
2757 mutex_enter(&ncec->ncec_lock);
2758 if (enable)
2759 ncec->ncec_flags |= NCE_F_ISROUTER;
2760 else
2761 ncec->ncec_flags &= ~NCE_F_ISROUTER;
2762 mutex_exit(&ncec->ncec_lock);
2763 nce_refrele(nce);
2764 }
2765 }
2766 }
2767
2768 /*
2769 * Intializes the context structure and returns the first ill in the list
2770 * cuurently start_list and end_list can have values:
2771 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.
2772 * IP_V4_G_HEAD Traverse IPV4 list only.
2773 * IP_V6_G_HEAD Traverse IPV6 list only.
2774 */
2775
2776 /*
2777 * We don't check for CONDEMNED ills here. Caller must do that if
2778 * necessary under the ill lock.
2779 */
2780 ill_t *
ill_first(int start_list,int end_list,ill_walk_context_t * ctx,ip_stack_t * ipst)2781 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2782 ip_stack_t *ipst)
2783 {
2784 ill_if_t *ifp;
2785 ill_t *ill;
2786 avl_tree_t *avl_tree;
2787
2788 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2789 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2790
2791 /*
2792 * setup the lists to search
2793 */
2794 if (end_list != MAX_G_HEADS) {
2795 ctx->ctx_current_list = start_list;
2796 ctx->ctx_last_list = end_list;
2797 } else {
2798 ctx->ctx_last_list = MAX_G_HEADS - 1;
2799 ctx->ctx_current_list = 0;
2800 }
2801
2802 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2803 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2804 if (ifp != (ill_if_t *)
2805 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2806 avl_tree = &ifp->illif_avl_by_ppa;
2807 ill = avl_first(avl_tree);
2808 /*
2809 * ill is guaranteed to be non NULL or ifp should have
2810 * not existed.
2811 */
2812 ASSERT(ill != NULL);
2813 return (ill);
2814 }
2815 ctx->ctx_current_list++;
2816 }
2817
2818 return (NULL);
2819 }
2820
2821 /*
2822 * returns the next ill in the list. ill_first() must have been called
2823 * before calling ill_next() or bad things will happen.
2824 */
2825
2826 /*
2827 * We don't check for CONDEMNED ills here. Caller must do that if
2828 * necessary under the ill lock.
2829 */
2830 ill_t *
ill_next(ill_walk_context_t * ctx,ill_t * lastill)2831 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2832 {
2833 ill_if_t *ifp;
2834 ill_t *ill;
2835 ip_stack_t *ipst = lastill->ill_ipst;
2836
2837 ASSERT(lastill->ill_ifptr != (ill_if_t *)
2838 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2839 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2840 AVL_AFTER)) != NULL) {
2841 return (ill);
2842 }
2843
2844 /* goto next ill_ifp in the list. */
2845 ifp = lastill->ill_ifptr->illif_next;
2846
2847 /* make sure not at end of circular list */
2848 while (ifp ==
2849 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2850 if (++ctx->ctx_current_list > ctx->ctx_last_list)
2851 return (NULL);
2852 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2853 }
2854
2855 return (avl_first(&ifp->illif_avl_by_ppa));
2856 }
2857
2858 /*
2859 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2860 * The final number (PPA) must not have any leading zeros. Upon success, a
2861 * pointer to the start of the PPA is returned; otherwise NULL is returned.
2862 */
2863 static char *
ill_get_ppa_ptr(char * name)2864 ill_get_ppa_ptr(char *name)
2865 {
2866 int namelen = strlen(name);
2867 int end_ndx = namelen - 1;
2868 int ppa_ndx, i;
2869
2870 /*
2871 * Check that the first character is [a-zA-Z], and that the last
2872 * character is [0-9].
2873 */
2874 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2875 return (NULL);
2876
2877 /*
2878 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2879 */
2880 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2881 if (!isdigit(name[ppa_ndx - 1]))
2882 break;
2883
2884 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2885 return (NULL);
2886
2887 /*
2888 * Check that the intermediate characters are [a-z0-9.]
2889 */
2890 for (i = 1; i < ppa_ndx; i++) {
2891 if (!isalpha(name[i]) && !isdigit(name[i]) &&
2892 name[i] != '.' && name[i] != '_') {
2893 return (NULL);
2894 }
2895 }
2896
2897 return (name + ppa_ndx);
2898 }
2899
2900 /*
2901 * use avl tree to locate the ill.
2902 */
2903 static ill_t *
ill_find_by_name(char * name,boolean_t isv6,ip_stack_t * ipst)2904 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2905 {
2906 char *ppa_ptr = NULL;
2907 int len;
2908 uint_t ppa;
2909 ill_t *ill = NULL;
2910 ill_if_t *ifp;
2911 int list;
2912
2913 /*
2914 * get ppa ptr
2915 */
2916 if (isv6)
2917 list = IP_V6_G_HEAD;
2918 else
2919 list = IP_V4_G_HEAD;
2920
2921 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2922 return (NULL);
2923 }
2924
2925 len = ppa_ptr - name + 1;
2926
2927 ppa = stoi(&ppa_ptr);
2928
2929 ifp = IP_VX_ILL_G_LIST(list, ipst);
2930
2931 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2932 /*
2933 * match is done on len - 1 as the name is not null
2934 * terminated it contains ppa in addition to the interface
2935 * name.
2936 */
2937 if ((ifp->illif_name_len == len) &&
2938 bcmp(ifp->illif_name, name, len - 1) == 0) {
2939 break;
2940 } else {
2941 ifp = ifp->illif_next;
2942 }
2943 }
2944
2945 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2946 /*
2947 * Even the interface type does not exist.
2948 */
2949 return (NULL);
2950 }
2951
2952 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2953 if (ill != NULL) {
2954 mutex_enter(&ill->ill_lock);
2955 if (ILL_CAN_LOOKUP(ill)) {
2956 ill_refhold_locked(ill);
2957 mutex_exit(&ill->ill_lock);
2958 return (ill);
2959 }
2960 mutex_exit(&ill->ill_lock);
2961 }
2962 return (NULL);
2963 }
2964
2965 /*
2966 * comparison function for use with avl.
2967 */
2968 static int
ill_compare_ppa(const void * ppa_ptr,const void * ill_ptr)2969 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2970 {
2971 uint_t ppa;
2972 uint_t ill_ppa;
2973
2974 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2975
2976 ppa = *((uint_t *)ppa_ptr);
2977 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2978 /*
2979 * We want the ill with the lowest ppa to be on the
2980 * top.
2981 */
2982 if (ill_ppa < ppa)
2983 return (1);
2984 if (ill_ppa > ppa)
2985 return (-1);
2986 return (0);
2987 }
2988
2989 /*
2990 * remove an interface type from the global list.
2991 */
2992 static void
ill_delete_interface_type(ill_if_t * interface)2993 ill_delete_interface_type(ill_if_t *interface)
2994 {
2995 ASSERT(interface != NULL);
2996 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2997
2998 avl_destroy(&interface->illif_avl_by_ppa);
2999 if (interface->illif_ppa_arena != NULL)
3000 vmem_destroy(interface->illif_ppa_arena);
3001
3002 remque(interface);
3003
3004 mi_free(interface);
3005 }
3006
3007 /*
3008 * remove ill from the global list.
3009 */
3010 static void
ill_glist_delete(ill_t * ill)3011 ill_glist_delete(ill_t *ill)
3012 {
3013 ip_stack_t *ipst;
3014 phyint_t *phyi;
3015
3016 if (ill == NULL)
3017 return;
3018 ipst = ill->ill_ipst;
3019 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3020
3021 /*
3022 * If the ill was never inserted into the AVL tree
3023 * we skip the if branch.
3024 */
3025 if (ill->ill_ifptr != NULL) {
3026 /*
3027 * remove from AVL tree and free ppa number
3028 */
3029 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3030
3031 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3032 vmem_free(ill->ill_ifptr->illif_ppa_arena,
3033 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3034 }
3035 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3036 ill_delete_interface_type(ill->ill_ifptr);
3037 }
3038
3039 /*
3040 * Indicate ill is no longer in the list.
3041 */
3042 ill->ill_ifptr = NULL;
3043 ill->ill_name_length = 0;
3044 ill->ill_name[0] = '\0';
3045 ill->ill_ppa = UINT_MAX;
3046 }
3047
3048 /* Generate one last event for this ill. */
3049 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3050 ill->ill_name_length);
3051
3052 ASSERT(ill->ill_phyint != NULL);
3053 phyi = ill->ill_phyint;
3054 ill->ill_phyint = NULL;
3055
3056 /*
3057 * ill_init allocates a phyint always to store the copy
3058 * of flags relevant to phyint. At that point in time, we could
3059 * not assign the name and hence phyint_illv4/v6 could not be
3060 * initialized. Later in ipif_set_values, we assign the name to
3061 * the ill, at which point in time we assign phyint_illv4/v6.
3062 * Thus we don't rely on phyint_illv6 to be initialized always.
3063 */
3064 if (ill->ill_flags & ILLF_IPV6)
3065 phyi->phyint_illv6 = NULL;
3066 else
3067 phyi->phyint_illv4 = NULL;
3068
3069 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3070 rw_exit(&ipst->ips_ill_g_lock);
3071 return;
3072 }
3073
3074 /*
3075 * There are no ills left on this phyint; pull it out of the phyint
3076 * avl trees, and free it.
3077 */
3078 if (phyi->phyint_ifindex > 0) {
3079 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3080 phyi);
3081 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3082 phyi);
3083 }
3084 rw_exit(&ipst->ips_ill_g_lock);
3085
3086 phyint_free(phyi);
3087 }
3088
3089 /*
3090 * allocate a ppa, if the number of plumbed interfaces of this type are
3091 * less than ill_no_arena do a linear search to find a unused ppa.
3092 * When the number goes beyond ill_no_arena switch to using an arena.
3093 * Note: ppa value of zero cannot be allocated from vmem_arena as it
3094 * is the return value for an error condition, so allocation starts at one
3095 * and is decremented by one.
3096 */
3097 static int
ill_alloc_ppa(ill_if_t * ifp,ill_t * ill)3098 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3099 {
3100 ill_t *tmp_ill;
3101 uint_t start, end;
3102 int ppa;
3103
3104 if (ifp->illif_ppa_arena == NULL &&
3105 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3106 /*
3107 * Create an arena.
3108 */
3109 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3110 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3111 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3112 /* allocate what has already been assigned */
3113 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3114 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3115 tmp_ill, AVL_AFTER)) {
3116 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3117 1, /* size */
3118 1, /* align/quantum */
3119 0, /* phase */
3120 0, /* nocross */
3121 /* minaddr */
3122 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3123 /* maxaddr */
3124 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3125 VM_NOSLEEP|VM_FIRSTFIT);
3126 if (ppa == 0) {
3127 ip1dbg(("ill_alloc_ppa: ppa allocation"
3128 " failed while switching"));
3129 vmem_destroy(ifp->illif_ppa_arena);
3130 ifp->illif_ppa_arena = NULL;
3131 break;
3132 }
3133 }
3134 }
3135
3136 if (ifp->illif_ppa_arena != NULL) {
3137 if (ill->ill_ppa == UINT_MAX) {
3138 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3139 1, VM_NOSLEEP|VM_FIRSTFIT);
3140 if (ppa == 0)
3141 return (EAGAIN);
3142 ill->ill_ppa = --ppa;
3143 } else {
3144 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3145 1, /* size */
3146 1, /* align/quantum */
3147 0, /* phase */
3148 0, /* nocross */
3149 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3150 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3151 VM_NOSLEEP|VM_FIRSTFIT);
3152 /*
3153 * Most likely the allocation failed because
3154 * the requested ppa was in use.
3155 */
3156 if (ppa == 0)
3157 return (EEXIST);
3158 }
3159 return (0);
3160 }
3161
3162 /*
3163 * No arena is in use and not enough (>ill_no_arena) interfaces have
3164 * been plumbed to create one. Do a linear search to get a unused ppa.
3165 */
3166 if (ill->ill_ppa == UINT_MAX) {
3167 end = UINT_MAX - 1;
3168 start = 0;
3169 } else {
3170 end = start = ill->ill_ppa;
3171 }
3172
3173 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3174 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3175 if (start++ >= end) {
3176 if (ill->ill_ppa == UINT_MAX)
3177 return (EAGAIN);
3178 else
3179 return (EEXIST);
3180 }
3181 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3182 }
3183 ill->ill_ppa = start;
3184 return (0);
3185 }
3186
3187 /*
3188 * Insert ill into the list of configured ill's. Once this function completes,
3189 * the ill is globally visible and is available through lookups. More precisely
3190 * this happens after the caller drops the ill_g_lock.
3191 */
3192 static int
ill_glist_insert(ill_t * ill,char * name,boolean_t isv6)3193 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3194 {
3195 ill_if_t *ill_interface;
3196 avl_index_t where = 0;
3197 int error;
3198 int name_length;
3199 int index;
3200 boolean_t check_length = B_FALSE;
3201 ip_stack_t *ipst = ill->ill_ipst;
3202
3203 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3204
3205 name_length = mi_strlen(name) + 1;
3206
3207 if (isv6)
3208 index = IP_V6_G_HEAD;
3209 else
3210 index = IP_V4_G_HEAD;
3211
3212 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3213 /*
3214 * Search for interface type based on name
3215 */
3216 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3217 if ((ill_interface->illif_name_len == name_length) &&
3218 (strcmp(ill_interface->illif_name, name) == 0)) {
3219 break;
3220 }
3221 ill_interface = ill_interface->illif_next;
3222 }
3223
3224 /*
3225 * Interface type not found, create one.
3226 */
3227 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3228 ill_g_head_t ghead;
3229
3230 /*
3231 * allocate ill_if_t structure
3232 */
3233 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3234 if (ill_interface == NULL) {
3235 return (ENOMEM);
3236 }
3237
3238 (void) strcpy(ill_interface->illif_name, name);
3239 ill_interface->illif_name_len = name_length;
3240
3241 avl_create(&ill_interface->illif_avl_by_ppa,
3242 ill_compare_ppa, sizeof (ill_t),
3243 offsetof(struct ill_s, ill_avl_byppa));
3244
3245 /*
3246 * link the structure in the back to maintain order
3247 * of configuration for ifconfig output.
3248 */
3249 ghead = ipst->ips_ill_g_heads[index];
3250 insque(ill_interface, ghead.ill_g_list_tail);
3251 }
3252
3253 if (ill->ill_ppa == UINT_MAX)
3254 check_length = B_TRUE;
3255
3256 error = ill_alloc_ppa(ill_interface, ill);
3257 if (error != 0) {
3258 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3259 ill_delete_interface_type(ill->ill_ifptr);
3260 return (error);
3261 }
3262
3263 /*
3264 * When the ppa is choosen by the system, check that there is
3265 * enough space to insert ppa. if a specific ppa was passed in this
3266 * check is not required as the interface name passed in will have
3267 * the right ppa in it.
3268 */
3269 if (check_length) {
3270 /*
3271 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3272 */
3273 char buf[sizeof (uint_t) * 3];
3274
3275 /*
3276 * convert ppa to string to calculate the amount of space
3277 * required for it in the name.
3278 */
3279 numtos(ill->ill_ppa, buf);
3280
3281 /* Do we have enough space to insert ppa ? */
3282
3283 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3284 /* Free ppa and interface type struct */
3285 if (ill_interface->illif_ppa_arena != NULL) {
3286 vmem_free(ill_interface->illif_ppa_arena,
3287 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3288 }
3289 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3290 ill_delete_interface_type(ill->ill_ifptr);
3291
3292 return (EINVAL);
3293 }
3294 }
3295
3296 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3297 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3298
3299 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3300 &where);
3301 ill->ill_ifptr = ill_interface;
3302 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3303
3304 ill_phyint_reinit(ill);
3305 return (0);
3306 }
3307
3308 /* Initialize the per phyint ipsq used for serialization */
3309 static boolean_t
ipsq_init(ill_t * ill,boolean_t enter)3310 ipsq_init(ill_t *ill, boolean_t enter)
3311 {
3312 ipsq_t *ipsq;
3313 ipxop_t *ipx;
3314
3315 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3316 return (B_FALSE);
3317
3318 ill->ill_phyint->phyint_ipsq = ipsq;
3319 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3320 ipx->ipx_ipsq = ipsq;
3321 ipsq->ipsq_next = ipsq;
3322 ipsq->ipsq_phyint = ill->ill_phyint;
3323 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3324 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3325 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
3326 if (enter) {
3327 ipx->ipx_writer = curthread;
3328 ipx->ipx_forced = B_FALSE;
3329 ipx->ipx_reentry_cnt = 1;
3330 #ifdef DEBUG
3331 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3332 #endif
3333 }
3334 return (B_TRUE);
3335 }
3336
3337 /*
3338 * Here we perform initialisation of the ill_t common to both regular
3339 * interface ILLs and the special loopback ILL created by ill_lookup_on_name.
3340 */
3341 static int
ill_init_common(ill_t * ill,queue_t * q,boolean_t isv6,boolean_t is_loopback,boolean_t ipsq_enter)3342 ill_init_common(ill_t *ill, queue_t *q, boolean_t isv6, boolean_t is_loopback,
3343 boolean_t ipsq_enter)
3344 {
3345 int count;
3346 uchar_t *frag_ptr;
3347
3348 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3349 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3350 ill->ill_saved_ire_cnt = 0;
3351
3352 if (is_loopback) {
3353 ill->ill_max_frag = isv6 ? ip_loopback_mtu_v6plus :
3354 ip_loopback_mtuplus;
3355 /*
3356 * No resolver here.
3357 */
3358 ill->ill_net_type = IRE_LOOPBACK;
3359 } else {
3360 ill->ill_rq = q;
3361 ill->ill_wq = WR(q);
3362 ill->ill_ppa = UINT_MAX;
3363 }
3364
3365 ill->ill_isv6 = isv6;
3366
3367 /*
3368 * Allocate sufficient space to contain our fragment hash table and
3369 * the device name.
3370 */
3371 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3372 if (frag_ptr == NULL)
3373 return (ENOMEM);
3374 ill->ill_frag_ptr = frag_ptr;
3375 ill->ill_frag_free_num_pkts = 0;
3376 ill->ill_last_frag_clean_time = 0;
3377 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3378 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3379 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3380 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3381 NULL, MUTEX_DEFAULT, NULL);
3382 }
3383
3384 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3385 if (ill->ill_phyint == NULL) {
3386 mi_free(frag_ptr);
3387 return (ENOMEM);
3388 }
3389
3390 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3391 if (isv6) {
3392 ill->ill_phyint->phyint_illv6 = ill;
3393 } else {
3394 ill->ill_phyint->phyint_illv4 = ill;
3395 }
3396 if (is_loopback) {
3397 phyint_flags_init(ill->ill_phyint, DL_LOOP);
3398 }
3399
3400 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3401
3402 ill_set_inputfn(ill);
3403
3404 if (!ipsq_init(ill, ipsq_enter)) {
3405 mi_free(frag_ptr);
3406 mi_free(ill->ill_phyint);
3407 return (ENOMEM);
3408 }
3409
3410 /* Frag queue limit stuff */
3411 ill->ill_frag_count = 0;
3412 ill->ill_ipf_gen = 0;
3413
3414 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3415 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3416 ill->ill_global_timer = INFINITY;
3417 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3418 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3419 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3420 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3421
3422 /*
3423 * Initialize IPv6 configuration variables. The IP module is always
3424 * opened as an IPv4 module. Instead tracking down the cases where
3425 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3426 * here for convenience, this has no effect until the ill is set to do
3427 * IPv6.
3428 */
3429 ill->ill_reachable_time = ND_REACHABLE_TIME;
3430 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3431 ill->ill_max_buf = ND_MAX_Q;
3432 ill->ill_refcnt = 0;
3433
3434 return (0);
3435 }
3436
3437 /*
3438 * ill_init is called by ip_open when a device control stream is opened.
3439 * It does a few initializations, and shoots a DL_INFO_REQ message down
3440 * to the driver. The response is later picked up in ip_rput_dlpi and
3441 * used to set up default mechanisms for talking to the driver. (Always
3442 * called as writer.)
3443 *
3444 * If this function returns error, ip_open will call ip_close which in
3445 * turn will call ill_delete to clean up any memory allocated here that
3446 * is not yet freed.
3447 *
3448 * Note: ill_ipst and ill_zoneid must be set before calling ill_init.
3449 */
3450 int
ill_init(queue_t * q,ill_t * ill)3451 ill_init(queue_t *q, ill_t *ill)
3452 {
3453 int ret;
3454 dl_info_req_t *dlir;
3455 mblk_t *info_mp;
3456
3457 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3458 BPRI_HI);
3459 if (info_mp == NULL)
3460 return (ENOMEM);
3461
3462 /*
3463 * For now pretend this is a v4 ill. We need to set phyint_ill*
3464 * at this point because of the following reason. If we can't
3465 * enter the ipsq at some point and cv_wait, the writer that
3466 * wakes us up tries to locate us using the list of all phyints
3467 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3468 * If we don't set it now, we risk a missed wakeup.
3469 */
3470 if ((ret = ill_init_common(ill, q, B_FALSE, B_FALSE, B_TRUE)) != 0) {
3471 freemsg(info_mp);
3472 return (ret);
3473 }
3474
3475 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3476
3477 /* Send down the Info Request to the driver. */
3478 info_mp->b_datap->db_type = M_PCPROTO;
3479 dlir = (dl_info_req_t *)info_mp->b_rptr;
3480 info_mp->b_wptr = (uchar_t *)&dlir[1];
3481 dlir->dl_primitive = DL_INFO_REQ;
3482
3483 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3484
3485 qprocson(q);
3486 ill_dlpi_send(ill, info_mp);
3487
3488 return (0);
3489 }
3490
3491 /*
3492 * ill_dls_info
3493 * creates datalink socket info from the device.
3494 */
3495 int
ill_dls_info(struct sockaddr_dl * sdl,const ill_t * ill)3496 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3497 {
3498 size_t len;
3499
3500 sdl->sdl_family = AF_LINK;
3501 sdl->sdl_index = ill_get_upper_ifindex(ill);
3502 sdl->sdl_type = ill->ill_type;
3503 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3504 len = strlen(sdl->sdl_data);
3505 ASSERT(len < 256);
3506 sdl->sdl_nlen = (uchar_t)len;
3507 sdl->sdl_alen = ill->ill_phys_addr_length;
3508 sdl->sdl_slen = 0;
3509 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3510 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3511
3512 return (sizeof (struct sockaddr_dl));
3513 }
3514
3515 /*
3516 * ill_xarp_info
3517 * creates xarp info from the device.
3518 */
3519 static int
ill_xarp_info(struct sockaddr_dl * sdl,ill_t * ill)3520 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3521 {
3522 sdl->sdl_family = AF_LINK;
3523 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3524 sdl->sdl_type = ill->ill_type;
3525 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3526 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3527 sdl->sdl_alen = ill->ill_phys_addr_length;
3528 sdl->sdl_slen = 0;
3529 return (sdl->sdl_nlen);
3530 }
3531
3532 static int
loopback_kstat_update(kstat_t * ksp,int rw)3533 loopback_kstat_update(kstat_t *ksp, int rw)
3534 {
3535 kstat_named_t *kn;
3536 netstackid_t stackid;
3537 netstack_t *ns;
3538 ip_stack_t *ipst;
3539
3540 if (ksp == NULL || ksp->ks_data == NULL)
3541 return (EIO);
3542
3543 if (rw == KSTAT_WRITE)
3544 return (EACCES);
3545
3546 kn = KSTAT_NAMED_PTR(ksp);
3547 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3548
3549 ns = netstack_find_by_stackid(stackid);
3550 if (ns == NULL)
3551 return (-1);
3552
3553 ipst = ns->netstack_ip;
3554 if (ipst == NULL) {
3555 netstack_rele(ns);
3556 return (-1);
3557 }
3558 kn[0].value.ui32 = ipst->ips_loopback_packets;
3559 kn[1].value.ui32 = ipst->ips_loopback_packets;
3560 netstack_rele(ns);
3561 return (0);
3562 }
3563
3564 /*
3565 * Has ifindex been plumbed already?
3566 */
3567 static boolean_t
phyint_exists(uint_t index,ip_stack_t * ipst)3568 phyint_exists(uint_t index, ip_stack_t *ipst)
3569 {
3570 ASSERT(index != 0);
3571 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3572
3573 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3574 &index, NULL) != NULL);
3575 }
3576
3577 /*
3578 * Pick a unique ifindex.
3579 * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3580 * flag is set so that next time time ip_assign_ifindex() is called, it
3581 * falls through and resets the index counter back to 1, the minimum value
3582 * for the interface index. The logic below assumes that ips_ill_index
3583 * can hold a value of IF_INDEX_MAX+1 without there being any loss
3584 * (i.e. reset back to 0.)
3585 */
3586 boolean_t
ip_assign_ifindex(uint_t * indexp,ip_stack_t * ipst)3587 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3588 {
3589 uint_t loops;
3590
3591 if (!ipst->ips_ill_index_wrap) {
3592 *indexp = ipst->ips_ill_index++;
3593 if (ipst->ips_ill_index > IF_INDEX_MAX) {
3594 /*
3595 * Reached the maximum ifindex value, set the wrap
3596 * flag to indicate that it is no longer possible
3597 * to assume that a given index is unallocated.
3598 */
3599 ipst->ips_ill_index_wrap = B_TRUE;
3600 }
3601 return (B_TRUE);
3602 }
3603
3604 if (ipst->ips_ill_index > IF_INDEX_MAX)
3605 ipst->ips_ill_index = 1;
3606
3607 /*
3608 * Start reusing unused indexes. Note that we hold the ill_g_lock
3609 * at this point and don't want to call any function that attempts
3610 * to get the lock again.
3611 */
3612 for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3613 if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3614 /* found unused index - use it */
3615 *indexp = ipst->ips_ill_index;
3616 return (B_TRUE);
3617 }
3618
3619 ipst->ips_ill_index++;
3620 if (ipst->ips_ill_index > IF_INDEX_MAX)
3621 ipst->ips_ill_index = 1;
3622 }
3623
3624 /*
3625 * all interface indicies are inuse.
3626 */
3627 return (B_FALSE);
3628 }
3629
3630 /*
3631 * Assign a unique interface index for the phyint.
3632 */
3633 static boolean_t
phyint_assign_ifindex(phyint_t * phyi,ip_stack_t * ipst)3634 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3635 {
3636 ASSERT(phyi->phyint_ifindex == 0);
3637 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3638 }
3639
3640 /*
3641 * Initialize the flags on `phyi' as per the provided mactype.
3642 */
3643 static void
phyint_flags_init(phyint_t * phyi,t_uscalar_t mactype)3644 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3645 {
3646 uint64_t flags = 0;
3647
3648 /*
3649 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces,
3650 * we always presume the underlying hardware is working and set
3651 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3652 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization
3653 * there are no active interfaces in the group so we set PHYI_FAILED.
3654 */
3655 if (mactype == SUNW_DL_IPMP)
3656 flags |= PHYI_FAILED;
3657 else
3658 flags |= PHYI_RUNNING;
3659
3660 switch (mactype) {
3661 case SUNW_DL_VNI:
3662 flags |= PHYI_VIRTUAL;
3663 break;
3664 case SUNW_DL_IPMP:
3665 flags |= PHYI_IPMP;
3666 break;
3667 case DL_LOOP:
3668 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3669 break;
3670 }
3671
3672 mutex_enter(&phyi->phyint_lock);
3673 phyi->phyint_flags |= flags;
3674 mutex_exit(&phyi->phyint_lock);
3675 }
3676
3677 /*
3678 * Return a pointer to the ill which matches the supplied name. Note that
3679 * the ill name length includes the null termination character. (May be
3680 * called as writer.)
3681 * If do_alloc and the interface is "lo0" it will be automatically created.
3682 * Cannot bump up reference on condemned ills. So dup detect can't be done
3683 * using this func.
3684 */
3685 ill_t *
ill_lookup_on_name(char * name,boolean_t do_alloc,boolean_t isv6,boolean_t * did_alloc,ip_stack_t * ipst)3686 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3687 boolean_t *did_alloc, ip_stack_t *ipst)
3688 {
3689 ill_t *ill;
3690 ipif_t *ipif;
3691 ipsq_t *ipsq;
3692 kstat_named_t *kn;
3693 boolean_t isloopback;
3694 in6_addr_t ov6addr;
3695
3696 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3697
3698 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3699 ill = ill_find_by_name(name, isv6, ipst);
3700 rw_exit(&ipst->ips_ill_g_lock);
3701 if (ill != NULL)
3702 return (ill);
3703
3704 /*
3705 * Couldn't find it. Does this happen to be a lookup for the
3706 * loopback device and are we allowed to allocate it?
3707 */
3708 if (!isloopback || !do_alloc)
3709 return (NULL);
3710
3711 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3712 ill = ill_find_by_name(name, isv6, ipst);
3713 if (ill != NULL) {
3714 rw_exit(&ipst->ips_ill_g_lock);
3715 return (ill);
3716 }
3717
3718 /* Create the loopback device on demand */
3719 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3720 sizeof (ipif_loopback_name), BPRI_MED));
3721 if (ill == NULL)
3722 goto done;
3723
3724 bzero(ill, sizeof (*ill));
3725 ill->ill_ipst = ipst;
3726 netstack_hold(ipst->ips_netstack);
3727 /*
3728 * For exclusive stacks we set the zoneid to zero
3729 * to make IP operate as if in the global zone.
3730 */
3731 ill->ill_zoneid = GLOBAL_ZONEID;
3732
3733 if (ill_init_common(ill, NULL, isv6, B_TRUE, B_FALSE) != 0)
3734 goto done;
3735
3736 if (!ill_allocate_mibs(ill))
3737 goto done;
3738
3739 ill->ill_current_frag = ill->ill_max_frag;
3740 ill->ill_mtu = ill->ill_max_frag; /* Initial value */
3741 ill->ill_mc_mtu = ill->ill_mtu;
3742 /*
3743 * ipif_loopback_name can't be pointed at directly because its used
3744 * by both the ipv4 and ipv6 interfaces. When the ill is removed
3745 * from the glist, ill_glist_delete() sets the first character of
3746 * ill_name to '\0'.
3747 */
3748 ill->ill_name = (char *)ill + sizeof (*ill);
3749 (void) strcpy(ill->ill_name, ipif_loopback_name);
3750 ill->ill_name_length = sizeof (ipif_loopback_name);
3751 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3752 ill->ill_dlpi_pending = DL_PRIM_INVAL;
3753
3754 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3755 if (ipif == NULL)
3756 goto done;
3757
3758 ill->ill_flags = ILLF_MULTICAST;
3759
3760 ov6addr = ipif->ipif_v6lcl_addr;
3761 /* Set up default loopback address and mask. */
3762 if (!isv6) {
3763 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3764
3765 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3766 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3767 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3768 ipif->ipif_v6subnet);
3769 ill->ill_flags |= ILLF_IPV4;
3770 } else {
3771 ipif->ipif_v6lcl_addr = ipv6_loopback;
3772 ipif->ipif_v6net_mask = ipv6_all_ones;
3773 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3774 ipif->ipif_v6subnet);
3775 ill->ill_flags |= ILLF_IPV6;
3776 }
3777
3778 /*
3779 * Chain us in at the end of the ill list. hold the ill
3780 * before we make it globally visible. 1 for the lookup.
3781 */
3782 ill_refhold(ill);
3783
3784 ipsq = ill->ill_phyint->phyint_ipsq;
3785
3786 if (ill_glist_insert(ill, "lo", isv6) != 0)
3787 cmn_err(CE_PANIC, "cannot insert loopback interface");
3788
3789 /* Let SCTP know so that it can add this to its list */
3790 sctp_update_ill(ill, SCTP_ILL_INSERT);
3791
3792 /*
3793 * We have already assigned ipif_v6lcl_addr above, but we need to
3794 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3795 * requires to be after ill_glist_insert() since we need the
3796 * ill_index set. Pass on ipv6_loopback as the old address.
3797 */
3798 sctp_update_ipif_addr(ipif, ov6addr);
3799
3800 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3801
3802 /*
3803 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3804 * If so, free our original one.
3805 */
3806 if (ipsq != ill->ill_phyint->phyint_ipsq)
3807 ipsq_delete(ipsq);
3808
3809 if (ipst->ips_loopback_ksp == NULL) {
3810 /* Export loopback interface statistics */
3811 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3812 ipif_loopback_name, "net",
3813 KSTAT_TYPE_NAMED, 2, 0,
3814 ipst->ips_netstack->netstack_stackid);
3815 if (ipst->ips_loopback_ksp != NULL) {
3816 ipst->ips_loopback_ksp->ks_update =
3817 loopback_kstat_update;
3818 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3819 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3820 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3821 ipst->ips_loopback_ksp->ks_private =
3822 (void *)(uintptr_t)ipst->ips_netstack->
3823 netstack_stackid;
3824 kstat_install(ipst->ips_loopback_ksp);
3825 }
3826 }
3827
3828 *did_alloc = B_TRUE;
3829 rw_exit(&ipst->ips_ill_g_lock);
3830 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3831 NE_PLUMB, ill->ill_name, ill->ill_name_length);
3832 return (ill);
3833 done:
3834 if (ill != NULL) {
3835 if (ill->ill_phyint != NULL) {
3836 ipsq = ill->ill_phyint->phyint_ipsq;
3837 if (ipsq != NULL) {
3838 ipsq->ipsq_phyint = NULL;
3839 ipsq_delete(ipsq);
3840 }
3841 mi_free(ill->ill_phyint);
3842 }
3843 ill_free_mib(ill);
3844 if (ill->ill_ipst != NULL)
3845 netstack_rele(ill->ill_ipst->ips_netstack);
3846 mi_free(ill);
3847 }
3848 rw_exit(&ipst->ips_ill_g_lock);
3849 return (NULL);
3850 }
3851
3852 /*
3853 * For IPP calls - use the ip_stack_t for global stack.
3854 */
3855 ill_t *
ill_lookup_on_ifindex_global_instance(uint_t index,boolean_t isv6)3856 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3857 {
3858 ip_stack_t *ipst;
3859 ill_t *ill;
3860 netstack_t *ns;
3861
3862 ns = netstack_find_by_stackid(GLOBAL_NETSTACKID);
3863
3864 if ((ipst = ns->netstack_ip) == NULL) {
3865 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3866 netstack_rele(ns);
3867 return (NULL);
3868 }
3869
3870 ill = ill_lookup_on_ifindex(index, isv6, ipst);
3871 netstack_rele(ns);
3872 return (ill);
3873 }
3874
3875 /*
3876 * Return a pointer to the ill which matches the index and IP version type.
3877 */
3878 ill_t *
ill_lookup_on_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3880 {
3881 ill_t *ill;
3882 phyint_t *phyi;
3883
3884 /*
3885 * Indexes are stored in the phyint - a common structure
3886 * to both IPv4 and IPv6.
3887 */
3888 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3889 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3890 (void *) &index, NULL);
3891 if (phyi != NULL) {
3892 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3893 if (ill != NULL) {
3894 mutex_enter(&ill->ill_lock);
3895 if (!ILL_IS_CONDEMNED(ill)) {
3896 ill_refhold_locked(ill);
3897 mutex_exit(&ill->ill_lock);
3898 rw_exit(&ipst->ips_ill_g_lock);
3899 return (ill);
3900 }
3901 mutex_exit(&ill->ill_lock);
3902 }
3903 }
3904 rw_exit(&ipst->ips_ill_g_lock);
3905 return (NULL);
3906 }
3907
3908 /*
3909 * Verify whether or not an interface index is valid for the specified zoneid
3910 * to transmit packets.
3911 * It can be zero (meaning "reset") or an interface index assigned
3912 * to a non-VNI interface. (We don't use VNI interface to send packets.)
3913 */
3914 boolean_t
ip_xmit_ifindex_valid(uint_t ifindex,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3916 ip_stack_t *ipst)
3917 {
3918 ill_t *ill;
3919
3920 if (ifindex == 0)
3921 return (B_TRUE);
3922
3923 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3924 if (ill == NULL)
3925 return (B_FALSE);
3926 if (IS_VNI(ill)) {
3927 ill_refrele(ill);
3928 return (B_FALSE);
3929 }
3930 ill_refrele(ill);
3931 return (B_TRUE);
3932 }
3933
3934 /*
3935 * Return the ifindex next in sequence after the passed in ifindex.
3936 * If there is no next ifindex for the given protocol, return 0.
3937 */
3938 uint_t
ill_get_next_ifindex(uint_t index,boolean_t isv6,ip_stack_t * ipst)3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3940 {
3941 phyint_t *phyi;
3942 phyint_t *phyi_initial;
3943 uint_t ifindex;
3944
3945 phyi_initial = NULL;
3946 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3947
3948 if (index == 0) {
3949 phyi = avl_first(
3950 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3951 } else {
3952 phyi = phyi_initial = avl_find(
3953 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3954 (void *) &index, NULL);
3955 }
3956
3957 for (; phyi != NULL;
3958 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3959 phyi, AVL_AFTER)) {
3960 /*
3961 * If we're not returning the first interface in the tree
3962 * and we still haven't moved past the phyint_t that
3963 * corresponds to index, avl_walk needs to be called again
3964 */
3965 if (!((index != 0) && (phyi == phyi_initial))) {
3966 if (isv6) {
3967 if ((phyi->phyint_illv6) &&
3968 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3969 (phyi->phyint_illv6->ill_isv6 == 1))
3970 break;
3971 } else {
3972 if ((phyi->phyint_illv4) &&
3973 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3974 (phyi->phyint_illv4->ill_isv6 == 0))
3975 break;
3976 }
3977 }
3978 }
3979
3980 rw_exit(&ipst->ips_ill_g_lock);
3981
3982 if (phyi != NULL)
3983 ifindex = phyi->phyint_ifindex;
3984 else
3985 ifindex = 0;
3986
3987 return (ifindex);
3988 }
3989
3990 /*
3991 * Return the ifindex for the named interface.
3992 * If there is no next ifindex for the interface, return 0.
3993 */
3994 uint_t
ill_get_ifindex_by_name(char * name,ip_stack_t * ipst)3995 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3996 {
3997 phyint_t *phyi;
3998 avl_index_t where = 0;
3999 uint_t ifindex;
4000
4001 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4002
4003 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4004 name, &where)) == NULL) {
4005 rw_exit(&ipst->ips_ill_g_lock);
4006 return (0);
4007 }
4008
4009 ifindex = phyi->phyint_ifindex;
4010
4011 rw_exit(&ipst->ips_ill_g_lock);
4012
4013 return (ifindex);
4014 }
4015
4016 /*
4017 * Return the ifindex to be used by upper layer protocols for instance
4018 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4019 */
4020 uint_t
ill_get_upper_ifindex(const ill_t * ill)4021 ill_get_upper_ifindex(const ill_t *ill)
4022 {
4023 if (IS_UNDER_IPMP(ill))
4024 return (ipmp_ill_get_ipmp_ifindex(ill));
4025 else
4026 return (ill->ill_phyint->phyint_ifindex);
4027 }
4028
4029
4030 /*
4031 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4032 * that gives a running thread a reference to the ill. This reference must be
4033 * released by the thread when it is done accessing the ill and related
4034 * objects. ill_refcnt can not be used to account for static references
4035 * such as other structures pointing to an ill. Callers must generally
4036 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4037 * or be sure that the ill is not being deleted or changing state before
4038 * calling the refhold functions. A non-zero ill_refcnt ensures that the
4039 * ill won't change any of its critical state such as address, netmask etc.
4040 */
4041 void
ill_refhold(ill_t * ill)4042 ill_refhold(ill_t *ill)
4043 {
4044 mutex_enter(&ill->ill_lock);
4045 ill->ill_refcnt++;
4046 ILL_TRACE_REF(ill);
4047 mutex_exit(&ill->ill_lock);
4048 }
4049
4050 void
ill_refhold_locked(ill_t * ill)4051 ill_refhold_locked(ill_t *ill)
4052 {
4053 ASSERT(MUTEX_HELD(&ill->ill_lock));
4054 ill->ill_refcnt++;
4055 ILL_TRACE_REF(ill);
4056 }
4057
4058 /* Returns true if we managed to get a refhold */
4059 boolean_t
ill_check_and_refhold(ill_t * ill)4060 ill_check_and_refhold(ill_t *ill)
4061 {
4062 mutex_enter(&ill->ill_lock);
4063 if (!ILL_IS_CONDEMNED(ill)) {
4064 ill_refhold_locked(ill);
4065 mutex_exit(&ill->ill_lock);
4066 return (B_TRUE);
4067 }
4068 mutex_exit(&ill->ill_lock);
4069 return (B_FALSE);
4070 }
4071
4072 /*
4073 * Must not be called while holding any locks. Otherwise if this is
4074 * the last reference to be released, there is a chance of recursive mutex
4075 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4076 * to restart an ioctl.
4077 */
4078 void
ill_refrele(ill_t * ill)4079 ill_refrele(ill_t *ill)
4080 {
4081 mutex_enter(&ill->ill_lock);
4082 ASSERT(ill->ill_refcnt != 0);
4083 ill->ill_refcnt--;
4084 ILL_UNTRACE_REF(ill);
4085 if (ill->ill_refcnt != 0) {
4086 /* Every ire pointing to the ill adds 1 to ill_refcnt */
4087 mutex_exit(&ill->ill_lock);
4088 return;
4089 }
4090
4091 /* Drops the ill_lock */
4092 ipif_ill_refrele_tail(ill);
4093 }
4094
4095 /*
4096 * Obtain a weak reference count on the ill. This reference ensures the
4097 * ill won't be freed, but the ill may change any of its critical state
4098 * such as netmask, address etc. Returns an error if the ill has started
4099 * closing.
4100 */
4101 boolean_t
ill_waiter_inc(ill_t * ill)4102 ill_waiter_inc(ill_t *ill)
4103 {
4104 mutex_enter(&ill->ill_lock);
4105 if (ill->ill_state_flags & ILL_CONDEMNED) {
4106 mutex_exit(&ill->ill_lock);
4107 return (B_FALSE);
4108 }
4109 ill->ill_waiters++;
4110 mutex_exit(&ill->ill_lock);
4111 return (B_TRUE);
4112 }
4113
4114 void
ill_waiter_dcr(ill_t * ill)4115 ill_waiter_dcr(ill_t *ill)
4116 {
4117 mutex_enter(&ill->ill_lock);
4118 ill->ill_waiters--;
4119 if (ill->ill_waiters == 0)
4120 cv_broadcast(&ill->ill_cv);
4121 mutex_exit(&ill->ill_lock);
4122 }
4123
4124 /*
4125 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4126 * driver. We construct best guess defaults for lower level information that
4127 * we need. If an interface is brought up without injection of any overriding
4128 * information from outside, we have to be ready to go with these defaults.
4129 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4130 * we primarely want the dl_provider_style.
4131 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4132 * at which point we assume the other part of the information is valid.
4133 */
4134 void
ip_ll_subnet_defaults(ill_t * ill,mblk_t * mp)4135 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4136 {
4137 uchar_t *brdcst_addr;
4138 uint_t brdcst_addr_length, phys_addr_length;
4139 t_scalar_t sap_length;
4140 dl_info_ack_t *dlia;
4141 ip_m_t *ipm;
4142 dl_qos_cl_sel1_t *sel1;
4143 int min_mtu;
4144
4145 ASSERT(IAM_WRITER_ILL(ill));
4146
4147 /*
4148 * Till the ill is fully up the ill is not globally visible.
4149 * So no need for a lock.
4150 */
4151 dlia = (dl_info_ack_t *)mp->b_rptr;
4152 ill->ill_mactype = dlia->dl_mac_type;
4153
4154 ipm = ip_m_lookup(dlia->dl_mac_type);
4155 if (ipm == NULL) {
4156 ipm = ip_m_lookup(DL_OTHER);
4157 ASSERT(ipm != NULL);
4158 }
4159 ill->ill_media = ipm;
4160
4161 /*
4162 * When the new DLPI stuff is ready we'll pull lengths
4163 * from dlia.
4164 */
4165 if (dlia->dl_version == DL_VERSION_2) {
4166 brdcst_addr_length = dlia->dl_brdcst_addr_length;
4167 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4168 brdcst_addr_length);
4169 if (brdcst_addr == NULL) {
4170 brdcst_addr_length = 0;
4171 }
4172 sap_length = dlia->dl_sap_length;
4173 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4174 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4175 brdcst_addr_length, sap_length, phys_addr_length));
4176 } else {
4177 brdcst_addr_length = 6;
4178 brdcst_addr = ip_six_byte_all_ones;
4179 sap_length = -2;
4180 phys_addr_length = brdcst_addr_length;
4181 }
4182
4183 ill->ill_bcast_addr_length = brdcst_addr_length;
4184 ill->ill_phys_addr_length = phys_addr_length;
4185 ill->ill_sap_length = sap_length;
4186
4187 /*
4188 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4189 * but we must ensure a minimum IP MTU is used since other bits of
4190 * IP will fly apart otherwise.
4191 */
4192 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4193 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4194 ill->ill_current_frag = ill->ill_max_frag;
4195 ill->ill_mtu = ill->ill_max_frag;
4196 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */
4197
4198 ill->ill_type = ipm->ip_m_type;
4199
4200 if (!ill->ill_dlpi_style_set) {
4201 if (dlia->dl_provider_style == DL_STYLE2)
4202 ill->ill_needs_attach = 1;
4203
4204 phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4205
4206 /*
4207 * Allocate the first ipif on this ill. We don't delay it
4208 * further as ioctl handling assumes at least one ipif exists.
4209 *
4210 * At this point we don't know whether the ill is v4 or v6.
4211 * We will know this whan the SIOCSLIFNAME happens and
4212 * the correct value for ill_isv6 will be assigned in
4213 * ipif_set_values(). We need to hold the ill lock and
4214 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4215 * the wakeup.
4216 */
4217 (void) ipif_allocate(ill, 0, IRE_LOCAL,
4218 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4219 mutex_enter(&ill->ill_lock);
4220 ASSERT(ill->ill_dlpi_style_set == 0);
4221 ill->ill_dlpi_style_set = 1;
4222 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4223 cv_broadcast(&ill->ill_cv);
4224 mutex_exit(&ill->ill_lock);
4225 freemsg(mp);
4226 return;
4227 }
4228 ASSERT(ill->ill_ipif != NULL);
4229 /*
4230 * We know whether it is IPv4 or IPv6 now, as this is the
4231 * second DL_INFO_ACK we are recieving in response to the
4232 * DL_INFO_REQ sent in ipif_set_values.
4233 */
4234 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4235 /*
4236 * Clear all the flags that were set based on ill_bcast_addr_length
4237 * and ill_phys_addr_length (in ipif_set_values) as these could have
4238 * changed now and we need to re-evaluate.
4239 */
4240 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4241 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4242
4243 /*
4244 * Free ill_bcast_mp as things could have changed now.
4245 *
4246 * NOTE: The IPMP meta-interface is special-cased because it starts
4247 * with no underlying interfaces (and thus an unknown broadcast
4248 * address length), but we enforce that an interface is broadcast-
4249 * capable as part of allowing it to join a group.
4250 */
4251 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4252 if (ill->ill_bcast_mp != NULL)
4253 freemsg(ill->ill_bcast_mp);
4254 ill->ill_net_type = IRE_IF_NORESOLVER;
4255
4256 ill->ill_bcast_mp = ill_dlur_gen(NULL,
4257 ill->ill_phys_addr_length,
4258 ill->ill_sap,
4259 ill->ill_sap_length);
4260
4261 if (ill->ill_isv6)
4262 /*
4263 * Note: xresolv interfaces will eventually need NOARP
4264 * set here as well, but that will require those
4265 * external resolvers to have some knowledge of
4266 * that flag and act appropriately. Not to be changed
4267 * at present.
4268 */
4269 ill->ill_flags |= ILLF_NONUD;
4270 else
4271 ill->ill_flags |= ILLF_NOARP;
4272
4273 if (ill->ill_mactype == SUNW_DL_VNI) {
4274 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4275 } else if (ill->ill_phys_addr_length == 0 ||
4276 ill->ill_mactype == DL_IPV4 ||
4277 ill->ill_mactype == DL_IPV6) {
4278 /*
4279 * The underying link is point-to-point, so mark the
4280 * interface as such. We can do IP multicast over
4281 * such a link since it transmits all network-layer
4282 * packets to the remote side the same way.
4283 */
4284 ill->ill_flags |= ILLF_MULTICAST;
4285 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4286 }
4287 } else {
4288 ill->ill_net_type = IRE_IF_RESOLVER;
4289 if (ill->ill_bcast_mp != NULL)
4290 freemsg(ill->ill_bcast_mp);
4291 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4292 ill->ill_bcast_addr_length, ill->ill_sap,
4293 ill->ill_sap_length);
4294 /*
4295 * Later detect lack of DLPI driver multicast
4296 * capability by catching DL_ENABMULTI errors in
4297 * ip_rput_dlpi.
4298 */
4299 ill->ill_flags |= ILLF_MULTICAST;
4300 if (!ill->ill_isv6)
4301 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4302 }
4303
4304 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4305 if (ill->ill_mactype == SUNW_DL_IPMP)
4306 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4307
4308 /* By default an interface does not support any CoS marking */
4309 ill->ill_flags &= ~ILLF_COS_ENABLED;
4310
4311 /*
4312 * If we get QoS information in DL_INFO_ACK, the device supports
4313 * some form of CoS marking, set ILLF_COS_ENABLED.
4314 */
4315 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4316 dlia->dl_qos_length);
4317 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4318 ill->ill_flags |= ILLF_COS_ENABLED;
4319 }
4320
4321 /* Clear any previous error indication. */
4322 ill->ill_error = 0;
4323 freemsg(mp);
4324 }
4325
4326 /*
4327 * Perform various checks to verify that an address would make sense as a
4328 * local, remote, or subnet interface address.
4329 */
4330 static boolean_t
ip_addr_ok_v4(ipaddr_t addr,ipaddr_t subnet_mask)4331 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4332 {
4333 ipaddr_t net_mask;
4334
4335 /*
4336 * Don't allow all zeroes, or all ones, but allow
4337 * all ones netmask.
4338 */
4339 if ((net_mask = ip_net_mask(addr)) == 0)
4340 return (B_FALSE);
4341 /* A given netmask overrides the "guess" netmask */
4342 if (subnet_mask != 0)
4343 net_mask = subnet_mask;
4344 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4345 (addr == (addr | ~net_mask)))) {
4346 return (B_FALSE);
4347 }
4348
4349 /*
4350 * Even if the netmask is all ones, we do not allow address to be
4351 * 255.255.255.255
4352 */
4353 if (addr == INADDR_BROADCAST)
4354 return (B_FALSE);
4355
4356 if (CLASSD(addr))
4357 return (B_FALSE);
4358
4359 return (B_TRUE);
4360 }
4361
4362 #define V6_IPIF_LINKLOCAL(p) \
4363 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4364
4365 /*
4366 * Compare two given ipifs and check if the second one is better than
4367 * the first one using the order of preference (not taking deprecated
4368 * into acount) specified in ipif_lookup_multicast().
4369 */
4370 static boolean_t
ipif_comp_multi(ipif_t * old_ipif,ipif_t * new_ipif,boolean_t isv6)4371 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4372 {
4373 /* Check the least preferred first. */
4374 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4375 /* If both ipifs are the same, use the first one. */
4376 if (IS_LOOPBACK(new_ipif->ipif_ill))
4377 return (B_FALSE);
4378 else
4379 return (B_TRUE);
4380 }
4381
4382 /* For IPv6, check for link local address. */
4383 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4384 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4385 V6_IPIF_LINKLOCAL(new_ipif)) {
4386 /* The second one is equal or less preferred. */
4387 return (B_FALSE);
4388 } else {
4389 return (B_TRUE);
4390 }
4391 }
4392
4393 /* Then check for point to point interface. */
4394 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4395 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4396 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4397 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4398 return (B_FALSE);
4399 } else {
4400 return (B_TRUE);
4401 }
4402 }
4403
4404 /* old_ipif is a normal interface, so no need to use the new one. */
4405 return (B_FALSE);
4406 }
4407
4408 /*
4409 * Find a mulitcast-capable ipif given an IP instance and zoneid.
4410 * The ipif must be up, and its ill must multicast-capable, not
4411 * condemned, not an underlying interface in an IPMP group, and
4412 * not a VNI interface. Order of preference:
4413 *
4414 * 1a. normal
4415 * 1b. normal, but deprecated
4416 * 2a. point to point
4417 * 2b. point to point, but deprecated
4418 * 3a. link local
4419 * 3b. link local, but deprecated
4420 * 4. loopback.
4421 */
4422 static ipif_t *
ipif_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4423 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4424 {
4425 ill_t *ill;
4426 ill_walk_context_t ctx;
4427 ipif_t *ipif;
4428 ipif_t *saved_ipif = NULL;
4429 ipif_t *dep_ipif = NULL;
4430
4431 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4432 if (isv6)
4433 ill = ILL_START_WALK_V6(&ctx, ipst);
4434 else
4435 ill = ILL_START_WALK_V4(&ctx, ipst);
4436
4437 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4438 mutex_enter(&ill->ill_lock);
4439 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4440 ILL_IS_CONDEMNED(ill) ||
4441 !(ill->ill_flags & ILLF_MULTICAST)) {
4442 mutex_exit(&ill->ill_lock);
4443 continue;
4444 }
4445 for (ipif = ill->ill_ipif; ipif != NULL;
4446 ipif = ipif->ipif_next) {
4447 if (zoneid != ipif->ipif_zoneid &&
4448 zoneid != ALL_ZONES &&
4449 ipif->ipif_zoneid != ALL_ZONES) {
4450 continue;
4451 }
4452 if (!(ipif->ipif_flags & IPIF_UP) ||
4453 IPIF_IS_CONDEMNED(ipif)) {
4454 continue;
4455 }
4456
4457 /*
4458 * Found one candidate. If it is deprecated,
4459 * remember it in dep_ipif. If it is not deprecated,
4460 * remember it in saved_ipif.
4461 */
4462 if (ipif->ipif_flags & IPIF_DEPRECATED) {
4463 if (dep_ipif == NULL) {
4464 dep_ipif = ipif;
4465 } else if (ipif_comp_multi(dep_ipif, ipif,
4466 isv6)) {
4467 /*
4468 * If the previous dep_ipif does not
4469 * belong to the same ill, we've done
4470 * a ipif_refhold() on it. So we need
4471 * to release it.
4472 */
4473 if (dep_ipif->ipif_ill != ill)
4474 ipif_refrele(dep_ipif);
4475 dep_ipif = ipif;
4476 }
4477 continue;
4478 }
4479 if (saved_ipif == NULL) {
4480 saved_ipif = ipif;
4481 } else {
4482 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4483 if (saved_ipif->ipif_ill != ill)
4484 ipif_refrele(saved_ipif);
4485 saved_ipif = ipif;
4486 }
4487 }
4488 }
4489 /*
4490 * Before going to the next ill, do a ipif_refhold() on the
4491 * saved ones.
4492 */
4493 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4494 ipif_refhold_locked(saved_ipif);
4495 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4496 ipif_refhold_locked(dep_ipif);
4497 mutex_exit(&ill->ill_lock);
4498 }
4499 rw_exit(&ipst->ips_ill_g_lock);
4500
4501 /*
4502 * If we have only the saved_ipif, return it. But if we have both
4503 * saved_ipif and dep_ipif, check to see which one is better.
4504 */
4505 if (saved_ipif != NULL) {
4506 if (dep_ipif != NULL) {
4507 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4508 ipif_refrele(saved_ipif);
4509 return (dep_ipif);
4510 } else {
4511 ipif_refrele(dep_ipif);
4512 return (saved_ipif);
4513 }
4514 }
4515 return (saved_ipif);
4516 } else {
4517 return (dep_ipif);
4518 }
4519 }
4520
4521 ill_t *
ill_lookup_multicast(ip_stack_t * ipst,zoneid_t zoneid,boolean_t isv6)4522 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4523 {
4524 ipif_t *ipif;
4525 ill_t *ill;
4526
4527 ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4528 if (ipif == NULL)
4529 return (NULL);
4530
4531 ill = ipif->ipif_ill;
4532 ill_refhold(ill);
4533 ipif_refrele(ipif);
4534 return (ill);
4535 }
4536
4537 /*
4538 * This function is called when an application does not specify an interface
4539 * to be used for multicast traffic (joining a group/sending data). It
4540 * calls ire_lookup_multi() to look for an interface route for the
4541 * specified multicast group. Doing this allows the administrator to add
4542 * prefix routes for multicast to indicate which interface to be used for
4543 * multicast traffic in the above scenario. The route could be for all
4544 * multicast (224.0/4), for a single multicast group (a /32 route) or
4545 * anything in between. If there is no such multicast route, we just find
4546 * any multicast capable interface and return it. The returned ipif
4547 * is refhold'ed.
4548 *
4549 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4550 * unicast table. This is used by CGTP.
4551 */
4552 ill_t *
ill_lookup_group_v4(ipaddr_t group,zoneid_t zoneid,ip_stack_t * ipst,boolean_t * multirtp,ipaddr_t * setsrcp)4553 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4554 boolean_t *multirtp, ipaddr_t *setsrcp)
4555 {
4556 ill_t *ill;
4557
4558 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4559 if (ill != NULL)
4560 return (ill);
4561
4562 return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4563 }
4564
4565 /*
4566 * Look for an ipif with the specified interface address and destination.
4567 * The destination address is used only for matching point-to-point interfaces.
4568 */
4569 ipif_t *
ipif_lookup_interface(ipaddr_t if_addr,ipaddr_t dst,ip_stack_t * ipst)4570 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4571 {
4572 ipif_t *ipif;
4573 ill_t *ill;
4574 ill_walk_context_t ctx;
4575
4576 /*
4577 * First match all the point-to-point interfaces
4578 * before looking at non-point-to-point interfaces.
4579 * This is done to avoid returning non-point-to-point
4580 * ipif instead of unnumbered point-to-point ipif.
4581 */
4582 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4583 ill = ILL_START_WALK_V4(&ctx, ipst);
4584 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4585 mutex_enter(&ill->ill_lock);
4586 for (ipif = ill->ill_ipif; ipif != NULL;
4587 ipif = ipif->ipif_next) {
4588 /* Allow the ipif to be down */
4589 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4590 (ipif->ipif_lcl_addr == if_addr) &&
4591 (ipif->ipif_pp_dst_addr == dst)) {
4592 if (!IPIF_IS_CONDEMNED(ipif)) {
4593 ipif_refhold_locked(ipif);
4594 mutex_exit(&ill->ill_lock);
4595 rw_exit(&ipst->ips_ill_g_lock);
4596 return (ipif);
4597 }
4598 }
4599 }
4600 mutex_exit(&ill->ill_lock);
4601 }
4602 rw_exit(&ipst->ips_ill_g_lock);
4603
4604 /* lookup the ipif based on interface address */
4605 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4606 ASSERT(ipif == NULL || !ipif->ipif_isv6);
4607 return (ipif);
4608 }
4609
4610 /*
4611 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4612 */
4613 static ipif_t *
ipif_lookup_addr_common(ipaddr_t addr,ill_t * match_ill,uint32_t match_flags,zoneid_t zoneid,ip_stack_t * ipst)4614 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4615 zoneid_t zoneid, ip_stack_t *ipst)
4616 {
4617 ipif_t *ipif;
4618 ill_t *ill;
4619 boolean_t ptp = B_FALSE;
4620 ill_walk_context_t ctx;
4621 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4622 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4623
4624 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4625 /*
4626 * Repeat twice, first based on local addresses and
4627 * next time for pointopoint.
4628 */
4629 repeat:
4630 ill = ILL_START_WALK_V4(&ctx, ipst);
4631 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4632 if (match_ill != NULL && ill != match_ill &&
4633 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4634 continue;
4635 }
4636 mutex_enter(&ill->ill_lock);
4637 for (ipif = ill->ill_ipif; ipif != NULL;
4638 ipif = ipif->ipif_next) {
4639 if (zoneid != ALL_ZONES &&
4640 zoneid != ipif->ipif_zoneid &&
4641 ipif->ipif_zoneid != ALL_ZONES)
4642 continue;
4643
4644 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4645 continue;
4646
4647 /* Allow the ipif to be down */
4648 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4649 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4650 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4651 (ipif->ipif_pp_dst_addr == addr))) {
4652 if (!IPIF_IS_CONDEMNED(ipif)) {
4653 ipif_refhold_locked(ipif);
4654 mutex_exit(&ill->ill_lock);
4655 rw_exit(&ipst->ips_ill_g_lock);
4656 return (ipif);
4657 }
4658 }
4659 }
4660 mutex_exit(&ill->ill_lock);
4661 }
4662
4663 /* If we already did the ptp case, then we are done */
4664 if (ptp) {
4665 rw_exit(&ipst->ips_ill_g_lock);
4666 return (NULL);
4667 }
4668 ptp = B_TRUE;
4669 goto repeat;
4670 }
4671
4672 /*
4673 * Lookup an ipif with the specified address. For point-to-point links we
4674 * look for matches on either the destination address or the local address,
4675 * but we skip the local address check if IPIF_UNNUMBERED is set. If the
4676 * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4677 * (or illgrp if `match_ill' is in an IPMP group).
4678 */
4679 ipif_t *
ipif_lookup_addr(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4680 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4681 ip_stack_t *ipst)
4682 {
4683 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4684 zoneid, ipst));
4685 }
4686
4687 /*
4688 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4689 * except that we will only return an address if it is not marked as
4690 * IPIF_DUPLICATE
4691 */
4692 ipif_t *
ipif_lookup_addr_nondup(ipaddr_t addr,ill_t * match_ill,zoneid_t zoneid,ip_stack_t * ipst)4693 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4694 ip_stack_t *ipst)
4695 {
4696 return (ipif_lookup_addr_common(addr, match_ill,
4697 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4698 zoneid, ipst));
4699 }
4700
4701 /*
4702 * Special abbreviated version of ipif_lookup_addr() that doesn't match
4703 * `match_ill' across the IPMP group. This function is only needed in some
4704 * corner-cases; almost everything should use ipif_lookup_addr().
4705 */
4706 ipif_t *
ipif_lookup_addr_exact(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4707 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4708 {
4709 ASSERT(match_ill != NULL);
4710 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4711 ipst));
4712 }
4713
4714 /*
4715 * Look for an ipif with the specified address. For point-point links
4716 * we look for matches on either the destination address and the local
4717 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4718 * is set.
4719 * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4720 * ill (or illgrp if `match_ill' is in an IPMP group).
4721 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4722 */
4723 zoneid_t
ipif_lookup_addr_zoneid(ipaddr_t addr,ill_t * match_ill,ip_stack_t * ipst)4724 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4725 {
4726 zoneid_t zoneid;
4727 ipif_t *ipif;
4728 ill_t *ill;
4729 boolean_t ptp = B_FALSE;
4730 ill_walk_context_t ctx;
4731
4732 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4733 /*
4734 * Repeat twice, first based on local addresses and
4735 * next time for pointopoint.
4736 */
4737 repeat:
4738 ill = ILL_START_WALK_V4(&ctx, ipst);
4739 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4740 if (match_ill != NULL && ill != match_ill &&
4741 !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4742 continue;
4743 }
4744 mutex_enter(&ill->ill_lock);
4745 for (ipif = ill->ill_ipif; ipif != NULL;
4746 ipif = ipif->ipif_next) {
4747 /* Allow the ipif to be down */
4748 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4749 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4750 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4751 (ipif->ipif_pp_dst_addr == addr)) &&
4752 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4753 zoneid = ipif->ipif_zoneid;
4754 mutex_exit(&ill->ill_lock);
4755 rw_exit(&ipst->ips_ill_g_lock);
4756 /*
4757 * If ipif_zoneid was ALL_ZONES then we have
4758 * a trusted extensions shared IP address.
4759 * In that case GLOBAL_ZONEID works to send.
4760 */
4761 if (zoneid == ALL_ZONES)
4762 zoneid = GLOBAL_ZONEID;
4763 return (zoneid);
4764 }
4765 }
4766 mutex_exit(&ill->ill_lock);
4767 }
4768
4769 /* If we already did the ptp case, then we are done */
4770 if (ptp) {
4771 rw_exit(&ipst->ips_ill_g_lock);
4772 return (ALL_ZONES);
4773 }
4774 ptp = B_TRUE;
4775 goto repeat;
4776 }
4777
4778 /*
4779 * Look for an ipif that matches the specified remote address i.e. the
4780 * ipif that would receive the specified packet.
4781 * First look for directly connected interfaces and then do a recursive
4782 * IRE lookup and pick the first ipif corresponding to the source address in the
4783 * ire.
4784 * Returns: held ipif
4785 *
4786 * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4787 */
4788 ipif_t *
ipif_lookup_remote(ill_t * ill,ipaddr_t addr,zoneid_t zoneid)4789 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4790 {
4791 ipif_t *ipif;
4792
4793 ASSERT(!ill->ill_isv6);
4794
4795 /*
4796 * Someone could be changing this ipif currently or change it
4797 * after we return this. Thus a few packets could use the old
4798 * old values. However structure updates/creates (ire, ilg, ilm etc)
4799 * will atomically be updated or cleaned up with the new value
4800 * Thus we don't need a lock to check the flags or other attrs below.
4801 */
4802 mutex_enter(&ill->ill_lock);
4803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4804 if (IPIF_IS_CONDEMNED(ipif))
4805 continue;
4806 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4807 ipif->ipif_zoneid != ALL_ZONES)
4808 continue;
4809 /* Allow the ipif to be down */
4810 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4811 if ((ipif->ipif_pp_dst_addr == addr) ||
4812 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4813 ipif->ipif_lcl_addr == addr)) {
4814 ipif_refhold_locked(ipif);
4815 mutex_exit(&ill->ill_lock);
4816 return (ipif);
4817 }
4818 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4819 ipif_refhold_locked(ipif);
4820 mutex_exit(&ill->ill_lock);
4821 return (ipif);
4822 }
4823 }
4824 mutex_exit(&ill->ill_lock);
4825 /*
4826 * For a remote destination it isn't possible to nail down a particular
4827 * ipif.
4828 */
4829
4830 /* Pick the first interface */
4831 ipif = ipif_get_next_ipif(NULL, ill);
4832 return (ipif);
4833 }
4834
4835 /*
4836 * This func does not prevent refcnt from increasing. But if
4837 * the caller has taken steps to that effect, then this func
4838 * can be used to determine whether the ill has become quiescent
4839 */
4840 static boolean_t
ill_is_quiescent(ill_t * ill)4841 ill_is_quiescent(ill_t *ill)
4842 {
4843 ipif_t *ipif;
4844
4845 ASSERT(MUTEX_HELD(&ill->ill_lock));
4846
4847 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4848 if (ipif->ipif_refcnt != 0)
4849 return (B_FALSE);
4850 }
4851 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4852 return (B_FALSE);
4853 }
4854 return (B_TRUE);
4855 }
4856
4857 boolean_t
ill_is_freeable(ill_t * ill)4858 ill_is_freeable(ill_t *ill)
4859 {
4860 ipif_t *ipif;
4861
4862 ASSERT(MUTEX_HELD(&ill->ill_lock));
4863
4864 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4865 if (ipif->ipif_refcnt != 0) {
4866 return (B_FALSE);
4867 }
4868 }
4869 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4870 return (B_FALSE);
4871 }
4872 return (B_TRUE);
4873 }
4874
4875 /*
4876 * This func does not prevent refcnt from increasing. But if
4877 * the caller has taken steps to that effect, then this func
4878 * can be used to determine whether the ipif has become quiescent
4879 */
4880 static boolean_t
ipif_is_quiescent(ipif_t * ipif)4881 ipif_is_quiescent(ipif_t *ipif)
4882 {
4883 ill_t *ill;
4884
4885 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4886
4887 if (ipif->ipif_refcnt != 0)
4888 return (B_FALSE);
4889
4890 ill = ipif->ipif_ill;
4891 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4892 ill->ill_logical_down) {
4893 return (B_TRUE);
4894 }
4895
4896 /* This is the last ipif going down or being deleted on this ill */
4897 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4898 return (B_FALSE);
4899 }
4900
4901 return (B_TRUE);
4902 }
4903
4904 /*
4905 * return true if the ipif can be destroyed: the ipif has to be quiescent
4906 * with zero references from ire/ilm to it.
4907 */
4908 static boolean_t
ipif_is_freeable(ipif_t * ipif)4909 ipif_is_freeable(ipif_t *ipif)
4910 {
4911 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4912 ASSERT(ipif->ipif_id != 0);
4913 return (ipif->ipif_refcnt == 0);
4914 }
4915
4916 /*
4917 * The ipif/ill/ire has been refreled. Do the tail processing.
4918 * Determine if the ipif or ill in question has become quiescent and if so
4919 * wakeup close and/or restart any queued pending ioctl that is waiting
4920 * for the ipif_down (or ill_down)
4921 */
4922 void
ipif_ill_refrele_tail(ill_t * ill)4923 ipif_ill_refrele_tail(ill_t *ill)
4924 {
4925 mblk_t *mp;
4926 conn_t *connp;
4927 ipsq_t *ipsq;
4928 ipxop_t *ipx;
4929 ipif_t *ipif;
4930 dl_notify_ind_t *dlindp;
4931
4932 ASSERT(MUTEX_HELD(&ill->ill_lock));
4933
4934 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4935 /* ip_modclose() may be waiting */
4936 cv_broadcast(&ill->ill_cv);
4937 }
4938
4939 ipsq = ill->ill_phyint->phyint_ipsq;
4940 mutex_enter(&ipsq->ipsq_lock);
4941 ipx = ipsq->ipsq_xop;
4942 mutex_enter(&ipx->ipx_lock);
4943 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */
4944 goto unlock;
4945
4946 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4947
4948 ipif = ipx->ipx_pending_ipif;
4949 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */
4950 goto unlock;
4951
4952 switch (ipx->ipx_waitfor) {
4953 case IPIF_DOWN:
4954 if (!ipif_is_quiescent(ipif))
4955 goto unlock;
4956 break;
4957 case IPIF_FREE:
4958 if (!ipif_is_freeable(ipif))
4959 goto unlock;
4960 break;
4961 case ILL_DOWN:
4962 if (!ill_is_quiescent(ill))
4963 goto unlock;
4964 break;
4965 case ILL_FREE:
4966 /*
4967 * ILL_FREE is only for loopback; normal ill teardown waits
4968 * synchronously in ip_modclose() without using ipx_waitfor,
4969 * handled by the cv_broadcast() at the top of this function.
4970 */
4971 if (!ill_is_freeable(ill))
4972 goto unlock;
4973 break;
4974 default:
4975 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4976 (void *)ipsq, ipx->ipx_waitfor);
4977 }
4978
4979 ill_refhold_locked(ill); /* for qwriter_ip() call below */
4980 mutex_exit(&ipx->ipx_lock);
4981 mp = ipsq_pending_mp_get(ipsq, &connp);
4982 mutex_exit(&ipsq->ipsq_lock);
4983 mutex_exit(&ill->ill_lock);
4984
4985 ASSERT(mp != NULL);
4986 /*
4987 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4988 * we can only get here when the current operation decides it
4989 * it needs to quiesce via ipsq_pending_mp_add().
4990 */
4991 switch (mp->b_datap->db_type) {
4992 case M_PCPROTO:
4993 case M_PROTO:
4994 /*
4995 * For now, only DL_NOTIFY_IND messages can use this facility.
4996 */
4997 dlindp = (dl_notify_ind_t *)mp->b_rptr;
4998 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4999
5000 switch (dlindp->dl_notification) {
5001 case DL_NOTE_PHYS_ADDR:
5002 qwriter_ip(ill, ill->ill_rq, mp,
5003 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5004 return;
5005 case DL_NOTE_REPLUMB:
5006 qwriter_ip(ill, ill->ill_rq, mp,
5007 ill_replumb_tail, CUR_OP, B_TRUE);
5008 return;
5009 default:
5010 ASSERT(0);
5011 ill_refrele(ill);
5012 }
5013 break;
5014
5015 case M_ERROR:
5016 case M_HANGUP:
5017 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5018 B_TRUE);
5019 return;
5020
5021 case M_IOCTL:
5022 case M_IOCDATA:
5023 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5024 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5025 return;
5026
5027 default:
5028 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5029 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5030 }
5031 return;
5032 unlock:
5033 mutex_exit(&ipsq->ipsq_lock);
5034 mutex_exit(&ipx->ipx_lock);
5035 mutex_exit(&ill->ill_lock);
5036 }
5037
5038 #ifdef DEBUG
5039 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5040 static void
th_trace_rrecord(th_trace_t * th_trace)5041 th_trace_rrecord(th_trace_t *th_trace)
5042 {
5043 tr_buf_t *tr_buf;
5044 uint_t lastref;
5045
5046 lastref = th_trace->th_trace_lastref;
5047 lastref++;
5048 if (lastref == TR_BUF_MAX)
5049 lastref = 0;
5050 th_trace->th_trace_lastref = lastref;
5051 tr_buf = &th_trace->th_trbuf[lastref];
5052 tr_buf->tr_time = ddi_get_lbolt();
5053 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5054 }
5055
5056 static void
th_trace_free(void * value)5057 th_trace_free(void *value)
5058 {
5059 th_trace_t *th_trace = value;
5060
5061 ASSERT(th_trace->th_refcnt == 0);
5062 kmem_free(th_trace, sizeof (*th_trace));
5063 }
5064
5065 /*
5066 * Find or create the per-thread hash table used to track object references.
5067 * The ipst argument is NULL if we shouldn't allocate.
5068 *
5069 * Accesses per-thread data, so there's no need to lock here.
5070 */
5071 static mod_hash_t *
th_trace_gethash(ip_stack_t * ipst)5072 th_trace_gethash(ip_stack_t *ipst)
5073 {
5074 th_hash_t *thh;
5075
5076 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5077 mod_hash_t *mh;
5078 char name[256];
5079 size_t objsize, rshift;
5080 int retv;
5081
5082 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5083 return (NULL);
5084 (void) snprintf(name, sizeof (name), "th_trace_%p",
5085 (void *)curthread);
5086
5087 /*
5088 * We use mod_hash_create_extended here rather than the more
5089 * obvious mod_hash_create_ptrhash because the latter has a
5090 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5091 * block.
5092 */
5093 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5094 MAX(sizeof (ire_t), sizeof (ncec_t)));
5095 rshift = highbit(objsize);
5096 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5097 th_trace_free, mod_hash_byptr, (void *)rshift,
5098 mod_hash_ptrkey_cmp, KM_NOSLEEP);
5099 if (mh == NULL) {
5100 kmem_free(thh, sizeof (*thh));
5101 return (NULL);
5102 }
5103 thh->thh_hash = mh;
5104 thh->thh_ipst = ipst;
5105 /*
5106 * We trace ills, ipifs, ires, and nces. All of these are
5107 * per-IP-stack, so the lock on the thread list is as well.
5108 */
5109 rw_enter(&ip_thread_rwlock, RW_WRITER);
5110 list_insert_tail(&ip_thread_list, thh);
5111 rw_exit(&ip_thread_rwlock);
5112 retv = tsd_set(ip_thread_data, thh);
5113 ASSERT(retv == 0);
5114 }
5115 return (thh != NULL ? thh->thh_hash : NULL);
5116 }
5117
5118 boolean_t
th_trace_ref(const void * obj,ip_stack_t * ipst)5119 th_trace_ref(const void *obj, ip_stack_t *ipst)
5120 {
5121 th_trace_t *th_trace;
5122 mod_hash_t *mh;
5123 mod_hash_val_t val;
5124
5125 if ((mh = th_trace_gethash(ipst)) == NULL)
5126 return (B_FALSE);
5127
5128 /*
5129 * Attempt to locate the trace buffer for this obj and thread.
5130 * If it does not exist, then allocate a new trace buffer and
5131 * insert into the hash.
5132 */
5133 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5134 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5135 if (th_trace == NULL)
5136 return (B_FALSE);
5137
5138 th_trace->th_id = curthread;
5139 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5140 (mod_hash_val_t)th_trace) != 0) {
5141 kmem_free(th_trace, sizeof (th_trace_t));
5142 return (B_FALSE);
5143 }
5144 } else {
5145 th_trace = (th_trace_t *)val;
5146 }
5147
5148 ASSERT(th_trace->th_refcnt >= 0 &&
5149 th_trace->th_refcnt < TR_BUF_MAX - 1);
5150
5151 th_trace->th_refcnt++;
5152 th_trace_rrecord(th_trace);
5153 return (B_TRUE);
5154 }
5155
5156 /*
5157 * For the purpose of tracing a reference release, we assume that global
5158 * tracing is always on and that the same thread initiated the reference hold
5159 * is releasing.
5160 */
5161 void
th_trace_unref(const void * obj)5162 th_trace_unref(const void *obj)
5163 {
5164 int retv;
5165 mod_hash_t *mh;
5166 th_trace_t *th_trace;
5167 mod_hash_val_t val;
5168
5169 mh = th_trace_gethash(NULL);
5170 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5171 ASSERT(retv == 0);
5172 th_trace = (th_trace_t *)val;
5173
5174 ASSERT(th_trace->th_refcnt > 0);
5175 th_trace->th_refcnt--;
5176 th_trace_rrecord(th_trace);
5177 }
5178
5179 /*
5180 * If tracing has been disabled, then we assume that the reference counts are
5181 * now useless, and we clear them out before destroying the entries.
5182 */
5183 void
th_trace_cleanup(const void * obj,boolean_t trace_disable)5184 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5185 {
5186 th_hash_t *thh;
5187 mod_hash_t *mh;
5188 mod_hash_val_t val;
5189 th_trace_t *th_trace;
5190 int retv;
5191
5192 rw_enter(&ip_thread_rwlock, RW_READER);
5193 for (thh = list_head(&ip_thread_list); thh != NULL;
5194 thh = list_next(&ip_thread_list, thh)) {
5195 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5196 &val) == 0) {
5197 th_trace = (th_trace_t *)val;
5198 if (trace_disable)
5199 th_trace->th_refcnt = 0;
5200 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5201 ASSERT(retv == 0);
5202 }
5203 }
5204 rw_exit(&ip_thread_rwlock);
5205 }
5206
5207 void
ipif_trace_ref(ipif_t * ipif)5208 ipif_trace_ref(ipif_t *ipif)
5209 {
5210 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5211
5212 if (ipif->ipif_trace_disable)
5213 return;
5214
5215 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5216 ipif->ipif_trace_disable = B_TRUE;
5217 ipif_trace_cleanup(ipif);
5218 }
5219 }
5220
5221 void
ipif_untrace_ref(ipif_t * ipif)5222 ipif_untrace_ref(ipif_t *ipif)
5223 {
5224 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5225
5226 if (!ipif->ipif_trace_disable)
5227 th_trace_unref(ipif);
5228 }
5229
5230 void
ill_trace_ref(ill_t * ill)5231 ill_trace_ref(ill_t *ill)
5232 {
5233 ASSERT(MUTEX_HELD(&ill->ill_lock));
5234
5235 if (ill->ill_trace_disable)
5236 return;
5237
5238 if (!th_trace_ref(ill, ill->ill_ipst)) {
5239 ill->ill_trace_disable = B_TRUE;
5240 ill_trace_cleanup(ill);
5241 }
5242 }
5243
5244 void
ill_untrace_ref(ill_t * ill)5245 ill_untrace_ref(ill_t *ill)
5246 {
5247 ASSERT(MUTEX_HELD(&ill->ill_lock));
5248
5249 if (!ill->ill_trace_disable)
5250 th_trace_unref(ill);
5251 }
5252
5253 /*
5254 * Called when ipif is unplumbed or when memory alloc fails. Note that on
5255 * failure, ipif_trace_disable is set.
5256 */
5257 static void
ipif_trace_cleanup(const ipif_t * ipif)5258 ipif_trace_cleanup(const ipif_t *ipif)
5259 {
5260 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5261 }
5262
5263 /*
5264 * Called when ill is unplumbed or when memory alloc fails. Note that on
5265 * failure, ill_trace_disable is set.
5266 */
5267 static void
ill_trace_cleanup(const ill_t * ill)5268 ill_trace_cleanup(const ill_t *ill)
5269 {
5270 th_trace_cleanup(ill, ill->ill_trace_disable);
5271 }
5272 #endif /* DEBUG */
5273
5274 void
ipif_refhold_locked(ipif_t * ipif)5275 ipif_refhold_locked(ipif_t *ipif)
5276 {
5277 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5278 ipif->ipif_refcnt++;
5279 IPIF_TRACE_REF(ipif);
5280 }
5281
5282 void
ipif_refhold(ipif_t * ipif)5283 ipif_refhold(ipif_t *ipif)
5284 {
5285 ill_t *ill;
5286
5287 ill = ipif->ipif_ill;
5288 mutex_enter(&ill->ill_lock);
5289 ipif->ipif_refcnt++;
5290 IPIF_TRACE_REF(ipif);
5291 mutex_exit(&ill->ill_lock);
5292 }
5293
5294 /*
5295 * Must not be called while holding any locks. Otherwise if this is
5296 * the last reference to be released there is a chance of recursive mutex
5297 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5298 * to restart an ioctl.
5299 */
5300 void
ipif_refrele(ipif_t * ipif)5301 ipif_refrele(ipif_t *ipif)
5302 {
5303 ill_t *ill;
5304
5305 ill = ipif->ipif_ill;
5306
5307 mutex_enter(&ill->ill_lock);
5308 ASSERT(ipif->ipif_refcnt != 0);
5309 ipif->ipif_refcnt--;
5310 IPIF_UNTRACE_REF(ipif);
5311 if (ipif->ipif_refcnt != 0) {
5312 mutex_exit(&ill->ill_lock);
5313 return;
5314 }
5315
5316 /* Drops the ill_lock */
5317 ipif_ill_refrele_tail(ill);
5318 }
5319
5320 ipif_t *
ipif_get_next_ipif(ipif_t * curr,ill_t * ill)5321 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5322 {
5323 ipif_t *ipif;
5324
5325 mutex_enter(&ill->ill_lock);
5326 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5327 ipif != NULL; ipif = ipif->ipif_next) {
5328 if (IPIF_IS_CONDEMNED(ipif))
5329 continue;
5330 ipif_refhold_locked(ipif);
5331 mutex_exit(&ill->ill_lock);
5332 return (ipif);
5333 }
5334 mutex_exit(&ill->ill_lock);
5335 return (NULL);
5336 }
5337
5338 /*
5339 * TODO: make this table extendible at run time
5340 * Return a pointer to the mac type info for 'mac_type'
5341 */
5342 static ip_m_t *
ip_m_lookup(t_uscalar_t mac_type)5343 ip_m_lookup(t_uscalar_t mac_type)
5344 {
5345 ip_m_t *ipm;
5346
5347 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5348 if (ipm->ip_m_mac_type == mac_type)
5349 return (ipm);
5350 return (NULL);
5351 }
5352
5353 /*
5354 * Make a link layer address from the multicast IP address *addr.
5355 * To form the link layer address, invoke the ip_m_v*mapping function
5356 * associated with the link-layer type.
5357 */
5358 void
ip_mcast_mapping(ill_t * ill,uchar_t * addr,uchar_t * hwaddr)5359 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5360 {
5361 ip_m_t *ipm;
5362
5363 if (ill->ill_net_type == IRE_IF_NORESOLVER)
5364 return;
5365
5366 ASSERT(addr != NULL);
5367
5368 ipm = ip_m_lookup(ill->ill_mactype);
5369 if (ipm == NULL ||
5370 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5371 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5372 ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5373 ill->ill_name, ill->ill_mactype));
5374 return;
5375 }
5376 if (ill->ill_isv6)
5377 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5378 else
5379 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5380 }
5381
5382 /*
5383 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5384 * Otherwise returns B_TRUE.
5385 *
5386 * The netmask can be verified to be contiguous with 32 shifts and or
5387 * operations. Take the contiguous mask (in host byte order) and compute
5388 * mask | mask << 1 | mask << 2 | ... | mask << 31
5389 * the result will be the same as the 'mask' for contiguous mask.
5390 */
5391 static boolean_t
ip_contiguous_mask(uint32_t mask)5392 ip_contiguous_mask(uint32_t mask)
5393 {
5394 uint32_t m = mask;
5395 int i;
5396
5397 for (i = 1; i < 32; i++)
5398 m |= (mask << i);
5399
5400 return (m == mask);
5401 }
5402
5403 /*
5404 * ip_rt_add is called to add an IPv4 route to the forwarding table.
5405 * ill is passed in to associate it with the correct interface.
5406 * If ire_arg is set, then we return the held IRE in that location.
5407 */
5408 int
ip_rt_add(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,ipaddr_t src_addr,int flags,ill_t * ill,ire_t ** ire_arg,boolean_t ioctl_msg,struct rtsa_s * sp,ip_stack_t * ipst,zoneid_t zoneid)5409 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5410 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5411 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5412 {
5413 ire_t *ire, *nire;
5414 ire_t *gw_ire = NULL;
5415 ipif_t *ipif = NULL;
5416 uint_t type;
5417 int match_flags = MATCH_IRE_TYPE;
5418 tsol_gc_t *gc = NULL;
5419 tsol_gcgrp_t *gcgrp = NULL;
5420 boolean_t gcgrp_xtraref = B_FALSE;
5421 boolean_t cgtp_broadcast;
5422 boolean_t unbound = B_FALSE;
5423
5424 ip1dbg(("ip_rt_add:"));
5425
5426 if (ire_arg != NULL)
5427 *ire_arg = NULL;
5428
5429 /* disallow non-contiguous netmasks */
5430 if (!ip_contiguous_mask(ntohl(mask)))
5431 return (ENOTSUP);
5432
5433 /*
5434 * If this is the case of RTF_HOST being set, then we set the netmask
5435 * to all ones (regardless if one was supplied).
5436 */
5437 if (flags & RTF_HOST)
5438 mask = IP_HOST_MASK;
5439
5440 /*
5441 * Prevent routes with a zero gateway from being created (since
5442 * interfaces can currently be plumbed and brought up no assigned
5443 * address).
5444 */
5445 if (gw_addr == 0)
5446 return (ENETUNREACH);
5447 /*
5448 * Get the ipif, if any, corresponding to the gw_addr
5449 * If -ifp was specified we restrict ourselves to the ill, otherwise
5450 * we match on the gatway and destination to handle unnumbered pt-pt
5451 * interfaces.
5452 */
5453 if (ill != NULL)
5454 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5455 else
5456 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5457 if (ipif != NULL) {
5458 if (IS_VNI(ipif->ipif_ill)) {
5459 ipif_refrele(ipif);
5460 return (EINVAL);
5461 }
5462 }
5463
5464 /*
5465 * GateD will attempt to create routes with a loopback interface
5466 * address as the gateway and with RTF_GATEWAY set. We allow
5467 * these routes to be added, but create them as interface routes
5468 * since the gateway is an interface address.
5469 */
5470 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5471 flags &= ~RTF_GATEWAY;
5472 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5473 mask == IP_HOST_MASK) {
5474 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5475 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5476 NULL);
5477 if (ire != NULL) {
5478 ire_refrele(ire);
5479 ipif_refrele(ipif);
5480 return (EEXIST);
5481 }
5482 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5483 "for 0x%x\n", (void *)ipif,
5484 ipif->ipif_ire_type,
5485 ntohl(ipif->ipif_lcl_addr)));
5486 ire = ire_create(
5487 (uchar_t *)&dst_addr, /* dest address */
5488 (uchar_t *)&mask, /* mask */
5489 NULL, /* no gateway */
5490 ipif->ipif_ire_type, /* LOOPBACK */
5491 ipif->ipif_ill,
5492 zoneid,
5493 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5494 NULL,
5495 ipst);
5496
5497 if (ire == NULL) {
5498 ipif_refrele(ipif);
5499 return (ENOMEM);
5500 }
5501 /* src address assigned by the caller? */
5502 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5503 ire->ire_setsrc_addr = src_addr;
5504
5505 nire = ire_add(ire);
5506 if (nire == NULL) {
5507 /*
5508 * In the result of failure, ire_add() will have
5509 * already deleted the ire in question, so there
5510 * is no need to do that here.
5511 */
5512 ipif_refrele(ipif);
5513 return (ENOMEM);
5514 }
5515 /*
5516 * Check if it was a duplicate entry. This handles
5517 * the case of two racing route adds for the same route
5518 */
5519 if (nire != ire) {
5520 ASSERT(nire->ire_identical_ref > 1);
5521 ire_delete(nire);
5522 ire_refrele(nire);
5523 ipif_refrele(ipif);
5524 return (EEXIST);
5525 }
5526 ire = nire;
5527 goto save_ire;
5528 }
5529 }
5530
5531 /*
5532 * The routes for multicast with CGTP are quite special in that
5533 * the gateway is the local interface address, yet RTF_GATEWAY
5534 * is set. We turn off RTF_GATEWAY to provide compatibility with
5535 * this undocumented and unusual use of multicast routes.
5536 */
5537 if ((flags & RTF_MULTIRT) && ipif != NULL)
5538 flags &= ~RTF_GATEWAY;
5539
5540 /*
5541 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5542 * and the gateway address provided is one of the system's interface
5543 * addresses. By using the routing socket interface and supplying an
5544 * RTA_IFP sockaddr with an interface index, an alternate method of
5545 * specifying an interface route to be created is available which uses
5546 * the interface index that specifies the outgoing interface rather than
5547 * the address of an outgoing interface (which may not be able to
5548 * uniquely identify an interface). When coupled with the RTF_GATEWAY
5549 * flag, routes can be specified which not only specify the next-hop to
5550 * be used when routing to a certain prefix, but also which outgoing
5551 * interface should be used.
5552 *
5553 * Previously, interfaces would have unique addresses assigned to them
5554 * and so the address assigned to a particular interface could be used
5555 * to identify a particular interface. One exception to this was the
5556 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5557 *
5558 * With the advent of IPv6 and its link-local addresses, this
5559 * restriction was relaxed and interfaces could share addresses between
5560 * themselves. In fact, typically all of the link-local interfaces on
5561 * an IPv6 node or router will have the same link-local address. In
5562 * order to differentiate between these interfaces, the use of an
5563 * interface index is necessary and this index can be carried inside a
5564 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
5565 * of using the interface index, however, is that all of the ipif's that
5566 * are part of an ill have the same index and so the RTA_IFP sockaddr
5567 * cannot be used to differentiate between ipif's (or logical
5568 * interfaces) that belong to the same ill (physical interface).
5569 *
5570 * For example, in the following case involving IPv4 interfaces and
5571 * logical interfaces
5572 *
5573 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
5574 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0
5575 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0
5576 *
5577 * the ipif's corresponding to each of these interface routes can be
5578 * uniquely identified by the "gateway" (actually interface address).
5579 *
5580 * In this case involving multiple IPv6 default routes to a particular
5581 * link-local gateway, the use of RTA_IFP is necessary to specify which
5582 * default route is of interest:
5583 *
5584 * default fe80::123:4567:89ab:cdef U if0
5585 * default fe80::123:4567:89ab:cdef U if1
5586 */
5587
5588 /* RTF_GATEWAY not set */
5589 if (!(flags & RTF_GATEWAY)) {
5590 if (sp != NULL) {
5591 ip2dbg(("ip_rt_add: gateway security attributes "
5592 "cannot be set with interface route\n"));
5593 if (ipif != NULL)
5594 ipif_refrele(ipif);
5595 return (EINVAL);
5596 }
5597
5598 /*
5599 * Whether or not ill (RTA_IFP) is set, we require that
5600 * the gateway is one of our local addresses.
5601 */
5602 if (ipif == NULL)
5603 return (ENETUNREACH);
5604
5605 /*
5606 * We use MATCH_IRE_ILL here. If the caller specified an
5607 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5608 * we use the ill derived from the gateway address.
5609 * We can always match the gateway address since we record it
5610 * in ire_gateway_addr.
5611 * We don't allow RTA_IFP to specify a different ill than the
5612 * one matching the ipif to make sure we can delete the route.
5613 */
5614 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5615 if (ill == NULL) {
5616 ill = ipif->ipif_ill;
5617 } else if (ill != ipif->ipif_ill) {
5618 ipif_refrele(ipif);
5619 return (EINVAL);
5620 }
5621
5622 /*
5623 * We check for an existing entry at this point.
5624 *
5625 * Since a netmask isn't passed in via the ioctl interface
5626 * (SIOCADDRT), we don't check for a matching netmask in that
5627 * case.
5628 */
5629 if (!ioctl_msg)
5630 match_flags |= MATCH_IRE_MASK;
5631 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5632 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5633 NULL);
5634 if (ire != NULL) {
5635 ire_refrele(ire);
5636 ipif_refrele(ipif);
5637 return (EEXIST);
5638 }
5639
5640 /*
5641 * Some software (for example, GateD and Sun Cluster) attempts
5642 * to create (what amount to) IRE_PREFIX routes with the
5643 * loopback address as the gateway. This is primarily done to
5644 * set up prefixes with the RTF_REJECT flag set (for example,
5645 * when generating aggregate routes.)
5646 *
5647 * If the IRE type (as defined by ill->ill_net_type) would be
5648 * IRE_LOOPBACK, then we map the request into a
5649 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5650 * these interface routes, by definition, can only be that.
5651 *
5652 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5653 * routine, but rather using ire_create() directly.
5654 *
5655 */
5656 type = ill->ill_net_type;
5657 if (type == IRE_LOOPBACK) {
5658 type = IRE_IF_NORESOLVER;
5659 flags |= RTF_BLACKHOLE;
5660 }
5661
5662 /*
5663 * Create a copy of the IRE_IF_NORESOLVER or
5664 * IRE_IF_RESOLVER with the modified address, netmask, and
5665 * gateway.
5666 */
5667 ire = ire_create(
5668 (uchar_t *)&dst_addr,
5669 (uint8_t *)&mask,
5670 (uint8_t *)&gw_addr,
5671 type,
5672 ill,
5673 zoneid,
5674 flags,
5675 NULL,
5676 ipst);
5677 if (ire == NULL) {
5678 ipif_refrele(ipif);
5679 return (ENOMEM);
5680 }
5681
5682 /* src address assigned by the caller? */
5683 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5684 ire->ire_setsrc_addr = src_addr;
5685
5686 nire = ire_add(ire);
5687 if (nire == NULL) {
5688 /*
5689 * In the result of failure, ire_add() will have
5690 * already deleted the ire in question, so there
5691 * is no need to do that here.
5692 */
5693 ipif_refrele(ipif);
5694 return (ENOMEM);
5695 }
5696 /*
5697 * Check if it was a duplicate entry. This handles
5698 * the case of two racing route adds for the same route
5699 */
5700 if (nire != ire) {
5701 ire_delete(nire);
5702 ire_refrele(nire);
5703 ipif_refrele(ipif);
5704 return (EEXIST);
5705 }
5706 ire = nire;
5707 goto save_ire;
5708 }
5709
5710 /*
5711 * Get an interface IRE for the specified gateway.
5712 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5713 * gateway, it is currently unreachable and we fail the request
5714 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5715 * is an IRE_LOCAL or IRE_LOOPBACK.
5716 * If RTA_IFP was specified we look on that particular ill.
5717 */
5718 if (ill != NULL)
5719 match_flags |= MATCH_IRE_ILL;
5720
5721 /* Check whether the gateway is reachable. */
5722 again:
5723 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5724 if (flags & RTF_INDIRECT)
5725 type |= IRE_OFFLINK;
5726
5727 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5728 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5729 if (gw_ire == NULL) {
5730 /*
5731 * With IPMP, we allow host routes to influence in.mpathd's
5732 * target selection. However, if the test addresses are on
5733 * their own network, the above lookup will fail since the
5734 * underlying IRE_INTERFACEs are marked hidden. So allow
5735 * hidden test IREs to be found and try again.
5736 */
5737 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) {
5738 match_flags |= MATCH_IRE_TESTHIDDEN;
5739 goto again;
5740 }
5741 if (ipif != NULL)
5742 ipif_refrele(ipif);
5743 return (ENETUNREACH);
5744 }
5745 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5746 ire_refrele(gw_ire);
5747 if (ipif != NULL)
5748 ipif_refrele(ipif);
5749 return (ENETUNREACH);
5750 }
5751
5752 if (ill == NULL && !(flags & RTF_INDIRECT)) {
5753 unbound = B_TRUE;
5754 if (ipst->ips_ip_strict_src_multihoming > 0)
5755 ill = gw_ire->ire_ill;
5756 }
5757
5758 /*
5759 * We create one of three types of IREs as a result of this request
5760 * based on the netmask. A netmask of all ones (which is automatically
5761 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5762 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5763 * created. Otherwise, an IRE_PREFIX route is created for the
5764 * destination prefix.
5765 */
5766 if (mask == IP_HOST_MASK)
5767 type = IRE_HOST;
5768 else if (mask == 0)
5769 type = IRE_DEFAULT;
5770 else
5771 type = IRE_PREFIX;
5772
5773 /* check for a duplicate entry */
5774 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5775 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5776 0, ipst, NULL);
5777 if (ire != NULL) {
5778 if (ipif != NULL)
5779 ipif_refrele(ipif);
5780 ire_refrele(gw_ire);
5781 ire_refrele(ire);
5782 return (EEXIST);
5783 }
5784
5785 /* Security attribute exists */
5786 if (sp != NULL) {
5787 tsol_gcgrp_addr_t ga;
5788
5789 /* find or create the gateway credentials group */
5790 ga.ga_af = AF_INET;
5791 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5792
5793 /* we hold reference to it upon success */
5794 gcgrp = gcgrp_lookup(&ga, B_TRUE);
5795 if (gcgrp == NULL) {
5796 if (ipif != NULL)
5797 ipif_refrele(ipif);
5798 ire_refrele(gw_ire);
5799 return (ENOMEM);
5800 }
5801
5802 /*
5803 * Create and add the security attribute to the group; a
5804 * reference to the group is made upon allocating a new
5805 * entry successfully. If it finds an already-existing
5806 * entry for the security attribute in the group, it simply
5807 * returns it and no new reference is made to the group.
5808 */
5809 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5810 if (gc == NULL) {
5811 if (ipif != NULL)
5812 ipif_refrele(ipif);
5813 /* release reference held by gcgrp_lookup */
5814 GCGRP_REFRELE(gcgrp);
5815 ire_refrele(gw_ire);
5816 return (ENOMEM);
5817 }
5818 }
5819
5820 /* Create the IRE. */
5821 ire = ire_create(
5822 (uchar_t *)&dst_addr, /* dest address */
5823 (uchar_t *)&mask, /* mask */
5824 (uchar_t *)&gw_addr, /* gateway address */
5825 (ushort_t)type, /* IRE type */
5826 ill,
5827 zoneid,
5828 flags,
5829 gc, /* security attribute */
5830 ipst);
5831
5832 /*
5833 * The ire holds a reference to the 'gc' and the 'gc' holds a
5834 * reference to the 'gcgrp'. We can now release the extra reference
5835 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5836 */
5837 if (gcgrp_xtraref)
5838 GCGRP_REFRELE(gcgrp);
5839 if (ire == NULL) {
5840 if (gc != NULL)
5841 GC_REFRELE(gc);
5842 if (ipif != NULL)
5843 ipif_refrele(ipif);
5844 ire_refrele(gw_ire);
5845 return (ENOMEM);
5846 }
5847
5848 /* Before we add, check if an extra CGTP broadcast is needed */
5849 cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5850 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5851
5852 /* src address assigned by the caller? */
5853 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5854 ire->ire_setsrc_addr = src_addr;
5855
5856 ire->ire_unbound = unbound;
5857
5858 /*
5859 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5860 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5861 */
5862
5863 /* Add the new IRE. */
5864 nire = ire_add(ire);
5865 if (nire == NULL) {
5866 /*
5867 * In the result of failure, ire_add() will have
5868 * already deleted the ire in question, so there
5869 * is no need to do that here.
5870 */
5871 if (ipif != NULL)
5872 ipif_refrele(ipif);
5873 ire_refrele(gw_ire);
5874 return (ENOMEM);
5875 }
5876 /*
5877 * Check if it was a duplicate entry. This handles
5878 * the case of two racing route adds for the same route
5879 */
5880 if (nire != ire) {
5881 ire_delete(nire);
5882 ire_refrele(nire);
5883 if (ipif != NULL)
5884 ipif_refrele(ipif);
5885 ire_refrele(gw_ire);
5886 return (EEXIST);
5887 }
5888 ire = nire;
5889
5890 if (flags & RTF_MULTIRT) {
5891 /*
5892 * Invoke the CGTP (multirouting) filtering module
5893 * to add the dst address in the filtering database.
5894 * Replicated inbound packets coming from that address
5895 * will be filtered to discard the duplicates.
5896 * It is not necessary to call the CGTP filter hook
5897 * when the dst address is a broadcast or multicast,
5898 * because an IP source address cannot be a broadcast
5899 * or a multicast.
5900 */
5901 if (cgtp_broadcast) {
5902 ip_cgtp_bcast_add(ire, ipst);
5903 goto save_ire;
5904 }
5905 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5906 !CLASSD(ire->ire_addr)) {
5907 int res;
5908 ipif_t *src_ipif;
5909
5910 /* Find the source address corresponding to gw_ire */
5911 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5912 NULL, zoneid, ipst);
5913 if (src_ipif != NULL) {
5914 res = ipst->ips_ip_cgtp_filter_ops->
5915 cfo_add_dest_v4(
5916 ipst->ips_netstack->netstack_stackid,
5917 ire->ire_addr,
5918 ire->ire_gateway_addr,
5919 ire->ire_setsrc_addr,
5920 src_ipif->ipif_lcl_addr);
5921 ipif_refrele(src_ipif);
5922 } else {
5923 res = EADDRNOTAVAIL;
5924 }
5925 if (res != 0) {
5926 if (ipif != NULL)
5927 ipif_refrele(ipif);
5928 ire_refrele(gw_ire);
5929 ire_delete(ire);
5930 ire_refrele(ire); /* Held in ire_add */
5931 return (res);
5932 }
5933 }
5934 }
5935
5936 save_ire:
5937 if (gw_ire != NULL) {
5938 ire_refrele(gw_ire);
5939 gw_ire = NULL;
5940 }
5941 if (ill != NULL) {
5942 /*
5943 * Save enough information so that we can recreate the IRE if
5944 * the interface goes down and then up. The metrics associated
5945 * with the route will be saved as well when rts_setmetrics() is
5946 * called after the IRE has been created. In the case where
5947 * memory cannot be allocated, none of this information will be
5948 * saved.
5949 */
5950 ill_save_ire(ill, ire);
5951 }
5952 if (ioctl_msg)
5953 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5954 if (ire_arg != NULL) {
5955 /*
5956 * Store the ire that was successfully added into where ire_arg
5957 * points to so that callers don't have to look it up
5958 * themselves (but they are responsible for ire_refrele()ing
5959 * the ire when they are finished with it).
5960 */
5961 *ire_arg = ire;
5962 } else {
5963 ire_refrele(ire); /* Held in ire_add */
5964 }
5965 if (ipif != NULL)
5966 ipif_refrele(ipif);
5967 return (0);
5968 }
5969
5970 /*
5971 * ip_rt_delete is called to delete an IPv4 route.
5972 * ill is passed in to associate it with the correct interface.
5973 */
5974 /* ARGSUSED4 */
5975 int
ip_rt_delete(ipaddr_t dst_addr,ipaddr_t mask,ipaddr_t gw_addr,uint_t rtm_addrs,int flags,ill_t * ill,boolean_t ioctl_msg,ip_stack_t * ipst,zoneid_t zoneid)5976 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5977 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5978 ip_stack_t *ipst, zoneid_t zoneid)
5979 {
5980 ire_t *ire = NULL;
5981 ipif_t *ipif;
5982 uint_t type;
5983 uint_t match_flags = MATCH_IRE_TYPE;
5984 int err = 0;
5985
5986 ip1dbg(("ip_rt_delete:"));
5987 /*
5988 * If this is the case of RTF_HOST being set, then we set the netmask
5989 * to all ones. Otherwise, we use the netmask if one was supplied.
5990 */
5991 if (flags & RTF_HOST) {
5992 mask = IP_HOST_MASK;
5993 match_flags |= MATCH_IRE_MASK;
5994 } else if (rtm_addrs & RTA_NETMASK) {
5995 match_flags |= MATCH_IRE_MASK;
5996 }
5997
5998 /*
5999 * Note that RTF_GATEWAY is never set on a delete, therefore
6000 * we check if the gateway address is one of our interfaces first,
6001 * and fall back on RTF_GATEWAY routes.
6002 *
6003 * This makes it possible to delete an original
6004 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6005 * However, we have RTF_KERNEL set on the ones created by ipif_up
6006 * and those can not be deleted here.
6007 *
6008 * We use MATCH_IRE_ILL if we know the interface. If the caller
6009 * specified an interface (from the RTA_IFP sockaddr) we use it,
6010 * otherwise we use the ill derived from the gateway address.
6011 * We can always match the gateway address since we record it
6012 * in ire_gateway_addr.
6013 *
6014 * For more detail on specifying routes by gateway address and by
6015 * interface index, see the comments in ip_rt_add().
6016 */
6017 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6018 if (ipif != NULL) {
6019 ill_t *ill_match;
6020
6021 if (ill != NULL)
6022 ill_match = ill;
6023 else
6024 ill_match = ipif->ipif_ill;
6025
6026 match_flags |= MATCH_IRE_ILL;
6027 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6028 ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6029 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6030 match_flags, 0, ipst, NULL);
6031 }
6032 if (ire == NULL) {
6033 match_flags |= MATCH_IRE_GW;
6034 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6035 IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6036 match_flags, 0, ipst, NULL);
6037 }
6038 /* Avoid deleting routes created by kernel from an ipif */
6039 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6040 ire_refrele(ire);
6041 ire = NULL;
6042 }
6043
6044 /* Restore in case we didn't find a match */
6045 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6046 }
6047
6048 if (ire == NULL) {
6049 /*
6050 * At this point, the gateway address is not one of our own
6051 * addresses or a matching interface route was not found. We
6052 * set the IRE type to lookup based on whether
6053 * this is a host route, a default route or just a prefix.
6054 *
6055 * If an ill was passed in, then the lookup is based on an
6056 * interface index so MATCH_IRE_ILL is added to match_flags.
6057 */
6058 match_flags |= MATCH_IRE_GW;
6059 if (ill != NULL)
6060 match_flags |= MATCH_IRE_ILL;
6061 if (mask == IP_HOST_MASK)
6062 type = IRE_HOST;
6063 else if (mask == 0)
6064 type = IRE_DEFAULT;
6065 else
6066 type = IRE_PREFIX;
6067 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6068 ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6069 }
6070
6071 if (ipif != NULL) {
6072 ipif_refrele(ipif);
6073 ipif = NULL;
6074 }
6075
6076 if (ire == NULL)
6077 return (ESRCH);
6078
6079 if (ire->ire_flags & RTF_MULTIRT) {
6080 /*
6081 * Invoke the CGTP (multirouting) filtering module
6082 * to remove the dst address from the filtering database.
6083 * Packets coming from that address will no longer be
6084 * filtered to remove duplicates.
6085 */
6086 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6087 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6088 ipst->ips_netstack->netstack_stackid,
6089 ire->ire_addr, ire->ire_gateway_addr);
6090 }
6091 ip_cgtp_bcast_delete(ire, ipst);
6092 }
6093
6094 ill = ire->ire_ill;
6095 if (ill != NULL)
6096 ill_remove_saved_ire(ill, ire);
6097 if (ioctl_msg)
6098 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6099 ire_delete(ire);
6100 ire_refrele(ire);
6101 return (err);
6102 }
6103
6104 /*
6105 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6106 */
6107 /* ARGSUSED */
6108 int
ip_siocaddrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6109 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6110 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6111 {
6112 ipaddr_t dst_addr;
6113 ipaddr_t gw_addr;
6114 ipaddr_t mask;
6115 int error = 0;
6116 mblk_t *mp1;
6117 struct rtentry *rt;
6118 ipif_t *ipif = NULL;
6119 ip_stack_t *ipst;
6120
6121 ASSERT(q->q_next == NULL);
6122 ipst = CONNQ_TO_IPST(q);
6123
6124 ip1dbg(("ip_siocaddrt:"));
6125 /* Existence of mp1 verified in ip_wput_nondata */
6126 mp1 = mp->b_cont->b_cont;
6127 rt = (struct rtentry *)mp1->b_rptr;
6128
6129 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6130 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6131
6132 /*
6133 * If the RTF_HOST flag is on, this is a request to assign a gateway
6134 * to a particular host address. In this case, we set the netmask to
6135 * all ones for the particular destination address. Otherwise,
6136 * determine the netmask to be used based on dst_addr and the interfaces
6137 * in use.
6138 */
6139 if (rt->rt_flags & RTF_HOST) {
6140 mask = IP_HOST_MASK;
6141 } else {
6142 /*
6143 * Note that ip_subnet_mask returns a zero mask in the case of
6144 * default (an all-zeroes address).
6145 */
6146 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6147 }
6148
6149 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6150 B_TRUE, NULL, ipst, ALL_ZONES);
6151 if (ipif != NULL)
6152 ipif_refrele(ipif);
6153 return (error);
6154 }
6155
6156 /*
6157 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6158 */
6159 /* ARGSUSED */
6160 int
ip_siocdelrt(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)6161 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6162 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6163 {
6164 ipaddr_t dst_addr;
6165 ipaddr_t gw_addr;
6166 ipaddr_t mask;
6167 int error;
6168 mblk_t *mp1;
6169 struct rtentry *rt;
6170 ipif_t *ipif = NULL;
6171 ip_stack_t *ipst;
6172
6173 ASSERT(q->q_next == NULL);
6174 ipst = CONNQ_TO_IPST(q);
6175
6176 ip1dbg(("ip_siocdelrt:"));
6177 /* Existence of mp1 verified in ip_wput_nondata */
6178 mp1 = mp->b_cont->b_cont;
6179 rt = (struct rtentry *)mp1->b_rptr;
6180
6181 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6182 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6183
6184 /*
6185 * If the RTF_HOST flag is on, this is a request to delete a gateway
6186 * to a particular host address. In this case, we set the netmask to
6187 * all ones for the particular destination address. Otherwise,
6188 * determine the netmask to be used based on dst_addr and the interfaces
6189 * in use.
6190 */
6191 if (rt->rt_flags & RTF_HOST) {
6192 mask = IP_HOST_MASK;
6193 } else {
6194 /*
6195 * Note that ip_subnet_mask returns a zero mask in the case of
6196 * default (an all-zeroes address).
6197 */
6198 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6199 }
6200
6201 error = ip_rt_delete(dst_addr, mask, gw_addr,
6202 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6203 ipst, ALL_ZONES);
6204 if (ipif != NULL)
6205 ipif_refrele(ipif);
6206 return (error);
6207 }
6208
6209 /*
6210 * Enqueue the mp onto the ipsq, chained by b_next.
6211 * b_prev stores the function to be executed later, and b_queue the queue
6212 * where this mp originated.
6213 */
6214 void
ipsq_enq(ipsq_t * ipsq,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,ill_t * pending_ill)6215 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6216 ill_t *pending_ill)
6217 {
6218 conn_t *connp;
6219 ipxop_t *ipx = ipsq->ipsq_xop;
6220
6221 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6222 ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6223 ASSERT(func != NULL);
6224
6225 mp->b_queue = q;
6226 mp->b_prev = (void *)func;
6227 mp->b_next = NULL;
6228
6229 switch (type) {
6230 case CUR_OP:
6231 if (ipx->ipx_mptail != NULL) {
6232 ASSERT(ipx->ipx_mphead != NULL);
6233 ipx->ipx_mptail->b_next = mp;
6234 } else {
6235 ASSERT(ipx->ipx_mphead == NULL);
6236 ipx->ipx_mphead = mp;
6237 }
6238 ipx->ipx_mptail = mp;
6239 break;
6240
6241 case NEW_OP:
6242 if (ipsq->ipsq_xopq_mptail != NULL) {
6243 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6244 ipsq->ipsq_xopq_mptail->b_next = mp;
6245 } else {
6246 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6247 ipsq->ipsq_xopq_mphead = mp;
6248 }
6249 ipsq->ipsq_xopq_mptail = mp;
6250 ipx->ipx_ipsq_queued = B_TRUE;
6251 break;
6252
6253 case SWITCH_OP:
6254 ASSERT(ipsq->ipsq_swxop != NULL);
6255 /* only one switch operation is currently allowed */
6256 ASSERT(ipsq->ipsq_switch_mp == NULL);
6257 ipsq->ipsq_switch_mp = mp;
6258 ipx->ipx_ipsq_queued = B_TRUE;
6259 break;
6260 default:
6261 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6262 }
6263
6264 if (CONN_Q(q) && pending_ill != NULL) {
6265 connp = Q_TO_CONN(q);
6266 ASSERT(MUTEX_HELD(&connp->conn_lock));
6267 connp->conn_oper_pending_ill = pending_ill;
6268 }
6269 }
6270
6271 /*
6272 * Dequeue the next message that requested exclusive access to this IPSQ's
6273 * xop. Specifically:
6274 *
6275 * 1. If we're still processing the current operation on `ipsq', then
6276 * dequeue the next message for the operation (from ipx_mphead), or
6277 * return NULL if there are no queued messages for the operation.
6278 * These messages are queued via CUR_OP to qwriter_ip() and friends.
6279 *
6280 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6281 * not set) see if the ipsq has requested an xop switch. If so, switch
6282 * `ipsq' to a different xop. Xop switches only happen when joining or
6283 * leaving IPMP groups and require a careful dance -- see the comments
6284 * in-line below for details. If we're leaving a group xop or if we're
6285 * joining a group xop and become writer on it, then we proceed to (3).
6286 * Otherwise, we return NULL and exit the xop.
6287 *
6288 * 3. For each IPSQ in the xop, return any switch operation stored on
6289 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6290 * any other messages queued on the IPSQ. Otherwise, dequeue the next
6291 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6292 * Note that if the phyint tied to `ipsq' is not using IPMP there will
6293 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for
6294 * each phyint in the group, including the IPMP meta-interface phyint.
6295 */
6296 static mblk_t *
ipsq_dq(ipsq_t * ipsq)6297 ipsq_dq(ipsq_t *ipsq)
6298 {
6299 ill_t *illv4, *illv6;
6300 mblk_t *mp;
6301 ipsq_t *xopipsq;
6302 ipsq_t *leftipsq = NULL;
6303 ipxop_t *ipx;
6304 phyint_t *phyi = ipsq->ipsq_phyint;
6305 ip_stack_t *ipst = ipsq->ipsq_ipst;
6306 boolean_t emptied = B_FALSE;
6307
6308 /*
6309 * Grab all the locks we need in the defined order (ill_g_lock ->
6310 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6311 */
6312 rw_enter(&ipst->ips_ill_g_lock,
6313 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6314 mutex_enter(&ipsq->ipsq_lock);
6315 ipx = ipsq->ipsq_xop;
6316 mutex_enter(&ipx->ipx_lock);
6317
6318 /*
6319 * Dequeue the next message associated with the current exclusive
6320 * operation, if any.
6321 */
6322 if ((mp = ipx->ipx_mphead) != NULL) {
6323 ipx->ipx_mphead = mp->b_next;
6324 if (ipx->ipx_mphead == NULL)
6325 ipx->ipx_mptail = NULL;
6326 mp->b_next = (void *)ipsq;
6327 goto out;
6328 }
6329
6330 if (ipx->ipx_current_ipif != NULL)
6331 goto empty;
6332
6333 if (ipsq->ipsq_swxop != NULL) {
6334 /*
6335 * The exclusive operation that is now being completed has
6336 * requested a switch to a different xop. This happens
6337 * when an interface joins or leaves an IPMP group. Joins
6338 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6339 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6340 * (phyint_free()), or interface plumb for an ill type
6341 * not in the IPMP group (ip_rput_dlpi_writer()).
6342 *
6343 * Xop switches are not allowed on the IPMP meta-interface.
6344 */
6345 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6346 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6347 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6348
6349 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6350 /*
6351 * We're switching back to our own xop, so we have two
6352 * xop's to drain/exit: our own, and the group xop
6353 * that we are leaving.
6354 *
6355 * First, pull ourselves out of the group ipsq list.
6356 * This is safe since we're writer on ill_g_lock.
6357 */
6358 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6359
6360 xopipsq = ipx->ipx_ipsq;
6361 while (xopipsq->ipsq_next != ipsq)
6362 xopipsq = xopipsq->ipsq_next;
6363
6364 xopipsq->ipsq_next = ipsq->ipsq_next;
6365 ipsq->ipsq_next = ipsq;
6366 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6367 ipsq->ipsq_swxop = NULL;
6368
6369 /*
6370 * Second, prepare to exit the group xop. The actual
6371 * ipsq_exit() is done at the end of this function
6372 * since we cannot hold any locks across ipsq_exit().
6373 * Note that although we drop the group's ipx_lock, no
6374 * threads can proceed since we're still ipx_writer.
6375 */
6376 leftipsq = xopipsq;
6377 mutex_exit(&ipx->ipx_lock);
6378
6379 /*
6380 * Third, set ipx to point to our own xop (which was
6381 * inactive and therefore can be entered).
6382 */
6383 ipx = ipsq->ipsq_xop;
6384 mutex_enter(&ipx->ipx_lock);
6385 ASSERT(ipx->ipx_writer == NULL);
6386 ASSERT(ipx->ipx_current_ipif == NULL);
6387 } else {
6388 /*
6389 * We're switching from our own xop to a group xop.
6390 * The requestor of the switch must ensure that the
6391 * group xop cannot go away (e.g. by ensuring the
6392 * phyint associated with the xop cannot go away).
6393 *
6394 * If we can become writer on our new xop, then we'll
6395 * do the drain. Otherwise, the current writer of our
6396 * new xop will do the drain when it exits.
6397 *
6398 * First, splice ourselves into the group IPSQ list.
6399 * This is safe since we're writer on ill_g_lock.
6400 */
6401 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6402
6403 xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6404 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6405 xopipsq = xopipsq->ipsq_next;
6406
6407 xopipsq->ipsq_next = ipsq;
6408 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6409 ipsq->ipsq_xop = ipsq->ipsq_swxop;
6410 ipsq->ipsq_swxop = NULL;
6411
6412 /*
6413 * Second, exit our own xop, since it's now unused.
6414 * This is safe since we've got the only reference.
6415 */
6416 ASSERT(ipx->ipx_writer == curthread);
6417 ipx->ipx_writer = NULL;
6418 VERIFY(--ipx->ipx_reentry_cnt == 0);
6419 ipx->ipx_ipsq_queued = B_FALSE;
6420 mutex_exit(&ipx->ipx_lock);
6421
6422 /*
6423 * Third, set ipx to point to our new xop, and check
6424 * if we can become writer on it. If we cannot, then
6425 * the current writer will drain the IPSQ group when
6426 * it exits. Our ipsq_xop is guaranteed to be stable
6427 * because we're still holding ipsq_lock.
6428 */
6429 ipx = ipsq->ipsq_xop;
6430 mutex_enter(&ipx->ipx_lock);
6431 if (ipx->ipx_writer != NULL ||
6432 ipx->ipx_current_ipif != NULL) {
6433 goto out;
6434 }
6435 }
6436
6437 /*
6438 * Fourth, become writer on our new ipx before we continue
6439 * with the drain. Note that we never dropped ipsq_lock
6440 * above, so no other thread could've raced with us to
6441 * become writer first. Also, we're holding ipx_lock, so
6442 * no other thread can examine the ipx right now.
6443 */
6444 ASSERT(ipx->ipx_current_ipif == NULL);
6445 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6446 VERIFY(ipx->ipx_reentry_cnt++ == 0);
6447 ipx->ipx_writer = curthread;
6448 ipx->ipx_forced = B_FALSE;
6449 #ifdef DEBUG
6450 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6451 #endif
6452 }
6453
6454 xopipsq = ipsq;
6455 do {
6456 /*
6457 * So that other operations operate on a consistent and
6458 * complete phyint, a switch message on an IPSQ must be
6459 * handled prior to any other operations on that IPSQ.
6460 */
6461 if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6462 xopipsq->ipsq_switch_mp = NULL;
6463 ASSERT(mp->b_next == NULL);
6464 mp->b_next = (void *)xopipsq;
6465 goto out;
6466 }
6467
6468 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6469 xopipsq->ipsq_xopq_mphead = mp->b_next;
6470 if (xopipsq->ipsq_xopq_mphead == NULL)
6471 xopipsq->ipsq_xopq_mptail = NULL;
6472 mp->b_next = (void *)xopipsq;
6473 goto out;
6474 }
6475 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6476 empty:
6477 /*
6478 * There are no messages. Further, we are holding ipx_lock, hence no
6479 * new messages can end up on any IPSQ in the xop.
6480 */
6481 ipx->ipx_writer = NULL;
6482 ipx->ipx_forced = B_FALSE;
6483 VERIFY(--ipx->ipx_reentry_cnt == 0);
6484 ipx->ipx_ipsq_queued = B_FALSE;
6485 emptied = B_TRUE;
6486 #ifdef DEBUG
6487 ipx->ipx_depth = 0;
6488 #endif
6489 out:
6490 mutex_exit(&ipx->ipx_lock);
6491 mutex_exit(&ipsq->ipsq_lock);
6492
6493 /*
6494 * If we completely emptied the xop, then wake up any threads waiting
6495 * to enter any of the IPSQ's associated with it.
6496 */
6497 if (emptied) {
6498 xopipsq = ipsq;
6499 do {
6500 if ((phyi = xopipsq->ipsq_phyint) == NULL)
6501 continue;
6502
6503 illv4 = phyi->phyint_illv4;
6504 illv6 = phyi->phyint_illv6;
6505
6506 GRAB_ILL_LOCKS(illv4, illv6);
6507 if (illv4 != NULL)
6508 cv_broadcast(&illv4->ill_cv);
6509 if (illv6 != NULL)
6510 cv_broadcast(&illv6->ill_cv);
6511 RELEASE_ILL_LOCKS(illv4, illv6);
6512 } while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6513 }
6514 rw_exit(&ipst->ips_ill_g_lock);
6515
6516 /*
6517 * Now that all locks are dropped, exit the IPSQ we left.
6518 */
6519 if (leftipsq != NULL)
6520 ipsq_exit(leftipsq);
6521
6522 return (mp);
6523 }
6524
6525 /*
6526 * Return completion status of previously initiated DLPI operations on
6527 * ills in the purview of an ipsq.
6528 */
6529 static boolean_t
ipsq_dlpi_done(ipsq_t * ipsq)6530 ipsq_dlpi_done(ipsq_t *ipsq)
6531 {
6532 ipsq_t *ipsq_start;
6533 phyint_t *phyi;
6534 ill_t *ill;
6535
6536 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6537 ipsq_start = ipsq;
6538
6539 do {
6540 /*
6541 * The only current users of this function are ipsq_try_enter
6542 * and ipsq_enter which have made sure that ipsq_writer is
6543 * NULL before we reach here. ill_dlpi_pending is modified
6544 * only by an ipsq writer
6545 */
6546 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6547 phyi = ipsq->ipsq_phyint;
6548 /*
6549 * phyi could be NULL if a phyint that is part of an
6550 * IPMP group is being unplumbed. A more detailed
6551 * comment is in ipmp_grp_update_kstats()
6552 */
6553 if (phyi != NULL) {
6554 ill = phyi->phyint_illv4;
6555 if (ill != NULL &&
6556 (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6557 ill->ill_arl_dlpi_pending))
6558 return (B_FALSE);
6559
6560 ill = phyi->phyint_illv6;
6561 if (ill != NULL &&
6562 ill->ill_dlpi_pending != DL_PRIM_INVAL)
6563 return (B_FALSE);
6564 }
6565
6566 } while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6567
6568 return (B_TRUE);
6569 }
6570
6571 /*
6572 * Enter the ipsq corresponding to ill, by waiting synchronously till
6573 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6574 * will have to drain completely before ipsq_enter returns success.
6575 * ipx_current_ipif will be set if some exclusive op is in progress,
6576 * and the ipsq_exit logic will start the next enqueued op after
6577 * completion of the current op. If 'force' is used, we don't wait
6578 * for the enqueued ops. This is needed when a conn_close wants to
6579 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6580 * of an ill can also use this option. But we dont' use it currently.
6581 */
6582 #define ENTER_SQ_WAIT_TICKS 100
6583 boolean_t
ipsq_enter(ill_t * ill,boolean_t force,int type)6584 ipsq_enter(ill_t *ill, boolean_t force, int type)
6585 {
6586 ipsq_t *ipsq;
6587 ipxop_t *ipx;
6588 boolean_t waited_enough = B_FALSE;
6589 ip_stack_t *ipst = ill->ill_ipst;
6590
6591 /*
6592 * Note that the relationship between ill and ipsq is fixed as long as
6593 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the
6594 * relationship between the IPSQ and xop cannot change. However,
6595 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6596 * while we're waiting. We wait on ill_cv and rely on ipsq_exit()
6597 * waking up all ills in the xop when it becomes available.
6598 */
6599 for (;;) {
6600 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6601 mutex_enter(&ill->ill_lock);
6602 if (ill->ill_state_flags & ILL_CONDEMNED) {
6603 mutex_exit(&ill->ill_lock);
6604 rw_exit(&ipst->ips_ill_g_lock);
6605 return (B_FALSE);
6606 }
6607
6608 ipsq = ill->ill_phyint->phyint_ipsq;
6609 mutex_enter(&ipsq->ipsq_lock);
6610 ipx = ipsq->ipsq_xop;
6611 mutex_enter(&ipx->ipx_lock);
6612
6613 if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6614 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6615 waited_enough))
6616 break;
6617
6618 rw_exit(&ipst->ips_ill_g_lock);
6619
6620 if (!force || ipx->ipx_writer != NULL) {
6621 mutex_exit(&ipx->ipx_lock);
6622 mutex_exit(&ipsq->ipsq_lock);
6623 cv_wait(&ill->ill_cv, &ill->ill_lock);
6624 } else {
6625 mutex_exit(&ipx->ipx_lock);
6626 mutex_exit(&ipsq->ipsq_lock);
6627 (void) cv_reltimedwait(&ill->ill_cv,
6628 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6629 waited_enough = B_TRUE;
6630 }
6631 mutex_exit(&ill->ill_lock);
6632 }
6633
6634 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6635 ASSERT(ipx->ipx_reentry_cnt == 0);
6636 ipx->ipx_writer = curthread;
6637 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6638 ipx->ipx_reentry_cnt++;
6639 #ifdef DEBUG
6640 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6641 #endif
6642 mutex_exit(&ipx->ipx_lock);
6643 mutex_exit(&ipsq->ipsq_lock);
6644 mutex_exit(&ill->ill_lock);
6645 rw_exit(&ipst->ips_ill_g_lock);
6646
6647 return (B_TRUE);
6648 }
6649
6650 /*
6651 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6652 * across the call to the core interface ipsq_try_enter() and hence calls this
6653 * function directly. This is explained more fully in ipif_set_values().
6654 * In order to support the above constraint, ipsq_try_enter is implemented as
6655 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6656 */
6657 static ipsq_t *
ipsq_try_enter_internal(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6658 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6659 int type, boolean_t reentry_ok)
6660 {
6661 ipsq_t *ipsq;
6662 ipxop_t *ipx;
6663 ip_stack_t *ipst = ill->ill_ipst;
6664
6665 /*
6666 * lock ordering:
6667 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6668 *
6669 * ipx of an ipsq can't change when ipsq_lock is held.
6670 */
6671 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6672 GRAB_CONN_LOCK(q);
6673 mutex_enter(&ill->ill_lock);
6674 ipsq = ill->ill_phyint->phyint_ipsq;
6675 mutex_enter(&ipsq->ipsq_lock);
6676 ipx = ipsq->ipsq_xop;
6677 mutex_enter(&ipx->ipx_lock);
6678
6679 /*
6680 * 1. Enter the ipsq if we are already writer and reentry is ok.
6681 * (Note: If the caller does not specify reentry_ok then neither
6682 * 'func' nor any of its callees must ever attempt to enter the ipsq
6683 * again. Otherwise it can lead to an infinite loop
6684 * 2. Enter the ipsq if there is no current writer and this attempted
6685 * entry is part of the current operation
6686 * 3. Enter the ipsq if there is no current writer and this is a new
6687 * operation and the operation queue is empty and there is no
6688 * operation currently in progress and if all previously initiated
6689 * DLPI operations have completed.
6690 */
6691 if ((ipx->ipx_writer == curthread && reentry_ok) ||
6692 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6693 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6694 ipsq_dlpi_done(ipsq))))) {
6695 /* Success. */
6696 ipx->ipx_reentry_cnt++;
6697 ipx->ipx_writer = curthread;
6698 ipx->ipx_forced = B_FALSE;
6699 mutex_exit(&ipx->ipx_lock);
6700 mutex_exit(&ipsq->ipsq_lock);
6701 mutex_exit(&ill->ill_lock);
6702 RELEASE_CONN_LOCK(q);
6703 #ifdef DEBUG
6704 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6705 #endif
6706 return (ipsq);
6707 }
6708
6709 if (func != NULL)
6710 ipsq_enq(ipsq, q, mp, func, type, ill);
6711
6712 mutex_exit(&ipx->ipx_lock);
6713 mutex_exit(&ipsq->ipsq_lock);
6714 mutex_exit(&ill->ill_lock);
6715 RELEASE_CONN_LOCK(q);
6716 return (NULL);
6717 }
6718
6719 /*
6720 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6721 * certain critical operations like plumbing (i.e. most set ioctls), etc.
6722 * There is one ipsq per phyint. The ipsq
6723 * serializes exclusive ioctls issued by applications on a per ipsq basis in
6724 * ipsq_xopq_mphead. It also protects against multiple threads executing in
6725 * the ipsq. Responses from the driver pertain to the current ioctl (say a
6726 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6727 * up the interface) and are enqueued in ipx_mphead.
6728 *
6729 * If a thread does not want to reenter the ipsq when it is already writer,
6730 * it must make sure that the specified reentry point to be called later
6731 * when the ipsq is empty, nor any code path starting from the specified reentry
6732 * point must never ever try to enter the ipsq again. Otherwise it can lead
6733 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6734 * When the thread that is currently exclusive finishes, it (ipsq_exit)
6735 * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6736 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6737 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6738 * ioctl if the current ioctl has completed. If the current ioctl is still
6739 * in progress it simply returns. The current ioctl could be waiting for
6740 * a response from another module (the driver or could be waiting for
6741 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6742 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6743 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6744 * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6745 * all associated DLPI operations have completed.
6746 */
6747
6748 /*
6749 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6750 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ
6751 * on success, or NULL on failure. The caller ensures ipif/ill is valid by
6752 * refholding it as necessary. If the IPSQ cannot be entered and `func' is
6753 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6754 * can be entered. If `func' is NULL, then `q' and `mp' are ignored.
6755 */
6756 ipsq_t *
ipsq_try_enter(ipif_t * ipif,ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6757 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6758 ipsq_func_t func, int type, boolean_t reentry_ok)
6759 {
6760 ip_stack_t *ipst;
6761 ipsq_t *ipsq;
6762
6763 /* Only 1 of ipif or ill can be specified */
6764 ASSERT((ipif != NULL) ^ (ill != NULL));
6765
6766 if (ipif != NULL)
6767 ill = ipif->ipif_ill;
6768 ipst = ill->ill_ipst;
6769
6770 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6771 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6772 rw_exit(&ipst->ips_ill_g_lock);
6773
6774 return (ipsq);
6775 }
6776
6777 /*
6778 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures
6779 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
6780 * cannot be entered, the mp is queued for completion.
6781 */
6782 void
qwriter_ip(ill_t * ill,queue_t * q,mblk_t * mp,ipsq_func_t func,int type,boolean_t reentry_ok)6783 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6784 boolean_t reentry_ok)
6785 {
6786 ipsq_t *ipsq;
6787
6788 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6789
6790 /*
6791 * Drop the caller's refhold on the ill. This is safe since we either
6792 * entered the IPSQ (and thus are exclusive), or failed to enter the
6793 * IPSQ, in which case we return without accessing ill anymore. This
6794 * is needed because func needs to see the correct refcount.
6795 * e.g. removeif can work only then.
6796 */
6797 ill_refrele(ill);
6798 if (ipsq != NULL) {
6799 (*func)(ipsq, q, mp, NULL);
6800 ipsq_exit(ipsq);
6801 }
6802 }
6803
6804 /*
6805 * Exit the specified IPSQ. If this is the final exit on it then drain it
6806 * prior to exiting. Caller must be writer on the specified IPSQ.
6807 */
6808 void
ipsq_exit(ipsq_t * ipsq)6809 ipsq_exit(ipsq_t *ipsq)
6810 {
6811 mblk_t *mp;
6812 ipsq_t *mp_ipsq;
6813 queue_t *q;
6814 phyint_t *phyi;
6815 ipsq_func_t func;
6816
6817 ASSERT(IAM_WRITER_IPSQ(ipsq));
6818
6819 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6820 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6821 ipsq->ipsq_xop->ipx_reentry_cnt--;
6822 return;
6823 }
6824
6825 for (;;) {
6826 phyi = ipsq->ipsq_phyint;
6827 mp = ipsq_dq(ipsq);
6828 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6829
6830 /*
6831 * If we've changed to a new IPSQ, and the phyint associated
6832 * with the old one has gone away, free the old IPSQ. Note
6833 * that this cannot happen while the IPSQ is in a group.
6834 */
6835 if (mp_ipsq != ipsq && phyi == NULL) {
6836 ASSERT(ipsq->ipsq_next == ipsq);
6837 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6838 ipsq_delete(ipsq);
6839 }
6840
6841 if (mp == NULL)
6842 break;
6843
6844 q = mp->b_queue;
6845 func = (ipsq_func_t)mp->b_prev;
6846 ipsq = mp_ipsq;
6847 mp->b_next = mp->b_prev = NULL;
6848 mp->b_queue = NULL;
6849
6850 /*
6851 * If 'q' is an conn queue, it is valid, since we did a
6852 * a refhold on the conn at the start of the ioctl.
6853 * If 'q' is an ill queue, it is valid, since close of an
6854 * ill will clean up its IPSQ.
6855 */
6856 (*func)(ipsq, q, mp, NULL);
6857 }
6858 }
6859
6860 /*
6861 * Used to start any igmp or mld timers that could not be started
6862 * while holding ill_mcast_lock. The timers can't be started while holding
6863 * the lock, since mld/igmp_start_timers may need to call untimeout()
6864 * which can't be done while holding the lock which the timeout handler
6865 * acquires. Otherwise
6866 * there could be a deadlock since the timeout handlers
6867 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6868 * ill_mcast_lock.
6869 */
6870 void
ill_mcast_timer_start(ip_stack_t * ipst)6871 ill_mcast_timer_start(ip_stack_t *ipst)
6872 {
6873 int next;
6874
6875 mutex_enter(&ipst->ips_igmp_timer_lock);
6876 next = ipst->ips_igmp_deferred_next;
6877 ipst->ips_igmp_deferred_next = INFINITY;
6878 mutex_exit(&ipst->ips_igmp_timer_lock);
6879
6880 if (next != INFINITY)
6881 igmp_start_timers(next, ipst);
6882
6883 mutex_enter(&ipst->ips_mld_timer_lock);
6884 next = ipst->ips_mld_deferred_next;
6885 ipst->ips_mld_deferred_next = INFINITY;
6886 mutex_exit(&ipst->ips_mld_timer_lock);
6887
6888 if (next != INFINITY)
6889 mld_start_timers(next, ipst);
6890 }
6891
6892 /*
6893 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6894 * and `ioccmd'.
6895 */
6896 void
ipsq_current_start(ipsq_t * ipsq,ipif_t * ipif,int ioccmd)6897 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6898 {
6899 ill_t *ill = ipif->ipif_ill;
6900 ipxop_t *ipx = ipsq->ipsq_xop;
6901
6902 ASSERT(IAM_WRITER_IPSQ(ipsq));
6903 ASSERT(ipx->ipx_current_ipif == NULL);
6904 ASSERT(ipx->ipx_current_ioctl == 0);
6905
6906 ipx->ipx_current_done = B_FALSE;
6907 ipx->ipx_current_ioctl = ioccmd;
6908 mutex_enter(&ipx->ipx_lock);
6909 ipx->ipx_current_ipif = ipif;
6910 mutex_exit(&ipx->ipx_lock);
6911
6912 /*
6913 * Set IPIF_CHANGING on one or more ipifs associated with the
6914 * current exclusive operation. IPIF_CHANGING prevents any new
6915 * references to the ipif (so that the references will eventually
6916 * drop to zero) and also prevents any "get" operations (e.g.,
6917 * SIOCGLIFFLAGS) from being able to access the ipif until the
6918 * operation has completed and the ipif is again in a stable state.
6919 *
6920 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6921 * ioctl. For internal operations (where ioccmd is zero), all ipifs
6922 * on the ill are marked with IPIF_CHANGING since it's unclear which
6923 * ipifs will be affected.
6924 *
6925 * Note that SIOCLIFREMOVEIF is a special case as it sets
6926 * IPIF_CONDEMNED internally after identifying the right ipif to
6927 * operate on.
6928 */
6929 switch (ioccmd) {
6930 case SIOCLIFREMOVEIF:
6931 break;
6932 case 0:
6933 mutex_enter(&ill->ill_lock);
6934 ipif = ipif->ipif_ill->ill_ipif;
6935 for (; ipif != NULL; ipif = ipif->ipif_next)
6936 ipif->ipif_state_flags |= IPIF_CHANGING;
6937 mutex_exit(&ill->ill_lock);
6938 break;
6939 default:
6940 mutex_enter(&ill->ill_lock);
6941 ipif->ipif_state_flags |= IPIF_CHANGING;
6942 mutex_exit(&ill->ill_lock);
6943 }
6944 }
6945
6946 /*
6947 * Finish the current exclusive operation on `ipsq'. Usually, this will allow
6948 * the next exclusive operation to begin once we ipsq_exit(). However, if
6949 * pending DLPI operations remain, then we will wait for the queue to drain
6950 * before allowing the next exclusive operation to begin. This ensures that
6951 * DLPI operations from one exclusive operation are never improperly processed
6952 * as part of a subsequent exclusive operation.
6953 */
6954 void
ipsq_current_finish(ipsq_t * ipsq)6955 ipsq_current_finish(ipsq_t *ipsq)
6956 {
6957 ipxop_t *ipx = ipsq->ipsq_xop;
6958 t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6959 ipif_t *ipif = ipx->ipx_current_ipif;
6960
6961 ASSERT(IAM_WRITER_IPSQ(ipsq));
6962
6963 /*
6964 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6965 * (but in that case, IPIF_CHANGING will already be clear and no
6966 * pending DLPI messages can remain).
6967 */
6968 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6969 ill_t *ill = ipif->ipif_ill;
6970
6971 mutex_enter(&ill->ill_lock);
6972 dlpi_pending = ill->ill_dlpi_pending;
6973 if (ipx->ipx_current_ioctl == 0) {
6974 ipif = ill->ill_ipif;
6975 for (; ipif != NULL; ipif = ipif->ipif_next)
6976 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6977 } else {
6978 ipif->ipif_state_flags &= ~IPIF_CHANGING;
6979 }
6980 mutex_exit(&ill->ill_lock);
6981 }
6982
6983 ASSERT(!ipx->ipx_current_done);
6984 ipx->ipx_current_done = B_TRUE;
6985 ipx->ipx_current_ioctl = 0;
6986 if (dlpi_pending == DL_PRIM_INVAL) {
6987 mutex_enter(&ipx->ipx_lock);
6988 ipx->ipx_current_ipif = NULL;
6989 mutex_exit(&ipx->ipx_lock);
6990 }
6991 }
6992
6993 /*
6994 * The ill is closing. Flush all messages on the ipsq that originated
6995 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6996 * for this ill since ipsq_enter could not have entered until then.
6997 * New messages can't be queued since the CONDEMNED flag is set.
6998 */
6999 static void
ipsq_flush(ill_t * ill)7000 ipsq_flush(ill_t *ill)
7001 {
7002 queue_t *q;
7003 mblk_t *prev;
7004 mblk_t *mp;
7005 mblk_t *mp_next;
7006 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7007
7008 ASSERT(IAM_WRITER_ILL(ill));
7009
7010 /*
7011 * Flush any messages sent up by the driver.
7012 */
7013 mutex_enter(&ipx->ipx_lock);
7014 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7015 mp_next = mp->b_next;
7016 q = mp->b_queue;
7017 if (q == ill->ill_rq || q == ill->ill_wq) {
7018 /* dequeue mp */
7019 if (prev == NULL)
7020 ipx->ipx_mphead = mp->b_next;
7021 else
7022 prev->b_next = mp->b_next;
7023 if (ipx->ipx_mptail == mp) {
7024 ASSERT(mp_next == NULL);
7025 ipx->ipx_mptail = prev;
7026 }
7027 inet_freemsg(mp);
7028 } else {
7029 prev = mp;
7030 }
7031 }
7032 mutex_exit(&ipx->ipx_lock);
7033 (void) ipsq_pending_mp_cleanup(ill, NULL);
7034 ipsq_xopq_mp_cleanup(ill, NULL);
7035 }
7036
7037 /*
7038 * Parse an ifreq or lifreq struct coming down ioctls and refhold
7039 * and return the associated ipif.
7040 * Return value:
7041 * Non zero: An error has occurred. ci may not be filled out.
7042 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7043 * a held ipif in ci.ci_ipif.
7044 */
7045 int
ip_extract_lifreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)7046 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7047 cmd_info_t *ci)
7048 {
7049 char *name;
7050 struct ifreq *ifr;
7051 struct lifreq *lifr;
7052 ipif_t *ipif = NULL;
7053 ill_t *ill;
7054 conn_t *connp;
7055 boolean_t isv6;
7056 int err;
7057 mblk_t *mp1;
7058 zoneid_t zoneid;
7059 ip_stack_t *ipst;
7060
7061 if (q->q_next != NULL) {
7062 ill = (ill_t *)q->q_ptr;
7063 isv6 = ill->ill_isv6;
7064 connp = NULL;
7065 zoneid = ALL_ZONES;
7066 ipst = ill->ill_ipst;
7067 } else {
7068 ill = NULL;
7069 connp = Q_TO_CONN(q);
7070 isv6 = (connp->conn_family == AF_INET6);
7071 zoneid = connp->conn_zoneid;
7072 if (zoneid == GLOBAL_ZONEID) {
7073 /* global zone can access ipifs in all zones */
7074 zoneid = ALL_ZONES;
7075 }
7076 ipst = connp->conn_netstack->netstack_ip;
7077 }
7078
7079 /* Has been checked in ip_wput_nondata */
7080 mp1 = mp->b_cont->b_cont;
7081
7082 if (ipip->ipi_cmd_type == IF_CMD) {
7083 /* This a old style SIOC[GS]IF* command */
7084 ifr = (struct ifreq *)mp1->b_rptr;
7085 /*
7086 * Null terminate the string to protect against buffer
7087 * overrun. String was generated by user code and may not
7088 * be trusted.
7089 */
7090 ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7091 name = ifr->ifr_name;
7092 ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7093 ci->ci_sin6 = NULL;
7094 ci->ci_lifr = (struct lifreq *)ifr;
7095 } else {
7096 /* This a new style SIOC[GS]LIF* command */
7097 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7098 lifr = (struct lifreq *)mp1->b_rptr;
7099 /*
7100 * Null terminate the string to protect against buffer
7101 * overrun. String was generated by user code and may not
7102 * be trusted.
7103 */
7104 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7105 name = lifr->lifr_name;
7106 ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7107 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7108 ci->ci_lifr = lifr;
7109 }
7110
7111 if (ipip->ipi_cmd == SIOCSLIFNAME) {
7112 /*
7113 * The ioctl will be failed if the ioctl comes down
7114 * an conn stream
7115 */
7116 if (ill == NULL) {
7117 /*
7118 * Not an ill queue, return EINVAL same as the
7119 * old error code.
7120 */
7121 return (ENXIO);
7122 }
7123 ipif = ill->ill_ipif;
7124 ipif_refhold(ipif);
7125 } else {
7126 /*
7127 * Ensure that ioctls don't see any internal state changes
7128 * caused by set ioctls by deferring them if IPIF_CHANGING is
7129 * set.
7130 */
7131 ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7132 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7133 if (ipif == NULL) {
7134 if (err == EINPROGRESS)
7135 return (err);
7136 err = 0; /* Ensure we don't use it below */
7137 }
7138 }
7139
7140 /*
7141 * Old style [GS]IFCMD does not admit IPv6 ipif
7142 */
7143 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7144 ipif_refrele(ipif);
7145 return (ENXIO);
7146 }
7147
7148 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7149 name[0] == '\0') {
7150 /*
7151 * Handle a or a SIOC?IF* with a null name
7152 * during plumb (on the ill queue before the I_PLINK).
7153 */
7154 ipif = ill->ill_ipif;
7155 ipif_refhold(ipif);
7156 }
7157
7158 if (ipif == NULL)
7159 return (ENXIO);
7160
7161 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7162 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7163
7164 ci->ci_ipif = ipif;
7165 return (0);
7166 }
7167
7168 /*
7169 * Return the total number of ipifs.
7170 */
7171 static uint_t
ip_get_numifs(zoneid_t zoneid,ip_stack_t * ipst)7172 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7173 {
7174 uint_t numifs = 0;
7175 ill_t *ill;
7176 ill_walk_context_t ctx;
7177 ipif_t *ipif;
7178
7179 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7180 ill = ILL_START_WALK_V4(&ctx, ipst);
7181 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7182 if (IS_UNDER_IPMP(ill))
7183 continue;
7184 for (ipif = ill->ill_ipif; ipif != NULL;
7185 ipif = ipif->ipif_next) {
7186 if (ipif->ipif_zoneid == zoneid ||
7187 ipif->ipif_zoneid == ALL_ZONES)
7188 numifs++;
7189 }
7190 }
7191 rw_exit(&ipst->ips_ill_g_lock);
7192 return (numifs);
7193 }
7194
7195 /*
7196 * Return the total number of ipifs.
7197 */
7198 static uint_t
ip_get_numlifs(int family,int lifn_flags,zoneid_t zoneid,ip_stack_t * ipst)7199 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7200 {
7201 uint_t numifs = 0;
7202 ill_t *ill;
7203 ipif_t *ipif;
7204 ill_walk_context_t ctx;
7205
7206 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7207
7208 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7209 if (family == AF_INET)
7210 ill = ILL_START_WALK_V4(&ctx, ipst);
7211 else if (family == AF_INET6)
7212 ill = ILL_START_WALK_V6(&ctx, ipst);
7213 else
7214 ill = ILL_START_WALK_ALL(&ctx, ipst);
7215
7216 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7217 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7218 continue;
7219
7220 for (ipif = ill->ill_ipif; ipif != NULL;
7221 ipif = ipif->ipif_next) {
7222 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7223 !(lifn_flags & LIFC_NOXMIT))
7224 continue;
7225 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7226 !(lifn_flags & LIFC_TEMPORARY))
7227 continue;
7228 if (((ipif->ipif_flags &
7229 (IPIF_NOXMIT|IPIF_NOLOCAL|
7230 IPIF_DEPRECATED)) ||
7231 IS_LOOPBACK(ill) ||
7232 !(ipif->ipif_flags & IPIF_UP)) &&
7233 (lifn_flags & LIFC_EXTERNAL_SOURCE))
7234 continue;
7235
7236 if (zoneid != ipif->ipif_zoneid &&
7237 ipif->ipif_zoneid != ALL_ZONES &&
7238 (zoneid != GLOBAL_ZONEID ||
7239 !(lifn_flags & LIFC_ALLZONES)))
7240 continue;
7241
7242 numifs++;
7243 }
7244 }
7245 rw_exit(&ipst->ips_ill_g_lock);
7246 return (numifs);
7247 }
7248
7249 uint_t
ip_get_lifsrcofnum(ill_t * ill)7250 ip_get_lifsrcofnum(ill_t *ill)
7251 {
7252 uint_t numifs = 0;
7253 ill_t *ill_head = ill;
7254 ip_stack_t *ipst = ill->ill_ipst;
7255
7256 /*
7257 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7258 * other thread may be trying to relink the ILLs in this usesrc group
7259 * and adjusting the ill_usesrc_grp_next pointers
7260 */
7261 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7262 if ((ill->ill_usesrc_ifindex == 0) &&
7263 (ill->ill_usesrc_grp_next != NULL)) {
7264 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7265 ill = ill->ill_usesrc_grp_next)
7266 numifs++;
7267 }
7268 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7269
7270 return (numifs);
7271 }
7272
7273 /* Null values are passed in for ipif, sin, and ifreq */
7274 /* ARGSUSED */
7275 int
ip_sioctl_get_ifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7276 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7277 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7278 {
7279 int *nump;
7280 conn_t *connp = Q_TO_CONN(q);
7281
7282 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7283
7284 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
7285 nump = (int *)mp->b_cont->b_cont->b_rptr;
7286
7287 *nump = ip_get_numifs(connp->conn_zoneid,
7288 connp->conn_netstack->netstack_ip);
7289 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7290 return (0);
7291 }
7292
7293 /* Null values are passed in for ipif, sin, and ifreq */
7294 /* ARGSUSED */
7295 int
ip_sioctl_get_lifnum(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7296 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7297 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7298 {
7299 struct lifnum *lifn;
7300 mblk_t *mp1;
7301 conn_t *connp = Q_TO_CONN(q);
7302
7303 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7304
7305 /* Existence checked in ip_wput_nondata */
7306 mp1 = mp->b_cont->b_cont;
7307
7308 lifn = (struct lifnum *)mp1->b_rptr;
7309 switch (lifn->lifn_family) {
7310 case AF_UNSPEC:
7311 case AF_INET:
7312 case AF_INET6:
7313 break;
7314 default:
7315 return (EAFNOSUPPORT);
7316 }
7317
7318 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7319 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7320 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7321 return (0);
7322 }
7323
7324 /* ARGSUSED */
7325 int
ip_sioctl_get_ifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7326 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7327 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7328 {
7329 STRUCT_HANDLE(ifconf, ifc);
7330 mblk_t *mp1;
7331 struct iocblk *iocp;
7332 struct ifreq *ifr;
7333 ill_walk_context_t ctx;
7334 ill_t *ill;
7335 ipif_t *ipif;
7336 struct sockaddr_in *sin;
7337 int32_t ifclen;
7338 zoneid_t zoneid;
7339 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7340
7341 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7342
7343 ip1dbg(("ip_sioctl_get_ifconf"));
7344 /* Existence verified in ip_wput_nondata */
7345 mp1 = mp->b_cont->b_cont;
7346 iocp = (struct iocblk *)mp->b_rptr;
7347 zoneid = Q_TO_CONN(q)->conn_zoneid;
7348
7349 /*
7350 * The original SIOCGIFCONF passed in a struct ifconf which specified
7351 * the user buffer address and length into which the list of struct
7352 * ifreqs was to be copied. Since AT&T Streams does not seem to
7353 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7354 * the SIOCGIFCONF operation was redefined to simply provide
7355 * a large output buffer into which we are supposed to jam the ifreq
7356 * array. The same ioctl command code was used, despite the fact that
7357 * both the applications and the kernel code had to change, thus making
7358 * it impossible to support both interfaces.
7359 *
7360 * For reasons not good enough to try to explain, the following
7361 * algorithm is used for deciding what to do with one of these:
7362 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7363 * form with the output buffer coming down as the continuation message.
7364 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7365 * and we have to copy in the ifconf structure to find out how big the
7366 * output buffer is and where to copy out to. Sure no problem...
7367 *
7368 */
7369 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7370 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7371 int numifs = 0;
7372 size_t ifc_bufsize;
7373
7374 /*
7375 * Must be (better be!) continuation of a TRANSPARENT
7376 * IOCTL. We just copied in the ifconf structure.
7377 */
7378 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7379 (struct ifconf *)mp1->b_rptr);
7380
7381 /*
7382 * Allocate a buffer to hold requested information.
7383 *
7384 * If ifc_len is larger than what is needed, we only
7385 * allocate what we will use.
7386 *
7387 * If ifc_len is smaller than what is needed, return
7388 * EINVAL.
7389 *
7390 * XXX: the ill_t structure can hava 2 counters, for
7391 * v4 and v6 (not just ill_ipif_up_count) to store the
7392 * number of interfaces for a device, so we don't need
7393 * to count them here...
7394 */
7395 numifs = ip_get_numifs(zoneid, ipst);
7396
7397 ifclen = STRUCT_FGET(ifc, ifc_len);
7398 ifc_bufsize = numifs * sizeof (struct ifreq);
7399 if (ifc_bufsize > ifclen) {
7400 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7401 /* old behaviour */
7402 return (EINVAL);
7403 } else {
7404 ifc_bufsize = ifclen;
7405 }
7406 }
7407
7408 mp1 = mi_copyout_alloc(q, mp,
7409 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7410 if (mp1 == NULL)
7411 return (ENOMEM);
7412
7413 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7414 }
7415 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7416 /*
7417 * the SIOCGIFCONF ioctl only knows about
7418 * IPv4 addresses, so don't try to tell
7419 * it about interfaces with IPv6-only
7420 * addresses. (Last parm 'isv6' is B_FALSE)
7421 */
7422
7423 ifr = (struct ifreq *)mp1->b_rptr;
7424
7425 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7426 ill = ILL_START_WALK_V4(&ctx, ipst);
7427 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7428 if (IS_UNDER_IPMP(ill))
7429 continue;
7430 for (ipif = ill->ill_ipif; ipif != NULL;
7431 ipif = ipif->ipif_next) {
7432 if (zoneid != ipif->ipif_zoneid &&
7433 ipif->ipif_zoneid != ALL_ZONES)
7434 continue;
7435 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7436 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7437 /* old behaviour */
7438 rw_exit(&ipst->ips_ill_g_lock);
7439 return (EINVAL);
7440 } else {
7441 goto if_copydone;
7442 }
7443 }
7444 ipif_get_name(ipif, ifr->ifr_name,
7445 sizeof (ifr->ifr_name));
7446 sin = (sin_t *)&ifr->ifr_addr;
7447 *sin = sin_null;
7448 sin->sin_family = AF_INET;
7449 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7450 ifr++;
7451 }
7452 }
7453 if_copydone:
7454 rw_exit(&ipst->ips_ill_g_lock);
7455 mp1->b_wptr = (uchar_t *)ifr;
7456
7457 if (STRUCT_BUF(ifc) != NULL) {
7458 STRUCT_FSET(ifc, ifc_len,
7459 (int)((uchar_t *)ifr - mp1->b_rptr));
7460 }
7461 return (0);
7462 }
7463
7464 /*
7465 * Get the interfaces using the address hosted on the interface passed in,
7466 * as a source adddress
7467 */
7468 /* ARGSUSED */
7469 int
ip_sioctl_get_lifsrcof(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7470 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7471 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7472 {
7473 mblk_t *mp1;
7474 ill_t *ill, *ill_head;
7475 ipif_t *ipif, *orig_ipif;
7476 int numlifs = 0;
7477 size_t lifs_bufsize, lifsmaxlen;
7478 struct lifreq *lifr;
7479 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7480 uint_t ifindex;
7481 zoneid_t zoneid;
7482 boolean_t isv6 = B_FALSE;
7483 struct sockaddr_in *sin;
7484 struct sockaddr_in6 *sin6;
7485 STRUCT_HANDLE(lifsrcof, lifs);
7486 ip_stack_t *ipst;
7487
7488 ipst = CONNQ_TO_IPST(q);
7489
7490 ASSERT(q->q_next == NULL);
7491
7492 zoneid = Q_TO_CONN(q)->conn_zoneid;
7493
7494 /* Existence verified in ip_wput_nondata */
7495 mp1 = mp->b_cont->b_cont;
7496
7497 /*
7498 * Must be (better be!) continuation of a TRANSPARENT
7499 * IOCTL. We just copied in the lifsrcof structure.
7500 */
7501 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7502 (struct lifsrcof *)mp1->b_rptr);
7503
7504 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7505 return (EINVAL);
7506
7507 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7508 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7509 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7510 if (ipif == NULL) {
7511 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7512 ifindex));
7513 return (ENXIO);
7514 }
7515
7516 /* Allocate a buffer to hold requested information */
7517 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7518 lifs_bufsize = numlifs * sizeof (struct lifreq);
7519 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
7520 /* The actual size needed is always returned in lifs_len */
7521 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7522
7523 /* If the amount we need is more than what is passed in, abort */
7524 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7525 ipif_refrele(ipif);
7526 return (0);
7527 }
7528
7529 mp1 = mi_copyout_alloc(q, mp,
7530 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7531 if (mp1 == NULL) {
7532 ipif_refrele(ipif);
7533 return (ENOMEM);
7534 }
7535
7536 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7537 bzero(mp1->b_rptr, lifs_bufsize);
7538
7539 lifr = (struct lifreq *)mp1->b_rptr;
7540
7541 ill = ill_head = ipif->ipif_ill;
7542 orig_ipif = ipif;
7543
7544 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7545 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7546 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7547
7548 ill = ill->ill_usesrc_grp_next; /* start from next ill */
7549 for (; (ill != NULL) && (ill != ill_head);
7550 ill = ill->ill_usesrc_grp_next) {
7551
7552 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7553 break;
7554
7555 ipif = ill->ill_ipif;
7556 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7557 if (ipif->ipif_isv6) {
7558 sin6 = (sin6_t *)&lifr->lifr_addr;
7559 *sin6 = sin6_null;
7560 sin6->sin6_family = AF_INET6;
7561 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7562 lifr->lifr_addrlen = ip_mask_to_plen_v6(
7563 &ipif->ipif_v6net_mask);
7564 } else {
7565 sin = (sin_t *)&lifr->lifr_addr;
7566 *sin = sin_null;
7567 sin->sin_family = AF_INET;
7568 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7569 lifr->lifr_addrlen = ip_mask_to_plen(
7570 ipif->ipif_net_mask);
7571 }
7572 lifr++;
7573 }
7574 rw_exit(&ipst->ips_ill_g_lock);
7575 rw_exit(&ipst->ips_ill_g_usesrc_lock);
7576 ipif_refrele(orig_ipif);
7577 mp1->b_wptr = (uchar_t *)lifr;
7578 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7579
7580 return (0);
7581 }
7582
7583 /* ARGSUSED */
7584 int
ip_sioctl_get_lifconf(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)7585 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7586 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7587 {
7588 mblk_t *mp1;
7589 int list;
7590 ill_t *ill;
7591 ipif_t *ipif;
7592 int flags;
7593 int numlifs = 0;
7594 size_t lifc_bufsize;
7595 struct lifreq *lifr;
7596 sa_family_t family;
7597 struct sockaddr_in *sin;
7598 struct sockaddr_in6 *sin6;
7599 ill_walk_context_t ctx;
7600 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7601 int32_t lifclen;
7602 zoneid_t zoneid;
7603 STRUCT_HANDLE(lifconf, lifc);
7604 ip_stack_t *ipst = CONNQ_TO_IPST(q);
7605
7606 ip1dbg(("ip_sioctl_get_lifconf"));
7607
7608 ASSERT(q->q_next == NULL);
7609
7610 zoneid = Q_TO_CONN(q)->conn_zoneid;
7611
7612 /* Existence verified in ip_wput_nondata */
7613 mp1 = mp->b_cont->b_cont;
7614
7615 /*
7616 * An extended version of SIOCGIFCONF that takes an
7617 * additional address family and flags field.
7618 * AF_UNSPEC retrieve both IPv4 and IPv6.
7619 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7620 * interfaces are omitted.
7621 * Similarly, IPIF_TEMPORARY interfaces are omitted
7622 * unless LIFC_TEMPORARY is specified.
7623 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7624 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7625 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7626 * has priority over LIFC_NOXMIT.
7627 */
7628 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7629
7630 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7631 return (EINVAL);
7632
7633 /*
7634 * Must be (better be!) continuation of a TRANSPARENT
7635 * IOCTL. We just copied in the lifconf structure.
7636 */
7637 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7638
7639 family = STRUCT_FGET(lifc, lifc_family);
7640 flags = STRUCT_FGET(lifc, lifc_flags);
7641
7642 switch (family) {
7643 case AF_UNSPEC:
7644 /*
7645 * walk all ILL's.
7646 */
7647 list = MAX_G_HEADS;
7648 break;
7649 case AF_INET:
7650 /*
7651 * walk only IPV4 ILL's.
7652 */
7653 list = IP_V4_G_HEAD;
7654 break;
7655 case AF_INET6:
7656 /*
7657 * walk only IPV6 ILL's.
7658 */
7659 list = IP_V6_G_HEAD;
7660 break;
7661 default:
7662 return (EAFNOSUPPORT);
7663 }
7664
7665 /*
7666 * Allocate a buffer to hold requested information.
7667 *
7668 * If lifc_len is larger than what is needed, we only
7669 * allocate what we will use.
7670 *
7671 * If lifc_len is smaller than what is needed, return
7672 * EINVAL.
7673 */
7674 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7675 lifc_bufsize = numlifs * sizeof (struct lifreq);
7676 lifclen = STRUCT_FGET(lifc, lifc_len);
7677 if (lifc_bufsize > lifclen) {
7678 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7679 return (EINVAL);
7680 else
7681 lifc_bufsize = lifclen;
7682 }
7683
7684 mp1 = mi_copyout_alloc(q, mp,
7685 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7686 if (mp1 == NULL)
7687 return (ENOMEM);
7688
7689 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7690 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7691
7692 lifr = (struct lifreq *)mp1->b_rptr;
7693
7694 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7695 ill = ill_first(list, list, &ctx, ipst);
7696 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7697 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7698 continue;
7699
7700 for (ipif = ill->ill_ipif; ipif != NULL;
7701 ipif = ipif->ipif_next) {
7702 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7703 !(flags & LIFC_NOXMIT))
7704 continue;
7705
7706 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7707 !(flags & LIFC_TEMPORARY))
7708 continue;
7709
7710 if (((ipif->ipif_flags &
7711 (IPIF_NOXMIT|IPIF_NOLOCAL|
7712 IPIF_DEPRECATED)) ||
7713 IS_LOOPBACK(ill) ||
7714 !(ipif->ipif_flags & IPIF_UP)) &&
7715 (flags & LIFC_EXTERNAL_SOURCE))
7716 continue;
7717
7718 if (zoneid != ipif->ipif_zoneid &&
7719 ipif->ipif_zoneid != ALL_ZONES &&
7720 (zoneid != GLOBAL_ZONEID ||
7721 !(flags & LIFC_ALLZONES)))
7722 continue;
7723
7724 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7725 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7726 rw_exit(&ipst->ips_ill_g_lock);
7727 return (EINVAL);
7728 } else {
7729 goto lif_copydone;
7730 }
7731 }
7732
7733 ipif_get_name(ipif, lifr->lifr_name,
7734 sizeof (lifr->lifr_name));
7735 lifr->lifr_type = ill->ill_type;
7736 if (ipif->ipif_isv6) {
7737 sin6 = (sin6_t *)&lifr->lifr_addr;
7738 *sin6 = sin6_null;
7739 sin6->sin6_family = AF_INET6;
7740 sin6->sin6_addr =
7741 ipif->ipif_v6lcl_addr;
7742 lifr->lifr_addrlen =
7743 ip_mask_to_plen_v6(
7744 &ipif->ipif_v6net_mask);
7745 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7746 sin6->sin6_scope_id =
7747 ill->ill_phyint->phyint_ifindex;
7748 }
7749 } else {
7750 sin = (sin_t *)&lifr->lifr_addr;
7751 *sin = sin_null;
7752 sin->sin_family = AF_INET;
7753 sin->sin_addr.s_addr =
7754 ipif->ipif_lcl_addr;
7755 lifr->lifr_addrlen =
7756 ip_mask_to_plen(
7757 ipif->ipif_net_mask);
7758 }
7759 lifr++;
7760 }
7761 }
7762 lif_copydone:
7763 rw_exit(&ipst->ips_ill_g_lock);
7764
7765 mp1->b_wptr = (uchar_t *)lifr;
7766 if (STRUCT_BUF(lifc) != NULL) {
7767 STRUCT_FSET(lifc, lifc_len,
7768 (int)((uchar_t *)lifr - mp1->b_rptr));
7769 }
7770 return (0);
7771 }
7772
7773 static void
ip_sioctl_ip6addrpolicy(queue_t * q,mblk_t * mp)7774 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7775 {
7776 ip6_asp_t *table;
7777 size_t table_size;
7778 mblk_t *data_mp;
7779 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7780 ip_stack_t *ipst;
7781
7782 if (q->q_next == NULL)
7783 ipst = CONNQ_TO_IPST(q);
7784 else
7785 ipst = ILLQ_TO_IPST(q);
7786
7787 /* These two ioctls are I_STR only */
7788 if (iocp->ioc_count == TRANSPARENT) {
7789 miocnak(q, mp, 0, EINVAL);
7790 return;
7791 }
7792
7793 data_mp = mp->b_cont;
7794 if (data_mp == NULL) {
7795 /* The user passed us a NULL argument */
7796 table = NULL;
7797 table_size = iocp->ioc_count;
7798 } else {
7799 /*
7800 * The user provided a table. The stream head
7801 * may have copied in the user data in chunks,
7802 * so make sure everything is pulled up
7803 * properly.
7804 */
7805 if (MBLKL(data_mp) < iocp->ioc_count) {
7806 mblk_t *new_data_mp;
7807 if ((new_data_mp = msgpullup(data_mp, -1)) ==
7808 NULL) {
7809 miocnak(q, mp, 0, ENOMEM);
7810 return;
7811 }
7812 freemsg(data_mp);
7813 data_mp = new_data_mp;
7814 mp->b_cont = data_mp;
7815 }
7816 table = (ip6_asp_t *)data_mp->b_rptr;
7817 table_size = iocp->ioc_count;
7818 }
7819
7820 switch (iocp->ioc_cmd) {
7821 case SIOCGIP6ADDRPOLICY:
7822 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7823 if (iocp->ioc_rval == -1)
7824 iocp->ioc_error = EINVAL;
7825 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7826 else if (table != NULL &&
7827 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7828 ip6_asp_t *src = table;
7829 ip6_asp32_t *dst = (void *)table;
7830 int count = table_size / sizeof (ip6_asp_t);
7831 int i;
7832
7833 /*
7834 * We need to do an in-place shrink of the array
7835 * to match the alignment attributes of the
7836 * 32-bit ABI looking at it.
7837 */
7838 /* LINTED: logical expression always true: op "||" */
7839 ASSERT(sizeof (*src) > sizeof (*dst));
7840 for (i = 1; i < count; i++)
7841 bcopy(src + i, dst + i, sizeof (*dst));
7842 }
7843 #endif
7844 break;
7845
7846 case SIOCSIP6ADDRPOLICY:
7847 ASSERT(mp->b_prev == NULL);
7848 mp->b_prev = (void *)q;
7849 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7850 /*
7851 * We pass in the datamodel here so that the ip6_asp_replace()
7852 * routine can handle converting from 32-bit to native formats
7853 * where necessary.
7854 *
7855 * A better way to handle this might be to convert the inbound
7856 * data structure here, and hang it off a new 'mp'; thus the
7857 * ip6_asp_replace() logic would always be dealing with native
7858 * format data structures..
7859 *
7860 * (An even simpler way to handle these ioctls is to just
7861 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7862 * and just recompile everything that depends on it.)
7863 */
7864 #endif
7865 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7866 iocp->ioc_flag & IOC_MODELS);
7867 return;
7868 }
7869
7870 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7871 qreply(q, mp);
7872 }
7873
7874 static void
ip_sioctl_dstinfo(queue_t * q,mblk_t * mp)7875 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7876 {
7877 mblk_t *data_mp;
7878 struct dstinforeq *dir;
7879 uint8_t *end, *cur;
7880 in6_addr_t *daddr, *saddr;
7881 ipaddr_t v4daddr;
7882 ire_t *ire;
7883 ipaddr_t v4setsrc;
7884 in6_addr_t v6setsrc;
7885 char *slabel, *dlabel;
7886 boolean_t isipv4;
7887 int match_ire;
7888 ill_t *dst_ill;
7889 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7890 conn_t *connp = Q_TO_CONN(q);
7891 zoneid_t zoneid = IPCL_ZONEID(connp);
7892 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
7893 uint64_t ipif_flags;
7894
7895 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7896
7897 /*
7898 * This ioctl is I_STR only, and must have a
7899 * data mblk following the M_IOCTL mblk.
7900 */
7901 data_mp = mp->b_cont;
7902 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7903 miocnak(q, mp, 0, EINVAL);
7904 return;
7905 }
7906
7907 if (MBLKL(data_mp) < iocp->ioc_count) {
7908 mblk_t *new_data_mp;
7909
7910 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7911 miocnak(q, mp, 0, ENOMEM);
7912 return;
7913 }
7914 freemsg(data_mp);
7915 data_mp = new_data_mp;
7916 mp->b_cont = data_mp;
7917 }
7918 match_ire = MATCH_IRE_DSTONLY;
7919
7920 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7921 end - cur >= sizeof (struct dstinforeq);
7922 cur += sizeof (struct dstinforeq)) {
7923 dir = (struct dstinforeq *)cur;
7924 daddr = &dir->dir_daddr;
7925 saddr = &dir->dir_saddr;
7926
7927 /*
7928 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7929 * v4 mapped addresses; ire_ftable_lookup_v6()
7930 * and ip_select_source_v6() do not.
7931 */
7932 dir->dir_dscope = ip_addr_scope_v6(daddr);
7933 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7934
7935 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7936 if (isipv4) {
7937 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7938 v4setsrc = INADDR_ANY;
7939 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7941 NULL, NULL);
7942 } else {
7943 v6setsrc = ipv6_all_zeros;
7944 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7945 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7946 NULL, NULL);
7947 }
7948 ASSERT(ire != NULL);
7949 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7950 ire_refrele(ire);
7951 dir->dir_dreachable = 0;
7952
7953 /* move on to next dst addr */
7954 continue;
7955 }
7956 dir->dir_dreachable = 1;
7957
7958 dst_ill = ire_nexthop_ill(ire);
7959 if (dst_ill == NULL) {
7960 ire_refrele(ire);
7961 continue;
7962 }
7963
7964 /* With ipmp we most likely look at the ipmp ill here */
7965 dir->dir_dmactype = dst_ill->ill_mactype;
7966
7967 if (isipv4) {
7968 ipaddr_t v4saddr;
7969
7970 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7971 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7972 &v4saddr, NULL, &ipif_flags) != 0) {
7973 v4saddr = INADDR_ANY;
7974 ipif_flags = 0;
7975 }
7976 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7977 } else {
7978 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7979 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7980 saddr, NULL, &ipif_flags) != 0) {
7981 *saddr = ipv6_all_zeros;
7982 ipif_flags = 0;
7983 }
7984 }
7985
7986 dir->dir_sscope = ip_addr_scope_v6(saddr);
7987 slabel = ip6_asp_lookup(saddr, NULL, ipst);
7988 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7989 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7990 ire_refrele(ire);
7991 ill_refrele(dst_ill);
7992 }
7993 miocack(q, mp, iocp->ioc_count, 0);
7994 }
7995
7996 /*
7997 * Check if this is an address assigned to this machine.
7998 * Skips interfaces that are down by using ire checks.
7999 * Translates mapped addresses to v4 addresses and then
8000 * treats them as such, returning true if the v4 address
8001 * associated with this mapped address is configured.
8002 * Note: Applications will have to be careful what they do
8003 * with the response; use of mapped addresses limits
8004 * what can be done with the socket, especially with
8005 * respect to socket options and ioctls - neither IPv4
8006 * options nor IPv6 sticky options/ancillary data options
8007 * may be used.
8008 */
8009 /* ARGSUSED */
8010 int
ip_sioctl_tmyaddr(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8011 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8012 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8013 {
8014 struct sioc_addrreq *sia;
8015 sin_t *sin;
8016 ire_t *ire;
8017 mblk_t *mp1;
8018 zoneid_t zoneid;
8019 ip_stack_t *ipst;
8020
8021 ip1dbg(("ip_sioctl_tmyaddr"));
8022
8023 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8024 zoneid = Q_TO_CONN(q)->conn_zoneid;
8025 ipst = CONNQ_TO_IPST(q);
8026
8027 /* Existence verified in ip_wput_nondata */
8028 mp1 = mp->b_cont->b_cont;
8029 sia = (struct sioc_addrreq *)mp1->b_rptr;
8030 sin = (sin_t *)&sia->sa_addr;
8031 switch (sin->sin_family) {
8032 case AF_INET6: {
8033 sin6_t *sin6 = (sin6_t *)sin;
8034
8035 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8036 ipaddr_t v4_addr;
8037
8038 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8039 v4_addr);
8040 ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8041 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8042 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8043 } else {
8044 in6_addr_t v6addr;
8045
8046 v6addr = sin6->sin6_addr;
8047 ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8048 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8049 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8050 }
8051 break;
8052 }
8053 case AF_INET: {
8054 ipaddr_t v4addr;
8055
8056 v4addr = sin->sin_addr.s_addr;
8057 ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8058 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8059 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8060 break;
8061 }
8062 default:
8063 return (EAFNOSUPPORT);
8064 }
8065 if (ire != NULL) {
8066 sia->sa_res = 1;
8067 ire_refrele(ire);
8068 } else {
8069 sia->sa_res = 0;
8070 }
8071 return (0);
8072 }
8073
8074 /*
8075 * Check if this is an address assigned on-link i.e. neighbor,
8076 * and makes sure it's reachable from the current zone.
8077 * Returns true for my addresses as well.
8078 * Translates mapped addresses to v4 addresses and then
8079 * treats them as such, returning true if the v4 address
8080 * associated with this mapped address is configured.
8081 * Note: Applications will have to be careful what they do
8082 * with the response; use of mapped addresses limits
8083 * what can be done with the socket, especially with
8084 * respect to socket options and ioctls - neither IPv4
8085 * options nor IPv6 sticky options/ancillary data options
8086 * may be used.
8087 */
8088 /* ARGSUSED */
8089 int
ip_sioctl_tonlink(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * duymmy_ifreq)8090 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8091 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8092 {
8093 struct sioc_addrreq *sia;
8094 sin_t *sin;
8095 mblk_t *mp1;
8096 ire_t *ire = NULL;
8097 zoneid_t zoneid;
8098 ip_stack_t *ipst;
8099
8100 ip1dbg(("ip_sioctl_tonlink"));
8101
8102 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8103 zoneid = Q_TO_CONN(q)->conn_zoneid;
8104 ipst = CONNQ_TO_IPST(q);
8105
8106 /* Existence verified in ip_wput_nondata */
8107 mp1 = mp->b_cont->b_cont;
8108 sia = (struct sioc_addrreq *)mp1->b_rptr;
8109 sin = (sin_t *)&sia->sa_addr;
8110
8111 /*
8112 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8113 * to make sure we only look at on-link unicast address.
8114 */
8115 switch (sin->sin_family) {
8116 case AF_INET6: {
8117 sin6_t *sin6 = (sin6_t *)sin;
8118
8119 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8120 ipaddr_t v4_addr;
8121
8122 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8123 v4_addr);
8124 if (!CLASSD(v4_addr)) {
8125 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8126 NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8127 0, ipst, NULL);
8128 }
8129 } else {
8130 in6_addr_t v6addr;
8131
8132 v6addr = sin6->sin6_addr;
8133 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8134 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8135 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8136 ipst, NULL);
8137 }
8138 }
8139 break;
8140 }
8141 case AF_INET: {
8142 ipaddr_t v4addr;
8143
8144 v4addr = sin->sin_addr.s_addr;
8145 if (!CLASSD(v4addr)) {
8146 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8147 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8148 }
8149 break;
8150 }
8151 default:
8152 return (EAFNOSUPPORT);
8153 }
8154 sia->sa_res = 0;
8155 if (ire != NULL) {
8156 ASSERT(!(ire->ire_type & IRE_MULTICAST));
8157
8158 if ((ire->ire_type & IRE_ONLINK) &&
8159 !(ire->ire_type & IRE_BROADCAST))
8160 sia->sa_res = 1;
8161 ire_refrele(ire);
8162 }
8163 return (0);
8164 }
8165
8166 /*
8167 * TBD: implement when kernel maintaines a list of site prefixes.
8168 */
8169 /* ARGSUSED */
8170 int
ip_sioctl_tmysite(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)8171 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8172 ip_ioctl_cmd_t *ipip, void *ifreq)
8173 {
8174 return (ENXIO);
8175 }
8176
8177 /* ARP IOCTLs. */
8178 /* ARGSUSED */
8179 int
ip_sioctl_arp(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)8180 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8181 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8182 {
8183 int err;
8184 ipaddr_t ipaddr;
8185 struct iocblk *iocp;
8186 conn_t *connp;
8187 struct arpreq *ar;
8188 struct xarpreq *xar;
8189 int arp_flags, flags, alength;
8190 uchar_t *lladdr;
8191 ip_stack_t *ipst;
8192 ill_t *ill = ipif->ipif_ill;
8193 ill_t *proxy_ill = NULL;
8194 ipmp_arpent_t *entp = NULL;
8195 boolean_t proxyarp = B_FALSE;
8196 boolean_t if_arp_ioctl = B_FALSE;
8197 ncec_t *ncec = NULL;
8198 nce_t *nce;
8199
8200 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8201 connp = Q_TO_CONN(q);
8202 ipst = connp->conn_netstack->netstack_ip;
8203 iocp = (struct iocblk *)mp->b_rptr;
8204
8205 if (ipip->ipi_cmd_type == XARP_CMD) {
8206 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8207 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8208 ar = NULL;
8209
8210 arp_flags = xar->xarp_flags;
8211 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8212 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8213 /*
8214 * Validate against user's link layer address length
8215 * input and name and addr length limits.
8216 */
8217 alength = ill->ill_phys_addr_length;
8218 if (ipip->ipi_cmd == SIOCSXARP) {
8219 if (alength != xar->xarp_ha.sdl_alen ||
8220 (alength + xar->xarp_ha.sdl_nlen >
8221 sizeof (xar->xarp_ha.sdl_data)))
8222 return (EINVAL);
8223 }
8224 } else {
8225 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8226 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8227 xar = NULL;
8228
8229 arp_flags = ar->arp_flags;
8230 lladdr = (uchar_t *)ar->arp_ha.sa_data;
8231 /*
8232 * Theoretically, the sa_family could tell us what link
8233 * layer type this operation is trying to deal with. By
8234 * common usage AF_UNSPEC means ethernet. We'll assume
8235 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8236 * for now. Our new SIOC*XARP ioctls can be used more
8237 * generally.
8238 *
8239 * If the underlying media happens to have a non 6 byte
8240 * address, arp module will fail set/get, but the del
8241 * operation will succeed.
8242 */
8243 alength = 6;
8244 if ((ipip->ipi_cmd != SIOCDARP) &&
8245 (alength != ill->ill_phys_addr_length)) {
8246 return (EINVAL);
8247 }
8248 }
8249
8250 /* Translate ATF* flags to NCE* flags */
8251 flags = 0;
8252 if (arp_flags & ATF_AUTHORITY)
8253 flags |= NCE_F_AUTHORITY;
8254 if (arp_flags & ATF_PERM)
8255 flags |= NCE_F_NONUD; /* not subject to aging */
8256 if (arp_flags & ATF_PUBL)
8257 flags |= NCE_F_PUBLISH;
8258
8259 /*
8260 * IPMP ARP special handling:
8261 *
8262 * 1. Since ARP mappings must appear consistent across the group,
8263 * prohibit changing ARP mappings on the underlying interfaces.
8264 *
8265 * 2. Since ARP mappings for IPMP data addresses are maintained by
8266 * IP itself, prohibit changing them.
8267 *
8268 * 3. For proxy ARP, use a functioning hardware address in the group,
8269 * provided one exists. If one doesn't, just add the entry as-is;
8270 * ipmp_illgrp_refresh_arpent() will refresh it if things change.
8271 */
8272 if (IS_UNDER_IPMP(ill)) {
8273 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8274 return (EPERM);
8275 }
8276 if (IS_IPMP(ill)) {
8277 ipmp_illgrp_t *illg = ill->ill_grp;
8278
8279 switch (ipip->ipi_cmd) {
8280 case SIOCSARP:
8281 case SIOCSXARP:
8282 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8283 if (proxy_ill != NULL) {
8284 proxyarp = B_TRUE;
8285 if (!ipmp_ill_is_active(proxy_ill))
8286 proxy_ill = ipmp_illgrp_next_ill(illg);
8287 if (proxy_ill != NULL)
8288 lladdr = proxy_ill->ill_phys_addr;
8289 }
8290 /* FALLTHRU */
8291 }
8292 }
8293
8294 ipaddr = sin->sin_addr.s_addr;
8295 /*
8296 * don't match across illgrp per case (1) and (2).
8297 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8298 */
8299 nce = nce_lookup_v4(ill, &ipaddr);
8300 if (nce != NULL)
8301 ncec = nce->nce_common;
8302
8303 switch (iocp->ioc_cmd) {
8304 case SIOCDARP:
8305 case SIOCDXARP: {
8306 /*
8307 * Delete the NCE if any.
8308 */
8309 if (ncec == NULL) {
8310 iocp->ioc_error = ENXIO;
8311 break;
8312 }
8313 /* Don't allow changes to arp mappings of local addresses. */
8314 if (NCE_MYADDR(ncec)) {
8315 nce_refrele(nce);
8316 return (ENOTSUP);
8317 }
8318 iocp->ioc_error = 0;
8319
8320 /*
8321 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8322 * This will delete all the nce entries on the under_ills.
8323 */
8324 ncec_delete(ncec);
8325 /*
8326 * Once the NCE has been deleted, then the ire_dep* consistency
8327 * mechanism will find any IRE which depended on the now
8328 * condemned NCE (as part of sending packets).
8329 * That mechanism handles redirects by deleting redirects
8330 * that refer to UNREACHABLE nces.
8331 */
8332 break;
8333 }
8334 case SIOCGARP:
8335 case SIOCGXARP:
8336 if (ncec != NULL) {
8337 lladdr = ncec->ncec_lladdr;
8338 flags = ncec->ncec_flags;
8339 iocp->ioc_error = 0;
8340 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8341 } else {
8342 iocp->ioc_error = ENXIO;
8343 }
8344 break;
8345 case SIOCSARP:
8346 case SIOCSXARP:
8347 /* Don't allow changes to arp mappings of local addresses. */
8348 if (ncec != NULL && NCE_MYADDR(ncec)) {
8349 nce_refrele(nce);
8350 return (ENOTSUP);
8351 }
8352
8353 /* static arp entries will undergo NUD if ATF_PERM is not set */
8354 flags |= NCE_F_STATIC;
8355 if (!if_arp_ioctl) {
8356 ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8357 lladdr, alength, flags);
8358 } else {
8359 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8360 if (ipif != NULL) {
8361 ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8362 lladdr, alength, flags);
8363 ipif_refrele(ipif);
8364 }
8365 }
8366 if (nce != NULL) {
8367 nce_refrele(nce);
8368 nce = NULL;
8369 }
8370 /*
8371 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8372 * by nce_add_common()
8373 */
8374 err = nce_lookup_then_add_v4(ill, lladdr,
8375 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8376 &nce);
8377 if (err == EEXIST) {
8378 ncec = nce->nce_common;
8379 mutex_enter(&ncec->ncec_lock);
8380 ncec->ncec_state = ND_REACHABLE;
8381 ncec->ncec_flags = flags;
8382 nce_update(ncec, ND_UNCHANGED, lladdr);
8383 mutex_exit(&ncec->ncec_lock);
8384 err = 0;
8385 }
8386 if (nce != NULL) {
8387 nce_refrele(nce);
8388 nce = NULL;
8389 }
8390 if (IS_IPMP(ill) && err == 0) {
8391 entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8392 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8393 flags);
8394 if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8395 iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8396 break;
8397 }
8398 }
8399 iocp->ioc_error = err;
8400 }
8401
8402 if (nce != NULL) {
8403 nce_refrele(nce);
8404 }
8405
8406 /*
8407 * If we created an IPMP ARP entry, mark that we've notified ARP.
8408 */
8409 if (entp != NULL)
8410 ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8411
8412 return (iocp->ioc_error);
8413 }
8414
8415 /*
8416 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8417 * the associated sin and refhold and return the associated ipif via `ci'.
8418 */
8419 int
ip_extract_arpreq(queue_t * q,mblk_t * mp,const ip_ioctl_cmd_t * ipip,cmd_info_t * ci)8420 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8421 cmd_info_t *ci)
8422 {
8423 mblk_t *mp1;
8424 sin_t *sin;
8425 conn_t *connp;
8426 ipif_t *ipif;
8427 ire_t *ire = NULL;
8428 ill_t *ill = NULL;
8429 boolean_t exists;
8430 ip_stack_t *ipst;
8431 struct arpreq *ar;
8432 struct xarpreq *xar;
8433 struct sockaddr_dl *sdl;
8434
8435 /* ioctl comes down on a conn */
8436 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8437 connp = Q_TO_CONN(q);
8438 if (connp->conn_family == AF_INET6)
8439 return (ENXIO);
8440
8441 ipst = connp->conn_netstack->netstack_ip;
8442
8443 /* Verified in ip_wput_nondata */
8444 mp1 = mp->b_cont->b_cont;
8445
8446 if (ipip->ipi_cmd_type == XARP_CMD) {
8447 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8448 xar = (struct xarpreq *)mp1->b_rptr;
8449 sin = (sin_t *)&xar->xarp_pa;
8450 sdl = &xar->xarp_ha;
8451
8452 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8453 return (ENXIO);
8454 if (sdl->sdl_nlen >= LIFNAMSIZ)
8455 return (EINVAL);
8456 } else {
8457 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8458 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8459 ar = (struct arpreq *)mp1->b_rptr;
8460 sin = (sin_t *)&ar->arp_pa;
8461 }
8462
8463 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8464 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8465 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8466 if (ipif == NULL)
8467 return (ENXIO);
8468 if (ipif->ipif_id != 0) {
8469 ipif_refrele(ipif);
8470 return (ENXIO);
8471 }
8472 } else {
8473 /*
8474 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8475 * of 0: use the IP address to find the ipif. If the IP
8476 * address is an IPMP test address, ire_ftable_lookup() will
8477 * find the wrong ill, so we first do an ipif_lookup_addr().
8478 */
8479 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8480 ipst);
8481 if (ipif == NULL) {
8482 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8483 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8484 NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8485 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8486 if (ire != NULL)
8487 ire_refrele(ire);
8488 return (ENXIO);
8489 }
8490 ASSERT(ire != NULL && ill != NULL);
8491 ipif = ill->ill_ipif;
8492 ipif_refhold(ipif);
8493 ire_refrele(ire);
8494 }
8495 }
8496
8497 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8498 ipif_refrele(ipif);
8499 return (ENXIO);
8500 }
8501
8502 ci->ci_sin = sin;
8503 ci->ci_ipif = ipif;
8504 return (0);
8505 }
8506
8507 /*
8508 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8509 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is
8510 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8511 * up and thus an ill can join that illgrp.
8512 *
8513 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8514 * open()/close() primarily because close() is not allowed to fail or block
8515 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason
8516 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure
8517 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8518 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts
8519 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8520 * state if I_UNLINK didn't occur.
8521 *
8522 * Note that for each plumb/unplumb operation, we may end up here more than
8523 * once because of the way ifconfig works. However, it's OK to link the same
8524 * illgrp more than once, or unlink an illgrp that's already unlinked.
8525 */
8526 static int
ip_sioctl_plink_ipmp(ill_t * ill,int ioccmd)8527 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8528 {
8529 int err;
8530 ip_stack_t *ipst = ill->ill_ipst;
8531
8532 ASSERT(IS_IPMP(ill));
8533 ASSERT(IAM_WRITER_ILL(ill));
8534
8535 switch (ioccmd) {
8536 case I_LINK:
8537 return (ENOTSUP);
8538
8539 case I_PLINK:
8540 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8541 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8542 rw_exit(&ipst->ips_ipmp_lock);
8543 break;
8544
8545 case I_PUNLINK:
8546 /*
8547 * Require all UP ipifs be brought down prior to unlinking the
8548 * illgrp so any associated IREs (and other state) is torched.
8549 */
8550 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8551 return (EBUSY);
8552
8553 /*
8554 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8555 * with an SIOCSLIFGROUPNAME request from an ill trying to
8556 * join this group. Specifically: ills trying to join grab
8557 * ipmp_lock and bump a "pending join" counter checked by
8558 * ipmp_illgrp_unlink_grp(). During the unlink no new pending
8559 * joins can occur (since we have ipmp_lock). Once we drop
8560 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8561 * find the illgrp (since we unlinked it) and will return
8562 * EAFNOSUPPORT. This will then take them back through the
8563 * IPMP meta-interface plumbing logic in ifconfig, and thus
8564 * back through I_PLINK above.
8565 */
8566 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8567 err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8568 rw_exit(&ipst->ips_ipmp_lock);
8569 return (err);
8570 default:
8571 break;
8572 }
8573 return (0);
8574 }
8575
8576 /*
8577 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8578 * atomically set/clear the muxids. Also complete the ioctl by acking or
8579 * naking it. Note that the code is structured such that the link type,
8580 * whether it's persistent or not, is treated equally. ifconfig(8) and
8581 * its clones use the persistent link, while pppd(8) and perhaps many
8582 * other daemons may use non-persistent link. When combined with some
8583 * ill_t states, linking and unlinking lower streams may be used as
8584 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8585 */
8586 /* ARGSUSED */
8587 void
ip_sioctl_plink(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)8588 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8589 {
8590 mblk_t *mp1;
8591 struct linkblk *li;
8592 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8593 int err = 0;
8594
8595 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8596 ioccmd == I_LINK || ioccmd == I_UNLINK);
8597
8598 mp1 = mp->b_cont; /* This is the linkblk info */
8599 li = (struct linkblk *)mp1->b_rptr;
8600
8601 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8602 if (err == EINPROGRESS)
8603 return;
8604 if (err == 0)
8605 miocack(q, mp, 0, 0);
8606 else
8607 miocnak(q, mp, 0, err);
8608
8609 /* Conn was refheld in ip_sioctl_copyin_setup */
8610 if (CONN_Q(q)) {
8611 CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8612 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8613 }
8614 }
8615
8616 /*
8617 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8618 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8619 * module stream).
8620 * Returns zero on success, EINPROGRESS if the operation is still pending, or
8621 * an error code on failure.
8622 */
8623 static int
ip_sioctl_plink_ipmod(ipsq_t * ipsq,queue_t * q,mblk_t * mp,int ioccmd,struct linkblk * li)8624 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8625 struct linkblk *li)
8626 {
8627 int err = 0;
8628 ill_t *ill;
8629 queue_t *ipwq, *dwq;
8630 const char *name;
8631 struct qinit *qinfo;
8632 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8633 boolean_t entered_ipsq = B_FALSE;
8634 boolean_t is_ip = B_FALSE;
8635 arl_t *arl;
8636
8637 /*
8638 * Walk the lower stream to verify it's the IP module stream.
8639 * The IP module is identified by its name, wput function,
8640 * and non-NULL q_next. STREAMS ensures that the lower stream
8641 * (li->l_qbot) will not vanish until this ioctl completes.
8642 */
8643 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8644 qinfo = ipwq->q_qinfo;
8645 name = qinfo->qi_minfo->mi_idname;
8646 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8647 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8648 is_ip = B_TRUE;
8649 break;
8650 }
8651 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8652 qinfo->qi_putp != ip_lwput && ipwq->q_next != NULL) {
8653 break;
8654 }
8655 }
8656
8657 /*
8658 * If this isn't an IP module stream, bail.
8659 */
8660 if (ipwq == NULL)
8661 return (0);
8662
8663 if (!is_ip) {
8664 arl = (arl_t *)ipwq->q_ptr;
8665 ill = arl_to_ill(arl);
8666 if (ill == NULL)
8667 return (0);
8668 } else {
8669 ill = ipwq->q_ptr;
8670 }
8671 ASSERT(ill != NULL);
8672
8673 if (ipsq == NULL) {
8674 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8675 NEW_OP, B_FALSE);
8676 if (ipsq == NULL) {
8677 if (!is_ip)
8678 ill_refrele(ill);
8679 return (EINPROGRESS);
8680 }
8681 entered_ipsq = B_TRUE;
8682 }
8683 ASSERT(IAM_WRITER_ILL(ill));
8684 mutex_enter(&ill->ill_lock);
8685 if (!is_ip) {
8686 if (islink && ill->ill_muxid == 0) {
8687 /*
8688 * Plumbing has to be done with IP plumbed first, arp
8689 * second, but here we have arp being plumbed first.
8690 */
8691 mutex_exit(&ill->ill_lock);
8692 if (entered_ipsq)
8693 ipsq_exit(ipsq);
8694 ill_refrele(ill);
8695 return (EINVAL);
8696 }
8697 }
8698 mutex_exit(&ill->ill_lock);
8699 if (!is_ip) {
8700 arl->arl_muxid = islink ? li->l_index : 0;
8701 ill_refrele(ill);
8702 goto done;
8703 }
8704
8705 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8706 goto done;
8707
8708 /*
8709 * As part of I_{P}LINKing, stash the number of downstream modules and
8710 * the read queue of the module immediately below IP in the ill.
8711 * These are used during the capability negotiation below.
8712 */
8713 ill->ill_lmod_rq = NULL;
8714 ill->ill_lmod_cnt = 0;
8715 if (islink && ((dwq = ipwq->q_next) != NULL)) {
8716 ill->ill_lmod_rq = RD(dwq);
8717 for (; dwq != NULL; dwq = dwq->q_next)
8718 ill->ill_lmod_cnt++;
8719 }
8720
8721 ill->ill_muxid = islink ? li->l_index : 0;
8722
8723 /*
8724 * Mark the ipsq busy until the capability operations initiated below
8725 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8726 * returns, but the capability operation may complete asynchronously
8727 * much later.
8728 */
8729 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8730 /*
8731 * If there's at least one up ipif on this ill, then we're bound to
8732 * the underlying driver via DLPI. In that case, renegotiate
8733 * capabilities to account for any possible change in modules
8734 * interposed between IP and the driver.
8735 */
8736 if (ill->ill_ipif_up_count > 0) {
8737 if (islink)
8738 ill_capability_probe(ill);
8739 else
8740 ill_capability_reset(ill, B_FALSE);
8741 }
8742 ipsq_current_finish(ipsq);
8743 done:
8744 if (entered_ipsq)
8745 ipsq_exit(ipsq);
8746
8747 return (err);
8748 }
8749
8750 /*
8751 * Search the ioctl command in the ioctl tables and return a pointer
8752 * to the ioctl command information. The ioctl command tables are
8753 * static and fully populated at compile time.
8754 */
8755 ip_ioctl_cmd_t *
ip_sioctl_lookup(int ioc_cmd)8756 ip_sioctl_lookup(int ioc_cmd)
8757 {
8758 int index;
8759 ip_ioctl_cmd_t *ipip;
8760 ip_ioctl_cmd_t *ipip_end;
8761
8762 if (ioc_cmd == IPI_DONTCARE)
8763 return (NULL);
8764
8765 /*
8766 * Do a 2 step search. First search the indexed table
8767 * based on the least significant byte of the ioctl cmd.
8768 * If we don't find a match, then search the misc table
8769 * serially.
8770 */
8771 index = ioc_cmd & 0xFF;
8772 if (index < ip_ndx_ioctl_count) {
8773 ipip = &ip_ndx_ioctl_table[index];
8774 if (ipip->ipi_cmd == ioc_cmd) {
8775 /* Found a match in the ndx table */
8776 return (ipip);
8777 }
8778 }
8779
8780 /* Search the misc table */
8781 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8782 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8783 if (ipip->ipi_cmd == ioc_cmd)
8784 /* Found a match in the misc table */
8785 return (ipip);
8786 }
8787
8788 return (NULL);
8789 }
8790
8791 /*
8792 * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8793 */
8794 static boolean_t
getset_ioctl_checks(mblk_t * mp)8795 getset_ioctl_checks(mblk_t *mp)
8796 {
8797 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8798 mblk_t *mp1 = mp->b_cont;
8799 mod_ioc_prop_t *pioc;
8800 uint_t flags;
8801 uint_t pioc_size;
8802
8803 /* do sanity checks on various arguments */
8804 if (mp1 == NULL || iocp->ioc_count == 0 ||
8805 iocp->ioc_count == TRANSPARENT) {
8806 return (B_FALSE);
8807 }
8808 if (msgdsize(mp1) < iocp->ioc_count) {
8809 if (!pullupmsg(mp1, iocp->ioc_count))
8810 return (B_FALSE);
8811 }
8812
8813 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8814
8815 /* sanity checks on mpr_valsize */
8816 pioc_size = sizeof (mod_ioc_prop_t);
8817 if (pioc->mpr_valsize != 0)
8818 pioc_size += pioc->mpr_valsize - 1;
8819
8820 if (iocp->ioc_count != pioc_size)
8821 return (B_FALSE);
8822
8823 flags = pioc->mpr_flags;
8824 if (iocp->ioc_cmd == SIOCSETPROP) {
8825 /*
8826 * One can either reset the value to it's default value or
8827 * change the current value or append/remove the value from
8828 * a multi-valued properties.
8829 */
8830 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8831 flags != MOD_PROP_ACTIVE &&
8832 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8833 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8834 return (B_FALSE);
8835 } else {
8836 ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8837
8838 /*
8839 * One can retrieve only one kind of property information
8840 * at a time.
8841 */
8842 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8843 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8844 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8845 (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8846 return (B_FALSE);
8847 }
8848
8849 return (B_TRUE);
8850 }
8851
8852 /*
8853 * process the SIOC{SET|GET}PROP ioctl's
8854 */
8855 /* ARGSUSED */
8856 static void
ip_sioctl_getsetprop(queue_t * q,mblk_t * mp)8857 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8858 {
8859 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8860 mblk_t *mp1 = mp->b_cont;
8861 mod_ioc_prop_t *pioc;
8862 mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8863 ip_stack_t *ipst;
8864 netstack_t *stack;
8865 cred_t *cr;
8866 boolean_t set;
8867 int err;
8868
8869 ASSERT(q->q_next == NULL);
8870 ASSERT(CONN_Q(q));
8871
8872 if (!getset_ioctl_checks(mp)) {
8873 miocnak(q, mp, 0, EINVAL);
8874 return;
8875 }
8876 ipst = CONNQ_TO_IPST(q);
8877 stack = ipst->ips_netstack;
8878 pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8879
8880 switch (pioc->mpr_proto) {
8881 case MOD_PROTO_IP:
8882 case MOD_PROTO_IPV4:
8883 case MOD_PROTO_IPV6:
8884 ptbl = ipst->ips_propinfo_tbl;
8885 break;
8886 case MOD_PROTO_RAWIP:
8887 ptbl = stack->netstack_icmp->is_propinfo_tbl;
8888 break;
8889 case MOD_PROTO_TCP:
8890 ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8891 break;
8892 case MOD_PROTO_UDP:
8893 ptbl = stack->netstack_udp->us_propinfo_tbl;
8894 break;
8895 case MOD_PROTO_SCTP:
8896 ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8897 break;
8898 default:
8899 miocnak(q, mp, 0, EINVAL);
8900 return;
8901 }
8902
8903 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8904 if (pinfo == NULL) {
8905 miocnak(q, mp, 0, ENOENT);
8906 return;
8907 }
8908
8909 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8910 if (set && pinfo->mpi_setf != NULL) {
8911 cr = msg_getcred(mp, NULL);
8912 if (cr == NULL)
8913 cr = iocp->ioc_cr;
8914 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8915 pioc->mpr_val, pioc->mpr_flags);
8916 } else if (!set && pinfo->mpi_getf != NULL) {
8917 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8918 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8919 } else {
8920 err = EPERM;
8921 }
8922
8923 if (err != 0) {
8924 miocnak(q, mp, 0, err);
8925 } else {
8926 if (set)
8927 miocack(q, mp, 0, 0);
8928 else /* For get, we need to return back the data */
8929 miocack(q, mp, iocp->ioc_count, 0);
8930 }
8931 }
8932
8933 /*
8934 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8935 * as several routing daemons have unfortunately used this 'unpublished'
8936 * but well-known ioctls.
8937 */
8938 /* ARGSUSED */
8939 static void
ip_process_legacy_nddprop(queue_t * q,mblk_t * mp)8940 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8941 {
8942 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8943 mblk_t *mp1 = mp->b_cont;
8944 char *pname, *pval, *buf;
8945 uint_t bufsize, proto;
8946 mod_prop_info_t *pinfo = NULL;
8947 ip_stack_t *ipst;
8948 int err = 0;
8949
8950 ASSERT(CONN_Q(q));
8951 ipst = CONNQ_TO_IPST(q);
8952
8953 if (iocp->ioc_count == 0 || mp1 == NULL) {
8954 miocnak(q, mp, 0, EINVAL);
8955 return;
8956 }
8957
8958 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */
8959 pval = buf = pname = (char *)mp1->b_rptr;
8960 bufsize = MBLKL(mp1);
8961
8962 if (strcmp(pname, "ip_forwarding") == 0) {
8963 pname = "forwarding";
8964 proto = MOD_PROTO_IPV4;
8965 } else if (strcmp(pname, "ip6_forwarding") == 0) {
8966 pname = "forwarding";
8967 proto = MOD_PROTO_IPV6;
8968 } else {
8969 miocnak(q, mp, 0, EINVAL);
8970 return;
8971 }
8972
8973 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8974
8975 switch (iocp->ioc_cmd) {
8976 case ND_GET:
8977 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8978 bufsize, 0)) == 0) {
8979 miocack(q, mp, iocp->ioc_count, 0);
8980 return;
8981 }
8982 break;
8983 case ND_SET:
8984 /*
8985 * buffer will have property name and value in the following
8986 * format,
8987 * <property name>'\0'<property value>'\0', extract them;
8988 */
8989 while (*pval++)
8990 noop;
8991
8992 if (!*pval || pval >= (char *)mp1->b_wptr) {
8993 err = EINVAL;
8994 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8995 pinfo, NULL, pval, 0)) == 0) {
8996 miocack(q, mp, 0, 0);
8997 return;
8998 }
8999 break;
9000 default:
9001 err = EINVAL;
9002 break;
9003 }
9004 miocnak(q, mp, 0, err);
9005 }
9006
9007 /*
9008 * Wrapper function for resuming deferred ioctl processing
9009 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9010 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9011 */
9012 /* ARGSUSED */
9013 void
ip_sioctl_copyin_resume(ipsq_t * dummy_ipsq,queue_t * q,mblk_t * mp,void * dummy_arg)9014 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9015 void *dummy_arg)
9016 {
9017 ip_sioctl_copyin_setup(q, mp);
9018 }
9019
9020 /*
9021 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9022 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
9023 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9024 * We establish here the size of the block to be copied in. mi_copyin
9025 * arranges for this to happen, an processing continues in ip_wput_nondata with
9026 * an M_IOCDATA message.
9027 */
9028 void
ip_sioctl_copyin_setup(queue_t * q,mblk_t * mp)9029 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9030 {
9031 int copyin_size;
9032 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9033 ip_ioctl_cmd_t *ipip;
9034 cred_t *cr;
9035 ip_stack_t *ipst;
9036
9037 if (CONN_Q(q))
9038 ipst = CONNQ_TO_IPST(q);
9039 else
9040 ipst = ILLQ_TO_IPST(q);
9041
9042 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9043 if (ipip == NULL) {
9044 /*
9045 * The ioctl is not one we understand or own.
9046 * Pass it along to be processed down stream,
9047 * if this is a module instance of IP, else nak
9048 * the ioctl.
9049 */
9050 if (q->q_next == NULL) {
9051 goto nak;
9052 } else {
9053 putnext(q, mp);
9054 return;
9055 }
9056 }
9057
9058 /*
9059 * If this is deferred, then we will do all the checks when we
9060 * come back.
9061 */
9062 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9063 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9064 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9065 return;
9066 }
9067
9068 /*
9069 * Only allow a very small subset of IP ioctls on this stream if
9070 * IP is a module and not a driver. Allowing ioctls to be processed
9071 * in this case may cause assert failures or data corruption.
9072 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9073 * ioctls allowed on an IP module stream, after which this stream
9074 * normally becomes a multiplexor (at which time the stream head
9075 * will fail all ioctls).
9076 */
9077 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9078 goto nak;
9079 }
9080
9081 /* Make sure we have ioctl data to process. */
9082 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9083 goto nak;
9084
9085 /*
9086 * Prefer dblk credential over ioctl credential; some synthesized
9087 * ioctls have kcred set because there's no way to crhold()
9088 * a credential in some contexts. (ioc_cr is not crfree() by
9089 * the framework; the caller of ioctl needs to hold the reference
9090 * for the duration of the call).
9091 */
9092 cr = msg_getcred(mp, NULL);
9093 if (cr == NULL)
9094 cr = iocp->ioc_cr;
9095
9096 /* Make sure normal users don't send down privileged ioctls */
9097 if ((ipip->ipi_flags & IPI_PRIV) &&
9098 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9099 /* We checked the privilege earlier but log it here */
9100 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9101 return;
9102 }
9103
9104 /*
9105 * The ioctl command tables can only encode fixed length
9106 * ioctl data. If the length is variable, the table will
9107 * encode the length as zero. Such special cases are handled
9108 * below in the switch.
9109 */
9110 if (ipip->ipi_copyin_size != 0) {
9111 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9112 return;
9113 }
9114
9115 switch (iocp->ioc_cmd) {
9116 case O_SIOCGIFCONF:
9117 case SIOCGIFCONF:
9118 /*
9119 * This IOCTL is hilarious. See comments in
9120 * ip_sioctl_get_ifconf for the story.
9121 */
9122 if (iocp->ioc_count == TRANSPARENT)
9123 copyin_size = SIZEOF_STRUCT(ifconf,
9124 iocp->ioc_flag);
9125 else
9126 copyin_size = iocp->ioc_count;
9127 mi_copyin(q, mp, NULL, copyin_size);
9128 return;
9129
9130 case O_SIOCGLIFCONF:
9131 case SIOCGLIFCONF:
9132 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9133 mi_copyin(q, mp, NULL, copyin_size);
9134 return;
9135
9136 case SIOCGLIFSRCOF:
9137 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9138 mi_copyin(q, mp, NULL, copyin_size);
9139 return;
9140
9141 case SIOCGIP6ADDRPOLICY:
9142 ip_sioctl_ip6addrpolicy(q, mp);
9143 ip6_asp_table_refrele(ipst);
9144 return;
9145
9146 case SIOCSIP6ADDRPOLICY:
9147 ip_sioctl_ip6addrpolicy(q, mp);
9148 return;
9149
9150 case SIOCGDSTINFO:
9151 ip_sioctl_dstinfo(q, mp);
9152 ip6_asp_table_refrele(ipst);
9153 return;
9154
9155 case ND_SET:
9156 case ND_GET:
9157 ip_process_legacy_nddprop(q, mp);
9158 return;
9159
9160 case SIOCSETPROP:
9161 case SIOCGETPROP:
9162 ip_sioctl_getsetprop(q, mp);
9163 return;
9164
9165 case I_PLINK:
9166 case I_PUNLINK:
9167 case I_LINK:
9168 case I_UNLINK:
9169 /*
9170 * We treat non-persistent link similarly as the persistent
9171 * link case, in terms of plumbing/unplumbing, as well as
9172 * dynamic re-plumbing events indicator. See comments
9173 * in ip_sioctl_plink() for more.
9174 *
9175 * Request can be enqueued in the 'ipsq' while waiting
9176 * to become exclusive. So bump up the conn ref.
9177 */
9178 if (CONN_Q(q)) {
9179 CONN_INC_REF(Q_TO_CONN(q));
9180 CONN_INC_IOCTLREF(Q_TO_CONN(q))
9181 }
9182 ip_sioctl_plink(NULL, q, mp, NULL);
9183 return;
9184
9185 case IP_IOCTL:
9186 ip_wput_ioctl(q, mp);
9187 return;
9188
9189 case SIOCILB:
9190 /* The ioctl length varies depending on the ILB command. */
9191 copyin_size = iocp->ioc_count;
9192 if (copyin_size < sizeof (ilb_cmd_t))
9193 goto nak;
9194 mi_copyin(q, mp, NULL, copyin_size);
9195 return;
9196
9197 default:
9198 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.",
9199 iocp->ioc_cmd, iocp->ioc_cmd);
9200 /* FALLTHRU */
9201 }
9202 nak:
9203 if (mp->b_cont != NULL) {
9204 freemsg(mp->b_cont);
9205 mp->b_cont = NULL;
9206 }
9207 iocp->ioc_error = EINVAL;
9208 mp->b_datap->db_type = M_IOCNAK;
9209 iocp->ioc_count = 0;
9210 qreply(q, mp);
9211 }
9212
9213 static void
ip_sioctl_garp_reply(mblk_t * mp,ill_t * ill,void * hwaddr,int flags)9214 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9215 {
9216 struct arpreq *ar;
9217 struct xarpreq *xar;
9218 mblk_t *tmp;
9219 struct iocblk *iocp;
9220 int x_arp_ioctl = B_FALSE;
9221 int *flagsp;
9222 char *storage = NULL;
9223
9224 ASSERT(ill != NULL);
9225
9226 iocp = (struct iocblk *)mp->b_rptr;
9227 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9228
9229 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9230 if ((iocp->ioc_cmd == SIOCGXARP) ||
9231 (iocp->ioc_cmd == SIOCSXARP)) {
9232 x_arp_ioctl = B_TRUE;
9233 xar = (struct xarpreq *)tmp->b_rptr;
9234 flagsp = &xar->xarp_flags;
9235 storage = xar->xarp_ha.sdl_data;
9236 } else {
9237 ar = (struct arpreq *)tmp->b_rptr;
9238 flagsp = &ar->arp_flags;
9239 storage = ar->arp_ha.sa_data;
9240 }
9241
9242 /*
9243 * We're done if this is not an SIOCG{X}ARP
9244 */
9245 if (x_arp_ioctl) {
9246 storage += ill_xarp_info(&xar->xarp_ha, ill);
9247 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9248 sizeof (xar->xarp_ha.sdl_data)) {
9249 iocp->ioc_error = EINVAL;
9250 return;
9251 }
9252 }
9253 *flagsp = ATF_INUSE;
9254 /*
9255 * If /sbin/arp told us we are the authority using the "permanent"
9256 * flag, or if this is one of my addresses print "permanent"
9257 * in the /sbin/arp output.
9258 */
9259 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9260 *flagsp |= ATF_AUTHORITY;
9261 if (flags & NCE_F_NONUD)
9262 *flagsp |= ATF_PERM; /* not subject to aging */
9263 if (flags & NCE_F_PUBLISH)
9264 *flagsp |= ATF_PUBL;
9265 if (hwaddr != NULL) {
9266 *flagsp |= ATF_COM;
9267 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9268 }
9269 }
9270
9271 /*
9272 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9273 * interface) create the next available logical interface for this
9274 * physical interface.
9275 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9276 * ipif with the specified name.
9277 *
9278 * If the address family is not AF_UNSPEC then set the address as well.
9279 *
9280 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9281 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9282 *
9283 * Executed as a writer on the ill.
9284 * So no lock is needed to traverse the ipif chain, or examine the
9285 * phyint flags.
9286 */
9287 /* ARGSUSED */
9288 int
ip_sioctl_addif(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9289 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9290 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9291 {
9292 mblk_t *mp1;
9293 struct lifreq *lifr;
9294 boolean_t isv6;
9295 boolean_t exists;
9296 char *name;
9297 char *endp;
9298 char *cp;
9299 int namelen;
9300 ipif_t *ipif;
9301 long id;
9302 ipsq_t *ipsq;
9303 ill_t *ill;
9304 sin_t *sin;
9305 int err = 0;
9306 boolean_t found_sep = B_FALSE;
9307 conn_t *connp;
9308 zoneid_t zoneid;
9309 ip_stack_t *ipst = CONNQ_TO_IPST(q);
9310
9311 ASSERT(q->q_next == NULL);
9312 ip1dbg(("ip_sioctl_addif\n"));
9313 /* Existence of mp1 has been checked in ip_wput_nondata */
9314 mp1 = mp->b_cont->b_cont;
9315 /*
9316 * Null terminate the string to protect against buffer
9317 * overrun. String was generated by user code and may not
9318 * be trusted.
9319 */
9320 lifr = (struct lifreq *)mp1->b_rptr;
9321 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9322 name = lifr->lifr_name;
9323 ASSERT(CONN_Q(q));
9324 connp = Q_TO_CONN(q);
9325 isv6 = (connp->conn_family == AF_INET6);
9326 zoneid = connp->conn_zoneid;
9327 namelen = mi_strlen(name);
9328 if (namelen == 0)
9329 return (EINVAL);
9330
9331 exists = B_FALSE;
9332 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9333 (mi_strcmp(name, ipif_loopback_name) == 0)) {
9334 /*
9335 * Allow creating lo0 using SIOCLIFADDIF.
9336 * can't be any other writer thread. So can pass null below
9337 * for the last 4 args to ipif_lookup_name.
9338 */
9339 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9340 &exists, isv6, zoneid, ipst);
9341 /* Prevent any further action */
9342 if (ipif == NULL) {
9343 return (ENOBUFS);
9344 } else if (!exists) {
9345 /* We created the ipif now and as writer */
9346 ipif_refrele(ipif);
9347 return (0);
9348 } else {
9349 ill = ipif->ipif_ill;
9350 ill_refhold(ill);
9351 ipif_refrele(ipif);
9352 }
9353 } else {
9354 /* Look for a colon in the name. */
9355 endp = &name[namelen];
9356 for (cp = endp; --cp > name; ) {
9357 if (*cp == IPIF_SEPARATOR_CHAR) {
9358 found_sep = B_TRUE;
9359 /*
9360 * Reject any non-decimal aliases for plumbing
9361 * of logical interfaces. Aliases with leading
9362 * zeroes are also rejected as they introduce
9363 * ambiguity in the naming of the interfaces.
9364 * Comparing with "0" takes care of all such
9365 * cases.
9366 */
9367 if ((strncmp("0", cp+1, 1)) == 0)
9368 return (EINVAL);
9369
9370 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9371 id <= 0 || *endp != '\0') {
9372 return (EINVAL);
9373 }
9374 *cp = '\0';
9375 break;
9376 }
9377 }
9378 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9379 if (found_sep)
9380 *cp = IPIF_SEPARATOR_CHAR;
9381 if (ill == NULL)
9382 return (ENXIO);
9383 }
9384
9385 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9386 B_TRUE);
9387
9388 /*
9389 * Release the refhold due to the lookup, now that we are excl
9390 * or we are just returning
9391 */
9392 ill_refrele(ill);
9393
9394 if (ipsq == NULL)
9395 return (EINPROGRESS);
9396
9397 /* We are now exclusive on the IPSQ */
9398 ASSERT(IAM_WRITER_ILL(ill));
9399
9400 if (found_sep) {
9401 /* Now see if there is an IPIF with this unit number. */
9402 for (ipif = ill->ill_ipif; ipif != NULL;
9403 ipif = ipif->ipif_next) {
9404 if (ipif->ipif_id == id) {
9405 err = EEXIST;
9406 goto done;
9407 }
9408 }
9409 }
9410
9411 /*
9412 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9413 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name()
9414 * instead.
9415 */
9416 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9417 B_TRUE, B_TRUE, &err)) == NULL) {
9418 goto done;
9419 }
9420
9421 /* Return created name with ioctl */
9422 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9423 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9424 ip1dbg(("created %s\n", lifr->lifr_name));
9425
9426 /* Set address */
9427 sin = (sin_t *)&lifr->lifr_addr;
9428 if (sin->sin_family != AF_UNSPEC) {
9429 err = ip_sioctl_addr(ipif, sin, q, mp,
9430 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9431 }
9432
9433 done:
9434 ipsq_exit(ipsq);
9435 return (err);
9436 }
9437
9438 /*
9439 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9440 * interface) delete it based on the IP address (on this physical interface).
9441 * Otherwise delete it based on the ipif_id.
9442 * Also, special handling to allow a removeif of lo0.
9443 */
9444 /* ARGSUSED */
9445 int
ip_sioctl_removeif(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9446 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9447 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9448 {
9449 conn_t *connp;
9450 ill_t *ill = ipif->ipif_ill;
9451 boolean_t success;
9452 ip_stack_t *ipst;
9453
9454 ipst = CONNQ_TO_IPST(q);
9455
9456 ASSERT(q->q_next == NULL);
9457 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9458 ill->ill_name, ipif->ipif_id, (void *)ipif));
9459 ASSERT(IAM_WRITER_IPIF(ipif));
9460
9461 connp = Q_TO_CONN(q);
9462 /*
9463 * Special case for unplumbing lo0 (the loopback physical interface).
9464 * If unplumbing lo0, the incoming address structure has been
9465 * initialized to all zeros. When unplumbing lo0, all its logical
9466 * interfaces must be removed too.
9467 *
9468 * Note that this interface may be called to remove a specific
9469 * loopback logical interface (eg, lo0:1). But in that case
9470 * ipif->ipif_id != 0 so that the code path for that case is the
9471 * same as any other interface (meaning it skips the code directly
9472 * below).
9473 */
9474 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9475 if (sin->sin_family == AF_UNSPEC &&
9476 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9477 /*
9478 * Mark it condemned. No new ref. will be made to ill.
9479 */
9480 mutex_enter(&ill->ill_lock);
9481 ill->ill_state_flags |= ILL_CONDEMNED;
9482 for (ipif = ill->ill_ipif; ipif != NULL;
9483 ipif = ipif->ipif_next) {
9484 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9485 }
9486 mutex_exit(&ill->ill_lock);
9487
9488 ipif = ill->ill_ipif;
9489 /* unplumb the loopback interface */
9490 ill_delete(ill);
9491 mutex_enter(&connp->conn_lock);
9492 mutex_enter(&ill->ill_lock);
9493
9494 /* Are any references to this ill active */
9495 if (ill_is_freeable(ill)) {
9496 mutex_exit(&ill->ill_lock);
9497 mutex_exit(&connp->conn_lock);
9498 ill_delete_tail(ill);
9499 mi_free(ill);
9500 return (0);
9501 }
9502 success = ipsq_pending_mp_add(connp, ipif,
9503 CONNP_TO_WQ(connp), mp, ILL_FREE);
9504 mutex_exit(&connp->conn_lock);
9505 mutex_exit(&ill->ill_lock);
9506 if (success)
9507 return (EINPROGRESS);
9508 else
9509 return (EINTR);
9510 }
9511 }
9512
9513 if (ipif->ipif_id == 0) {
9514 ipsq_t *ipsq;
9515
9516 /* Find based on address */
9517 if (ipif->ipif_isv6) {
9518 sin6_t *sin6;
9519
9520 if (sin->sin_family != AF_INET6)
9521 return (EAFNOSUPPORT);
9522
9523 sin6 = (sin6_t *)sin;
9524 /* We are a writer, so we should be able to lookup */
9525 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9526 ipst);
9527 } else {
9528 if (sin->sin_family != AF_INET)
9529 return (EAFNOSUPPORT);
9530
9531 /* We are a writer, so we should be able to lookup */
9532 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9533 ipst);
9534 }
9535 if (ipif == NULL) {
9536 return (EADDRNOTAVAIL);
9537 }
9538
9539 /*
9540 * It is possible for a user to send an SIOCLIFREMOVEIF with
9541 * lifr_name of the physical interface but with an ip address
9542 * lifr_addr of a logical interface plumbed over it.
9543 * So update ipx_current_ipif now that ipif points to the
9544 * correct one.
9545 */
9546 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9547 ipsq->ipsq_xop->ipx_current_ipif = ipif;
9548
9549 /* This is a writer */
9550 ipif_refrele(ipif);
9551 }
9552
9553 /*
9554 * Can not delete instance zero since it is tied to the ill.
9555 */
9556 if (ipif->ipif_id == 0)
9557 return (EBUSY);
9558
9559 mutex_enter(&ill->ill_lock);
9560 ipif->ipif_state_flags |= IPIF_CONDEMNED;
9561 mutex_exit(&ill->ill_lock);
9562
9563 ipif_free(ipif);
9564
9565 mutex_enter(&connp->conn_lock);
9566 mutex_enter(&ill->ill_lock);
9567
9568 /* Are any references to this ipif active */
9569 if (ipif_is_freeable(ipif)) {
9570 mutex_exit(&ill->ill_lock);
9571 mutex_exit(&connp->conn_lock);
9572 ipif_non_duplicate(ipif);
9573 (void) ipif_down_tail(ipif);
9574 ipif_free_tail(ipif); /* frees ipif */
9575 return (0);
9576 }
9577 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9578 IPIF_FREE);
9579 mutex_exit(&ill->ill_lock);
9580 mutex_exit(&connp->conn_lock);
9581 if (success)
9582 return (EINPROGRESS);
9583 else
9584 return (EINTR);
9585 }
9586
9587 /*
9588 * Restart the removeif ioctl. The refcnt has gone down to 0.
9589 * The ipif is already condemned. So can't find it thru lookups.
9590 */
9591 /* ARGSUSED */
9592 int
ip_sioctl_removeif_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_if_req)9593 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9594 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9595 {
9596 ill_t *ill = ipif->ipif_ill;
9597
9598 ASSERT(IAM_WRITER_IPIF(ipif));
9599 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9600
9601 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9602 ill->ill_name, ipif->ipif_id, (void *)ipif));
9603
9604 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9605 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9606 ill_delete_tail(ill);
9607 mi_free(ill);
9608 return (0);
9609 }
9610
9611 ipif_non_duplicate(ipif);
9612 (void) ipif_down_tail(ipif);
9613 ipif_free_tail(ipif);
9614
9615 return (0);
9616 }
9617
9618 /*
9619 * Set the local interface address using the given prefix and ill_token.
9620 */
9621 /* ARGSUSED */
9622 int
ip_sioctl_prefix(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9623 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9624 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9625 {
9626 int err;
9627 in6_addr_t v6addr;
9628 sin6_t *sin6;
9629 ill_t *ill;
9630 int i;
9631
9632 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9633 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9634
9635 ASSERT(IAM_WRITER_IPIF(ipif));
9636
9637 if (!ipif->ipif_isv6)
9638 return (EINVAL);
9639
9640 if (sin->sin_family != AF_INET6)
9641 return (EAFNOSUPPORT);
9642
9643 sin6 = (sin6_t *)sin;
9644 v6addr = sin6->sin6_addr;
9645 ill = ipif->ipif_ill;
9646
9647 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9648 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9649 return (EADDRNOTAVAIL);
9650
9651 for (i = 0; i < 4; i++)
9652 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9653
9654 err = ip_sioctl_addr(ipif, sin, q, mp,
9655 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9656 return (err);
9657 }
9658
9659 /*
9660 * Restart entry point to restart the address set operation after the
9661 * refcounts have dropped to zero.
9662 */
9663 /* ARGSUSED */
9664 int
ip_sioctl_prefix_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9665 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9666 ip_ioctl_cmd_t *ipip, void *ifreq)
9667 {
9668 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9669 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9670 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9671 }
9672
9673 /*
9674 * Set the local interface address.
9675 * Allow an address of all zero when the interface is down.
9676 */
9677 /* ARGSUSED */
9678 int
ip_sioctl_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * dummy_ipip,void * dummy_ifreq)9679 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9680 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9681 {
9682 int err = 0;
9683 in6_addr_t v6addr;
9684 boolean_t need_up = B_FALSE;
9685 ill_t *ill;
9686 int i;
9687
9688 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9689 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9690
9691 ASSERT(IAM_WRITER_IPIF(ipif));
9692
9693 ill = ipif->ipif_ill;
9694 if (ipif->ipif_isv6) {
9695 sin6_t *sin6;
9696 phyint_t *phyi;
9697
9698 if (sin->sin_family != AF_INET6)
9699 return (EAFNOSUPPORT);
9700
9701 sin6 = (sin6_t *)sin;
9702 v6addr = sin6->sin6_addr;
9703 phyi = ill->ill_phyint;
9704
9705 /*
9706 * Enforce that true multicast interfaces have a link-local
9707 * address for logical unit 0.
9708 *
9709 * However for those ipif's for which link-local address was
9710 * not created by default, also allow setting :: as the address.
9711 * This scenario would arise, when we delete an address on ipif
9712 * with logical unit 0, we would want to set :: as the address.
9713 */
9714 if (ipif->ipif_id == 0 &&
9715 (ill->ill_flags & ILLF_MULTICAST) &&
9716 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9717 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9718 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9719
9720 /*
9721 * if default link-local was not created by kernel for
9722 * this ill, allow setting :: as the address on ipif:0.
9723 */
9724 if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9725 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9726 return (EADDRNOTAVAIL);
9727 } else {
9728 return (EADDRNOTAVAIL);
9729 }
9730 }
9731
9732 /*
9733 * up interfaces shouldn't have the unspecified address
9734 * unless they also have the IPIF_NOLOCAL flags set and
9735 * have a subnet assigned.
9736 */
9737 if ((ipif->ipif_flags & IPIF_UP) &&
9738 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9739 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9740 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9741 return (EADDRNOTAVAIL);
9742 }
9743
9744 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9745 return (EADDRNOTAVAIL);
9746 } else {
9747 ipaddr_t addr;
9748
9749 if (sin->sin_family != AF_INET)
9750 return (EAFNOSUPPORT);
9751
9752 addr = sin->sin_addr.s_addr;
9753
9754 /* Allow INADDR_ANY as the local address. */
9755 if (addr != INADDR_ANY &&
9756 !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9757 return (EADDRNOTAVAIL);
9758
9759 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9760 }
9761 /*
9762 * verify that the address being configured is permitted by the
9763 * ill_allowed_ips[] for the interface.
9764 */
9765 if (ill->ill_allowed_ips_cnt > 0) {
9766 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9767 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9768 &v6addr))
9769 break;
9770 }
9771 if (i == ill->ill_allowed_ips_cnt) {
9772 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9773 return (EPERM);
9774 }
9775 }
9776 /*
9777 * Even if there is no change we redo things just to rerun
9778 * ipif_set_default.
9779 */
9780 if (ipif->ipif_flags & IPIF_UP) {
9781 /*
9782 * Setting a new local address, make sure
9783 * we have net and subnet bcast ire's for
9784 * the old address if we need them.
9785 */
9786 /*
9787 * If the interface is already marked up,
9788 * we call ipif_down which will take care
9789 * of ditching any IREs that have been set
9790 * up based on the old interface address.
9791 */
9792 err = ipif_logical_down(ipif, q, mp);
9793 if (err == EINPROGRESS)
9794 return (err);
9795 (void) ipif_down_tail(ipif);
9796 need_up = 1;
9797 }
9798
9799 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9800 return (err);
9801 }
9802
9803 int
ip_sioctl_addr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)9804 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9805 boolean_t need_up)
9806 {
9807 in6_addr_t v6addr;
9808 in6_addr_t ov6addr;
9809 ipaddr_t addr;
9810 sin6_t *sin6;
9811 int sinlen;
9812 int err = 0;
9813 ill_t *ill = ipif->ipif_ill;
9814 boolean_t need_dl_down;
9815 boolean_t need_arp_down;
9816 struct iocblk *iocp;
9817
9818 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9819
9820 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9821 ill->ill_name, ipif->ipif_id, (void *)ipif));
9822 ASSERT(IAM_WRITER_IPIF(ipif));
9823
9824 /* Must cancel any pending timer before taking the ill_lock */
9825 if (ipif->ipif_recovery_id != 0)
9826 (void) untimeout(ipif->ipif_recovery_id);
9827 ipif->ipif_recovery_id = 0;
9828
9829 if (ipif->ipif_isv6) {
9830 sin6 = (sin6_t *)sin;
9831 v6addr = sin6->sin6_addr;
9832 sinlen = sizeof (struct sockaddr_in6);
9833 } else {
9834 addr = sin->sin_addr.s_addr;
9835 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9836 sinlen = sizeof (struct sockaddr_in);
9837 }
9838 mutex_enter(&ill->ill_lock);
9839 ov6addr = ipif->ipif_v6lcl_addr;
9840 ipif->ipif_v6lcl_addr = v6addr;
9841 sctp_update_ipif_addr(ipif, ov6addr);
9842 ipif->ipif_addr_ready = 0;
9843
9844 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9845
9846 /*
9847 * If the interface was previously marked as a duplicate, then since
9848 * we've now got a "new" address, it should no longer be considered a
9849 * duplicate -- even if the "new" address is the same as the old one.
9850 * Note that if all ipifs are down, we may have a pending ARP down
9851 * event to handle. This is because we want to recover from duplicates
9852 * and thus delay tearing down ARP until the duplicates have been
9853 * removed or disabled.
9854 */
9855 need_dl_down = need_arp_down = B_FALSE;
9856 if (ipif->ipif_flags & IPIF_DUPLICATE) {
9857 need_arp_down = !need_up;
9858 ipif->ipif_flags &= ~IPIF_DUPLICATE;
9859 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9860 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9861 need_dl_down = B_TRUE;
9862 }
9863 }
9864
9865 ipif_set_default(ipif);
9866
9867 /*
9868 * If we've just manually set the IPv6 link-local address (0th ipif),
9869 * tag the ill so that future updates to the interface ID don't result
9870 * in this address getting automatically reconfigured from under the
9871 * administrator.
9872 */
9873 if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9874 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9875 !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9876 ill->ill_manual_linklocal = 1;
9877 }
9878
9879 /*
9880 * When publishing an interface address change event, we only notify
9881 * the event listeners of the new address. It is assumed that if they
9882 * actively care about the addresses assigned that they will have
9883 * already discovered the previous address assigned (if there was one.)
9884 *
9885 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9886 */
9887 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9888 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9889 NE_ADDRESS_CHANGE, sin, sinlen);
9890 }
9891
9892 mutex_exit(&ill->ill_lock);
9893
9894 if (need_up) {
9895 /*
9896 * Now bring the interface back up. If this
9897 * is the only IPIF for the ILL, ipif_up
9898 * will have to re-bind to the device, so
9899 * we may get back EINPROGRESS, in which
9900 * case, this IOCTL will get completed in
9901 * ip_rput_dlpi when we see the DL_BIND_ACK.
9902 */
9903 err = ipif_up(ipif, q, mp);
9904 } else {
9905 /* Perhaps ilgs should use this ill */
9906 update_conn_ill(NULL, ill->ill_ipst);
9907 }
9908
9909 if (need_dl_down)
9910 ill_dl_down(ill);
9911
9912 if (need_arp_down && !ill->ill_isv6)
9913 (void) ipif_arp_down(ipif);
9914
9915 /*
9916 * The default multicast interface might have changed (for
9917 * instance if the IPv6 scope of the address changed)
9918 */
9919 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9920
9921 return (err);
9922 }
9923
9924 /*
9925 * Restart entry point to restart the address set operation after the
9926 * refcounts have dropped to zero.
9927 */
9928 /* ARGSUSED */
9929 int
ip_sioctl_addr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)9930 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9931 ip_ioctl_cmd_t *ipip, void *ifreq)
9932 {
9933 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9934 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9935 ASSERT(IAM_WRITER_IPIF(ipif));
9936 (void) ipif_down_tail(ipif);
9937 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9938 }
9939
9940 /* ARGSUSED */
9941 int
ip_sioctl_get_addr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9942 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9943 ip_ioctl_cmd_t *ipip, void *if_req)
9944 {
9945 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9946 struct lifreq *lifr = (struct lifreq *)if_req;
9947
9948 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9950 /*
9951 * The net mask and address can't change since we have a
9952 * reference to the ipif. So no lock is necessary.
9953 */
9954 if (ipif->ipif_isv6) {
9955 *sin6 = sin6_null;
9956 sin6->sin6_family = AF_INET6;
9957 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9958 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
9959 sin6->sin6_scope_id =
9960 ipif->ipif_ill->ill_phyint->phyint_ifindex;
9961 }
9962 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9963 lifr->lifr_addrlen =
9964 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9965 } else {
9966 *sin = sin_null;
9967 sin->sin_family = AF_INET;
9968 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9969 if (ipip->ipi_cmd_type == LIF_CMD) {
9970 lifr->lifr_addrlen =
9971 ip_mask_to_plen(ipif->ipif_net_mask);
9972 }
9973 }
9974 return (0);
9975 }
9976
9977 /*
9978 * Set the destination address for a pt-pt interface.
9979 */
9980 /* ARGSUSED */
9981 int
ip_sioctl_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)9982 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9983 ip_ioctl_cmd_t *ipip, void *if_req)
9984 {
9985 int err = 0;
9986 in6_addr_t v6addr;
9987 boolean_t need_up = B_FALSE;
9988
9989 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9990 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9991 ASSERT(IAM_WRITER_IPIF(ipif));
9992
9993 if (ipif->ipif_isv6) {
9994 sin6_t *sin6;
9995
9996 if (sin->sin_family != AF_INET6)
9997 return (EAFNOSUPPORT);
9998
9999 sin6 = (sin6_t *)sin;
10000 v6addr = sin6->sin6_addr;
10001
10002 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10003 return (EADDRNOTAVAIL);
10004 } else {
10005 ipaddr_t addr;
10006
10007 if (sin->sin_family != AF_INET)
10008 return (EAFNOSUPPORT);
10009
10010 addr = sin->sin_addr.s_addr;
10011 if (addr != INADDR_ANY &&
10012 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10013 return (EADDRNOTAVAIL);
10014 }
10015
10016 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10017 }
10018
10019 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10020 return (0); /* No change */
10021
10022 if (ipif->ipif_flags & IPIF_UP) {
10023 /*
10024 * If the interface is already marked up,
10025 * we call ipif_down which will take care
10026 * of ditching any IREs that have been set
10027 * up based on the old pp dst address.
10028 */
10029 err = ipif_logical_down(ipif, q, mp);
10030 if (err == EINPROGRESS)
10031 return (err);
10032 (void) ipif_down_tail(ipif);
10033 need_up = B_TRUE;
10034 }
10035 /*
10036 * could return EINPROGRESS. If so ioctl will complete in
10037 * ip_rput_dlpi_writer
10038 */
10039 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10040 return (err);
10041 }
10042
10043 static int
ip_sioctl_dstaddr_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,boolean_t need_up)10044 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10045 boolean_t need_up)
10046 {
10047 in6_addr_t v6addr;
10048 ill_t *ill = ipif->ipif_ill;
10049 int err = 0;
10050 boolean_t need_dl_down;
10051 boolean_t need_arp_down;
10052
10053 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10054 ipif->ipif_id, (void *)ipif));
10055
10056 /* Must cancel any pending timer before taking the ill_lock */
10057 if (ipif->ipif_recovery_id != 0)
10058 (void) untimeout(ipif->ipif_recovery_id);
10059 ipif->ipif_recovery_id = 0;
10060
10061 if (ipif->ipif_isv6) {
10062 sin6_t *sin6;
10063
10064 sin6 = (sin6_t *)sin;
10065 v6addr = sin6->sin6_addr;
10066 } else {
10067 ipaddr_t addr;
10068
10069 addr = sin->sin_addr.s_addr;
10070 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10071 }
10072 mutex_enter(&ill->ill_lock);
10073 /* Set point to point destination address. */
10074 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10075 /*
10076 * Allow this as a means of creating logical
10077 * pt-pt interfaces on top of e.g. an Ethernet.
10078 * XXX Undocumented HACK for testing.
10079 * pt-pt interfaces are created with NUD disabled.
10080 */
10081 ipif->ipif_flags |= IPIF_POINTOPOINT;
10082 ipif->ipif_flags &= ~IPIF_BROADCAST;
10083 if (ipif->ipif_isv6)
10084 ill->ill_flags |= ILLF_NONUD;
10085 }
10086
10087 /*
10088 * If the interface was previously marked as a duplicate, then since
10089 * we've now got a "new" address, it should no longer be considered a
10090 * duplicate -- even if the "new" address is the same as the old one.
10091 * Note that if all ipifs are down, we may have a pending ARP down
10092 * event to handle.
10093 */
10094 need_dl_down = need_arp_down = B_FALSE;
10095 if (ipif->ipif_flags & IPIF_DUPLICATE) {
10096 need_arp_down = !need_up;
10097 ipif->ipif_flags &= ~IPIF_DUPLICATE;
10098 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10099 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10100 need_dl_down = B_TRUE;
10101 }
10102 }
10103
10104 /*
10105 * If we've just manually set the IPv6 destination link-local address
10106 * (0th ipif), tag the ill so that future updates to the destination
10107 * interface ID (as can happen with interfaces over IP tunnels) don't
10108 * result in this address getting automatically reconfigured from
10109 * under the administrator.
10110 */
10111 if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10112 ill->ill_manual_dst_linklocal = 1;
10113
10114 /* Set the new address. */
10115 ipif->ipif_v6pp_dst_addr = v6addr;
10116 /* Make sure subnet tracks pp_dst */
10117 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10118 mutex_exit(&ill->ill_lock);
10119
10120 if (need_up) {
10121 /*
10122 * Now bring the interface back up. If this
10123 * is the only IPIF for the ILL, ipif_up
10124 * will have to re-bind to the device, so
10125 * we may get back EINPROGRESS, in which
10126 * case, this IOCTL will get completed in
10127 * ip_rput_dlpi when we see the DL_BIND_ACK.
10128 */
10129 err = ipif_up(ipif, q, mp);
10130 }
10131
10132 if (need_dl_down)
10133 ill_dl_down(ill);
10134 if (need_arp_down && !ipif->ipif_isv6)
10135 (void) ipif_arp_down(ipif);
10136
10137 return (err);
10138 }
10139
10140 /*
10141 * Restart entry point to restart the dstaddress set operation after the
10142 * refcounts have dropped to zero.
10143 */
10144 /* ARGSUSED */
10145 int
ip_sioctl_dstaddr_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)10146 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10147 ip_ioctl_cmd_t *ipip, void *ifreq)
10148 {
10149 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10151 (void) ipif_down_tail(ipif);
10152 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10153 }
10154
10155 /* ARGSUSED */
10156 int
ip_sioctl_get_dstaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10157 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10158 ip_ioctl_cmd_t *ipip, void *if_req)
10159 {
10160 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
10161
10162 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10164 /*
10165 * Get point to point destination address. The addresses can't
10166 * change since we hold a reference to the ipif.
10167 */
10168 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10169 return (EADDRNOTAVAIL);
10170
10171 if (ipif->ipif_isv6) {
10172 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10173 *sin6 = sin6_null;
10174 sin6->sin6_family = AF_INET6;
10175 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10176 } else {
10177 *sin = sin_null;
10178 sin->sin_family = AF_INET;
10179 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10180 }
10181 return (0);
10182 }
10183
10184 /*
10185 * Check which flags will change by the given flags being set
10186 * silently ignore flags which userland is not allowed to control.
10187 * (Because these flags may change between SIOCGLIFFLAGS and
10188 * SIOCSLIFFLAGS, and that's outside of userland's control,
10189 * we need to silently ignore them rather than fail.)
10190 */
10191 static void
ip_sioctl_flags_onoff(ipif_t * ipif,uint64_t flags,uint64_t * onp,uint64_t * offp)10192 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10193 uint64_t *offp)
10194 {
10195 ill_t *ill = ipif->ipif_ill;
10196 phyint_t *phyi = ill->ill_phyint;
10197 uint64_t cantchange_flags, intf_flags;
10198 uint64_t turn_on, turn_off;
10199
10200 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10201 cantchange_flags = IFF_CANTCHANGE;
10202 if (IS_IPMP(ill))
10203 cantchange_flags |= IFF_IPMP_CANTCHANGE;
10204 turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10205 turn_off = intf_flags & turn_on;
10206 turn_on ^= turn_off;
10207 *onp = turn_on;
10208 *offp = turn_off;
10209 }
10210
10211 /*
10212 * Set interface flags. Many flags require special handling (e.g.,
10213 * bringing the interface down); see below for details.
10214 *
10215 * NOTE : We really don't enforce that ipif_id zero should be used
10216 * for setting any flags other than IFF_LOGINT_FLAGS. This
10217 * is because applications generally does SICGLIFFLAGS and
10218 * ORs in the new flags (that affects the logical) and does a
10219 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10220 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10221 * flags that will be turned on is correct with respect to
10222 * ipif_id 0. For backward compatibility reasons, it is not done.
10223 */
10224 /* ARGSUSED */
10225 int
ip_sioctl_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10226 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10227 ip_ioctl_cmd_t *ipip, void *if_req)
10228 {
10229 uint64_t turn_on;
10230 uint64_t turn_off;
10231 int err = 0;
10232 phyint_t *phyi;
10233 ill_t *ill;
10234 conn_t *connp;
10235 uint64_t intf_flags;
10236 boolean_t phyint_flags_modified = B_FALSE;
10237 uint64_t flags;
10238 struct ifreq *ifr;
10239 struct lifreq *lifr;
10240 boolean_t set_linklocal = B_FALSE;
10241
10242 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10244
10245 ASSERT(IAM_WRITER_IPIF(ipif));
10246
10247 ill = ipif->ipif_ill;
10248 phyi = ill->ill_phyint;
10249
10250 if (ipip->ipi_cmd_type == IF_CMD) {
10251 ifr = (struct ifreq *)if_req;
10252 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10253 } else {
10254 lifr = (struct lifreq *)if_req;
10255 flags = lifr->lifr_flags;
10256 }
10257
10258 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10259
10260 /*
10261 * Have the flags been set correctly until now?
10262 */
10263 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10264 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10265 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10266 /*
10267 * Compare the new flags to the old, and partition
10268 * into those coming on and those going off.
10269 * For the 16 bit command keep the bits above bit 16 unchanged.
10270 */
10271 if (ipip->ipi_cmd == SIOCSIFFLAGS)
10272 flags |= intf_flags & ~0xFFFF;
10273
10274 /*
10275 * Explicitly fail attempts to change flags that are always invalid on
10276 * an IPMP meta-interface.
10277 */
10278 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10279 return (EINVAL);
10280
10281 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10282 if ((turn_on|turn_off) == 0)
10283 return (0); /* No change */
10284
10285 /*
10286 * All test addresses must be IFF_DEPRECATED (to ensure source address
10287 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10288 * allow it to be turned off.
10289 */
10290 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10291 (turn_on|intf_flags) & IFF_NOFAILOVER)
10292 return (EINVAL);
10293
10294 if ((connp = Q_TO_CONN(q)) == NULL)
10295 return (EINVAL);
10296
10297 /*
10298 * Only vrrp control socket is allowed to change IFF_UP and
10299 * IFF_NOACCEPT flags when IFF_VRRP is set.
10300 */
10301 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10302 if (!connp->conn_isvrrp)
10303 return (EINVAL);
10304 }
10305
10306 /*
10307 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10308 * VRRP control socket.
10309 */
10310 if ((turn_off | turn_on) & IFF_NOACCEPT) {
10311 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10312 return (EINVAL);
10313 }
10314
10315 if (turn_on & IFF_NOFAILOVER) {
10316 turn_on |= IFF_DEPRECATED;
10317 flags |= IFF_DEPRECATED;
10318 }
10319
10320 /*
10321 * On underlying interfaces, only allow applications to manage test
10322 * addresses -- otherwise, they may get confused when the address
10323 * moves as part of being brought up. Likewise, prevent an
10324 * application-managed test address from being converted to a data
10325 * address. To prevent migration of administratively up addresses in
10326 * the kernel, we don't allow them to be converted either.
10327 */
10328 if (IS_UNDER_IPMP(ill)) {
10329 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10330
10331 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10332 return (EINVAL);
10333
10334 if ((turn_off & IFF_NOFAILOVER) &&
10335 (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10336 return (EINVAL);
10337 }
10338
10339 /*
10340 * Only allow IFF_TEMPORARY flag to be set on
10341 * IPv6 interfaces.
10342 */
10343 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10344 return (EINVAL);
10345
10346 /*
10347 * cannot turn off IFF_NOXMIT on VNI interfaces.
10348 */
10349 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10350 return (EINVAL);
10351
10352 /*
10353 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10354 * interfaces. It makes no sense in that context.
10355 */
10356 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10357 return (EINVAL);
10358
10359 /*
10360 * For IPv6 ipif_id 0, don't allow the interface to be up without
10361 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10362 * If the link local address isn't set, and can be set, it will get
10363 * set later on in this function.
10364 */
10365 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10366 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10367 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10368 if (ipif_cant_setlinklocal(ipif))
10369 return (EINVAL);
10370 set_linklocal = B_TRUE;
10371 }
10372
10373 /*
10374 * If we modify physical interface flags, we'll potentially need to
10375 * send up two routing socket messages for the changes (one for the
10376 * IPv4 ill, and another for the IPv6 ill). Note that here.
10377 */
10378 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10379 phyint_flags_modified = B_TRUE;
10380
10381 /*
10382 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10383 * (otherwise, we'd immediately use them, defeating standby). Also,
10384 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10385 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10386 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We
10387 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10388 * will not be honored.
10389 */
10390 if (turn_on & PHYI_STANDBY) {
10391 /*
10392 * No need to grab ill_g_usesrc_lock here; see the
10393 * synchronization notes in ip.c.
10394 */
10395 if (ill->ill_usesrc_grp_next != NULL ||
10396 intf_flags & PHYI_INACTIVE)
10397 return (EINVAL);
10398 if (!(flags & PHYI_FAILED)) {
10399 flags |= PHYI_INACTIVE;
10400 turn_on |= PHYI_INACTIVE;
10401 }
10402 }
10403
10404 if (turn_off & PHYI_STANDBY) {
10405 flags &= ~PHYI_INACTIVE;
10406 turn_off |= PHYI_INACTIVE;
10407 }
10408
10409 /*
10410 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10411 * would end up on.
10412 */
10413 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10414 (PHYI_FAILED | PHYI_INACTIVE))
10415 return (EINVAL);
10416
10417 /*
10418 * If ILLF_ROUTER changes, we need to change the ip forwarding
10419 * status of the interface.
10420 */
10421 if ((turn_on | turn_off) & ILLF_ROUTER) {
10422 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10423 if (err != 0)
10424 return (err);
10425 }
10426
10427 /*
10428 * If the interface is not UP and we are not going to
10429 * bring it UP, record the flags and return. When the
10430 * interface comes UP later, the right actions will be
10431 * taken.
10432 */
10433 if (!(ipif->ipif_flags & IPIF_UP) &&
10434 !(turn_on & IPIF_UP)) {
10435 /* Record new flags in their respective places. */
10436 mutex_enter(&ill->ill_lock);
10437 mutex_enter(&ill->ill_phyint->phyint_lock);
10438 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10439 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10440 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10441 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10442 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10443 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10444 mutex_exit(&ill->ill_lock);
10445 mutex_exit(&ill->ill_phyint->phyint_lock);
10446
10447 /*
10448 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10449 * same to the kernel: if any of them has been set by
10450 * userland, the interface cannot be used for data traffic.
10451 */
10452 if ((turn_on|turn_off) &
10453 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10454 ASSERT(!IS_IPMP(ill));
10455 /*
10456 * It's possible the ill is part of an "anonymous"
10457 * IPMP group rather than a real group. In that case,
10458 * there are no other interfaces in the group and thus
10459 * no need to call ipmp_phyint_refresh_active().
10460 */
10461 if (IS_UNDER_IPMP(ill))
10462 ipmp_phyint_refresh_active(phyi);
10463 }
10464
10465 if (phyint_flags_modified) {
10466 if (phyi->phyint_illv4 != NULL) {
10467 ip_rts_ifmsg(phyi->phyint_illv4->
10468 ill_ipif, RTSQ_DEFAULT);
10469 }
10470 if (phyi->phyint_illv6 != NULL) {
10471 ip_rts_ifmsg(phyi->phyint_illv6->
10472 ill_ipif, RTSQ_DEFAULT);
10473 }
10474 }
10475 /* The default multicast interface might have changed */
10476 ire_increment_multicast_generation(ill->ill_ipst,
10477 ill->ill_isv6);
10478
10479 return (0);
10480 } else if (set_linklocal) {
10481 mutex_enter(&ill->ill_lock);
10482 if (set_linklocal)
10483 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10484 mutex_exit(&ill->ill_lock);
10485 }
10486
10487 /*
10488 * Disallow IPv6 interfaces coming up that have the unspecified address,
10489 * or point-to-point interfaces with an unspecified destination. We do
10490 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10491 * have a subnet assigned, which is how in.ndpd currently manages its
10492 * onlink prefix list when no addresses are configured with those
10493 * prefixes.
10494 */
10495 if (ipif->ipif_isv6 &&
10496 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10497 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10498 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10499 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10500 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10501 return (EINVAL);
10502 }
10503
10504 /*
10505 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10506 * from being brought up.
10507 */
10508 if (!ipif->ipif_isv6 &&
10509 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10510 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10511 return (EINVAL);
10512 }
10513
10514 /*
10515 * If we are going to change one or more of the flags that are
10516 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10517 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10518 * IPIF_NOFAILOVER, we will take special action. This is
10519 * done by bring the ipif down, changing the flags and bringing
10520 * it back up again. For IPIF_NOFAILOVER, the act of bringing it
10521 * back up will trigger the address to be moved.
10522 *
10523 * If we are going to change IFF_NOACCEPT, we need to bring
10524 * all the ipifs down then bring them up again. The act of
10525 * bringing all the ipifs back up will trigger the local
10526 * ires being recreated with "no_accept" set/cleared.
10527 *
10528 * Note that ILLF_NOACCEPT is always set separately from the
10529 * other flags.
10530 */
10531 if ((turn_on|turn_off) &
10532 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10533 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10534 IPIF_NOFAILOVER)) {
10535 /*
10536 * ipif_down() will ire_delete bcast ire's for the subnet,
10537 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10538 * entries shared between multiple ipifs on the same subnet.
10539 */
10540 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10541 !(turn_off & IPIF_UP)) {
10542 if (ipif->ipif_flags & IPIF_UP)
10543 ill->ill_logical_down = 1;
10544 turn_on &= ~IPIF_UP;
10545 }
10546 err = ipif_down(ipif, q, mp);
10547 ip1dbg(("ipif_down returns %d err ", err));
10548 if (err == EINPROGRESS)
10549 return (err);
10550 (void) ipif_down_tail(ipif);
10551 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10552 /*
10553 * If we can quiesce the ill, then continue. If not, then
10554 * ip_sioctl_flags_tail() will be called from
10555 * ipif_ill_refrele_tail().
10556 */
10557 ill_down_ipifs(ill, B_TRUE);
10558
10559 mutex_enter(&connp->conn_lock);
10560 mutex_enter(&ill->ill_lock);
10561 if (!ill_is_quiescent(ill)) {
10562 boolean_t success;
10563
10564 success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10565 q, mp, ILL_DOWN);
10566 mutex_exit(&ill->ill_lock);
10567 mutex_exit(&connp->conn_lock);
10568 return (success ? EINPROGRESS : EINTR);
10569 }
10570 mutex_exit(&ill->ill_lock);
10571 mutex_exit(&connp->conn_lock);
10572 }
10573 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10574 }
10575
10576 static int
ip_sioctl_flags_tail(ipif_t * ipif,uint64_t flags,queue_t * q,mblk_t * mp)10577 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10578 {
10579 ill_t *ill;
10580 phyint_t *phyi;
10581 uint64_t turn_on, turn_off;
10582 boolean_t phyint_flags_modified = B_FALSE;
10583 int err = 0;
10584 boolean_t set_linklocal = B_FALSE;
10585
10586 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10587 ipif->ipif_ill->ill_name, ipif->ipif_id));
10588
10589 ASSERT(IAM_WRITER_IPIF(ipif));
10590
10591 ill = ipif->ipif_ill;
10592 phyi = ill->ill_phyint;
10593
10594 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10595
10596 /*
10597 * IFF_UP is handled separately.
10598 */
10599 turn_on &= ~IFF_UP;
10600 turn_off &= ~IFF_UP;
10601
10602 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10603 phyint_flags_modified = B_TRUE;
10604
10605 /*
10606 * Now we change the flags. Track current value of
10607 * other flags in their respective places.
10608 */
10609 mutex_enter(&ill->ill_lock);
10610 mutex_enter(&phyi->phyint_lock);
10611 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10612 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10613 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10614 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10615 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10616 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10617 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10618 set_linklocal = B_TRUE;
10619 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10620 }
10621
10622 mutex_exit(&ill->ill_lock);
10623 mutex_exit(&phyi->phyint_lock);
10624
10625 if (set_linklocal)
10626 (void) ipif_setlinklocal(ipif);
10627
10628 /*
10629 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10630 * the kernel: if any of them has been set by userland, the interface
10631 * cannot be used for data traffic.
10632 */
10633 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10634 ASSERT(!IS_IPMP(ill));
10635 /*
10636 * It's possible the ill is part of an "anonymous" IPMP group
10637 * rather than a real group. In that case, there are no other
10638 * interfaces in the group and thus no need for us to call
10639 * ipmp_phyint_refresh_active().
10640 */
10641 if (IS_UNDER_IPMP(ill))
10642 ipmp_phyint_refresh_active(phyi);
10643 }
10644
10645 if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10646 /*
10647 * If the ILLF_NOACCEPT flag is changed, bring up all the
10648 * ipifs that were brought down.
10649 *
10650 * The routing sockets messages are sent as the result
10651 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10652 * as well.
10653 */
10654 err = ill_up_ipifs(ill, q, mp);
10655 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10656 /*
10657 * XXX ipif_up really does not know whether a phyint flags
10658 * was modified or not. So, it sends up information on
10659 * only one routing sockets message. As we don't bring up
10660 * the interface and also set PHYI_ flags simultaneously
10661 * it should be okay.
10662 */
10663 err = ipif_up(ipif, q, mp);
10664 } else {
10665 /*
10666 * Make sure routing socket sees all changes to the flags.
10667 * ipif_up_done* handles this when we use ipif_up.
10668 */
10669 if (phyint_flags_modified) {
10670 if (phyi->phyint_illv4 != NULL) {
10671 ip_rts_ifmsg(phyi->phyint_illv4->
10672 ill_ipif, RTSQ_DEFAULT);
10673 }
10674 if (phyi->phyint_illv6 != NULL) {
10675 ip_rts_ifmsg(phyi->phyint_illv6->
10676 ill_ipif, RTSQ_DEFAULT);
10677 }
10678 } else {
10679 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10680 }
10681 /*
10682 * Update the flags in SCTP's IPIF list, ipif_up() will do
10683 * this in need_up case.
10684 */
10685 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10686 }
10687
10688 /* The default multicast interface might have changed */
10689 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10690 return (err);
10691 }
10692
10693 /*
10694 * Restart the flags operation now that the refcounts have dropped to zero.
10695 */
10696 /* ARGSUSED */
10697 int
ip_sioctl_flags_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10698 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10699 ip_ioctl_cmd_t *ipip, void *if_req)
10700 {
10701 uint64_t flags;
10702 struct ifreq *ifr = if_req;
10703 struct lifreq *lifr = if_req;
10704 uint64_t turn_on, turn_off;
10705
10706 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10707 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10708
10709 if (ipip->ipi_cmd_type == IF_CMD) {
10710 /* cast to uint16_t prevents unwanted sign extension */
10711 flags = (uint16_t)ifr->ifr_flags;
10712 } else {
10713 flags = lifr->lifr_flags;
10714 }
10715
10716 /*
10717 * If this function call is a result of the ILLF_NOACCEPT flag
10718 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10719 */
10720 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10721 if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10722 (void) ipif_down_tail(ipif);
10723
10724 return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10725 }
10726
10727 /*
10728 * Can operate on either a module or a driver queue.
10729 */
10730 /* ARGSUSED */
10731 int
ip_sioctl_get_flags(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10732 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10733 ip_ioctl_cmd_t *ipip, void *if_req)
10734 {
10735 /*
10736 * Has the flags been set correctly till now ?
10737 */
10738 ill_t *ill = ipif->ipif_ill;
10739 phyint_t *phyi = ill->ill_phyint;
10740
10741 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10742 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10743 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10744 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10745 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10746
10747 /*
10748 * Need a lock since some flags can be set even when there are
10749 * references to the ipif.
10750 */
10751 mutex_enter(&ill->ill_lock);
10752 if (ipip->ipi_cmd_type == IF_CMD) {
10753 struct ifreq *ifr = (struct ifreq *)if_req;
10754
10755 /* Get interface flags (low 16 only). */
10756 ifr->ifr_flags = ((ipif->ipif_flags |
10757 ill->ill_flags | phyi->phyint_flags) & 0xffff);
10758 } else {
10759 struct lifreq *lifr = (struct lifreq *)if_req;
10760
10761 /* Get interface flags. */
10762 lifr->lifr_flags = ipif->ipif_flags |
10763 ill->ill_flags | phyi->phyint_flags;
10764 }
10765 mutex_exit(&ill->ill_lock);
10766 return (0);
10767 }
10768
10769 /*
10770 * We allow the MTU to be set on an ILL, but not have it be different
10771 * for different IPIFs since we don't actually send packets on IPIFs.
10772 */
10773 /* ARGSUSED */
10774 int
ip_sioctl_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10775 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10776 ip_ioctl_cmd_t *ipip, void *if_req)
10777 {
10778 int mtu;
10779 int ip_min_mtu;
10780 struct ifreq *ifr;
10781 struct lifreq *lifr;
10782 ill_t *ill;
10783
10784 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10785 ipif->ipif_id, (void *)ipif));
10786 if (ipip->ipi_cmd_type == IF_CMD) {
10787 ifr = (struct ifreq *)if_req;
10788 mtu = ifr->ifr_metric;
10789 } else {
10790 lifr = (struct lifreq *)if_req;
10791 mtu = lifr->lifr_mtu;
10792 }
10793 /* Only allow for logical unit zero i.e. not on "bge0:17" */
10794 if (ipif->ipif_id != 0)
10795 return (EINVAL);
10796
10797 ill = ipif->ipif_ill;
10798 if (ipif->ipif_isv6)
10799 ip_min_mtu = IPV6_MIN_MTU;
10800 else
10801 ip_min_mtu = IP_MIN_MTU;
10802
10803 mutex_enter(&ill->ill_lock);
10804 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10805 mutex_exit(&ill->ill_lock);
10806 return (EINVAL);
10807 }
10808 /* Avoid increasing ill_mc_mtu */
10809 if (ill->ill_mc_mtu > mtu)
10810 ill->ill_mc_mtu = mtu;
10811
10812 /*
10813 * The dce and fragmentation code can handle changes to ill_mtu
10814 * concurrent with sending/fragmenting packets.
10815 */
10816 ill->ill_mtu = mtu;
10817 ill->ill_flags |= ILLF_FIXEDMTU;
10818 mutex_exit(&ill->ill_lock);
10819
10820 /*
10821 * Make sure all dce_generation checks find out
10822 * that ill_mtu/ill_mc_mtu has changed.
10823 */
10824 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10825
10826 /*
10827 * Refresh IPMP meta-interface MTU if necessary.
10828 */
10829 if (IS_UNDER_IPMP(ill))
10830 ipmp_illgrp_refresh_mtu(ill->ill_grp);
10831
10832 /* Update the MTU in SCTP's list */
10833 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10834 return (0);
10835 }
10836
10837 /* Get interface MTU. */
10838 /* ARGSUSED */
10839 int
ip_sioctl_get_mtu(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10840 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10841 ip_ioctl_cmd_t *ipip, void *if_req)
10842 {
10843 struct ifreq *ifr;
10844 struct lifreq *lifr;
10845
10846 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10847 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10848
10849 /*
10850 * We allow a get on any logical interface even though the set
10851 * can only be done on logical unit 0.
10852 */
10853 if (ipip->ipi_cmd_type == IF_CMD) {
10854 ifr = (struct ifreq *)if_req;
10855 ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10856 } else {
10857 lifr = (struct lifreq *)if_req;
10858 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10859 }
10860 return (0);
10861 }
10862
10863 /* Set interface broadcast address. */
10864 /* ARGSUSED2 */
10865 int
ip_sioctl_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10866 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10867 ip_ioctl_cmd_t *ipip, void *if_req)
10868 {
10869 ipaddr_t addr;
10870 ire_t *ire;
10871 ill_t *ill = ipif->ipif_ill;
10872 ip_stack_t *ipst = ill->ill_ipst;
10873
10874 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10875 ipif->ipif_id));
10876
10877 ASSERT(IAM_WRITER_IPIF(ipif));
10878 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10879 return (EADDRNOTAVAIL);
10880
10881 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */
10882
10883 if (sin->sin_family != AF_INET)
10884 return (EAFNOSUPPORT);
10885
10886 addr = sin->sin_addr.s_addr;
10887
10888 if (ipif->ipif_flags & IPIF_UP) {
10889 /*
10890 * If we are already up, make sure the new
10891 * broadcast address makes sense. If it does,
10892 * there should be an IRE for it already.
10893 */
10894 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10895 ill, ipif->ipif_zoneid, NULL,
10896 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10897 if (ire == NULL) {
10898 return (EINVAL);
10899 } else {
10900 ire_refrele(ire);
10901 }
10902 }
10903 /*
10904 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10905 * needs to already exist we never need to change the set of
10906 * IRE_BROADCASTs when we are UP.
10907 */
10908 if (addr != ipif->ipif_brd_addr)
10909 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10910
10911 return (0);
10912 }
10913
10914 /* Get interface broadcast address. */
10915 /* ARGSUSED */
10916 int
ip_sioctl_get_brdaddr(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10917 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10918 ip_ioctl_cmd_t *ipip, void *if_req)
10919 {
10920 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10921 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10922 if (!(ipif->ipif_flags & IPIF_BROADCAST))
10923 return (EADDRNOTAVAIL);
10924
10925 /* IPIF_BROADCAST not possible with IPv6 */
10926 ASSERT(!ipif->ipif_isv6);
10927 *sin = sin_null;
10928 sin->sin_family = AF_INET;
10929 sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10930 return (0);
10931 }
10932
10933 /*
10934 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10935 */
10936 /* ARGSUSED */
10937 int
ip_sioctl_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)10938 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10939 ip_ioctl_cmd_t *ipip, void *if_req)
10940 {
10941 int err = 0;
10942 in6_addr_t v6mask;
10943
10944 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10946
10947 ASSERT(IAM_WRITER_IPIF(ipif));
10948
10949 if (ipif->ipif_isv6) {
10950 sin6_t *sin6;
10951
10952 if (sin->sin_family != AF_INET6)
10953 return (EAFNOSUPPORT);
10954
10955 sin6 = (sin6_t *)sin;
10956 v6mask = sin6->sin6_addr;
10957 } else {
10958 ipaddr_t mask;
10959
10960 if (sin->sin_family != AF_INET)
10961 return (EAFNOSUPPORT);
10962
10963 mask = sin->sin_addr.s_addr;
10964 if (!ip_contiguous_mask(ntohl(mask)))
10965 return (ENOTSUP);
10966 V4MASK_TO_V6(mask, v6mask);
10967 }
10968
10969 /*
10970 * No big deal if the interface isn't already up, or the mask
10971 * isn't really changing, or this is pt-pt.
10972 */
10973 if (!(ipif->ipif_flags & IPIF_UP) ||
10974 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10975 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10976 ipif->ipif_v6net_mask = v6mask;
10977 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10978 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10979 ipif->ipif_v6net_mask,
10980 ipif->ipif_v6subnet);
10981 }
10982 return (0);
10983 }
10984 /*
10985 * Make sure we have valid net and subnet broadcast ire's
10986 * for the old netmask, if needed by other logical interfaces.
10987 */
10988 err = ipif_logical_down(ipif, q, mp);
10989 if (err == EINPROGRESS)
10990 return (err);
10991 (void) ipif_down_tail(ipif);
10992 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10993 return (err);
10994 }
10995
10996 static int
ip_sioctl_netmask_tail(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp)10997 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10998 {
10999 in6_addr_t v6mask;
11000 int err = 0;
11001
11002 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
11003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11004
11005 if (ipif->ipif_isv6) {
11006 sin6_t *sin6;
11007
11008 sin6 = (sin6_t *)sin;
11009 v6mask = sin6->sin6_addr;
11010 } else {
11011 ipaddr_t mask;
11012
11013 mask = sin->sin_addr.s_addr;
11014 V4MASK_TO_V6(mask, v6mask);
11015 }
11016
11017 ipif->ipif_v6net_mask = v6mask;
11018 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11019 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11020 ipif->ipif_v6subnet);
11021 }
11022 err = ipif_up(ipif, q, mp);
11023
11024 if (err == 0 || err == EINPROGRESS) {
11025 /*
11026 * The interface must be DL_BOUND if this packet has to
11027 * go out on the wire. Since we only go through a logical
11028 * down and are bound with the driver during an internal
11029 * down/up that is satisfied.
11030 */
11031 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11032 /* Potentially broadcast an address mask reply. */
11033 ipif_mask_reply(ipif);
11034 }
11035 }
11036 return (err);
11037 }
11038
11039 /* ARGSUSED */
11040 int
ip_sioctl_netmask_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11041 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11042 ip_ioctl_cmd_t *ipip, void *if_req)
11043 {
11044 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11045 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11046 (void) ipif_down_tail(ipif);
11047 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11048 }
11049
11050 /* Get interface net mask. */
11051 /* ARGSUSED */
11052 int
ip_sioctl_get_netmask(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11053 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11054 ip_ioctl_cmd_t *ipip, void *if_req)
11055 {
11056 struct lifreq *lifr = (struct lifreq *)if_req;
11057 struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11058
11059 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11061
11062 /*
11063 * net mask can't change since we have a reference to the ipif.
11064 */
11065 if (ipif->ipif_isv6) {
11066 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11067 *sin6 = sin6_null;
11068 sin6->sin6_family = AF_INET6;
11069 sin6->sin6_addr = ipif->ipif_v6net_mask;
11070 lifr->lifr_addrlen =
11071 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11072 } else {
11073 *sin = sin_null;
11074 sin->sin_family = AF_INET;
11075 sin->sin_addr.s_addr = ipif->ipif_net_mask;
11076 if (ipip->ipi_cmd_type == LIF_CMD) {
11077 lifr->lifr_addrlen =
11078 ip_mask_to_plen(ipif->ipif_net_mask);
11079 }
11080 }
11081 return (0);
11082 }
11083
11084 /* ARGSUSED */
11085 int
ip_sioctl_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11086 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11087 ip_ioctl_cmd_t *ipip, void *if_req)
11088 {
11089 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11090 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11091
11092 /*
11093 * Since no applications should ever be setting metrics on underlying
11094 * interfaces, we explicitly fail to smoke 'em out.
11095 */
11096 if (IS_UNDER_IPMP(ipif->ipif_ill))
11097 return (EINVAL);
11098
11099 /*
11100 * Set interface metric. We don't use this for
11101 * anything but we keep track of it in case it is
11102 * important to routing applications or such.
11103 */
11104 if (ipip->ipi_cmd_type == IF_CMD) {
11105 struct ifreq *ifr;
11106
11107 ifr = (struct ifreq *)if_req;
11108 ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11109 } else {
11110 struct lifreq *lifr;
11111
11112 lifr = (struct lifreq *)if_req;
11113 ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11114 }
11115 return (0);
11116 }
11117
11118 /* ARGSUSED */
11119 int
ip_sioctl_get_metric(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11120 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11121 ip_ioctl_cmd_t *ipip, void *if_req)
11122 {
11123 /* Get interface metric. */
11124 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11126
11127 if (ipip->ipi_cmd_type == IF_CMD) {
11128 struct ifreq *ifr;
11129
11130 ifr = (struct ifreq *)if_req;
11131 ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11132 } else {
11133 struct lifreq *lifr;
11134
11135 lifr = (struct lifreq *)if_req;
11136 lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11137 }
11138
11139 return (0);
11140 }
11141
11142 /* ARGSUSED */
11143 int
ip_sioctl_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11144 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11145 ip_ioctl_cmd_t *ipip, void *if_req)
11146 {
11147 int arp_muxid;
11148
11149 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11151 /*
11152 * Set the muxid returned from I_PLINK.
11153 */
11154 if (ipip->ipi_cmd_type == IF_CMD) {
11155 struct ifreq *ifr = (struct ifreq *)if_req;
11156
11157 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11158 arp_muxid = ifr->ifr_arp_muxid;
11159 } else {
11160 struct lifreq *lifr = (struct lifreq *)if_req;
11161
11162 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11163 arp_muxid = lifr->lifr_arp_muxid;
11164 }
11165 arl_set_muxid(ipif->ipif_ill, arp_muxid);
11166 return (0);
11167 }
11168
11169 /* ARGSUSED */
11170 int
ip_sioctl_get_muxid(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11171 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11172 ip_ioctl_cmd_t *ipip, void *if_req)
11173 {
11174 int arp_muxid = 0;
11175
11176 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11177 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11178 /*
11179 * Get the muxid saved in ill for I_PUNLINK.
11180 */
11181 arp_muxid = arl_get_muxid(ipif->ipif_ill);
11182 if (ipip->ipi_cmd_type == IF_CMD) {
11183 struct ifreq *ifr = (struct ifreq *)if_req;
11184
11185 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11186 ifr->ifr_arp_muxid = arp_muxid;
11187 } else {
11188 struct lifreq *lifr = (struct lifreq *)if_req;
11189
11190 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11191 lifr->lifr_arp_muxid = arp_muxid;
11192 }
11193 return (0);
11194 }
11195
11196 /*
11197 * Set the subnet prefix. Does not modify the broadcast address.
11198 */
11199 /* ARGSUSED */
11200 int
ip_sioctl_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11201 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11202 ip_ioctl_cmd_t *ipip, void *if_req)
11203 {
11204 int err = 0;
11205 in6_addr_t v6addr;
11206 in6_addr_t v6mask;
11207 boolean_t need_up = B_FALSE;
11208 int addrlen;
11209
11210 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11211 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11212
11213 ASSERT(IAM_WRITER_IPIF(ipif));
11214 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11215
11216 if (ipif->ipif_isv6) {
11217 sin6_t *sin6;
11218
11219 if (sin->sin_family != AF_INET6)
11220 return (EAFNOSUPPORT);
11221
11222 sin6 = (sin6_t *)sin;
11223 v6addr = sin6->sin6_addr;
11224 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11225 return (EADDRNOTAVAIL);
11226 } else {
11227 ipaddr_t addr;
11228
11229 if (sin->sin_family != AF_INET)
11230 return (EAFNOSUPPORT);
11231
11232 addr = sin->sin_addr.s_addr;
11233 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11234 return (EADDRNOTAVAIL);
11235 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11236 /* Add 96 bits */
11237 addrlen += IPV6_ABITS - IP_ABITS;
11238 }
11239
11240 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11241 return (EINVAL);
11242
11243 /* Check if bits in the address is set past the mask */
11244 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11245 return (EINVAL);
11246
11247 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11248 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11249 return (0); /* No change */
11250
11251 if (ipif->ipif_flags & IPIF_UP) {
11252 /*
11253 * If the interface is already marked up,
11254 * we call ipif_down which will take care
11255 * of ditching any IREs that have been set
11256 * up based on the old interface address.
11257 */
11258 err = ipif_logical_down(ipif, q, mp);
11259 if (err == EINPROGRESS)
11260 return (err);
11261 (void) ipif_down_tail(ipif);
11262 need_up = B_TRUE;
11263 }
11264
11265 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11266 return (err);
11267 }
11268
11269 static int
ip_sioctl_subnet_tail(ipif_t * ipif,in6_addr_t v6addr,in6_addr_t v6mask,queue_t * q,mblk_t * mp,boolean_t need_up)11270 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11271 queue_t *q, mblk_t *mp, boolean_t need_up)
11272 {
11273 ill_t *ill = ipif->ipif_ill;
11274 int err = 0;
11275
11276 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11277 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11278
11279 /* Set the new address. */
11280 mutex_enter(&ill->ill_lock);
11281 ipif->ipif_v6net_mask = v6mask;
11282 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11283 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11284 ipif->ipif_v6subnet);
11285 }
11286 mutex_exit(&ill->ill_lock);
11287
11288 if (need_up) {
11289 /*
11290 * Now bring the interface back up. If this
11291 * is the only IPIF for the ILL, ipif_up
11292 * will have to re-bind to the device, so
11293 * we may get back EINPROGRESS, in which
11294 * case, this IOCTL will get completed in
11295 * ip_rput_dlpi when we see the DL_BIND_ACK.
11296 */
11297 err = ipif_up(ipif, q, mp);
11298 if (err == EINPROGRESS)
11299 return (err);
11300 }
11301 return (err);
11302 }
11303
11304 /* ARGSUSED */
11305 int
ip_sioctl_subnet_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11306 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11307 ip_ioctl_cmd_t *ipip, void *if_req)
11308 {
11309 int addrlen;
11310 in6_addr_t v6addr;
11311 in6_addr_t v6mask;
11312 struct lifreq *lifr = (struct lifreq *)if_req;
11313
11314 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11315 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11316 (void) ipif_down_tail(ipif);
11317
11318 addrlen = lifr->lifr_addrlen;
11319 if (ipif->ipif_isv6) {
11320 sin6_t *sin6;
11321
11322 sin6 = (sin6_t *)sin;
11323 v6addr = sin6->sin6_addr;
11324 } else {
11325 ipaddr_t addr;
11326
11327 addr = sin->sin_addr.s_addr;
11328 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11329 addrlen += IPV6_ABITS - IP_ABITS;
11330 }
11331 (void) ip_plen_to_mask_v6(addrlen, &v6mask);
11332
11333 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11334 }
11335
11336 /* ARGSUSED */
11337 int
ip_sioctl_get_subnet(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)11338 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11339 ip_ioctl_cmd_t *ipip, void *if_req)
11340 {
11341 struct lifreq *lifr = (struct lifreq *)if_req;
11342 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11343
11344 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11345 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11346 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11347
11348 if (ipif->ipif_isv6) {
11349 *sin6 = sin6_null;
11350 sin6->sin6_family = AF_INET6;
11351 sin6->sin6_addr = ipif->ipif_v6subnet;
11352 lifr->lifr_addrlen =
11353 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11354 } else {
11355 *sin = sin_null;
11356 sin->sin_family = AF_INET;
11357 sin->sin_addr.s_addr = ipif->ipif_subnet;
11358 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11359 }
11360 return (0);
11361 }
11362
11363 /*
11364 * Set the IPv6 address token.
11365 */
11366 /* ARGSUSED */
11367 int
ip_sioctl_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11368 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11369 ip_ioctl_cmd_t *ipi, void *if_req)
11370 {
11371 ill_t *ill = ipif->ipif_ill;
11372 int err;
11373 in6_addr_t v6addr;
11374 in6_addr_t v6mask;
11375 boolean_t need_up = B_FALSE;
11376 int i;
11377 sin6_t *sin6 = (sin6_t *)sin;
11378 struct lifreq *lifr = (struct lifreq *)if_req;
11379 int addrlen;
11380
11381 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11382 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11383 ASSERT(IAM_WRITER_IPIF(ipif));
11384
11385 addrlen = lifr->lifr_addrlen;
11386 /* Only allow for logical unit zero i.e. not on "le0:17" */
11387 if (ipif->ipif_id != 0)
11388 return (EINVAL);
11389
11390 if (!ipif->ipif_isv6)
11391 return (EINVAL);
11392
11393 if (addrlen > IPV6_ABITS)
11394 return (EINVAL);
11395
11396 v6addr = sin6->sin6_addr;
11397
11398 /*
11399 * The length of the token is the length from the end. To get
11400 * the proper mask for this, compute the mask of the bits not
11401 * in the token; ie. the prefix, and then xor to get the mask.
11402 */
11403 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11404 return (EINVAL);
11405 for (i = 0; i < 4; i++) {
11406 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11407 }
11408
11409 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11410 ill->ill_token_length == addrlen)
11411 return (0); /* No change */
11412
11413 if (ipif->ipif_flags & IPIF_UP) {
11414 err = ipif_logical_down(ipif, q, mp);
11415 if (err == EINPROGRESS)
11416 return (err);
11417 (void) ipif_down_tail(ipif);
11418 need_up = B_TRUE;
11419 }
11420 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11421 return (err);
11422 }
11423
11424 static int
ip_sioctl_token_tail(ipif_t * ipif,sin6_t * sin6,int addrlen,queue_t * q,mblk_t * mp,boolean_t need_up)11425 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11426 mblk_t *mp, boolean_t need_up)
11427 {
11428 in6_addr_t v6addr;
11429 in6_addr_t v6mask;
11430 ill_t *ill = ipif->ipif_ill;
11431 int i;
11432 int err = 0;
11433
11434 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11435 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11436 v6addr = sin6->sin6_addr;
11437 /*
11438 * The length of the token is the length from the end. To get
11439 * the proper mask for this, compute the mask of the bits not
11440 * in the token; ie. the prefix, and then xor to get the mask.
11441 */
11442 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11443 for (i = 0; i < 4; i++)
11444 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11445
11446 mutex_enter(&ill->ill_lock);
11447 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11448 ill->ill_token_length = addrlen;
11449 ill->ill_manual_token = 1;
11450
11451 /* Reconfigure the link-local address based on this new token */
11452 ipif_setlinklocal(ill->ill_ipif);
11453
11454 mutex_exit(&ill->ill_lock);
11455
11456 if (need_up) {
11457 /*
11458 * Now bring the interface back up. If this
11459 * is the only IPIF for the ILL, ipif_up
11460 * will have to re-bind to the device, so
11461 * we may get back EINPROGRESS, in which
11462 * case, this IOCTL will get completed in
11463 * ip_rput_dlpi when we see the DL_BIND_ACK.
11464 */
11465 err = ipif_up(ipif, q, mp);
11466 if (err == EINPROGRESS)
11467 return (err);
11468 }
11469 return (err);
11470 }
11471
11472 /* ARGSUSED */
11473 int
ip_sioctl_get_token(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11474 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11475 ip_ioctl_cmd_t *ipi, void *if_req)
11476 {
11477 ill_t *ill;
11478 sin6_t *sin6 = (sin6_t *)sin;
11479 struct lifreq *lifr = (struct lifreq *)if_req;
11480
11481 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11483 if (ipif->ipif_id != 0)
11484 return (EINVAL);
11485
11486 ill = ipif->ipif_ill;
11487 if (!ill->ill_isv6)
11488 return (ENXIO);
11489
11490 *sin6 = sin6_null;
11491 sin6->sin6_family = AF_INET6;
11492 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11493 sin6->sin6_addr = ill->ill_token;
11494 lifr->lifr_addrlen = ill->ill_token_length;
11495 return (0);
11496 }
11497
11498 /*
11499 * Set (hardware) link specific information that might override
11500 * what was acquired through the DL_INFO_ACK.
11501 */
11502 /* ARGSUSED */
11503 int
ip_sioctl_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11504 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11505 ip_ioctl_cmd_t *ipi, void *if_req)
11506 {
11507 ill_t *ill = ipif->ipif_ill;
11508 int ip_min_mtu;
11509 struct lifreq *lifr = (struct lifreq *)if_req;
11510 lif_ifinfo_req_t *lir;
11511
11512 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11513 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11514 lir = &lifr->lifr_ifinfo;
11515 ASSERT(IAM_WRITER_IPIF(ipif));
11516
11517 /* Only allow for logical unit zero i.e. not on "bge0:17" */
11518 if (ipif->ipif_id != 0)
11519 return (EINVAL);
11520
11521 /* Set interface MTU. */
11522 if (ipif->ipif_isv6)
11523 ip_min_mtu = IPV6_MIN_MTU;
11524 else
11525 ip_min_mtu = IP_MIN_MTU;
11526
11527 /*
11528 * Verify values before we set anything. Allow zero to
11529 * mean unspecified.
11530 *
11531 * XXX We should be able to set the user-defined lir_mtu to some value
11532 * that is greater than ill_current_frag but less than ill_max_frag- the
11533 * ill_max_frag value tells us the max MTU that can be handled by the
11534 * datalink, whereas the ill_current_frag is dynamically computed for
11535 * some link-types like tunnels, based on the tunnel PMTU. However,
11536 * since there is currently no way of distinguishing between
11537 * administratively fixed link mtu values (e.g., those set via
11538 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11539 * for tunnels) we conservatively choose the ill_current_frag as the
11540 * upper-bound.
11541 */
11542 if (lir->lir_maxmtu != 0 &&
11543 (lir->lir_maxmtu > ill->ill_current_frag ||
11544 lir->lir_maxmtu < ip_min_mtu))
11545 return (EINVAL);
11546 if (lir->lir_reachtime != 0 &&
11547 lir->lir_reachtime > ND_MAX_REACHTIME)
11548 return (EINVAL);
11549 if (lir->lir_reachretrans != 0 &&
11550 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11551 return (EINVAL);
11552
11553 mutex_enter(&ill->ill_lock);
11554 /*
11555 * The dce and fragmentation code can handle changes to ill_mtu
11556 * concurrent with sending/fragmenting packets.
11557 */
11558 if (lir->lir_maxmtu != 0)
11559 ill->ill_user_mtu = lir->lir_maxmtu;
11560
11561 if (lir->lir_reachtime != 0)
11562 ill->ill_reachable_time = lir->lir_reachtime;
11563
11564 if (lir->lir_reachretrans != 0)
11565 ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11566
11567 ill->ill_max_hops = lir->lir_maxhops;
11568 ill->ill_max_buf = ND_MAX_Q;
11569 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11570 /*
11571 * ill_mtu is the actual interface MTU, obtained as the min
11572 * of user-configured mtu and the value announced by the
11573 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11574 * we have already made the choice of requiring
11575 * ill_user_mtu < ill_current_frag by the time we get here,
11576 * the ill_mtu effectively gets assigned to the ill_user_mtu
11577 * here.
11578 */
11579 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11580 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11581 }
11582 mutex_exit(&ill->ill_lock);
11583
11584 /*
11585 * Make sure all dce_generation checks find out
11586 * that ill_mtu/ill_mc_mtu has changed.
11587 */
11588 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11589 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11590
11591 /*
11592 * Refresh IPMP meta-interface MTU if necessary.
11593 */
11594 if (IS_UNDER_IPMP(ill))
11595 ipmp_illgrp_refresh_mtu(ill->ill_grp);
11596
11597 return (0);
11598 }
11599
11600 /* ARGSUSED */
11601 int
ip_sioctl_get_lnkinfo(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipi,void * if_req)11602 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11603 ip_ioctl_cmd_t *ipi, void *if_req)
11604 {
11605 struct lif_ifinfo_req *lir;
11606 ill_t *ill = ipif->ipif_ill;
11607
11608 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11610 if (ipif->ipif_id != 0)
11611 return (EINVAL);
11612
11613 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11614 lir->lir_maxhops = ill->ill_max_hops;
11615 lir->lir_reachtime = ill->ill_reachable_time;
11616 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11617 lir->lir_maxmtu = ill->ill_mtu;
11618
11619 return (0);
11620 }
11621
11622 /*
11623 * Return best guess as to the subnet mask for the specified address.
11624 * Based on the subnet masks for all the configured interfaces.
11625 *
11626 * We end up returning a zero mask in the case of default, multicast or
11627 * experimental.
11628 */
11629 static ipaddr_t
ip_subnet_mask(ipaddr_t addr,ipif_t ** ipifp,ip_stack_t * ipst)11630 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11631 {
11632 ipaddr_t net_mask;
11633 ill_t *ill;
11634 ipif_t *ipif;
11635 ill_walk_context_t ctx;
11636 ipif_t *fallback_ipif = NULL;
11637
11638 net_mask = ip_net_mask(addr);
11639 if (net_mask == 0) {
11640 *ipifp = NULL;
11641 return (0);
11642 }
11643
11644 /* Let's check to see if this is maybe a local subnet route. */
11645 /* this function only applies to IPv4 interfaces */
11646 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11647 ill = ILL_START_WALK_V4(&ctx, ipst);
11648 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11649 mutex_enter(&ill->ill_lock);
11650 for (ipif = ill->ill_ipif; ipif != NULL;
11651 ipif = ipif->ipif_next) {
11652 if (IPIF_IS_CONDEMNED(ipif))
11653 continue;
11654 if (!(ipif->ipif_flags & IPIF_UP))
11655 continue;
11656 if ((ipif->ipif_subnet & net_mask) ==
11657 (addr & net_mask)) {
11658 /*
11659 * Don't trust pt-pt interfaces if there are
11660 * other interfaces.
11661 */
11662 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11663 if (fallback_ipif == NULL) {
11664 ipif_refhold_locked(ipif);
11665 fallback_ipif = ipif;
11666 }
11667 continue;
11668 }
11669
11670 /*
11671 * Fine. Just assume the same net mask as the
11672 * directly attached subnet interface is using.
11673 */
11674 ipif_refhold_locked(ipif);
11675 mutex_exit(&ill->ill_lock);
11676 rw_exit(&ipst->ips_ill_g_lock);
11677 if (fallback_ipif != NULL)
11678 ipif_refrele(fallback_ipif);
11679 *ipifp = ipif;
11680 return (ipif->ipif_net_mask);
11681 }
11682 }
11683 mutex_exit(&ill->ill_lock);
11684 }
11685 rw_exit(&ipst->ips_ill_g_lock);
11686
11687 *ipifp = fallback_ipif;
11688 return ((fallback_ipif != NULL) ?
11689 fallback_ipif->ipif_net_mask : net_mask);
11690 }
11691
11692 /*
11693 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11694 */
11695 static void
ip_wput_ioctl(queue_t * q,mblk_t * mp)11696 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11697 {
11698 IOCP iocp;
11699 ipft_t *ipft;
11700 ipllc_t *ipllc;
11701 mblk_t *mp1;
11702 cred_t *cr;
11703 int error = 0;
11704 conn_t *connp;
11705
11706 ip1dbg(("ip_wput_ioctl"));
11707 iocp = (IOCP)mp->b_rptr;
11708 mp1 = mp->b_cont;
11709 if (mp1 == NULL) {
11710 iocp->ioc_error = EINVAL;
11711 mp->b_datap->db_type = M_IOCNAK;
11712 iocp->ioc_count = 0;
11713 qreply(q, mp);
11714 return;
11715 }
11716
11717 /*
11718 * These IOCTLs provide various control capabilities to
11719 * upstream agents such as ULPs and processes. There
11720 * are currently two such IOCTLs implemented. They
11721 * are used by TCP to provide update information for
11722 * existing IREs and to forcibly delete an IRE for a
11723 * host that is not responding, thereby forcing an
11724 * attempt at a new route.
11725 */
11726 iocp->ioc_error = EINVAL;
11727 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11728 goto done;
11729
11730 ipllc = (ipllc_t *)mp1->b_rptr;
11731 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11732 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11733 break;
11734 }
11735 /*
11736 * prefer credential from mblk over ioctl;
11737 * see ip_sioctl_copyin_setup
11738 */
11739 cr = msg_getcred(mp, NULL);
11740 if (cr == NULL)
11741 cr = iocp->ioc_cr;
11742
11743 /*
11744 * Refhold the conn in case the request gets queued up in some lookup
11745 */
11746 ASSERT(CONN_Q(q));
11747 connp = Q_TO_CONN(q);
11748 CONN_INC_REF(connp);
11749 CONN_INC_IOCTLREF(connp);
11750 if (ipft->ipft_pfi &&
11751 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11752 pullupmsg(mp1, ipft->ipft_min_size))) {
11753 error = (*ipft->ipft_pfi)(q,
11754 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11755 }
11756 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11757 /*
11758 * CONN_OPER_PENDING_DONE happens in the function called
11759 * through ipft_pfi above.
11760 */
11761 return;
11762 }
11763
11764 CONN_DEC_IOCTLREF(connp);
11765 CONN_OPER_PENDING_DONE(connp);
11766 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11767 freemsg(mp);
11768 return;
11769 }
11770 iocp->ioc_error = error;
11771
11772 done:
11773 mp->b_datap->db_type = M_IOCACK;
11774 if (iocp->ioc_error)
11775 iocp->ioc_count = 0;
11776 qreply(q, mp);
11777 }
11778
11779 /*
11780 * Assign a unique id for the ipif. This is used by sctp_addr.c
11781 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11782 */
11783 static void
ipif_assign_seqid(ipif_t * ipif)11784 ipif_assign_seqid(ipif_t *ipif)
11785 {
11786 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
11787
11788 ipif->ipif_seqid = atomic_inc_64_nv(&ipst->ips_ipif_g_seqid);
11789 }
11790
11791 /*
11792 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are
11793 * administratively down (i.e., no DAD), of the same type, and locked. Note
11794 * that the clone is complete -- including the seqid -- and the expectation is
11795 * that the caller will either free or overwrite `sipif' before it's unlocked.
11796 */
11797 static void
ipif_clone(const ipif_t * sipif,ipif_t * dipif)11798 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11799 {
11800 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11801 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11802 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11803 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11804 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11805
11806 dipif->ipif_flags = sipif->ipif_flags;
11807 dipif->ipif_zoneid = sipif->ipif_zoneid;
11808 dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11809 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11810 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11811 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11812 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11813
11814 /*
11815 * As per the comment atop the function, we assume that these sipif
11816 * fields will be changed before sipif is unlocked.
11817 */
11818 dipif->ipif_seqid = sipif->ipif_seqid;
11819 dipif->ipif_state_flags = sipif->ipif_state_flags;
11820 }
11821
11822 /*
11823 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11824 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11825 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then
11826 * transfer the xop to `dipif'. Requires that all ipifs are administratively
11827 * down (i.e., no DAD), of the same type, and unlocked.
11828 */
11829 static void
ipif_transfer(ipif_t * sipif,ipif_t * dipif,ipif_t * virgipif)11830 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11831 {
11832 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11833 ipxop_t *ipx = ipsq->ipsq_xop;
11834
11835 ASSERT(sipif != dipif);
11836 ASSERT(sipif != virgipif);
11837
11838 /*
11839 * Grab all of the locks that protect the ipif in a defined order.
11840 */
11841 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11842
11843 ipif_clone(sipif, dipif);
11844 if (virgipif != NULL) {
11845 ipif_clone(virgipif, sipif);
11846 mi_free(virgipif);
11847 }
11848
11849 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11850
11851 /*
11852 * Transfer ownership of the current xop, if necessary.
11853 */
11854 if (ipx->ipx_current_ipif == sipif) {
11855 ASSERT(ipx->ipx_pending_ipif == NULL);
11856 mutex_enter(&ipx->ipx_lock);
11857 ipx->ipx_current_ipif = dipif;
11858 mutex_exit(&ipx->ipx_lock);
11859 }
11860
11861 if (virgipif == NULL)
11862 mi_free(sipif);
11863 }
11864
11865 /*
11866 * checks if:
11867 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11868 * - logical interface is within the allowed range
11869 */
11870 static int
is_lifname_valid(ill_t * ill,unsigned int ipif_id)11871 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11872 {
11873 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11874 return (ENAMETOOLONG);
11875
11876 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11877 return (ERANGE);
11878 return (0);
11879 }
11880
11881 /*
11882 * Insert the ipif, so that the list of ipifs on the ill will be sorted
11883 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11884 * be inserted into the first space available in the list. The value of
11885 * ipif_id will then be set to the appropriate value for its position.
11886 */
11887 static int
ipif_insert(ipif_t * ipif,boolean_t acquire_g_lock)11888 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11889 {
11890 ill_t *ill;
11891 ipif_t *tipif;
11892 ipif_t **tipifp;
11893 int id, err;
11894 ip_stack_t *ipst;
11895
11896 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11897 IAM_WRITER_IPIF(ipif));
11898
11899 ill = ipif->ipif_ill;
11900 ASSERT(ill != NULL);
11901 ipst = ill->ill_ipst;
11902
11903 /*
11904 * In the case of lo0:0 we already hold the ill_g_lock.
11905 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11906 * ipif_insert.
11907 */
11908 if (acquire_g_lock)
11909 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11910 mutex_enter(&ill->ill_lock);
11911 id = ipif->ipif_id;
11912 tipifp = &(ill->ill_ipif);
11913 if (id == -1) { /* need to find a real id */
11914 id = 0;
11915 while ((tipif = *tipifp) != NULL) {
11916 ASSERT(tipif->ipif_id >= id);
11917 if (tipif->ipif_id != id)
11918 break; /* non-consecutive id */
11919 id++;
11920 tipifp = &(tipif->ipif_next);
11921 }
11922 if ((err = is_lifname_valid(ill, id)) != 0) {
11923 mutex_exit(&ill->ill_lock);
11924 if (acquire_g_lock)
11925 rw_exit(&ipst->ips_ill_g_lock);
11926 return (err);
11927 }
11928 ipif->ipif_id = id; /* assign new id */
11929 } else if ((err = is_lifname_valid(ill, id)) == 0) {
11930 /* we have a real id; insert ipif in the right place */
11931 while ((tipif = *tipifp) != NULL) {
11932 ASSERT(tipif->ipif_id != id);
11933 if (tipif->ipif_id > id)
11934 break; /* found correct location */
11935 tipifp = &(tipif->ipif_next);
11936 }
11937 } else {
11938 mutex_exit(&ill->ill_lock);
11939 if (acquire_g_lock)
11940 rw_exit(&ipst->ips_ill_g_lock);
11941 return (err);
11942 }
11943
11944 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11945
11946 ipif->ipif_next = tipif;
11947 *tipifp = ipif;
11948 mutex_exit(&ill->ill_lock);
11949 if (acquire_g_lock)
11950 rw_exit(&ipst->ips_ill_g_lock);
11951
11952 return (0);
11953 }
11954
11955 static void
ipif_remove(ipif_t * ipif)11956 ipif_remove(ipif_t *ipif)
11957 {
11958 ipif_t **ipifp;
11959 ill_t *ill = ipif->ipif_ill;
11960
11961 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11962
11963 mutex_enter(&ill->ill_lock);
11964 ipifp = &ill->ill_ipif;
11965 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11966 if (*ipifp == ipif) {
11967 *ipifp = ipif->ipif_next;
11968 break;
11969 }
11970 }
11971 mutex_exit(&ill->ill_lock);
11972 }
11973
11974 /*
11975 * Allocate and initialize a new interface control structure. (Always
11976 * called as writer.)
11977 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11978 * is not part of the global linked list of ills. ipif_seqid is unique
11979 * in the system and to preserve the uniqueness, it is assigned only
11980 * when ill becomes part of the global list. At that point ill will
11981 * have a name. If it doesn't get assigned here, it will get assigned
11982 * in ipif_set_values() as part of SIOCSLIFNAME processing.
11983 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11984 * the interface flags or any other information from the DL_INFO_ACK for
11985 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11986 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11987 * second DL_INFO_ACK comes in from the driver.
11988 */
11989 static ipif_t *
ipif_allocate(ill_t * ill,int id,uint_t ire_type,boolean_t initialize,boolean_t insert,int * errorp)11990 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11991 boolean_t insert, int *errorp)
11992 {
11993 int err;
11994 ipif_t *ipif;
11995 ip_stack_t *ipst = ill->ill_ipst;
11996
11997 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11998 ill->ill_name, id, (void *)ill));
11999 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
12000
12001 if (errorp != NULL)
12002 *errorp = 0;
12003
12004 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
12005 if (errorp != NULL)
12006 *errorp = ENOMEM;
12007 return (NULL);
12008 }
12009 *ipif = ipif_zero; /* start clean */
12010
12011 ipif->ipif_ill = ill;
12012 ipif->ipif_id = id; /* could be -1 */
12013 /*
12014 * Inherit the zoneid from the ill; for the shared stack instance
12015 * this is always the global zone
12016 */
12017 ipif->ipif_zoneid = ill->ill_zoneid;
12018
12019 ipif->ipif_refcnt = 0;
12020
12021 if (insert) {
12022 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12023 mi_free(ipif);
12024 if (errorp != NULL)
12025 *errorp = err;
12026 return (NULL);
12027 }
12028 /* -1 id should have been replaced by real id */
12029 id = ipif->ipif_id;
12030 ASSERT(id >= 0);
12031 }
12032
12033 if (ill->ill_name[0] != '\0')
12034 ipif_assign_seqid(ipif);
12035
12036 /*
12037 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12038 * (which must not exist yet because the zeroth ipif is created once
12039 * per ill). However, do not not link it to the ipmp_grp_t until
12040 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12041 */
12042 if (id == 0 && IS_IPMP(ill)) {
12043 if (ipmp_illgrp_create(ill) == NULL) {
12044 if (insert) {
12045 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12046 ipif_remove(ipif);
12047 rw_exit(&ipst->ips_ill_g_lock);
12048 }
12049 mi_free(ipif);
12050 if (errorp != NULL)
12051 *errorp = ENOMEM;
12052 return (NULL);
12053 }
12054 }
12055
12056 /*
12057 * We grab ill_lock to protect the flag changes. The ipif is still
12058 * not up and can't be looked up until the ioctl completes and the
12059 * IPIF_CHANGING flag is cleared.
12060 */
12061 mutex_enter(&ill->ill_lock);
12062
12063 ipif->ipif_ire_type = ire_type;
12064
12065 if (ipif->ipif_isv6) {
12066 ill->ill_flags |= ILLF_IPV6;
12067 } else {
12068 ipaddr_t inaddr_any = INADDR_ANY;
12069
12070 ill->ill_flags |= ILLF_IPV4;
12071
12072 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12073 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12074 &ipif->ipif_v6lcl_addr);
12075 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12076 &ipif->ipif_v6subnet);
12077 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12078 &ipif->ipif_v6net_mask);
12079 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12080 &ipif->ipif_v6brd_addr);
12081 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12082 &ipif->ipif_v6pp_dst_addr);
12083 }
12084
12085 /*
12086 * Don't set the interface flags etc. now, will do it in
12087 * ip_ll_subnet_defaults.
12088 */
12089 if (!initialize)
12090 goto out;
12091
12092 /*
12093 * NOTE: The IPMP meta-interface is special-cased because it starts
12094 * with no underlying interfaces (and thus an unknown broadcast
12095 * address length), but all interfaces that can be placed into an IPMP
12096 * group are required to be broadcast-capable.
12097 */
12098 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12099 /*
12100 * Later detect lack of DLPI driver multicast capability by
12101 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12102 */
12103 ill->ill_flags |= ILLF_MULTICAST;
12104 if (!ipif->ipif_isv6)
12105 ipif->ipif_flags |= IPIF_BROADCAST;
12106 } else {
12107 if (ill->ill_net_type != IRE_LOOPBACK) {
12108 if (ipif->ipif_isv6)
12109 /*
12110 * Note: xresolv interfaces will eventually need
12111 * NOARP set here as well, but that will require
12112 * those external resolvers to have some
12113 * knowledge of that flag and act appropriately.
12114 * Not to be changed at present.
12115 */
12116 ill->ill_flags |= ILLF_NONUD;
12117 else
12118 ill->ill_flags |= ILLF_NOARP;
12119 }
12120 if (ill->ill_phys_addr_length == 0) {
12121 if (IS_VNI(ill)) {
12122 ipif->ipif_flags |= IPIF_NOXMIT;
12123 } else {
12124 /* pt-pt supports multicast. */
12125 ill->ill_flags |= ILLF_MULTICAST;
12126 if (ill->ill_net_type != IRE_LOOPBACK)
12127 ipif->ipif_flags |= IPIF_POINTOPOINT;
12128 }
12129 }
12130 }
12131 out:
12132 mutex_exit(&ill->ill_lock);
12133 return (ipif);
12134 }
12135
12136 /*
12137 * Remove the neighbor cache entries associated with this logical
12138 * interface.
12139 */
12140 int
ipif_arp_down(ipif_t * ipif)12141 ipif_arp_down(ipif_t *ipif)
12142 {
12143 ill_t *ill = ipif->ipif_ill;
12144 int err = 0;
12145
12146 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12147 ASSERT(IAM_WRITER_IPIF(ipif));
12148
12149 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12150 ill_t *, ill, ipif_t *, ipif);
12151 ipif_nce_down(ipif);
12152
12153 /*
12154 * If this is the last ipif that is going down and there are no
12155 * duplicate addresses we may yet attempt to re-probe, then we need to
12156 * clean up ARP completely.
12157 */
12158 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12159 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12160 /*
12161 * If this was the last ipif on an IPMP interface, purge any
12162 * static ARP entries associated with it.
12163 */
12164 if (IS_IPMP(ill))
12165 ipmp_illgrp_refresh_arpent(ill->ill_grp);
12166
12167 /* UNBIND, DETACH */
12168 err = arp_ll_down(ill);
12169 }
12170
12171 return (err);
12172 }
12173
12174 /*
12175 * Get the resolver set up for a new IP address. (Always called as writer.)
12176 * Called both for IPv4 and IPv6 interfaces, though it only does some
12177 * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12178 *
12179 * The enumerated value res_act tunes the behavior:
12180 * * Res_act_initial: set up all the resolver structures for a new
12181 * IP address.
12182 * * Res_act_defend: tell ARP that it needs to send a single gratuitous
12183 * ARP message in defense of the address.
12184 * * Res_act_rebind: tell ARP to change the hardware address for an IP
12185 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif().
12186 *
12187 * Returns zero on success, or an errno upon failure.
12188 */
12189 int
ipif_resolver_up(ipif_t * ipif,enum ip_resolver_action res_act)12190 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12191 {
12192 ill_t *ill = ipif->ipif_ill;
12193 int err;
12194 boolean_t was_dup;
12195
12196 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12197 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12198 ASSERT(IAM_WRITER_IPIF(ipif));
12199
12200 was_dup = B_FALSE;
12201 if (res_act == Res_act_initial) {
12202 ipif->ipif_addr_ready = 0;
12203 /*
12204 * We're bringing an interface up here. There's no way that we
12205 * should need to shut down ARP now.
12206 */
12207 mutex_enter(&ill->ill_lock);
12208 if (ipif->ipif_flags & IPIF_DUPLICATE) {
12209 ipif->ipif_flags &= ~IPIF_DUPLICATE;
12210 ill->ill_ipif_dup_count--;
12211 was_dup = B_TRUE;
12212 }
12213 mutex_exit(&ill->ill_lock);
12214 }
12215 if (ipif->ipif_recovery_id != 0)
12216 (void) untimeout(ipif->ipif_recovery_id);
12217 ipif->ipif_recovery_id = 0;
12218 if (ill->ill_net_type != IRE_IF_RESOLVER) {
12219 ipif->ipif_addr_ready = 1;
12220 return (0);
12221 }
12222 /* NDP will set the ipif_addr_ready flag when it's ready */
12223 if (ill->ill_isv6)
12224 return (0);
12225
12226 err = ipif_arp_up(ipif, res_act, was_dup);
12227 return (err);
12228 }
12229
12230 /*
12231 * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12232 * when a link has just gone back up.
12233 */
12234 static void
ipif_nce_start_dad(ipif_t * ipif)12235 ipif_nce_start_dad(ipif_t *ipif)
12236 {
12237 ncec_t *ncec;
12238 ill_t *ill = ipif->ipif_ill;
12239 boolean_t isv6 = ill->ill_isv6;
12240
12241 if (isv6) {
12242 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12243 &ipif->ipif_v6lcl_addr);
12244 } else {
12245 ipaddr_t v4addr;
12246
12247 if (ill->ill_net_type != IRE_IF_RESOLVER ||
12248 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12249 ipif->ipif_lcl_addr == INADDR_ANY) {
12250 /*
12251 * If we can't contact ARP for some reason,
12252 * that's not really a problem. Just send
12253 * out the routing socket notification that
12254 * DAD completion would have done, and continue.
12255 */
12256 ipif_mask_reply(ipif);
12257 ipif_up_notify(ipif);
12258 ipif->ipif_addr_ready = 1;
12259 return;
12260 }
12261
12262 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12263 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12264 }
12265
12266 if (ncec == NULL) {
12267 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12268 (void *)ipif));
12269 return;
12270 }
12271 if (!nce_restart_dad(ncec)) {
12272 /*
12273 * If we can't restart DAD for some reason, that's not really a
12274 * problem. Just send out the routing socket notification that
12275 * DAD completion would have done, and continue.
12276 */
12277 ipif_up_notify(ipif);
12278 ipif->ipif_addr_ready = 1;
12279 }
12280 ncec_refrele(ncec);
12281 }
12282
12283 /*
12284 * Restart duplicate address detection on all interfaces on the given ill.
12285 *
12286 * This is called when an interface transitions from down to up
12287 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12288 *
12289 * Note that since the underlying physical link has transitioned, we must cause
12290 * at least one routing socket message to be sent here, either via DAD
12291 * completion or just by default on the first ipif. (If we don't do this, then
12292 * in.mpathd will see long delays when doing link-based failure recovery.)
12293 */
12294 void
ill_restart_dad(ill_t * ill,boolean_t went_up)12295 ill_restart_dad(ill_t *ill, boolean_t went_up)
12296 {
12297 ipif_t *ipif;
12298
12299 if (ill == NULL)
12300 return;
12301
12302 /*
12303 * If layer two doesn't support duplicate address detection, then just
12304 * send the routing socket message now and be done with it.
12305 */
12306 if (!ill->ill_isv6 && arp_no_defense) {
12307 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12308 return;
12309 }
12310
12311 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12312 if (went_up) {
12313
12314 if (ipif->ipif_flags & IPIF_UP) {
12315 ipif_nce_start_dad(ipif);
12316 } else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12317 /*
12318 * kick off the bring-up process now.
12319 */
12320 ipif_do_recovery(ipif);
12321 } else {
12322 /*
12323 * Unfortunately, the first ipif is "special"
12324 * and represents the underlying ill in the
12325 * routing socket messages. Thus, when this
12326 * one ipif is down, we must still notify so
12327 * that the user knows the IFF_RUNNING status
12328 * change. (If the first ipif is up, then
12329 * we'll handle eventual routing socket
12330 * notification via DAD completion.)
12331 */
12332 if (ipif == ill->ill_ipif) {
12333 ip_rts_ifmsg(ill->ill_ipif,
12334 RTSQ_DEFAULT);
12335 }
12336 }
12337 } else {
12338 /*
12339 * After link down, we'll need to send a new routing
12340 * message when the link comes back, so clear
12341 * ipif_addr_ready.
12342 */
12343 ipif->ipif_addr_ready = 0;
12344 }
12345 }
12346
12347 /*
12348 * If we've torn down links, then notify the user right away.
12349 */
12350 if (!went_up)
12351 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12352 }
12353
12354 static void
ipsq_delete(ipsq_t * ipsq)12355 ipsq_delete(ipsq_t *ipsq)
12356 {
12357 ipxop_t *ipx = ipsq->ipsq_xop;
12358
12359 ipsq->ipsq_ipst = NULL;
12360 ASSERT(ipsq->ipsq_phyint == NULL);
12361 ASSERT(ipsq->ipsq_xop != NULL);
12362 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12363 ASSERT(ipx->ipx_pending_mp == NULL);
12364 kmem_free(ipsq, sizeof (ipsq_t));
12365 }
12366
12367 static int
ill_up_ipifs_on_ill(ill_t * ill,queue_t * q,mblk_t * mp)12368 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12369 {
12370 int err = 0;
12371 ipif_t *ipif;
12372
12373 if (ill == NULL)
12374 return (0);
12375
12376 ASSERT(IAM_WRITER_ILL(ill));
12377 ill->ill_up_ipifs = B_TRUE;
12378 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12379 if (ipif->ipif_was_up) {
12380 if (!(ipif->ipif_flags & IPIF_UP))
12381 err = ipif_up(ipif, q, mp);
12382 ipif->ipif_was_up = B_FALSE;
12383 if (err != 0) {
12384 ASSERT(err == EINPROGRESS);
12385 return (err);
12386 }
12387 }
12388 }
12389 ill->ill_up_ipifs = B_FALSE;
12390 return (0);
12391 }
12392
12393 /*
12394 * This function is called to bring up all the ipifs that were up before
12395 * bringing the ill down via ill_down_ipifs().
12396 */
12397 int
ill_up_ipifs(ill_t * ill,queue_t * q,mblk_t * mp)12398 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12399 {
12400 int err;
12401
12402 ASSERT(IAM_WRITER_ILL(ill));
12403
12404 if (ill->ill_replumbing) {
12405 ill->ill_replumbing = 0;
12406 /*
12407 * Send down REPLUMB_DONE notification followed by the
12408 * BIND_REQ on the arp stream.
12409 */
12410 if (!ill->ill_isv6)
12411 arp_send_replumb_conf(ill);
12412 }
12413 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12414 if (err != 0)
12415 return (err);
12416
12417 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12418 }
12419
12420 /*
12421 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12422 * down the ipifs without sending DL_UNBIND_REQ to the driver.
12423 */
12424 static void
ill_down_ipifs(ill_t * ill,boolean_t logical)12425 ill_down_ipifs(ill_t *ill, boolean_t logical)
12426 {
12427 ipif_t *ipif;
12428
12429 ASSERT(IAM_WRITER_ILL(ill));
12430
12431 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12432 /*
12433 * We go through the ipif_down logic even if the ipif
12434 * is already down, since routes can be added based
12435 * on down ipifs. Going through ipif_down once again
12436 * will delete any IREs created based on these routes.
12437 */
12438 if (ipif->ipif_flags & IPIF_UP)
12439 ipif->ipif_was_up = B_TRUE;
12440
12441 if (logical) {
12442 (void) ipif_logical_down(ipif, NULL, NULL);
12443 ipif_non_duplicate(ipif);
12444 (void) ipif_down_tail(ipif);
12445 } else {
12446 (void) ipif_down(ipif, NULL, NULL);
12447 }
12448 }
12449 }
12450
12451 /*
12452 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take
12453 * a look again at valid source addresses.
12454 * This should be called each time after the set of source addresses has been
12455 * changed.
12456 */
12457 void
ip_update_source_selection(ip_stack_t * ipst)12458 ip_update_source_selection(ip_stack_t *ipst)
12459 {
12460 /* We skip past SRC_GENERATION_VERIFY */
12461 if (atomic_inc_32_nv(&ipst->ips_src_generation) ==
12462 SRC_GENERATION_VERIFY)
12463 atomic_inc_32(&ipst->ips_src_generation);
12464 }
12465
12466 /*
12467 * Finish the group join started in ip_sioctl_groupname().
12468 */
12469 /* ARGSUSED */
12470 static void
ip_join_illgrps(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)12471 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12472 {
12473 ill_t *ill = q->q_ptr;
12474 phyint_t *phyi = ill->ill_phyint;
12475 ipmp_grp_t *grp = phyi->phyint_grp;
12476 ip_stack_t *ipst = ill->ill_ipst;
12477
12478 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12479 ASSERT(!IS_IPMP(ill) && grp != NULL);
12480 ASSERT(IAM_WRITER_IPSQ(ipsq));
12481
12482 if (phyi->phyint_illv4 != NULL) {
12483 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12484 VERIFY(grp->gr_pendv4-- > 0);
12485 rw_exit(&ipst->ips_ipmp_lock);
12486 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12487 }
12488 if (phyi->phyint_illv6 != NULL) {
12489 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12490 VERIFY(grp->gr_pendv6-- > 0);
12491 rw_exit(&ipst->ips_ipmp_lock);
12492 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12493 }
12494 freemsg(mp);
12495 }
12496
12497 /*
12498 * Process an SIOCSLIFGROUPNAME request.
12499 */
12500 /* ARGSUSED */
12501 int
ip_sioctl_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12502 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12503 ip_ioctl_cmd_t *ipip, void *ifreq)
12504 {
12505 struct lifreq *lifr = ifreq;
12506 ill_t *ill = ipif->ipif_ill;
12507 ip_stack_t *ipst = ill->ill_ipst;
12508 phyint_t *phyi = ill->ill_phyint;
12509 ipmp_grp_t *grp = phyi->phyint_grp;
12510 mblk_t *ipsq_mp;
12511 int err = 0;
12512
12513 /*
12514 * Note that phyint_grp can only change here, where we're exclusive.
12515 */
12516 ASSERT(IAM_WRITER_ILL(ill));
12517
12518 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12519 (phyi->phyint_flags & PHYI_VIRTUAL))
12520 return (EINVAL);
12521
12522 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12523
12524 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12525
12526 /*
12527 * If the name hasn't changed, there's nothing to do.
12528 */
12529 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12530 goto unlock;
12531
12532 /*
12533 * Handle requests to rename an IPMP meta-interface.
12534 *
12535 * Note that creation of the IPMP meta-interface is handled in
12536 * userland through the standard plumbing sequence. As part of the
12537 * plumbing the IPMP meta-interface, its initial groupname is set to
12538 * the name of the interface (see ipif_set_values_tail()).
12539 */
12540 if (IS_IPMP(ill)) {
12541 err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12542 goto unlock;
12543 }
12544
12545 /*
12546 * Handle requests to add or remove an IP interface from a group.
12547 */
12548 if (lifr->lifr_groupname[0] != '\0') { /* add */
12549 /*
12550 * Moves are handled by first removing the interface from
12551 * its existing group, and then adding it to another group.
12552 * So, fail if it's already in a group.
12553 */
12554 if (IS_UNDER_IPMP(ill)) {
12555 err = EALREADY;
12556 goto unlock;
12557 }
12558
12559 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12560 if (grp == NULL) {
12561 err = ENOENT;
12562 goto unlock;
12563 }
12564
12565 /*
12566 * Check if the phyint and its ills are suitable for
12567 * inclusion into the group.
12568 */
12569 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12570 goto unlock;
12571
12572 /*
12573 * Checks pass; join the group, and enqueue the remaining
12574 * illgrp joins for when we've become part of the group xop
12575 * and are exclusive across its IPSQs. Since qwriter_ip()
12576 * requires an mblk_t to scribble on, and since `mp' will be
12577 * freed as part of completing the ioctl, allocate another.
12578 */
12579 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12580 err = ENOMEM;
12581 goto unlock;
12582 }
12583
12584 /*
12585 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12586 * IPMP meta-interface ills needed by `phyi' cannot go away
12587 * before ip_join_illgrps() is called back. See the comments
12588 * in ip_sioctl_plink_ipmp() for more.
12589 */
12590 if (phyi->phyint_illv4 != NULL)
12591 grp->gr_pendv4++;
12592 if (phyi->phyint_illv6 != NULL)
12593 grp->gr_pendv6++;
12594
12595 rw_exit(&ipst->ips_ipmp_lock);
12596
12597 ipmp_phyint_join_grp(phyi, grp);
12598 ill_refhold(ill);
12599 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12600 SWITCH_OP, B_FALSE);
12601 return (0);
12602 } else {
12603 /*
12604 * Request to remove the interface from a group. If the
12605 * interface is not in a group, this trivially succeeds.
12606 */
12607 rw_exit(&ipst->ips_ipmp_lock);
12608 if (IS_UNDER_IPMP(ill))
12609 ipmp_phyint_leave_grp(phyi);
12610 return (0);
12611 }
12612 unlock:
12613 rw_exit(&ipst->ips_ipmp_lock);
12614 return (err);
12615 }
12616
12617 /*
12618 * Process an SIOCGLIFBINDING request.
12619 */
12620 /* ARGSUSED */
12621 int
ip_sioctl_get_binding(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12622 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12623 ip_ioctl_cmd_t *ipip, void *ifreq)
12624 {
12625 ill_t *ill;
12626 struct lifreq *lifr = ifreq;
12627 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12628
12629 if (!IS_IPMP(ipif->ipif_ill))
12630 return (EINVAL);
12631
12632 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12633 if ((ill = ipif->ipif_bound_ill) == NULL)
12634 lifr->lifr_binding[0] = '\0';
12635 else
12636 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12637 rw_exit(&ipst->ips_ipmp_lock);
12638 return (0);
12639 }
12640
12641 /*
12642 * Process an SIOCGLIFGROUPNAME request.
12643 */
12644 /* ARGSUSED */
12645 int
ip_sioctl_get_groupname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)12646 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12647 ip_ioctl_cmd_t *ipip, void *ifreq)
12648 {
12649 ipmp_grp_t *grp;
12650 struct lifreq *lifr = ifreq;
12651 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12652
12653 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12654 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12655 lifr->lifr_groupname[0] = '\0';
12656 else
12657 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12658 rw_exit(&ipst->ips_ipmp_lock);
12659 return (0);
12660 }
12661
12662 /*
12663 * Process an SIOCGLIFGROUPINFO request.
12664 */
12665 /* ARGSUSED */
12666 int
ip_sioctl_groupinfo(ipif_t * dummy_ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy)12667 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12668 ip_ioctl_cmd_t *ipip, void *dummy)
12669 {
12670 ipmp_grp_t *grp;
12671 lifgroupinfo_t *lifgr;
12672 ip_stack_t *ipst = CONNQ_TO_IPST(q);
12673
12674 /* ip_wput_nondata() verified mp->b_cont->b_cont */
12675 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12676 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12677
12678 rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12679 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12680 rw_exit(&ipst->ips_ipmp_lock);
12681 return (ENOENT);
12682 }
12683 ipmp_grp_info(grp, lifgr);
12684 rw_exit(&ipst->ips_ipmp_lock);
12685 return (0);
12686 }
12687
12688 static void
ill_dl_down(ill_t * ill)12689 ill_dl_down(ill_t *ill)
12690 {
12691 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12692
12693 /*
12694 * The ill is down; unbind but stay attached since we're still
12695 * associated with a PPA. If we have negotiated DLPI capabilites
12696 * with the data link service provider (IDS_OK) then reset them.
12697 * The interval between unbinding and rebinding is potentially
12698 * unbounded hence we cannot assume things will be the same.
12699 * The DLPI capabilities will be probed again when the data link
12700 * is brought up.
12701 */
12702 mblk_t *mp = ill->ill_unbind_mp;
12703
12704 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12705
12706 if (!ill->ill_replumbing) {
12707 /* Free all ilms for this ill */
12708 update_conn_ill(ill, ill->ill_ipst);
12709 } else {
12710 ill_leave_multicast(ill);
12711 }
12712
12713 ill->ill_unbind_mp = NULL;
12714 if (mp != NULL) {
12715 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12716 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12717 ill->ill_name));
12718 mutex_enter(&ill->ill_lock);
12719 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12720 mutex_exit(&ill->ill_lock);
12721 /*
12722 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12723 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12724 * ill_capability_dld_disable disable rightaway. If this is not
12725 * an unplumb operation then the disable happens on receipt of
12726 * the capab ack via ip_rput_dlpi_writer ->
12727 * ill_capability_ack_thr. In both cases the order of
12728 * the operations seen by DLD is capability disable followed
12729 * by DL_UNBIND. Also the DLD capability disable needs a
12730 * cv_wait'able context.
12731 */
12732 if (ill->ill_state_flags & ILL_CONDEMNED)
12733 ill_capability_dld_disable(ill);
12734 ill_capability_reset(ill, B_FALSE);
12735 ill_dlpi_send(ill, mp);
12736 }
12737 mutex_enter(&ill->ill_lock);
12738 ill->ill_dl_up = 0;
12739 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12740 mutex_exit(&ill->ill_lock);
12741 }
12742
12743 void
ill_dlpi_dispatch(ill_t * ill,mblk_t * mp)12744 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12745 {
12746 union DL_primitives *dlp;
12747 t_uscalar_t prim;
12748 boolean_t waitack = B_FALSE;
12749
12750 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12751
12752 dlp = (union DL_primitives *)mp->b_rptr;
12753 prim = dlp->dl_primitive;
12754
12755 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12756 dl_primstr(prim), prim, ill->ill_name));
12757
12758 switch (prim) {
12759 case DL_PHYS_ADDR_REQ:
12760 {
12761 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12762 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12763 break;
12764 }
12765 case DL_BIND_REQ:
12766 mutex_enter(&ill->ill_lock);
12767 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12768 mutex_exit(&ill->ill_lock);
12769 break;
12770 }
12771
12772 /*
12773 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12774 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12775 * we only wait for the ACK of the DL_UNBIND_REQ.
12776 */
12777 mutex_enter(&ill->ill_lock);
12778 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12779 (prim == DL_UNBIND_REQ)) {
12780 ill->ill_dlpi_pending = prim;
12781 waitack = B_TRUE;
12782 }
12783
12784 mutex_exit(&ill->ill_lock);
12785 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12786 char *, dl_primstr(prim), ill_t *, ill);
12787 putnext(ill->ill_wq, mp);
12788
12789 /*
12790 * There is no ack for DL_NOTIFY_CONF messages
12791 */
12792 if (waitack && prim == DL_NOTIFY_CONF)
12793 ill_dlpi_done(ill, prim);
12794 }
12795
12796 /*
12797 * Helper function for ill_dlpi_send().
12798 */
12799 /* ARGSUSED */
12800 static void
ill_dlpi_send_writer(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * arg)12801 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12802 {
12803 ill_dlpi_send(q->q_ptr, mp);
12804 }
12805
12806 /*
12807 * Send a DLPI control message to the driver but make sure there
12808 * is only one outstanding message. Uses ill_dlpi_pending to tell
12809 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12810 * when an ACK or a NAK is received to process the next queued message.
12811 */
12812 void
ill_dlpi_send(ill_t * ill,mblk_t * mp)12813 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12814 {
12815 mblk_t **mpp;
12816
12817 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12818
12819 /*
12820 * To ensure that any DLPI requests for current exclusive operation
12821 * are always completely sent before any DLPI messages for other
12822 * operations, require writer access before enqueuing.
12823 */
12824 if (!IAM_WRITER_ILL(ill)) {
12825 ill_refhold(ill);
12826 /* qwriter_ip() does the ill_refrele() */
12827 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12828 NEW_OP, B_TRUE);
12829 return;
12830 }
12831
12832 mutex_enter(&ill->ill_lock);
12833 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12834 /* Must queue message. Tail insertion */
12835 mpp = &ill->ill_dlpi_deferred;
12836 while (*mpp != NULL)
12837 mpp = &((*mpp)->b_next);
12838
12839 ip1dbg(("ill_dlpi_send: deferring request for %s "
12840 "while %s pending\n", ill->ill_name,
12841 dl_primstr(ill->ill_dlpi_pending)));
12842
12843 *mpp = mp;
12844 mutex_exit(&ill->ill_lock);
12845 return;
12846 }
12847 mutex_exit(&ill->ill_lock);
12848 ill_dlpi_dispatch(ill, mp);
12849 }
12850
12851 void
ill_capability_send(ill_t * ill,mblk_t * mp)12852 ill_capability_send(ill_t *ill, mblk_t *mp)
12853 {
12854 ill->ill_capab_pending_cnt++;
12855 ill_dlpi_send(ill, mp);
12856 }
12857
12858 void
ill_capability_done(ill_t * ill)12859 ill_capability_done(ill_t *ill)
12860 {
12861 ASSERT(ill->ill_capab_pending_cnt != 0);
12862
12863 ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12864
12865 ill->ill_capab_pending_cnt--;
12866 if (ill->ill_capab_pending_cnt == 0 &&
12867 ill->ill_dlpi_capab_state == IDCS_OK)
12868 ill_capability_reset_alloc(ill);
12869 }
12870
12871 /*
12872 * Send all deferred DLPI messages without waiting for their ACKs.
12873 */
12874 void
ill_dlpi_send_deferred(ill_t * ill)12875 ill_dlpi_send_deferred(ill_t *ill)
12876 {
12877 mblk_t *mp, *nextmp;
12878
12879 /*
12880 * Clear ill_dlpi_pending so that the message is not queued in
12881 * ill_dlpi_send().
12882 */
12883 mutex_enter(&ill->ill_lock);
12884 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12885 mp = ill->ill_dlpi_deferred;
12886 ill->ill_dlpi_deferred = NULL;
12887 mutex_exit(&ill->ill_lock);
12888
12889 for (; mp != NULL; mp = nextmp) {
12890 nextmp = mp->b_next;
12891 mp->b_next = NULL;
12892 ill_dlpi_send(ill, mp);
12893 }
12894 }
12895
12896 /*
12897 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12898 * or M_HANGUP
12899 */
12900 static void
ill_dlpi_clear_deferred(ill_t * ill)12901 ill_dlpi_clear_deferred(ill_t *ill)
12902 {
12903 mblk_t *mp, *nextmp;
12904
12905 mutex_enter(&ill->ill_lock);
12906 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12907 mp = ill->ill_dlpi_deferred;
12908 ill->ill_dlpi_deferred = NULL;
12909 mutex_exit(&ill->ill_lock);
12910
12911 for (; mp != NULL; mp = nextmp) {
12912 nextmp = mp->b_next;
12913 inet_freemsg(mp);
12914 }
12915 }
12916
12917 /*
12918 * Check if the DLPI primitive `prim' is pending; print a warning if not.
12919 */
12920 boolean_t
ill_dlpi_pending(ill_t * ill,t_uscalar_t prim)12921 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12922 {
12923 t_uscalar_t pending;
12924
12925 mutex_enter(&ill->ill_lock);
12926 if (ill->ill_dlpi_pending == prim) {
12927 mutex_exit(&ill->ill_lock);
12928 return (B_TRUE);
12929 }
12930
12931 /*
12932 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12933 * without waiting, so don't print any warnings in that case.
12934 */
12935 if (ill->ill_state_flags & ILL_CONDEMNED) {
12936 mutex_exit(&ill->ill_lock);
12937 return (B_FALSE);
12938 }
12939 pending = ill->ill_dlpi_pending;
12940 mutex_exit(&ill->ill_lock);
12941
12942 if (pending == DL_PRIM_INVAL) {
12943 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12944 "received unsolicited ack for %s on %s\n",
12945 dl_primstr(prim), ill->ill_name);
12946 } else {
12947 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12948 "received unexpected ack for %s on %s (expecting %s)\n",
12949 dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12950 }
12951 return (B_FALSE);
12952 }
12953
12954 /*
12955 * Complete the current DLPI operation associated with `prim' on `ill' and
12956 * start the next queued DLPI operation (if any). If there are no queued DLPI
12957 * operations and the ill's current exclusive IPSQ operation has finished
12958 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12959 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See
12960 * the comments above ipsq_current_finish() for details.
12961 */
12962 void
ill_dlpi_done(ill_t * ill,t_uscalar_t prim)12963 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12964 {
12965 mblk_t *mp;
12966 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12967 ipxop_t *ipx = ipsq->ipsq_xop;
12968
12969 ASSERT(IAM_WRITER_IPSQ(ipsq));
12970 mutex_enter(&ill->ill_lock);
12971
12972 ASSERT(prim != DL_PRIM_INVAL);
12973 ASSERT(ill->ill_dlpi_pending == prim);
12974
12975 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12976 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12977
12978 if ((mp = ill->ill_dlpi_deferred) == NULL) {
12979 ill->ill_dlpi_pending = DL_PRIM_INVAL;
12980 if (ipx->ipx_current_done) {
12981 mutex_enter(&ipx->ipx_lock);
12982 ipx->ipx_current_ipif = NULL;
12983 mutex_exit(&ipx->ipx_lock);
12984 }
12985 cv_signal(&ill->ill_cv);
12986 mutex_exit(&ill->ill_lock);
12987 return;
12988 }
12989
12990 ill->ill_dlpi_deferred = mp->b_next;
12991 mp->b_next = NULL;
12992 mutex_exit(&ill->ill_lock);
12993
12994 ill_dlpi_dispatch(ill, mp);
12995 }
12996
12997 /*
12998 * Queue a (multicast) DLPI control message to be sent to the driver by
12999 * later calling ill_dlpi_send_queued.
13000 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13001 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
13002 * for the same group to race.
13003 * We send DLPI control messages in order using ill_lock.
13004 * For IPMP we should be called on the cast_ill.
13005 */
13006 void
ill_dlpi_queue(ill_t * ill,mblk_t * mp)13007 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
13008 {
13009 mblk_t **mpp;
13010
13011 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13012
13013 mutex_enter(&ill->ill_lock);
13014 /* Must queue message. Tail insertion */
13015 mpp = &ill->ill_dlpi_deferred;
13016 while (*mpp != NULL)
13017 mpp = &((*mpp)->b_next);
13018
13019 *mpp = mp;
13020 mutex_exit(&ill->ill_lock);
13021 }
13022
13023 /*
13024 * Send the messages that were queued. Make sure there is only
13025 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13026 * when an ACK or a NAK is received to process the next queued message.
13027 * For IPMP we are called on the upper ill, but when send what is queued
13028 * on the cast_ill.
13029 */
13030 void
ill_dlpi_send_queued(ill_t * ill)13031 ill_dlpi_send_queued(ill_t *ill)
13032 {
13033 mblk_t *mp;
13034 union DL_primitives *dlp;
13035 t_uscalar_t prim;
13036 ill_t *release_ill = NULL;
13037
13038 if (IS_IPMP(ill)) {
13039 /* On the upper IPMP ill. */
13040 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13041 if (release_ill == NULL) {
13042 /* Avoid ever sending anything down to the ipmpstub */
13043 return;
13044 }
13045 ill = release_ill;
13046 }
13047 mutex_enter(&ill->ill_lock);
13048 while ((mp = ill->ill_dlpi_deferred) != NULL) {
13049 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13050 /* Can't send. Somebody else will send it */
13051 mutex_exit(&ill->ill_lock);
13052 goto done;
13053 }
13054 ill->ill_dlpi_deferred = mp->b_next;
13055 mp->b_next = NULL;
13056 if (!ill->ill_dl_up) {
13057 /*
13058 * Nobody there. All multicast addresses will be
13059 * re-joined when we get the DL_BIND_ACK bringing the
13060 * interface up.
13061 */
13062 freemsg(mp);
13063 continue;
13064 }
13065 dlp = (union DL_primitives *)mp->b_rptr;
13066 prim = dlp->dl_primitive;
13067
13068 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13069 (prim == DL_UNBIND_REQ)) {
13070 ill->ill_dlpi_pending = prim;
13071 }
13072 mutex_exit(&ill->ill_lock);
13073
13074 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13075 char *, dl_primstr(prim), ill_t *, ill);
13076 putnext(ill->ill_wq, mp);
13077 mutex_enter(&ill->ill_lock);
13078 }
13079 mutex_exit(&ill->ill_lock);
13080 done:
13081 if (release_ill != NULL)
13082 ill_refrele(release_ill);
13083 }
13084
13085 /*
13086 * Queue an IP (IGMP/MLD) message to be sent by IP from
13087 * ill_mcast_send_queued
13088 * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13089 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13090 * group to race.
13091 * We send them in order using ill_lock.
13092 * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13093 */
13094 void
ill_mcast_queue(ill_t * ill,mblk_t * mp)13095 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13096 {
13097 mblk_t **mpp;
13098 ill_t *release_ill = NULL;
13099
13100 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13101
13102 if (IS_IPMP(ill)) {
13103 /* On the upper IPMP ill. */
13104 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13105 if (release_ill == NULL) {
13106 /* Discard instead of queuing for the ipmp interface */
13107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13108 ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13109 mp, ill);
13110 freemsg(mp);
13111 return;
13112 }
13113 ill = release_ill;
13114 }
13115
13116 mutex_enter(&ill->ill_lock);
13117 /* Must queue message. Tail insertion */
13118 mpp = &ill->ill_mcast_deferred;
13119 while (*mpp != NULL)
13120 mpp = &((*mpp)->b_next);
13121
13122 *mpp = mp;
13123 mutex_exit(&ill->ill_lock);
13124 if (release_ill != NULL)
13125 ill_refrele(release_ill);
13126 }
13127
13128 /*
13129 * Send the IP packets that were queued by ill_mcast_queue.
13130 * These are IGMP/MLD packets.
13131 *
13132 * For IPMP we are called on the upper ill, but when send what is queued
13133 * on the cast_ill.
13134 *
13135 * Request loopback of the report if we are acting as a multicast
13136 * router, so that the process-level routing demon can hear it.
13137 * This will run multiple times for the same group if there are members
13138 * on the same group for multiple ipif's on the same ill. The
13139 * igmp_input/mld_input code will suppress this due to the loopback thus we
13140 * always loopback membership report.
13141 *
13142 * We also need to make sure that this does not get load balanced
13143 * by IPMP. We do this by passing an ill to ip_output_simple.
13144 */
13145 void
ill_mcast_send_queued(ill_t * ill)13146 ill_mcast_send_queued(ill_t *ill)
13147 {
13148 mblk_t *mp;
13149 ip_xmit_attr_t ixas;
13150 ill_t *release_ill = NULL;
13151
13152 if (IS_IPMP(ill)) {
13153 /* On the upper IPMP ill. */
13154 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13155 if (release_ill == NULL) {
13156 /*
13157 * We should have no messages on the ipmp interface
13158 * but no point in trying to send them.
13159 */
13160 return;
13161 }
13162 ill = release_ill;
13163 }
13164 bzero(&ixas, sizeof (ixas));
13165 ixas.ixa_zoneid = ALL_ZONES;
13166 ixas.ixa_cred = kcred;
13167 ixas.ixa_cpid = NOPID;
13168 ixas.ixa_tsl = NULL;
13169 /*
13170 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13171 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13172 * That is necessary to handle IGMP/MLD snooping switches.
13173 */
13174 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13175 ixas.ixa_ipst = ill->ill_ipst;
13176
13177 mutex_enter(&ill->ill_lock);
13178 while ((mp = ill->ill_mcast_deferred) != NULL) {
13179 ill->ill_mcast_deferred = mp->b_next;
13180 mp->b_next = NULL;
13181 if (!ill->ill_dl_up) {
13182 /*
13183 * Nobody there. Just drop the ip packets.
13184 * IGMP/MLD will resend later, if this is a replumb.
13185 */
13186 freemsg(mp);
13187 continue;
13188 }
13189 mutex_enter(&ill->ill_phyint->phyint_lock);
13190 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13191 /*
13192 * When the ill is getting deactivated, we only want to
13193 * send the DLPI messages, so drop IGMP/MLD packets.
13194 * DLPI messages are handled by ill_dlpi_send_queued()
13195 */
13196 mutex_exit(&ill->ill_phyint->phyint_lock);
13197 freemsg(mp);
13198 continue;
13199 }
13200 mutex_exit(&ill->ill_phyint->phyint_lock);
13201 mutex_exit(&ill->ill_lock);
13202
13203 /* Check whether we are sending IPv4 or IPv6. */
13204 if (ill->ill_isv6) {
13205 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
13206
13207 ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13208 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13209 } else {
13210 ipha_t *ipha = (ipha_t *)mp->b_rptr;
13211
13212 ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13213 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13214 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13215 }
13216 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13217 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13218 (void) ip_output_simple(mp, &ixas);
13219 ixa_cleanup(&ixas);
13220
13221 mutex_enter(&ill->ill_lock);
13222 }
13223 mutex_exit(&ill->ill_lock);
13224
13225 done:
13226 if (release_ill != NULL)
13227 ill_refrele(release_ill);
13228 }
13229
13230 /*
13231 * Take down a specific interface, but don't lose any information about it.
13232 * (Always called as writer.)
13233 * This function goes through the down sequence even if the interface is
13234 * already down. There are 2 reasons.
13235 * a. Currently we permit interface routes that depend on down interfaces
13236 * to be added. This behaviour itself is questionable. However it appears
13237 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13238 * time. We go thru the cleanup in order to remove these routes.
13239 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13240 * DL_ERROR_ACK in response to the DL_BIND request. The interface is
13241 * down, but we need to cleanup i.e. do ill_dl_down and
13242 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13243 *
13244 * IP-MT notes:
13245 *
13246 * Model of reference to interfaces.
13247 *
13248 * The following members in ipif_t track references to the ipif.
13249 * int ipif_refcnt; Active reference count
13250 *
13251 * The following members in ill_t track references to the ill.
13252 * int ill_refcnt; active refcnt
13253 * uint_t ill_ire_cnt; Number of ires referencing ill
13254 * uint_t ill_ncec_cnt; Number of ncecs referencing ill
13255 * uint_t ill_nce_cnt; Number of nces referencing ill
13256 * uint_t ill_ilm_cnt; Number of ilms referencing ill
13257 *
13258 * Reference to an ipif or ill can be obtained in any of the following ways.
13259 *
13260 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13261 * Pointers to ipif / ill from other data structures viz ire and conn.
13262 * Implicit reference to the ipif / ill by holding a reference to the ire.
13263 *
13264 * The ipif/ill lookup functions return a reference held ipif / ill.
13265 * ipif_refcnt and ill_refcnt track the reference counts respectively.
13266 * This is a purely dynamic reference count associated with threads holding
13267 * references to the ipif / ill. Pointers from other structures do not
13268 * count towards this reference count.
13269 *
13270 * ill_ire_cnt is the number of ire's associated with the
13271 * ill. This is incremented whenever a new ire is created referencing the
13272 * ill. This is done atomically inside ire_add_v[46] where the ire is
13273 * actually added to the ire hash table. The count is decremented in
13274 * ire_inactive where the ire is destroyed.
13275 *
13276 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13277 * This is incremented atomically in
13278 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13279 * table. Similarly it is decremented in ncec_inactive() where the ncec
13280 * is destroyed.
13281 *
13282 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13283 * incremented atomically in nce_add() where the nce is actually added to the
13284 * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13285 * is destroyed.
13286 *
13287 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13288 * ilm_add() and decremented before the ilm is freed in ilm_delete().
13289 *
13290 * Flow of ioctls involving interface down/up
13291 *
13292 * The following is the sequence of an attempt to set some critical flags on an
13293 * up interface.
13294 * ip_sioctl_flags
13295 * ipif_down
13296 * wait for ipif to be quiescent
13297 * ipif_down_tail
13298 * ip_sioctl_flags_tail
13299 *
13300 * All set ioctls that involve down/up sequence would have a skeleton similar
13301 * to the above. All the *tail functions are called after the refcounts have
13302 * dropped to the appropriate values.
13303 *
13304 * SIOC ioctls during the IPIF_CHANGING interval.
13305 *
13306 * Threads handling SIOC set ioctls serialize on the squeue, but this
13307 * is not done for SIOC get ioctls. Since a set ioctl can cause several
13308 * steps of internal changes to the state, some of which are visible in
13309 * ipif_flags (such as IFF_UP being cleared and later set), and we want
13310 * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13311 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13312 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13313 * the current exclusive operation completes. The IPIF_CHANGING check
13314 * and enqueue is atomic using the ill_lock and ipsq_lock. The
13315 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13316 * change while the ill_lock is held. Before dropping the ill_lock we acquire
13317 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13318 * until we release the ipsq_lock, even though the ill/ipif state flags
13319 * can change after we drop the ill_lock.
13320 */
13321 int
ipif_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13322 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13323 {
13324 ill_t *ill = ipif->ipif_ill;
13325 conn_t *connp;
13326 boolean_t success;
13327 boolean_t ipif_was_up = B_FALSE;
13328 ip_stack_t *ipst = ill->ill_ipst;
13329
13330 ASSERT(IAM_WRITER_IPIF(ipif));
13331
13332 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13333
13334 DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13335 ill_t *, ill, ipif_t *, ipif);
13336
13337 if (ipif->ipif_flags & IPIF_UP) {
13338 mutex_enter(&ill->ill_lock);
13339 ipif->ipif_flags &= ~IPIF_UP;
13340 ASSERT(ill->ill_ipif_up_count > 0);
13341 --ill->ill_ipif_up_count;
13342 mutex_exit(&ill->ill_lock);
13343 ipif_was_up = B_TRUE;
13344 /* Update status in SCTP's list */
13345 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13346 ill_nic_event_dispatch(ipif->ipif_ill,
13347 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13348 }
13349
13350 /*
13351 * Removal of the last ipif from an ill may result in a DL_UNBIND
13352 * being sent to the driver, and we must not send any data packets to
13353 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13354 * ire and nce entries used in the data path will be cleaned
13355 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make
13356 * sure on new entries will be added until the ill is bound
13357 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13358 * receipt of a DL_BIND_ACK.
13359 */
13360 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13361 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13362 ill->ill_dl_up) {
13363 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13364 }
13365
13366 /*
13367 * Blow away memberships we established in ipif_multicast_up().
13368 */
13369 ipif_multicast_down(ipif);
13370
13371 /*
13372 * Remove from the mapping for __sin6_src_id. We insert only
13373 * when the address is not INADDR_ANY. As IPv4 addresses are
13374 * stored as mapped addresses, we need to check for mapped
13375 * INADDR_ANY also.
13376 */
13377 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13378 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13379 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13380 int err;
13381
13382 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13383 ipif->ipif_zoneid, ipst);
13384 if (err != 0) {
13385 ip0dbg(("ipif_down: srcid_remove %d\n", err));
13386 }
13387 }
13388
13389 if (ipif_was_up) {
13390 /* only delete if we'd added ire's before */
13391 if (ipif->ipif_isv6)
13392 ipif_delete_ires_v6(ipif);
13393 else
13394 ipif_delete_ires_v4(ipif);
13395 }
13396
13397 if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13398 /*
13399 * Since the interface is now down, it may have just become
13400 * inactive. Note that this needs to be done even for a
13401 * lll_logical_down(), or ARP entries will not get correctly
13402 * restored when the interface comes back up.
13403 */
13404 if (IS_UNDER_IPMP(ill))
13405 ipmp_ill_refresh_active(ill);
13406 }
13407
13408 /*
13409 * neighbor-discovery or arp entries for this interface. The ipif
13410 * has to be quiesced, so we walk all the nce's and delete those
13411 * that point at the ipif->ipif_ill. At the same time, we also
13412 * update IPMP so that ipifs for data addresses are unbound. We dont
13413 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13414 * that for ipif_down_tail()
13415 */
13416 ipif_nce_down(ipif);
13417
13418 /*
13419 * If this is the last ipif on the ill, we also need to remove
13420 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13421 * never succeed.
13422 */
13423 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13424 ire_walk_ill(0, 0, ill_downi, ill, ill);
13425
13426 /*
13427 * Walk all CONNs that can have a reference on an ire for this
13428 * ipif (we actually walk all that now have stale references).
13429 */
13430 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13431
13432 /*
13433 * If mp is NULL the caller will wait for the appropriate refcnt.
13434 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
13435 * and ill_delete -> ipif_free -> ipif_down
13436 */
13437 if (mp == NULL) {
13438 ASSERT(q == NULL);
13439 return (0);
13440 }
13441
13442 if (CONN_Q(q)) {
13443 connp = Q_TO_CONN(q);
13444 mutex_enter(&connp->conn_lock);
13445 } else {
13446 connp = NULL;
13447 }
13448 mutex_enter(&ill->ill_lock);
13449 /*
13450 * Are there any ire's pointing to this ipif that are still active ?
13451 * If this is the last ipif going down, are there any ire's pointing
13452 * to this ill that are still active ?
13453 */
13454 if (ipif_is_quiescent(ipif)) {
13455 mutex_exit(&ill->ill_lock);
13456 if (connp != NULL)
13457 mutex_exit(&connp->conn_lock);
13458 return (0);
13459 }
13460
13461 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13462 ill->ill_name, (void *)ill));
13463 /*
13464 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13465 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13466 * which in turn is called by the last refrele on the ipif/ill/ire.
13467 */
13468 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13469 if (!success) {
13470 /* The conn is closing. So just return */
13471 ASSERT(connp != NULL);
13472 mutex_exit(&ill->ill_lock);
13473 mutex_exit(&connp->conn_lock);
13474 return (EINTR);
13475 }
13476
13477 mutex_exit(&ill->ill_lock);
13478 if (connp != NULL)
13479 mutex_exit(&connp->conn_lock);
13480 return (EINPROGRESS);
13481 }
13482
13483 int
ipif_down_tail(ipif_t * ipif)13484 ipif_down_tail(ipif_t *ipif)
13485 {
13486 ill_t *ill = ipif->ipif_ill;
13487 int err = 0;
13488
13489 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13490 ill_t *, ill, ipif_t *, ipif);
13491
13492 /*
13493 * Skip any loopback interface (null wq).
13494 * If this is the last logical interface on the ill
13495 * have ill_dl_down tell the driver we are gone (unbind)
13496 * Note that lun 0 can ipif_down even though
13497 * there are other logical units that are up.
13498 * This occurs e.g. when we change a "significant" IFF_ flag.
13499 */
13500 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13501 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13502 ill->ill_dl_up) {
13503 ill_dl_down(ill);
13504 }
13505 if (!ipif->ipif_isv6)
13506 err = ipif_arp_down(ipif);
13507
13508 ill->ill_logical_down = 0;
13509
13510 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13511 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13512 return (err);
13513 }
13514
13515 /*
13516 * Bring interface logically down without bringing the physical interface
13517 * down e.g. when the netmask is changed. This avoids long lasting link
13518 * negotiations between an ethernet interface and a certain switches.
13519 */
13520 static int
ipif_logical_down(ipif_t * ipif,queue_t * q,mblk_t * mp)13521 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13522 {
13523 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13524 ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13525
13526 /*
13527 * The ill_logical_down flag is a transient flag. It is set here
13528 * and is cleared once the down has completed in ipif_down_tail.
13529 * This flag does not indicate whether the ill stream is in the
13530 * DL_BOUND state with the driver. Instead this flag is used by
13531 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13532 * the driver. The state of the ill stream i.e. whether it is
13533 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13534 */
13535 ipif->ipif_ill->ill_logical_down = 1;
13536 return (ipif_down(ipif, q, mp));
13537 }
13538
13539 /*
13540 * Initiate deallocate of an IPIF. Always called as writer. Called by
13541 * ill_delete or ip_sioctl_removeif.
13542 */
13543 static void
ipif_free(ipif_t * ipif)13544 ipif_free(ipif_t *ipif)
13545 {
13546 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13547
13548 ASSERT(IAM_WRITER_IPIF(ipif));
13549
13550 if (ipif->ipif_recovery_id != 0)
13551 (void) untimeout(ipif->ipif_recovery_id);
13552 ipif->ipif_recovery_id = 0;
13553
13554 /*
13555 * Take down the interface. We can be called either from ill_delete
13556 * or from ip_sioctl_removeif.
13557 */
13558 (void) ipif_down(ipif, NULL, NULL);
13559
13560 /*
13561 * Now that the interface is down, there's no chance it can still
13562 * become a duplicate. Cancel any timer that may have been set while
13563 * tearing down.
13564 */
13565 if (ipif->ipif_recovery_id != 0)
13566 (void) untimeout(ipif->ipif_recovery_id);
13567 ipif->ipif_recovery_id = 0;
13568
13569 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13570 /* Remove pointers to this ill in the multicast routing tables */
13571 reset_mrt_vif_ipif(ipif);
13572 /* If necessary, clear the cached source ipif rotor. */
13573 if (ipif->ipif_ill->ill_src_ipif == ipif)
13574 ipif->ipif_ill->ill_src_ipif = NULL;
13575 rw_exit(&ipst->ips_ill_g_lock);
13576 }
13577
13578 static void
ipif_free_tail(ipif_t * ipif)13579 ipif_free_tail(ipif_t *ipif)
13580 {
13581 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13582
13583 /*
13584 * Need to hold both ill_g_lock and ill_lock while
13585 * inserting or removing an ipif from the linked list
13586 * of ipifs hanging off the ill.
13587 */
13588 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13589
13590 #ifdef DEBUG
13591 ipif_trace_cleanup(ipif);
13592 #endif
13593
13594 /* Ask SCTP to take it out of it list */
13595 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13596 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13597
13598 /* Get it out of the ILL interface list. */
13599 ipif_remove(ipif);
13600 rw_exit(&ipst->ips_ill_g_lock);
13601
13602 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13603 ASSERT(ipif->ipif_recovery_id == 0);
13604 ASSERT(ipif->ipif_ire_local == NULL);
13605 ASSERT(ipif->ipif_ire_if == NULL);
13606
13607 /* Free the memory. */
13608 mi_free(ipif);
13609 }
13610
13611 /*
13612 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13613 * is zero.
13614 */
13615 void
ipif_get_name(const ipif_t * ipif,char * buf,int len)13616 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13617 {
13618 char lbuf[LIFNAMSIZ];
13619 char *name;
13620 size_t name_len;
13621
13622 buf[0] = '\0';
13623 name = ipif->ipif_ill->ill_name;
13624 name_len = ipif->ipif_ill->ill_name_length;
13625 if (ipif->ipif_id != 0) {
13626 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13627 ipif->ipif_id);
13628 name = lbuf;
13629 name_len = mi_strlen(name) + 1;
13630 }
13631 len -= 1;
13632 buf[len] = '\0';
13633 len = MIN(len, name_len);
13634 bcopy(name, buf, len);
13635 }
13636
13637 /*
13638 * Sets `buf' to an ill name.
13639 */
13640 void
ill_get_name(const ill_t * ill,char * buf,int len)13641 ill_get_name(const ill_t *ill, char *buf, int len)
13642 {
13643 char *name;
13644 size_t name_len;
13645
13646 name = ill->ill_name;
13647 name_len = ill->ill_name_length;
13648 len -= 1;
13649 buf[len] = '\0';
13650 len = MIN(len, name_len);
13651 bcopy(name, buf, len);
13652 }
13653
13654 /*
13655 * Find an IPIF based on the name passed in. Names can be of the form <phys>
13656 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the
13657 * implied unit id is zero. <phys> must correspond to the name of an ILL.
13658 * (May be called as writer.)
13659 */
13660 static ipif_t *
ipif_lookup_on_name(char * name,size_t namelen,boolean_t do_alloc,boolean_t * exists,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)13661 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13662 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13663 {
13664 char *cp;
13665 char *endp;
13666 long id;
13667 ill_t *ill;
13668 ipif_t *ipif;
13669 uint_t ire_type;
13670 boolean_t did_alloc = B_FALSE;
13671 char last;
13672
13673 /*
13674 * If the caller wants to us to create the ipif, make sure we have a
13675 * valid zoneid
13676 */
13677 ASSERT(!do_alloc || zoneid != ALL_ZONES);
13678
13679 if (namelen == 0) {
13680 return (NULL);
13681 }
13682
13683 *exists = B_FALSE;
13684 /* Look for a colon in the name. */
13685 endp = &name[namelen];
13686 for (cp = endp; --cp > name; ) {
13687 if (*cp == IPIF_SEPARATOR_CHAR)
13688 break;
13689 }
13690
13691 if (*cp == IPIF_SEPARATOR_CHAR) {
13692 /*
13693 * Reject any non-decimal aliases for logical
13694 * interfaces. Aliases with leading zeroes
13695 * are also rejected as they introduce ambiguity
13696 * in the naming of the interfaces.
13697 * In order to confirm with existing semantics,
13698 * and to not break any programs/script relying
13699 * on that behaviour, if<0>:0 is considered to be
13700 * a valid interface.
13701 *
13702 * If alias has two or more digits and the first
13703 * is zero, fail.
13704 */
13705 if (&cp[2] < endp && cp[1] == '0') {
13706 return (NULL);
13707 }
13708 }
13709
13710 if (cp <= name) {
13711 cp = endp;
13712 }
13713 last = *cp;
13714 *cp = '\0';
13715
13716 /*
13717 * Look up the ILL, based on the portion of the name
13718 * before the slash. ill_lookup_on_name returns a held ill.
13719 * Temporary to check whether ill exists already. If so
13720 * ill_lookup_on_name will clear it.
13721 */
13722 ill = ill_lookup_on_name(name, do_alloc, isv6,
13723 &did_alloc, ipst);
13724 *cp = last;
13725 if (ill == NULL)
13726 return (NULL);
13727
13728 /* Establish the unit number in the name. */
13729 id = 0;
13730 if (cp < endp && *endp == '\0') {
13731 /* If there was a colon, the unit number follows. */
13732 cp++;
13733 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13734 ill_refrele(ill);
13735 return (NULL);
13736 }
13737 }
13738
13739 mutex_enter(&ill->ill_lock);
13740 /* Now see if there is an IPIF with this unit number. */
13741 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13742 if (ipif->ipif_id == id) {
13743 if (zoneid != ALL_ZONES &&
13744 zoneid != ipif->ipif_zoneid &&
13745 ipif->ipif_zoneid != ALL_ZONES) {
13746 mutex_exit(&ill->ill_lock);
13747 ill_refrele(ill);
13748 return (NULL);
13749 }
13750 if (IPIF_CAN_LOOKUP(ipif)) {
13751 ipif_refhold_locked(ipif);
13752 mutex_exit(&ill->ill_lock);
13753 if (!did_alloc)
13754 *exists = B_TRUE;
13755 /*
13756 * Drop locks before calling ill_refrele
13757 * since it can potentially call into
13758 * ipif_ill_refrele_tail which can end up
13759 * in trying to acquire any lock.
13760 */
13761 ill_refrele(ill);
13762 return (ipif);
13763 }
13764 }
13765 }
13766
13767 if (!do_alloc) {
13768 mutex_exit(&ill->ill_lock);
13769 ill_refrele(ill);
13770 return (NULL);
13771 }
13772
13773 /*
13774 * If none found, atomically allocate and return a new one.
13775 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13776 * to support "receive only" use of lo0:1 etc. as is still done
13777 * below as an initial guess.
13778 * However, this is now likely to be overriden later in ipif_up_done()
13779 * when we know for sure what address has been configured on the
13780 * interface, since we might have more than one loopback interface
13781 * with a loopback address, e.g. in the case of zones, and all the
13782 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13783 */
13784 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13785 ire_type = IRE_LOOPBACK;
13786 else
13787 ire_type = IRE_LOCAL;
13788 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13789 if (ipif != NULL)
13790 ipif_refhold_locked(ipif);
13791 mutex_exit(&ill->ill_lock);
13792 ill_refrele(ill);
13793 return (ipif);
13794 }
13795
13796 /*
13797 * Variant of the above that queues the request on the ipsq when
13798 * IPIF_CHANGING is set.
13799 */
13800 static ipif_t *
ipif_lookup_on_name_async(char * name,size_t namelen,boolean_t isv6,zoneid_t zoneid,queue_t * q,mblk_t * mp,ipsq_func_t func,int * error,ip_stack_t * ipst)13801 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13802 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13803 ip_stack_t *ipst)
13804 {
13805 char *cp;
13806 char *endp;
13807 long id;
13808 ill_t *ill;
13809 ipif_t *ipif;
13810 boolean_t did_alloc = B_FALSE;
13811 ipsq_t *ipsq;
13812
13813 if (error != NULL)
13814 *error = 0;
13815
13816 if (namelen == 0) {
13817 if (error != NULL)
13818 *error = ENXIO;
13819 return (NULL);
13820 }
13821
13822 /* Look for a colon in the name. */
13823 endp = &name[namelen];
13824 for (cp = endp; --cp > name; ) {
13825 if (*cp == IPIF_SEPARATOR_CHAR)
13826 break;
13827 }
13828
13829 if (*cp == IPIF_SEPARATOR_CHAR) {
13830 /*
13831 * Reject any non-decimal aliases for logical
13832 * interfaces. Aliases with leading zeroes
13833 * are also rejected as they introduce ambiguity
13834 * in the naming of the interfaces.
13835 * In order to confirm with existing semantics,
13836 * and to not break any programs/script relying
13837 * on that behaviour, if<0>:0 is considered to be
13838 * a valid interface.
13839 *
13840 * If alias has two or more digits and the first
13841 * is zero, fail.
13842 */
13843 if (&cp[2] < endp && cp[1] == '0') {
13844 if (error != NULL)
13845 *error = EINVAL;
13846 return (NULL);
13847 }
13848 }
13849
13850 if (cp <= name) {
13851 cp = endp;
13852 } else {
13853 *cp = '\0';
13854 }
13855
13856 /*
13857 * Look up the ILL, based on the portion of the name
13858 * before the slash. ill_lookup_on_name returns a held ill.
13859 * Temporary to check whether ill exists already. If so
13860 * ill_lookup_on_name will clear it.
13861 */
13862 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13863 if (cp != endp)
13864 *cp = IPIF_SEPARATOR_CHAR;
13865 if (ill == NULL)
13866 return (NULL);
13867
13868 /* Establish the unit number in the name. */
13869 id = 0;
13870 if (cp < endp && *endp == '\0') {
13871 /* If there was a colon, the unit number follows. */
13872 cp++;
13873 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13874 ill_refrele(ill);
13875 if (error != NULL)
13876 *error = ENXIO;
13877 return (NULL);
13878 }
13879 }
13880
13881 GRAB_CONN_LOCK(q);
13882 mutex_enter(&ill->ill_lock);
13883 /* Now see if there is an IPIF with this unit number. */
13884 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13885 if (ipif->ipif_id == id) {
13886 if (zoneid != ALL_ZONES &&
13887 zoneid != ipif->ipif_zoneid &&
13888 ipif->ipif_zoneid != ALL_ZONES) {
13889 mutex_exit(&ill->ill_lock);
13890 RELEASE_CONN_LOCK(q);
13891 ill_refrele(ill);
13892 if (error != NULL)
13893 *error = ENXIO;
13894 return (NULL);
13895 }
13896
13897 if (!(IPIF_IS_CHANGING(ipif) ||
13898 IPIF_IS_CONDEMNED(ipif)) ||
13899 IAM_WRITER_IPIF(ipif)) {
13900 ipif_refhold_locked(ipif);
13901 mutex_exit(&ill->ill_lock);
13902 /*
13903 * Drop locks before calling ill_refrele
13904 * since it can potentially call into
13905 * ipif_ill_refrele_tail which can end up
13906 * in trying to acquire any lock.
13907 */
13908 RELEASE_CONN_LOCK(q);
13909 ill_refrele(ill);
13910 return (ipif);
13911 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13912 ipsq = ill->ill_phyint->phyint_ipsq;
13913 mutex_enter(&ipsq->ipsq_lock);
13914 mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13915 mutex_exit(&ill->ill_lock);
13916 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13917 mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13918 mutex_exit(&ipsq->ipsq_lock);
13919 RELEASE_CONN_LOCK(q);
13920 ill_refrele(ill);
13921 if (error != NULL)
13922 *error = EINPROGRESS;
13923 return (NULL);
13924 }
13925 }
13926 }
13927 RELEASE_CONN_LOCK(q);
13928 mutex_exit(&ill->ill_lock);
13929 ill_refrele(ill);
13930 if (error != NULL)
13931 *error = ENXIO;
13932 return (NULL);
13933 }
13934
13935 /*
13936 * This routine is called whenever a new address comes up on an ipif. If
13937 * we are configured to respond to address mask requests, then we are supposed
13938 * to broadcast an address mask reply at this time. This routine is also
13939 * called if we are already up, but a netmask change is made. This is legal
13940 * but might not make the system manager very popular. (May be called
13941 * as writer.)
13942 */
13943 void
ipif_mask_reply(ipif_t * ipif)13944 ipif_mask_reply(ipif_t *ipif)
13945 {
13946 icmph_t *icmph;
13947 ipha_t *ipha;
13948 mblk_t *mp;
13949 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13950 ip_xmit_attr_t ixas;
13951
13952 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13953
13954 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13955 return;
13956
13957 /* ICMP mask reply is IPv4 only */
13958 ASSERT(!ipif->ipif_isv6);
13959 /* ICMP mask reply is not for a loopback interface */
13960 ASSERT(ipif->ipif_ill->ill_wq != NULL);
13961
13962 if (ipif->ipif_lcl_addr == INADDR_ANY)
13963 return;
13964
13965 mp = allocb(REPLY_LEN, BPRI_HI);
13966 if (mp == NULL)
13967 return;
13968 mp->b_wptr = mp->b_rptr + REPLY_LEN;
13969
13970 ipha = (ipha_t *)mp->b_rptr;
13971 bzero(ipha, REPLY_LEN);
13972 *ipha = icmp_ipha;
13973 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13974 ipha->ipha_src = ipif->ipif_lcl_addr;
13975 ipha->ipha_dst = ipif->ipif_brd_addr;
13976 ipha->ipha_length = htons(REPLY_LEN);
13977 ipha->ipha_ident = 0;
13978
13979 icmph = (icmph_t *)&ipha[1];
13980 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13981 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13982 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13983
13984 bzero(&ixas, sizeof (ixas));
13985 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13986 ixas.ixa_zoneid = ALL_ZONES;
13987 ixas.ixa_ifindex = 0;
13988 ixas.ixa_ipst = ipst;
13989 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13990 (void) ip_output_simple(mp, &ixas);
13991 ixa_cleanup(&ixas);
13992 #undef REPLY_LEN
13993 }
13994
13995 /*
13996 * Join the ipif specific multicast groups.
13997 * Must be called after a mapping has been set up in the resolver. (Always
13998 * called as writer.)
13999 */
14000 void
ipif_multicast_up(ipif_t * ipif)14001 ipif_multicast_up(ipif_t *ipif)
14002 {
14003 int err;
14004 ill_t *ill;
14005 ilm_t *ilm;
14006
14007 ASSERT(IAM_WRITER_IPIF(ipif));
14008
14009 ill = ipif->ipif_ill;
14010
14011 ip1dbg(("ipif_multicast_up\n"));
14012 if (!(ill->ill_flags & ILLF_MULTICAST) ||
14013 ipif->ipif_allhosts_ilm != NULL)
14014 return;
14015
14016 if (ipif->ipif_isv6) {
14017 in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14018 in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14019
14020 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14021
14022 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14023 return;
14024
14025 ip1dbg(("ipif_multicast_up - addmulti\n"));
14026
14027 /*
14028 * Join the all hosts multicast address. We skip this for
14029 * underlying IPMP interfaces since they should be invisible.
14030 */
14031 if (!IS_UNDER_IPMP(ill)) {
14032 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14033 &err);
14034 if (ilm == NULL) {
14035 ASSERT(err != 0);
14036 ip0dbg(("ipif_multicast_up: "
14037 "all_hosts_mcast failed %d\n", err));
14038 return;
14039 }
14040 ipif->ipif_allhosts_ilm = ilm;
14041 }
14042
14043 /*
14044 * Enable multicast for the solicited node multicast address.
14045 * If IPMP we need to put the membership on the upper ill.
14046 */
14047 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14048 ill_t *mcast_ill = NULL;
14049 boolean_t need_refrele;
14050
14051 if (IS_UNDER_IPMP(ill) &&
14052 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14053 need_refrele = B_TRUE;
14054 } else {
14055 mcast_ill = ill;
14056 need_refrele = B_FALSE;
14057 }
14058
14059 ilm = ip_addmulti(&v6solmc, mcast_ill,
14060 ipif->ipif_zoneid, &err);
14061 if (need_refrele)
14062 ill_refrele(mcast_ill);
14063
14064 if (ilm == NULL) {
14065 ASSERT(err != 0);
14066 ip0dbg(("ipif_multicast_up: solicited MC"
14067 " failed %d\n", err));
14068 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14069 ipif->ipif_allhosts_ilm = NULL;
14070 (void) ip_delmulti(ilm);
14071 }
14072 return;
14073 }
14074 ipif->ipif_solmulti_ilm = ilm;
14075 }
14076 } else {
14077 in6_addr_t v6group;
14078
14079 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14080 return;
14081
14082 /* Join the all hosts multicast address */
14083 ip1dbg(("ipif_multicast_up - addmulti\n"));
14084 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14085
14086 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14087 if (ilm == NULL) {
14088 ASSERT(err != 0);
14089 ip0dbg(("ipif_multicast_up: failed %d\n", err));
14090 return;
14091 }
14092 ipif->ipif_allhosts_ilm = ilm;
14093 }
14094 }
14095
14096 /*
14097 * Blow away any multicast groups that we joined in ipif_multicast_up().
14098 * (ilms from explicit memberships are handled in conn_update_ill.)
14099 */
14100 void
ipif_multicast_down(ipif_t * ipif)14101 ipif_multicast_down(ipif_t *ipif)
14102 {
14103 ASSERT(IAM_WRITER_IPIF(ipif));
14104
14105 ip1dbg(("ipif_multicast_down\n"));
14106
14107 if (ipif->ipif_allhosts_ilm != NULL) {
14108 (void) ip_delmulti(ipif->ipif_allhosts_ilm);
14109 ipif->ipif_allhosts_ilm = NULL;
14110 }
14111 if (ipif->ipif_solmulti_ilm != NULL) {
14112 (void) ip_delmulti(ipif->ipif_solmulti_ilm);
14113 ipif->ipif_solmulti_ilm = NULL;
14114 }
14115 }
14116
14117 /*
14118 * Used when an interface comes up to recreate any extra routes on this
14119 * interface.
14120 */
14121 int
ill_recover_saved_ire(ill_t * ill)14122 ill_recover_saved_ire(ill_t *ill)
14123 {
14124 mblk_t *mp;
14125 ip_stack_t *ipst = ill->ill_ipst;
14126
14127 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14128
14129 mutex_enter(&ill->ill_saved_ire_lock);
14130 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14131 ire_t *ire, *nire;
14132 ifrt_t *ifrt;
14133
14134 ifrt = (ifrt_t *)mp->b_rptr;
14135 /*
14136 * Create a copy of the IRE with the saved address and netmask.
14137 */
14138 if (ill->ill_isv6) {
14139 ire = ire_create_v6(
14140 &ifrt->ifrt_v6addr,
14141 &ifrt->ifrt_v6mask,
14142 &ifrt->ifrt_v6gateway_addr,
14143 ifrt->ifrt_type,
14144 ill,
14145 ifrt->ifrt_zoneid,
14146 ifrt->ifrt_flags,
14147 NULL,
14148 ipst);
14149 } else {
14150 ire = ire_create(
14151 (uint8_t *)&ifrt->ifrt_addr,
14152 (uint8_t *)&ifrt->ifrt_mask,
14153 (uint8_t *)&ifrt->ifrt_gateway_addr,
14154 ifrt->ifrt_type,
14155 ill,
14156 ifrt->ifrt_zoneid,
14157 ifrt->ifrt_flags,
14158 NULL,
14159 ipst);
14160 }
14161 if (ire == NULL) {
14162 mutex_exit(&ill->ill_saved_ire_lock);
14163 return (ENOMEM);
14164 }
14165
14166 if (ifrt->ifrt_flags & RTF_SETSRC) {
14167 if (ill->ill_isv6) {
14168 ire->ire_setsrc_addr_v6 =
14169 ifrt->ifrt_v6setsrc_addr;
14170 } else {
14171 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14172 }
14173 }
14174
14175 /*
14176 * Some software (for example, GateD and Sun Cluster) attempts
14177 * to create (what amount to) IRE_PREFIX routes with the
14178 * loopback address as the gateway. This is primarily done to
14179 * set up prefixes with the RTF_REJECT flag set (for example,
14180 * when generating aggregate routes.)
14181 *
14182 * If the IRE type (as defined by ill->ill_net_type) is
14183 * IRE_LOOPBACK, then we map the request into a
14184 * IRE_IF_NORESOLVER.
14185 */
14186 if (ill->ill_net_type == IRE_LOOPBACK)
14187 ire->ire_type = IRE_IF_NORESOLVER;
14188
14189 /*
14190 * ire held by ire_add, will be refreled' towards the
14191 * the end of ipif_up_done
14192 */
14193 nire = ire_add(ire);
14194 /*
14195 * Check if it was a duplicate entry. This handles
14196 * the case of two racing route adds for the same route
14197 */
14198 if (nire == NULL) {
14199 ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14200 } else if (nire != ire) {
14201 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14202 (void *)nire));
14203 ire_delete(nire);
14204 } else {
14205 ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14206 (void *)nire));
14207 }
14208 if (nire != NULL)
14209 ire_refrele(nire);
14210 }
14211 mutex_exit(&ill->ill_saved_ire_lock);
14212 return (0);
14213 }
14214
14215 /*
14216 * Used to set the netmask and broadcast address to default values when the
14217 * interface is brought up. (Always called as writer.)
14218 */
14219 static void
ipif_set_default(ipif_t * ipif)14220 ipif_set_default(ipif_t *ipif)
14221 {
14222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14223
14224 if (!ipif->ipif_isv6) {
14225 /*
14226 * Interface holds an IPv4 address. Default
14227 * mask is the natural netmask.
14228 */
14229 if (!ipif->ipif_net_mask) {
14230 ipaddr_t v4mask;
14231
14232 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14233 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14234 }
14235 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14236 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14237 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14238 } else {
14239 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14240 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14241 }
14242 /*
14243 * NOTE: SunOS 4.X does this even if the broadcast address
14244 * has been already set thus we do the same here.
14245 */
14246 if (ipif->ipif_flags & IPIF_BROADCAST) {
14247 ipaddr_t v4addr;
14248
14249 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14250 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14251 }
14252 } else {
14253 /*
14254 * Interface holds an IPv6-only address. Default
14255 * mask is all-ones.
14256 */
14257 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14258 ipif->ipif_v6net_mask = ipv6_all_ones;
14259 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14260 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14261 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14262 } else {
14263 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14264 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14265 }
14266 }
14267 }
14268
14269 /*
14270 * Return 0 if this address can be used as local address without causing
14271 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14272 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14273 * Note that the same IPv6 link-local address is allowed as long as the ills
14274 * are not on the same link.
14275 */
14276 int
ip_addr_availability_check(ipif_t * new_ipif)14277 ip_addr_availability_check(ipif_t *new_ipif)
14278 {
14279 in6_addr_t our_v6addr;
14280 ill_t *ill;
14281 ipif_t *ipif;
14282 ill_walk_context_t ctx;
14283 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;
14284
14285 ASSERT(IAM_WRITER_IPIF(new_ipif));
14286 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14287 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14288
14289 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14290 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14291 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14292 return (0);
14293
14294 our_v6addr = new_ipif->ipif_v6lcl_addr;
14295
14296 if (new_ipif->ipif_isv6)
14297 ill = ILL_START_WALK_V6(&ctx, ipst);
14298 else
14299 ill = ILL_START_WALK_V4(&ctx, ipst);
14300
14301 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14302 for (ipif = ill->ill_ipif; ipif != NULL;
14303 ipif = ipif->ipif_next) {
14304 if ((ipif == new_ipif) ||
14305 !(ipif->ipif_flags & IPIF_UP) ||
14306 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14307 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14308 &our_v6addr))
14309 continue;
14310
14311 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14312 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14313 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14314 ipif->ipif_flags |= IPIF_UNNUMBERED;
14315 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14316 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14317 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14318 continue;
14319 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14320 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14321 continue;
14322 else if (new_ipif->ipif_ill == ill)
14323 return (EADDRINUSE);
14324 else
14325 return (EADDRNOTAVAIL);
14326 }
14327 }
14328
14329 return (0);
14330 }
14331
14332 /*
14333 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14334 * IREs for the ipif.
14335 * When the routine returns EINPROGRESS then mp has been consumed and
14336 * the ioctl will be acked from ip_rput_dlpi.
14337 */
14338 int
ipif_up(ipif_t * ipif,queue_t * q,mblk_t * mp)14339 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14340 {
14341 ill_t *ill = ipif->ipif_ill;
14342 boolean_t isv6 = ipif->ipif_isv6;
14343 int err = 0;
14344 boolean_t success;
14345 uint_t ipif_orig_id;
14346 ip_stack_t *ipst = ill->ill_ipst;
14347
14348 ASSERT(IAM_WRITER_IPIF(ipif));
14349
14350 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14351 DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14352 ill_t *, ill, ipif_t *, ipif);
14353
14354 /* Shouldn't get here if it is already up. */
14355 if (ipif->ipif_flags & IPIF_UP)
14356 return (EALREADY);
14357
14358 /*
14359 * If this is a request to bring up a data address on an interface
14360 * under IPMP, then move the address to its IPMP meta-interface and
14361 * try to bring it up. One complication is that the zeroth ipif for
14362 * an ill is special, in that every ill always has one, and that code
14363 * throughout IP deferences ill->ill_ipif without holding any locks.
14364 */
14365 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14366 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14367 ipif_t *stubipif = NULL, *moveipif = NULL;
14368 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14369
14370 /*
14371 * The ipif being brought up should be quiesced. If it's not,
14372 * something has gone amiss and we need to bail out. (If it's
14373 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14374 */
14375 mutex_enter(&ill->ill_lock);
14376 if (!ipif_is_quiescent(ipif)) {
14377 mutex_exit(&ill->ill_lock);
14378 return (EINVAL);
14379 }
14380 mutex_exit(&ill->ill_lock);
14381
14382 /*
14383 * If we're going to need to allocate ipifs, do it prior
14384 * to starting the move (and grabbing locks).
14385 */
14386 if (ipif->ipif_id == 0) {
14387 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14388 B_FALSE, &err)) == NULL) {
14389 return (err);
14390 }
14391 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14392 B_FALSE, &err)) == NULL) {
14393 mi_free(moveipif);
14394 return (err);
14395 }
14396 }
14397
14398 /*
14399 * Grab or transfer the ipif to move. During the move, keep
14400 * ill_g_lock held to prevent any ill walker threads from
14401 * seeing things in an inconsistent state.
14402 */
14403 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14404 if (ipif->ipif_id != 0) {
14405 ipif_remove(ipif);
14406 } else {
14407 ipif_transfer(ipif, moveipif, stubipif);
14408 ipif = moveipif;
14409 }
14410
14411 /*
14412 * Place the ipif on the IPMP ill. If the zeroth ipif on
14413 * the IPMP ill is a stub (0.0.0.0 down address) then we
14414 * replace that one. Otherwise, pick the next available slot.
14415 */
14416 ipif->ipif_ill = ipmp_ill;
14417 ipif_orig_id = ipif->ipif_id;
14418
14419 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14420 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14421 ipif = ipmp_ill->ill_ipif;
14422 } else {
14423 ipif->ipif_id = -1;
14424 if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14425 /*
14426 * No more available ipif_id's -- put it back
14427 * on the original ill and fail the operation.
14428 * Since we're writer on the ill, we can be
14429 * sure our old slot is still available.
14430 */
14431 ipif->ipif_id = ipif_orig_id;
14432 ipif->ipif_ill = ill;
14433 if (ipif_orig_id == 0) {
14434 ipif_transfer(ipif, ill->ill_ipif,
14435 NULL);
14436 } else {
14437 VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14438 }
14439 rw_exit(&ipst->ips_ill_g_lock);
14440 return (err);
14441 }
14442 }
14443 rw_exit(&ipst->ips_ill_g_lock);
14444
14445 /*
14446 * Tell SCTP that the ipif has moved. Note that even if we
14447 * had to allocate a new ipif, the original sequence id was
14448 * preserved and therefore SCTP won't know.
14449 */
14450 sctp_move_ipif(ipif, ill, ipmp_ill);
14451
14452 /*
14453 * If the ipif being brought up was on slot zero, then we
14454 * first need to bring up the placeholder we stuck there. In
14455 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14456 * call to ipif_up() itself, if we successfully bring up the
14457 * placeholder, we'll check ill_move_ipif and bring it up too.
14458 */
14459 if (ipif_orig_id == 0) {
14460 ASSERT(ill->ill_move_ipif == NULL);
14461 ill->ill_move_ipif = ipif;
14462 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14463 ASSERT(ill->ill_move_ipif == NULL);
14464 if (err != EINPROGRESS)
14465 ill->ill_move_ipif = NULL;
14466 return (err);
14467 }
14468
14469 /*
14470 * Bring it up on the IPMP ill.
14471 */
14472 return (ipif_up(ipif, q, mp));
14473 }
14474
14475 /* Skip arp/ndp for any loopback interface. */
14476 if (ill->ill_wq != NULL) {
14477 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14478 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14479
14480 if (!ill->ill_dl_up) {
14481 /*
14482 * ill_dl_up is not yet set. i.e. we are yet to
14483 * DL_BIND with the driver and this is the first
14484 * logical interface on the ill to become "up".
14485 * Tell the driver to get going (via DL_BIND_REQ).
14486 * Note that changing "significant" IFF_ flags
14487 * address/netmask etc cause a down/up dance, but
14488 * does not cause an unbind (DL_UNBIND) with the driver
14489 */
14490 return (ill_dl_up(ill, ipif, mp, q));
14491 }
14492
14493 /*
14494 * ipif_resolver_up may end up needeing to bind/attach
14495 * the ARP stream, which in turn necessitates a
14496 * DLPI message exchange with the driver. ioctls are
14497 * serialized and so we cannot send more than one
14498 * interface up message at a time. If ipif_resolver_up
14499 * does need to wait for the DLPI handshake for the ARP stream,
14500 * we get EINPROGRESS and we will complete in arp_bringup_done.
14501 */
14502
14503 ASSERT(connp != NULL || !CONN_Q(q));
14504 if (connp != NULL)
14505 mutex_enter(&connp->conn_lock);
14506 mutex_enter(&ill->ill_lock);
14507 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14508 mutex_exit(&ill->ill_lock);
14509 if (connp != NULL)
14510 mutex_exit(&connp->conn_lock);
14511 if (!success)
14512 return (EINTR);
14513
14514 /*
14515 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14516 * complete when ipif_ndp_up returns.
14517 */
14518 err = ipif_resolver_up(ipif, Res_act_initial);
14519 if (err == EINPROGRESS) {
14520 /* We will complete it in arp_bringup_done() */
14521 return (err);
14522 }
14523
14524 if (isv6 && err == 0)
14525 err = ipif_ndp_up(ipif, B_TRUE);
14526
14527 ASSERT(err != EINPROGRESS);
14528 mp = ipsq_pending_mp_get(ipsq, &connp);
14529 ASSERT(mp != NULL);
14530 if (err != 0)
14531 return (err);
14532 } else {
14533 /*
14534 * Interfaces without underlying hardware don't do duplicate
14535 * address detection.
14536 */
14537 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14538 ipif->ipif_addr_ready = 1;
14539 err = ill_add_ires(ill);
14540 /* allocation failure? */
14541 if (err != 0)
14542 return (err);
14543 }
14544
14545 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14546 if (err == 0 && ill->ill_move_ipif != NULL) {
14547 ipif = ill->ill_move_ipif;
14548 ill->ill_move_ipif = NULL;
14549 return (ipif_up(ipif, q, mp));
14550 }
14551 return (err);
14552 }
14553
14554 /*
14555 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14556 * The identical set of IREs need to be removed in ill_delete_ires().
14557 */
14558 int
ill_add_ires(ill_t * ill)14559 ill_add_ires(ill_t *ill)
14560 {
14561 ire_t *ire;
14562 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14563 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14564
14565 if (ill->ill_ire_multicast != NULL)
14566 return (0);
14567
14568 /*
14569 * provide some dummy ire_addr for creating the ire.
14570 */
14571 if (ill->ill_isv6) {
14572 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14573 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14574 } else {
14575 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14576 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14577 }
14578 if (ire == NULL)
14579 return (ENOMEM);
14580
14581 ill->ill_ire_multicast = ire;
14582 return (0);
14583 }
14584
14585 void
ill_delete_ires(ill_t * ill)14586 ill_delete_ires(ill_t *ill)
14587 {
14588 if (ill->ill_ire_multicast != NULL) {
14589 /*
14590 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14591 * which was taken without any th_tracing enabled.
14592 * We also mark it as condemned (note that it was never added)
14593 * so that caching conn's can move off of it.
14594 */
14595 ire_make_condemned(ill->ill_ire_multicast);
14596 ire_refrele_notr(ill->ill_ire_multicast);
14597 ill->ill_ire_multicast = NULL;
14598 }
14599 }
14600
14601 /*
14602 * Perform a bind for the physical device.
14603 * When the routine returns EINPROGRESS then mp has been consumed and
14604 * the ioctl will be acked from ip_rput_dlpi.
14605 * Allocate an unbind message and save it until ipif_down.
14606 */
14607 static int
ill_dl_up(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)14608 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14609 {
14610 mblk_t *bind_mp = NULL;
14611 mblk_t *unbind_mp = NULL;
14612 conn_t *connp;
14613 boolean_t success;
14614 int err;
14615
14616 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14617
14618 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14619 ASSERT(IAM_WRITER_ILL(ill));
14620 ASSERT(mp != NULL);
14621
14622 /*
14623 * Make sure we have an IRE_MULTICAST in case we immediately
14624 * start receiving packets.
14625 */
14626 err = ill_add_ires(ill);
14627 if (err != 0)
14628 goto bad;
14629
14630 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14631 DL_BIND_REQ);
14632 if (bind_mp == NULL)
14633 goto bad;
14634 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14635 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14636
14637 /*
14638 * ill_unbind_mp would be non-null if the following sequence had
14639 * happened:
14640 * - send DL_BIND_REQ to driver, wait for response
14641 * - multiple ioctls that need to bring the ipif up are encountered,
14642 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14643 * These ioctls will then be enqueued on the ipsq
14644 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14645 * At this point, the pending ioctls in the ipsq will be drained, and
14646 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14647 * a non-null ill->ill_unbind_mp
14648 */
14649 if (ill->ill_unbind_mp == NULL) {
14650 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14651 DL_UNBIND_REQ);
14652 if (unbind_mp == NULL)
14653 goto bad;
14654 }
14655 /*
14656 * Record state needed to complete this operation when the
14657 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
14658 */
14659 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14660 ASSERT(connp != NULL || !CONN_Q(q));
14661 GRAB_CONN_LOCK(q);
14662 mutex_enter(&ipif->ipif_ill->ill_lock);
14663 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14664 mutex_exit(&ipif->ipif_ill->ill_lock);
14665 RELEASE_CONN_LOCK(q);
14666 if (!success)
14667 goto bad;
14668
14669 /*
14670 * Save the unbind message for ill_dl_down(); it will be consumed when
14671 * the interface goes down.
14672 */
14673 if (ill->ill_unbind_mp == NULL)
14674 ill->ill_unbind_mp = unbind_mp;
14675
14676 ill_dlpi_send(ill, bind_mp);
14677 /* Send down link-layer capabilities probe if not already done. */
14678 ill_capability_probe(ill);
14679
14680 /*
14681 * Sysid used to rely on the fact that netboots set domainname
14682 * and the like. Now that miniroot boots aren't strictly netboots
14683 * and miniroot network configuration is driven from userland
14684 * these things still need to be set. This situation can be detected
14685 * by comparing the interface being configured here to the one
14686 * dhcifname was set to reference by the boot loader. Once sysid is
14687 * converted to use dhcp_ipc_getinfo() this call can go away.
14688 */
14689 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14690 (strcmp(ill->ill_name, dhcifname) == 0) &&
14691 (strlen(srpc_domain) == 0)) {
14692 if (dhcpinit() != 0)
14693 cmn_err(CE_WARN, "no cached dhcp response");
14694 }
14695
14696 /*
14697 * This operation will complete in ip_rput_dlpi with either
14698 * a DL_BIND_ACK or DL_ERROR_ACK.
14699 */
14700 return (EINPROGRESS);
14701 bad:
14702 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14703
14704 freemsg(bind_mp);
14705 freemsg(unbind_mp);
14706 return (ENOMEM);
14707 }
14708
14709 /* Add room for tcp+ip headers */
14710 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14711
14712 /*
14713 * DLPI and ARP is up.
14714 * Create all the IREs associated with an interface. Bring up multicast.
14715 * Set the interface flag and finish other initialization
14716 * that potentially had to be deferred to after DL_BIND_ACK.
14717 */
14718 int
ipif_up_done(ipif_t * ipif)14719 ipif_up_done(ipif_t *ipif)
14720 {
14721 ill_t *ill = ipif->ipif_ill;
14722 int err = 0;
14723 boolean_t loopback = B_FALSE;
14724 boolean_t update_src_selection = B_TRUE;
14725 ipif_t *tmp_ipif;
14726
14727 ip1dbg(("ipif_up_done(%s:%u)\n",
14728 ipif->ipif_ill->ill_name, ipif->ipif_id));
14729 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14730 ill_t *, ill, ipif_t *, ipif);
14731
14732 /* Check if this is a loopback interface */
14733 if (ipif->ipif_ill->ill_wq == NULL)
14734 loopback = B_TRUE;
14735
14736 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14737
14738 /*
14739 * If all other interfaces for this ill are down or DEPRECATED,
14740 * or otherwise unsuitable for source address selection,
14741 * reset the src generation numbers to make sure source
14742 * address selection gets to take this new ipif into account.
14743 * No need to hold ill_lock while traversing the ipif list since
14744 * we are writer
14745 */
14746 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14747 tmp_ipif = tmp_ipif->ipif_next) {
14748 if (((tmp_ipif->ipif_flags &
14749 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14750 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14751 (tmp_ipif == ipif))
14752 continue;
14753 /* first useable pre-existing interface */
14754 update_src_selection = B_FALSE;
14755 break;
14756 }
14757 if (update_src_selection)
14758 ip_update_source_selection(ill->ill_ipst);
14759
14760 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14761 nce_t *loop_nce = NULL;
14762 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14763
14764 /*
14765 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14766 * ipif_lookup_on_name(), but in the case of zones we can have
14767 * several loopback addresses on lo0. So all the interfaces with
14768 * loopback addresses need to be marked IRE_LOOPBACK.
14769 */
14770 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14771 htonl(INADDR_LOOPBACK))
14772 ipif->ipif_ire_type = IRE_LOOPBACK;
14773 else
14774 ipif->ipif_ire_type = IRE_LOCAL;
14775 if (ill->ill_net_type != IRE_LOOPBACK)
14776 flags |= NCE_F_PUBLISH;
14777
14778 /* add unicast nce for the local addr */
14779 err = nce_lookup_then_add_v4(ill, NULL,
14780 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14781 ND_REACHABLE, &loop_nce);
14782 /* A shared-IP zone sees EEXIST for lo0:N */
14783 if (err == 0 || err == EEXIST) {
14784 ipif->ipif_added_nce = 1;
14785 loop_nce->nce_ipif_cnt++;
14786 nce_refrele(loop_nce);
14787 err = 0;
14788 } else {
14789 ASSERT(loop_nce == NULL);
14790 return (err);
14791 }
14792 }
14793
14794 /* Create all the IREs associated with this interface */
14795 err = ipif_add_ires_v4(ipif, loopback);
14796 if (err != 0) {
14797 /*
14798 * see comments about return value from
14799 * ip_addr_availability_check() in ipif_add_ires_v4().
14800 */
14801 if (err != EADDRINUSE) {
14802 (void) ipif_arp_down(ipif);
14803 } else {
14804 /*
14805 * Make IPMP aware of the deleted ipif so that
14806 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14807 * can be completed. Note that we do not want to
14808 * destroy the nce that was created on the ipmp_ill
14809 * for the active copy of the duplicate address in
14810 * use.
14811 */
14812 if (IS_IPMP(ill))
14813 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14814 err = EADDRNOTAVAIL;
14815 }
14816 return (err);
14817 }
14818
14819 if (ill->ill_ipif_up_count == 1 && !loopback) {
14820 /* Recover any additional IREs entries for this ill */
14821 (void) ill_recover_saved_ire(ill);
14822 }
14823
14824 if (ill->ill_need_recover_multicast) {
14825 /*
14826 * Need to recover all multicast memberships in the driver.
14827 * This had to be deferred until we had attached. The same
14828 * code exists in ipif_up_done_v6() to recover IPv6
14829 * memberships.
14830 *
14831 * Note that it would be preferable to unconditionally do the
14832 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14833 * that since ill_join_allmulti() depends on ill_dl_up being
14834 * set, and it is not set until we receive a DL_BIND_ACK after
14835 * having called ill_dl_up().
14836 */
14837 ill_recover_multicast(ill);
14838 }
14839
14840 if (ill->ill_ipif_up_count == 1) {
14841 /*
14842 * Since the interface is now up, it may now be active.
14843 */
14844 if (IS_UNDER_IPMP(ill))
14845 ipmp_ill_refresh_active(ill);
14846
14847 /*
14848 * If this is an IPMP interface, we may now be able to
14849 * establish ARP entries.
14850 */
14851 if (IS_IPMP(ill))
14852 ipmp_illgrp_refresh_arpent(ill->ill_grp);
14853 }
14854
14855 /* Join the allhosts multicast address */
14856 ipif_multicast_up(ipif);
14857
14858 if (!loopback && !update_src_selection &&
14859 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14860 ip_update_source_selection(ill->ill_ipst);
14861
14862 if (!loopback && ipif->ipif_addr_ready) {
14863 /* Broadcast an address mask reply. */
14864 ipif_mask_reply(ipif);
14865 }
14866 /* Perhaps ilgs should use this ill */
14867 update_conn_ill(NULL, ill->ill_ipst);
14868
14869 /*
14870 * This had to be deferred until we had bound. Tell routing sockets and
14871 * others that this interface is up if it looks like the address has
14872 * been validated. Otherwise, if it isn't ready yet, wait for
14873 * duplicate address detection to do its thing.
14874 */
14875 if (ipif->ipif_addr_ready)
14876 ipif_up_notify(ipif);
14877 return (0);
14878 }
14879
14880 /*
14881 * Add the IREs associated with the ipif.
14882 * Those MUST be explicitly removed in ipif_delete_ires_v4.
14883 */
14884 static int
ipif_add_ires_v4(ipif_t * ipif,boolean_t loopback)14885 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14886 {
14887 ill_t *ill = ipif->ipif_ill;
14888 ip_stack_t *ipst = ill->ill_ipst;
14889 ire_t *ire_array[20];
14890 ire_t **irep = ire_array;
14891 ire_t **irep1;
14892 ipaddr_t net_mask = 0;
14893 ipaddr_t subnet_mask, route_mask;
14894 int err;
14895 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */
14896 ire_t *ire_if = NULL;
14897 uchar_t *gw;
14898
14899 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14900 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14901 /*
14902 * If we're on a labeled system then make sure that zone-
14903 * private addresses have proper remote host database entries.
14904 */
14905 if (is_system_labeled() &&
14906 ipif->ipif_ire_type != IRE_LOOPBACK &&
14907 !tsol_check_interface_address(ipif))
14908 return (EINVAL);
14909
14910 /* Register the source address for __sin6_src_id */
14911 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14912 ipif->ipif_zoneid, ipst);
14913 if (err != 0) {
14914 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14915 return (err);
14916 }
14917
14918 if (loopback)
14919 gw = (uchar_t *)&ipif->ipif_lcl_addr;
14920 else
14921 gw = NULL;
14922
14923 /* If the interface address is set, create the local IRE. */
14924 ire_local = ire_create(
14925 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
14926 (uchar_t *)&ip_g_all_ones, /* mask */
14927 gw, /* gateway */
14928 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
14929 ipif->ipif_ill,
14930 ipif->ipif_zoneid,
14931 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14932 RTF_PRIVATE : 0) | RTF_KERNEL,
14933 NULL,
14934 ipst);
14935 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14936 " for 0x%x\n", (void *)ipif, (void *)ire_local,
14937 ipif->ipif_ire_type,
14938 ntohl(ipif->ipif_lcl_addr)));
14939 if (ire_local == NULL) {
14940 ip1dbg(("ipif_up_done: NULL ire_local\n"));
14941 err = ENOMEM;
14942 goto bad;
14943 }
14944 } else {
14945 ip1dbg((
14946 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14947 ipif->ipif_ire_type,
14948 ntohl(ipif->ipif_lcl_addr),
14949 (uint_t)ipif->ipif_flags));
14950 }
14951 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14952 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14953 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14954 } else {
14955 net_mask = htonl(IN_CLASSA_NET); /* fallback */
14956 }
14957
14958 subnet_mask = ipif->ipif_net_mask;
14959
14960 /*
14961 * If mask was not specified, use natural netmask of
14962 * interface address. Also, store this mask back into the
14963 * ipif struct.
14964 */
14965 if (subnet_mask == 0) {
14966 subnet_mask = net_mask;
14967 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14968 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14969 ipif->ipif_v6subnet);
14970 }
14971
14972 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14973 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14974 ipif->ipif_subnet != INADDR_ANY) {
14975 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14976
14977 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14978 route_mask = IP_HOST_MASK;
14979 } else {
14980 route_mask = subnet_mask;
14981 }
14982
14983 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14984 "creating if IRE ill_net_type 0x%x for 0x%x\n",
14985 (void *)ipif, (void *)ill, ill->ill_net_type,
14986 ntohl(ipif->ipif_subnet)));
14987 ire_if = ire_create(
14988 (uchar_t *)&ipif->ipif_subnet,
14989 (uchar_t *)&route_mask,
14990 (uchar_t *)&ipif->ipif_lcl_addr,
14991 ill->ill_net_type,
14992 ill,
14993 ipif->ipif_zoneid,
14994 ((ipif->ipif_flags & IPIF_PRIVATE) ?
14995 RTF_PRIVATE: 0) | RTF_KERNEL,
14996 NULL,
14997 ipst);
14998 if (ire_if == NULL) {
14999 ip1dbg(("ipif_up_done: NULL ire_if\n"));
15000 err = ENOMEM;
15001 goto bad;
15002 }
15003 }
15004
15005 /*
15006 * Create any necessary broadcast IREs.
15007 */
15008 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15009 !(ipif->ipif_flags & IPIF_NOXMIT))
15010 irep = ipif_create_bcast_ires(ipif, irep);
15011
15012 /* If an earlier ire_create failed, get out now */
15013 for (irep1 = irep; irep1 > ire_array; ) {
15014 irep1--;
15015 if (*irep1 == NULL) {
15016 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15017 err = ENOMEM;
15018 goto bad;
15019 }
15020 }
15021
15022 /*
15023 * Need to atomically check for IP address availability under
15024 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new
15025 * ills or new ipifs can be added while we are checking availability.
15026 */
15027 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15028 mutex_enter(&ipst->ips_ip_addr_avail_lock);
15029 /* Mark it up, and increment counters. */
15030 ipif->ipif_flags |= IPIF_UP;
15031 ill->ill_ipif_up_count++;
15032 err = ip_addr_availability_check(ipif);
15033 mutex_exit(&ipst->ips_ip_addr_avail_lock);
15034 rw_exit(&ipst->ips_ill_g_lock);
15035
15036 if (err != 0) {
15037 /*
15038 * Our address may already be up on the same ill. In this case,
15039 * the ARP entry for our ipif replaced the one for the other
15040 * ipif. So we don't want to delete it (otherwise the other ipif
15041 * would be unable to send packets).
15042 * ip_addr_availability_check() identifies this case for us and
15043 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15044 * which is the expected error code.
15045 */
15046 ill->ill_ipif_up_count--;
15047 ipif->ipif_flags &= ~IPIF_UP;
15048 goto bad;
15049 }
15050
15051 /*
15052 * Add in all newly created IREs. ire_create_bcast() has
15053 * already checked for duplicates of the IRE_BROADCAST type.
15054 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15055 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15056 * a /32 route.
15057 */
15058 if (ire_if != NULL) {
15059 ire_if = ire_add(ire_if);
15060 if (ire_if == NULL) {
15061 err = ENOMEM;
15062 goto bad2;
15063 }
15064 #ifdef DEBUG
15065 ire_refhold_notr(ire_if);
15066 ire_refrele(ire_if);
15067 #endif
15068 }
15069 if (ire_local != NULL) {
15070 ire_local = ire_add(ire_local);
15071 if (ire_local == NULL) {
15072 err = ENOMEM;
15073 goto bad2;
15074 }
15075 #ifdef DEBUG
15076 ire_refhold_notr(ire_local);
15077 ire_refrele(ire_local);
15078 #endif
15079 }
15080 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15081 if (ire_local != NULL)
15082 ipif->ipif_ire_local = ire_local;
15083 if (ire_if != NULL)
15084 ipif->ipif_ire_if = ire_if;
15085 rw_exit(&ipst->ips_ill_g_lock);
15086 ire_local = NULL;
15087 ire_if = NULL;
15088
15089 /*
15090 * We first add all of them, and if that succeeds we refrele the
15091 * bunch. That enables us to delete all of them should any of the
15092 * ire_adds fail.
15093 */
15094 for (irep1 = irep; irep1 > ire_array; ) {
15095 irep1--;
15096 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15097 *irep1 = ire_add(*irep1);
15098 if (*irep1 == NULL) {
15099 err = ENOMEM;
15100 goto bad2;
15101 }
15102 }
15103
15104 for (irep1 = irep; irep1 > ire_array; ) {
15105 irep1--;
15106 /* refheld by ire_add. */
15107 if (*irep1 != NULL) {
15108 ire_refrele(*irep1);
15109 *irep1 = NULL;
15110 }
15111 }
15112
15113 if (!loopback) {
15114 /*
15115 * If the broadcast address has been set, make sure it makes
15116 * sense based on the interface address.
15117 * Only match on ill since we are sharing broadcast addresses.
15118 */
15119 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15120 (ipif->ipif_flags & IPIF_BROADCAST)) {
15121 ire_t *ire;
15122
15123 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15124 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15125 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15126
15127 if (ire == NULL) {
15128 /*
15129 * If there isn't a matching broadcast IRE,
15130 * revert to the default for this netmask.
15131 */
15132 ipif->ipif_v6brd_addr = ipv6_all_zeros;
15133 mutex_enter(&ipif->ipif_ill->ill_lock);
15134 ipif_set_default(ipif);
15135 mutex_exit(&ipif->ipif_ill->ill_lock);
15136 } else {
15137 ire_refrele(ire);
15138 }
15139 }
15140
15141 }
15142 return (0);
15143
15144 bad2:
15145 ill->ill_ipif_up_count--;
15146 ipif->ipif_flags &= ~IPIF_UP;
15147
15148 bad:
15149 ip1dbg(("ipif_add_ires: FAILED \n"));
15150 if (ire_local != NULL)
15151 ire_delete(ire_local);
15152 if (ire_if != NULL)
15153 ire_delete(ire_if);
15154
15155 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15156 ire_local = ipif->ipif_ire_local;
15157 ipif->ipif_ire_local = NULL;
15158 ire_if = ipif->ipif_ire_if;
15159 ipif->ipif_ire_if = NULL;
15160 rw_exit(&ipst->ips_ill_g_lock);
15161 if (ire_local != NULL) {
15162 ire_delete(ire_local);
15163 ire_refrele_notr(ire_local);
15164 }
15165 if (ire_if != NULL) {
15166 ire_delete(ire_if);
15167 ire_refrele_notr(ire_if);
15168 }
15169
15170 while (irep > ire_array) {
15171 irep--;
15172 if (*irep != NULL) {
15173 ire_delete(*irep);
15174 }
15175 }
15176 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15177
15178 return (err);
15179 }
15180
15181 /* Remove all the IREs created by ipif_add_ires_v4 */
15182 void
ipif_delete_ires_v4(ipif_t * ipif)15183 ipif_delete_ires_v4(ipif_t *ipif)
15184 {
15185 ill_t *ill = ipif->ipif_ill;
15186 ip_stack_t *ipst = ill->ill_ipst;
15187 ire_t *ire;
15188
15189 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15190 ire = ipif->ipif_ire_local;
15191 ipif->ipif_ire_local = NULL;
15192 rw_exit(&ipst->ips_ill_g_lock);
15193 if (ire != NULL) {
15194 /*
15195 * Move count to ipif so we don't loose the count due to
15196 * a down/up dance.
15197 */
15198 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15199
15200 ire_delete(ire);
15201 ire_refrele_notr(ire);
15202 }
15203 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15204 ire = ipif->ipif_ire_if;
15205 ipif->ipif_ire_if = NULL;
15206 rw_exit(&ipst->ips_ill_g_lock);
15207 if (ire != NULL) {
15208 ire_delete(ire);
15209 ire_refrele_notr(ire);
15210 }
15211
15212 /*
15213 * Delete the broadcast IREs.
15214 */
15215 if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15216 !(ipif->ipif_flags & IPIF_NOXMIT))
15217 ipif_delete_bcast_ires(ipif);
15218 }
15219
15220 /*
15221 * Checks for availbility of a usable source address (if there is one) when the
15222 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15223 * this selection is done regardless of the destination.
15224 */
15225 boolean_t
ipif_zone_avail(uint_t ifindex,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15226 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15227 ip_stack_t *ipst)
15228 {
15229 ipif_t *ipif = NULL;
15230 ill_t *uill;
15231
15232 ASSERT(ifindex != 0);
15233
15234 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15235 if (uill == NULL)
15236 return (B_FALSE);
15237
15238 mutex_enter(&uill->ill_lock);
15239 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15240 if (IPIF_IS_CONDEMNED(ipif))
15241 continue;
15242 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15243 continue;
15244 if (!(ipif->ipif_flags & IPIF_UP))
15245 continue;
15246 if (ipif->ipif_zoneid != zoneid)
15247 continue;
15248 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15249 ipif->ipif_lcl_addr == INADDR_ANY)
15250 continue;
15251 mutex_exit(&uill->ill_lock);
15252 ill_refrele(uill);
15253 return (B_TRUE);
15254 }
15255 mutex_exit(&uill->ill_lock);
15256 ill_refrele(uill);
15257 return (B_FALSE);
15258 }
15259
15260 /*
15261 * Find an ipif with a good local address on the ill+zoneid.
15262 */
15263 ipif_t *
ipif_good_addr(ill_t * ill,zoneid_t zoneid)15264 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15265 {
15266 ipif_t *ipif;
15267
15268 mutex_enter(&ill->ill_lock);
15269 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15270 if (IPIF_IS_CONDEMNED(ipif))
15271 continue;
15272 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15273 continue;
15274 if (!(ipif->ipif_flags & IPIF_UP))
15275 continue;
15276 if (ipif->ipif_zoneid != zoneid &&
15277 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15278 continue;
15279 if (ill->ill_isv6 ?
15280 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15281 ipif->ipif_lcl_addr == INADDR_ANY)
15282 continue;
15283 ipif_refhold_locked(ipif);
15284 mutex_exit(&ill->ill_lock);
15285 return (ipif);
15286 }
15287 mutex_exit(&ill->ill_lock);
15288 return (NULL);
15289 }
15290
15291 /*
15292 * IP source address type, sorted from worst to best. For a given type,
15293 * always prefer IP addresses on the same subnet. All-zones addresses are
15294 * suboptimal because they pose problems with unlabeled destinations.
15295 */
15296 typedef enum {
15297 IPIF_NONE,
15298 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */
15299 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */
15300 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */
15301 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */
15302 IPIF_DIFFNET, /* normal and different subnet */
15303 IPIF_SAMENET, /* normal and same subnet */
15304 IPIF_LOCALADDR /* local loopback */
15305 } ipif_type_t;
15306
15307 /*
15308 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15309 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t
15310 * enumeration, and return the highest-rated ipif. If there's a tie, we pick
15311 * the first one, unless IPMP is used in which case we round-robin among them;
15312 * see below for more.
15313 *
15314 * Returns NULL if there is no suitable source address for the ill.
15315 * This only occurs when there is no valid source address for the ill.
15316 */
15317 ipif_t *
ipif_select_source_v4(ill_t * ill,ipaddr_t dst,zoneid_t zoneid,boolean_t allow_usesrc,boolean_t * notreadyp)15318 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15319 boolean_t allow_usesrc, boolean_t *notreadyp)
15320 {
15321 ill_t *usill = NULL;
15322 ill_t *ipmp_ill = NULL;
15323 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif;
15324 ipif_type_t type, best_type;
15325 tsol_tpc_t *src_rhtp, *dst_rhtp;
15326 ip_stack_t *ipst = ill->ill_ipst;
15327 boolean_t samenet;
15328
15329 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15330 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15331 B_FALSE, ipst);
15332 if (usill != NULL)
15333 ill = usill; /* Select source from usesrc ILL */
15334 else
15335 return (NULL);
15336 }
15337
15338 /*
15339 * Test addresses should never be used for source address selection,
15340 * so if we were passed one, switch to the IPMP meta-interface.
15341 */
15342 if (IS_UNDER_IPMP(ill)) {
15343 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15344 ill = ipmp_ill; /* Select source from IPMP ill */
15345 else
15346 return (NULL);
15347 }
15348
15349 /*
15350 * If we're dealing with an unlabeled destination on a labeled system,
15351 * make sure that we ignore source addresses that are incompatible with
15352 * the destination's default label. That destination's default label
15353 * must dominate the minimum label on the source address.
15354 */
15355 dst_rhtp = NULL;
15356 if (is_system_labeled()) {
15357 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15358 if (dst_rhtp == NULL)
15359 return (NULL);
15360 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15361 TPC_RELE(dst_rhtp);
15362 dst_rhtp = NULL;
15363 }
15364 }
15365
15366 /*
15367 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15368 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15369 * After selecting the right ipif, under ill_lock make sure ipif is
15370 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15371 * we retry. Inside the loop we still need to check for CONDEMNED,
15372 * but not under a lock.
15373 */
15374 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15375 retry:
15376 /*
15377 * For source address selection, we treat the ipif list as circular
15378 * and continue until we get back to where we started. This allows
15379 * IPMP to vary source address selection (which improves inbound load
15380 * spreading) by caching its last ending point and starting from
15381 * there. NOTE: we don't have to worry about ill_src_ipif changing
15382 * ills since that can't happen on the IPMP ill.
15383 */
15384 start_ipif = ill->ill_ipif;
15385 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15386 start_ipif = ill->ill_src_ipif;
15387
15388 ipif = start_ipif;
15389 best_ipif = NULL;
15390 best_type = IPIF_NONE;
15391 do {
15392 if ((next_ipif = ipif->ipif_next) == NULL)
15393 next_ipif = ill->ill_ipif;
15394
15395 if (IPIF_IS_CONDEMNED(ipif))
15396 continue;
15397 /* Always skip NOLOCAL and ANYCAST interfaces */
15398 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15399 continue;
15400 /* Always skip NOACCEPT interfaces */
15401 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15402 continue;
15403 if (!(ipif->ipif_flags & IPIF_UP))
15404 continue;
15405
15406 if (!ipif->ipif_addr_ready) {
15407 if (notreadyp != NULL)
15408 *notreadyp = B_TRUE;
15409 continue;
15410 }
15411
15412 if (zoneid != ALL_ZONES &&
15413 ipif->ipif_zoneid != zoneid &&
15414 ipif->ipif_zoneid != ALL_ZONES)
15415 continue;
15416
15417 /*
15418 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15419 * are not valid as source addresses.
15420 */
15421 if (ipif->ipif_lcl_addr == INADDR_ANY)
15422 continue;
15423
15424 /*
15425 * Check compatibility of local address for destination's
15426 * default label if we're on a labeled system. Incompatible
15427 * addresses can't be used at all.
15428 */
15429 if (dst_rhtp != NULL) {
15430 boolean_t incompat;
15431
15432 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15433 IPV4_VERSION, B_FALSE);
15434 if (src_rhtp == NULL)
15435 continue;
15436 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15437 src_rhtp->tpc_tp.tp_doi !=
15438 dst_rhtp->tpc_tp.tp_doi ||
15439 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15440 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15441 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15442 src_rhtp->tpc_tp.tp_sl_set_cipso));
15443 TPC_RELE(src_rhtp);
15444 if (incompat)
15445 continue;
15446 }
15447
15448 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15449
15450 if (ipif->ipif_lcl_addr == dst) {
15451 type = IPIF_LOCALADDR;
15452 } else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15453 type = samenet ? IPIF_SAMENET_DEPRECATED :
15454 IPIF_DIFFNET_DEPRECATED;
15455 } else if (ipif->ipif_zoneid == ALL_ZONES) {
15456 type = samenet ? IPIF_SAMENET_ALLZONES :
15457 IPIF_DIFFNET_ALLZONES;
15458 } else {
15459 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15460 }
15461
15462 if (type > best_type) {
15463 best_type = type;
15464 best_ipif = ipif;
15465 if (best_type == IPIF_LOCALADDR)
15466 break; /* can't get better */
15467 }
15468 } while ((ipif = next_ipif) != start_ipif);
15469
15470 if ((ipif = best_ipif) != NULL) {
15471 mutex_enter(&ipif->ipif_ill->ill_lock);
15472 if (IPIF_IS_CONDEMNED(ipif)) {
15473 mutex_exit(&ipif->ipif_ill->ill_lock);
15474 goto retry;
15475 }
15476 ipif_refhold_locked(ipif);
15477
15478 /*
15479 * For IPMP, update the source ipif rotor to the next ipif,
15480 * provided we can look it up. (We must not use it if it's
15481 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15482 * ipif_free() checked ill_src_ipif.)
15483 */
15484 if (IS_IPMP(ill) && ipif != NULL) {
15485 next_ipif = ipif->ipif_next;
15486 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15487 ill->ill_src_ipif = next_ipif;
15488 else
15489 ill->ill_src_ipif = NULL;
15490 }
15491 mutex_exit(&ipif->ipif_ill->ill_lock);
15492 }
15493
15494 rw_exit(&ipst->ips_ill_g_lock);
15495 if (usill != NULL)
15496 ill_refrele(usill);
15497 if (ipmp_ill != NULL)
15498 ill_refrele(ipmp_ill);
15499 if (dst_rhtp != NULL)
15500 TPC_RELE(dst_rhtp);
15501
15502 #ifdef DEBUG
15503 if (ipif == NULL) {
15504 char buf1[INET6_ADDRSTRLEN];
15505
15506 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15507 ill->ill_name,
15508 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15509 } else {
15510 char buf1[INET6_ADDRSTRLEN];
15511 char buf2[INET6_ADDRSTRLEN];
15512
15513 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15514 ipif->ipif_ill->ill_name,
15515 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15516 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15517 buf2, sizeof (buf2))));
15518 }
15519 #endif /* DEBUG */
15520 return (ipif);
15521 }
15522
15523 /*
15524 * Pick a source address based on the destination ill and an optional setsrc
15525 * address.
15526 * The result is stored in srcp. If generation is set, then put the source
15527 * generation number there before we look for the source address (to avoid
15528 * missing changes in the set of source addresses.
15529 * If flagsp is set, then us it to pass back ipif_flags.
15530 *
15531 * If the caller wants to cache the returned source address and detect when
15532 * that might be stale, the caller should pass in a generation argument,
15533 * which the caller can later compare against ips_src_generation
15534 *
15535 * The precedence order for selecting an IPv4 source address is:
15536 * - RTF_SETSRC on the offlink ire always wins.
15537 * - If usrsrc is set, swap the ill to be the usesrc one.
15538 * - If IPMP is used on the ill, select a random address from the most
15539 * preferred ones below:
15540 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15541 * 2. Not deprecated, not ALL_ZONES
15542 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15543 * 4. Not deprecated, ALL_ZONES
15544 * 5. If onlink destination, same subnet and deprecated
15545 * 6. Deprecated.
15546 *
15547 * We have lower preference for ALL_ZONES IP addresses,
15548 * as they pose problems with unlabeled destinations.
15549 *
15550 * Note that when multiple IP addresses match e.g., #1 we pick
15551 * the first one if IPMP is not in use. With IPMP we randomize.
15552 */
15553 int
ip_select_source_v4(ill_t * ill,ipaddr_t setsrc,ipaddr_t dst,ipaddr_t multicast_ifaddr,zoneid_t zoneid,ip_stack_t * ipst,ipaddr_t * srcp,uint32_t * generation,uint64_t * flagsp)15554 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15555 ipaddr_t multicast_ifaddr,
15556 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15557 uint32_t *generation, uint64_t *flagsp)
15558 {
15559 ipif_t *ipif;
15560 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */
15561
15562 if (flagsp != NULL)
15563 *flagsp = 0;
15564
15565 /*
15566 * Need to grab the generation number before we check to
15567 * avoid a race with a change to the set of local addresses.
15568 * No lock needed since the thread which updates the set of local
15569 * addresses use ipif/ill locks and exit those (hence a store memory
15570 * barrier) before doing the atomic increase of ips_src_generation.
15571 */
15572 if (generation != NULL) {
15573 *generation = ipst->ips_src_generation;
15574 }
15575
15576 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15577 *srcp = multicast_ifaddr;
15578 return (0);
15579 }
15580
15581 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15582 if (setsrc != INADDR_ANY) {
15583 *srcp = setsrc;
15584 return (0);
15585 }
15586 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready);
15587 if (ipif == NULL) {
15588 if (notready)
15589 return (ENETDOWN);
15590 else
15591 return (EADDRNOTAVAIL);
15592 }
15593 *srcp = ipif->ipif_lcl_addr;
15594 if (flagsp != NULL)
15595 *flagsp = ipif->ipif_flags;
15596 ipif_refrele(ipif);
15597 return (0);
15598 }
15599
15600 /* ARGSUSED */
15601 int
if_unitsel_restart(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15602 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15603 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15604 {
15605 /*
15606 * ill_phyint_reinit merged the v4 and v6 into a single
15607 * ipsq. We might not have been able to complete the
15608 * operation in ipif_set_values, if we could not become
15609 * exclusive. If so restart it here.
15610 */
15611 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15612 }
15613
15614 /*
15615 * Can operate on either a module or a driver queue.
15616 * Returns an error if not a module queue.
15617 */
15618 /* ARGSUSED */
15619 int
if_unitsel(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15620 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15621 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15622 {
15623 queue_t *q1 = q;
15624 char *cp;
15625 char interf_name[LIFNAMSIZ];
15626 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15627
15628 if (q->q_next == NULL) {
15629 ip1dbg((
15630 "if_unitsel: IF_UNITSEL: no q_next\n"));
15631 return (EINVAL);
15632 }
15633
15634 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15635 return (EALREADY);
15636
15637 do {
15638 q1 = q1->q_next;
15639 } while (q1->q_next);
15640 cp = q1->q_qinfo->qi_minfo->mi_idname;
15641 (void) sprintf(interf_name, "%s%d", cp, ppa);
15642
15643 /*
15644 * Here we are not going to delay the ioack until after
15645 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15646 * original ioctl message before sending the requests.
15647 */
15648 return (ipif_set_values(q, mp, interf_name, &ppa));
15649 }
15650
15651 /* ARGSUSED */
15652 int
ip_sioctl_sifname(ipif_t * dummy_ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * dummy_ifreq)15653 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15654 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15655 {
15656 return (ENXIO);
15657 }
15658
15659 /*
15660 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15661 * `irep'. Returns a pointer to the next free `irep' entry
15662 * A mirror exists in ipif_delete_bcast_ires().
15663 *
15664 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15665 * done in ire_add.
15666 */
15667 static ire_t **
ipif_create_bcast_ires(ipif_t * ipif,ire_t ** irep)15668 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15669 {
15670 ipaddr_t addr;
15671 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15672 ipaddr_t subnetmask = ipif->ipif_net_mask;
15673 ill_t *ill = ipif->ipif_ill;
15674 zoneid_t zoneid = ipif->ipif_zoneid;
15675
15676 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15677
15678 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15679 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15680
15681 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15682 (ipif->ipif_flags & IPIF_NOLOCAL))
15683 netmask = htonl(IN_CLASSA_NET); /* fallback */
15684
15685 irep = ire_create_bcast(ill, 0, zoneid, irep);
15686 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15687
15688 /*
15689 * For backward compatibility, we create net broadcast IREs based on
15690 * the old "IP address class system", since some old machines only
15691 * respond to these class derived net broadcast. However, we must not
15692 * create these net broadcast IREs if the subnetmask is shorter than
15693 * the IP address class based derived netmask. Otherwise, we may
15694 * create a net broadcast address which is the same as an IP address
15695 * on the subnet -- and then TCP will refuse to talk to that address.
15696 */
15697 if (netmask < subnetmask) {
15698 addr = netmask & ipif->ipif_subnet;
15699 irep = ire_create_bcast(ill, addr, zoneid, irep);
15700 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15701 }
15702
15703 /*
15704 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15705 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15706 * created. Creating these broadcast IREs will only create confusion
15707 * as `addr' will be the same as the IP address.
15708 */
15709 if (subnetmask != 0xFFFFFFFF) {
15710 addr = ipif->ipif_subnet;
15711 irep = ire_create_bcast(ill, addr, zoneid, irep);
15712 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15713 }
15714
15715 return (irep);
15716 }
15717
15718 /*
15719 * Mirror of ipif_create_bcast_ires()
15720 */
15721 static void
ipif_delete_bcast_ires(ipif_t * ipif)15722 ipif_delete_bcast_ires(ipif_t *ipif)
15723 {
15724 ipaddr_t addr;
15725 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15726 ipaddr_t subnetmask = ipif->ipif_net_mask;
15727 ill_t *ill = ipif->ipif_ill;
15728 zoneid_t zoneid = ipif->ipif_zoneid;
15729 ire_t *ire;
15730
15731 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15732 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15733
15734 if (ipif->ipif_lcl_addr == INADDR_ANY ||
15735 (ipif->ipif_flags & IPIF_NOLOCAL))
15736 netmask = htonl(IN_CLASSA_NET); /* fallback */
15737
15738 ire = ire_lookup_bcast(ill, 0, zoneid);
15739 ASSERT(ire != NULL);
15740 ire_delete(ire); ire_refrele(ire);
15741 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15742 ASSERT(ire != NULL);
15743 ire_delete(ire); ire_refrele(ire);
15744
15745 /*
15746 * For backward compatibility, we create net broadcast IREs based on
15747 * the old "IP address class system", since some old machines only
15748 * respond to these class derived net broadcast. However, we must not
15749 * create these net broadcast IREs if the subnetmask is shorter than
15750 * the IP address class based derived netmask. Otherwise, we may
15751 * create a net broadcast address which is the same as an IP address
15752 * on the subnet -- and then TCP will refuse to talk to that address.
15753 */
15754 if (netmask < subnetmask) {
15755 addr = netmask & ipif->ipif_subnet;
15756 ire = ire_lookup_bcast(ill, addr, zoneid);
15757 ASSERT(ire != NULL);
15758 ire_delete(ire); ire_refrele(ire);
15759 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15760 ASSERT(ire != NULL);
15761 ire_delete(ire); ire_refrele(ire);
15762 }
15763
15764 /*
15765 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15766 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15767 * created. Creating these broadcast IREs will only create confusion
15768 * as `addr' will be the same as the IP address.
15769 */
15770 if (subnetmask != 0xFFFFFFFF) {
15771 addr = ipif->ipif_subnet;
15772 ire = ire_lookup_bcast(ill, addr, zoneid);
15773 ASSERT(ire != NULL);
15774 ire_delete(ire); ire_refrele(ire);
15775 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15776 ASSERT(ire != NULL);
15777 ire_delete(ire); ire_refrele(ire);
15778 }
15779 }
15780
15781 /*
15782 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15783 * from lifr_flags and the name from lifr_name.
15784 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15785 * since ipif_lookup_on_name uses the _isv6 flags when matching.
15786 * Returns EINPROGRESS when mp has been consumed by queueing it on
15787 * ipx_pending_mp and the ioctl will complete in ip_rput.
15788 *
15789 * Can operate on either a module or a driver queue.
15790 * Returns an error if not a module queue.
15791 */
15792 /* ARGSUSED */
15793 int
ip_sioctl_slifname(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15794 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15795 ip_ioctl_cmd_t *ipip, void *if_req)
15796 {
15797 ill_t *ill = q->q_ptr;
15798 phyint_t *phyi;
15799 ip_stack_t *ipst;
15800 struct lifreq *lifr = if_req;
15801 uint64_t new_flags;
15802
15803 ASSERT(ipif != NULL);
15804 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15805
15806 if (q->q_next == NULL) {
15807 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15808 return (EINVAL);
15809 }
15810
15811 /*
15812 * If we are not writer on 'q' then this interface exists already
15813 * and previous lookups (ip_extract_lifreq()) found this ipif --
15814 * so return EALREADY.
15815 */
15816 if (ill != ipif->ipif_ill)
15817 return (EALREADY);
15818
15819 if (ill->ill_name[0] != '\0')
15820 return (EALREADY);
15821
15822 /*
15823 * If there's another ill already with the requested name, ensure
15824 * that it's of the same type. Otherwise, ill_phyint_reinit() will
15825 * fuse together two unrelated ills, which will cause chaos.
15826 */
15827 ipst = ill->ill_ipst;
15828 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15829 lifr->lifr_name, NULL);
15830 if (phyi != NULL) {
15831 ill_t *ill_mate = phyi->phyint_illv4;
15832
15833 if (ill_mate == NULL)
15834 ill_mate = phyi->phyint_illv6;
15835 ASSERT(ill_mate != NULL);
15836
15837 if (ill_mate->ill_media->ip_m_mac_type !=
15838 ill->ill_media->ip_m_mac_type) {
15839 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15840 "use the same ill name on differing media\n"));
15841 return (EINVAL);
15842 }
15843 }
15844
15845 /*
15846 * We start off as IFF_IPV4 in ipif_allocate and become
15847 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value.
15848 * The only flags that we read from user space are IFF_IPV4,
15849 * IFF_IPV6, and IFF_BROADCAST.
15850 *
15851 * This ill has not been inserted into the global list.
15852 * So we are still single threaded and don't need any lock
15853 *
15854 * Saniy check the flags.
15855 */
15856
15857 if ((lifr->lifr_flags & IFF_BROADCAST) &&
15858 ((lifr->lifr_flags & IFF_IPV6) ||
15859 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15860 ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15861 "or IPv6 i.e., no broadcast \n"));
15862 return (EINVAL);
15863 }
15864
15865 new_flags =
15866 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15867
15868 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15869 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15870 "IFF_IPV4 or IFF_IPV6\n"));
15871 return (EINVAL);
15872 }
15873
15874 /*
15875 * We always start off as IPv4, so only need to check for IPv6.
15876 */
15877 if ((new_flags & IFF_IPV6) != 0) {
15878 ill->ill_flags |= ILLF_IPV6;
15879 ill->ill_flags &= ~ILLF_IPV4;
15880
15881 if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15882 ill->ill_flags |= ILLF_NOLINKLOCAL;
15883 }
15884
15885 if ((new_flags & IFF_BROADCAST) != 0)
15886 ipif->ipif_flags |= IPIF_BROADCAST;
15887 else
15888 ipif->ipif_flags &= ~IPIF_BROADCAST;
15889
15890 /* We started off as V4. */
15891 if (ill->ill_flags & ILLF_IPV6) {
15892 ill->ill_phyint->phyint_illv6 = ill;
15893 ill->ill_phyint->phyint_illv4 = NULL;
15894 }
15895
15896 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15897 }
15898
15899 /* ARGSUSED */
15900 int
ip_sioctl_slifname_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)15901 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15902 ip_ioctl_cmd_t *ipip, void *if_req)
15903 {
15904 /*
15905 * ill_phyint_reinit merged the v4 and v6 into a single
15906 * ipsq. We might not have been able to complete the
15907 * slifname in ipif_set_values, if we could not become
15908 * exclusive. If so restart it here
15909 */
15910 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15911 }
15912
15913 /*
15914 * Return a pointer to the ipif which matches the index, IP version type and
15915 * zoneid.
15916 */
15917 ipif_t *
ipif_lookup_on_ifindex(uint_t index,boolean_t isv6,zoneid_t zoneid,ip_stack_t * ipst)15918 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15919 ip_stack_t *ipst)
15920 {
15921 ill_t *ill;
15922 ipif_t *ipif = NULL;
15923
15924 ill = ill_lookup_on_ifindex(index, isv6, ipst);
15925 if (ill != NULL) {
15926 mutex_enter(&ill->ill_lock);
15927 for (ipif = ill->ill_ipif; ipif != NULL;
15928 ipif = ipif->ipif_next) {
15929 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15930 zoneid == ipif->ipif_zoneid ||
15931 ipif->ipif_zoneid == ALL_ZONES)) {
15932 ipif_refhold_locked(ipif);
15933 break;
15934 }
15935 }
15936 mutex_exit(&ill->ill_lock);
15937 ill_refrele(ill);
15938 }
15939 return (ipif);
15940 }
15941
15942 /*
15943 * Change an existing physical interface's index. If the new index
15944 * is acceptable we update the index and the phyint_list_avl_by_index tree.
15945 * Finally, we update other systems which may have a dependence on the
15946 * index value.
15947 */
15948 /* ARGSUSED */
15949 int
ip_sioctl_slifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)15950 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15951 ip_ioctl_cmd_t *ipip, void *ifreq)
15952 {
15953 ill_t *ill;
15954 phyint_t *phyi;
15955 struct ifreq *ifr = (struct ifreq *)ifreq;
15956 struct lifreq *lifr = (struct lifreq *)ifreq;
15957 uint_t old_index, index;
15958 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15959 avl_index_t where;
15960
15961 if (ipip->ipi_cmd_type == IF_CMD)
15962 index = ifr->ifr_index;
15963 else
15964 index = lifr->lifr_index;
15965
15966 /*
15967 * Only allow on physical interface. Also, index zero is illegal.
15968 */
15969 ill = ipif->ipif_ill;
15970 phyi = ill->ill_phyint;
15971 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15972 return (EINVAL);
15973 }
15974
15975 /* If the index is not changing, no work to do */
15976 if (phyi->phyint_ifindex == index)
15977 return (0);
15978
15979 /*
15980 * Use phyint_exists() to determine if the new interface index
15981 * is already in use. If the index is unused then we need to
15982 * change the phyint's position in the phyint_list_avl_by_index
15983 * tree. If we do not do this, subsequent lookups (using the new
15984 * index value) will not find the phyint.
15985 */
15986 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15987 if (phyint_exists(index, ipst)) {
15988 rw_exit(&ipst->ips_ill_g_lock);
15989 return (EEXIST);
15990 }
15991
15992 /*
15993 * The new index is unused. Set it in the phyint. However we must not
15994 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15995 * changes. The event must be bound to old ifindex value.
15996 */
15997 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15998 &index, sizeof (index));
15999
16000 old_index = phyi->phyint_ifindex;
16001 phyi->phyint_ifindex = index;
16002
16003 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
16004 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16005 &index, &where);
16006 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16007 phyi, where);
16008 rw_exit(&ipst->ips_ill_g_lock);
16009
16010 /* Update SCTP's ILL list */
16011 sctp_ill_reindex(ill, old_index);
16012
16013 /* Send the routing sockets message */
16014 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16015 if (ILL_OTHER(ill))
16016 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16017
16018 /* Perhaps ilgs should use this ill */
16019 update_conn_ill(NULL, ill->ill_ipst);
16020 return (0);
16021 }
16022
16023 /* ARGSUSED */
16024 int
ip_sioctl_get_lifindex(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16025 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16026 ip_ioctl_cmd_t *ipip, void *ifreq)
16027 {
16028 struct ifreq *ifr = (struct ifreq *)ifreq;
16029 struct lifreq *lifr = (struct lifreq *)ifreq;
16030
16031 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16032 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16033 /* Get the interface index */
16034 if (ipip->ipi_cmd_type == IF_CMD) {
16035 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16036 } else {
16037 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16038 }
16039 return (0);
16040 }
16041
16042 /* ARGSUSED */
16043 int
ip_sioctl_get_lifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16044 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16045 ip_ioctl_cmd_t *ipip, void *ifreq)
16046 {
16047 struct lifreq *lifr = (struct lifreq *)ifreq;
16048
16049 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16050 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16051 /* Get the interface zone */
16052 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16053 lifr->lifr_zoneid = ipif->ipif_zoneid;
16054 return (0);
16055 }
16056
16057 /*
16058 * Set the zoneid of an interface.
16059 */
16060 /* ARGSUSED */
16061 int
ip_sioctl_slifzone(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16062 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16063 ip_ioctl_cmd_t *ipip, void *ifreq)
16064 {
16065 struct lifreq *lifr = (struct lifreq *)ifreq;
16066 int err = 0;
16067 boolean_t need_up = B_FALSE;
16068 zone_t *zptr;
16069 zone_status_t status;
16070 zoneid_t zoneid;
16071
16072 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16073 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16074 if (!is_system_labeled())
16075 return (ENOTSUP);
16076 zoneid = GLOBAL_ZONEID;
16077 }
16078
16079 /* cannot assign instance zero to a non-global zone */
16080 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16081 return (ENOTSUP);
16082
16083 /*
16084 * Cannot assign to a zone that doesn't exist or is shutting down. In
16085 * the event of a race with the zone shutdown processing, since IP
16086 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16087 * interface will be cleaned up even if the zone is shut down
16088 * immediately after the status check. If the interface can't be brought
16089 * down right away, and the zone is shut down before the restart
16090 * function is called, we resolve the possible races by rechecking the
16091 * zone status in the restart function.
16092 */
16093 if ((zptr = zone_find_by_id(zoneid)) == NULL)
16094 return (EINVAL);
16095 status = zone_status_get(zptr);
16096 zone_rele(zptr);
16097
16098 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16099 return (EINVAL);
16100
16101 if (ipif->ipif_flags & IPIF_UP) {
16102 /*
16103 * If the interface is already marked up,
16104 * we call ipif_down which will take care
16105 * of ditching any IREs that have been set
16106 * up based on the old interface address.
16107 */
16108 err = ipif_logical_down(ipif, q, mp);
16109 if (err == EINPROGRESS)
16110 return (err);
16111 (void) ipif_down_tail(ipif);
16112 need_up = B_TRUE;
16113 }
16114
16115 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16116 return (err);
16117 }
16118
16119 static int
ip_sioctl_slifzone_tail(ipif_t * ipif,zoneid_t zoneid,queue_t * q,mblk_t * mp,boolean_t need_up)16120 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16121 queue_t *q, mblk_t *mp, boolean_t need_up)
16122 {
16123 int err = 0;
16124 ip_stack_t *ipst;
16125
16126 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16128
16129 if (CONN_Q(q))
16130 ipst = CONNQ_TO_IPST(q);
16131 else
16132 ipst = ILLQ_TO_IPST(q);
16133
16134 /*
16135 * For exclusive stacks we don't allow a different zoneid than
16136 * global.
16137 */
16138 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16139 zoneid != GLOBAL_ZONEID)
16140 return (EINVAL);
16141
16142 /* Set the new zone id. */
16143 ipif->ipif_zoneid = zoneid;
16144
16145 /* Update sctp list */
16146 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16147
16148 /* The default multicast interface might have changed */
16149 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16150
16151 if (need_up) {
16152 /*
16153 * Now bring the interface back up. If this
16154 * is the only IPIF for the ILL, ipif_up
16155 * will have to re-bind to the device, so
16156 * we may get back EINPROGRESS, in which
16157 * case, this IOCTL will get completed in
16158 * ip_rput_dlpi when we see the DL_BIND_ACK.
16159 */
16160 err = ipif_up(ipif, q, mp);
16161 }
16162 return (err);
16163 }
16164
16165 /* ARGSUSED */
16166 int
ip_sioctl_slifzone_restart(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16167 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16168 ip_ioctl_cmd_t *ipip, void *if_req)
16169 {
16170 struct lifreq *lifr = (struct lifreq *)if_req;
16171 zoneid_t zoneid;
16172 zone_t *zptr;
16173 zone_status_t status;
16174
16175 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16176 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16177 zoneid = GLOBAL_ZONEID;
16178
16179 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16180 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16181
16182 /*
16183 * We recheck the zone status to resolve the following race condition:
16184 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16185 * 2) hme0:1 is up and can't be brought down right away;
16186 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16187 * 3) zone "myzone" is halted; the zone status switches to
16188 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16189 * the interfaces to remove - hme0:1 is not returned because it's not
16190 * yet in "myzone", so it won't be removed;
16191 * 4) the restart function for SIOCSLIFZONE is called; without the
16192 * status check here, we would have hme0:1 in "myzone" after it's been
16193 * destroyed.
16194 * Note that if the status check fails, we need to bring the interface
16195 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16196 * ipif_up_done[_v6]().
16197 */
16198 status = ZONE_IS_UNINITIALIZED;
16199 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16200 status = zone_status_get(zptr);
16201 zone_rele(zptr);
16202 }
16203 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16204 if (ipif->ipif_isv6) {
16205 (void) ipif_up_done_v6(ipif);
16206 } else {
16207 (void) ipif_up_done(ipif);
16208 }
16209 return (EINVAL);
16210 }
16211
16212 (void) ipif_down_tail(ipif);
16213
16214 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16215 B_TRUE));
16216 }
16217
16218 /*
16219 * Return the number of addresses on `ill' with one or more of the values
16220 * in `set' set and all of the values in `clear' clear.
16221 */
16222 static uint_t
ill_flagaddr_cnt(const ill_t * ill,uint64_t set,uint64_t clear)16223 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16224 {
16225 ipif_t *ipif;
16226 uint_t cnt = 0;
16227
16228 ASSERT(IAM_WRITER_ILL(ill));
16229
16230 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16231 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16232 cnt++;
16233
16234 return (cnt);
16235 }
16236
16237 /*
16238 * Return the number of migratable addresses on `ill' that are under
16239 * application control.
16240 */
16241 uint_t
ill_appaddr_cnt(const ill_t * ill)16242 ill_appaddr_cnt(const ill_t *ill)
16243 {
16244 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16245 IPIF_NOFAILOVER));
16246 }
16247
16248 /*
16249 * Return the number of point-to-point addresses on `ill'.
16250 */
16251 uint_t
ill_ptpaddr_cnt(const ill_t * ill)16252 ill_ptpaddr_cnt(const ill_t *ill)
16253 {
16254 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16255 }
16256
16257 /* ARGSUSED */
16258 int
ip_sioctl_get_lifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16259 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16260 ip_ioctl_cmd_t *ipip, void *ifreq)
16261 {
16262 struct lifreq *lifr = ifreq;
16263
16264 ASSERT(q->q_next == NULL);
16265 ASSERT(CONN_Q(q));
16266
16267 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16269 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16270 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16271
16272 return (0);
16273 }
16274
16275 /* Find the previous ILL in this usesrc group */
16276 static ill_t *
ill_prev_usesrc(ill_t * uill)16277 ill_prev_usesrc(ill_t *uill)
16278 {
16279 ill_t *ill;
16280
16281 for (ill = uill->ill_usesrc_grp_next;
16282 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16283 ill = ill->ill_usesrc_grp_next)
16284 /* do nothing */;
16285 return (ill);
16286 }
16287
16288 /*
16289 * Release all members of the usesrc group. This routine is called
16290 * from ill_delete when the interface being unplumbed is the
16291 * group head.
16292 *
16293 * This silently clears the usesrc that ifconfig setup.
16294 * An alternative would be to keep that ifindex, and drop packets on the floor
16295 * since no source address can be selected.
16296 * Even if we keep the current semantics, don't need a lock and a linked list.
16297 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16298 * the one that is being removed. Issue is how we return the usesrc users
16299 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16300 * ill_usesrc_ifindex matching a target ill. We could also do that with an
16301 * ill walk, but the walker would need to insert in the ioctl response.
16302 */
16303 static void
ill_disband_usesrc_group(ill_t * uill)16304 ill_disband_usesrc_group(ill_t *uill)
16305 {
16306 ill_t *next_ill, *tmp_ill;
16307 ip_stack_t *ipst = uill->ill_ipst;
16308
16309 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16310 next_ill = uill->ill_usesrc_grp_next;
16311
16312 do {
16313 ASSERT(next_ill != NULL);
16314 tmp_ill = next_ill->ill_usesrc_grp_next;
16315 ASSERT(tmp_ill != NULL);
16316 next_ill->ill_usesrc_grp_next = NULL;
16317 next_ill->ill_usesrc_ifindex = 0;
16318 next_ill = tmp_ill;
16319 } while (next_ill->ill_usesrc_ifindex != 0);
16320 uill->ill_usesrc_grp_next = NULL;
16321 }
16322
16323 /*
16324 * Remove the client usesrc ILL from the list and relink to a new list
16325 */
16326 int
ill_relink_usesrc_ills(ill_t * ucill,ill_t * uill,uint_t ifindex)16327 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16328 {
16329 ill_t *ill, *tmp_ill;
16330 ip_stack_t *ipst = ucill->ill_ipst;
16331
16332 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16333 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16334
16335 /*
16336 * Check if the usesrc client ILL passed in is not already
16337 * in use as a usesrc ILL i.e one whose source address is
16338 * in use OR a usesrc ILL is not already in use as a usesrc
16339 * client ILL
16340 */
16341 if ((ucill->ill_usesrc_ifindex == 0) ||
16342 (uill->ill_usesrc_ifindex != 0)) {
16343 return (-1);
16344 }
16345
16346 ill = ill_prev_usesrc(ucill);
16347 ASSERT(ill->ill_usesrc_grp_next != NULL);
16348
16349 /* Remove from the current list */
16350 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16351 /* Only two elements in the list */
16352 ASSERT(ill->ill_usesrc_ifindex == 0);
16353 ill->ill_usesrc_grp_next = NULL;
16354 } else {
16355 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16356 }
16357
16358 if (ifindex == 0) {
16359 ucill->ill_usesrc_ifindex = 0;
16360 ucill->ill_usesrc_grp_next = NULL;
16361 return (0);
16362 }
16363
16364 ucill->ill_usesrc_ifindex = ifindex;
16365 tmp_ill = uill->ill_usesrc_grp_next;
16366 uill->ill_usesrc_grp_next = ucill;
16367 ucill->ill_usesrc_grp_next =
16368 (tmp_ill != NULL) ? tmp_ill : uill;
16369 return (0);
16370 }
16371
16372 /*
16373 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16374 * ip.c for locking details.
16375 */
16376 /* ARGSUSED */
16377 int
ip_sioctl_slifusesrc(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * ifreq)16378 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16379 ip_ioctl_cmd_t *ipip, void *ifreq)
16380 {
16381 struct lifreq *lifr = (struct lifreq *)ifreq;
16382 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16383 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16384 int err = 0, ret;
16385 uint_t ifindex;
16386 ipsq_t *ipsq = NULL;
16387 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16388
16389 ASSERT(IAM_WRITER_IPIF(ipif));
16390 ASSERT(q->q_next == NULL);
16391 ASSERT(CONN_Q(q));
16392
16393 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16394
16395 ifindex = lifr->lifr_index;
16396 if (ifindex == 0) {
16397 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16398 /* non usesrc group interface, nothing to reset */
16399 return (0);
16400 }
16401 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16402 /* valid reset request */
16403 reset_flg = B_TRUE;
16404 }
16405
16406 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16407 if (usesrc_ill == NULL)
16408 return (ENXIO);
16409 if (usesrc_ill == ipif->ipif_ill) {
16410 ill_refrele(usesrc_ill);
16411 return (EINVAL);
16412 }
16413
16414 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16415 NEW_OP, B_TRUE);
16416 if (ipsq == NULL) {
16417 err = EINPROGRESS;
16418 /* Operation enqueued on the ipsq of the usesrc ILL */
16419 goto done;
16420 }
16421
16422 /* USESRC isn't currently supported with IPMP */
16423 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16424 err = ENOTSUP;
16425 goto done;
16426 }
16427
16428 /*
16429 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only
16430 * used by IPMP underlying interfaces, but someone might think it's
16431 * more general and try to use it independently with VNI.)
16432 */
16433 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16434 err = ENOTSUP;
16435 goto done;
16436 }
16437
16438 /*
16439 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16440 * already a client then return EINVAL
16441 */
16442 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16443 err = EINVAL;
16444 goto done;
16445 }
16446
16447 /*
16448 * If the ill_usesrc_ifindex field is already set to what it needs to
16449 * be then this is a duplicate operation.
16450 */
16451 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16452 err = 0;
16453 goto done;
16454 }
16455
16456 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16457 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16458 usesrc_ill->ill_isv6));
16459
16460 /*
16461 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16462 * and the ill_usesrc_ifindex fields
16463 */
16464 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16465
16466 if (reset_flg) {
16467 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16468 if (ret != 0) {
16469 err = EINVAL;
16470 }
16471 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16472 goto done;
16473 }
16474
16475 /*
16476 * Four possibilities to consider:
16477 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16478 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16479 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16480 * 4. Both are part of their respective usesrc groups
16481 */
16482 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16483 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16484 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16485 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16486 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16487 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16488 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16489 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16490 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16491 /* Insert at head of list */
16492 usesrc_cli_ill->ill_usesrc_grp_next =
16493 usesrc_ill->ill_usesrc_grp_next;
16494 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16495 } else {
16496 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16497 ifindex);
16498 if (ret != 0)
16499 err = EINVAL;
16500 }
16501 rw_exit(&ipst->ips_ill_g_usesrc_lock);
16502
16503 done:
16504 if (ipsq != NULL)
16505 ipsq_exit(ipsq);
16506 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16507 ill_refrele(usesrc_ill);
16508
16509 /* Let conn_ixa caching know that source address selection changed */
16510 ip_update_source_selection(ipst);
16511
16512 return (err);
16513 }
16514
16515 /* ARGSUSED */
16516 int
ip_sioctl_get_dadstate(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)16517 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16518 ip_ioctl_cmd_t *ipip, void *if_req)
16519 {
16520 struct lifreq *lifr = (struct lifreq *)if_req;
16521 ill_t *ill = ipif->ipif_ill;
16522
16523 /*
16524 * Need a lock since IFF_UP can be set even when there are
16525 * references to the ipif.
16526 */
16527 mutex_enter(&ill->ill_lock);
16528 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16529 lifr->lifr_dadstate = DAD_IN_PROGRESS;
16530 else
16531 lifr->lifr_dadstate = DAD_DONE;
16532 mutex_exit(&ill->ill_lock);
16533 return (0);
16534 }
16535
16536 /*
16537 * comparison function used by avl.
16538 */
16539 static int
ill_phyint_compare_index(const void * index_ptr,const void * phyip)16540 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16541 {
16542
16543 uint_t index;
16544
16545 ASSERT(phyip != NULL && index_ptr != NULL);
16546
16547 index = *((uint_t *)index_ptr);
16548 /*
16549 * let the phyint with the lowest index be on top.
16550 */
16551 if (((phyint_t *)phyip)->phyint_ifindex < index)
16552 return (1);
16553 if (((phyint_t *)phyip)->phyint_ifindex > index)
16554 return (-1);
16555 return (0);
16556 }
16557
16558 /*
16559 * comparison function used by avl.
16560 */
16561 static int
ill_phyint_compare_name(const void * name_ptr,const void * phyip)16562 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16563 {
16564 ill_t *ill;
16565 int res = 0;
16566
16567 ASSERT(phyip != NULL && name_ptr != NULL);
16568
16569 if (((phyint_t *)phyip)->phyint_illv4)
16570 ill = ((phyint_t *)phyip)->phyint_illv4;
16571 else
16572 ill = ((phyint_t *)phyip)->phyint_illv6;
16573 ASSERT(ill != NULL);
16574
16575 res = strcmp(ill->ill_name, (char *)name_ptr);
16576 if (res > 0)
16577 return (1);
16578 else if (res < 0)
16579 return (-1);
16580 return (0);
16581 }
16582
16583 /*
16584 * This function is called on the unplumb path via ill_glist_delete() when
16585 * there are no ills left on the phyint and thus the phyint can be freed.
16586 */
16587 static void
phyint_free(phyint_t * phyi)16588 phyint_free(phyint_t *phyi)
16589 {
16590 ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16591
16592 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16593
16594 /*
16595 * If this phyint was an IPMP meta-interface, blow away the group.
16596 * This is safe to do because all of the illgrps have already been
16597 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16598 * If we're cleaning up as a result of failed initialization,
16599 * phyint_grp may be NULL.
16600 */
16601 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16602 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16603 ipmp_grp_destroy(phyi->phyint_grp);
16604 phyi->phyint_grp = NULL;
16605 rw_exit(&ipst->ips_ipmp_lock);
16606 }
16607
16608 /*
16609 * If this interface was under IPMP, take it out of the group.
16610 */
16611 if (phyi->phyint_grp != NULL)
16612 ipmp_phyint_leave_grp(phyi);
16613
16614 /*
16615 * Delete the phyint and disassociate its ipsq. The ipsq itself
16616 * will be freed in ipsq_exit().
16617 */
16618 phyi->phyint_ipsq->ipsq_phyint = NULL;
16619 phyi->phyint_name[0] = '\0';
16620
16621 mi_free(phyi);
16622 }
16623
16624 /*
16625 * Attach the ill to the phyint structure which can be shared by both
16626 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16627 * function is called from ipif_set_values and ill_lookup_on_name (for
16628 * loopback) where we know the name of the ill. We lookup the ill and if
16629 * there is one present already with the name use that phyint. Otherwise
16630 * reuse the one allocated by ill_init.
16631 */
16632 static void
ill_phyint_reinit(ill_t * ill)16633 ill_phyint_reinit(ill_t *ill)
16634 {
16635 boolean_t isv6 = ill->ill_isv6;
16636 phyint_t *phyi_old;
16637 phyint_t *phyi;
16638 avl_index_t where = 0;
16639 ill_t *ill_other = NULL;
16640 ip_stack_t *ipst = ill->ill_ipst;
16641
16642 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16643
16644 phyi_old = ill->ill_phyint;
16645 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16646 phyi_old->phyint_illv6 == NULL));
16647 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16648 phyi_old->phyint_illv4 == NULL));
16649 ASSERT(phyi_old->phyint_ifindex == 0);
16650
16651 /*
16652 * Now that our ill has a name, set it in the phyint.
16653 */
16654 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16655
16656 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16657 ill->ill_name, &where);
16658
16659 /*
16660 * 1. We grabbed the ill_g_lock before inserting this ill into
16661 * the global list of ills. So no other thread could have located
16662 * this ill and hence the ipsq of this ill is guaranteed to be empty.
16663 * 2. Now locate the other protocol instance of this ill.
16664 * 3. Now grab both ill locks in the right order, and the phyint lock of
16665 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16666 * of neither ill can change.
16667 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16668 * other ill.
16669 * 5. Release all locks.
16670 */
16671
16672 /*
16673 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16674 * we are initializing IPv4.
16675 */
16676 if (phyi != NULL) {
16677 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16678 ASSERT(ill_other->ill_phyint != NULL);
16679 ASSERT((isv6 && !ill_other->ill_isv6) ||
16680 (!isv6 && ill_other->ill_isv6));
16681 GRAB_ILL_LOCKS(ill, ill_other);
16682 /*
16683 * We are potentially throwing away phyint_flags which
16684 * could be different from the one that we obtain from
16685 * ill_other->ill_phyint. But it is okay as we are assuming
16686 * that the state maintained within IP is correct.
16687 */
16688 mutex_enter(&phyi->phyint_lock);
16689 if (isv6) {
16690 ASSERT(phyi->phyint_illv6 == NULL);
16691 phyi->phyint_illv6 = ill;
16692 } else {
16693 ASSERT(phyi->phyint_illv4 == NULL);
16694 phyi->phyint_illv4 = ill;
16695 }
16696
16697 /*
16698 * Delete the old phyint and make its ipsq eligible
16699 * to be freed in ipsq_exit().
16700 */
16701 phyi_old->phyint_illv4 = NULL;
16702 phyi_old->phyint_illv6 = NULL;
16703 phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16704 phyi_old->phyint_name[0] = '\0';
16705 mi_free(phyi_old);
16706 } else {
16707 mutex_enter(&ill->ill_lock);
16708 /*
16709 * We don't need to acquire any lock, since
16710 * the ill is not yet visible globally and we
16711 * have not yet released the ill_g_lock.
16712 */
16713 phyi = phyi_old;
16714 mutex_enter(&phyi->phyint_lock);
16715 /* XXX We need a recovery strategy here. */
16716 if (!phyint_assign_ifindex(phyi, ipst))
16717 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16718
16719 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16720 (void *)phyi, where);
16721
16722 (void) avl_find(&ipst->ips_phyint_g_list->
16723 phyint_list_avl_by_index,
16724 &phyi->phyint_ifindex, &where);
16725 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16726 (void *)phyi, where);
16727 }
16728
16729 /*
16730 * Reassigning ill_phyint automatically reassigns the ipsq also.
16731 * pending mp is not affected because that is per ill basis.
16732 */
16733 ill->ill_phyint = phyi;
16734
16735 /*
16736 * Now that the phyint's ifindex has been assigned, complete the
16737 * remaining
16738 */
16739 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16740 if (ill->ill_isv6) {
16741 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16742 ill->ill_phyint->phyint_ifindex;
16743 ill->ill_mcast_type = ipst->ips_mld_max_version;
16744 } else {
16745 ill->ill_mcast_type = ipst->ips_igmp_max_version;
16746 }
16747
16748 /*
16749 * Generate an event within the hooks framework to indicate that
16750 * a new interface has just been added to IP. For this event to
16751 * be generated, the network interface must, at least, have an
16752 * ifindex assigned to it. (We don't generate the event for
16753 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16754 *
16755 * This needs to be run inside the ill_g_lock perimeter to ensure
16756 * that the ordering of delivered events to listeners matches the
16757 * order of them in the kernel.
16758 */
16759 if (!IS_LOOPBACK(ill)) {
16760 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16761 ill->ill_name_length);
16762 }
16763 RELEASE_ILL_LOCKS(ill, ill_other);
16764 mutex_exit(&phyi->phyint_lock);
16765 }
16766
16767 /*
16768 * Notify any downstream modules of the name of this interface.
16769 * An M_IOCTL is used even though we don't expect a successful reply.
16770 * Any reply message from the driver (presumably an M_IOCNAK) will
16771 * eventually get discarded somewhere upstream. The message format is
16772 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16773 * to IP.
16774 */
16775 static void
ip_ifname_notify(ill_t * ill,queue_t * q)16776 ip_ifname_notify(ill_t *ill, queue_t *q)
16777 {
16778 mblk_t *mp1, *mp2;
16779 struct iocblk *iocp;
16780 struct lifreq *lifr;
16781
16782 mp1 = mkiocb(SIOCSLIFNAME);
16783 if (mp1 == NULL)
16784 return;
16785 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16786 if (mp2 == NULL) {
16787 freeb(mp1);
16788 return;
16789 }
16790
16791 mp1->b_cont = mp2;
16792 iocp = (struct iocblk *)mp1->b_rptr;
16793 iocp->ioc_count = sizeof (struct lifreq);
16794
16795 lifr = (struct lifreq *)mp2->b_rptr;
16796 mp2->b_wptr += sizeof (struct lifreq);
16797 bzero(lifr, sizeof (struct lifreq));
16798
16799 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16800 lifr->lifr_ppa = ill->ill_ppa;
16801 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16802
16803 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16804 char *, "SIOCSLIFNAME", ill_t *, ill);
16805 putnext(q, mp1);
16806 }
16807
16808 static int
ipif_set_values_tail(ill_t * ill,ipif_t * ipif,mblk_t * mp,queue_t * q)16809 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16810 {
16811 int err;
16812 ip_stack_t *ipst = ill->ill_ipst;
16813 phyint_t *phyi = ill->ill_phyint;
16814
16815 /*
16816 * Now that ill_name is set, the configuration for the IPMP
16817 * meta-interface can be performed.
16818 */
16819 if (IS_IPMP(ill)) {
16820 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16821 /*
16822 * If phyi->phyint_grp is NULL, then this is the first IPMP
16823 * meta-interface and we need to create the IPMP group.
16824 */
16825 if (phyi->phyint_grp == NULL) {
16826 /*
16827 * If someone has renamed another IPMP group to have
16828 * the same name as our interface, bail.
16829 */
16830 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16831 rw_exit(&ipst->ips_ipmp_lock);
16832 return (EEXIST);
16833 }
16834 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16835 if (phyi->phyint_grp == NULL) {
16836 rw_exit(&ipst->ips_ipmp_lock);
16837 return (ENOMEM);
16838 }
16839 }
16840 rw_exit(&ipst->ips_ipmp_lock);
16841 }
16842
16843 /* Tell downstream modules where they are. */
16844 ip_ifname_notify(ill, q);
16845
16846 /*
16847 * ill_dl_phys returns EINPROGRESS in the usual case.
16848 * Error cases are ENOMEM ...
16849 */
16850 err = ill_dl_phys(ill, ipif, mp, q);
16851
16852 if (ill->ill_isv6) {
16853 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16854 if (ipst->ips_mld_slowtimeout_id == 0) {
16855 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16856 (void *)ipst,
16857 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16858 }
16859 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16860 } else {
16861 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16862 if (ipst->ips_igmp_slowtimeout_id == 0) {
16863 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16864 (void *)ipst,
16865 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16866 }
16867 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16868 }
16869
16870 return (err);
16871 }
16872
16873 /*
16874 * Common routine for ppa and ifname setting. Should be called exclusive.
16875 *
16876 * Returns EINPROGRESS when mp has been consumed by queueing it on
16877 * ipx_pending_mp and the ioctl will complete in ip_rput.
16878 *
16879 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16880 * the new name and new ppa in lifr_name and lifr_ppa respectively.
16881 * For SLIFNAME, we pass these values back to the userland.
16882 */
16883 static int
ipif_set_values(queue_t * q,mblk_t * mp,char * interf_name,uint_t * new_ppa_ptr)16884 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16885 {
16886 ill_t *ill;
16887 ipif_t *ipif;
16888 ipsq_t *ipsq;
16889 char *ppa_ptr;
16890 char *old_ptr;
16891 char old_char;
16892 int error;
16893 ip_stack_t *ipst;
16894
16895 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16896 ASSERT(q->q_next != NULL);
16897 ASSERT(interf_name != NULL);
16898
16899 ill = (ill_t *)q->q_ptr;
16900 ipst = ill->ill_ipst;
16901
16902 ASSERT(ill->ill_ipst != NULL);
16903 ASSERT(ill->ill_name[0] == '\0');
16904 ASSERT(IAM_WRITER_ILL(ill));
16905 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16906 ASSERT(ill->ill_ppa == UINT_MAX);
16907
16908 ill->ill_defend_start = ill->ill_defend_count = 0;
16909 /* The ppa is sent down by ifconfig or is chosen */
16910 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16911 return (EINVAL);
16912 }
16913
16914 /*
16915 * make sure ppa passed in is same as ppa in the name.
16916 * This check is not made when ppa == UINT_MAX in that case ppa
16917 * in the name could be anything. System will choose a ppa and
16918 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16919 */
16920 if (*new_ppa_ptr != UINT_MAX) {
16921 /* stoi changes the pointer */
16922 old_ptr = ppa_ptr;
16923 /*
16924 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16925 * (they don't have an externally visible ppa). We assign one
16926 * here so that we can manage the interface. Note that in
16927 * the past this value was always 0 for DLPI 1 drivers.
16928 */
16929 if (*new_ppa_ptr == 0)
16930 *new_ppa_ptr = stoi(&old_ptr);
16931 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16932 return (EINVAL);
16933 }
16934 /*
16935 * terminate string before ppa
16936 * save char at that location.
16937 */
16938 old_char = ppa_ptr[0];
16939 ppa_ptr[0] = '\0';
16940
16941 ill->ill_ppa = *new_ppa_ptr;
16942 /*
16943 * Finish as much work now as possible before calling ill_glist_insert
16944 * which makes the ill globally visible and also merges it with the
16945 * other protocol instance of this phyint. The remaining work is
16946 * done after entering the ipsq which may happen sometime later.
16947 */
16948 ipif = ill->ill_ipif;
16949
16950 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16951 ipif_assign_seqid(ipif);
16952
16953 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16954 ill->ill_flags |= ILLF_IPV4;
16955
16956 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
16957 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16958
16959 if (ill->ill_flags & ILLF_IPV6) {
16960
16961 ill->ill_isv6 = B_TRUE;
16962 ill_set_inputfn(ill);
16963 if (ill->ill_rq != NULL) {
16964 ill->ill_rq->q_qinfo = &iprinitv6;
16965 }
16966
16967 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16968 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16969 ipif->ipif_v6subnet = ipv6_all_zeros;
16970 ipif->ipif_v6net_mask = ipv6_all_zeros;
16971 ipif->ipif_v6brd_addr = ipv6_all_zeros;
16972 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16973 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16974 /*
16975 * point-to-point or Non-mulicast capable
16976 * interfaces won't do NUD unless explicitly
16977 * configured to do so.
16978 */
16979 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16980 !(ill->ill_flags & ILLF_MULTICAST)) {
16981 ill->ill_flags |= ILLF_NONUD;
16982 }
16983 /* Make sure IPv4 specific flag is not set on IPv6 if */
16984 if (ill->ill_flags & ILLF_NOARP) {
16985 /*
16986 * Note: xresolv interfaces will eventually need
16987 * NOARP set here as well, but that will require
16988 * those external resolvers to have some
16989 * knowledge of that flag and act appropriately.
16990 * Not to be changed at present.
16991 */
16992 ill->ill_flags &= ~ILLF_NOARP;
16993 }
16994 /*
16995 * Set the ILLF_ROUTER flag according to the global
16996 * IPv6 forwarding policy.
16997 */
16998 if (ipst->ips_ipv6_forwarding != 0)
16999 ill->ill_flags |= ILLF_ROUTER;
17000 } else if (ill->ill_flags & ILLF_IPV4) {
17001 ill->ill_isv6 = B_FALSE;
17002 ill_set_inputfn(ill);
17003 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
17004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
17005 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
17006 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
17007 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
17008 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17009 /*
17010 * Set the ILLF_ROUTER flag according to the global
17011 * IPv4 forwarding policy.
17012 */
17013 if (ipst->ips_ip_forwarding != 0)
17014 ill->ill_flags |= ILLF_ROUTER;
17015 }
17016
17017 ASSERT(ill->ill_phyint != NULL);
17018
17019 /*
17020 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17021 * be completed in ill_glist_insert -> ill_phyint_reinit
17022 */
17023 if (!ill_allocate_mibs(ill))
17024 return (ENOMEM);
17025
17026 /*
17027 * Pick a default sap until we get the DL_INFO_ACK back from
17028 * the driver.
17029 */
17030 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17031 ill->ill_media->ip_m_ipv4sap;
17032
17033 ill->ill_ifname_pending = 1;
17034 ill->ill_ifname_pending_err = 0;
17035
17036 /*
17037 * When the first ipif comes up in ipif_up_done(), multicast groups
17038 * that were joined while this ill was not bound to the DLPI link need
17039 * to be recovered by ill_recover_multicast().
17040 */
17041 ill->ill_need_recover_multicast = 1;
17042
17043 ill_refhold(ill);
17044 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17045 if ((error = ill_glist_insert(ill, interf_name,
17046 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17047 ill->ill_ppa = UINT_MAX;
17048 ill->ill_name[0] = '\0';
17049 /*
17050 * undo null termination done above.
17051 */
17052 ppa_ptr[0] = old_char;
17053 rw_exit(&ipst->ips_ill_g_lock);
17054 ill_refrele(ill);
17055 return (error);
17056 }
17057
17058 ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17059
17060 /*
17061 * When we return the buffer pointed to by interf_name should contain
17062 * the same name as in ill_name.
17063 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17064 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17065 * so copy full name and update the ppa ptr.
17066 * When ppa passed in != UINT_MAX all values are correct just undo
17067 * null termination, this saves a bcopy.
17068 */
17069 if (*new_ppa_ptr == UINT_MAX) {
17070 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17071 *new_ppa_ptr = ill->ill_ppa;
17072 } else {
17073 /*
17074 * undo null termination done above.
17075 */
17076 ppa_ptr[0] = old_char;
17077 }
17078
17079 /* Let SCTP know about this ILL */
17080 sctp_update_ill(ill, SCTP_ILL_INSERT);
17081
17082 /*
17083 * ill_glist_insert has made the ill visible globally, and
17084 * ill_phyint_reinit could have changed the ipsq. At this point,
17085 * we need to hold the ips_ill_g_lock across the call to enter the
17086 * ipsq to enforce atomicity and prevent reordering. In the event
17087 * the ipsq has changed, and if the new ipsq is currently busy,
17088 * we need to make sure that this half-completed ioctl is ahead of
17089 * any subsequent ioctl. We achieve this by not dropping the
17090 * ips_ill_g_lock which prevents any ill lookup itself thereby
17091 * ensuring that new ioctls can't start.
17092 */
17093 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17094 B_TRUE);
17095
17096 rw_exit(&ipst->ips_ill_g_lock);
17097 ill_refrele(ill);
17098 if (ipsq == NULL)
17099 return (EINPROGRESS);
17100
17101 /*
17102 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17103 */
17104 if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17105 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17106 else
17107 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17108
17109 error = ipif_set_values_tail(ill, ipif, mp, q);
17110 ipsq_exit(ipsq);
17111 if (error != 0 && error != EINPROGRESS) {
17112 /*
17113 * restore previous values
17114 */
17115 ill->ill_isv6 = B_FALSE;
17116 ill_set_inputfn(ill);
17117 }
17118 return (error);
17119 }
17120
17121 void
ipif_init(ip_stack_t * ipst)17122 ipif_init(ip_stack_t *ipst)
17123 {
17124 int i;
17125
17126 for (i = 0; i < MAX_G_HEADS; i++) {
17127 ipst->ips_ill_g_heads[i].ill_g_list_head =
17128 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17129 ipst->ips_ill_g_heads[i].ill_g_list_tail =
17130 (ill_if_t *)&ipst->ips_ill_g_heads[i];
17131 }
17132
17133 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17134 ill_phyint_compare_index,
17135 sizeof (phyint_t),
17136 offsetof(struct phyint, phyint_avl_by_index));
17137 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17138 ill_phyint_compare_name,
17139 sizeof (phyint_t),
17140 offsetof(struct phyint, phyint_avl_by_name));
17141 }
17142
17143 /*
17144 * Save enough information so that we can recreate the IRE if
17145 * the interface goes down and then up.
17146 */
17147 void
ill_save_ire(ill_t * ill,ire_t * ire)17148 ill_save_ire(ill_t *ill, ire_t *ire)
17149 {
17150 mblk_t *save_mp;
17151
17152 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17153 if (save_mp != NULL) {
17154 ifrt_t *ifrt;
17155
17156 save_mp->b_wptr += sizeof (ifrt_t);
17157 ifrt = (ifrt_t *)save_mp->b_rptr;
17158 bzero(ifrt, sizeof (ifrt_t));
17159 ifrt->ifrt_type = ire->ire_type;
17160 if (ire->ire_ipversion == IPV4_VERSION) {
17161 ASSERT(!ill->ill_isv6);
17162 ifrt->ifrt_addr = ire->ire_addr;
17163 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17164 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17165 ifrt->ifrt_mask = ire->ire_mask;
17166 } else {
17167 ASSERT(ill->ill_isv6);
17168 ifrt->ifrt_v6addr = ire->ire_addr_v6;
17169 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17170 mutex_enter(&ire->ire_lock);
17171 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17172 mutex_exit(&ire->ire_lock);
17173 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17174 ifrt->ifrt_v6mask = ire->ire_mask_v6;
17175 }
17176 ifrt->ifrt_flags = ire->ire_flags;
17177 ifrt->ifrt_zoneid = ire->ire_zoneid;
17178 mutex_enter(&ill->ill_saved_ire_lock);
17179 save_mp->b_cont = ill->ill_saved_ire_mp;
17180 ill->ill_saved_ire_mp = save_mp;
17181 ill->ill_saved_ire_cnt++;
17182 mutex_exit(&ill->ill_saved_ire_lock);
17183 }
17184 }
17185
17186 /*
17187 * Remove one entry from ill_saved_ire_mp.
17188 */
17189 void
ill_remove_saved_ire(ill_t * ill,ire_t * ire)17190 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17191 {
17192 mblk_t **mpp;
17193 mblk_t *mp;
17194 ifrt_t *ifrt;
17195
17196 /* Remove from ill_saved_ire_mp list if it is there */
17197 mutex_enter(&ill->ill_saved_ire_lock);
17198 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17199 mpp = &(*mpp)->b_cont) {
17200 in6_addr_t gw_addr_v6;
17201
17202 /*
17203 * On a given ill, the tuple of address, gateway, mask,
17204 * ire_type, and zoneid is unique for each saved IRE.
17205 */
17206 mp = *mpp;
17207 ifrt = (ifrt_t *)mp->b_rptr;
17208 /* ire_gateway_addr_v6 can change - need lock */
17209 mutex_enter(&ire->ire_lock);
17210 gw_addr_v6 = ire->ire_gateway_addr_v6;
17211 mutex_exit(&ire->ire_lock);
17212
17213 if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17214 ifrt->ifrt_type != ire->ire_type)
17215 continue;
17216
17217 if (ill->ill_isv6 ?
17218 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17219 &ire->ire_addr_v6) &&
17220 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17221 &gw_addr_v6) &&
17222 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17223 &ire->ire_mask_v6)) :
17224 (ifrt->ifrt_addr == ire->ire_addr &&
17225 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17226 ifrt->ifrt_mask == ire->ire_mask)) {
17227 *mpp = mp->b_cont;
17228 ill->ill_saved_ire_cnt--;
17229 freeb(mp);
17230 break;
17231 }
17232 }
17233 mutex_exit(&ill->ill_saved_ire_lock);
17234 }
17235
17236 /*
17237 * IP multirouting broadcast routes handling
17238 * Append CGTP broadcast IREs to regular ones created
17239 * at ifconfig time.
17240 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17241 * the destination and the gateway are broadcast addresses.
17242 * The caller has verified that the destination is an IRE_BROADCAST and that
17243 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17244 * we create a MULTIRT IRE_BROADCAST.
17245 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17246 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17247 */
17248 static void
ip_cgtp_bcast_add(ire_t * ire,ip_stack_t * ipst)17249 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17250 {
17251 ire_t *ire_prim;
17252
17253 ASSERT(ire != NULL);
17254
17255 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17256 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17257 NULL);
17258 if (ire_prim != NULL) {
17259 /*
17260 * We are in the special case of broadcasts for
17261 * CGTP. We add an IRE_BROADCAST that holds
17262 * the RTF_MULTIRT flag, the destination
17263 * address and the low level
17264 * info of ire_prim. In other words, CGTP
17265 * broadcast is added to the redundant ipif.
17266 */
17267 ill_t *ill_prim;
17268 ire_t *bcast_ire;
17269
17270 ill_prim = ire_prim->ire_ill;
17271
17272 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17273 (void *)ire_prim, (void *)ill_prim));
17274
17275 bcast_ire = ire_create(
17276 (uchar_t *)&ire->ire_addr,
17277 (uchar_t *)&ip_g_all_ones,
17278 (uchar_t *)&ire->ire_gateway_addr,
17279 IRE_BROADCAST,
17280 ill_prim,
17281 GLOBAL_ZONEID, /* CGTP is only for the global zone */
17282 ire->ire_flags | RTF_KERNEL,
17283 NULL,
17284 ipst);
17285
17286 /*
17287 * Here we assume that ire_add does head insertion so that
17288 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17289 */
17290 if (bcast_ire != NULL) {
17291 if (ire->ire_flags & RTF_SETSRC) {
17292 bcast_ire->ire_setsrc_addr =
17293 ire->ire_setsrc_addr;
17294 }
17295 bcast_ire = ire_add(bcast_ire);
17296 if (bcast_ire != NULL) {
17297 ip2dbg(("ip_cgtp_filter_bcast_add: "
17298 "added bcast_ire %p\n",
17299 (void *)bcast_ire));
17300
17301 ill_save_ire(ill_prim, bcast_ire);
17302 ire_refrele(bcast_ire);
17303 }
17304 }
17305 ire_refrele(ire_prim);
17306 }
17307 }
17308
17309 /*
17310 * IP multirouting broadcast routes handling
17311 * Remove the broadcast ire.
17312 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17313 * the destination and the gateway are broadcast addresses.
17314 * The caller has only verified that RTF_MULTIRT was set. We check
17315 * that the destination is broadcast and that the gateway is a broadcast
17316 * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17317 */
17318 static void
ip_cgtp_bcast_delete(ire_t * ire,ip_stack_t * ipst)17319 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17320 {
17321 ASSERT(ire != NULL);
17322
17323 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17324 ire_t *ire_prim;
17325
17326 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17327 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17328 ipst, NULL);
17329 if (ire_prim != NULL) {
17330 ill_t *ill_prim;
17331 ire_t *bcast_ire;
17332
17333 ill_prim = ire_prim->ire_ill;
17334
17335 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17336 "ire_prim %p, ill_prim %p\n",
17337 (void *)ire_prim, (void *)ill_prim));
17338
17339 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17340 ire->ire_gateway_addr, IRE_BROADCAST,
17341 ill_prim, ALL_ZONES, NULL,
17342 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17343 MATCH_IRE_MASK, 0, ipst, NULL);
17344
17345 if (bcast_ire != NULL) {
17346 ip2dbg(("ip_cgtp_filter_bcast_delete: "
17347 "looked up bcast_ire %p\n",
17348 (void *)bcast_ire));
17349 ill_remove_saved_ire(bcast_ire->ire_ill,
17350 bcast_ire);
17351 ire_delete(bcast_ire);
17352 ire_refrele(bcast_ire);
17353 }
17354 ire_refrele(ire_prim);
17355 }
17356 }
17357 }
17358
17359 /*
17360 * Derive an interface id from the link layer address.
17361 * Knows about IEEE 802 and IEEE EUI-64 mappings.
17362 */
17363 static void
ip_ether_v6intfid(ill_t * ill,in6_addr_t * v6addr)17364 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17365 {
17366 char *addr;
17367
17368 /*
17369 * Note that some IPv6 interfaces get plumbed over links that claim to
17370 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17371 * PPP links). The ETHERADDRL check here ensures that we only set the
17372 * interface ID on IPv6 interfaces above links that actually have real
17373 * Ethernet addresses.
17374 */
17375 if (ill->ill_phys_addr_length == ETHERADDRL) {
17376 /* Form EUI-64 like address */
17377 addr = (char *)&v6addr->s6_addr32[2];
17378 bcopy(ill->ill_phys_addr, addr, 3);
17379 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
17380 addr[3] = (char)0xff;
17381 addr[4] = (char)0xfe;
17382 bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17383 }
17384 }
17385
17386 /* ARGSUSED */
17387 static void
ip_nodef_v6intfid(ill_t * ill,in6_addr_t * v6addr)17388 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17389 {
17390 }
17391
17392 typedef struct ipmp_ifcookie {
17393 uint32_t ic_hostid;
17394 char ic_ifname[LIFNAMSIZ];
17395 char ic_zonename[ZONENAME_MAX];
17396 } ipmp_ifcookie_t;
17397
17398 /*
17399 * Construct a pseudo-random interface ID for the IPMP interface that's both
17400 * predictable and (almost) guaranteed to be unique.
17401 */
17402 static void
ip_ipmp_v6intfid(ill_t * ill,in6_addr_t * v6addr)17403 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17404 {
17405 zone_t *zp;
17406 uint8_t *addr;
17407 uchar_t hash[16];
17408 ulong_t hostid;
17409 MD5_CTX ctx;
17410 ipmp_ifcookie_t ic = { 0 };
17411
17412 ASSERT(IS_IPMP(ill));
17413
17414 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17415 ic.ic_hostid = htonl((uint32_t)hostid);
17416
17417 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17418
17419 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17420 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17421 zone_rele(zp);
17422 }
17423
17424 MD5Init(&ctx);
17425 MD5Update(&ctx, &ic, sizeof (ic));
17426 MD5Final(hash, &ctx);
17427
17428 /*
17429 * Map the hash to an interface ID per the basic approach in RFC3041.
17430 */
17431 addr = &v6addr->s6_addr8[8];
17432 bcopy(hash + 8, addr, sizeof (uint64_t));
17433 addr[0] &= ~0x2; /* set local bit */
17434 }
17435
17436 /*
17437 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17438 */
17439 static void
ip_ether_v6_mapping(ill_t * ill,uchar_t * m_ip6addr,uchar_t * m_physaddr)17440 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17441 {
17442 phyint_t *phyi = ill->ill_phyint;
17443
17444 /*
17445 * Check PHYI_MULTI_BCAST and length of physical
17446 * address to determine if we use the mapping or the
17447 * broadcast address.
17448 */
17449 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17450 ill->ill_phys_addr_length != ETHERADDRL) {
17451 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17452 return;
17453 }
17454 m_physaddr[0] = 0x33;
17455 m_physaddr[1] = 0x33;
17456 m_physaddr[2] = m_ip6addr[12];
17457 m_physaddr[3] = m_ip6addr[13];
17458 m_physaddr[4] = m_ip6addr[14];
17459 m_physaddr[5] = m_ip6addr[15];
17460 }
17461
17462 /*
17463 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17464 */
17465 static void
ip_ether_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17466 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17467 {
17468 phyint_t *phyi = ill->ill_phyint;
17469
17470 /*
17471 * Check PHYI_MULTI_BCAST and length of physical
17472 * address to determine if we use the mapping or the
17473 * broadcast address.
17474 */
17475 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17476 ill->ill_phys_addr_length != ETHERADDRL) {
17477 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17478 return;
17479 }
17480 m_physaddr[0] = 0x01;
17481 m_physaddr[1] = 0x00;
17482 m_physaddr[2] = 0x5e;
17483 m_physaddr[3] = m_ipaddr[1] & 0x7f;
17484 m_physaddr[4] = m_ipaddr[2];
17485 m_physaddr[5] = m_ipaddr[3];
17486 }
17487
17488 /* ARGSUSED */
17489 static void
ip_mbcast_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17490 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17491 {
17492 /*
17493 * for the MULTI_BCAST case and other cases when we want to
17494 * use the link-layer broadcast address for multicast.
17495 */
17496 uint8_t *bphys_addr;
17497 dl_unitdata_req_t *dlur;
17498
17499 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17500 if (ill->ill_sap_length < 0) {
17501 bphys_addr = (uchar_t *)dlur +
17502 dlur->dl_dest_addr_offset;
17503 } else {
17504 bphys_addr = (uchar_t *)dlur +
17505 dlur->dl_dest_addr_offset + ill->ill_sap_length;
17506 }
17507
17508 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17509 }
17510
17511 /*
17512 * Derive IPoIB interface id from the link layer address.
17513 */
17514 static void
ip_ib_v6intfid(ill_t * ill,in6_addr_t * v6addr)17515 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17516 {
17517 char *addr;
17518
17519 ASSERT(ill->ill_phys_addr_length == 20);
17520 addr = (char *)&v6addr->s6_addr32[2];
17521 bcopy(ill->ill_phys_addr + 12, addr, 8);
17522 /*
17523 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17524 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17525 * rules. In these cases, the IBA considers these GUIDs to be in
17526 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17527 * required; vendors are required not to assign global EUI-64's
17528 * that differ only in u/l bit values, thus guaranteeing uniqueness
17529 * of the interface identifier. Whether the GUID is in modified
17530 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17531 * bit set to 1.
17532 */
17533 addr[0] |= 2; /* Set Universal/Local bit to 1 */
17534 }
17535
17536 /*
17537 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17538 * Note on mapping from multicast IP addresses to IPoIB multicast link
17539 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17540 * The format of an IPoIB multicast address is:
17541 *
17542 * 4 byte QPN Scope Sign. Pkey
17543 * +--------------------------------------------+
17544 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17545 * +--------------------------------------------+
17546 *
17547 * The Scope and Pkey components are properties of the IBA port and
17548 * network interface. They can be ascertained from the broadcast address.
17549 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17550 */
17551 static void
ip_ib_v4_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17552 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17553 {
17554 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17555 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17556 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17557 uint8_t *bphys_addr;
17558 dl_unitdata_req_t *dlur;
17559
17560 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17561
17562 /*
17563 * RFC 4391: IPv4 MGID is 28-bit long.
17564 */
17565 m_physaddr[16] = m_ipaddr[0] & 0x0f;
17566 m_physaddr[17] = m_ipaddr[1];
17567 m_physaddr[18] = m_ipaddr[2];
17568 m_physaddr[19] = m_ipaddr[3];
17569
17570
17571 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17572 if (ill->ill_sap_length < 0) {
17573 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17574 } else {
17575 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17576 ill->ill_sap_length;
17577 }
17578 /*
17579 * Now fill in the IBA scope/Pkey values from the broadcast address.
17580 */
17581 m_physaddr[5] = bphys_addr[5];
17582 m_physaddr[8] = bphys_addr[8];
17583 m_physaddr[9] = bphys_addr[9];
17584 }
17585
17586 static void
ip_ib_v6_mapping(ill_t * ill,uchar_t * m_ipaddr,uchar_t * m_physaddr)17587 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17588 {
17589 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17590 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17591 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17592 uint8_t *bphys_addr;
17593 dl_unitdata_req_t *dlur;
17594
17595 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17596
17597 /*
17598 * RFC 4391: IPv4 MGID is 80-bit long.
17599 */
17600 bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17601
17602 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17603 if (ill->ill_sap_length < 0) {
17604 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17605 } else {
17606 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17607 ill->ill_sap_length;
17608 }
17609 /*
17610 * Now fill in the IBA scope/Pkey values from the broadcast address.
17611 */
17612 m_physaddr[5] = bphys_addr[5];
17613 m_physaddr[8] = bphys_addr[8];
17614 m_physaddr[9] = bphys_addr[9];
17615 }
17616
17617 /*
17618 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17619 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the
17620 * IPv6 interface id. This is a suggested mechanism described in section 3.7
17621 * of RFC4213.
17622 */
17623 static void
ip_ipv4_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17624 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17625 {
17626 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17627 v6addr->s6_addr32[2] = 0;
17628 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17629 }
17630
17631 /*
17632 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17633 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface
17634 * id.
17635 */
17636 static void
ip_ipv6_genv6intfid(ill_t * ill,uint8_t * physaddr,in6_addr_t * v6addr)17637 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17638 {
17639 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17640
17641 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17642 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17643 }
17644
17645 static void
ip_ipv6_v6intfid(ill_t * ill,in6_addr_t * v6addr)17646 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17647 {
17648 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17649 }
17650
17651 static void
ip_ipv6_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17652 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17653 {
17654 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17655 }
17656
17657 static void
ip_ipv4_v6intfid(ill_t * ill,in6_addr_t * v6addr)17658 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17659 {
17660 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17661 }
17662
17663 static void
ip_ipv4_v6destintfid(ill_t * ill,in6_addr_t * v6addr)17664 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17665 {
17666 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17667 }
17668
17669 /*
17670 * Lookup an ill and verify that the zoneid has an ipif on that ill.
17671 * Returns an held ill, or NULL.
17672 */
17673 ill_t *
ill_lookup_on_ifindex_zoneid(uint_t index,zoneid_t zoneid,boolean_t isv6,ip_stack_t * ipst)17674 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17675 ip_stack_t *ipst)
17676 {
17677 ill_t *ill;
17678 ipif_t *ipif;
17679
17680 ill = ill_lookup_on_ifindex(index, isv6, ipst);
17681 if (ill == NULL)
17682 return (NULL);
17683
17684 mutex_enter(&ill->ill_lock);
17685 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17686 if (IPIF_IS_CONDEMNED(ipif))
17687 continue;
17688 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17689 ipif->ipif_zoneid != ALL_ZONES)
17690 continue;
17691
17692 mutex_exit(&ill->ill_lock);
17693 return (ill);
17694 }
17695 mutex_exit(&ill->ill_lock);
17696 ill_refrele(ill);
17697 return (NULL);
17698 }
17699
17700 /*
17701 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17702 * If a pointer to an ipif_t is returned then the caller will need to do
17703 * an ill_refrele().
17704 */
17705 ipif_t *
ipif_getby_indexes(uint_t ifindex,uint_t lifidx,boolean_t isv6,ip_stack_t * ipst)17706 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17707 ip_stack_t *ipst)
17708 {
17709 ipif_t *ipif;
17710 ill_t *ill;
17711
17712 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17713 if (ill == NULL)
17714 return (NULL);
17715
17716 mutex_enter(&ill->ill_lock);
17717 if (ill->ill_state_flags & ILL_CONDEMNED) {
17718 mutex_exit(&ill->ill_lock);
17719 ill_refrele(ill);
17720 return (NULL);
17721 }
17722
17723 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17724 if (!IPIF_CAN_LOOKUP(ipif))
17725 continue;
17726 if (lifidx == ipif->ipif_id) {
17727 ipif_refhold_locked(ipif);
17728 break;
17729 }
17730 }
17731
17732 mutex_exit(&ill->ill_lock);
17733 ill_refrele(ill);
17734 return (ipif);
17735 }
17736
17737 /*
17738 * Set ill_inputfn based on the current know state.
17739 * This needs to be called when any of the factors taken into
17740 * account changes.
17741 */
17742 void
ill_set_inputfn(ill_t * ill)17743 ill_set_inputfn(ill_t *ill)
17744 {
17745 ip_stack_t *ipst = ill->ill_ipst;
17746
17747 if (ill->ill_isv6) {
17748 if (is_system_labeled())
17749 ill->ill_inputfn = ill_input_full_v6;
17750 else
17751 ill->ill_inputfn = ill_input_short_v6;
17752 } else {
17753 if (is_system_labeled())
17754 ill->ill_inputfn = ill_input_full_v4;
17755 else if (ill->ill_dhcpinit != 0)
17756 ill->ill_inputfn = ill_input_full_v4;
17757 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17758 != NULL)
17759 ill->ill_inputfn = ill_input_full_v4;
17760 else if (ipst->ips_ip_cgtp_filter &&
17761 ipst->ips_ip_cgtp_filter_ops != NULL)
17762 ill->ill_inputfn = ill_input_full_v4;
17763 else
17764 ill->ill_inputfn = ill_input_short_v4;
17765 }
17766 }
17767
17768 /*
17769 * Re-evaluate ill_inputfn for all the IPv4 ills.
17770 * Used when RSVP and CGTP comes and goes.
17771 */
17772 void
ill_set_inputfn_all(ip_stack_t * ipst)17773 ill_set_inputfn_all(ip_stack_t *ipst)
17774 {
17775 ill_walk_context_t ctx;
17776 ill_t *ill;
17777
17778 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17779 ill = ILL_START_WALK_V4(&ctx, ipst);
17780 for (; ill != NULL; ill = ill_next(&ctx, ill))
17781 ill_set_inputfn(ill);
17782
17783 rw_exit(&ipst->ips_ill_g_lock);
17784 }
17785
17786 /*
17787 * Set the physical address information for `ill' to the contents of the
17788 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be
17789 * asynchronous if `ill' cannot immediately be quiesced -- in which case
17790 * EINPROGRESS will be returned.
17791 */
17792 int
ill_set_phys_addr(ill_t * ill,mblk_t * mp)17793 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17794 {
17795 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17796 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;
17797
17798 ASSERT(IAM_WRITER_IPSQ(ipsq));
17799
17800 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17801 dlindp->dl_data != DL_CURR_DEST_ADDR &&
17802 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17803 /* Changing DL_IPV6_TOKEN is not yet supported */
17804 return (0);
17805 }
17806
17807 /*
17808 * We need to store up to two copies of `mp' in `ill'. Due to the
17809 * design of ipsq_pending_mp_add(), we can't pass them as separate
17810 * arguments to ill_set_phys_addr_tail(). Instead, chain them
17811 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17812 */
17813 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17814 freemsg(mp);
17815 return (ENOMEM);
17816 }
17817
17818 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17819
17820 /*
17821 * Since we'll only do a logical down, we can't rely on ipif_down
17822 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17823 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17824 * case, to quiesce ire's and nce's for ill_is_quiescent.
17825 */
17826 mutex_enter(&ill->ill_lock);
17827 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17828 /* no more ire/nce addition allowed */
17829 mutex_exit(&ill->ill_lock);
17830
17831 /*
17832 * If we can quiesce the ill, then set the address. If not, then
17833 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17834 */
17835 ill_down_ipifs(ill, B_TRUE);
17836 mutex_enter(&ill->ill_lock);
17837 if (!ill_is_quiescent(ill)) {
17838 /* call cannot fail since `conn_t *' argument is NULL */
17839 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17840 mp, ILL_DOWN);
17841 mutex_exit(&ill->ill_lock);
17842 return (EINPROGRESS);
17843 }
17844 mutex_exit(&ill->ill_lock);
17845
17846 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17847 return (0);
17848 }
17849
17850 /*
17851 * When the allowed-ips link property is set on the datalink, IP receives a
17852 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17853 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17854 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17855 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17856 * array.
17857 */
17858 void
ill_set_allowed_ips(ill_t * ill,mblk_t * mp)17859 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17860 {
17861 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17862 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr;
17863 mac_protect_t *mrp;
17864 int i;
17865
17866 ASSERT(IAM_WRITER_IPSQ(ipsq));
17867 mrp = (mac_protect_t *)&dlip[1];
17868
17869 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17870 kmem_free(ill->ill_allowed_ips,
17871 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17872 ill->ill_allowed_ips_cnt = 0;
17873 ill->ill_allowed_ips = NULL;
17874 mutex_enter(&ill->ill_phyint->phyint_lock);
17875 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17876 mutex_exit(&ill->ill_phyint->phyint_lock);
17877 return;
17878 }
17879
17880 if (ill->ill_allowed_ips != NULL) {
17881 kmem_free(ill->ill_allowed_ips,
17882 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17883 }
17884 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17885 ill->ill_allowed_ips = kmem_alloc(
17886 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17887 for (i = 0; i < mrp->mp_ipaddrcnt; i++)
17888 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17889
17890 mutex_enter(&ill->ill_phyint->phyint_lock);
17891 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17892 mutex_exit(&ill->ill_phyint->phyint_lock);
17893 }
17894
17895 /*
17896 * Once the ill associated with `q' has quiesced, set its physical address
17897 * information to the values in `addrmp'. Note that two copies of `addrmp'
17898 * are passed (linked by b_cont), since we sometimes need to save two distinct
17899 * copies in the ill_t, and our context doesn't permit sleeping or allocation
17900 * failure (we'll free the other copy if it's not needed). Since the ill_t
17901 * is quiesced, we know any stale nce's with the old address information have
17902 * already been removed, so we don't need to call nce_flush().
17903 */
17904 /* ARGSUSED */
17905 static void
ill_set_phys_addr_tail(ipsq_t * ipsq,queue_t * q,mblk_t * addrmp,void * dummy)17906 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17907 {
17908 ill_t *ill = q->q_ptr;
17909 mblk_t *addrmp2 = unlinkb(addrmp);
17910 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17911 uint_t addrlen, addroff;
17912 int status;
17913
17914 ASSERT(IAM_WRITER_IPSQ(ipsq));
17915
17916 addroff = dlindp->dl_addr_offset;
17917 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17918
17919 switch (dlindp->dl_data) {
17920 case DL_IPV6_LINK_LAYER_ADDR:
17921 ill_set_ndmp(ill, addrmp, addroff, addrlen);
17922 freemsg(addrmp2);
17923 break;
17924
17925 case DL_CURR_DEST_ADDR:
17926 freemsg(ill->ill_dest_addr_mp);
17927 ill->ill_dest_addr = addrmp->b_rptr + addroff;
17928 ill->ill_dest_addr_mp = addrmp;
17929 if (ill->ill_isv6) {
17930 ill_setdesttoken(ill);
17931 ipif_setdestlinklocal(ill->ill_ipif);
17932 }
17933 freemsg(addrmp2);
17934 break;
17935
17936 case DL_CURR_PHYS_ADDR:
17937 freemsg(ill->ill_phys_addr_mp);
17938 ill->ill_phys_addr = addrmp->b_rptr + addroff;
17939 ill->ill_phys_addr_mp = addrmp;
17940 ill->ill_phys_addr_length = addrlen;
17941 if (ill->ill_isv6)
17942 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17943 else
17944 freemsg(addrmp2);
17945 if (ill->ill_isv6) {
17946 ill_setdefaulttoken(ill);
17947 ipif_setlinklocal(ill->ill_ipif);
17948 }
17949 break;
17950 default:
17951 ASSERT(0);
17952 }
17953
17954 /*
17955 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17956 * as we bring the ipifs up again.
17957 */
17958 mutex_enter(&ill->ill_lock);
17959 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17960 mutex_exit(&ill->ill_lock);
17961 /*
17962 * If there are ipifs to bring up, ill_up_ipifs() will return
17963 * EINPROGRESS, and ipsq_current_finish() will be called by
17964 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17965 * brought up.
17966 */
17967 status = ill_up_ipifs(ill, q, addrmp);
17968 if (status != EINPROGRESS)
17969 ipsq_current_finish(ipsq);
17970 }
17971
17972 /*
17973 * Helper routine for setting the ill_nd_lla fields.
17974 */
17975 void
ill_set_ndmp(ill_t * ill,mblk_t * ndmp,uint_t addroff,uint_t addrlen)17976 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17977 {
17978 freemsg(ill->ill_nd_lla_mp);
17979 ill->ill_nd_lla = ndmp->b_rptr + addroff;
17980 ill->ill_nd_lla_mp = ndmp;
17981 ill->ill_nd_lla_len = addrlen;
17982 }
17983
17984 /*
17985 * Replumb the ill.
17986 */
17987 int
ill_replumb(ill_t * ill,mblk_t * mp)17988 ill_replumb(ill_t *ill, mblk_t *mp)
17989 {
17990 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17991
17992 ASSERT(IAM_WRITER_IPSQ(ipsq));
17993
17994 ipsq_current_start(ipsq, ill->ill_ipif, 0);
17995
17996 /*
17997 * If we can quiesce the ill, then continue. If not, then
17998 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17999 */
18000 ill_down_ipifs(ill, B_FALSE);
18001
18002 mutex_enter(&ill->ill_lock);
18003 if (!ill_is_quiescent(ill)) {
18004 /* call cannot fail since `conn_t *' argument is NULL */
18005 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
18006 mp, ILL_DOWN);
18007 mutex_exit(&ill->ill_lock);
18008 return (EINPROGRESS);
18009 }
18010 mutex_exit(&ill->ill_lock);
18011
18012 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18013 return (0);
18014 }
18015
18016 /* ARGSUSED */
18017 static void
ill_replumb_tail(ipsq_t * ipsq,queue_t * q,mblk_t * mp,void * dummy)18018 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18019 {
18020 ill_t *ill = q->q_ptr;
18021 int err;
18022 conn_t *connp = NULL;
18023
18024 ASSERT(IAM_WRITER_IPSQ(ipsq));
18025 freemsg(ill->ill_replumb_mp);
18026 ill->ill_replumb_mp = copyb(mp);
18027
18028 if (ill->ill_replumb_mp == NULL) {
18029 /* out of memory */
18030 ipsq_current_finish(ipsq);
18031 return;
18032 }
18033
18034 mutex_enter(&ill->ill_lock);
18035 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18036 ill->ill_rq, ill->ill_replumb_mp, 0);
18037 mutex_exit(&ill->ill_lock);
18038
18039 if (!ill->ill_up_ipifs) {
18040 /* already closing */
18041 ipsq_current_finish(ipsq);
18042 return;
18043 }
18044 ill->ill_replumbing = 1;
18045 err = ill_down_ipifs_tail(ill);
18046
18047 /*
18048 * Successfully quiesced and brought down the interface, now we send
18049 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18050 * DL_NOTE_REPLUMB message.
18051 */
18052 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18053 DL_NOTIFY_CONF);
18054 ASSERT(mp != NULL);
18055 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18056 DL_NOTE_REPLUMB_DONE;
18057 ill_dlpi_send(ill, mp);
18058
18059 /*
18060 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18061 * streams have to be unbound. When all the DLPI exchanges are done,
18062 * ipsq_current_finish() will be called by arp_bringup_done(). The
18063 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18064 * arp_bringup_done().
18065 */
18066 ASSERT(ill->ill_replumb_mp != NULL);
18067 if (err == EINPROGRESS)
18068 return;
18069 else
18070 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18071 ASSERT(connp == NULL);
18072 if (err == 0 && ill->ill_replumb_mp != NULL &&
18073 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18074 return;
18075 }
18076 ipsq_current_finish(ipsq);
18077 }
18078
18079 /*
18080 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18081 * which is `bufsize' bytes. On success, zero is returned and `buf' updated
18082 * as per the ioctl. On failure, an errno is returned.
18083 */
18084 static int
ip_ioctl(ldi_handle_t lh,int cmd,void * buf,uint_t bufsize,cred_t * cr)18085 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18086 {
18087 int rval;
18088 struct strioctl iocb;
18089
18090 iocb.ic_cmd = cmd;
18091 iocb.ic_timout = 15;
18092 iocb.ic_len = bufsize;
18093 iocb.ic_dp = buf;
18094
18095 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18096 }
18097
18098 /*
18099 * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18100 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18101 */
18102 static int
ip_lifconf_ioctl(ldi_handle_t lh,int af,struct lifconf * lifcp,uint_t * bufsizep,cred_t * cr)18103 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18104 uint_t *bufsizep, cred_t *cr)
18105 {
18106 int err;
18107 struct lifnum lifn;
18108
18109 bzero(&lifn, sizeof (lifn));
18110 lifn.lifn_family = af;
18111 lifn.lifn_flags = LIFC_UNDER_IPMP;
18112
18113 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18114 return (err);
18115
18116 /*
18117 * Pad the interface count to account for additional interfaces that
18118 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18119 */
18120 lifn.lifn_count += 4;
18121 bzero(lifcp, sizeof (*lifcp));
18122 lifcp->lifc_flags = LIFC_UNDER_IPMP;
18123 lifcp->lifc_family = af;
18124 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18125 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18126
18127 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18128 if (err != 0) {
18129 kmem_free(lifcp->lifc_buf, *bufsizep);
18130 return (err);
18131 }
18132
18133 return (0);
18134 }
18135
18136 /*
18137 * Helper for ip_interface_cleanup() that removes the loopback interface.
18138 */
18139 static void
ip_loopback_removeif(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18140 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18141 {
18142 int err;
18143 struct lifreq lifr;
18144
18145 bzero(&lifr, sizeof (lifr));
18146 (void) strcpy(lifr.lifr_name, ipif_loopback_name);
18147
18148 /*
18149 * Attempt to remove the interface. It may legitimately not exist
18150 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18151 */
18152 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18153 if (err != 0 && err != ENXIO) {
18154 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18155 "error %d\n", isv6 ? "v6" : "v4", err));
18156 }
18157 }
18158
18159 /*
18160 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18161 * groups and that IPMP data addresses are down. These conditions must be met
18162 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18163 */
18164 static void
ip_ipmp_cleanup(ldi_handle_t lh,boolean_t isv6,cred_t * cr)18165 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18166 {
18167 int af = isv6 ? AF_INET6 : AF_INET;
18168 int i, nifs;
18169 int err;
18170 uint_t bufsize;
18171 uint_t lifrsize = sizeof (struct lifreq);
18172 struct lifconf lifc;
18173 struct lifreq *lifrp;
18174
18175 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18176 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18177 "(error %d); any IPMP interfaces cannot be shutdown", err);
18178 return;
18179 }
18180
18181 nifs = lifc.lifc_len / lifrsize;
18182 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18183 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18184 if (err != 0) {
18185 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18186 "flags: error %d", lifrp->lifr_name, err);
18187 continue;
18188 }
18189
18190 if (lifrp->lifr_flags & IFF_IPMP) {
18191 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18192 continue;
18193
18194 lifrp->lifr_flags &= ~IFF_UP;
18195 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18196 if (err != 0) {
18197 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18198 "bring down (error %d); IPMP interface may "
18199 "not be shutdown", lifrp->lifr_name, err);
18200 }
18201
18202 /*
18203 * Check if IFF_DUPLICATE is still set -- and if so,
18204 * reset the address to clear it.
18205 */
18206 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18207 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18208 continue;
18209
18210 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18211 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18212 lifrp, lifrsize, cr)) != 0) {
18213 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18214 "reset DAD (error %d); IPMP interface may "
18215 "not be shutdown", lifrp->lifr_name, err);
18216 }
18217 continue;
18218 }
18219
18220 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18221 lifrp->lifr_groupname[0] = '\0';
18222 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18223 lifrsize, cr)) != 0) {
18224 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18225 "leave IPMP group (error %d); associated "
18226 "IPMP interface may not be shutdown",
18227 lifrp->lifr_name, err);
18228 continue;
18229 }
18230 }
18231 }
18232
18233 kmem_free(lifc.lifc_buf, bufsize);
18234 }
18235
18236 #define UDPDEV "/devices/pseudo/udp@0:udp"
18237 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"
18238
18239 /*
18240 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18241 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18242 * when the user-level processes in the zone are killed and the latter are
18243 * cleaned up by str_stack_shutdown().
18244 */
18245 void
ip_interface_cleanup(ip_stack_t * ipst)18246 ip_interface_cleanup(ip_stack_t *ipst)
18247 {
18248 ldi_handle_t lh;
18249 ldi_ident_t li;
18250 cred_t *cr;
18251 int err;
18252 int i;
18253 char *devs[] = { UDP6DEV, UDPDEV };
18254 netstackid_t stackid = ipst->ips_netstack->netstack_stackid;
18255
18256 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18257 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18258 " error %d", err);
18259 return;
18260 }
18261
18262 cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18263 ASSERT(cr != NULL);
18264
18265 /*
18266 * NOTE: loop executes exactly twice and is hardcoded to know that the
18267 * first iteration is IPv6. (Unrolling yields repetitious code, hence
18268 * the loop.)
18269 */
18270 for (i = 0; i < 2; i++) {
18271 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18272 if (err != 0) {
18273 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18274 " error %d", devs[i], err);
18275 continue;
18276 }
18277
18278 ip_loopback_removeif(lh, i == 0, cr);
18279 ip_ipmp_cleanup(lh, i == 0, cr);
18280
18281 (void) ldi_close(lh, FREAD|FWRITE, cr);
18282 }
18283
18284 ldi_ident_release(li);
18285 crfree(cr);
18286 }
18287
18288 /*
18289 * This needs to be in-sync with nic_event_t definition
18290 */
18291 static const char *
ill_hook_event2str(nic_event_t event)18292 ill_hook_event2str(nic_event_t event)
18293 {
18294 switch (event) {
18295 case NE_PLUMB:
18296 return ("PLUMB");
18297 case NE_UNPLUMB:
18298 return ("UNPLUMB");
18299 case NE_UP:
18300 return ("UP");
18301 case NE_DOWN:
18302 return ("DOWN");
18303 case NE_ADDRESS_CHANGE:
18304 return ("ADDRESS_CHANGE");
18305 case NE_LIF_UP:
18306 return ("LIF_UP");
18307 case NE_LIF_DOWN:
18308 return ("LIF_DOWN");
18309 case NE_IFINDEX_CHANGE:
18310 return ("IFINDEX_CHANGE");
18311 default:
18312 return ("UNKNOWN");
18313 }
18314 }
18315
18316 void
ill_nic_event_dispatch(ill_t * ill,lif_if_t lif,nic_event_t event,nic_event_data_t data,size_t datalen)18317 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18318 nic_event_data_t data, size_t datalen)
18319 {
18320 ip_stack_t *ipst = ill->ill_ipst;
18321 hook_nic_event_int_t *info;
18322 const char *str = NULL;
18323
18324 /* create a new nic event info */
18325 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18326 goto fail;
18327
18328 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18329 info->hnei_event.hne_lif = lif;
18330 info->hnei_event.hne_event = event;
18331 info->hnei_event.hne_protocol = ill->ill_isv6 ?
18332 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18333 info->hnei_event.hne_data = NULL;
18334 info->hnei_event.hne_datalen = 0;
18335 info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18336
18337 if (data != NULL && datalen != 0) {
18338 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18339 if (info->hnei_event.hne_data == NULL)
18340 goto fail;
18341 bcopy(data, info->hnei_event.hne_data, datalen);
18342 info->hnei_event.hne_datalen = datalen;
18343 }
18344
18345 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18346 DDI_NOSLEEP) == DDI_SUCCESS)
18347 return;
18348
18349 fail:
18350 if (info != NULL) {
18351 if (info->hnei_event.hne_data != NULL) {
18352 kmem_free(info->hnei_event.hne_data,
18353 info->hnei_event.hne_datalen);
18354 }
18355 kmem_free(info, sizeof (hook_nic_event_t));
18356 }
18357 str = ill_hook_event2str(event);
18358 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18359 "information for %s (ENOMEM)\n", str, ill->ill_name));
18360 }
18361
18362 static int
ipif_arp_up_done_tail(ipif_t * ipif,enum ip_resolver_action res_act)18363 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18364 {
18365 int err = 0;
18366 const in_addr_t *addr = NULL;
18367 nce_t *nce = NULL;
18368 ill_t *ill = ipif->ipif_ill;
18369 ill_t *bound_ill;
18370 boolean_t added_ipif = B_FALSE;
18371 uint16_t state;
18372 uint16_t flags;
18373
18374 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18375 ill_t *, ill, ipif_t *, ipif);
18376 if (ipif->ipif_lcl_addr != INADDR_ANY) {
18377 addr = &ipif->ipif_lcl_addr;
18378 }
18379
18380 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18381 if (res_act != Res_act_initial)
18382 return (EINVAL);
18383 }
18384
18385 if (addr != NULL) {
18386 ipmp_illgrp_t *illg = ill->ill_grp;
18387
18388 /* add unicast nce for the local addr */
18389
18390 if (IS_IPMP(ill)) {
18391 /*
18392 * If we're here via ipif_up(), then the ipif
18393 * won't be bound yet -- add it to the group,
18394 * which will bind it if possible. (We would
18395 * add it in ipif_up(), but deleting on failure
18396 * there is gruesome.) If we're here via
18397 * ipmp_ill_bind_ipif(), then the ipif has
18398 * already been added to the group and we
18399 * just need to use the binding.
18400 */
18401 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18402 bound_ill = ipmp_illgrp_add_ipif(illg, ipif);
18403 if (bound_ill == NULL) {
18404 /*
18405 * We couldn't bind the ipif to an ill
18406 * yet, so we have nothing to publish.
18407 * Mark the address as ready and return.
18408 */
18409 ipif->ipif_addr_ready = 1;
18410 return (0);
18411 }
18412 added_ipif = B_TRUE;
18413 }
18414 } else {
18415 bound_ill = ill;
18416 }
18417
18418 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18419 NCE_F_NONUD);
18420 /*
18421 * If this is an initial bring-up (or the ipif was never
18422 * completely brought up), do DAD. Otherwise, we're here
18423 * because IPMP has rebound an address to this ill: send
18424 * unsolicited advertisements (ARP announcements) to
18425 * inform others.
18426 */
18427 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18428 state = ND_UNCHANGED; /* compute in nce_add_common() */
18429 } else {
18430 state = ND_REACHABLE;
18431 flags |= NCE_F_UNSOL_ADV;
18432 }
18433
18434 retry:
18435 err = nce_lookup_then_add_v4(ill,
18436 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18437 addr, flags, state, &nce);
18438
18439 /*
18440 * note that we may encounter EEXIST if we are moving
18441 * the nce as a result of a rebind operation.
18442 */
18443 switch (err) {
18444 case 0:
18445 ipif->ipif_added_nce = 1;
18446 nce->nce_ipif_cnt++;
18447 break;
18448 case EEXIST:
18449 ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18450 ill->ill_name));
18451 if (!NCE_MYADDR(nce->nce_common)) {
18452 /*
18453 * A leftover nce from before this address
18454 * existed
18455 */
18456 ncec_delete(nce->nce_common);
18457 nce_refrele(nce);
18458 nce = NULL;
18459 goto retry;
18460 }
18461 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18462 nce_refrele(nce);
18463 nce = NULL;
18464 ip1dbg(("ipif_arp_up: NCE already exists "
18465 "for %s:%u\n", ill->ill_name,
18466 ipif->ipif_id));
18467 goto arp_up_done;
18468 }
18469 /*
18470 * Duplicate local addresses are permissible for
18471 * IPIF_POINTOPOINT interfaces which will get marked
18472 * IPIF_UNNUMBERED later in
18473 * ip_addr_availability_check().
18474 *
18475 * The nce_ipif_cnt field tracks the number of
18476 * ipifs that have nce_addr as their local address.
18477 */
18478 ipif->ipif_addr_ready = 1;
18479 ipif->ipif_added_nce = 1;
18480 nce->nce_ipif_cnt++;
18481 err = 0;
18482 break;
18483 default:
18484 ASSERT(nce == NULL);
18485 goto arp_up_done;
18486 }
18487 if (arp_no_defense) {
18488 if ((ipif->ipif_flags & IPIF_UP) &&
18489 !ipif->ipif_addr_ready)
18490 ipif_up_notify(ipif);
18491 ipif->ipif_addr_ready = 1;
18492 }
18493 } else {
18494 /* zero address. nothing to publish */
18495 ipif->ipif_addr_ready = 1;
18496 }
18497 if (nce != NULL)
18498 nce_refrele(nce);
18499 arp_up_done:
18500 if (added_ipif && err != 0)
18501 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18502 return (err);
18503 }
18504
18505 int
ipif_arp_up(ipif_t * ipif,enum ip_resolver_action res_act,boolean_t was_dup)18506 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18507 {
18508 int err = 0;
18509 ill_t *ill = ipif->ipif_ill;
18510 boolean_t first_interface, wait_for_dlpi = B_FALSE;
18511
18512 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18513 ill_t *, ill, ipif_t *, ipif);
18514
18515 /*
18516 * need to bring up ARP or setup mcast mapping only
18517 * when the first interface is coming UP.
18518 */
18519 first_interface = (ill->ill_ipif_up_count == 0 &&
18520 ill->ill_ipif_dup_count == 0 && !was_dup);
18521
18522 if (res_act == Res_act_initial && first_interface) {
18523 /*
18524 * Send ATTACH + BIND
18525 */
18526 err = arp_ll_up(ill);
18527 if (err != EINPROGRESS && err != 0)
18528 return (err);
18529
18530 /*
18531 * Add NCE for local address. Start DAD.
18532 * we'll wait to hear that DAD has finished
18533 * before using the interface.
18534 */
18535 if (err == EINPROGRESS)
18536 wait_for_dlpi = B_TRUE;
18537 }
18538
18539 if (!wait_for_dlpi)
18540 (void) ipif_arp_up_done_tail(ipif, res_act);
18541
18542 return (!wait_for_dlpi ? 0 : EINPROGRESS);
18543 }
18544
18545 /*
18546 * Finish processing of "arp_up" after all the DLPI message
18547 * exchanges have completed between arp and the driver.
18548 */
18549 void
arp_bringup_done(ill_t * ill,int err)18550 arp_bringup_done(ill_t *ill, int err)
18551 {
18552 mblk_t *mp1;
18553 ipif_t *ipif;
18554 conn_t *connp = NULL;
18555 ipsq_t *ipsq;
18556 queue_t *q;
18557
18558 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18559
18560 ASSERT(IAM_WRITER_ILL(ill));
18561
18562 ipsq = ill->ill_phyint->phyint_ipsq;
18563 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18564 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18565 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18566 if (mp1 == NULL) /* bringup was aborted by the user */
18567 return;
18568
18569 /*
18570 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18571 * must have an associated conn_t. Otherwise, we're bringing this
18572 * interface back up as part of handling an asynchronous event (e.g.,
18573 * physical address change).
18574 */
18575 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18576 ASSERT(connp != NULL);
18577 q = CONNP_TO_WQ(connp);
18578 } else {
18579 ASSERT(connp == NULL);
18580 q = ill->ill_rq;
18581 }
18582 if (err == 0) {
18583 if (ipif->ipif_isv6) {
18584 if ((err = ipif_up_done_v6(ipif)) != 0)
18585 ip0dbg(("arp_bringup_done: init failed\n"));
18586 } else {
18587 err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18588 if (err != 0 ||
18589 (err = ipif_up_done(ipif)) != 0) {
18590 ip0dbg(("arp_bringup_done: "
18591 "init failed err %x\n", err));
18592 (void) ipif_arp_down(ipif);
18593 }
18594
18595 }
18596 } else {
18597 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18598 }
18599
18600 if ((err == 0) && (ill->ill_up_ipifs)) {
18601 err = ill_up_ipifs(ill, q, mp1);
18602 if (err == EINPROGRESS)
18603 return;
18604 }
18605
18606 /*
18607 * If we have a moved ipif to bring up, and everything has succeeded
18608 * to this point, bring it up on the IPMP ill. Otherwise, leave it
18609 * down -- the admin can try to bring it up by hand if need be.
18610 */
18611 if (ill->ill_move_ipif != NULL) {
18612 ipif = ill->ill_move_ipif;
18613 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18614 ipif->ipif_ill->ill_name));
18615 ill->ill_move_ipif = NULL;
18616 if (err == 0) {
18617 err = ipif_up(ipif, q, mp1);
18618 if (err == EINPROGRESS)
18619 return;
18620 }
18621 }
18622
18623 /*
18624 * The operation must complete without EINPROGRESS since
18625 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18626 * Otherwise, the operation will be stuck forever in the ipsq.
18627 */
18628 ASSERT(err != EINPROGRESS);
18629 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18630 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18631 int, ipsq->ipsq_xop->ipx_current_ioctl,
18632 ill_t *, ill, ipif_t *, ipif);
18633 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18634 } else {
18635 ipsq_current_finish(ipsq);
18636 }
18637 }
18638
18639 /*
18640 * Finish processing of arp replumb after all the DLPI message
18641 * exchanges have completed between arp and the driver.
18642 */
18643 void
arp_replumb_done(ill_t * ill,int err)18644 arp_replumb_done(ill_t *ill, int err)
18645 {
18646 mblk_t *mp1;
18647 ipif_t *ipif;
18648 conn_t *connp = NULL;
18649 ipsq_t *ipsq;
18650 queue_t *q;
18651
18652 ASSERT(IAM_WRITER_ILL(ill));
18653
18654 ipsq = ill->ill_phyint->phyint_ipsq;
18655 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18656 mp1 = ipsq_pending_mp_get(ipsq, &connp);
18657 ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18658 if (mp1 == NULL) {
18659 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18660 ipsq->ipsq_xop->ipx_current_ioctl));
18661 /* bringup was aborted by the user */
18662 return;
18663 }
18664 /*
18665 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18666 * must have an associated conn_t. Otherwise, we're bringing this
18667 * interface back up as part of handling an asynchronous event (e.g.,
18668 * physical address change).
18669 */
18670 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18671 ASSERT(connp != NULL);
18672 q = CONNP_TO_WQ(connp);
18673 } else {
18674 ASSERT(connp == NULL);
18675 q = ill->ill_rq;
18676 }
18677 if ((err == 0) && (ill->ill_up_ipifs)) {
18678 err = ill_up_ipifs(ill, q, mp1);
18679 if (err == EINPROGRESS)
18680 return;
18681 }
18682 /*
18683 * The operation must complete without EINPROGRESS since
18684 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18685 * Otherwise, the operation will be stuck forever in the ipsq.
18686 */
18687 ASSERT(err != EINPROGRESS);
18688 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18689 DTRACE_PROBE4(ipif__ioctl, char *,
18690 "arp_replumb_done finish",
18691 int, ipsq->ipsq_xop->ipx_current_ioctl,
18692 ill_t *, ill, ipif_t *, ipif);
18693 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18694 } else {
18695 ipsq_current_finish(ipsq);
18696 }
18697 }
18698
18699 void
ipif_up_notify(ipif_t * ipif)18700 ipif_up_notify(ipif_t *ipif)
18701 {
18702 ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18703 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18704 sctp_update_ipif(ipif, SCTP_IPIF_UP);
18705 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18706 NE_LIF_UP, NULL, 0);
18707 }
18708
18709 /*
18710 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18711 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on
18712 * TPI end points with STREAMS modules pushed above. This is assured by not
18713 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl
18714 * never ends up on an ipsq, otherwise we may end up processing the ioctl
18715 * while unwinding from the ispq and that could be a thread from the bottom.
18716 */
18717 /* ARGSUSED */
18718 int
ip_sioctl_ilb_cmd(ipif_t * ipif,sin_t * sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * arg)18719 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18720 ip_ioctl_cmd_t *ipip, void *arg)
18721 {
18722 mblk_t *cmd_mp = mp->b_cont->b_cont;
18723 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18724 int ret = 0;
18725 int i;
18726 size_t size;
18727 ip_stack_t *ipst;
18728 zoneid_t zoneid;
18729 ilb_stack_t *ilbs;
18730
18731 ipst = CONNQ_TO_IPST(q);
18732 ilbs = ipst->ips_netstack->netstack_ilb;
18733 zoneid = Q_TO_CONN(q)->conn_zoneid;
18734
18735 switch (command) {
18736 case ILB_CREATE_RULE: {
18737 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18738
18739 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18740 ret = EINVAL;
18741 break;
18742 }
18743
18744 ret = ilb_rule_add(ilbs, zoneid, cmd);
18745 break;
18746 }
18747 case ILB_DESTROY_RULE:
18748 case ILB_ENABLE_RULE:
18749 case ILB_DISABLE_RULE: {
18750 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18751
18752 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18753 ret = EINVAL;
18754 break;
18755 }
18756
18757 if (cmd->flags & ILB_RULE_ALLRULES) {
18758 if (command == ILB_DESTROY_RULE) {
18759 ilb_rule_del_all(ilbs, zoneid);
18760 break;
18761 } else if (command == ILB_ENABLE_RULE) {
18762 ilb_rule_enable_all(ilbs, zoneid);
18763 break;
18764 } else if (command == ILB_DISABLE_RULE) {
18765 ilb_rule_disable_all(ilbs, zoneid);
18766 break;
18767 }
18768 } else {
18769 if (command == ILB_DESTROY_RULE) {
18770 ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18771 } else if (command == ILB_ENABLE_RULE) {
18772 ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18773 NULL);
18774 } else if (command == ILB_DISABLE_RULE) {
18775 ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18776 NULL);
18777 }
18778 }
18779 break;
18780 }
18781 case ILB_NUM_RULES: {
18782 ilb_num_rules_cmd_t *cmd;
18783
18784 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18785 ret = EINVAL;
18786 break;
18787 }
18788 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18789 ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18790 break;
18791 }
18792 case ILB_RULE_NAMES: {
18793 ilb_rule_names_cmd_t *cmd;
18794
18795 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18796 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18797 cmd->num_names == 0) {
18798 ret = EINVAL;
18799 break;
18800 }
18801 size = cmd->num_names * ILB_RULE_NAMESZ;
18802 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18803 size != cmd_mp->b_wptr) {
18804 ret = EINVAL;
18805 break;
18806 }
18807 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18808 break;
18809 }
18810 case ILB_NUM_SERVERS: {
18811 ilb_num_servers_cmd_t *cmd;
18812
18813 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18814 ret = EINVAL;
18815 break;
18816 }
18817 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18818 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18819 &(cmd->num));
18820 break;
18821 }
18822 case ILB_LIST_RULE: {
18823 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18824
18825 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18826 ret = EINVAL;
18827 break;
18828 }
18829 ret = ilb_rule_list(ilbs, zoneid, cmd);
18830 break;
18831 }
18832 case ILB_LIST_SERVERS: {
18833 ilb_servers_info_cmd_t *cmd;
18834
18835 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18836 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18837 cmd->num_servers == 0) {
18838 ret = EINVAL;
18839 break;
18840 }
18841 size = cmd->num_servers * sizeof (ilb_server_info_t);
18842 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18843 size != cmd_mp->b_wptr) {
18844 ret = EINVAL;
18845 break;
18846 }
18847
18848 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18849 &cmd->num_servers);
18850 break;
18851 }
18852 case ILB_ADD_SERVERS: {
18853 ilb_servers_info_cmd_t *cmd;
18854 ilb_rule_t *rule;
18855
18856 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18857 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18858 ret = EINVAL;
18859 break;
18860 }
18861 size = cmd->num_servers * sizeof (ilb_server_info_t);
18862 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18863 size != cmd_mp->b_wptr) {
18864 ret = EINVAL;
18865 break;
18866 }
18867 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18868 if (rule == NULL) {
18869 ASSERT(ret != 0);
18870 break;
18871 }
18872 for (i = 0; i < cmd->num_servers; i++) {
18873 ilb_server_info_t *s;
18874
18875 s = &cmd->servers[i];
18876 s->err = ilb_server_add(ilbs, rule, s);
18877 }
18878 ILB_RULE_REFRELE(rule);
18879 break;
18880 }
18881 case ILB_DEL_SERVERS:
18882 case ILB_ENABLE_SERVERS:
18883 case ILB_DISABLE_SERVERS: {
18884 ilb_servers_cmd_t *cmd;
18885 ilb_rule_t *rule;
18886 int (*f)();
18887
18888 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18889 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18890 ret = EINVAL;
18891 break;
18892 }
18893 size = cmd->num_servers * sizeof (ilb_server_arg_t);
18894 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18895 size != cmd_mp->b_wptr) {
18896 ret = EINVAL;
18897 break;
18898 }
18899
18900 if (command == ILB_DEL_SERVERS)
18901 f = ilb_server_del;
18902 else if (command == ILB_ENABLE_SERVERS)
18903 f = ilb_server_enable;
18904 else if (command == ILB_DISABLE_SERVERS)
18905 f = ilb_server_disable;
18906
18907 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18908 if (rule == NULL) {
18909 ASSERT(ret != 0);
18910 break;
18911 }
18912
18913 for (i = 0; i < cmd->num_servers; i++) {
18914 ilb_server_arg_t *s;
18915
18916 s = &cmd->servers[i];
18917 s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18918 }
18919 ILB_RULE_REFRELE(rule);
18920 break;
18921 }
18922 case ILB_LIST_NAT_TABLE: {
18923 ilb_list_nat_cmd_t *cmd;
18924
18925 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18926 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18927 ret = EINVAL;
18928 break;
18929 }
18930 size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18931 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18932 size != cmd_mp->b_wptr) {
18933 ret = EINVAL;
18934 break;
18935 }
18936
18937 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18938 &cmd->flags);
18939 break;
18940 }
18941 case ILB_LIST_STICKY_TABLE: {
18942 ilb_list_sticky_cmd_t *cmd;
18943
18944 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18945 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18946 ret = EINVAL;
18947 break;
18948 }
18949 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18950 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18951 size != cmd_mp->b_wptr) {
18952 ret = EINVAL;
18953 break;
18954 }
18955
18956 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18957 &cmd->num_sticky, &cmd->flags);
18958 break;
18959 }
18960 default:
18961 ret = EINVAL;
18962 break;
18963 }
18964 done:
18965 return (ret);
18966 }
18967
18968 /* Remove all cache entries for this logical interface */
18969 void
ipif_nce_down(ipif_t * ipif)18970 ipif_nce_down(ipif_t *ipif)
18971 {
18972 ill_t *ill = ipif->ipif_ill;
18973 nce_t *nce;
18974
18975 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18976 ill_t *, ill, ipif_t *, ipif);
18977 if (ipif->ipif_added_nce) {
18978 if (ipif->ipif_isv6)
18979 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18980 else
18981 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18982 if (nce != NULL) {
18983 if (--nce->nce_ipif_cnt == 0)
18984 ncec_delete(nce->nce_common);
18985 ipif->ipif_added_nce = 0;
18986 nce_refrele(nce);
18987 } else {
18988 /*
18989 * nce may already be NULL because it was already
18990 * flushed, e.g., due to a call to nce_flush
18991 */
18992 ipif->ipif_added_nce = 0;
18993 }
18994 }
18995 /*
18996 * Make IPMP aware of the deleted data address.
18997 */
18998 if (IS_IPMP(ill))
18999 ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
19000
19001 /*
19002 * Remove all other nces dependent on this ill when the last ipif
19003 * is going away.
19004 */
19005 if (ill->ill_ipif_up_count == 0) {
19006 ncec_walk(ill, ncec_delete_per_ill, ill, ill->ill_ipst);
19007 if (IS_UNDER_IPMP(ill))
19008 nce_flush(ill, B_TRUE);
19009 }
19010 }
19011
19012 /*
19013 * find the first interface that uses usill for its source address.
19014 */
19015 ill_t *
ill_lookup_usesrc(ill_t * usill)19016 ill_lookup_usesrc(ill_t *usill)
19017 {
19018 ip_stack_t *ipst = usill->ill_ipst;
19019 ill_t *ill;
19020
19021 ASSERT(usill != NULL);
19022
19023 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19024 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19025 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19026 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19027 ill = ill->ill_usesrc_grp_next) {
19028 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19029 !ILL_IS_CONDEMNED(ill)) {
19030 ill_refhold(ill);
19031 break;
19032 }
19033 }
19034 rw_exit(&ipst->ips_ill_g_lock);
19035 rw_exit(&ipst->ips_ill_g_usesrc_lock);
19036 return (ill);
19037 }
19038
19039 /*
19040 * This comment applies to both ip_sioctl_get_ifhwaddr and
19041 * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19042 * is the same.
19043 *
19044 * The goal here is to find an IP interface that corresponds to the name
19045 * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19046 * chain and to fill out a sockaddr/sockaddr_storage structure with the
19047 * mac address.
19048 *
19049 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19050 * of different reasons:
19051 * ENXIO - the device name is not known to IP.
19052 * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19053 * by ill_phys_addr not pointing to an actual address.
19054 * EPFNOSUPPORT - this will indicate that a request is being made for a
19055 * mac address that will not fit in the data structure supplier (struct
19056 * sockaddr).
19057 *
19058 */
19059 /* ARGSUSED */
19060 int
ip_sioctl_get_ifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19061 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19062 ip_ioctl_cmd_t *ipip, void *if_req)
19063 {
19064 struct sockaddr *sock;
19065 struct ifreq *ifr;
19066 mblk_t *mp1;
19067 ill_t *ill;
19068
19069 ASSERT(ipif != NULL);
19070 ill = ipif->ipif_ill;
19071
19072 if (ill->ill_phys_addr == NULL) {
19073 return (EADDRNOTAVAIL);
19074 }
19075 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19076 return (EPFNOSUPPORT);
19077 }
19078
19079 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19080
19081 /* Existence of mp1 has been checked in ip_wput_nondata */
19082 mp1 = mp->b_cont->b_cont;
19083 ifr = (struct ifreq *)mp1->b_rptr;
19084
19085 sock = &ifr->ifr_addr;
19086 /*
19087 * The "family" field in the returned structure is set to a value
19088 * that represents the type of device to which the address belongs.
19089 * The value returned may differ to that on Linux but it will still
19090 * represent the correct symbol on Solaris.
19091 */
19092 sock->sa_family = arp_hw_type(ill->ill_mactype);
19093 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19094
19095 return (0);
19096 }
19097
19098 /*
19099 * The expection of applications using SIOCGIFHWADDR is that data will
19100 * be returned in the sa_data field of the sockaddr structure. With
19101 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19102 * equivalent. In light of this, struct sockaddr_dl is used as it
19103 * offers more space for address storage in sll_data.
19104 */
19105 /* ARGSUSED */
19106 int
ip_sioctl_get_lifhwaddr(ipif_t * ipif,sin_t * dummy_sin,queue_t * q,mblk_t * mp,ip_ioctl_cmd_t * ipip,void * if_req)19107 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19108 ip_ioctl_cmd_t *ipip, void *if_req)
19109 {
19110 struct sockaddr_dl *sock;
19111 struct lifreq *lifr;
19112 mblk_t *mp1;
19113 ill_t *ill;
19114
19115 ASSERT(ipif != NULL);
19116 ill = ipif->ipif_ill;
19117
19118 if (ill->ill_phys_addr == NULL) {
19119 return (EADDRNOTAVAIL);
19120 }
19121 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19122 return (EPFNOSUPPORT);
19123 }
19124
19125 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19126
19127 /* Existence of mp1 has been checked in ip_wput_nondata */
19128 mp1 = mp->b_cont->b_cont;
19129 lifr = (struct lifreq *)mp1->b_rptr;
19130
19131 /*
19132 * sockaddr_ll is used here because it is also the structure used in
19133 * responding to the same ioctl in sockpfp. The only other choice is
19134 * sockaddr_dl which contains fields that are not required here
19135 * because its purpose is different.
19136 */
19137 lifr->lifr_type = ill->ill_type;
19138 sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19139 sock->sdl_family = AF_LINK;
19140 sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19141 sock->sdl_type = ill->ill_mactype;
19142 sock->sdl_nlen = 0;
19143 sock->sdl_slen = 0;
19144 sock->sdl_alen = ill->ill_phys_addr_length;
19145 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19146
19147 return (0);
19148 }
19149