xref: /freebsd/sys/contrib/dev/mediatek/mt76/mt7996/init.c (revision 14b53301e8d482654f94c23e6884fe96b3d26825)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2022 MediaTek Inc.
4  */
5 
6 #include <linux/etherdevice.h>
7 #include <linux/of.h>
8 #include <linux/hwmon.h>
9 #include <linux/hwmon-sysfs.h>
10 #include <linux/thermal.h>
11 #include "mt7996.h"
12 #include "mac.h"
13 #include "mcu.h"
14 #include "coredump.h"
15 #include "eeprom.h"
16 #if defined(__FreeBSD__)
17 #include <linux/delay.h>
18 #endif
19 
20 static const struct ieee80211_iface_limit if_limits_global = {
21 	.max = MT7996_MAX_INTERFACES * MT7996_MAX_RADIOS,
22 	.types = BIT(NL80211_IFTYPE_STATION)
23 		 | BIT(NL80211_IFTYPE_ADHOC)
24 		 | BIT(NL80211_IFTYPE_AP)
25 #ifdef CONFIG_MAC80211_MESH
26 		 | BIT(NL80211_IFTYPE_MESH_POINT)
27 #endif
28 };
29 
30 static const struct ieee80211_iface_combination if_comb_global = {
31 	.limits = &if_limits_global,
32 	.n_limits = 1,
33 	.max_interfaces = MT7996_MAX_INTERFACES * MT7996_MAX_RADIOS,
34 	.num_different_channels = MT7996_MAX_RADIOS,
35 	.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
36 			       BIT(NL80211_CHAN_WIDTH_20) |
37 			       BIT(NL80211_CHAN_WIDTH_40) |
38 			       BIT(NL80211_CHAN_WIDTH_80) |
39 			       BIT(NL80211_CHAN_WIDTH_160),
40 };
41 
42 static const struct ieee80211_iface_limit if_limits[] = {
43 	{
44 		.max = 16,
45 		.types = BIT(NL80211_IFTYPE_AP)
46 #ifdef CONFIG_MAC80211_MESH
47 			 | BIT(NL80211_IFTYPE_MESH_POINT)
48 #endif
49 	}, {
50 		.max = MT7996_MAX_INTERFACES,
51 		.types = BIT(NL80211_IFTYPE_STATION)
52 	}
53 };
54 
55 static const struct ieee80211_iface_combination if_comb = {
56 	.limits = if_limits,
57 	.n_limits = ARRAY_SIZE(if_limits),
58 	.max_interfaces = MT7996_MAX_INTERFACES,
59 	.num_different_channels = 1,
60 	.beacon_int_infra_match = true,
61 	.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
62 			       BIT(NL80211_CHAN_WIDTH_20) |
63 			       BIT(NL80211_CHAN_WIDTH_40) |
64 			       BIT(NL80211_CHAN_WIDTH_80) |
65 			       BIT(NL80211_CHAN_WIDTH_160),
66 	.beacon_int_min_gcd = 100,
67 };
68 
69 #if defined(CONFIG_HWMON)
mt7996_thermal_temp_show(struct device * dev,struct device_attribute * attr,char * buf)70 static ssize_t mt7996_thermal_temp_show(struct device *dev,
71 					struct device_attribute *attr,
72 					char *buf)
73 {
74 	struct mt7996_phy *phy = dev_get_drvdata(dev);
75 	int i = to_sensor_dev_attr(attr)->index;
76 	int temperature;
77 
78 	switch (i) {
79 	case 0:
80 		temperature = mt7996_mcu_get_temperature(phy);
81 		if (temperature < 0)
82 			return temperature;
83 		/* display in millidegree celcius */
84 		return sprintf(buf, "%u\n", temperature * 1000);
85 	case 1:
86 	case 2:
87 		return sprintf(buf, "%u\n",
88 			       phy->throttle_temp[i - 1] * 1000);
89 	case 3:
90 		return sprintf(buf, "%hhu\n", phy->throttle_state);
91 	default:
92 		return -EINVAL;
93 	}
94 }
95 
mt7996_thermal_temp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)96 static ssize_t mt7996_thermal_temp_store(struct device *dev,
97 					 struct device_attribute *attr,
98 					 const char *buf, size_t count)
99 {
100 	struct mt7996_phy *phy = dev_get_drvdata(dev);
101 	int ret, i = to_sensor_dev_attr(attr)->index;
102 	long val;
103 
104 	ret = kstrtol(buf, 10, &val);
105 	if (ret < 0)
106 		return ret;
107 
108 	mutex_lock(&phy->dev->mt76.mutex);
109 	val = DIV_ROUND_CLOSEST(clamp_val(val, 40 * 1000, 130 * 1000), 1000);
110 
111 	/* add a safety margin ~10 */
112 	if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
113 	     val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
114 	    (i - 1 == MT7996_MAX_TEMP_IDX &&
115 	     val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
116 		dev_err(phy->dev->mt76.dev,
117 			"temp1_max shall be 10 degrees higher than temp1_crit.");
118 		mutex_unlock(&phy->dev->mt76.mutex);
119 		return -EINVAL;
120 	}
121 
122 	phy->throttle_temp[i - 1] = val;
123 	mutex_unlock(&phy->dev->mt76.mutex);
124 
125 	ret = mt7996_mcu_set_thermal_protect(phy, true);
126 	if (ret)
127 		return ret;
128 
129 	return count;
130 }
131 
132 static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
133 static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
134 static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
135 static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
136 
137 static struct attribute *mt7996_hwmon_attrs[] = {
138 	&sensor_dev_attr_temp1_input.dev_attr.attr,
139 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
140 	&sensor_dev_attr_temp1_max.dev_attr.attr,
141 	&sensor_dev_attr_throttle1.dev_attr.attr,
142 	NULL,
143 };
144 ATTRIBUTE_GROUPS(mt7996_hwmon);
145 
146 static int
mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device * cdev,unsigned long * state)147 mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
148 				      unsigned long *state)
149 {
150 	*state = MT7996_CDEV_THROTTLE_MAX;
151 
152 	return 0;
153 }
154 
155 static int
mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device * cdev,unsigned long * state)156 mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
157 				      unsigned long *state)
158 {
159 	struct mt7996_phy *phy = cdev->devdata;
160 
161 	*state = phy->cdev_state;
162 
163 	return 0;
164 }
165 
166 static int
mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device * cdev,unsigned long state)167 mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
168 				      unsigned long state)
169 {
170 	struct mt7996_phy *phy = cdev->devdata;
171 	u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
172 	int ret;
173 
174 	if (state > MT7996_CDEV_THROTTLE_MAX) {
175 		dev_err(phy->dev->mt76.dev,
176 			"please specify a valid throttling state\n");
177 		return -EINVAL;
178 	}
179 
180 	if (state == phy->cdev_state)
181 		return 0;
182 
183 	/* cooling_device convention: 0 = no cooling, more = more cooling
184 	 * mcu convention: 1 = max cooling, more = less cooling
185 	 */
186 	ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
187 	if (ret)
188 		return ret;
189 
190 	phy->cdev_state = state;
191 
192 	return 0;
193 }
194 
195 static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
196 	.get_max_state = mt7996_thermal_get_max_throttle_state,
197 	.get_cur_state = mt7996_thermal_get_cur_throttle_state,
198 	.set_cur_state = mt7996_thermal_set_cur_throttle_state,
199 };
200 
mt7996_unregister_thermal(struct mt7996_phy * phy)201 static void mt7996_unregister_thermal(struct mt7996_phy *phy)
202 {
203 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
204 	char name[sizeof("cooling_deviceXXX")];
205 
206 	if (!phy->cdev)
207 		return;
208 
209 	snprintf(name, sizeof(name), "cooling_device%d", phy->mt76->band_idx);
210 	sysfs_remove_link(&wiphy->dev.kobj, name);
211 	thermal_cooling_device_unregister(phy->cdev);
212 }
213 
mt7996_thermal_init(struct mt7996_phy * phy)214 static int mt7996_thermal_init(struct mt7996_phy *phy)
215 {
216 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
217 	char cname[sizeof("cooling_deviceXXX")];
218 	struct thermal_cooling_device *cdev;
219 	struct device *hwmon;
220 	const char *name;
221 
222 	name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s.%d",
223 			      wiphy_name(wiphy), phy->mt76->band_idx);
224 	if (!name)
225 		return -ENOMEM;
226 
227 	snprintf(cname, sizeof(cname), "cooling_device%d", phy->mt76->band_idx);
228 
229 	cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
230 	if (!IS_ERR(cdev)) {
231 		if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
232 				      cname) < 0)
233 			thermal_cooling_device_unregister(cdev);
234 		else
235 			phy->cdev = cdev;
236 	}
237 
238 	/* initialize critical/maximum high temperature */
239 	phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
240 	phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
241 
242 	if (!IS_REACHABLE(CONFIG_HWMON))
243 		return 0;
244 
245 	hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
246 						       mt7996_hwmon_groups);
247 
248 	if (IS_ERR(hwmon))
249 		return PTR_ERR(hwmon);
250 
251 	return 0;
252 }
253 #endif
254 
mt7996_led_set_config(struct led_classdev * led_cdev,u8 delay_on,u8 delay_off)255 static void mt7996_led_set_config(struct led_classdev *led_cdev,
256 				  u8 delay_on, u8 delay_off)
257 {
258 	struct mt7996_dev *dev;
259 	struct mt76_phy *mphy;
260 	u32 val;
261 
262 	mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
263 	dev = container_of(mphy->dev, struct mt7996_dev, mt76);
264 
265 	/* select TX blink mode, 2: only data frames */
266 	mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
267 
268 	/* enable LED */
269 	mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
270 
271 	/* set LED Tx blink on/off time */
272 	val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
273 	      FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
274 	mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
275 
276 	/* turn LED off */
277 	if (delay_off == 0xff && delay_on == 0x0) {
278 		val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
279 	} else {
280 		/* control LED */
281 		val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
282 		if (mphy->band_idx == MT_BAND1)
283 			val |= MT_LED_CTRL_BLINK_BAND_SEL;
284 	}
285 
286 	if (mphy->leds.al)
287 		val |= MT_LED_CTRL_POLARITY;
288 
289 	mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
290 	mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
291 }
292 
mt7996_led_set_blink(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)293 static int mt7996_led_set_blink(struct led_classdev *led_cdev,
294 				unsigned long *delay_on,
295 				unsigned long *delay_off)
296 {
297 	u16 delta_on = 0, delta_off = 0;
298 
299 #define HW_TICK		10
300 #define TO_HW_TICK(_t)	(((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
301 
302 	if (*delay_on)
303 		delta_on = TO_HW_TICK(*delay_on);
304 	if (*delay_off)
305 		delta_off = TO_HW_TICK(*delay_off);
306 
307 	mt7996_led_set_config(led_cdev, delta_on, delta_off);
308 
309 	return 0;
310 }
311 
mt7996_led_set_brightness(struct led_classdev * led_cdev,enum led_brightness brightness)312 static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
313 				      enum led_brightness brightness)
314 {
315 	if (!brightness)
316 		mt7996_led_set_config(led_cdev, 0, 0xff);
317 	else
318 		mt7996_led_set_config(led_cdev, 0xff, 0);
319 }
320 
__mt7996_init_txpower(struct mt7996_phy * phy,struct ieee80211_supported_band * sband)321 static void __mt7996_init_txpower(struct mt7996_phy *phy,
322 				  struct ieee80211_supported_band *sband)
323 {
324 	struct mt7996_dev *dev = phy->dev;
325 	int i, n_chains = hweight16(phy->mt76->chainmask);
326 	int path_delta = mt76_tx_power_path_delta(n_chains);
327 	int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
328 	struct mt76_power_limits limits;
329 
330 	for (i = 0; i < sband->n_channels; i++) {
331 		struct ieee80211_channel *chan = &sband->channels[i];
332 		int target_power = mt7996_eeprom_get_target_power(dev, chan);
333 
334 		target_power += pwr_delta;
335 		target_power = mt76_get_rate_power_limits(phy->mt76, chan,
336 							  &limits,
337 							  target_power);
338 		target_power += path_delta;
339 		target_power = DIV_ROUND_UP(target_power, 2);
340 		chan->max_power = min_t(int, chan->max_reg_power,
341 					target_power);
342 		chan->orig_mpwr = target_power;
343 	}
344 }
345 
mt7996_init_txpower(struct mt7996_phy * phy)346 void mt7996_init_txpower(struct mt7996_phy *phy)
347 {
348 	if (!phy)
349 		return;
350 
351 	if (phy->mt76->cap.has_2ghz)
352 		__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
353 	if (phy->mt76->cap.has_5ghz)
354 		__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
355 	if (phy->mt76->cap.has_6ghz)
356 		__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
357 }
358 
359 static void
mt7996_regd_notifier(struct wiphy * wiphy,struct regulatory_request * request)360 mt7996_regd_notifier(struct wiphy *wiphy,
361 		     struct regulatory_request *request)
362 {
363 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
364 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
365 	struct mt7996_phy *phy;
366 
367 	memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
368 	dev->mt76.region = request->dfs_region;
369 
370 	mt7996_for_each_phy(dev, phy) {
371 		if (dev->mt76.region == NL80211_DFS_UNSET)
372 			mt7996_mcu_rdd_background_enable(phy, NULL);
373 
374 		mt7996_init_txpower(phy);
375 		phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
376 		mt7996_dfs_init_radar_detector(phy);
377 	}
378 }
379 
380 static void
mt7996_init_wiphy_band(struct ieee80211_hw * hw,struct mt7996_phy * phy)381 mt7996_init_wiphy_band(struct ieee80211_hw *hw, struct mt7996_phy *phy)
382 {
383 	struct mt7996_dev *dev = phy->dev;
384 	struct wiphy *wiphy = hw->wiphy;
385 	int n_radios = hw->wiphy->n_radio;
386 	struct wiphy_radio_freq_range *freq = &dev->radio_freqs[n_radios];
387 	struct wiphy_radio *radio = &dev->radios[n_radios];
388 
389 	phy->slottime = 9;
390 	phy->beacon_rate = -1;
391 
392 	if (phy->mt76->cap.has_2ghz) {
393 		phy->mt76->sband_2g.sband.ht_cap.cap |=
394 			IEEE80211_HT_CAP_LDPC_CODING |
395 			IEEE80211_HT_CAP_MAX_AMSDU;
396 		phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
397 			IEEE80211_HT_MPDU_DENSITY_2;
398 		freq->start_freq = 2400000;
399 		freq->end_freq = 2500000;
400 	} else if (phy->mt76->cap.has_5ghz) {
401 		phy->mt76->sband_5g.sband.ht_cap.cap |=
402 			IEEE80211_HT_CAP_LDPC_CODING |
403 			IEEE80211_HT_CAP_MAX_AMSDU;
404 
405 		phy->mt76->sband_5g.sband.vht_cap.cap |=
406 			IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
407 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
408 			IEEE80211_VHT_CAP_SHORT_GI_160 |
409 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
410 		phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
411 			IEEE80211_HT_MPDU_DENSITY_1;
412 
413 		ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
414 		freq->start_freq = 5000000;
415 		freq->end_freq = 5900000;
416 	} else if (phy->mt76->cap.has_6ghz) {
417 		freq->start_freq = 5900000;
418 		freq->end_freq = 7200000;
419 	} else {
420 		return;
421 	}
422 
423 	dev->radio_phy[n_radios] = phy;
424 	radio->freq_range = freq;
425 	radio->n_freq_range = 1;
426 	radio->iface_combinations = &if_comb;
427 	radio->n_iface_combinations = 1;
428 	hw->wiphy->n_radio++;
429 
430 	wiphy->available_antennas_rx |= phy->mt76->chainmask;
431 	wiphy->available_antennas_tx |= phy->mt76->chainmask;
432 
433 	mt76_set_stream_caps(phy->mt76, true);
434 	mt7996_set_stream_vht_txbf_caps(phy);
435 	mt7996_set_stream_he_eht_caps(phy);
436 	mt7996_init_txpower(phy);
437 }
438 
439 static void
mt7996_init_wiphy(struct ieee80211_hw * hw,struct mtk_wed_device * wed)440 mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
441 {
442 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
443 	struct mt76_dev *mdev = &dev->mt76;
444 	struct wiphy *wiphy = hw->wiphy;
445 	u16 max_subframes = dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
446 					   IEEE80211_MAX_AMPDU_BUF_HE;
447 
448 	hw->queues = 4;
449 	hw->max_rx_aggregation_subframes = max_subframes;
450 	hw->max_tx_aggregation_subframes = max_subframes;
451 	if (is_mt7990(mdev) && dev->has_eht)
452 		hw->max_tx_aggregation_subframes = 512;
453 
454 	hw->netdev_features = NETIF_F_RXCSUM;
455 	if (mtk_wed_device_active(wed))
456 		hw->netdev_features |= NETIF_F_HW_TC;
457 
458 	hw->radiotap_timestamp.units_pos =
459 		IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
460 
461 	hw->sta_data_size = sizeof(struct mt7996_sta);
462 	hw->vif_data_size = sizeof(struct mt7996_vif);
463 	hw->chanctx_data_size = sizeof(struct mt76_chanctx);
464 
465 	wiphy->iface_combinations = &if_comb_global;
466 	wiphy->n_iface_combinations = 1;
467 
468 	wiphy->radio = dev->radios;
469 
470 	wiphy->reg_notifier = mt7996_regd_notifier;
471 	wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
472 	wiphy->mbssid_max_interfaces = 16;
473 
474 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
475 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
476 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
477 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
478 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
479 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
480 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
481 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
482 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
483 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
484 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
485 
486 	if (mt7996_eeprom_has_background_radar(dev) &&
487 #if defined(CONFIG_OF)
488 	    (!mdev->dev->of_node ||
489 	     !of_property_read_bool(mdev->dev->of_node,
490 				    "mediatek,disable-radar-background")))
491 #else
492 	    1)
493 #endif
494 		wiphy_ext_feature_set(wiphy,
495 				      NL80211_EXT_FEATURE_RADAR_BACKGROUND);
496 
497 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
498 	ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
499 	ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
500 	ieee80211_hw_set(hw, NO_VIRTUAL_MONITOR);
501 	ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
502 
503 	hw->max_tx_fragments = 4;
504 
505 	/* init led callbacks */
506 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
507 		dev->mphy.leds.cdev.brightness_set = mt7996_led_set_brightness;
508 		dev->mphy.leds.cdev.blink_set = mt7996_led_set_blink;
509 	}
510 
511 	wiphy->max_scan_ssids = 4;
512 	wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
513 
514 	mt7996_init_wiphy_band(hw, &dev->phy);
515 }
516 
517 static void
mt7996_mac_init_band(struct mt7996_dev * dev,u8 band)518 mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
519 {
520 	u32 mask, set;
521 
522 	/* clear estimated value of EIFS for Rx duration & OBSS time */
523 	mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
524 
525 	/* clear backoff time for Rx duration  */
526 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
527 		   MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
528 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
529 		   MT_WF_RMAC_MIB_QOS01_BACKOFF);
530 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
531 		   MT_WF_RMAC_MIB_QOS23_BACKOFF);
532 
533 	/* clear backoff time for Tx duration */
534 	mt76_clear(dev, MT_WTBLOFF_ACR(band),
535 		   MT_WTBLOFF_ADM_BACKOFFTIME);
536 
537 	/* clear backoff time and set software compensation for OBSS time */
538 	mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
539 	set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
540 	      FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
541 	mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
542 
543 	/* filter out non-resp frames and get instanstaeous signal reporting */
544 	mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
545 	set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
546 	      FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
547 	mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
548 
549 	/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
550 	 * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
551 	 */
552 	mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
553 }
554 
mt7996_mac_init_basic_rates(struct mt7996_dev * dev)555 static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
556 {
557 	int i;
558 
559 	for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
560 		u16 rate = mt76_rates[i].hw_value;
561 		/* odd index for driver, even index for firmware */
562 		u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
563 
564 		rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
565 		       FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
566 		mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
567 	}
568 }
569 
mt7996_mac_init(struct mt7996_dev * dev)570 void mt7996_mac_init(struct mt7996_dev *dev)
571 {
572 #define HIF_TXD_V2_1	0x21
573 	int i;
574 
575 	mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
576 
577 	for (i = 0; i < mt7996_wtbl_size(dev); i++)
578 		mt7996_mac_wtbl_update(dev, i,
579 				       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
580 
581 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
582 		i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
583 		mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
584 	}
585 
586 	/* rro module init */
587 	if (is_mt7996(&dev->mt76))
588 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
589 	else
590 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
591 				   dev->hif2 ? 7 : 0);
592 
593 	if (dev->has_rro) {
594 		u16 timeout;
595 
596 		timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
597 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
598 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
599 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
600 	} else {
601 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
602 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
603 	}
604 
605 	mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
606 			  MCU_WA_PARAM_HW_PATH_HIF_VER,
607 			  HIF_TXD_V2_1, 0);
608 
609 	for (i = MT_BAND0; i <= MT_BAND2; i++)
610 		mt7996_mac_init_band(dev, i);
611 
612 	mt7996_mac_init_basic_rates(dev);
613 }
614 
mt7996_txbf_init(struct mt7996_dev * dev)615 int mt7996_txbf_init(struct mt7996_dev *dev)
616 {
617 	int ret;
618 
619 	if (mt7996_band_valid(dev, MT_BAND1) ||
620 	    mt7996_band_valid(dev, MT_BAND2)) {
621 		ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
622 		if (ret)
623 			return ret;
624 	}
625 
626 	/* trigger sounding packets */
627 	ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
628 	if (ret)
629 		return ret;
630 
631 	/* enable eBF */
632 	return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
633 }
634 
mt7996_register_phy(struct mt7996_dev * dev,enum mt76_band_id band)635 static int mt7996_register_phy(struct mt7996_dev *dev, enum mt76_band_id band)
636 {
637 	struct mt7996_phy *phy;
638 	struct mt76_phy *mphy;
639 	u32 mac_ofs, hif1_ofs = 0;
640 	int ret;
641 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
642 
643 	if (!mt7996_band_valid(dev, band))
644 		return 0;
645 
646 	if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
647 		hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
648 		wed = &dev->mt76.mmio.wed_hif2;
649 	}
650 
651 	mphy = mt76_alloc_radio_phy(&dev->mt76, sizeof(*phy), band);
652 	if (!mphy)
653 		return -ENOMEM;
654 
655 	phy = mphy->priv;
656 	phy->dev = dev;
657 	phy->mt76 = mphy;
658 	mphy->dev->phys[band] = mphy;
659 
660 	INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
661 
662 	ret = mt7996_eeprom_parse_hw_cap(dev, phy);
663 	if (ret)
664 		goto error;
665 
666 	mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
667 #if defined(__linux__)
668 	memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
669 #elif defined(__FreeBSD__)
670 	memcpy(mphy->macaddr, (u8 *)dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
671 #endif
672 	/* Make the extra PHY MAC address local without overlapping with
673 	 * the usual MAC address allocation scheme on multiple virtual interfaces
674 	 */
675 	if (!is_valid_ether_addr(mphy->macaddr)) {
676 #if defined(__linux__)
677 		memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
678 #elif defined(__FreeBSD__)
679 		memcpy(mphy->macaddr, (u8 *)dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
680 #endif
681 		       ETH_ALEN);
682 		mphy->macaddr[0] |= 2;
683 		mphy->macaddr[0] ^= BIT(7);
684 		if (band == MT_BAND2)
685 			mphy->macaddr[0] ^= BIT(6);
686 	}
687 	mt76_eeprom_override(mphy);
688 
689 	/* init wiphy according to mphy and phy */
690 	mt7996_init_wiphy_band(mphy->hw, phy);
691 	ret = mt7996_init_tx_queues(mphy->priv,
692 				    MT_TXQ_ID(band),
693 				    MT7996_TX_RING_SIZE,
694 				    MT_TXQ_RING_BASE(band) + hif1_ofs,
695 				    wed);
696 	if (ret)
697 		goto error;
698 
699 	ret = mt76_register_phy(mphy, true, mt76_rates,
700 				ARRAY_SIZE(mt76_rates));
701 	if (ret)
702 		goto error;
703 
704 	if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
705 		u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
706 
707 		mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
708 		mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
709 	}
710 
711 	return 0;
712 
713 error:
714 	mphy->dev->phys[band] = NULL;
715 	return ret;
716 }
717 
718 static void
mt7996_unregister_phy(struct mt7996_phy * phy)719 mt7996_unregister_phy(struct mt7996_phy *phy)
720 {
721 #if defined(CONFIG_HWMON)
722 	if (phy)
723 		mt7996_unregister_thermal(phy);
724 #endif
725 }
726 
mt7996_init_work(struct work_struct * work)727 static void mt7996_init_work(struct work_struct *work)
728 {
729 	struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
730 				 init_work);
731 
732 	mt7996_mcu_set_eeprom(dev);
733 	mt7996_mac_init(dev);
734 	mt7996_txbf_init(dev);
735 }
736 
mt7996_wfsys_reset(struct mt7996_dev * dev)737 void mt7996_wfsys_reset(struct mt7996_dev *dev)
738 {
739 	mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
740 	msleep(20);
741 
742 	mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
743 	msleep(20);
744 }
745 
mt7996_wed_rro_init(struct mt7996_dev * dev)746 static int mt7996_wed_rro_init(struct mt7996_dev *dev)
747 {
748 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
749 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
750 	u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
751 	struct mt7996_wed_rro_addr *addr;
752 	void *ptr;
753 	int i;
754 
755 	if (!dev->has_rro)
756 		return 0;
757 
758 	if (!mtk_wed_device_active(wed))
759 		return 0;
760 
761 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
762 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
763 					  MT7996_RRO_BA_BITMAP_CR_SIZE,
764 					  &dev->wed_rro.ba_bitmap[i].phy_addr,
765 					  GFP_KERNEL);
766 		if (!ptr)
767 			return -ENOMEM;
768 
769 		dev->wed_rro.ba_bitmap[i].ptr = ptr;
770 	}
771 
772 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
773 		int j;
774 
775 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
776 				MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
777 				&dev->wed_rro.addr_elem[i].phy_addr,
778 				GFP_KERNEL);
779 		if (!ptr)
780 			return -ENOMEM;
781 
782 		dev->wed_rro.addr_elem[i].ptr = ptr;
783 		memset(dev->wed_rro.addr_elem[i].ptr, 0,
784 		       MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
785 
786 		addr = dev->wed_rro.addr_elem[i].ptr;
787 		for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
788 			addr->signature = 0xff;
789 			addr++;
790 		}
791 
792 		wed->wlan.ind_cmd.addr_elem_phys[i] =
793 			dev->wed_rro.addr_elem[i].phy_addr;
794 	}
795 
796 	ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
797 				  MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
798 				  &dev->wed_rro.session.phy_addr,
799 				  GFP_KERNEL);
800 	if (!ptr)
801 		return -ENOMEM;
802 
803 	dev->wed_rro.session.ptr = ptr;
804 	addr = dev->wed_rro.session.ptr;
805 	for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
806 		addr->signature = 0xff;
807 		addr++;
808 	}
809 
810 	/* rro hw init */
811 	/* TODO: remove line after WM has set */
812 	mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
813 
814 	/* setup BA bitmap cache address */
815 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
816 		dev->wed_rro.ba_bitmap[0].phy_addr);
817 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
818 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
819 		dev->wed_rro.ba_bitmap[1].phy_addr);
820 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
821 
822 	/* setup Address element address */
823 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
824 		mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
825 		reg += 4;
826 	}
827 
828 	/* setup Address element address - separate address segment mode */
829 	mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
830 		MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
831 
832 	wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
833 	wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
834 	wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
835 	wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
836 	wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
837 
838 	mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
839 	mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
840 		 MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
841 
842 	/* particular session configure */
843 	/* use max session idx + 1 as particular session id */
844 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
845 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
846 		MT_RRO_PARTICULAR_CONFG_EN |
847 		FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
848 
849 	/* interrupt enable */
850 	mt76_wr(dev, MT_RRO_HOST_INT_ENA,
851 		MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
852 
853 	/* rro ind cmd queue init */
854 	return mt7996_dma_rro_init(dev);
855 #else
856 	return 0;
857 #endif
858 }
859 
mt7996_wed_rro_free(struct mt7996_dev * dev)860 static void mt7996_wed_rro_free(struct mt7996_dev *dev)
861 {
862 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
863 	int i;
864 
865 	if (!dev->has_rro)
866 		return;
867 
868 	if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
869 		return;
870 
871 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
872 		if (!dev->wed_rro.ba_bitmap[i].ptr)
873 			continue;
874 
875 		dmam_free_coherent(dev->mt76.dma_dev,
876 				   MT7996_RRO_BA_BITMAP_CR_SIZE,
877 				   dev->wed_rro.ba_bitmap[i].ptr,
878 				   dev->wed_rro.ba_bitmap[i].phy_addr);
879 	}
880 
881 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
882 		if (!dev->wed_rro.addr_elem[i].ptr)
883 			continue;
884 
885 		dmam_free_coherent(dev->mt76.dma_dev,
886 				   MT7996_RRO_WINDOW_MAX_SIZE *
887 				   sizeof(struct mt7996_wed_rro_addr),
888 				   dev->wed_rro.addr_elem[i].ptr,
889 				   dev->wed_rro.addr_elem[i].phy_addr);
890 	}
891 
892 	if (!dev->wed_rro.session.ptr)
893 		return;
894 
895 	dmam_free_coherent(dev->mt76.dma_dev,
896 			   MT7996_RRO_WINDOW_MAX_LEN *
897 			   sizeof(struct mt7996_wed_rro_addr),
898 			   dev->wed_rro.session.ptr,
899 			   dev->wed_rro.session.phy_addr);
900 #endif
901 }
902 
mt7996_wed_rro_work(struct work_struct * work)903 static void mt7996_wed_rro_work(struct work_struct *work)
904 {
905 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
906 	struct mt7996_dev *dev;
907 	LIST_HEAD(list);
908 
909 	dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
910 						wed_rro.work);
911 
912 	spin_lock_bh(&dev->wed_rro.lock);
913 	list_splice_init(&dev->wed_rro.poll_list, &list);
914 	spin_unlock_bh(&dev->wed_rro.lock);
915 
916 	while (!list_empty(&list)) {
917 		struct mt7996_wed_rro_session_id *e;
918 		int i;
919 
920 		e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
921 				     list);
922 		list_del_init(&e->list);
923 
924 		for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
925 			void *ptr = dev->wed_rro.session.ptr;
926 			struct mt7996_wed_rro_addr *elem;
927 			u32 idx, elem_id = i;
928 
929 			if (e->id == MT7996_RRO_MAX_SESSION)
930 				goto reset;
931 
932 			idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
933 			if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
934 				goto out;
935 
936 			ptr = dev->wed_rro.addr_elem[idx].ptr;
937 			elem_id +=
938 				(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
939 				MT7996_RRO_WINDOW_MAX_LEN;
940 reset:
941 			elem = ptr + elem_id * sizeof(*elem);
942 			elem->signature = 0xff;
943 		}
944 		mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
945 out:
946 		kfree(e);
947 	}
948 #endif
949 }
950 
mt7996_variant_type_init(struct mt7996_dev * dev)951 static int mt7996_variant_type_init(struct mt7996_dev *dev)
952 {
953 	u32 val = mt76_rr(dev, MT_PAD_GPIO);
954 	u8 var_type;
955 
956 	switch (mt76_chip(&dev->mt76)) {
957 	case MT7996_DEVICE_ID:
958 		if (val & MT_PAD_GPIO_2ADIE_TBTC)
959 			var_type = MT7996_VAR_TYPE_233;
960 		else
961 			var_type = MT7996_VAR_TYPE_444;
962 		break;
963 	case MT7992_DEVICE_ID:
964 		if (val & MT_PAD_GPIO_ADIE_SINGLE)
965 			var_type = MT7992_VAR_TYPE_23;
966 		else if (u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992))
967 			var_type = MT7992_VAR_TYPE_44;
968 		else
969 			return -EINVAL;
970 		break;
971 	case MT7990_DEVICE_ID:
972 		var_type = MT7990_VAR_TYPE_23;
973 		break;
974 	default:
975 		return -EINVAL;
976 	}
977 
978 	dev->var.type = var_type;
979 	return 0;
980 }
981 
mt7996_variant_fem_init(struct mt7996_dev * dev)982 static int mt7996_variant_fem_init(struct mt7996_dev *dev)
983 {
984 #define MT7976C_EFUSE_OFFSET	0x470
985 	u8 buf[MT7996_EEPROM_BLOCK_SIZE], idx, adie_idx, adie_comb;
986 	u32 regval, val = mt76_rr(dev, MT_PAD_GPIO);
987 	u16 adie_id, adie_ver;
988 	bool is_7976c;
989 	int ret;
990 
991 	if (is_mt7992(&dev->mt76)) {
992 		adie_idx = (val & MT_PAD_GPIO_ADIE_SINGLE) ? 0 : 1;
993 		adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992);
994 	} else {
995 		adie_idx = 0;
996 		adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB);
997 	}
998 
999 	ret = mt7996_mcu_rf_regval(dev, MT_ADIE_CHIP_ID(adie_idx), &regval, false);
1000 	if (ret)
1001 		return ret;
1002 
1003 	ret = mt7996_mcu_get_eeprom(dev, MT7976C_EFUSE_OFFSET, buf, sizeof(buf));
1004 	if (ret && ret != -EINVAL)
1005 		return ret;
1006 
1007 	adie_ver = u32_get_bits(regval, MT_ADIE_VERSION_MASK);
1008 	idx = MT7976C_EFUSE_OFFSET % MT7996_EEPROM_BLOCK_SIZE;
1009 	is_7976c = adie_ver == 0x8a10 || adie_ver == 0x8b00 ||
1010 		   adie_ver == 0x8c10 || buf[idx] == 0xc;
1011 
1012 	adie_id = u32_get_bits(regval, MT_ADIE_CHIP_ID_MASK);
1013 	if (adie_id == 0x7975 || adie_id == 0x7979 ||
1014 	    (adie_id == 0x7976 && is_7976c))
1015 		dev->var.fem = MT7996_FEM_INT;
1016 	else if (adie_id == 0x7977 && adie_comb == 1)
1017 		dev->var.fem = MT7996_FEM_MIX;
1018 	else
1019 		dev->var.fem = MT7996_FEM_EXT;
1020 
1021 	return 0;
1022 }
1023 
mt7996_init_hardware(struct mt7996_dev * dev)1024 static int mt7996_init_hardware(struct mt7996_dev *dev)
1025 {
1026 	int ret, idx;
1027 
1028 	mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
1029 	if (is_mt7992(&dev->mt76)) {
1030 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
1031 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
1032 	}
1033 
1034 	INIT_WORK(&dev->init_work, mt7996_init_work);
1035 	INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
1036 	INIT_LIST_HEAD(&dev->wed_rro.poll_list);
1037 	spin_lock_init(&dev->wed_rro.lock);
1038 
1039 	ret = mt7996_variant_type_init(dev);
1040 	if (ret)
1041 		return ret;
1042 
1043 	ret = mt7996_dma_init(dev);
1044 	if (ret)
1045 		return ret;
1046 
1047 	set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
1048 
1049 	ret = mt7996_mcu_init(dev);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = mt7996_wed_rro_init(dev);
1054 	if (ret)
1055 		return ret;
1056 
1057 	ret = mt7996_variant_fem_init(dev);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = mt7996_eeprom_init(dev);
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	/* Beacon and mgmt frames should occupy wcid 0 */
1066 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
1067 	if (idx)
1068 		return -ENOSPC;
1069 
1070 	dev->mt76.global_wcid.idx = idx;
1071 	dev->mt76.global_wcid.hw_key_idx = -1;
1072 	dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
1073 	rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
1074 
1075 	return 0;
1076 }
1077 
mt7996_set_stream_vht_txbf_caps(struct mt7996_phy * phy)1078 void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
1079 {
1080 	int sts;
1081 	u32 *cap;
1082 
1083 	if (!phy->mt76->cap.has_5ghz)
1084 		return;
1085 
1086 	sts = hweight16(phy->mt76->chainmask);
1087 	cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
1088 
1089 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
1090 		IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
1091 
1092 	if (is_mt7992(phy->mt76->dev))
1093 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4);
1094 	else
1095 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3);
1096 
1097 	*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
1098 		  IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
1099 		  IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
1100 
1101 	if (sts < 2)
1102 		return;
1103 
1104 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
1105 		IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
1106 		FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
1107 }
1108 
1109 static void
mt7996_set_stream_he_txbf_caps(struct mt7996_phy * phy,struct ieee80211_sta_he_cap * he_cap,int vif,enum nl80211_band band)1110 mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
1111 			       struct ieee80211_sta_he_cap *he_cap, int vif,
1112 			       enum nl80211_band band)
1113 {
1114 	struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
1115 	int sts = hweight16(phy->mt76->chainmask);
1116 	bool non_2g = band != NL80211_BAND_2GHZ;
1117 	u8 c;
1118 
1119 #ifdef CONFIG_MAC80211_MESH
1120 	if (vif == NL80211_IFTYPE_MESH_POINT)
1121 		return;
1122 #endif
1123 
1124 	elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1125 	elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1126 
1127 	c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
1128 	    IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
1129 	elem->phy_cap_info[5] &= ~c;
1130 
1131 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1132 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1133 	elem->phy_cap_info[6] &= ~c;
1134 
1135 	elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
1136 
1137 	c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
1138 	    IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1139 	elem->phy_cap_info[2] |= c;
1140 
1141 	c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE;
1142 
1143 	if (is_mt7992(phy->mt76->dev))
1144 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 |
1145 		     (IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 * non_2g);
1146 	else
1147 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
1148 		     (IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 * non_2g);
1149 
1150 	elem->phy_cap_info[4] |= c;
1151 
1152 	/* do not support NG16 due to spec D4.0 changes subcarrier idx */
1153 	c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
1154 	    IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
1155 
1156 	if (vif == NL80211_IFTYPE_STATION)
1157 		c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
1158 
1159 	elem->phy_cap_info[6] |= c;
1160 
1161 	if (sts < 2)
1162 		return;
1163 
1164 	/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
1165 	elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
1166 
1167 	if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION))
1168 		return;
1169 
1170 	elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1171 
1172 	c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
1173 		       sts - 1) |
1174 	    (FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
1175 			sts - 1) * non_2g);
1176 
1177 	elem->phy_cap_info[5] |= c;
1178 
1179 	if (vif != NL80211_IFTYPE_AP)
1180 		return;
1181 
1182 	elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1183 
1184 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1185 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1186 	elem->phy_cap_info[6] |= c;
1187 
1188 	c = 0;
1189 	if (non_2g)
1190 		c |= IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
1191 		     IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1192 	elem->phy_cap_info[7] |= c;
1193 }
1194 
1195 static void
mt7996_init_he_caps(struct mt7996_phy * phy,enum nl80211_band band,struct ieee80211_sband_iftype_data * data,enum nl80211_iftype iftype)1196 mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
1197 		    struct ieee80211_sband_iftype_data *data,
1198 		    enum nl80211_iftype iftype)
1199 {
1200 	struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
1201 	struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
1202 	struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
1203 	int i, nss = hweight8(phy->mt76->antenna_mask);
1204 	u16 mcs_map = 0;
1205 
1206 	for (i = 0; i < 8; i++) {
1207 		if (i < nss)
1208 			mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
1209 		else
1210 			mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
1211 	}
1212 
1213 	he_cap->has_he = true;
1214 
1215 	he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
1216 	he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
1217 				       IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
1218 	he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
1219 
1220 	if (band == NL80211_BAND_2GHZ)
1221 		he_cap_elem->phy_cap_info[0] =
1222 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
1223 	else
1224 		he_cap_elem->phy_cap_info[0] =
1225 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
1226 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1227 
1228 	he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
1229 	he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
1230 				       IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1231 
1232 	he_cap_elem->phy_cap_info[7] =
1233 			IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
1234 
1235 	switch (iftype) {
1236 	case NL80211_IFTYPE_AP:
1237 		he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
1238 		he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
1239 		he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
1240 		he_cap_elem->mac_cap_info[5] |=
1241 			IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
1242 		he_cap_elem->phy_cap_info[3] |=
1243 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1244 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1245 		he_cap_elem->phy_cap_info[6] |=
1246 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1247 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1248 		he_cap_elem->phy_cap_info[9] |=
1249 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1250 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1251 		break;
1252 	case NL80211_IFTYPE_STATION:
1253 		he_cap_elem->mac_cap_info[1] |=
1254 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
1255 
1256 		if (band == NL80211_BAND_2GHZ)
1257 			he_cap_elem->phy_cap_info[0] |=
1258 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
1259 		else
1260 			he_cap_elem->phy_cap_info[0] |=
1261 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
1262 
1263 		he_cap_elem->phy_cap_info[1] |=
1264 			IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
1265 			IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
1266 		he_cap_elem->phy_cap_info[3] |=
1267 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1268 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1269 		he_cap_elem->phy_cap_info[6] |=
1270 			IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
1271 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1272 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1273 		he_cap_elem->phy_cap_info[7] |=
1274 			IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP;
1275 		he_cap_elem->phy_cap_info[8] |=
1276 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
1277 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
1278 			IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
1279 			IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
1280 		he_cap_elem->phy_cap_info[9] |=
1281 			IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
1282 			IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
1283 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1284 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
1285 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
1286 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
1287 		break;
1288 	default:
1289 		break;
1290 	}
1291 
1292 	he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
1293 	he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
1294 	he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
1295 	he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
1296 
1297 	mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype, band);
1298 
1299 	memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
1300 	if (he_cap_elem->phy_cap_info[6] &
1301 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
1302 		mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss, band);
1303 	} else {
1304 		he_cap_elem->phy_cap_info[9] |=
1305 			u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
1306 				       IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
1307 	}
1308 
1309 	if (band == NL80211_BAND_6GHZ) {
1310 		u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
1311 			  IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
1312 
1313 		cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
1314 				       IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
1315 		       u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
1316 				       IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
1317 		       u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
1318 				       IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
1319 
1320 		data->he_6ghz_capa.capa = cpu_to_le16(cap);
1321 	}
1322 }
1323 
1324 static void
mt7996_init_eht_caps(struct mt7996_phy * phy,enum nl80211_band band,struct ieee80211_sband_iftype_data * data,enum nl80211_iftype iftype)1325 mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
1326 		     struct ieee80211_sband_iftype_data *data,
1327 		     enum nl80211_iftype iftype)
1328 {
1329 	struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
1330 	struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
1331 	struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
1332 	enum nl80211_chan_width width = phy->mt76->chandef.width;
1333 	int nss = hweight8(phy->mt76->antenna_mask);
1334 	int sts = hweight16(phy->mt76->chainmask);
1335 	u8 val;
1336 
1337 	if (!phy->dev->has_eht)
1338 		return;
1339 
1340 	eht_cap->has_eht = true;
1341 
1342 	eht_cap_elem->mac_cap_info[0] =
1343 		IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1344 		IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
1345 		u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
1346 			       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
1347 
1348 	eht_cap_elem->mac_cap_info[1] |=
1349 		IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK;
1350 
1351 	eht_cap_elem->phy_cap_info[0] =
1352 		IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
1353 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
1354 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
1355 
1356 	/* Set the maximum capability regardless of the antenna configuration. */
1357 	val = is_mt7992(phy->mt76->dev) ? 4 : 3;
1358 	eht_cap_elem->phy_cap_info[0] |=
1359 		u8_encode_bits(u8_get_bits(val, BIT(0)),
1360 			       IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
1361 
1362 	eht_cap_elem->phy_cap_info[1] =
1363 		u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
1364 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK);
1365 
1366 	eht_cap_elem->phy_cap_info[2] =
1367 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK);
1368 
1369 	if (band != NL80211_BAND_2GHZ) {
1370 		eht_cap_elem->phy_cap_info[1] |=
1371 			u8_encode_bits(val,
1372 				       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK);
1373 
1374 		eht_cap_elem->phy_cap_info[2] |=
1375 			u8_encode_bits(sts - 1,
1376 				       IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK);
1377 	}
1378 
1379 	if (band == NL80211_BAND_6GHZ) {
1380 		eht_cap_elem->phy_cap_info[0] |=
1381 			IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
1382 
1383 		eht_cap_elem->phy_cap_info[1] |=
1384 			u8_encode_bits(val,
1385 				       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
1386 
1387 		eht_cap_elem->phy_cap_info[2] |=
1388 			u8_encode_bits(sts - 1,
1389 				       IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
1390 	}
1391 
1392 	eht_cap_elem->phy_cap_info[3] =
1393 		IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1394 		IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1395 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1396 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK;
1397 
1398 	eht_cap_elem->phy_cap_info[4] =
1399 		IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI |
1400 		u8_encode_bits(min_t(int, sts - 1, 2),
1401 			       IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
1402 
1403 	eht_cap_elem->phy_cap_info[5] =
1404 		u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
1405 			       IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
1406 		u8_encode_bits(u8_get_bits(1, GENMASK(1, 0)),
1407 			       IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
1408 
1409 	val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
1410 	      width == NL80211_CHAN_WIDTH_160 ? 0x7 :
1411 	      width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
1412 	eht_cap_elem->phy_cap_info[6] =
1413 		u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
1414 
1415 	val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
1416 	      u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
1417 #define SET_EHT_MAX_NSS(_bw, _val) do {				\
1418 		eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val;	\
1419 		eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val;	\
1420 		eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val;	\
1421 	} while (0)
1422 
1423 	SET_EHT_MAX_NSS(80, val);
1424 	SET_EHT_MAX_NSS(160, val);
1425 	if (band == NL80211_BAND_6GHZ)
1426 		SET_EHT_MAX_NSS(320, val);
1427 #undef SET_EHT_MAX_NSS
1428 
1429 	if (iftype != NL80211_IFTYPE_AP)
1430 		return;
1431 
1432 	eht_cap_elem->phy_cap_info[3] |=
1433 		IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
1434 		IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK;
1435 
1436 	eht_cap_elem->phy_cap_info[7] =
1437 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
1438 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ;
1439 
1440 	if (band == NL80211_BAND_2GHZ)
1441 		return;
1442 
1443 	eht_cap_elem->phy_cap_info[7] |=
1444 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
1445 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ;
1446 
1447 	if (band != NL80211_BAND_6GHZ)
1448 		return;
1449 
1450 	eht_cap_elem->phy_cap_info[7] |=
1451 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
1452 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
1453 }
1454 
1455 static void
__mt7996_set_stream_he_eht_caps(struct mt7996_phy * phy,struct ieee80211_supported_band * sband,enum nl80211_band band)1456 __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
1457 				struct ieee80211_supported_band *sband,
1458 				enum nl80211_band band)
1459 {
1460 	struct ieee80211_sband_iftype_data *data = phy->iftype[band];
1461 	int i, n = 0;
1462 
1463 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
1464 		switch (i) {
1465 		case NL80211_IFTYPE_STATION:
1466 		case NL80211_IFTYPE_AP:
1467 #ifdef CONFIG_MAC80211_MESH
1468 		case NL80211_IFTYPE_MESH_POINT:
1469 #endif
1470 			break;
1471 		default:
1472 			continue;
1473 		}
1474 
1475 		data[n].types_mask = BIT(i);
1476 		mt7996_init_he_caps(phy, band, &data[n], i);
1477 		mt7996_init_eht_caps(phy, band, &data[n], i);
1478 
1479 		n++;
1480 	}
1481 
1482 	_ieee80211_set_sband_iftype_data(sband, data, n);
1483 }
1484 
mt7996_set_stream_he_eht_caps(struct mt7996_phy * phy)1485 void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
1486 {
1487 	if (phy->mt76->cap.has_2ghz)
1488 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
1489 						NL80211_BAND_2GHZ);
1490 
1491 	if (phy->mt76->cap.has_5ghz)
1492 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
1493 						NL80211_BAND_5GHZ);
1494 
1495 	if (phy->mt76->cap.has_6ghz)
1496 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
1497 						NL80211_BAND_6GHZ);
1498 }
1499 
mt7996_register_device(struct mt7996_dev * dev)1500 int mt7996_register_device(struct mt7996_dev *dev)
1501 {
1502 	struct ieee80211_hw *hw = mt76_hw(dev);
1503 #if defined(CONFIG_HWMON)
1504 	struct mt7996_phy *phy;
1505 #endif
1506 	int ret;
1507 
1508 	dev->phy.dev = dev;
1509 	dev->phy.mt76 = &dev->mt76.phy;
1510 	dev->mt76.phy.priv = &dev->phy;
1511 	INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
1512 	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
1513 	INIT_LIST_HEAD(&dev->sta_rc_list);
1514 	INIT_LIST_HEAD(&dev->twt_list);
1515 
1516 	init_waitqueue_head(&dev->reset_wait);
1517 	INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
1518 	INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
1519 	mutex_init(&dev->dump_mutex);
1520 
1521 	ret = mt7996_init_hardware(dev);
1522 	if (ret)
1523 		return ret;
1524 
1525 	mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
1526 
1527 	ret = mt7996_register_phy(dev, MT_BAND1);
1528 	if (ret)
1529 		return ret;
1530 
1531 	ret = mt7996_register_phy(dev, MT_BAND2);
1532 	if (ret)
1533 		return ret;
1534 
1535 	ret = mt76_register_device(&dev->mt76, true, mt76_rates,
1536 				   ARRAY_SIZE(mt76_rates));
1537 	if (ret)
1538 		return ret;
1539 
1540 #if defined(CONFIG_HWMON)
1541 	mt7996_for_each_phy(dev, phy)
1542 		mt7996_thermal_init(phy);
1543 #endif
1544 
1545 	ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
1546 
1547 	dev->recovery.hw_init_done = true;
1548 
1549 #if defined(CONFIG_MT7996_DEBUGFS)
1550 	ret = mt7996_init_debugfs(dev);
1551 	if (ret)
1552 		goto error;
1553 #endif
1554 
1555 	ret = mt7996_coredump_register(dev);
1556 	if (ret)
1557 		goto error;
1558 
1559 	return 0;
1560 
1561 error:
1562 	cancel_work_sync(&dev->init_work);
1563 
1564 	return ret;
1565 }
1566 
mt7996_unregister_device(struct mt7996_dev * dev)1567 void mt7996_unregister_device(struct mt7996_dev *dev)
1568 {
1569 	cancel_work_sync(&dev->wed_rro.work);
1570 	mt7996_unregister_phy(mt7996_phy3(dev));
1571 	mt7996_unregister_phy(mt7996_phy2(dev));
1572 #if defined(CONFIG_HWMON)
1573 	mt7996_unregister_thermal(&dev->phy);
1574 #endif
1575 	mt7996_coredump_unregister(dev);
1576 	mt76_unregister_device(&dev->mt76);
1577 	mt7996_wed_rro_free(dev);
1578 	mt7996_mcu_exit(dev);
1579 	mt7996_tx_token_put(dev);
1580 	mt7996_dma_cleanup(dev);
1581 	tasklet_disable(&dev->mt76.irq_tasklet);
1582 
1583 	mt76_free_device(&dev->mt76);
1584 }
1585