1 /*-
2 * Copyright (c) 2017 Adrian Chadd <adrian@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26 /*
27 * IEEE 802.11ac-2013 protocol support.
28 */
29
30 #include "opt_inet.h"
31 #include "opt_wlan.h"
32
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/systm.h>
37 #include <sys/endian.h>
38
39 #include <sys/socket.h>
40
41 #include <net/if.h>
42 #include <net/if_var.h>
43 #include <net/if_media.h>
44 #include <net/ethernet.h>
45
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_action.h>
48 #include <net80211/ieee80211_input.h>
49 #include <net80211/ieee80211_vht.h>
50
51 #define ADDSHORT(frm, v) do { \
52 frm[0] = (v) & 0xff; \
53 frm[1] = (v) >> 8; \
54 frm += 2; \
55 } while (0)
56 #define ADDWORD(frm, v) do { \
57 frm[0] = (v) & 0xff; \
58 frm[1] = ((v) >> 8) & 0xff; \
59 frm[2] = ((v) >> 16) & 0xff; \
60 frm[3] = ((v) >> 24) & 0xff; \
61 frm += 4; \
62 } while (0)
63
64 /*
65 * Immediate TODO:
66 *
67 * + handle WLAN_ACTION_VHT_OPMODE_NOTIF and other VHT action frames
68 * + ensure vhtinfo/vhtcap parameters correctly use the negotiated
69 * capabilities and ratesets
70 * + group ID management operation
71 */
72
73 /*
74 * XXX TODO: handle WLAN_ACTION_VHT_OPMODE_NOTIF
75 *
76 * Look at mac80211/vht.c:ieee80211_vht_handle_opmode() for further details.
77 */
78
79 static int
vht_recv_action_placeholder(struct ieee80211_node * ni,const struct ieee80211_frame * wh,const uint8_t * frm,const uint8_t * efrm)80 vht_recv_action_placeholder(struct ieee80211_node *ni,
81 const struct ieee80211_frame *wh,
82 const uint8_t *frm, const uint8_t *efrm)
83 {
84
85 #ifdef IEEE80211_DEBUG
86 ieee80211_note(ni->ni_vap, "%s: called; fc=0x%.2x/0x%.2x",
87 __func__, wh->i_fc[0], wh->i_fc[1]);
88 #endif
89 return (0);
90 }
91
92 static int
vht_send_action_placeholder(struct ieee80211_node * ni,int category,int action,void * arg0)93 vht_send_action_placeholder(struct ieee80211_node *ni,
94 int category, int action, void *arg0)
95 {
96
97 #ifdef IEEE80211_DEBUG
98 ieee80211_note(ni->ni_vap, "%s: called; category=%d, action=%d",
99 __func__, category, action);
100 #endif
101 return (EINVAL);
102 }
103
104 static void
ieee80211_vht_init(void)105 ieee80211_vht_init(void)
106 {
107
108 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT,
109 WLAN_ACTION_VHT_COMPRESSED_BF, vht_recv_action_placeholder);
110 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT,
111 WLAN_ACTION_VHT_GROUPID_MGMT, vht_recv_action_placeholder);
112 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT,
113 WLAN_ACTION_VHT_OPMODE_NOTIF, vht_recv_action_placeholder);
114
115 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT,
116 WLAN_ACTION_VHT_COMPRESSED_BF, vht_send_action_placeholder);
117 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT,
118 WLAN_ACTION_VHT_GROUPID_MGMT, vht_send_action_placeholder);
119 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT,
120 WLAN_ACTION_VHT_OPMODE_NOTIF, vht_send_action_placeholder);
121 }
122
123 SYSINIT(wlan_vht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_vht_init, NULL);
124
125 void
ieee80211_vht_attach(struct ieee80211com * ic)126 ieee80211_vht_attach(struct ieee80211com *ic)
127 {
128 }
129
130 void
ieee80211_vht_detach(struct ieee80211com * ic)131 ieee80211_vht_detach(struct ieee80211com *ic)
132 {
133 }
134
135 void
ieee80211_vht_vattach(struct ieee80211vap * vap)136 ieee80211_vht_vattach(struct ieee80211vap *vap)
137 {
138 struct ieee80211com *ic = vap->iv_ic;
139
140 if (! IEEE80211_CONF_VHT(ic))
141 return;
142
143 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
144 vap->iv_vhtextcaps = ic->ic_vhtextcaps;
145
146 /* XXX assume VHT80 support; should really check vhtcaps */
147 vap->iv_vht_flags =
148 IEEE80211_FVHT_VHT
149 | IEEE80211_FVHT_USEVHT40
150 | IEEE80211_FVHT_USEVHT80;
151 if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info))
152 vap->iv_vht_flags |= IEEE80211_FVHT_USEVHT160;
153 if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info))
154 vap->iv_vht_flags |= IEEE80211_FVHT_USEVHT80P80;
155
156 memcpy(&vap->iv_vht_cap.supp_mcs, &ic->ic_vht_cap.supp_mcs,
157 sizeof(struct ieee80211_vht_mcs_info));
158 }
159
160 void
ieee80211_vht_vdetach(struct ieee80211vap * vap)161 ieee80211_vht_vdetach(struct ieee80211vap *vap)
162 {
163 }
164
165 #if 0
166 static void
167 vht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
168 {
169 }
170 #endif
171
172 static int
vht_mcs_to_num(int m)173 vht_mcs_to_num(int m)
174 {
175
176 switch (m) {
177 case IEEE80211_VHT_MCS_SUPPORT_0_7:
178 return (7);
179 case IEEE80211_VHT_MCS_SUPPORT_0_8:
180 return (8);
181 case IEEE80211_VHT_MCS_SUPPORT_0_9:
182 return (9);
183 default:
184 return (0);
185 }
186 }
187
188 void
ieee80211_vht_announce(struct ieee80211com * ic)189 ieee80211_vht_announce(struct ieee80211com *ic)
190 {
191 int i, tx, rx;
192
193 if (! IEEE80211_CONF_VHT(ic))
194 return;
195
196 /* Channel width */
197 ic_printf(ic, "[VHT] Channel Widths: 20MHz, 40MHz, 80MHz%s%s\n",
198 (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(ic->ic_vht_cap.vht_cap_info)) ?
199 ", 160MHz" : "",
200 (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(ic->ic_vht_cap.vht_cap_info)) ?
201 ", 80+80MHz" : "");
202 /* Features */
203 ic_printf(ic, "[VHT] Features: %b\n", ic->ic_vht_cap.vht_cap_info,
204 IEEE80211_VHTCAP_BITS);
205
206 /* For now, just 5GHz VHT. Worry about 2GHz VHT later */
207 for (i = 0; i < 8; i++) {
208 /* Each stream is 2 bits */
209 tx = (ic->ic_vht_cap.supp_mcs.tx_mcs_map >> (2*i)) & 0x3;
210 rx = (ic->ic_vht_cap.supp_mcs.rx_mcs_map >> (2*i)) & 0x3;
211 if (tx == 3 && rx == 3)
212 continue;
213 ic_printf(ic, "[VHT] NSS %d: TX MCS 0..%d, RX MCS 0..%d\n",
214 i + 1, vht_mcs_to_num(tx), vht_mcs_to_num(rx));
215 }
216 }
217
218 void
ieee80211_vht_node_init(struct ieee80211_node * ni)219 ieee80211_vht_node_init(struct ieee80211_node *ni)
220 {
221
222 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
223 "%s: called", __func__);
224 ni->ni_flags |= IEEE80211_NODE_VHT;
225 }
226
227 void
ieee80211_vht_node_cleanup(struct ieee80211_node * ni)228 ieee80211_vht_node_cleanup(struct ieee80211_node *ni)
229 {
230
231 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
232 "%s: called", __func__);
233 ni->ni_flags &= ~IEEE80211_NODE_VHT;
234 ni->ni_vhtcap = 0;
235 bzero(&ni->ni_vht_mcsinfo, sizeof(struct ieee80211_vht_mcs_info));
236 }
237
238 /*
239 * Parse an 802.11ac VHT operation IE.
240 *
241 * 802.11-2020 9.4.2.158 (VHT Operation element)
242 */
243 void
ieee80211_parse_vhtopmode(struct ieee80211_node * ni,const uint8_t * ie)244 ieee80211_parse_vhtopmode(struct ieee80211_node *ni, const uint8_t *ie)
245 {
246 /* vht operation */
247 ni->ni_vht_chanwidth = ie[2];
248 ni->ni_vht_chan1 = ie[3];
249 ni->ni_vht_chan2 = ie[4];
250 ni->ni_vht_basicmcs = le16dec(ie + 5);
251
252 #if 0
253 printf("%s: chan1=%d, chan2=%d, chanwidth=%d, basicmcs=0x%04x\n",
254 __func__, ni->ni_vht_chan1, ni->ni_vht_chan2, ni->ni_vht_chanwidth,
255 ni->ni_vht_basicmcs);
256 #endif
257 }
258
259 /*
260 * Parse an 802.11ac VHT capability IE.
261 *
262 * 802.11-2020 9.4.2.157 (VHT Capabilities element)
263 */
264 void
ieee80211_parse_vhtcap(struct ieee80211_node * ni,const uint8_t * ie)265 ieee80211_parse_vhtcap(struct ieee80211_node *ni, const uint8_t *ie)
266 {
267
268 /* vht capability */
269 ni->ni_vhtcap = le32dec(ie + 2);
270
271 /* suppmcs */
272 ni->ni_vht_mcsinfo.rx_mcs_map = le16dec(ie + 6);
273 ni->ni_vht_mcsinfo.rx_highest = le16dec(ie + 8);
274 ni->ni_vht_mcsinfo.tx_mcs_map = le16dec(ie + 10);
275 ni->ni_vht_mcsinfo.tx_highest = le16dec(ie + 12);
276 }
277
278 int
ieee80211_vht_updateparams(struct ieee80211_node * ni,const uint8_t * vhtcap_ie,const uint8_t * vhtop_ie)279 ieee80211_vht_updateparams(struct ieee80211_node *ni,
280 const uint8_t *vhtcap_ie,
281 const uint8_t *vhtop_ie)
282 {
283
284 //printf("%s: called\n", __func__);
285
286 ieee80211_parse_vhtcap(ni, vhtcap_ie);
287 ieee80211_parse_vhtopmode(ni, vhtop_ie);
288 return (0);
289 }
290
291 /**
292 * @brief calculate the supported MCS rates for this node
293 *
294 * This is called once a node has finished association /
295 * joined a BSS. The vhtcap / vhtop IEs are from the
296 * peer. The transmit rate tables need to be combined
297 * together to setup the list of available rates.
298 *
299 * This must be called after the ieee80211_node VHT fields
300 * have been parsed / populated by either ieee80211_vht_updateparams() or
301 * ieee80211_parse_vhtcap(),
302 *
303 * This does not take into account the channel bandwidth,
304 * which (a) may change during operation, and (b) depends
305 * upon packet to packet rate transmission selection.
306 * There are various rate combinations which are not
307 * available in various channel widths and those will
308 * need to be masked off separately.
309 *
310 * (See 802.11-2020 21.5 Parameters for VHT-MCSs for the
311 * tables and supported rates.)
312 *
313 * ALSO: i need to do some filtering based on the HT set too.
314 * (That should be done here too, and in the negotiation, sigh.)
315 * (See 802.11-2016 10.7.12.3 Additional rate selection constraints
316 * for VHT PPDUs)
317 *
318 * @param ni struct ieee80211_node to configure
319 */
320 void
ieee80211_setup_vht_rates(struct ieee80211_node * ni)321 ieee80211_setup_vht_rates(struct ieee80211_node *ni)
322 {
323 struct ieee80211vap *vap = ni->ni_vap;
324 uint32_t val, val1, val2;
325 uint16_t tx_mcs_map = 0;
326 int i;
327
328 /*
329 * Merge our tx_mcs_map with the peer rx_mcs_map to determine what
330 * can be actually transmitted to the peer.
331 */
332
333 for (i = 0; i < 8; i++) {
334 /*
335 * Merge the two together; remember that 0..2 is in order
336 * of increasing MCS support, but 3 equals
337 * IEEE80211_VHT_MCS_NOT_SUPPORTED so must "win".
338 */
339 val1 = (vap->iv_vht_cap.supp_mcs.tx_mcs_map >> (i*2)) & 0x3;
340 val2 = (ni->ni_vht_mcsinfo.rx_mcs_map >> (i*2)) & 0x3;
341 val = MIN(val1, val2);
342 if (val1 == IEEE80211_VHT_MCS_NOT_SUPPORTED ||
343 val2 == IEEE80211_VHT_MCS_NOT_SUPPORTED)
344 val = IEEE80211_VHT_MCS_NOT_SUPPORTED;
345 tx_mcs_map |= (val << (i*2));
346 }
347
348 /* Store the TX MCS map somewhere in the node that can be used */
349 ni->ni_vht_tx_map = tx_mcs_map;
350 }
351
352 void
ieee80211_vht_timeout(struct ieee80211vap * vap)353 ieee80211_vht_timeout(struct ieee80211vap *vap)
354 {
355 }
356
357 void
ieee80211_vht_node_join(struct ieee80211_node * ni)358 ieee80211_vht_node_join(struct ieee80211_node *ni)
359 {
360
361 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
362 "%s: called", __func__);
363 }
364
365 void
ieee80211_vht_node_leave(struct ieee80211_node * ni)366 ieee80211_vht_node_leave(struct ieee80211_node *ni)
367 {
368
369 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
370 "%s: called", __func__);
371 }
372
373 /*
374 * Calculate the VHTCAP IE for a given node.
375 *
376 * This includes calculating the capability intersection based on the
377 * current operating mode and intersection of the TX/RX MCS maps.
378 *
379 * The standard only makes it clear about MCS rate negotiation
380 * and MCS basic rates (which must be a subset of the general
381 * negotiated rates). It doesn't make it clear that the AP should
382 * figure out the minimum functional overlap with the STA and
383 * support that.
384 *
385 * Note: this is in host order, not in 802.11 endian order.
386 *
387 * TODO: ensure I re-read 9.7.11 Rate Selection for VHT STAs.
388 *
389 * TODO: investigate what we should negotiate for MU-MIMO beamforming
390 * options.
391 *
392 * opmode is '1' for "vhtcap as if I'm a STA", 0 otherwise.
393 */
394 void
ieee80211_vht_get_vhtcap_ie(struct ieee80211_node * ni,struct ieee80211_vht_cap * vhtcap,int opmode)395 ieee80211_vht_get_vhtcap_ie(struct ieee80211_node *ni,
396 struct ieee80211_vht_cap *vhtcap, int opmode)
397 {
398 struct ieee80211vap *vap = ni->ni_vap;
399 // struct ieee80211com *ic = vap->iv_ic;
400 uint32_t val, val1, val2;
401 uint32_t new_vhtcap;
402 int i;
403
404 /*
405 * Capabilities - it depends on whether we are a station
406 * or not.
407 */
408 new_vhtcap = 0;
409
410 /*
411 * Station - use our desired configuration based on
412 * local config, local device bits and the already-learnt
413 * vhtcap/vhtinfo IE in the node.
414 */
415
416 /* Limit MPDU size to the smaller of the two */
417 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
418 IEEE80211_VHTCAP_MAX_MPDU_MASK);
419 if (opmode == 1) {
420 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
421 IEEE80211_VHTCAP_MAX_MPDU_MASK);
422 }
423 val = MIN(val1, val2);
424 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_MAX_MPDU_MASK);
425
426 /* Limit supp channel config */
427 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
428 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK);
429 if (opmode == 1) {
430 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
431 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK);
432 }
433 if ((val2 == 2) &&
434 ((vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80) == 0))
435 val2 = 1;
436 if ((val2 == 1) &&
437 ((vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160) == 0))
438 val2 = 0;
439 val = MIN(val1, val2);
440 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
441 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK);
442
443 /* RX LDPC */
444 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
445 IEEE80211_VHTCAP_RXLDPC);
446 if (opmode == 1) {
447 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
448 IEEE80211_VHTCAP_RXLDPC);
449 }
450 val = MIN(val1, val2);
451 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXLDPC);
452
453 /* Short-GI 80 */
454 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
455 IEEE80211_VHTCAP_SHORT_GI_80);
456 if (opmode == 1) {
457 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
458 IEEE80211_VHTCAP_SHORT_GI_80);
459 }
460 val = MIN(val1, val2);
461 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_80);
462
463 /* Short-GI 160 */
464 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
465 IEEE80211_VHTCAP_SHORT_GI_160);
466 if (opmode == 1) {
467 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
468 IEEE80211_VHTCAP_SHORT_GI_160);
469 }
470 val = MIN(val1, val2);
471 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_160);
472
473 /*
474 * STBC is slightly more complicated.
475 *
476 * In non-STA mode, we just announce our capabilities and that
477 * is that.
478 *
479 * In STA mode, we should calculate our capabilities based on
480 * local capabilities /and/ what the remote says. So:
481 *
482 * + Only TX STBC if we support it and the remote supports RX STBC;
483 * + Only announce RX STBC if we support it and the remote supports
484 * TX STBC;
485 * + RX STBC should be the minimum of local and remote RX STBC;
486 */
487
488 /* TX STBC */
489 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
490 IEEE80211_VHTCAP_TXSTBC);
491 if (opmode == 1) {
492 /* STA mode - enable it only if node RXSTBC is non-zero */
493 val2 = !! _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
494 IEEE80211_VHTCAP_RXSTBC_MASK);
495 }
496 val = MIN(val1, val2);
497 if ((vap->iv_vht_flags & IEEE80211_FVHT_STBC_TX) == 0)
498 val = 0;
499 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_TXSTBC);
500
501 /* RX STBC1..4 */
502 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
503 IEEE80211_VHTCAP_RXSTBC_MASK);
504 if (opmode == 1) {
505 /* STA mode - enable it only if node TXSTBC is non-zero */
506 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
507 IEEE80211_VHTCAP_TXSTBC);
508 }
509 val = MIN(val1, val2);
510 if ((vap->iv_vht_flags & IEEE80211_FVHT_STBC_RX) == 0)
511 val = 0;
512 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXSTBC_MASK);
513
514 /*
515 * Finally - if RXSTBC is 0, then don't enable TXSTBC.
516 * Strictly speaking a device can TXSTBC and not RXSTBC, but
517 * it would be silly.
518 */
519 if (val == 0)
520 new_vhtcap &= ~IEEE80211_VHTCAP_TXSTBC;
521
522 /*
523 * Some of these fields require other fields to exist.
524 * So before using it, the parent field needs to be checked
525 * otherwise the overridden value may be wrong.
526 *
527 * For example, if SU beamformee is set to 0, then BF STS
528 * needs to be 0.
529 */
530
531 /* SU Beamformer capable */
532 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
533 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE);
534 if (opmode == 1) {
535 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
536 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE);
537 }
538 val = MIN(val1, val2);
539 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
540 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE);
541
542 /* SU Beamformee capable */
543 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
544 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE);
545 if (opmode == 1) {
546 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
547 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE);
548 }
549 val = MIN(val1, val2);
550 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
551 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE);
552
553 /* Beamformee STS capability - only if SU beamformee capable */
554 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
555 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK);
556 if (opmode == 1) {
557 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
558 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK);
559 }
560 val = MIN(val1, val2);
561 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0)
562 val = 0;
563 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
564 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK);
565
566 /* Sounding dimensions - only if SU beamformer capable */
567 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
568 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK);
569 if (opmode == 1)
570 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
571 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK);
572 val = MIN(val1, val2);
573 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0)
574 val = 0;
575 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
576 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK);
577
578 /*
579 * MU Beamformer capable - only if SU BFF capable, MU BFF capable
580 * and STA (not AP)
581 */
582 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
583 IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE);
584 if (opmode == 1)
585 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
586 IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE);
587 val = MIN(val1, val2);
588 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0)
589 val = 0;
590 if (opmode != 1) /* Only enable for STA mode */
591 val = 0;
592 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
593 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE);
594
595 /*
596 * MU Beamformee capable - only if SU BFE capable, MU BFE capable
597 * and AP (not STA)
598 */
599 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
600 IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE);
601 if (opmode == 1)
602 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
603 IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE);
604 val = MIN(val1, val2);
605 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0)
606 val = 0;
607 if (opmode != 0) /* Only enable for AP mode */
608 val = 0;
609 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
610 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE);
611
612 /* VHT TXOP PS */
613 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
614 IEEE80211_VHTCAP_VHT_TXOP_PS);
615 if (opmode == 1)
616 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
617 IEEE80211_VHTCAP_VHT_TXOP_PS);
618 val = MIN(val1, val2);
619 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_VHT_TXOP_PS);
620
621 /* HTC_VHT */
622 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
623 IEEE80211_VHTCAP_HTC_VHT);
624 if (opmode == 1)
625 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
626 IEEE80211_VHTCAP_HTC_VHT);
627 val = MIN(val1, val2);
628 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_HTC_VHT);
629
630 /* A-MPDU length max */
631 /* XXX TODO: we need a userland config knob for this */
632 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
633 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
634 if (opmode == 1)
635 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
636 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
637 val = MIN(val1, val2);
638 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
639 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
640
641 /*
642 * Link adaptation is only valid if HTC-VHT capable is 1.
643 * Otherwise, always set it to 0.
644 */
645 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
646 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK);
647 if (opmode == 1)
648 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
649 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK);
650 val = MIN(val1, val2);
651 if ((new_vhtcap & IEEE80211_VHTCAP_HTC_VHT) == 0)
652 val = 0;
653 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
654 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK);
655
656 /*
657 * The following two options are 0 if the pattern may change, 1 if it
658 * does not change. So, downgrade to the higher value.
659 */
660
661 /* RX antenna pattern */
662 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
663 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN);
664 if (opmode == 1)
665 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
666 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN);
667 val = MAX(val1, val2);
668 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
669 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN);
670
671 /* TX antenna pattern */
672 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info,
673 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN);
674 if (opmode == 1)
675 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap,
676 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN);
677 val = MAX(val1, val2);
678 new_vhtcap |= _IEEE80211_SHIFTMASK(val,
679 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN);
680
681 /*
682 * MCS set - again, we announce what we want to use
683 * based on configuration, device capabilities and
684 * already-learnt vhtcap/vhtinfo IE information.
685 */
686
687 /* MCS set - start with whatever the device supports */
688 vhtcap->supp_mcs.rx_mcs_map = vap->iv_vht_cap.supp_mcs.rx_mcs_map;
689 vhtcap->supp_mcs.rx_highest = 0;
690 vhtcap->supp_mcs.tx_mcs_map = vap->iv_vht_cap.supp_mcs.tx_mcs_map;
691 vhtcap->supp_mcs.tx_highest = 0;
692
693 vhtcap->vht_cap_info = new_vhtcap;
694
695 /*
696 * Now, if we're a STA, mask off whatever the AP doesn't support.
697 * Ie, we continue to state we can receive whatever we can do,
698 * but we only announce that we will transmit rates that meet
699 * the AP requirement.
700 *
701 * Note: 0 - MCS0..7; 1 - MCS0..8; 2 - MCS0..9; 3 = not supported.
702 * We can't just use MIN() because '3' means "no", so special case it.
703 */
704 if (opmode) {
705 for (i = 0; i < 8; i++) {
706 val1 = (vhtcap->supp_mcs.tx_mcs_map >> (i*2)) & 0x3;
707 val2 = (ni->ni_vht_mcsinfo.tx_mcs_map >> (i*2)) & 0x3;
708 val = MIN(val1, val2);
709 if (val1 == 3 || val2 == 3)
710 val = 3;
711 vhtcap->supp_mcs.tx_mcs_map &= ~(0x3 << (i*2));
712 vhtcap->supp_mcs.tx_mcs_map |= (val << (i*2));
713 }
714 }
715 }
716
717 /*
718 * Add a VHTCAP field.
719 *
720 * If in station mode, we announce what we would like our
721 * desired configuration to be.
722 *
723 * Else, we announce our capabilities based on our current
724 * configuration.
725 */
726 uint8_t *
ieee80211_add_vhtcap(uint8_t * frm,struct ieee80211_node * ni)727 ieee80211_add_vhtcap(uint8_t *frm, struct ieee80211_node *ni)
728 {
729 struct ieee80211_vht_cap vhtcap;
730
731 ieee80211_vht_get_vhtcap_ie(ni, &vhtcap, 1);
732
733 frm[0] = IEEE80211_ELEMID_VHT_CAP;
734 frm[1] = sizeof(vhtcap);
735 frm += 2;
736
737 /* 32-bit VHT capability */
738 ADDWORD(frm, vhtcap.vht_cap_info);
739
740 /* suppmcs */
741 ADDSHORT(frm, vhtcap.supp_mcs.rx_mcs_map);
742 ADDSHORT(frm, vhtcap.supp_mcs.rx_highest);
743 ADDSHORT(frm, vhtcap.supp_mcs.tx_mcs_map);
744 ADDSHORT(frm, vhtcap.supp_mcs.tx_highest);
745
746 return (frm);
747 }
748
749 /*
750 * Non-associated probe requests. Add VHT capabilities based on
751 * the current channel configuration. No BSS yet.
752 */
753 uint8_t *
ieee80211_add_vhtcap_ch(uint8_t * frm,struct ieee80211vap * vap,struct ieee80211_channel * c)754 ieee80211_add_vhtcap_ch(uint8_t *frm, struct ieee80211vap *vap,
755 struct ieee80211_channel *c)
756 {
757 struct ieee80211_vht_cap *vhtcap;
758
759 memset(frm, 0, 2 + sizeof(*vhtcap));
760 frm[0] = IEEE80211_ELEMID_VHT_CAP;
761 frm[1] = sizeof(*vhtcap);
762 frm += 2;
763
764 /* 32-bit VHT capability */
765 ADDWORD(frm, vap->iv_vht_cap.vht_cap_info);
766
767 /* supp_mcs */
768 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.rx_mcs_map);
769 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.rx_highest);
770 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.tx_mcs_map);
771 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.tx_highest);
772
773 return (frm);
774 }
775
776 static uint8_t
ieee80211_vht_get_chwidth_ie(struct ieee80211_channel * c)777 ieee80211_vht_get_chwidth_ie(struct ieee80211_channel *c)
778 {
779
780 /*
781 * XXX TODO: look at the node configuration as
782 * well?
783 */
784
785 if (IEEE80211_IS_CHAN_VHT80P80(c))
786 return IEEE80211_VHT_CHANWIDTH_80P80MHZ;
787 if (IEEE80211_IS_CHAN_VHT160(c))
788 return IEEE80211_VHT_CHANWIDTH_160MHZ;
789 if (IEEE80211_IS_CHAN_VHT80(c))
790 return IEEE80211_VHT_CHANWIDTH_80MHZ;
791 if (IEEE80211_IS_CHAN_VHT40(c))
792 return IEEE80211_VHT_CHANWIDTH_USE_HT;
793 if (IEEE80211_IS_CHAN_VHT20(c))
794 return IEEE80211_VHT_CHANWIDTH_USE_HT;
795
796 /* We shouldn't get here */
797 printf("%s: called on a non-VHT channel (freq=%d, flags=0x%08x\n",
798 __func__, (int) c->ic_freq, c->ic_flags);
799 return IEEE80211_VHT_CHANWIDTH_USE_HT;
800 }
801
802 /*
803 * Note: this just uses the current channel information;
804 * it doesn't use the node info after parsing.
805 *
806 * XXX TODO: need to make the basic MCS set configurable.
807 * XXX TODO: read 802.11-2013 to determine what to set
808 * chwidth to when scanning. I have a feeling
809 * it isn't involved in scanning and we shouldn't
810 * be sending it; and I don't yet know what to set
811 * it to for IBSS or hostap where the peer may be
812 * a completely different channel width to us.
813 */
814 uint8_t *
ieee80211_add_vhtinfo(uint8_t * frm,struct ieee80211_node * ni)815 ieee80211_add_vhtinfo(uint8_t *frm, struct ieee80211_node *ni)
816 {
817
818 frm[0] = IEEE80211_ELEMID_VHT_OPMODE;
819 frm[1] = sizeof(struct ieee80211_vht_operation);
820 frm += 2;
821
822 /* 8-bit chanwidth */
823 *frm++ = ieee80211_vht_get_chwidth_ie(ni->ni_chan);
824
825 /* 8-bit freq1 */
826 *frm++ = ni->ni_chan->ic_vht_ch_freq1;
827
828 /* 8-bit freq2 */
829 *frm++ = ni->ni_chan->ic_vht_ch_freq2;
830
831 /* 16-bit basic MCS set - just MCS0..7 for NSS=1 for now */
832 ADDSHORT(frm, 0xfffc);
833
834 return (frm);
835 }
836
837 void
ieee80211_vht_update_cap(struct ieee80211_node * ni,const uint8_t * vhtcap_ie,const uint8_t * vhtop_ie)838 ieee80211_vht_update_cap(struct ieee80211_node *ni, const uint8_t *vhtcap_ie,
839 const uint8_t *vhtop_ie)
840 {
841
842 ieee80211_parse_vhtcap(ni, vhtcap_ie);
843 ieee80211_parse_vhtopmode(ni, vhtop_ie);
844 }
845
846 static struct ieee80211_channel *
findvhtchan(struct ieee80211com * ic,struct ieee80211_channel * c,int vhtflags)847 findvhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int vhtflags)
848 {
849
850 return (ieee80211_find_channel(ic, c->ic_freq,
851 (c->ic_flags & ~IEEE80211_CHAN_VHT) | vhtflags));
852 }
853
854 /*
855 * Handle channel promotion to VHT, similar to ieee80211_ht_adjust_channel().
856 */
857 struct ieee80211_channel *
ieee80211_vht_adjust_channel(struct ieee80211com * ic,struct ieee80211_channel * chan,int flags)858 ieee80211_vht_adjust_channel(struct ieee80211com *ic,
859 struct ieee80211_channel *chan, int flags)
860 {
861 struct ieee80211_channel *c;
862
863 /* First case - handle channel demotion - if VHT isn't set */
864 if ((flags & IEEE80211_FVHT_MASK) == 0) {
865 #if 0
866 printf("%s: demoting channel %d/0x%08x\n", __func__,
867 chan->ic_ieee, chan->ic_flags);
868 #endif
869 c = ieee80211_find_channel(ic, chan->ic_freq,
870 chan->ic_flags & ~IEEE80211_CHAN_VHT);
871 if (c == NULL)
872 c = chan;
873 #if 0
874 printf("%s: .. to %d/0x%08x\n", __func__,
875 c->ic_ieee, c->ic_flags);
876 #endif
877 return (c);
878 }
879
880 /*
881 * We can upgrade to VHT - attempt to do so
882 *
883 * Note: we don't clear the HT flags, these are the hints
884 * for HT40U/HT40D when selecting VHT40 or larger channels.
885 */
886 c = NULL;
887 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT160))
888 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT160);
889
890 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80P80))
891 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80P80);
892
893 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80))
894 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80);
895
896 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40))
897 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40U);
898 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40))
899 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40D);
900 /*
901 * If we get here, VHT20 is always possible because we checked
902 * for IEEE80211_FVHT_VHT above.
903 */
904 if (c == NULL)
905 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT20);
906
907 if (c != NULL)
908 chan = c;
909
910 #if 0
911 printf("%s: selected %d/0x%08x\n", __func__, c->ic_ieee, c->ic_flags);
912 #endif
913 return (chan);
914 }
915
916 /*
917 * Calculate the VHT operation IE for a given node.
918 *
919 * This includes calculating the suitable channel width/parameters
920 * and basic MCS set.
921 *
922 * TODO: ensure I read 9.7.11 Rate Selection for VHT STAs.
923 * TODO: ensure I read 10.39.7 - BSS Basic VHT-MCS and NSS set operation.
924 */
925 void
ieee80211_vht_get_vhtinfo_ie(struct ieee80211_node * ni,struct ieee80211_vht_operation * vhtop,int opmode)926 ieee80211_vht_get_vhtinfo_ie(struct ieee80211_node *ni,
927 struct ieee80211_vht_operation *vhtop, int opmode)
928 {
929 printf("%s: called; TODO!\n", __func__);
930 }
931
932 /*
933 * Return true if VHT rates can be used for the given node.
934 */
935 bool
ieee80211_vht_check_tx_vht(const struct ieee80211_node * ni)936 ieee80211_vht_check_tx_vht(const struct ieee80211_node *ni)
937 {
938 const struct ieee80211vap *vap;
939 const struct ieee80211_channel *bss_chan;
940
941 if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC ||
942 ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL)
943 return (false);
944
945 vap = ni->ni_vap;
946 bss_chan = vap->iv_bss->ni_chan;
947
948 if (bss_chan == IEEE80211_CHAN_ANYC)
949 return (false);
950
951 return (IEEE80211_IS_CHAN_VHT(ni->ni_chan));
952 }
953
954 /*
955 * Return true if VHT40 rates can be transmitted to the given node.
956 *
957 * This verifies that the BSS is VHT40 capable and the current
958 * node channel width is 40MHz.
959 */
960 static bool
ieee80211_vht_check_tx_vht40(const struct ieee80211_node * ni)961 ieee80211_vht_check_tx_vht40(const struct ieee80211_node *ni)
962 {
963 struct ieee80211vap *vap;
964 struct ieee80211_channel *bss_chan;
965
966 if (!ieee80211_vht_check_tx_vht(ni))
967 return (false);
968
969 vap = ni->ni_vap;
970 bss_chan = vap->iv_bss->ni_chan;
971
972 return (IEEE80211_IS_CHAN_VHT40(bss_chan) &&
973 IEEE80211_IS_CHAN_VHT40(ni->ni_chan) &&
974 (ni->ni_chw == IEEE80211_STA_RX_BW_40));
975 }
976
977 /*
978 * Return true if VHT80 rates can be transmitted to the given node.
979 *
980 * This verifies that the BSS is VHT80 capable and the current
981 * node channel width is 80MHz.
982 */
983 static bool
ieee80211_vht_check_tx_vht80(const struct ieee80211_node * ni)984 ieee80211_vht_check_tx_vht80(const struct ieee80211_node *ni)
985 {
986 struct ieee80211vap *vap;
987 struct ieee80211_channel *bss_chan;
988
989 if (!ieee80211_vht_check_tx_vht(ni))
990 return (false);
991
992 vap = ni->ni_vap;
993 bss_chan = vap->iv_bss->ni_chan;
994
995 return (IEEE80211_IS_CHAN_VHT80(bss_chan) &&
996 IEEE80211_IS_CHAN_VHT80(ni->ni_chan) &&
997 (ni->ni_chw == IEEE80211_STA_RX_BW_80));
998 }
999
1000 /*
1001 * Return true if VHT 160 rates can be transmitted to the given node.
1002 *
1003 * This verifies that the BSS is VHT80+80 or VHT160 capable and the current
1004 * node channel width is 80+80MHz or 160MHz.
1005 */
1006 static bool
ieee80211_vht_check_tx_vht160(const struct ieee80211_node * ni)1007 ieee80211_vht_check_tx_vht160(const struct ieee80211_node *ni)
1008 {
1009 struct ieee80211vap *vap;
1010 struct ieee80211_channel *bss_chan;
1011
1012 if (!ieee80211_vht_check_tx_vht(ni))
1013 return (false);
1014
1015 vap = ni->ni_vap;
1016 bss_chan = vap->iv_bss->ni_chan;
1017
1018 if (ni->ni_chw != IEEE80211_STA_RX_BW_160)
1019 return (false);
1020
1021 if (IEEE80211_IS_CHAN_VHT160(bss_chan) &&
1022 IEEE80211_IS_CHAN_VHT160(ni->ni_chan))
1023 return (true);
1024
1025 if (IEEE80211_IS_CHAN_VHT80P80(bss_chan) &&
1026 IEEE80211_IS_CHAN_VHT80P80(ni->ni_chan))
1027 return (true);
1028
1029 return (false);
1030 }
1031
1032 /**
1033 * @brief Check if the given transmit bandwidth is available to the given node
1034 *
1035 * This checks that the node and BSS both allow the given bandwidth,
1036 * and that the current node bandwidth (which can dynamically change)
1037 * also allows said bandwidth.
1038 *
1039 * This relies on the channels having the flags for the narrower
1040 * channels as well - eg a VHT160 channel will have the CHAN_VHT80,
1041 * CHAN_VHT40, CHAN_VHT flags also set.
1042 *
1043 * @param ni the ieee80211_node to check
1044 * @param bw the required bandwidth to check
1045 *
1046 * @returns true if it is allowed, false otherwise
1047 */
1048 bool
ieee80211_vht_check_tx_bw(const struct ieee80211_node * ni,enum ieee80211_sta_rx_bw bw)1049 ieee80211_vht_check_tx_bw(const struct ieee80211_node *ni,
1050 enum ieee80211_sta_rx_bw bw)
1051 {
1052
1053 switch (bw) {
1054 case IEEE80211_STA_RX_BW_20:
1055 return (ieee80211_vht_check_tx_vht(ni));
1056 case IEEE80211_STA_RX_BW_40:
1057 return (ieee80211_vht_check_tx_vht40(ni));
1058 case IEEE80211_STA_RX_BW_80:
1059 return (ieee80211_vht_check_tx_vht80(ni));
1060 case IEEE80211_STA_RX_BW_160:
1061 return (ieee80211_vht_check_tx_vht160(ni));
1062 case IEEE80211_STA_RX_BW_320:
1063 return (false);
1064 default:
1065 return (false);
1066 }
1067 }
1068
1069 /**
1070 * @brief Check if the given VHT bw/nss/mcs combination is valid
1071 * for the give node.
1072 *
1073 * This checks whether the given VHT bw/nss/mcs is valid based on
1074 * the negotiated rate mask in the node.
1075 *
1076 * @param ni struct ieee80211_node node to check
1077 * @param bw channel bandwidth to check
1078 * @param nss NSS
1079 * @param mcs MCS
1080 * @returns True if this combination is available, false otherwise.
1081 */
1082 bool
ieee80211_vht_node_check_tx_valid_mcs(const struct ieee80211_node * ni,enum ieee80211_sta_rx_bw bw,uint8_t nss,uint8_t mcs)1083 ieee80211_vht_node_check_tx_valid_mcs(const struct ieee80211_node *ni,
1084 enum ieee80211_sta_rx_bw bw, uint8_t nss, uint8_t mcs)
1085 {
1086 uint8_t mc;
1087
1088 /* Validate arguments */
1089 if (nss < 1 || nss > 8)
1090 return (false);
1091 if (mcs > 9)
1092 return (false);
1093
1094 /* Check our choice of rate is actually valid */
1095 if (!ieee80211_phy_vht_validate_mcs(bw, nss, mcs))
1096 return (false);
1097
1098 /*
1099 * Next, check if the MCS rate is available for the
1100 * given NSS.
1101 */
1102 mc = ni->ni_vht_tx_map >> (2*(nss-1)) & 0x3;
1103 switch (mc) {
1104 case IEEE80211_VHT_MCS_NOT_SUPPORTED:
1105 /* Not supported at this NSS */
1106 return (false);
1107 case IEEE80211_VHT_MCS_SUPPORT_0_9:
1108 return (mcs <= 9);
1109 case IEEE80211_VHT_MCS_SUPPORT_0_8:
1110 return (mcs <= 8);
1111 case IEEE80211_VHT_MCS_SUPPORT_0_7:
1112 return (mcs <= 7);
1113 default:
1114 return (false);
1115 }
1116 }
1117