1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 /*
31 * IEEE 802.11 generic handler
32 */
33 #include "opt_wlan.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 #include <sys/stdarg.h>
42
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_private.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 #include <net80211/ieee80211_vht.h>
58
59 #include <net/bpf.h>
60
61 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
62 [IEEE80211_MODE_AUTO] = "auto",
63 [IEEE80211_MODE_11A] = "11a",
64 [IEEE80211_MODE_11B] = "11b",
65 [IEEE80211_MODE_11G] = "11g",
66 [IEEE80211_MODE_FH] = "FH",
67 [IEEE80211_MODE_TURBO_A] = "turboA",
68 [IEEE80211_MODE_TURBO_G] = "turboG",
69 [IEEE80211_MODE_STURBO_A] = "sturboA",
70 [IEEE80211_MODE_HALF] = "half",
71 [IEEE80211_MODE_QUARTER] = "quarter",
72 [IEEE80211_MODE_11NA] = "11na",
73 [IEEE80211_MODE_11NG] = "11ng",
74 [IEEE80211_MODE_VHT_2GHZ] = "11acg",
75 [IEEE80211_MODE_VHT_5GHZ] = "11ac",
76 };
77 /* map ieee80211_opmode to the corresponding capability bit */
78 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
79 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS,
80 [IEEE80211_M_WDS] = IEEE80211_C_WDS,
81 [IEEE80211_M_STA] = IEEE80211_C_STA,
82 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO,
83 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP,
84 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR,
85 #ifdef IEEE80211_SUPPORT_MESH
86 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS,
87 #endif
88 };
89
90 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
91 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
92
93 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
94 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
95 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
96 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
97 static int ieee80211_media_setup(struct ieee80211com *ic,
98 struct ifmedia *media, int caps, int addsta,
99 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
100 static int media_status(enum ieee80211_opmode,
101 const struct ieee80211_channel *);
102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103
104 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
105
106 /*
107 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
108 */
109 #define B(r) ((r) | IEEE80211_RATE_BASIC)
110 static const struct ieee80211_rateset ieee80211_rateset_11a =
111 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
112 static const struct ieee80211_rateset ieee80211_rateset_half =
113 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
114 static const struct ieee80211_rateset ieee80211_rateset_quarter =
115 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
116 static const struct ieee80211_rateset ieee80211_rateset_11b =
117 { 4, { B(2), B(4), B(11), B(22) } };
118 /* NB: OFDM rates are handled specially based on mode */
119 static const struct ieee80211_rateset ieee80211_rateset_11g =
120 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
121 #undef B
122
123 static int set_vht_extchan(struct ieee80211_channel *c);
124
125 /*
126 * Fill in 802.11 available channel set, mark
127 * all available channels as active, and pick
128 * a default channel if not already specified.
129 */
130 void
ieee80211_chan_init(struct ieee80211com * ic)131 ieee80211_chan_init(struct ieee80211com *ic)
132 {
133 #define DEFAULTRATES(m, def) do { \
134 if (ic->ic_sup_rates[m].rs_nrates == 0) \
135 ic->ic_sup_rates[m] = def; \
136 } while (0)
137 struct ieee80211_channel *c;
138 int i;
139
140 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
141 ("invalid number of channels specified: %u", ic->ic_nchans));
142 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
143 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
144 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
145 for (i = 0; i < ic->ic_nchans; i++) {
146 c = &ic->ic_channels[i];
147 KASSERT(c->ic_flags != 0, ("channel with no flags"));
148 /*
149 * Help drivers that work only with frequencies by filling
150 * in IEEE channel #'s if not already calculated. Note this
151 * mimics similar work done in ieee80211_setregdomain when
152 * changing regulatory state.
153 */
154 if (c->ic_ieee == 0)
155 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
156
157 /*
158 * Setup the HT40/VHT40 upper/lower bits.
159 * The VHT80/... math is done elsewhere.
160 */
161 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
162 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
163 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
164 c->ic_flags);
165
166 /* Update VHT math */
167 /*
168 * XXX VHT again, note that this assumes VHT80/... channels
169 * are legit already.
170 */
171 set_vht_extchan(c);
172
173 /* default max tx power to max regulatory */
174 if (c->ic_maxpower == 0)
175 c->ic_maxpower = 2*c->ic_maxregpower;
176 setbit(ic->ic_chan_avail, c->ic_ieee);
177 /*
178 * Identify mode capabilities.
179 */
180 if (IEEE80211_IS_CHAN_A(c))
181 setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
182 if (IEEE80211_IS_CHAN_B(c))
183 setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
184 if (IEEE80211_IS_CHAN_ANYG(c))
185 setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
186 if (IEEE80211_IS_CHAN_FHSS(c))
187 setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
188 if (IEEE80211_IS_CHAN_108A(c))
189 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
190 if (IEEE80211_IS_CHAN_108G(c))
191 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
192 if (IEEE80211_IS_CHAN_ST(c))
193 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
194 if (IEEE80211_IS_CHAN_HALF(c))
195 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
196 if (IEEE80211_IS_CHAN_QUARTER(c))
197 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
198 if (IEEE80211_IS_CHAN_HTA(c))
199 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
200 if (IEEE80211_IS_CHAN_HTG(c))
201 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
202 if (IEEE80211_IS_CHAN_VHTA(c))
203 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
204 if (IEEE80211_IS_CHAN_VHTG(c))
205 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
206 }
207 /* initialize candidate channels to all available */
208 memcpy(ic->ic_chan_active, ic->ic_chan_avail,
209 sizeof(ic->ic_chan_avail));
210
211 /* sort channel table to allow lookup optimizations */
212 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
213
214 /* invalidate any previous state */
215 ic->ic_bsschan = IEEE80211_CHAN_ANYC;
216 ic->ic_prevchan = NULL;
217 ic->ic_csa_newchan = NULL;
218 /* arbitrarily pick the first channel */
219 ic->ic_curchan = &ic->ic_channels[0];
220 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
221
222 /* fillin well-known rate sets if driver has not specified */
223 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
224 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
225 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
226 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
227 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
228 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a);
229 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half);
230 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter);
231 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a);
232 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g);
233 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g);
234 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a);
235
236 /*
237 * Setup required information to fill the mcsset field, if driver did
238 * not. Assume a 2T2R setup for historic reasons.
239 */
240 if (ic->ic_rxstream == 0)
241 ic->ic_rxstream = 2;
242 if (ic->ic_txstream == 0)
243 ic->ic_txstream = 2;
244
245 ieee80211_init_suphtrates(ic);
246
247 /*
248 * Set auto mode to reset active channel state and any desired channel.
249 */
250 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
251 #undef DEFAULTRATES
252 }
253
254 static void
null_update_mcast(struct ieee80211com * ic)255 null_update_mcast(struct ieee80211com *ic)
256 {
257
258 ic_printf(ic, "need multicast update callback\n");
259 }
260
261 static void
null_update_promisc(struct ieee80211com * ic)262 null_update_promisc(struct ieee80211com *ic)
263 {
264
265 ic_printf(ic, "need promiscuous mode update callback\n");
266 }
267
268 static void
null_update_chw(struct ieee80211com * ic)269 null_update_chw(struct ieee80211com *ic)
270 {
271
272 ic_printf(ic, "%s: need callback\n", __func__);
273 }
274
275 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
276 static struct mtx ic_list_mtx;
277 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
278
279 static int
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)280 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
281 {
282 struct ieee80211com *ic;
283 struct sbuf sb;
284 char *sp;
285 int error;
286
287 error = sysctl_wire_old_buffer(req, 0);
288 if (error)
289 return (error);
290 sbuf_new_for_sysctl(&sb, NULL, 8, req);
291 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
292 sp = "";
293 mtx_lock(&ic_list_mtx);
294 LIST_FOREACH(ic, &ic_head, ic_next) {
295 sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
296 sp = " ";
297 }
298 mtx_unlock(&ic_list_mtx);
299 error = sbuf_finish(&sb);
300 sbuf_delete(&sb);
301 return (error);
302 }
303
304 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
305 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
306 sysctl_ieee80211coms, "A", "names of available 802.11 devices");
307
308 /*
309 * Attach/setup the common net80211 state. Called by
310 * the driver on attach to prior to creating any vap's.
311 */
312 void
ieee80211_ifattach(struct ieee80211com * ic)313 ieee80211_ifattach(struct ieee80211com *ic)
314 {
315
316 IEEE80211_LOCK_INIT(ic, ic->ic_name);
317 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
318 TAILQ_INIT(&ic->ic_vaps);
319
320 /* Create a taskqueue for all state changes */
321 ic->ic_tq = taskqueue_create("ic_taskq",
322 IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
323 taskqueue_thread_enqueue, &ic->ic_tq);
324 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
325 ic->ic_name);
326 ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
327 ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
328 /*
329 * Fill in 802.11 available channel set, mark all
330 * available channels as active, and pick a default
331 * channel if not already specified.
332 */
333 ieee80211_chan_init(ic);
334
335 ic->ic_update_mcast = null_update_mcast;
336 ic->ic_update_promisc = null_update_promisc;
337 ic->ic_update_chw = null_update_chw;
338
339 ic->ic_hash_key = arc4random();
340 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
341 ic->ic_lintval = ic->ic_bintval;
342 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
343
344 ieee80211_crypto_attach(ic);
345 ieee80211_node_attach(ic);
346 ieee80211_power_attach(ic);
347 ieee80211_proto_attach(ic);
348 #ifdef IEEE80211_SUPPORT_SUPERG
349 ieee80211_superg_attach(ic);
350 #endif
351 ieee80211_ht_attach(ic);
352 ieee80211_vht_attach(ic);
353 ieee80211_scan_attach(ic);
354 ieee80211_regdomain_attach(ic);
355 ieee80211_dfs_attach(ic);
356
357 ieee80211_sysctl_attach(ic);
358
359 mtx_lock(&ic_list_mtx);
360 LIST_INSERT_HEAD(&ic_head, ic, ic_next);
361 mtx_unlock(&ic_list_mtx);
362 }
363
364 /*
365 * Detach net80211 state on device detach. Tear down
366 * all vap's and reclaim all common state prior to the
367 * device state going away. Note we may call back into
368 * driver; it must be prepared for this.
369 */
370 void
ieee80211_ifdetach(struct ieee80211com * ic)371 ieee80211_ifdetach(struct ieee80211com *ic)
372 {
373 struct ieee80211vap *vap;
374
375 /*
376 * We use this as an indicator that ifattach never had a chance to be
377 * called, e.g. early driver attach failed and ifdetach was called
378 * during subsequent detach. Never fear, for we have nothing to do
379 * here.
380 */
381 if (ic->ic_tq == NULL)
382 return;
383
384 mtx_lock(&ic_list_mtx);
385 LIST_REMOVE(ic, ic_next);
386 mtx_unlock(&ic_list_mtx);
387
388 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
389
390 /*
391 * The VAP is responsible for setting and clearing
392 * the VIMAGE context.
393 */
394 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
395 ieee80211_com_vdetach(vap);
396 ieee80211_vap_destroy(vap);
397 }
398 ieee80211_waitfor_parent(ic);
399
400 ieee80211_sysctl_detach(ic);
401 ieee80211_dfs_detach(ic);
402 ieee80211_regdomain_detach(ic);
403 ieee80211_scan_detach(ic);
404 #ifdef IEEE80211_SUPPORT_SUPERG
405 ieee80211_superg_detach(ic);
406 #endif
407 ieee80211_vht_detach(ic);
408 ieee80211_ht_detach(ic);
409 /* NB: must be called before ieee80211_node_detach */
410 ieee80211_proto_detach(ic);
411 ieee80211_crypto_detach(ic);
412 ieee80211_power_detach(ic);
413 ieee80211_node_detach(ic);
414
415 counter_u64_free(ic->ic_ierrors);
416 counter_u64_free(ic->ic_oerrors);
417
418 taskqueue_free(ic->ic_tq);
419 IEEE80211_TX_LOCK_DESTROY(ic);
420 IEEE80211_LOCK_DESTROY(ic);
421 }
422
423 /*
424 * Called by drivers during attach to set the supported
425 * cipher set for software encryption.
426 */
427 void
ieee80211_set_software_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)428 ieee80211_set_software_ciphers(struct ieee80211com *ic,
429 uint32_t cipher_suite)
430 {
431 ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
432 }
433
434 /*
435 * Called by drivers during attach to set the supported
436 * cipher set for hardware encryption.
437 */
438 void
ieee80211_set_hardware_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)439 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
440 uint32_t cipher_suite)
441 {
442 ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
443 }
444
445 /*
446 * Called by drivers during attach to set the supported
447 * key management suites by the driver/hardware.
448 */
449 void
ieee80211_set_driver_keymgmt_suites(struct ieee80211com * ic,uint32_t keymgmt_set)450 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
451 uint32_t keymgmt_set)
452 {
453 ieee80211_crypto_set_supported_driver_keymgmt(ic,
454 keymgmt_set);
455 }
456
457 struct ieee80211com *
ieee80211_find_com(const char * name)458 ieee80211_find_com(const char *name)
459 {
460 struct ieee80211com *ic;
461
462 mtx_lock(&ic_list_mtx);
463 LIST_FOREACH(ic, &ic_head, ic_next)
464 if (strcmp(ic->ic_name, name) == 0)
465 break;
466 mtx_unlock(&ic_list_mtx);
467
468 return (ic);
469 }
470
471 void
ieee80211_iterate_coms(ieee80211_com_iter_func * f,void * arg)472 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
473 {
474 struct ieee80211com *ic;
475
476 mtx_lock(&ic_list_mtx);
477 LIST_FOREACH(ic, &ic_head, ic_next)
478 (*f)(arg, ic);
479 mtx_unlock(&ic_list_mtx);
480 }
481
482 /*
483 * Default reset method for use with the ioctl support. This
484 * method is invoked after any state change in the 802.11
485 * layer that should be propagated to the hardware but not
486 * require re-initialization of the 802.11 state machine (e.g
487 * rescanning for an ap). We always return ENETRESET which
488 * should cause the driver to re-initialize the device. Drivers
489 * can override this method to implement more optimized support.
490 */
491 static int
default_reset(struct ieee80211vap * vap,u_long cmd)492 default_reset(struct ieee80211vap *vap, u_long cmd)
493 {
494 return ENETRESET;
495 }
496
497 /*
498 * Default for updating the VAP default TX key index.
499 *
500 * Drivers that support TX offload as well as hardware encryption offload
501 * may need to be informed of key index changes separate from the key
502 * update.
503 */
504 static void
default_update_deftxkey(struct ieee80211vap * vap,ieee80211_keyix kid)505 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
506 {
507
508 /* XXX assert validity */
509 /* XXX assert we're in a key update block */
510 vap->iv_def_txkey = kid;
511 }
512
513 /*
514 * Add underlying device errors to vap errors.
515 */
516 static uint64_t
ieee80211_get_counter(struct ifnet * ifp,ift_counter cnt)517 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
518 {
519 struct ieee80211vap *vap = ifp->if_softc;
520 struct ieee80211com *ic = vap->iv_ic;
521 uint64_t rv;
522
523 rv = if_get_counter_default(ifp, cnt);
524 switch (cnt) {
525 case IFCOUNTER_OERRORS:
526 rv += counter_u64_fetch(ic->ic_oerrors);
527 break;
528 case IFCOUNTER_IERRORS:
529 rv += counter_u64_fetch(ic->ic_ierrors);
530 break;
531 default:
532 break;
533 }
534
535 return (rv);
536 }
537
538 /*
539 * Prepare a vap for use. Drivers use this call to
540 * setup net80211 state in new vap's prior attaching
541 * them with ieee80211_vap_attach (below).
542 */
543 int
ieee80211_vap_setup(struct ieee80211com * ic,struct ieee80211vap * vap,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN])544 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
545 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
546 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
547 {
548 struct ifnet *ifp;
549
550 ifp = if_alloc(IFT_ETHER);
551 if_initname(ifp, name, unit);
552 ifp->if_softc = vap; /* back pointer */
553 if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST);
554 ifp->if_transmit = ieee80211_vap_transmit;
555 ifp->if_qflush = ieee80211_vap_qflush;
556 ifp->if_ioctl = ieee80211_ioctl;
557 ifp->if_init = ieee80211_init;
558 ifp->if_get_counter = ieee80211_get_counter;
559
560 vap->iv_ifp = ifp;
561 vap->iv_ic = ic;
562 vap->iv_flags = ic->ic_flags; /* propagate common flags */
563 vap->iv_flags_ext = ic->ic_flags_ext;
564 vap->iv_flags_ven = ic->ic_flags_ven;
565 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
566
567 /* 11n capabilities - XXX methodize */
568 vap->iv_htcaps = ic->ic_htcaps;
569 vap->iv_htextcaps = ic->ic_htextcaps;
570
571 /* 11ac capabilities - XXX methodize */
572 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
573 vap->iv_vhtextcaps = ic->ic_vhtextcaps;
574
575 vap->iv_opmode = opmode;
576 vap->iv_caps |= ieee80211_opcap[opmode];
577 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
578 switch (opmode) {
579 case IEEE80211_M_WDS:
580 /*
581 * WDS links must specify the bssid of the far end.
582 * For legacy operation this is a static relationship.
583 * For non-legacy operation the station must associate
584 * and be authorized to pass traffic. Plumbing the
585 * vap to the proper node happens when the vap
586 * transitions to RUN state.
587 */
588 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
589 vap->iv_flags |= IEEE80211_F_DESBSSID;
590 if (flags & IEEE80211_CLONE_WDSLEGACY)
591 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
592 break;
593 #ifdef IEEE80211_SUPPORT_TDMA
594 case IEEE80211_M_AHDEMO:
595 if (flags & IEEE80211_CLONE_TDMA) {
596 /* NB: checked before clone operation allowed */
597 KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
598 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
599 /*
600 * Propagate TDMA capability to mark vap; this
601 * cannot be removed and is used to distinguish
602 * regular ahdemo operation from ahdemo+tdma.
603 */
604 vap->iv_caps |= IEEE80211_C_TDMA;
605 }
606 break;
607 #endif
608 default:
609 break;
610 }
611 /* auto-enable s/w beacon miss support */
612 if (flags & IEEE80211_CLONE_NOBEACONS)
613 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
614 /* auto-generated or user supplied MAC address */
615 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
616 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
617 /*
618 * Enable various functionality by default if we're
619 * capable; the driver can override us if it knows better.
620 */
621 if (vap->iv_caps & IEEE80211_C_WME)
622 vap->iv_flags |= IEEE80211_F_WME;
623 if (vap->iv_caps & IEEE80211_C_BURST)
624 vap->iv_flags |= IEEE80211_F_BURST;
625 /* NB: bg scanning only makes sense for station mode right now */
626 if (vap->iv_opmode == IEEE80211_M_STA &&
627 (vap->iv_caps & IEEE80211_C_BGSCAN))
628 vap->iv_flags |= IEEE80211_F_BGSCAN;
629 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */
630 /* NB: DFS support only makes sense for ap mode right now */
631 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
632 (vap->iv_caps & IEEE80211_C_DFS))
633 vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
634 /* NB: only flip on U-APSD for hostap/sta for now */
635 if ((vap->iv_opmode == IEEE80211_M_STA)
636 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
637 if (vap->iv_caps & IEEE80211_C_UAPSD)
638 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
639 }
640
641 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
642 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
643 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
644 /*
645 * Install a default reset method for the ioctl support;
646 * the driver can override this.
647 */
648 vap->iv_reset = default_reset;
649
650 /*
651 * Install a default crypto key update method, the driver
652 * can override this.
653 */
654 vap->iv_update_deftxkey = default_update_deftxkey;
655
656 ieee80211_sysctl_vattach(vap);
657 ieee80211_crypto_vattach(vap);
658 ieee80211_node_vattach(vap);
659 ieee80211_power_vattach(vap);
660 ieee80211_proto_vattach(vap);
661 #ifdef IEEE80211_SUPPORT_SUPERG
662 ieee80211_superg_vattach(vap);
663 #endif
664 ieee80211_ht_vattach(vap);
665 ieee80211_vht_vattach(vap);
666 ieee80211_scan_vattach(vap);
667 ieee80211_regdomain_vattach(vap);
668 ieee80211_radiotap_vattach(vap);
669 ieee80211_vap_reset_erp(vap);
670 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
671
672 return 0;
673 }
674
675 /*
676 * Activate a vap. State should have been prepared with a
677 * call to ieee80211_vap_setup and by the driver. On return
678 * from this call the vap is ready for use.
679 */
680 int
ieee80211_vap_attach(struct ieee80211vap * vap,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat,const uint8_t macaddr[IEEE80211_ADDR_LEN])681 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
682 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
683 {
684 struct ifnet *ifp = vap->iv_ifp;
685 struct ieee80211com *ic = vap->iv_ic;
686 struct ifmediareq imr;
687 int maxrate;
688
689 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
690 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
691 __func__, ieee80211_opmode_name[vap->iv_opmode],
692 ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
693
694 /*
695 * Do late attach work that cannot happen until after
696 * the driver has had a chance to override defaults.
697 */
698 ieee80211_node_latevattach(vap);
699 ieee80211_power_latevattach(vap);
700
701 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
702 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
703 ieee80211_media_status(ifp, &imr);
704 /* NB: strip explicit mode; we're actually in autoselect */
705 ifmedia_set(&vap->iv_media,
706 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
707 if (maxrate)
708 ifp->if_baudrate = IF_Mbps(maxrate);
709
710 ether_ifattach(ifp, macaddr);
711 /* Do initial MAC address sync */
712 ieee80211_vap_copy_mac_address(vap);
713 /* hook output method setup by ether_ifattach */
714 vap->iv_output = ifp->if_output;
715 ifp->if_output = ieee80211_output;
716 /* NB: if_mtu set by ether_ifattach to ETHERMTU */
717
718 IEEE80211_LOCK(ic);
719 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
720 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
721 #ifdef IEEE80211_SUPPORT_SUPERG
722 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
723 #endif
724 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
725 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
726 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
727 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
728
729 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
730 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
731 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
732 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
733 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
734 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
735 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
736 IEEE80211_UNLOCK(ic);
737
738 return 1;
739 }
740
741 /*
742 * Tear down vap state and reclaim the ifnet.
743 * The driver is assumed to have prepared for
744 * this; e.g. by turning off interrupts for the
745 * underlying device.
746 */
747 void
ieee80211_vap_detach(struct ieee80211vap * vap)748 ieee80211_vap_detach(struct ieee80211vap *vap)
749 {
750 struct ieee80211com *ic = vap->iv_ic;
751 struct ifnet *ifp = vap->iv_ifp;
752 int i;
753
754 CURVNET_SET(ifp->if_vnet);
755
756 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
757 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
758
759 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */
760 ether_ifdetach(ifp);
761
762 ieee80211_stop(vap);
763
764 /*
765 * Flush any deferred vap tasks.
766 */
767 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
768 ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
769 ieee80211_draintask(ic, &vap->iv_swbmiss_task);
770 ieee80211_draintask(ic, &vap->iv_wme_task);
771 ieee80211_draintask(ic, &ic->ic_parent_task);
772
773 /* XXX band-aid until ifnet handles this for us */
774 taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
775
776 IEEE80211_LOCK(ic);
777 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
778 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
779 ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
780 #ifdef IEEE80211_SUPPORT_SUPERG
781 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
782 #endif
783 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
784 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
785 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
786 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
787
788 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
789 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
790 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
791 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
792 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
793 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
794 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
795
796 /* NB: this handles the bpfdetach done below */
797 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
798 if (vap->iv_ifflags & IFF_PROMISC)
799 ieee80211_promisc(vap, false);
800 if (vap->iv_ifflags & IFF_ALLMULTI)
801 ieee80211_allmulti(vap, false);
802 IEEE80211_UNLOCK(ic);
803
804 ifmedia_removeall(&vap->iv_media);
805
806 ieee80211_radiotap_vdetach(vap);
807 ieee80211_regdomain_vdetach(vap);
808 ieee80211_scan_vdetach(vap);
809 #ifdef IEEE80211_SUPPORT_SUPERG
810 ieee80211_superg_vdetach(vap);
811 #endif
812 ieee80211_vht_vdetach(vap);
813 ieee80211_ht_vdetach(vap);
814 /* NB: must be before ieee80211_node_vdetach */
815 ieee80211_proto_vdetach(vap);
816 ieee80211_crypto_vdetach(vap);
817 ieee80211_power_vdetach(vap);
818 ieee80211_node_vdetach(vap);
819 ieee80211_sysctl_vdetach(vap);
820
821 if_free(ifp);
822
823 CURVNET_RESTORE();
824 }
825
826 /*
827 * Count number of vaps in promisc, and issue promisc on
828 * parent respectively.
829 */
830 void
ieee80211_promisc(struct ieee80211vap * vap,bool on)831 ieee80211_promisc(struct ieee80211vap *vap, bool on)
832 {
833 struct ieee80211com *ic = vap->iv_ic;
834
835 IEEE80211_LOCK_ASSERT(ic);
836
837 if (on) {
838 if (++ic->ic_promisc == 1)
839 ieee80211_runtask(ic, &ic->ic_promisc_task);
840 } else {
841 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
842 __func__, ic));
843 if (--ic->ic_promisc == 0)
844 ieee80211_runtask(ic, &ic->ic_promisc_task);
845 }
846 }
847
848 /*
849 * Count number of vaps in allmulti, and issue allmulti on
850 * parent respectively.
851 */
852 void
ieee80211_allmulti(struct ieee80211vap * vap,bool on)853 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
854 {
855 struct ieee80211com *ic = vap->iv_ic;
856
857 IEEE80211_LOCK_ASSERT(ic);
858
859 if (on) {
860 if (++ic->ic_allmulti == 1)
861 ieee80211_runtask(ic, &ic->ic_mcast_task);
862 } else {
863 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
864 __func__, ic));
865 if (--ic->ic_allmulti == 0)
866 ieee80211_runtask(ic, &ic->ic_mcast_task);
867 }
868 }
869
870 /*
871 * Synchronize flag bit state in the com structure
872 * according to the state of all vap's. This is used,
873 * for example, to handle state changes via ioctls.
874 */
875 static void
ieee80211_syncflag_locked(struct ieee80211com * ic,int flag)876 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
877 {
878 struct ieee80211vap *vap;
879 int bit;
880
881 IEEE80211_LOCK_ASSERT(ic);
882
883 bit = 0;
884 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
885 if (vap->iv_flags & flag) {
886 bit = 1;
887 break;
888 }
889 if (bit)
890 ic->ic_flags |= flag;
891 else
892 ic->ic_flags &= ~flag;
893 }
894
895 void
ieee80211_syncflag(struct ieee80211vap * vap,int flag)896 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
897 {
898 struct ieee80211com *ic = vap->iv_ic;
899
900 IEEE80211_LOCK(ic);
901 if (flag < 0) {
902 flag = -flag;
903 vap->iv_flags &= ~flag;
904 } else
905 vap->iv_flags |= flag;
906 ieee80211_syncflag_locked(ic, flag);
907 IEEE80211_UNLOCK(ic);
908 }
909
910 /*
911 * Synchronize flags_ht bit state in the com structure
912 * according to the state of all vap's. This is used,
913 * for example, to handle state changes via ioctls.
914 */
915 static void
ieee80211_syncflag_ht_locked(struct ieee80211com * ic,int flag)916 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
917 {
918 struct ieee80211vap *vap;
919 int bit;
920
921 IEEE80211_LOCK_ASSERT(ic);
922
923 bit = 0;
924 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
925 if (vap->iv_flags_ht & flag) {
926 bit = 1;
927 break;
928 }
929 if (bit)
930 ic->ic_flags_ht |= flag;
931 else
932 ic->ic_flags_ht &= ~flag;
933 }
934
935 void
ieee80211_syncflag_ht(struct ieee80211vap * vap,int flag)936 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
937 {
938 struct ieee80211com *ic = vap->iv_ic;
939
940 IEEE80211_LOCK(ic);
941 if (flag < 0) {
942 flag = -flag;
943 vap->iv_flags_ht &= ~flag;
944 } else
945 vap->iv_flags_ht |= flag;
946 ieee80211_syncflag_ht_locked(ic, flag);
947 IEEE80211_UNLOCK(ic);
948 }
949
950 /*
951 * Synchronize flags_vht bit state in the com structure
952 * according to the state of all vap's. This is used,
953 * for example, to handle state changes via ioctls.
954 */
955 static void
ieee80211_syncflag_vht_locked(struct ieee80211com * ic,int flag)956 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
957 {
958 struct ieee80211vap *vap;
959 int bit;
960
961 IEEE80211_LOCK_ASSERT(ic);
962
963 bit = 0;
964 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
965 if (vap->iv_vht_flags & flag) {
966 bit = 1;
967 break;
968 }
969 if (bit)
970 ic->ic_vht_flags |= flag;
971 else
972 ic->ic_vht_flags &= ~flag;
973 }
974
975 void
ieee80211_syncflag_vht(struct ieee80211vap * vap,int flag)976 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
977 {
978 struct ieee80211com *ic = vap->iv_ic;
979
980 IEEE80211_LOCK(ic);
981 if (flag < 0) {
982 flag = -flag;
983 vap->iv_vht_flags &= ~flag;
984 } else
985 vap->iv_vht_flags |= flag;
986 ieee80211_syncflag_vht_locked(ic, flag);
987 IEEE80211_UNLOCK(ic);
988 }
989
990 /*
991 * Synchronize flags_ext bit state in the com structure
992 * according to the state of all vap's. This is used,
993 * for example, to handle state changes via ioctls.
994 */
995 static void
ieee80211_syncflag_ext_locked(struct ieee80211com * ic,int flag)996 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
997 {
998 struct ieee80211vap *vap;
999 int bit;
1000
1001 IEEE80211_LOCK_ASSERT(ic);
1002
1003 bit = 0;
1004 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1005 if (vap->iv_flags_ext & flag) {
1006 bit = 1;
1007 break;
1008 }
1009 if (bit)
1010 ic->ic_flags_ext |= flag;
1011 else
1012 ic->ic_flags_ext &= ~flag;
1013 }
1014
1015 void
ieee80211_syncflag_ext(struct ieee80211vap * vap,int flag)1016 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1017 {
1018 struct ieee80211com *ic = vap->iv_ic;
1019
1020 IEEE80211_LOCK(ic);
1021 if (flag < 0) {
1022 flag = -flag;
1023 vap->iv_flags_ext &= ~flag;
1024 } else
1025 vap->iv_flags_ext |= flag;
1026 ieee80211_syncflag_ext_locked(ic, flag);
1027 IEEE80211_UNLOCK(ic);
1028 }
1029
1030 static __inline int
mapgsm(u_int freq,u_int flags)1031 mapgsm(u_int freq, u_int flags)
1032 {
1033 freq *= 10;
1034 if (flags & IEEE80211_CHAN_QUARTER)
1035 freq += 5;
1036 else if (flags & IEEE80211_CHAN_HALF)
1037 freq += 10;
1038 else
1039 freq += 20;
1040 /* NB: there is no 907/20 wide but leave room */
1041 return (freq - 906*10) / 5;
1042 }
1043
1044 static __inline int
mappsb(u_int freq,u_int flags)1045 mappsb(u_int freq, u_int flags)
1046 {
1047 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1048 }
1049
1050 /*
1051 * Convert MHz frequency to IEEE channel number.
1052 */
1053 int
ieee80211_mhz2ieee(u_int freq,u_int flags)1054 ieee80211_mhz2ieee(u_int freq, u_int flags)
1055 {
1056 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1057 if (flags & IEEE80211_CHAN_GSM)
1058 return mapgsm(freq, flags);
1059 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1060 if (freq == 2484)
1061 return 14;
1062 if (freq < 2484)
1063 return ((int) freq - 2407) / 5;
1064 else
1065 return 15 + ((freq - 2512) / 20);
1066 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
1067 if (freq <= 5000) {
1068 /* XXX check regdomain? */
1069 if (IS_FREQ_IN_PSB(freq))
1070 return mappsb(freq, flags);
1071 return (freq - 4000) / 5;
1072 } else
1073 return (freq - 5000) / 5;
1074 } else { /* either, guess */
1075 if (freq == 2484)
1076 return 14;
1077 if (freq < 2484) {
1078 if (907 <= freq && freq <= 922)
1079 return mapgsm(freq, flags);
1080 return ((int) freq - 2407) / 5;
1081 }
1082 if (freq < 5000) {
1083 if (IS_FREQ_IN_PSB(freq))
1084 return mappsb(freq, flags);
1085 else if (freq > 4900)
1086 return (freq - 4000) / 5;
1087 else
1088 return 15 + ((freq - 2512) / 20);
1089 }
1090 return (freq - 5000) / 5;
1091 }
1092 #undef IS_FREQ_IN_PSB
1093 }
1094
1095 /*
1096 * Convert channel to IEEE channel number.
1097 */
1098 int
ieee80211_chan2ieee(struct ieee80211com * ic,const struct ieee80211_channel * c)1099 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1100 {
1101 if (c == NULL) {
1102 ic_printf(ic, "invalid channel (NULL)\n");
1103 return 0; /* XXX */
1104 }
1105 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee);
1106 }
1107
1108 /*
1109 * Convert IEEE channel number to MHz frequency.
1110 */
1111 u_int
ieee80211_ieee2mhz(u_int chan,u_int flags)1112 ieee80211_ieee2mhz(u_int chan, u_int flags)
1113 {
1114 if (flags & IEEE80211_CHAN_GSM)
1115 return 907 + 5 * (chan / 10);
1116 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1117 if (chan == 14)
1118 return 2484;
1119 if (chan < 14)
1120 return 2407 + chan*5;
1121 else
1122 return 2512 + ((chan-15)*20);
1123 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1124 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1125 chan -= 37;
1126 return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1127 }
1128 return 5000 + (chan*5);
1129 } else { /* either, guess */
1130 /* XXX can't distinguish PSB+GSM channels */
1131 if (chan == 14)
1132 return 2484;
1133 if (chan < 14) /* 0-13 */
1134 return 2407 + chan*5;
1135 if (chan < 27) /* 15-26 */
1136 return 2512 + ((chan-15)*20);
1137 return 5000 + (chan*5);
1138 }
1139 }
1140
1141 static __inline void
set_extchan(struct ieee80211_channel * c)1142 set_extchan(struct ieee80211_channel *c)
1143 {
1144
1145 /*
1146 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1147 * "the secondary channel number shall be 'N + [1,-1] * 4'
1148 */
1149 if (c->ic_flags & IEEE80211_CHAN_HT40U)
1150 c->ic_extieee = c->ic_ieee + 4;
1151 else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1152 c->ic_extieee = c->ic_ieee - 4;
1153 else
1154 c->ic_extieee = 0;
1155 }
1156
1157 /*
1158 * Populate the freq1/freq2 fields as appropriate for VHT channels.
1159 *
1160 * This for now uses a hard-coded list of 80MHz wide channels.
1161 *
1162 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1163 * wide channel we've already decided upon.
1164 *
1165 * For VHT80 and VHT160, there are only a small number of fixed
1166 * 80/160MHz wide channels, so we just use those.
1167 *
1168 * This is all likely very very wrong - both the regulatory code
1169 * and this code needs to ensure that all four channels are
1170 * available and valid before the VHT80 (and eight for VHT160) channel
1171 * is created.
1172 */
1173
1174 struct vht_chan_range {
1175 uint16_t freq_start;
1176 uint16_t freq_end;
1177 };
1178
1179 struct vht_chan_range vht80_chan_ranges[] = {
1180 { 5170, 5250 },
1181 { 5250, 5330 },
1182 { 5490, 5570 },
1183 { 5570, 5650 },
1184 { 5650, 5730 },
1185 { 5735, 5815 },
1186 { 5815, 5895 },
1187 { 0, 0 }
1188 };
1189
1190 struct vht_chan_range vht160_chan_ranges[] = {
1191 { 5170, 5330 },
1192 { 5490, 5650 },
1193 { 5735, 5895 },
1194 { 0, 0 }
1195 };
1196
1197 static int
set_vht_extchan(struct ieee80211_channel * c)1198 set_vht_extchan(struct ieee80211_channel *c)
1199 {
1200 int i;
1201
1202 if (! IEEE80211_IS_CHAN_VHT(c))
1203 return (0);
1204
1205 if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1206 net80211_printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1207 __func__, c->ic_ieee, c->ic_flags);
1208 }
1209
1210 if (IEEE80211_IS_CHAN_VHT160(c)) {
1211 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1212 if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1213 c->ic_freq < vht160_chan_ranges[i].freq_end) {
1214 int midpoint;
1215
1216 midpoint = vht160_chan_ranges[i].freq_start + 80;
1217 c->ic_vht_ch_freq1 =
1218 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1219 c->ic_vht_ch_freq2 = 0;
1220 #if 0
1221 net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1222 __func__, c->ic_ieee, c->ic_freq, midpoint,
1223 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1224 #endif
1225 return (1);
1226 }
1227 }
1228 return (0);
1229 }
1230
1231 if (IEEE80211_IS_CHAN_VHT80(c)) {
1232 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1233 if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1234 c->ic_freq < vht80_chan_ranges[i].freq_end) {
1235 int midpoint;
1236
1237 midpoint = vht80_chan_ranges[i].freq_start + 40;
1238 c->ic_vht_ch_freq1 =
1239 ieee80211_mhz2ieee(midpoint, c->ic_flags);
1240 c->ic_vht_ch_freq2 = 0;
1241 #if 0
1242 net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1243 __func__, c->ic_ieee, c->ic_freq, midpoint,
1244 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1245 #endif
1246 return (1);
1247 }
1248 }
1249 return (0);
1250 }
1251
1252 if (IEEE80211_IS_CHAN_VHT40(c)) {
1253 if (IEEE80211_IS_CHAN_HT40U(c))
1254 c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1255 else if (IEEE80211_IS_CHAN_HT40D(c))
1256 c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1257 else
1258 return (0);
1259 return (1);
1260 }
1261
1262 if (IEEE80211_IS_CHAN_VHT20(c)) {
1263 c->ic_vht_ch_freq1 = c->ic_ieee;
1264 return (1);
1265 }
1266
1267 net80211_printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1268 __func__, c->ic_ieee, c->ic_flags);
1269
1270 return (0);
1271 }
1272
1273 /*
1274 * Return whether the current channel could possibly be a part of
1275 * a VHT80/VHT160 channel.
1276 *
1277 * This doesn't check that the whole range is in the allowed list
1278 * according to regulatory.
1279 */
1280 static bool
is_vht160_valid_freq(uint16_t freq)1281 is_vht160_valid_freq(uint16_t freq)
1282 {
1283 int i;
1284
1285 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1286 if (freq >= vht160_chan_ranges[i].freq_start &&
1287 freq < vht160_chan_ranges[i].freq_end)
1288 return (true);
1289 }
1290 return (false);
1291 }
1292
1293 static int
is_vht80_valid_freq(uint16_t freq)1294 is_vht80_valid_freq(uint16_t freq)
1295 {
1296 int i;
1297 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1298 if (freq >= vht80_chan_ranges[i].freq_start &&
1299 freq < vht80_chan_ranges[i].freq_end)
1300 return (1);
1301 }
1302 return (0);
1303 }
1304
1305 static int
addchan(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t flags)1306 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1307 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1308 {
1309 struct ieee80211_channel *c;
1310
1311 if (*nchans >= maxchans)
1312 return (ENOBUFS);
1313
1314 #if 0
1315 net80211_printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1316 __func__, *nchans, maxchans, ieee, freq, flags);
1317 #endif
1318
1319 c = &chans[(*nchans)++];
1320 c->ic_ieee = ieee;
1321 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1322 c->ic_maxregpower = maxregpower;
1323 c->ic_maxpower = 2 * maxregpower;
1324 c->ic_flags = flags;
1325 c->ic_vht_ch_freq1 = 0;
1326 c->ic_vht_ch_freq2 = 0;
1327 set_extchan(c);
1328 set_vht_extchan(c);
1329
1330 return (0);
1331 }
1332
1333 static int
copychan_prev(struct ieee80211_channel chans[],int maxchans,int * nchans,uint32_t flags)1334 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1335 uint32_t flags)
1336 {
1337 struct ieee80211_channel *c;
1338
1339 KASSERT(*nchans > 0, ("channel list is empty\n"));
1340
1341 if (*nchans >= maxchans)
1342 return (ENOBUFS);
1343
1344 #if 0
1345 net80211_printf("%s: %d of %d: flags=0x%08x\n",
1346 __func__, *nchans, maxchans, flags);
1347 #endif
1348
1349 c = &chans[(*nchans)++];
1350 c[0] = c[-1];
1351 c->ic_flags = flags;
1352 c->ic_vht_ch_freq1 = 0;
1353 c->ic_vht_ch_freq2 = 0;
1354 set_extchan(c);
1355 set_vht_extchan(c);
1356
1357 return (0);
1358 }
1359
1360 /*
1361 * XXX VHT-2GHz
1362 */
1363 static void
getflags_2ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1364 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1365 {
1366 int nmodes;
1367
1368 nmodes = 0;
1369 if (isset(bands, IEEE80211_MODE_11B))
1370 flags[nmodes++] = IEEE80211_CHAN_B;
1371 if (isset(bands, IEEE80211_MODE_11G))
1372 flags[nmodes++] = IEEE80211_CHAN_G;
1373 if (isset(bands, IEEE80211_MODE_11NG))
1374 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1375 if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1376 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1377 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1378 }
1379 flags[nmodes] = 0;
1380 }
1381
1382 static void
getflags_5ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1383 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1384 {
1385 int nmodes;
1386
1387 /*
1388 * The addchan_list() function seems to expect the flags array to
1389 * be in channel width order, so the VHT bits are interspersed
1390 * as appropriate to maintain said order.
1391 *
1392 * It also assumes HT40U is before HT40D.
1393 */
1394 nmodes = 0;
1395
1396 /* 20MHz */
1397 if (isset(bands, IEEE80211_MODE_11A))
1398 flags[nmodes++] = IEEE80211_CHAN_A;
1399 if (isset(bands, IEEE80211_MODE_11NA))
1400 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1401 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1402 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1403 IEEE80211_CHAN_VHT20;
1404 }
1405
1406 /* 40MHz */
1407 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1408 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1409 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1410 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1411 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1412 IEEE80211_CHAN_VHT40U;
1413 if (cbw_flags & NET80211_CBW_FLAG_HT40)
1414 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1415 if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1416 isset(bands, IEEE80211_MODE_VHT_5GHZ))
1417 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1418 IEEE80211_CHAN_VHT40D;
1419
1420 /* 80MHz */
1421 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1422 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1423 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1424 IEEE80211_CHAN_VHT80;
1425 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1426 IEEE80211_CHAN_VHT80;
1427 }
1428
1429 /* VHT160 */
1430 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1431 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1432 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1433 IEEE80211_CHAN_VHT160;
1434 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1435 IEEE80211_CHAN_VHT160;
1436 }
1437
1438 /* VHT80+80 */
1439 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1440 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1441 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1442 IEEE80211_CHAN_VHT80P80;
1443 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1444 IEEE80211_CHAN_VHT80P80;
1445 }
1446
1447 flags[nmodes] = 0;
1448 }
1449
1450 static void
getflags(const uint8_t bands[],uint32_t flags[],int cbw_flags)1451 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1452 {
1453
1454 flags[0] = 0;
1455 if (isset(bands, IEEE80211_MODE_11A) ||
1456 isset(bands, IEEE80211_MODE_11NA) ||
1457 isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1458 if (isset(bands, IEEE80211_MODE_11B) ||
1459 isset(bands, IEEE80211_MODE_11G) ||
1460 isset(bands, IEEE80211_MODE_11NG) ||
1461 isset(bands, IEEE80211_MODE_VHT_2GHZ))
1462 return;
1463
1464 getflags_5ghz(bands, flags, cbw_flags);
1465 } else
1466 getflags_2ghz(bands, flags, cbw_flags);
1467 }
1468
1469 /*
1470 * Add one 20 MHz channel into specified channel list.
1471 * You MUST NOT mix bands when calling this. It will not add 5ghz
1472 * channels if you have any B/G/N band bit set.
1473 * The _cbw() variant does also support HT40/VHT80/160/80+80.
1474 */
1475 int
ieee80211_add_channel_cbw(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[],int cbw_flags)1476 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1477 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1478 uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1479 {
1480 uint32_t flags[IEEE80211_MODE_MAX];
1481 int i, error;
1482
1483 getflags(bands, flags, cbw_flags);
1484 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1485
1486 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1487 flags[0] | chan_flags);
1488 for (i = 1; flags[i] != 0 && error == 0; i++) {
1489 error = copychan_prev(chans, maxchans, nchans,
1490 flags[i] | chan_flags);
1491 }
1492
1493 return (error);
1494 }
1495
1496 int
ieee80211_add_channel(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[])1497 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1498 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1499 uint32_t chan_flags, const uint8_t bands[])
1500 {
1501
1502 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1503 maxregpower, chan_flags, bands, 0));
1504 }
1505
1506 static struct ieee80211_channel *
findchannel(struct ieee80211_channel chans[],int nchans,uint16_t freq,uint32_t flags)1507 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1508 uint32_t flags)
1509 {
1510 struct ieee80211_channel *c;
1511 int i;
1512
1513 flags &= IEEE80211_CHAN_ALLTURBO;
1514 /* brute force search */
1515 for (i = 0; i < nchans; i++) {
1516 c = &chans[i];
1517 if (c->ic_freq == freq &&
1518 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1519 return c;
1520 }
1521 return NULL;
1522 }
1523
1524 /*
1525 * Add 40 MHz channel pair into specified channel list.
1526 */
1527 /* XXX VHT */
1528 int
ieee80211_add_channel_ht40(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,int8_t maxregpower,uint32_t flags)1529 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1530 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1531 {
1532 struct ieee80211_channel *cent, *extc;
1533 uint16_t freq;
1534 int error;
1535
1536 freq = ieee80211_ieee2mhz(ieee, flags);
1537
1538 /*
1539 * Each entry defines an HT40 channel pair; find the
1540 * center channel, then the extension channel above.
1541 */
1542 flags |= IEEE80211_CHAN_HT20;
1543 cent = findchannel(chans, *nchans, freq, flags);
1544 if (cent == NULL)
1545 return (EINVAL);
1546
1547 extc = findchannel(chans, *nchans, freq + 20, flags);
1548 if (extc == NULL)
1549 return (ENOENT);
1550
1551 flags &= ~IEEE80211_CHAN_HT;
1552 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1553 maxregpower, flags | IEEE80211_CHAN_HT40U);
1554 if (error != 0)
1555 return (error);
1556
1557 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1558 maxregpower, flags | IEEE80211_CHAN_HT40D);
1559
1560 return (error);
1561 }
1562
1563 /*
1564 * Fetch the center frequency for the primary channel.
1565 */
1566 uint32_t
ieee80211_get_channel_center_freq(const struct ieee80211_channel * c)1567 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1568 {
1569
1570 return (c->ic_freq);
1571 }
1572
1573 /*
1574 * Fetch the center frequency for the primary BAND channel.
1575 *
1576 * For 5, 10, 20MHz channels it'll be the normally configured channel
1577 * frequency.
1578 *
1579 * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1580 * wide channel, not the centre of the primary channel (that's ic_freq).
1581 *
1582 * For 80+80MHz channels this will be the centre of the primary
1583 * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1584 */
1585 uint32_t
ieee80211_get_channel_center_freq1(const struct ieee80211_channel * c)1586 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1587 {
1588
1589 /*
1590 * VHT - use the pre-calculated centre frequency
1591 * of the given channel.
1592 */
1593 if (IEEE80211_IS_CHAN_VHT(c))
1594 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1595
1596 if (IEEE80211_IS_CHAN_HT40U(c)) {
1597 return (c->ic_freq + 10);
1598 }
1599 if (IEEE80211_IS_CHAN_HT40D(c)) {
1600 return (c->ic_freq - 10);
1601 }
1602
1603 return (c->ic_freq);
1604 }
1605
1606 /*
1607 * For now, no 80+80 support; it will likely always return 0.
1608 */
1609 uint32_t
ieee80211_get_channel_center_freq2(const struct ieee80211_channel * c)1610 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1611 {
1612
1613 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1614 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1615
1616 return (0);
1617 }
1618
1619 /*
1620 * Adds channels into specified channel list (ieee[] array must be sorted).
1621 * Channels are already sorted.
1622 */
1623 static int
add_chanlist(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,uint32_t flags[])1624 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1625 const uint8_t ieee[], int nieee, uint32_t flags[])
1626 {
1627 uint16_t freq;
1628 int i, j, error;
1629 int is_vht;
1630
1631 for (i = 0; i < nieee; i++) {
1632 freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1633 for (j = 0; flags[j] != 0; j++) {
1634 /*
1635 * Notes:
1636 * + HT40 and VHT40 channels occur together, so
1637 * we need to be careful that we actually allow that.
1638 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1639 * make sure it's not skipped because of the overlap
1640 * check used for (V)HT40.
1641 */
1642 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1643
1644 /* XXX TODO FIXME VHT80P80. */
1645
1646 /* Test for VHT160 analogue to the VHT80 below. */
1647 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1648 if (! is_vht160_valid_freq(freq))
1649 continue;
1650
1651 /*
1652 * Test for VHT80.
1653 * XXX This is all very broken right now.
1654 * What we /should/ do is:
1655 *
1656 * + check that the frequency is in the list of
1657 * allowed VHT80 ranges; and
1658 * + the other 3 channels in the list are actually
1659 * also available.
1660 */
1661 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1662 if (! is_vht80_valid_freq(freq))
1663 continue;
1664
1665 /*
1666 * Test for (V)HT40.
1667 *
1668 * This is also a fall through from VHT80; as we only
1669 * allow a VHT80 channel if the VHT40 combination is
1670 * also valid. If the VHT40 form is not valid then
1671 * we certainly can't do VHT80..
1672 */
1673 if (flags[j] & IEEE80211_CHAN_HT40D)
1674 /*
1675 * Can't have a "lower" channel if we are the
1676 * first channel.
1677 *
1678 * Can't have a "lower" channel if it's below/
1679 * within 20MHz of the first channel.
1680 *
1681 * Can't have a "lower" channel if the channel
1682 * below it is not 20MHz away.
1683 */
1684 if (i == 0 || ieee[i] < ieee[0] + 4 ||
1685 freq - 20 !=
1686 ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1687 continue;
1688 if (flags[j] & IEEE80211_CHAN_HT40U)
1689 /*
1690 * Can't have an "upper" channel if we are
1691 * the last channel.
1692 *
1693 * Can't have an "upper" channel be above the
1694 * last channel in the list.
1695 *
1696 * Can't have an "upper" channel if the next
1697 * channel according to the math isn't 20MHz
1698 * away. (Likely for channel 13/14.)
1699 */
1700 if (i == nieee - 1 ||
1701 ieee[i] + 4 > ieee[nieee - 1] ||
1702 freq + 20 !=
1703 ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1704 continue;
1705
1706 if (j == 0) {
1707 error = addchan(chans, maxchans, nchans,
1708 ieee[i], freq, 0, flags[j]);
1709 } else {
1710 error = copychan_prev(chans, maxchans, nchans,
1711 flags[j]);
1712 }
1713 if (error != 0)
1714 return (error);
1715 }
1716 }
1717
1718 return (0);
1719 }
1720
1721 int
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1722 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1723 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1724 int cbw_flags)
1725 {
1726 uint32_t flags[IEEE80211_MODE_MAX];
1727
1728 /* XXX no VHT for now */
1729 getflags_2ghz(bands, flags, cbw_flags);
1730 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1731
1732 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1733 }
1734
1735 int
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t bands[],int cbw_flags)1736 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1737 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1738 {
1739 const uint8_t default_chan_list[] =
1740 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1741
1742 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1743 default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1744 }
1745
1746 int
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1747 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1748 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1749 int cbw_flags)
1750 {
1751 /*
1752 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all
1753 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1754 */
1755 uint32_t flags[2 * IEEE80211_MODE_MAX];
1756
1757 getflags_5ghz(bands, flags, cbw_flags);
1758 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1759
1760 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1761 }
1762
1763 /*
1764 * Locate a channel given a frequency+flags. We cache
1765 * the previous lookup to optimize switching between two
1766 * channels--as happens with dynamic turbo.
1767 */
1768 struct ieee80211_channel *
ieee80211_find_channel(struct ieee80211com * ic,int freq,int flags)1769 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1770 {
1771 struct ieee80211_channel *c;
1772
1773 flags &= IEEE80211_CHAN_ALLTURBO;
1774 c = ic->ic_prevchan;
1775 if (c != NULL && c->ic_freq == freq &&
1776 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1777 return c;
1778 /* brute force search */
1779 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1780 }
1781
1782 /*
1783 * Locate a channel given a channel number+flags. We cache
1784 * the previous lookup to optimize switching between two
1785 * channels--as happens with dynamic turbo.
1786 */
1787 struct ieee80211_channel *
ieee80211_find_channel_byieee(struct ieee80211com * ic,int ieee,int flags)1788 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1789 {
1790 struct ieee80211_channel *c;
1791 int i;
1792
1793 flags &= IEEE80211_CHAN_ALLTURBO;
1794 c = ic->ic_prevchan;
1795 if (c != NULL && c->ic_ieee == ieee &&
1796 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1797 return c;
1798 /* brute force search */
1799 for (i = 0; i < ic->ic_nchans; i++) {
1800 c = &ic->ic_channels[i];
1801 if (c->ic_ieee == ieee &&
1802 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1803 return c;
1804 }
1805 return NULL;
1806 }
1807
1808 /*
1809 * Lookup a channel suitable for the given rx status.
1810 *
1811 * This is used to find a channel for a frame (eg beacon, probe
1812 * response) based purely on the received PHY information.
1813 *
1814 * For now it tries to do it based on R_FREQ / R_IEEE.
1815 * This is enough for 11bg and 11a (and thus 11ng/11na)
1816 * but it will not be enough for GSM, PSB channels and the
1817 * like. It also doesn't know about legacy-turbog and
1818 * legacy-turbo modes, which some offload NICs actually
1819 * support in weird ways.
1820 *
1821 * Takes the ic and rxstatus; returns the channel or NULL
1822 * if not found.
1823 *
1824 * XXX TODO: Add support for that when the need arises.
1825 */
1826 struct ieee80211_channel *
ieee80211_lookup_channel_rxstatus(struct ieee80211vap * vap,const struct ieee80211_rx_stats * rxs)1827 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1828 const struct ieee80211_rx_stats *rxs)
1829 {
1830 struct ieee80211com *ic = vap->iv_ic;
1831 uint32_t flags;
1832 struct ieee80211_channel *c;
1833
1834 if (rxs == NULL)
1835 return (NULL);
1836
1837 /*
1838 * Strictly speaking we only use freq for now,
1839 * however later on we may wish to just store
1840 * the ieee for verification.
1841 */
1842 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1843 return (NULL);
1844 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1845 return (NULL);
1846 if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1847 return (NULL);
1848
1849 /*
1850 * If the rx status contains a valid ieee/freq, then
1851 * ensure we populate the correct channel information
1852 * in rxchan before passing it up to the scan infrastructure.
1853 * Offload NICs will pass up beacons from all channels
1854 * during background scans.
1855 */
1856
1857 /* Determine a band */
1858 switch (rxs->c_band) {
1859 case IEEE80211_CHAN_2GHZ:
1860 flags = IEEE80211_CHAN_G;
1861 break;
1862 case IEEE80211_CHAN_5GHZ:
1863 flags = IEEE80211_CHAN_A;
1864 break;
1865 default:
1866 if (rxs->c_freq < 3000) {
1867 flags = IEEE80211_CHAN_G;
1868 } else {
1869 flags = IEEE80211_CHAN_A;
1870 }
1871 break;
1872 }
1873
1874 /* Channel lookup */
1875 c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1876
1877 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1878 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1879 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1880
1881 return (c);
1882 }
1883
1884 static void
addmedia(struct ifmedia * media,int caps,int addsta,int mode,int mword)1885 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1886 {
1887 #define ADD(_ic, _s, _o) \
1888 ifmedia_add(media, \
1889 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1890 static const u_int mopts[IEEE80211_MODE_MAX] = {
1891 [IEEE80211_MODE_AUTO] = IFM_AUTO,
1892 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A,
1893 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B,
1894 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G,
1895 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH,
1896 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1897 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1898 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1899 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */
1900 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */
1901 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA,
1902 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG,
1903 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G,
1904 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G,
1905 };
1906 u_int mopt;
1907
1908 mopt = mopts[mode];
1909 if (addsta)
1910 ADD(ic, mword, mopt); /* STA mode has no cap */
1911 if (caps & IEEE80211_C_IBSS)
1912 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1913 if (caps & IEEE80211_C_HOSTAP)
1914 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1915 if (caps & IEEE80211_C_AHDEMO)
1916 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1917 if (caps & IEEE80211_C_MONITOR)
1918 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1919 if (caps & IEEE80211_C_WDS)
1920 ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1921 if (caps & IEEE80211_C_MBSS)
1922 ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1923 #undef ADD
1924 }
1925
1926 /*
1927 * Setup the media data structures according to the channel and
1928 * rate tables.
1929 */
1930 static int
ieee80211_media_setup(struct ieee80211com * ic,struct ifmedia * media,int caps,int addsta,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat)1931 ieee80211_media_setup(struct ieee80211com *ic,
1932 struct ifmedia *media, int caps, int addsta,
1933 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1934 {
1935 int i, j, rate, maxrate, mword, r;
1936 enum ieee80211_phymode mode;
1937 const struct ieee80211_rateset *rs;
1938 struct ieee80211_rateset allrates;
1939 struct ieee80211_node_txrate tn;
1940
1941 /*
1942 * Fill in media characteristics.
1943 */
1944 ifmedia_init(media, 0, media_change, media_stat);
1945 maxrate = 0;
1946 /*
1947 * Add media for legacy operating modes.
1948 */
1949 memset(&allrates, 0, sizeof(allrates));
1950 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1951 if (isclr(ic->ic_modecaps, mode))
1952 continue;
1953 addmedia(media, caps, addsta, mode, IFM_AUTO);
1954 if (mode == IEEE80211_MODE_AUTO)
1955 continue;
1956 rs = &ic->ic_sup_rates[mode];
1957 for (i = 0; i < rs->rs_nrates; i++) {
1958 rate = rs->rs_rates[i];
1959 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate);
1960 mword = ieee80211_rate2media(ic, &tn, mode);
1961 if (mword == 0)
1962 continue;
1963 addmedia(media, caps, addsta, mode, mword);
1964 /*
1965 * Add legacy rate to the collection of all rates.
1966 */
1967 r = rate & IEEE80211_RATE_VAL;
1968 for (j = 0; j < allrates.rs_nrates; j++)
1969 if (allrates.rs_rates[j] == r)
1970 break;
1971 if (j == allrates.rs_nrates) {
1972 /* unique, add to the set */
1973 allrates.rs_rates[j] = r;
1974 allrates.rs_nrates++;
1975 }
1976 rate = (rate & IEEE80211_RATE_VAL) / 2;
1977 if (rate > maxrate)
1978 maxrate = rate;
1979 }
1980 }
1981 for (i = 0; i < allrates.rs_nrates; i++) {
1982 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]);
1983 mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO);
1984 if (mword == 0)
1985 continue;
1986 /* NB: remove media options from mword */
1987 addmedia(media, caps, addsta,
1988 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1989 }
1990 /*
1991 * Add HT/11n media. Note that we do not have enough
1992 * bits in the media subtype to express the MCS so we
1993 * use a "placeholder" media subtype and any fixed MCS
1994 * must be specified with a different mechanism.
1995 */
1996 for (; mode <= IEEE80211_MODE_11NG; mode++) {
1997 if (isclr(ic->ic_modecaps, mode))
1998 continue;
1999 addmedia(media, caps, addsta, mode, IFM_AUTO);
2000 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2001 }
2002 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2003 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2004 addmedia(media, caps, addsta,
2005 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2006 i = ic->ic_txstream * 8 - 1;
2007 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2008 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2009 rate = ieee80211_htrates[i].ht40_rate_400ns;
2010 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2011 rate = ieee80211_htrates[i].ht40_rate_800ns;
2012 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2013 rate = ieee80211_htrates[i].ht20_rate_400ns;
2014 else
2015 rate = ieee80211_htrates[i].ht20_rate_800ns;
2016 if (rate > maxrate)
2017 maxrate = rate;
2018 }
2019
2020 /*
2021 * Add VHT media.
2022 * XXX-BZ skip "VHT_2GHZ" for now.
2023 */
2024 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2025 mode++) {
2026 if (isclr(ic->ic_modecaps, mode))
2027 continue;
2028 addmedia(media, caps, addsta, mode, IFM_AUTO);
2029 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2030 }
2031 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2032 addmedia(media, caps, addsta,
2033 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2034
2035 /* XXX TODO: VHT maxrate */
2036 }
2037
2038 return maxrate;
2039 }
2040
2041 /* XXX inline or eliminate? */
2042 const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com * ic,const struct ieee80211_channel * c)2043 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2044 {
2045 /* XXX does this work for 11ng basic rates? */
2046 return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2047 }
2048
2049 /* XXX inline or eliminate? */
2050 const struct ieee80211_htrateset *
ieee80211_get_suphtrates(struct ieee80211com * ic,const struct ieee80211_channel * c)2051 ieee80211_get_suphtrates(struct ieee80211com *ic,
2052 const struct ieee80211_channel *c)
2053 {
2054 return &ic->ic_sup_htrates;
2055 }
2056
2057 void
ieee80211_announce(struct ieee80211com * ic)2058 ieee80211_announce(struct ieee80211com *ic)
2059 {
2060 int i, rate, mword;
2061 enum ieee80211_phymode mode;
2062 const struct ieee80211_rateset *rs;
2063 struct ieee80211_node_txrate tn;
2064
2065 /* NB: skip AUTO since it has no rates */
2066 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2067 if (isclr(ic->ic_modecaps, mode))
2068 continue;
2069 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2070 rs = &ic->ic_sup_rates[mode];
2071 for (i = 0; i < rs->rs_nrates; i++) {
2072 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]);
2073 mword = ieee80211_rate2media(ic, &tn, mode);
2074 if (mword == 0)
2075 continue;
2076 rate = ieee80211_media2rate(mword);
2077 net80211_printf("%s%d%sMbps", (i != 0 ? " " : ""),
2078 rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2079 }
2080 net80211_printf("\n");
2081 }
2082 ieee80211_ht_announce(ic);
2083 ieee80211_vht_announce(ic);
2084 }
2085
2086 void
ieee80211_announce_channels(struct ieee80211com * ic)2087 ieee80211_announce_channels(struct ieee80211com *ic)
2088 {
2089 const struct ieee80211_channel *c;
2090 char type;
2091 int i, cw;
2092
2093 net80211_printf("Chan Freq CW RegPwr MinPwr MaxPwr\n");
2094 for (i = 0; i < ic->ic_nchans; i++) {
2095 c = &ic->ic_channels[i];
2096 if (IEEE80211_IS_CHAN_ST(c))
2097 type = 'S';
2098 else if (IEEE80211_IS_CHAN_108A(c))
2099 type = 'T';
2100 else if (IEEE80211_IS_CHAN_108G(c))
2101 type = 'G';
2102 else if (IEEE80211_IS_CHAN_HT(c))
2103 type = 'n';
2104 else if (IEEE80211_IS_CHAN_A(c))
2105 type = 'a';
2106 else if (IEEE80211_IS_CHAN_ANYG(c))
2107 type = 'g';
2108 else if (IEEE80211_IS_CHAN_B(c))
2109 type = 'b';
2110 else
2111 type = 'f';
2112 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2113 cw = 40;
2114 else if (IEEE80211_IS_CHAN_HALF(c))
2115 cw = 10;
2116 else if (IEEE80211_IS_CHAN_QUARTER(c))
2117 cw = 5;
2118 else
2119 cw = 20;
2120 net80211_printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n"
2121 , c->ic_ieee, c->ic_freq, type
2122 , cw
2123 , IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2124 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2125 , c->ic_maxregpower
2126 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2127 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2128 );
2129 }
2130 }
2131
2132 static int
media2mode(const struct ifmedia_entry * ime,uint32_t flags,uint16_t * mode)2133 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2134 {
2135 switch (IFM_MODE(ime->ifm_media)) {
2136 case IFM_IEEE80211_11A:
2137 *mode = IEEE80211_MODE_11A;
2138 break;
2139 case IFM_IEEE80211_11B:
2140 *mode = IEEE80211_MODE_11B;
2141 break;
2142 case IFM_IEEE80211_11G:
2143 *mode = IEEE80211_MODE_11G;
2144 break;
2145 case IFM_IEEE80211_FH:
2146 *mode = IEEE80211_MODE_FH;
2147 break;
2148 case IFM_IEEE80211_11NA:
2149 *mode = IEEE80211_MODE_11NA;
2150 break;
2151 case IFM_IEEE80211_11NG:
2152 *mode = IEEE80211_MODE_11NG;
2153 break;
2154 case IFM_IEEE80211_VHT2G:
2155 *mode = IEEE80211_MODE_VHT_2GHZ;
2156 break;
2157 case IFM_IEEE80211_VHT5G:
2158 *mode = IEEE80211_MODE_VHT_5GHZ;
2159 break;
2160 case IFM_AUTO:
2161 *mode = IEEE80211_MODE_AUTO;
2162 break;
2163 default:
2164 return 0;
2165 }
2166 /*
2167 * Turbo mode is an ``option''.
2168 * XXX does not apply to AUTO
2169 */
2170 if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2171 if (*mode == IEEE80211_MODE_11A) {
2172 if (flags & IEEE80211_F_TURBOP)
2173 *mode = IEEE80211_MODE_TURBO_A;
2174 else
2175 *mode = IEEE80211_MODE_STURBO_A;
2176 } else if (*mode == IEEE80211_MODE_11G)
2177 *mode = IEEE80211_MODE_TURBO_G;
2178 else
2179 return 0;
2180 }
2181 /* XXX HT40 +/- */
2182 return 1;
2183 }
2184
2185 /*
2186 * Handle a media change request on the vap interface.
2187 */
2188 int
ieee80211_media_change(struct ifnet * ifp)2189 ieee80211_media_change(struct ifnet *ifp)
2190 {
2191 struct ieee80211vap *vap = ifp->if_softc;
2192 struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2193 uint16_t newmode;
2194
2195 if (!media2mode(ime, vap->iv_flags, &newmode))
2196 return EINVAL;
2197 if (vap->iv_des_mode != newmode) {
2198 vap->iv_des_mode = newmode;
2199 /* XXX kick state machine if up+running */
2200 }
2201 return 0;
2202 }
2203
2204 /*
2205 * Common code to calculate the media status word
2206 * from the operating mode and channel state.
2207 */
2208 static int
media_status(enum ieee80211_opmode opmode,const struct ieee80211_channel * chan)2209 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2210 {
2211 int status;
2212
2213 status = IFM_IEEE80211;
2214 switch (opmode) {
2215 case IEEE80211_M_STA:
2216 break;
2217 case IEEE80211_M_IBSS:
2218 status |= IFM_IEEE80211_ADHOC;
2219 break;
2220 case IEEE80211_M_HOSTAP:
2221 status |= IFM_IEEE80211_HOSTAP;
2222 break;
2223 case IEEE80211_M_MONITOR:
2224 status |= IFM_IEEE80211_MONITOR;
2225 break;
2226 case IEEE80211_M_AHDEMO:
2227 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2228 break;
2229 case IEEE80211_M_WDS:
2230 status |= IFM_IEEE80211_WDS;
2231 break;
2232 case IEEE80211_M_MBSS:
2233 status |= IFM_IEEE80211_MBSS;
2234 break;
2235 }
2236 if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2237 status |= IFM_IEEE80211_VHT5G;
2238 } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2239 status |= IFM_IEEE80211_VHT2G;
2240 } else if (IEEE80211_IS_CHAN_HTA(chan)) {
2241 status |= IFM_IEEE80211_11NA;
2242 } else if (IEEE80211_IS_CHAN_HTG(chan)) {
2243 status |= IFM_IEEE80211_11NG;
2244 } else if (IEEE80211_IS_CHAN_A(chan)) {
2245 status |= IFM_IEEE80211_11A;
2246 } else if (IEEE80211_IS_CHAN_B(chan)) {
2247 status |= IFM_IEEE80211_11B;
2248 } else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2249 status |= IFM_IEEE80211_11G;
2250 } else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2251 status |= IFM_IEEE80211_FH;
2252 }
2253 /* XXX else complain? */
2254
2255 if (IEEE80211_IS_CHAN_TURBO(chan))
2256 status |= IFM_IEEE80211_TURBO;
2257 #if 0
2258 if (IEEE80211_IS_CHAN_HT20(chan))
2259 status |= IFM_IEEE80211_HT20;
2260 if (IEEE80211_IS_CHAN_HT40(chan))
2261 status |= IFM_IEEE80211_HT40;
2262 #endif
2263 return status;
2264 }
2265
2266 void
ieee80211_media_status(struct ifnet * ifp,struct ifmediareq * imr)2267 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2268 {
2269 struct ieee80211vap *vap = ifp->if_softc;
2270 struct ieee80211com *ic = vap->iv_ic;
2271 enum ieee80211_phymode mode;
2272 struct ieee80211_node_txrate tn;
2273
2274 imr->ifm_status = IFM_AVALID;
2275 /*
2276 * NB: use the current channel's mode to lock down a xmit
2277 * rate only when running; otherwise we may have a mismatch
2278 * in which case the rate will not be convertible.
2279 */
2280 if (vap->iv_state == IEEE80211_S_RUN ||
2281 vap->iv_state == IEEE80211_S_SLEEP) {
2282 imr->ifm_status |= IFM_ACTIVE;
2283 mode = ieee80211_chan2mode(ic->ic_curchan);
2284 } else
2285 mode = IEEE80211_MODE_AUTO;
2286 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2287 /*
2288 * Calculate a current rate if possible.
2289 */
2290 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2291 /*
2292 * A fixed rate is set, report that.
2293 */
2294 tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(
2295 vap->iv_txparms[mode].ucastrate);
2296 imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2297 } else if (vap->iv_opmode == IEEE80211_M_STA) {
2298 /*
2299 * In station mode report the current transmit rate.
2300 */
2301 ieee80211_node_get_txrate(vap->iv_bss, &tn);
2302 imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2303 } else
2304 imr->ifm_active |= IFM_AUTO;
2305 if (imr->ifm_status & IFM_ACTIVE)
2306 imr->ifm_current = imr->ifm_active;
2307 }
2308
2309 /*
2310 * Set the current phy mode and recalculate the active channel
2311 * set based on the available channels for this mode. Also
2312 * select a new default/current channel if the current one is
2313 * inappropriate for this mode.
2314 */
2315 int
ieee80211_setmode(struct ieee80211com * ic,enum ieee80211_phymode mode)2316 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2317 {
2318 /*
2319 * Adjust basic rates in 11b/11g supported rate set.
2320 * Note that if operating on a hal/quarter rate channel
2321 * this is a noop as those rates sets are different
2322 * and used instead.
2323 */
2324 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2325 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2326
2327 ic->ic_curmode = mode;
2328 ieee80211_reset_erp(ic); /* reset global ERP state */
2329
2330 return 0;
2331 }
2332
2333 /*
2334 * Return the phy mode for with the specified channel.
2335 */
2336 enum ieee80211_phymode
ieee80211_chan2mode(const struct ieee80211_channel * chan)2337 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2338 {
2339
2340 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2341 return IEEE80211_MODE_VHT_2GHZ;
2342 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2343 return IEEE80211_MODE_VHT_5GHZ;
2344 else if (IEEE80211_IS_CHAN_HTA(chan))
2345 return IEEE80211_MODE_11NA;
2346 else if (IEEE80211_IS_CHAN_HTG(chan))
2347 return IEEE80211_MODE_11NG;
2348 else if (IEEE80211_IS_CHAN_108G(chan))
2349 return IEEE80211_MODE_TURBO_G;
2350 else if (IEEE80211_IS_CHAN_ST(chan))
2351 return IEEE80211_MODE_STURBO_A;
2352 else if (IEEE80211_IS_CHAN_TURBO(chan))
2353 return IEEE80211_MODE_TURBO_A;
2354 else if (IEEE80211_IS_CHAN_HALF(chan))
2355 return IEEE80211_MODE_HALF;
2356 else if (IEEE80211_IS_CHAN_QUARTER(chan))
2357 return IEEE80211_MODE_QUARTER;
2358 else if (IEEE80211_IS_CHAN_A(chan))
2359 return IEEE80211_MODE_11A;
2360 else if (IEEE80211_IS_CHAN_ANYG(chan))
2361 return IEEE80211_MODE_11G;
2362 else if (IEEE80211_IS_CHAN_B(chan))
2363 return IEEE80211_MODE_11B;
2364 else if (IEEE80211_IS_CHAN_FHSS(chan))
2365 return IEEE80211_MODE_FH;
2366
2367 /* NB: should not get here */
2368 net80211_printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2369 __func__, chan->ic_freq, chan->ic_flags);
2370 return IEEE80211_MODE_11B;
2371 }
2372
2373 struct ratemedia {
2374 u_int match; /* rate + mode */
2375 u_int media; /* if_media rate */
2376 };
2377
2378 static int
findmedia(const struct ratemedia rates[],int n,u_int match)2379 findmedia(const struct ratemedia rates[], int n, u_int match)
2380 {
2381 int i;
2382
2383 for (i = 0; i < n; i++)
2384 if (rates[i].match == match)
2385 return rates[i].media;
2386 return IFM_AUTO;
2387 }
2388
2389 /*
2390 * Convert IEEE80211 rate value to ifmedia subtype.
2391 * Rate is either a legacy rate in units of 0.5Mbps
2392 * or an MCS index.
2393 */
2394 int
ieee80211_rate2media(struct ieee80211com * ic,const struct ieee80211_node_txrate * tr,enum ieee80211_phymode mode)2395 ieee80211_rate2media(struct ieee80211com *ic,
2396 const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode)
2397 {
2398 static const struct ratemedia rates[] = {
2399 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2400 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2401 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2402 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2403 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2404 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2405 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2406 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2407 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2408 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2409 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2410 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2411 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2412 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2413 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2414 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2415 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2416 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2417 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2418 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2419 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2420 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2421 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2422 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2423 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2424 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2425 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2426 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2427 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2428 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2429 /* NB: OFDM72 doesn't really exist so we don't handle it */
2430 };
2431 static const struct ratemedia htrates[] = {
2432 { 0, IFM_IEEE80211_MCS },
2433 { 1, IFM_IEEE80211_MCS },
2434 { 2, IFM_IEEE80211_MCS },
2435 { 3, IFM_IEEE80211_MCS },
2436 { 4, IFM_IEEE80211_MCS },
2437 { 5, IFM_IEEE80211_MCS },
2438 { 6, IFM_IEEE80211_MCS },
2439 { 7, IFM_IEEE80211_MCS },
2440 { 8, IFM_IEEE80211_MCS },
2441 { 9, IFM_IEEE80211_MCS },
2442 { 10, IFM_IEEE80211_MCS },
2443 { 11, IFM_IEEE80211_MCS },
2444 { 12, IFM_IEEE80211_MCS },
2445 { 13, IFM_IEEE80211_MCS },
2446 { 14, IFM_IEEE80211_MCS },
2447 { 15, IFM_IEEE80211_MCS },
2448 { 16, IFM_IEEE80211_MCS },
2449 { 17, IFM_IEEE80211_MCS },
2450 { 18, IFM_IEEE80211_MCS },
2451 { 19, IFM_IEEE80211_MCS },
2452 { 20, IFM_IEEE80211_MCS },
2453 { 21, IFM_IEEE80211_MCS },
2454 { 22, IFM_IEEE80211_MCS },
2455 { 23, IFM_IEEE80211_MCS },
2456 { 24, IFM_IEEE80211_MCS },
2457 { 25, IFM_IEEE80211_MCS },
2458 { 26, IFM_IEEE80211_MCS },
2459 { 27, IFM_IEEE80211_MCS },
2460 { 28, IFM_IEEE80211_MCS },
2461 { 29, IFM_IEEE80211_MCS },
2462 { 30, IFM_IEEE80211_MCS },
2463 { 31, IFM_IEEE80211_MCS },
2464 { 32, IFM_IEEE80211_MCS },
2465 { 33, IFM_IEEE80211_MCS },
2466 { 34, IFM_IEEE80211_MCS },
2467 { 35, IFM_IEEE80211_MCS },
2468 { 36, IFM_IEEE80211_MCS },
2469 { 37, IFM_IEEE80211_MCS },
2470 { 38, IFM_IEEE80211_MCS },
2471 { 39, IFM_IEEE80211_MCS },
2472 { 40, IFM_IEEE80211_MCS },
2473 { 41, IFM_IEEE80211_MCS },
2474 { 42, IFM_IEEE80211_MCS },
2475 { 43, IFM_IEEE80211_MCS },
2476 { 44, IFM_IEEE80211_MCS },
2477 { 45, IFM_IEEE80211_MCS },
2478 { 46, IFM_IEEE80211_MCS },
2479 { 47, IFM_IEEE80211_MCS },
2480 { 48, IFM_IEEE80211_MCS },
2481 { 49, IFM_IEEE80211_MCS },
2482 { 50, IFM_IEEE80211_MCS },
2483 { 51, IFM_IEEE80211_MCS },
2484 { 52, IFM_IEEE80211_MCS },
2485 { 53, IFM_IEEE80211_MCS },
2486 { 54, IFM_IEEE80211_MCS },
2487 { 55, IFM_IEEE80211_MCS },
2488 { 56, IFM_IEEE80211_MCS },
2489 { 57, IFM_IEEE80211_MCS },
2490 { 58, IFM_IEEE80211_MCS },
2491 { 59, IFM_IEEE80211_MCS },
2492 { 60, IFM_IEEE80211_MCS },
2493 { 61, IFM_IEEE80211_MCS },
2494 { 62, IFM_IEEE80211_MCS },
2495 { 63, IFM_IEEE80211_MCS },
2496 { 64, IFM_IEEE80211_MCS },
2497 { 65, IFM_IEEE80211_MCS },
2498 { 66, IFM_IEEE80211_MCS },
2499 { 67, IFM_IEEE80211_MCS },
2500 { 68, IFM_IEEE80211_MCS },
2501 { 69, IFM_IEEE80211_MCS },
2502 { 70, IFM_IEEE80211_MCS },
2503 { 71, IFM_IEEE80211_MCS },
2504 { 72, IFM_IEEE80211_MCS },
2505 { 73, IFM_IEEE80211_MCS },
2506 { 74, IFM_IEEE80211_MCS },
2507 { 75, IFM_IEEE80211_MCS },
2508 { 76, IFM_IEEE80211_MCS },
2509 };
2510 static const struct ratemedia vhtrates[] = {
2511 { 0, IFM_IEEE80211_VHT },
2512 { 1, IFM_IEEE80211_VHT },
2513 { 2, IFM_IEEE80211_VHT },
2514 { 3, IFM_IEEE80211_VHT },
2515 { 4, IFM_IEEE80211_VHT },
2516 { 5, IFM_IEEE80211_VHT },
2517 { 6, IFM_IEEE80211_VHT },
2518 { 7, IFM_IEEE80211_VHT },
2519 { 8, IFM_IEEE80211_VHT }, /* Optional. */
2520 { 9, IFM_IEEE80211_VHT }, /* Optional. */
2521 #if 0
2522 /* Some QCA and BRCM seem to support this; offspec. */
2523 { 10, IFM_IEEE80211_VHT },
2524 { 11, IFM_IEEE80211_VHT },
2525 #endif
2526 };
2527 int m, rate;
2528
2529 /*
2530 * Check 11ac/11n rates first for match as an MCS.
2531 */
2532 if (mode == IEEE80211_MODE_VHT_5GHZ) {
2533 if (tr->type == IEEE80211_NODE_TXRATE_VHT) {
2534 m = findmedia(vhtrates, nitems(vhtrates), tr->mcs);
2535 if (m != IFM_AUTO)
2536 return (m | IFM_IEEE80211_VHT);
2537 }
2538 } else if (mode == IEEE80211_MODE_11NA) {
2539 /* NB: 12 is ambiguous, it will be treated as an MCS */
2540 if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2541 m = findmedia(htrates, nitems(htrates),
2542 tr->dot11rate & ~IEEE80211_RATE_MCS);
2543 if (m != IFM_AUTO)
2544 return m | IFM_IEEE80211_11NA;
2545 }
2546 } else if (mode == IEEE80211_MODE_11NG) {
2547 /* NB: 12 is ambiguous, it will be treated as an MCS */
2548 if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2549 m = findmedia(htrates, nitems(htrates),
2550 tr->dot11rate & ~IEEE80211_RATE_MCS);
2551 if (m != IFM_AUTO)
2552 return m | IFM_IEEE80211_11NG;
2553 }
2554 }
2555
2556 /*
2557 * At this point it needs to be a dot11rate (legacy/HT) for the
2558 * rest of the logic to work.
2559 */
2560 if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) &&
2561 (tr->type != IEEE80211_NODE_TXRATE_HT))
2562 return (IFM_AUTO);
2563 rate = tr->dot11rate & IEEE80211_RATE_VAL;
2564
2565 switch (mode) {
2566 case IEEE80211_MODE_11A:
2567 case IEEE80211_MODE_HALF: /* XXX good 'nuf */
2568 case IEEE80211_MODE_QUARTER:
2569 case IEEE80211_MODE_11NA:
2570 case IEEE80211_MODE_TURBO_A:
2571 case IEEE80211_MODE_STURBO_A:
2572 return findmedia(rates, nitems(rates),
2573 rate | IFM_IEEE80211_11A);
2574 case IEEE80211_MODE_11B:
2575 return findmedia(rates, nitems(rates),
2576 rate | IFM_IEEE80211_11B);
2577 case IEEE80211_MODE_FH:
2578 return findmedia(rates, nitems(rates),
2579 rate | IFM_IEEE80211_FH);
2580 case IEEE80211_MODE_AUTO:
2581 /* NB: ic may be NULL for some drivers */
2582 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2583 return findmedia(rates, nitems(rates),
2584 rate | IFM_IEEE80211_FH);
2585 /* NB: hack, 11g matches both 11b+11a rates */
2586 /* fall thru... */
2587 case IEEE80211_MODE_11G:
2588 case IEEE80211_MODE_11NG:
2589 case IEEE80211_MODE_TURBO_G:
2590 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2591 case IEEE80211_MODE_VHT_2GHZ:
2592 case IEEE80211_MODE_VHT_5GHZ:
2593 /* XXX TODO: need to figure out mapping for VHT rates */
2594 return IFM_AUTO;
2595 }
2596 return IFM_AUTO;
2597 }
2598
2599 int
ieee80211_media2rate(int mword)2600 ieee80211_media2rate(int mword)
2601 {
2602 static const int ieeerates[] = {
2603 -1, /* IFM_AUTO */
2604 0, /* IFM_MANUAL */
2605 0, /* IFM_NONE */
2606 2, /* IFM_IEEE80211_FH1 */
2607 4, /* IFM_IEEE80211_FH2 */
2608 2, /* IFM_IEEE80211_DS1 */
2609 4, /* IFM_IEEE80211_DS2 */
2610 11, /* IFM_IEEE80211_DS5 */
2611 22, /* IFM_IEEE80211_DS11 */
2612 44, /* IFM_IEEE80211_DS22 */
2613 12, /* IFM_IEEE80211_OFDM6 */
2614 18, /* IFM_IEEE80211_OFDM9 */
2615 24, /* IFM_IEEE80211_OFDM12 */
2616 36, /* IFM_IEEE80211_OFDM18 */
2617 48, /* IFM_IEEE80211_OFDM24 */
2618 72, /* IFM_IEEE80211_OFDM36 */
2619 96, /* IFM_IEEE80211_OFDM48 */
2620 108, /* IFM_IEEE80211_OFDM54 */
2621 144, /* IFM_IEEE80211_OFDM72 */
2622 0, /* IFM_IEEE80211_DS354k */
2623 0, /* IFM_IEEE80211_DS512k */
2624 6, /* IFM_IEEE80211_OFDM3 */
2625 9, /* IFM_IEEE80211_OFDM4 */
2626 54, /* IFM_IEEE80211_OFDM27 */
2627 -1, /* IFM_IEEE80211_MCS */
2628 -1, /* IFM_IEEE80211_VHT */
2629 };
2630 return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2631 ieeerates[IFM_SUBTYPE(mword)] : 0;
2632 }
2633
2634 /*
2635 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2636 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2637 */
2638 #define mix(a, b, c) \
2639 do { \
2640 a -= b; a -= c; a ^= (c >> 13); \
2641 b -= c; b -= a; b ^= (a << 8); \
2642 c -= a; c -= b; c ^= (b >> 13); \
2643 a -= b; a -= c; a ^= (c >> 12); \
2644 b -= c; b -= a; b ^= (a << 16); \
2645 c -= a; c -= b; c ^= (b >> 5); \
2646 a -= b; a -= c; a ^= (c >> 3); \
2647 b -= c; b -= a; b ^= (a << 10); \
2648 c -= a; c -= b; c ^= (b >> 15); \
2649 } while (/*CONSTCOND*/0)
2650
2651 uint32_t
ieee80211_mac_hash(const struct ieee80211com * ic,const uint8_t addr[IEEE80211_ADDR_LEN])2652 ieee80211_mac_hash(const struct ieee80211com *ic,
2653 const uint8_t addr[IEEE80211_ADDR_LEN])
2654 {
2655 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2656
2657 b += addr[5] << 8;
2658 b += addr[4];
2659 a += addr[3] << 24;
2660 a += addr[2] << 16;
2661 a += addr[1] << 8;
2662 a += addr[0];
2663
2664 mix(a, b, c);
2665
2666 return c;
2667 }
2668 #undef mix
2669
2670 char
ieee80211_channel_type_char(const struct ieee80211_channel * c)2671 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2672 {
2673 if (IEEE80211_IS_CHAN_ST(c))
2674 return 'S';
2675 if (IEEE80211_IS_CHAN_108A(c))
2676 return 'T';
2677 if (IEEE80211_IS_CHAN_108G(c))
2678 return 'G';
2679 if (IEEE80211_IS_CHAN_VHT(c))
2680 return 'v';
2681 if (IEEE80211_IS_CHAN_HT(c))
2682 return 'n';
2683 if (IEEE80211_IS_CHAN_A(c))
2684 return 'a';
2685 if (IEEE80211_IS_CHAN_ANYG(c))
2686 return 'g';
2687 if (IEEE80211_IS_CHAN_B(c))
2688 return 'b';
2689 return 'f';
2690 }
2691
2692 /*
2693 * Determine whether the given key in the given VAP is a global key.
2694 * (key index 0..3, shared between all stations on a VAP.)
2695 *
2696 * This is either a WEP key or a GROUP key.
2697 *
2698 * Note this will NOT return true if it is a IGTK key.
2699 */
2700 bool
ieee80211_is_key_global(const struct ieee80211vap * vap,const struct ieee80211_key * key)2701 ieee80211_is_key_global(const struct ieee80211vap *vap,
2702 const struct ieee80211_key *key)
2703 {
2704 return (&vap->iv_nw_keys[0] <= key &&
2705 key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2706 }
2707
2708 /*
2709 * Determine whether the given key in the given VAP is a unicast key.
2710 */
2711 bool
ieee80211_is_key_unicast(const struct ieee80211vap * vap,const struct ieee80211_key * key)2712 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2713 const struct ieee80211_key *key)
2714 {
2715 /*
2716 * This is a short-cut for now; eventually we will need
2717 * to support multiple unicast keys, IGTK, etc) so we
2718 * will absolutely need to fix the key flags.
2719 */
2720 return (!ieee80211_is_key_global(vap, key));
2721 }
2722
2723 /**
2724 * Determine whether the given control frame is from a known node
2725 * and destined to us.
2726 *
2727 * In some instances a control frame won't have a TA (eg ACKs), so
2728 * we should only verify the RA for those.
2729 *
2730 * @param ni ieee80211_node representing the sender, or BSS node
2731 * @param m0 mbuf representing the 802.11 frame.
2732 * @returns false if the frame is not a CTL frame (with a warning logged);
2733 * true if the frame is from a known sender / valid recipient,
2734 * false otherwise.
2735 */
2736 bool
ieee80211_is_ctl_frame_for_vap(struct ieee80211_node * ni,const struct mbuf * m0)2737 ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0)
2738 {
2739 const struct ieee80211vap *vap = ni->ni_vap;
2740 const struct ieee80211_frame *wh;
2741 uint8_t subtype;
2742
2743 wh = mtod(m0, const struct ieee80211_frame *);
2744 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2745
2746 /* Verify it's a ctl frame. */
2747 KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)",
2748 __func__, wh->i_fc[0]));
2749 if (!IEEE80211_IS_CTL(wh)) {
2750 net80211_vap_printf(vap,
2751 "%s: not a control frame (fc[0]=0x%04x)\n",
2752 __func__, wh->i_fc[0]);
2753 return (false);
2754 }
2755
2756 /* Verify the TA if present. */
2757 switch (subtype) {
2758 case IEEE80211_FC0_SUBTYPE_CTS:
2759 case IEEE80211_FC0_SUBTYPE_ACK:
2760 /* No TA. */
2761 break;
2762 default:
2763 /*
2764 * Verify TA matches ni->ni_macaddr; for unknown
2765 * sources it will be the BSS node and ni->ni_macaddr
2766 * will the BSS MAC.
2767 */
2768 if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr))
2769 return (false);
2770 break;
2771 }
2772
2773 /* Verify the RA */
2774 return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr));
2775 }
2776