xref: /freebsd/sys/net80211/ieee80211.c (revision e453e498cbb88570a3ff7b3679de65c88707da95)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 #include <sys/stdarg.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_private.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #include <net80211/ieee80211_ratectl.h>
57 #include <net80211/ieee80211_vht.h>
58 
59 #include <net/bpf.h>
60 
61 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
62 	[IEEE80211_MODE_AUTO]	  = "auto",
63 	[IEEE80211_MODE_11A]	  = "11a",
64 	[IEEE80211_MODE_11B]	  = "11b",
65 	[IEEE80211_MODE_11G]	  = "11g",
66 	[IEEE80211_MODE_FH]	  = "FH",
67 	[IEEE80211_MODE_TURBO_A]  = "turboA",
68 	[IEEE80211_MODE_TURBO_G]  = "turboG",
69 	[IEEE80211_MODE_STURBO_A] = "sturboA",
70 	[IEEE80211_MODE_HALF]	  = "half",
71 	[IEEE80211_MODE_QUARTER]  = "quarter",
72 	[IEEE80211_MODE_11NA]	  = "11na",
73 	[IEEE80211_MODE_11NG]	  = "11ng",
74 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
75 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
76 };
77 /* map ieee80211_opmode to the corresponding capability bit */
78 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
79 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
80 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
81 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
82 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
83 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
84 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
85 #ifdef IEEE80211_SUPPORT_MESH
86 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
87 #endif
88 };
89 
90 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
91 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
92 
93 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
94 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
95 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
97 static	int ieee80211_media_setup(struct ieee80211com *ic,
98 		struct ifmedia *media, int caps, int addsta,
99 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
100 static	int media_status(enum ieee80211_opmode,
101 		const struct ieee80211_channel *);
102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103 
104 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
105 
106 /*
107  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
108  */
109 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
110 static const struct ieee80211_rateset ieee80211_rateset_11a =
111 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
112 static const struct ieee80211_rateset ieee80211_rateset_half =
113 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
114 static const struct ieee80211_rateset ieee80211_rateset_quarter =
115 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
116 static const struct ieee80211_rateset ieee80211_rateset_11b =
117 	{ 4, { B(2), B(4), B(11), B(22) } };
118 /* NB: OFDM rates are handled specially based on mode */
119 static const struct ieee80211_rateset ieee80211_rateset_11g =
120 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
121 #undef B
122 
123 static int set_vht_extchan(struct ieee80211_channel *c);
124 
125 /*
126  * Fill in 802.11 available channel set, mark
127  * all available channels as active, and pick
128  * a default channel if not already specified.
129  */
130 void
ieee80211_chan_init(struct ieee80211com * ic)131 ieee80211_chan_init(struct ieee80211com *ic)
132 {
133 #define	DEFAULTRATES(m, def) do { \
134 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
135 		ic->ic_sup_rates[m] = def; \
136 } while (0)
137 	struct ieee80211_channel *c;
138 	int i;
139 
140 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
141 		("invalid number of channels specified: %u", ic->ic_nchans));
142 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
143 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
144 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
145 	for (i = 0; i < ic->ic_nchans; i++) {
146 		c = &ic->ic_channels[i];
147 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
148 		/*
149 		 * Help drivers that work only with frequencies by filling
150 		 * in IEEE channel #'s if not already calculated.  Note this
151 		 * mimics similar work done in ieee80211_setregdomain when
152 		 * changing regulatory state.
153 		 */
154 		if (c->ic_ieee == 0)
155 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
156 
157 		/*
158 		 * Setup the HT40/VHT40 upper/lower bits.
159 		 * The VHT80/... math is done elsewhere.
160 		 */
161 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
162 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
163 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
164 			    c->ic_flags);
165 
166 		/* Update VHT math */
167 		/*
168 		 * XXX VHT again, note that this assumes VHT80/... channels
169 		 * are legit already.
170 		 */
171 		set_vht_extchan(c);
172 
173 		/* default max tx power to max regulatory */
174 		if (c->ic_maxpower == 0)
175 			c->ic_maxpower = 2*c->ic_maxregpower;
176 		setbit(ic->ic_chan_avail, c->ic_ieee);
177 		/*
178 		 * Identify mode capabilities.
179 		 */
180 		if (IEEE80211_IS_CHAN_A(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
182 		if (IEEE80211_IS_CHAN_B(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
184 		if (IEEE80211_IS_CHAN_ANYG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
186 		if (IEEE80211_IS_CHAN_FHSS(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
188 		if (IEEE80211_IS_CHAN_108A(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
190 		if (IEEE80211_IS_CHAN_108G(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
192 		if (IEEE80211_IS_CHAN_ST(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
194 		if (IEEE80211_IS_CHAN_HALF(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
196 		if (IEEE80211_IS_CHAN_QUARTER(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
198 		if (IEEE80211_IS_CHAN_HTA(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
200 		if (IEEE80211_IS_CHAN_HTG(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
202 		if (IEEE80211_IS_CHAN_VHTA(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
204 		if (IEEE80211_IS_CHAN_VHTG(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
206 	}
207 	/* initialize candidate channels to all available */
208 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
209 		sizeof(ic->ic_chan_avail));
210 
211 	/* sort channel table to allow lookup optimizations */
212 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
213 
214 	/* invalidate any previous state */
215 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
216 	ic->ic_prevchan = NULL;
217 	ic->ic_csa_newchan = NULL;
218 	/* arbitrarily pick the first channel */
219 	ic->ic_curchan = &ic->ic_channels[0];
220 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
221 
222 	/* fillin well-known rate sets if driver has not specified */
223 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
224 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
225 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
226 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
227 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
228 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
230 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
231 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
232 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
233 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
234 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
235 
236 	/*
237 	 * Setup required information to fill the mcsset field, if driver did
238 	 * not. Assume a 2T2R setup for historic reasons.
239 	 */
240 	if (ic->ic_rxstream == 0)
241 		ic->ic_rxstream = 2;
242 	if (ic->ic_txstream == 0)
243 		ic->ic_txstream = 2;
244 
245 	ieee80211_init_suphtrates(ic);
246 
247 	/*
248 	 * Set auto mode to reset active channel state and any desired channel.
249 	 */
250 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
251 #undef DEFAULTRATES
252 }
253 
254 static void
null_update_mcast(struct ieee80211com * ic)255 null_update_mcast(struct ieee80211com *ic)
256 {
257 
258 	ic_printf(ic, "need multicast update callback\n");
259 }
260 
261 static void
null_update_promisc(struct ieee80211com * ic)262 null_update_promisc(struct ieee80211com *ic)
263 {
264 
265 	ic_printf(ic, "need promiscuous mode update callback\n");
266 }
267 
268 static void
null_update_chw(struct ieee80211com * ic)269 null_update_chw(struct ieee80211com *ic)
270 {
271 
272 	ic_printf(ic, "%s: need callback\n", __func__);
273 }
274 
275 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
276 static struct mtx ic_list_mtx;
277 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
278 
279 static int
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)280 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
281 {
282 	struct ieee80211com *ic;
283 	struct sbuf sb;
284 	char *sp;
285 	int error;
286 
287 	error = sysctl_wire_old_buffer(req, 0);
288 	if (error)
289 		return (error);
290 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
291 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
292 	sp = "";
293 	mtx_lock(&ic_list_mtx);
294 	LIST_FOREACH(ic, &ic_head, ic_next) {
295 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
296 		sp = " ";
297 	}
298 	mtx_unlock(&ic_list_mtx);
299 	error = sbuf_finish(&sb);
300 	sbuf_delete(&sb);
301 	return (error);
302 }
303 
304 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
305     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
306     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
307 
308 /*
309  * Attach/setup the common net80211 state.  Called by
310  * the driver on attach to prior to creating any vap's.
311  */
312 void
ieee80211_ifattach(struct ieee80211com * ic)313 ieee80211_ifattach(struct ieee80211com *ic)
314 {
315 
316 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
317 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
318 	TAILQ_INIT(&ic->ic_vaps);
319 
320 	/* Create a taskqueue for all state changes */
321 	ic->ic_tq = taskqueue_create("ic_taskq",
322 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
323 	    taskqueue_thread_enqueue, &ic->ic_tq);
324 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
325 	    ic->ic_name);
326 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
327 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
328 	/*
329 	 * Fill in 802.11 available channel set, mark all
330 	 * available channels as active, and pick a default
331 	 * channel if not already specified.
332 	 */
333 	ieee80211_chan_init(ic);
334 
335 	ic->ic_update_mcast = null_update_mcast;
336 	ic->ic_update_promisc = null_update_promisc;
337 	ic->ic_update_chw = null_update_chw;
338 
339 	ic->ic_hash_key = arc4random();
340 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
341 	ic->ic_lintval = ic->ic_bintval;
342 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
343 
344 	ieee80211_crypto_attach(ic);
345 	ieee80211_node_attach(ic);
346 	ieee80211_power_attach(ic);
347 	ieee80211_proto_attach(ic);
348 #ifdef IEEE80211_SUPPORT_SUPERG
349 	ieee80211_superg_attach(ic);
350 #endif
351 	ieee80211_ht_attach(ic);
352 	ieee80211_vht_attach(ic);
353 	ieee80211_scan_attach(ic);
354 	ieee80211_regdomain_attach(ic);
355 	ieee80211_dfs_attach(ic);
356 
357 	ieee80211_sysctl_attach(ic);
358 
359 	mtx_lock(&ic_list_mtx);
360 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
361 	mtx_unlock(&ic_list_mtx);
362 }
363 
364 /*
365  * Detach net80211 state on device detach.  Tear down
366  * all vap's and reclaim all common state prior to the
367  * device state going away.  Note we may call back into
368  * driver; it must be prepared for this.
369  */
370 void
ieee80211_ifdetach(struct ieee80211com * ic)371 ieee80211_ifdetach(struct ieee80211com *ic)
372 {
373 	struct ieee80211vap *vap;
374 
375 	/*
376 	 * We use this as an indicator that ifattach never had a chance to be
377 	 * called, e.g. early driver attach failed and ifdetach was called
378 	 * during subsequent detach.  Never fear, for we have nothing to do
379 	 * here.
380 	 */
381 	if (ic->ic_tq == NULL)
382 		return;
383 
384 	mtx_lock(&ic_list_mtx);
385 	LIST_REMOVE(ic, ic_next);
386 	mtx_unlock(&ic_list_mtx);
387 
388 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
389 
390 	/*
391 	 * The VAP is responsible for setting and clearing
392 	 * the VIMAGE context.
393 	 */
394 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
395 		ieee80211_com_vdetach(vap);
396 		ieee80211_vap_destroy(vap);
397 	}
398 	ieee80211_waitfor_parent(ic);
399 
400 	ieee80211_sysctl_detach(ic);
401 	ieee80211_dfs_detach(ic);
402 	ieee80211_regdomain_detach(ic);
403 	ieee80211_scan_detach(ic);
404 #ifdef IEEE80211_SUPPORT_SUPERG
405 	ieee80211_superg_detach(ic);
406 #endif
407 	ieee80211_vht_detach(ic);
408 	ieee80211_ht_detach(ic);
409 	/* NB: must be called before ieee80211_node_detach */
410 	ieee80211_proto_detach(ic);
411 	ieee80211_crypto_detach(ic);
412 	ieee80211_power_detach(ic);
413 	ieee80211_node_detach(ic);
414 
415 	counter_u64_free(ic->ic_ierrors);
416 	counter_u64_free(ic->ic_oerrors);
417 
418 	taskqueue_free(ic->ic_tq);
419 	IEEE80211_TX_LOCK_DESTROY(ic);
420 	IEEE80211_LOCK_DESTROY(ic);
421 }
422 
423 /*
424  * Called by drivers during attach to set the supported
425  * cipher set for software encryption.
426  */
427 void
ieee80211_set_software_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)428 ieee80211_set_software_ciphers(struct ieee80211com *ic,
429     uint32_t cipher_suite)
430 {
431 	ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
432 }
433 
434 /*
435  * Called by drivers during attach to set the supported
436  * cipher set for hardware encryption.
437  */
438 void
ieee80211_set_hardware_ciphers(struct ieee80211com * ic,uint32_t cipher_suite)439 ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
440     uint32_t cipher_suite)
441 {
442 	ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
443 }
444 
445 /*
446  * Called by drivers during attach to set the supported
447  * key management suites by the driver/hardware.
448  */
449 void
ieee80211_set_driver_keymgmt_suites(struct ieee80211com * ic,uint32_t keymgmt_set)450 ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
451     uint32_t keymgmt_set)
452 {
453 	ieee80211_crypto_set_supported_driver_keymgmt(ic,
454 	    keymgmt_set);
455 }
456 
457 struct ieee80211com *
ieee80211_find_com(const char * name)458 ieee80211_find_com(const char *name)
459 {
460 	struct ieee80211com *ic;
461 
462 	mtx_lock(&ic_list_mtx);
463 	LIST_FOREACH(ic, &ic_head, ic_next)
464 		if (strcmp(ic->ic_name, name) == 0)
465 			break;
466 	mtx_unlock(&ic_list_mtx);
467 
468 	return (ic);
469 }
470 
471 void
ieee80211_iterate_coms(ieee80211_com_iter_func * f,void * arg)472 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
473 {
474 	struct ieee80211com *ic;
475 
476 	mtx_lock(&ic_list_mtx);
477 	LIST_FOREACH(ic, &ic_head, ic_next)
478 		(*f)(arg, ic);
479 	mtx_unlock(&ic_list_mtx);
480 }
481 
482 /*
483  * Default reset method for use with the ioctl support.  This
484  * method is invoked after any state change in the 802.11
485  * layer that should be propagated to the hardware but not
486  * require re-initialization of the 802.11 state machine (e.g
487  * rescanning for an ap).  We always return ENETRESET which
488  * should cause the driver to re-initialize the device. Drivers
489  * can override this method to implement more optimized support.
490  */
491 static int
default_reset(struct ieee80211vap * vap,u_long cmd)492 default_reset(struct ieee80211vap *vap, u_long cmd)
493 {
494 	return ENETRESET;
495 }
496 
497 /*
498  * Default for updating the VAP default TX key index.
499  *
500  * Drivers that support TX offload as well as hardware encryption offload
501  * may need to be informed of key index changes separate from the key
502  * update.
503  */
504 static void
default_update_deftxkey(struct ieee80211vap * vap,ieee80211_keyix kid)505 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
506 {
507 
508 	/* XXX assert validity */
509 	/* XXX assert we're in a key update block */
510 	vap->iv_def_txkey = kid;
511 }
512 
513 /*
514  * Add underlying device errors to vap errors.
515  */
516 static uint64_t
ieee80211_get_counter(struct ifnet * ifp,ift_counter cnt)517 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
518 {
519 	struct ieee80211vap *vap = ifp->if_softc;
520 	struct ieee80211com *ic = vap->iv_ic;
521 	uint64_t rv;
522 
523 	rv = if_get_counter_default(ifp, cnt);
524 	switch (cnt) {
525 	case IFCOUNTER_OERRORS:
526 		rv += counter_u64_fetch(ic->ic_oerrors);
527 		break;
528 	case IFCOUNTER_IERRORS:
529 		rv += counter_u64_fetch(ic->ic_ierrors);
530 		break;
531 	default:
532 		break;
533 	}
534 
535 	return (rv);
536 }
537 
538 /*
539  * Prepare a vap for use.  Drivers use this call to
540  * setup net80211 state in new vap's prior attaching
541  * them with ieee80211_vap_attach (below).
542  */
543 int
ieee80211_vap_setup(struct ieee80211com * ic,struct ieee80211vap * vap,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN])544 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
545     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
546     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
547 {
548 	struct ifnet *ifp;
549 
550 	ifp = if_alloc(IFT_ETHER);
551 	if_initname(ifp, name, unit);
552 	ifp->if_softc = vap;			/* back pointer */
553 	if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST);
554 	ifp->if_transmit = ieee80211_vap_transmit;
555 	ifp->if_qflush = ieee80211_vap_qflush;
556 	ifp->if_ioctl = ieee80211_ioctl;
557 	ifp->if_init = ieee80211_init;
558 	ifp->if_get_counter = ieee80211_get_counter;
559 
560 	vap->iv_ifp = ifp;
561 	vap->iv_ic = ic;
562 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
563 	vap->iv_flags_ext = ic->ic_flags_ext;
564 	vap->iv_flags_ven = ic->ic_flags_ven;
565 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
566 
567 	/* 11n capabilities - XXX methodize */
568 	vap->iv_htcaps = ic->ic_htcaps;
569 	vap->iv_htextcaps = ic->ic_htextcaps;
570 
571 	/* 11ac capabilities - XXX methodize */
572 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
573 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
574 
575 	vap->iv_opmode = opmode;
576 	vap->iv_caps |= ieee80211_opcap[opmode];
577 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
578 	switch (opmode) {
579 	case IEEE80211_M_WDS:
580 		/*
581 		 * WDS links must specify the bssid of the far end.
582 		 * For legacy operation this is a static relationship.
583 		 * For non-legacy operation the station must associate
584 		 * and be authorized to pass traffic.  Plumbing the
585 		 * vap to the proper node happens when the vap
586 		 * transitions to RUN state.
587 		 */
588 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
589 		vap->iv_flags |= IEEE80211_F_DESBSSID;
590 		if (flags & IEEE80211_CLONE_WDSLEGACY)
591 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
592 		break;
593 #ifdef IEEE80211_SUPPORT_TDMA
594 	case IEEE80211_M_AHDEMO:
595 		if (flags & IEEE80211_CLONE_TDMA) {
596 			/* NB: checked before clone operation allowed */
597 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
598 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
599 			/*
600 			 * Propagate TDMA capability to mark vap; this
601 			 * cannot be removed and is used to distinguish
602 			 * regular ahdemo operation from ahdemo+tdma.
603 			 */
604 			vap->iv_caps |= IEEE80211_C_TDMA;
605 		}
606 		break;
607 #endif
608 	default:
609 		break;
610 	}
611 	/* auto-enable s/w beacon miss support */
612 	if (flags & IEEE80211_CLONE_NOBEACONS)
613 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
614 	/* auto-generated or user supplied MAC address */
615 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
616 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
617 	/*
618 	 * Enable various functionality by default if we're
619 	 * capable; the driver can override us if it knows better.
620 	 */
621 	if (vap->iv_caps & IEEE80211_C_WME)
622 		vap->iv_flags |= IEEE80211_F_WME;
623 	if (vap->iv_caps & IEEE80211_C_BURST)
624 		vap->iv_flags |= IEEE80211_F_BURST;
625 	/* NB: bg scanning only makes sense for station mode right now */
626 	if (vap->iv_opmode == IEEE80211_M_STA &&
627 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
628 		vap->iv_flags |= IEEE80211_F_BGSCAN;
629 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
630 	/* NB: DFS support only makes sense for ap mode right now */
631 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
632 	    (vap->iv_caps & IEEE80211_C_DFS))
633 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
634 	/* NB: only flip on U-APSD for hostap/sta for now */
635 	if ((vap->iv_opmode == IEEE80211_M_STA)
636 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
637 		if (vap->iv_caps & IEEE80211_C_UAPSD)
638 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
639 	}
640 
641 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
642 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
643 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
644 	/*
645 	 * Install a default reset method for the ioctl support;
646 	 * the driver can override this.
647 	 */
648 	vap->iv_reset = default_reset;
649 
650 	/*
651 	 * Install a default crypto key update method, the driver
652 	 * can override this.
653 	 */
654 	vap->iv_update_deftxkey = default_update_deftxkey;
655 
656 	ieee80211_sysctl_vattach(vap);
657 	ieee80211_crypto_vattach(vap);
658 	ieee80211_node_vattach(vap);
659 	ieee80211_power_vattach(vap);
660 	ieee80211_proto_vattach(vap);
661 #ifdef IEEE80211_SUPPORT_SUPERG
662 	ieee80211_superg_vattach(vap);
663 #endif
664 	ieee80211_ht_vattach(vap);
665 	ieee80211_vht_vattach(vap);
666 	ieee80211_scan_vattach(vap);
667 	ieee80211_regdomain_vattach(vap);
668 	ieee80211_radiotap_vattach(vap);
669 	ieee80211_vap_reset_erp(vap);
670 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
671 
672 	return 0;
673 }
674 
675 /*
676  * Activate a vap.  State should have been prepared with a
677  * call to ieee80211_vap_setup and by the driver.  On return
678  * from this call the vap is ready for use.
679  */
680 int
ieee80211_vap_attach(struct ieee80211vap * vap,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat,const uint8_t macaddr[IEEE80211_ADDR_LEN])681 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
682     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
683 {
684 	struct ifnet *ifp = vap->iv_ifp;
685 	struct ieee80211com *ic = vap->iv_ic;
686 	struct ifmediareq imr;
687 	int maxrate;
688 
689 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
690 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
691 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
692 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
693 
694 	/*
695 	 * Do late attach work that cannot happen until after
696 	 * the driver has had a chance to override defaults.
697 	 */
698 	ieee80211_node_latevattach(vap);
699 	ieee80211_power_latevattach(vap);
700 
701 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
702 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
703 	ieee80211_media_status(ifp, &imr);
704 	/* NB: strip explicit mode; we're actually in autoselect */
705 	ifmedia_set(&vap->iv_media,
706 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
707 	if (maxrate)
708 		ifp->if_baudrate = IF_Mbps(maxrate);
709 
710 	ether_ifattach(ifp, macaddr);
711 	/* Do initial MAC address sync */
712 	ieee80211_vap_copy_mac_address(vap);
713 	/* hook output method setup by ether_ifattach */
714 	vap->iv_output = ifp->if_output;
715 	ifp->if_output = ieee80211_output;
716 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
717 
718 	IEEE80211_LOCK(ic);
719 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
720 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
721 #ifdef IEEE80211_SUPPORT_SUPERG
722 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
723 #endif
724 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
725 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
726 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
727 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
728 
729 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
730 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
731 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
732 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
733 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
734 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
735 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
736 	IEEE80211_UNLOCK(ic);
737 
738 	return 1;
739 }
740 
741 /*
742  * Tear down vap state and reclaim the ifnet.
743  * The driver is assumed to have prepared for
744  * this; e.g. by turning off interrupts for the
745  * underlying device.
746  */
747 void
ieee80211_vap_detach(struct ieee80211vap * vap)748 ieee80211_vap_detach(struct ieee80211vap *vap)
749 {
750 	struct ieee80211com *ic = vap->iv_ic;
751 	struct ifnet *ifp = vap->iv_ifp;
752 	int i;
753 
754 	CURVNET_SET(ifp->if_vnet);
755 
756 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
757 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
758 
759 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
760 	ether_ifdetach(ifp);
761 
762 	ieee80211_stop(vap);
763 
764 	/*
765 	 * Flush any deferred vap tasks.
766 	 */
767 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
768 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
769 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
770 	ieee80211_draintask(ic, &vap->iv_wme_task);
771 	ieee80211_draintask(ic, &ic->ic_parent_task);
772 
773 	/* XXX band-aid until ifnet handles this for us */
774 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
775 
776 	IEEE80211_LOCK(ic);
777 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
778 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
779 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
780 #ifdef IEEE80211_SUPPORT_SUPERG
781 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
782 #endif
783 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
784 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
785 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
786 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
787 
788 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
789 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
790 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
791 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
792 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
793 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
794 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
795 
796 	/* NB: this handles the bpfdetach done below */
797 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
798 	if (vap->iv_ifflags & IFF_PROMISC)
799 		ieee80211_promisc(vap, false);
800 	if (vap->iv_ifflags & IFF_ALLMULTI)
801 		ieee80211_allmulti(vap, false);
802 	IEEE80211_UNLOCK(ic);
803 
804 	ifmedia_removeall(&vap->iv_media);
805 
806 	ieee80211_radiotap_vdetach(vap);
807 	ieee80211_regdomain_vdetach(vap);
808 	ieee80211_scan_vdetach(vap);
809 #ifdef IEEE80211_SUPPORT_SUPERG
810 	ieee80211_superg_vdetach(vap);
811 #endif
812 	ieee80211_vht_vdetach(vap);
813 	ieee80211_ht_vdetach(vap);
814 	/* NB: must be before ieee80211_node_vdetach */
815 	ieee80211_proto_vdetach(vap);
816 	ieee80211_crypto_vdetach(vap);
817 	ieee80211_power_vdetach(vap);
818 	ieee80211_node_vdetach(vap);
819 	ieee80211_sysctl_vdetach(vap);
820 
821 	if_free(ifp);
822 
823 	CURVNET_RESTORE();
824 }
825 
826 /*
827  * Count number of vaps in promisc, and issue promisc on
828  * parent respectively.
829  */
830 void
ieee80211_promisc(struct ieee80211vap * vap,bool on)831 ieee80211_promisc(struct ieee80211vap *vap, bool on)
832 {
833 	struct ieee80211com *ic = vap->iv_ic;
834 
835 	IEEE80211_LOCK_ASSERT(ic);
836 
837 	if (on) {
838 		if (++ic->ic_promisc == 1)
839 			ieee80211_runtask(ic, &ic->ic_promisc_task);
840 	} else {
841 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
842 		    __func__, ic));
843 		if (--ic->ic_promisc == 0)
844 			ieee80211_runtask(ic, &ic->ic_promisc_task);
845 	}
846 }
847 
848 /*
849  * Count number of vaps in allmulti, and issue allmulti on
850  * parent respectively.
851  */
852 void
ieee80211_allmulti(struct ieee80211vap * vap,bool on)853 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
854 {
855 	struct ieee80211com *ic = vap->iv_ic;
856 
857 	IEEE80211_LOCK_ASSERT(ic);
858 
859 	if (on) {
860 		if (++ic->ic_allmulti == 1)
861 			ieee80211_runtask(ic, &ic->ic_mcast_task);
862 	} else {
863 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
864 		    __func__, ic));
865 		if (--ic->ic_allmulti == 0)
866 			ieee80211_runtask(ic, &ic->ic_mcast_task);
867 	}
868 }
869 
870 /*
871  * Synchronize flag bit state in the com structure
872  * according to the state of all vap's.  This is used,
873  * for example, to handle state changes via ioctls.
874  */
875 static void
ieee80211_syncflag_locked(struct ieee80211com * ic,int flag)876 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
877 {
878 	struct ieee80211vap *vap;
879 	int bit;
880 
881 	IEEE80211_LOCK_ASSERT(ic);
882 
883 	bit = 0;
884 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
885 		if (vap->iv_flags & flag) {
886 			bit = 1;
887 			break;
888 		}
889 	if (bit)
890 		ic->ic_flags |= flag;
891 	else
892 		ic->ic_flags &= ~flag;
893 }
894 
895 void
ieee80211_syncflag(struct ieee80211vap * vap,int flag)896 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
897 {
898 	struct ieee80211com *ic = vap->iv_ic;
899 
900 	IEEE80211_LOCK(ic);
901 	if (flag < 0) {
902 		flag = -flag;
903 		vap->iv_flags &= ~flag;
904 	} else
905 		vap->iv_flags |= flag;
906 	ieee80211_syncflag_locked(ic, flag);
907 	IEEE80211_UNLOCK(ic);
908 }
909 
910 /*
911  * Synchronize flags_ht bit state in the com structure
912  * according to the state of all vap's.  This is used,
913  * for example, to handle state changes via ioctls.
914  */
915 static void
ieee80211_syncflag_ht_locked(struct ieee80211com * ic,int flag)916 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
917 {
918 	struct ieee80211vap *vap;
919 	int bit;
920 
921 	IEEE80211_LOCK_ASSERT(ic);
922 
923 	bit = 0;
924 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
925 		if (vap->iv_flags_ht & flag) {
926 			bit = 1;
927 			break;
928 		}
929 	if (bit)
930 		ic->ic_flags_ht |= flag;
931 	else
932 		ic->ic_flags_ht &= ~flag;
933 }
934 
935 void
ieee80211_syncflag_ht(struct ieee80211vap * vap,int flag)936 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
937 {
938 	struct ieee80211com *ic = vap->iv_ic;
939 
940 	IEEE80211_LOCK(ic);
941 	if (flag < 0) {
942 		flag = -flag;
943 		vap->iv_flags_ht &= ~flag;
944 	} else
945 		vap->iv_flags_ht |= flag;
946 	ieee80211_syncflag_ht_locked(ic, flag);
947 	IEEE80211_UNLOCK(ic);
948 }
949 
950 /*
951  * Synchronize flags_vht bit state in the com structure
952  * according to the state of all vap's.  This is used,
953  * for example, to handle state changes via ioctls.
954  */
955 static void
ieee80211_syncflag_vht_locked(struct ieee80211com * ic,int flag)956 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
957 {
958 	struct ieee80211vap *vap;
959 	int bit;
960 
961 	IEEE80211_LOCK_ASSERT(ic);
962 
963 	bit = 0;
964 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
965 		if (vap->iv_vht_flags & flag) {
966 			bit = 1;
967 			break;
968 		}
969 	if (bit)
970 		ic->ic_vht_flags |= flag;
971 	else
972 		ic->ic_vht_flags &= ~flag;
973 }
974 
975 void
ieee80211_syncflag_vht(struct ieee80211vap * vap,int flag)976 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
977 {
978 	struct ieee80211com *ic = vap->iv_ic;
979 
980 	IEEE80211_LOCK(ic);
981 	if (flag < 0) {
982 		flag = -flag;
983 		vap->iv_vht_flags &= ~flag;
984 	} else
985 		vap->iv_vht_flags |= flag;
986 	ieee80211_syncflag_vht_locked(ic, flag);
987 	IEEE80211_UNLOCK(ic);
988 }
989 
990 /*
991  * Synchronize flags_ext bit state in the com structure
992  * according to the state of all vap's.  This is used,
993  * for example, to handle state changes via ioctls.
994  */
995 static void
ieee80211_syncflag_ext_locked(struct ieee80211com * ic,int flag)996 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
997 {
998 	struct ieee80211vap *vap;
999 	int bit;
1000 
1001 	IEEE80211_LOCK_ASSERT(ic);
1002 
1003 	bit = 0;
1004 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1005 		if (vap->iv_flags_ext & flag) {
1006 			bit = 1;
1007 			break;
1008 		}
1009 	if (bit)
1010 		ic->ic_flags_ext |= flag;
1011 	else
1012 		ic->ic_flags_ext &= ~flag;
1013 }
1014 
1015 void
ieee80211_syncflag_ext(struct ieee80211vap * vap,int flag)1016 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1017 {
1018 	struct ieee80211com *ic = vap->iv_ic;
1019 
1020 	IEEE80211_LOCK(ic);
1021 	if (flag < 0) {
1022 		flag = -flag;
1023 		vap->iv_flags_ext &= ~flag;
1024 	} else
1025 		vap->iv_flags_ext |= flag;
1026 	ieee80211_syncflag_ext_locked(ic, flag);
1027 	IEEE80211_UNLOCK(ic);
1028 }
1029 
1030 static __inline int
mapgsm(u_int freq,u_int flags)1031 mapgsm(u_int freq, u_int flags)
1032 {
1033 	freq *= 10;
1034 	if (flags & IEEE80211_CHAN_QUARTER)
1035 		freq += 5;
1036 	else if (flags & IEEE80211_CHAN_HALF)
1037 		freq += 10;
1038 	else
1039 		freq += 20;
1040 	/* NB: there is no 907/20 wide but leave room */
1041 	return (freq - 906*10) / 5;
1042 }
1043 
1044 static __inline int
mappsb(u_int freq,u_int flags)1045 mappsb(u_int freq, u_int flags)
1046 {
1047 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1048 }
1049 
1050 /*
1051  * Convert MHz frequency to IEEE channel number.
1052  */
1053 int
ieee80211_mhz2ieee(u_int freq,u_int flags)1054 ieee80211_mhz2ieee(u_int freq, u_int flags)
1055 {
1056 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1057 	if (flags & IEEE80211_CHAN_GSM)
1058 		return mapgsm(freq, flags);
1059 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1060 		if (freq == 2484)
1061 			return 14;
1062 		if (freq < 2484)
1063 			return ((int) freq - 2407) / 5;
1064 		else
1065 			return 15 + ((freq - 2512) / 20);
1066 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1067 		if (freq <= 5000) {
1068 			/* XXX check regdomain? */
1069 			if (IS_FREQ_IN_PSB(freq))
1070 				return mappsb(freq, flags);
1071 			return (freq - 4000) / 5;
1072 		} else
1073 			return (freq - 5000) / 5;
1074 	} else {				/* either, guess */
1075 		if (freq == 2484)
1076 			return 14;
1077 		if (freq < 2484) {
1078 			if (907 <= freq && freq <= 922)
1079 				return mapgsm(freq, flags);
1080 			return ((int) freq - 2407) / 5;
1081 		}
1082 		if (freq < 5000) {
1083 			if (IS_FREQ_IN_PSB(freq))
1084 				return mappsb(freq, flags);
1085 			else if (freq > 4900)
1086 				return (freq - 4000) / 5;
1087 			else
1088 				return 15 + ((freq - 2512) / 20);
1089 		}
1090 		return (freq - 5000) / 5;
1091 	}
1092 #undef IS_FREQ_IN_PSB
1093 }
1094 
1095 /*
1096  * Convert channel to IEEE channel number.
1097  */
1098 int
ieee80211_chan2ieee(struct ieee80211com * ic,const struct ieee80211_channel * c)1099 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1100 {
1101 	if (c == NULL) {
1102 		ic_printf(ic, "invalid channel (NULL)\n");
1103 		return 0;		/* XXX */
1104 	}
1105 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1106 }
1107 
1108 /*
1109  * Convert IEEE channel number to MHz frequency.
1110  */
1111 u_int
ieee80211_ieee2mhz(u_int chan,u_int flags)1112 ieee80211_ieee2mhz(u_int chan, u_int flags)
1113 {
1114 	if (flags & IEEE80211_CHAN_GSM)
1115 		return 907 + 5 * (chan / 10);
1116 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1117 		if (chan == 14)
1118 			return 2484;
1119 		if (chan < 14)
1120 			return 2407 + chan*5;
1121 		else
1122 			return 2512 + ((chan-15)*20);
1123 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1124 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1125 			chan -= 37;
1126 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1127 		}
1128 		return 5000 + (chan*5);
1129 	} else {				/* either, guess */
1130 		/* XXX can't distinguish PSB+GSM channels */
1131 		if (chan == 14)
1132 			return 2484;
1133 		if (chan < 14)			/* 0-13 */
1134 			return 2407 + chan*5;
1135 		if (chan < 27)			/* 15-26 */
1136 			return 2512 + ((chan-15)*20);
1137 		return 5000 + (chan*5);
1138 	}
1139 }
1140 
1141 static __inline void
set_extchan(struct ieee80211_channel * c)1142 set_extchan(struct ieee80211_channel *c)
1143 {
1144 
1145 	/*
1146 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1147 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1148 	 */
1149 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1150 		c->ic_extieee = c->ic_ieee + 4;
1151 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1152 		c->ic_extieee = c->ic_ieee - 4;
1153 	else
1154 		c->ic_extieee = 0;
1155 }
1156 
1157 /*
1158  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1159  *
1160  * This for now uses a hard-coded list of 80MHz wide channels.
1161  *
1162  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1163  * wide channel we've already decided upon.
1164  *
1165  * For VHT80 and VHT160, there are only a small number of fixed
1166  * 80/160MHz wide channels, so we just use those.
1167  *
1168  * This is all likely very very wrong - both the regulatory code
1169  * and this code needs to ensure that all four channels are
1170  * available and valid before the VHT80 (and eight for VHT160) channel
1171  * is created.
1172  */
1173 
1174 struct vht_chan_range {
1175 	uint16_t freq_start;
1176 	uint16_t freq_end;
1177 };
1178 
1179 struct vht_chan_range vht80_chan_ranges[] = {
1180 	{ 5170, 5250 },
1181 	{ 5250, 5330 },
1182 	{ 5490, 5570 },
1183 	{ 5570, 5650 },
1184 	{ 5650, 5730 },
1185 	{ 5735, 5815 },
1186 	{ 5815, 5895 },
1187 	{ 0, 0 }
1188 };
1189 
1190 struct vht_chan_range vht160_chan_ranges[] = {
1191 	{ 5170, 5330 },
1192 	{ 5490, 5650 },
1193 	{ 5735, 5895 },
1194 	{ 0, 0 }
1195 };
1196 
1197 static int
set_vht_extchan(struct ieee80211_channel * c)1198 set_vht_extchan(struct ieee80211_channel *c)
1199 {
1200 	int i;
1201 
1202 	if (! IEEE80211_IS_CHAN_VHT(c))
1203 		return (0);
1204 
1205 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1206 		net80211_printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1207 		    __func__, c->ic_ieee, c->ic_flags);
1208 	}
1209 
1210 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1211 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1212 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1213 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1214 				int midpoint;
1215 
1216 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1217 				c->ic_vht_ch_freq1 =
1218 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1219 				c->ic_vht_ch_freq2 = 0;
1220 #if 0
1221 				net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1222 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1223 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1224 #endif
1225 				return (1);
1226 			}
1227 		}
1228 		return (0);
1229 	}
1230 
1231 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1232 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1233 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1234 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1235 				int midpoint;
1236 
1237 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1238 				c->ic_vht_ch_freq1 =
1239 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1240 				c->ic_vht_ch_freq2 = 0;
1241 #if 0
1242 				net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1243 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1244 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1245 #endif
1246 				return (1);
1247 			}
1248 		}
1249 		return (0);
1250 	}
1251 
1252 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1253 		if (IEEE80211_IS_CHAN_HT40U(c))
1254 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1255 		else if (IEEE80211_IS_CHAN_HT40D(c))
1256 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1257 		else
1258 			return (0);
1259 		return (1);
1260 	}
1261 
1262 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1263 		c->ic_vht_ch_freq1 = c->ic_ieee;
1264 		return (1);
1265 	}
1266 
1267 	net80211_printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1268 	    __func__, c->ic_ieee, c->ic_flags);
1269 
1270 	return (0);
1271 }
1272 
1273 /*
1274  * Return whether the current channel could possibly be a part of
1275  * a VHT80/VHT160 channel.
1276  *
1277  * This doesn't check that the whole range is in the allowed list
1278  * according to regulatory.
1279  */
1280 static bool
is_vht160_valid_freq(uint16_t freq)1281 is_vht160_valid_freq(uint16_t freq)
1282 {
1283 	int i;
1284 
1285 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1286 		if (freq >= vht160_chan_ranges[i].freq_start &&
1287 		    freq < vht160_chan_ranges[i].freq_end)
1288 			return (true);
1289 	}
1290 	return (false);
1291 }
1292 
1293 static int
is_vht80_valid_freq(uint16_t freq)1294 is_vht80_valid_freq(uint16_t freq)
1295 {
1296 	int i;
1297 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1298 		if (freq >= vht80_chan_ranges[i].freq_start &&
1299 		    freq < vht80_chan_ranges[i].freq_end)
1300 			return (1);
1301 	}
1302 	return (0);
1303 }
1304 
1305 static int
addchan(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t flags)1306 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1307     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1308 {
1309 	struct ieee80211_channel *c;
1310 
1311 	if (*nchans >= maxchans)
1312 		return (ENOBUFS);
1313 
1314 #if 0
1315 	net80211_printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1316 	    __func__, *nchans, maxchans, ieee, freq, flags);
1317 #endif
1318 
1319 	c = &chans[(*nchans)++];
1320 	c->ic_ieee = ieee;
1321 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1322 	c->ic_maxregpower = maxregpower;
1323 	c->ic_maxpower = 2 * maxregpower;
1324 	c->ic_flags = flags;
1325 	c->ic_vht_ch_freq1 = 0;
1326 	c->ic_vht_ch_freq2 = 0;
1327 	set_extchan(c);
1328 	set_vht_extchan(c);
1329 
1330 	return (0);
1331 }
1332 
1333 static int
copychan_prev(struct ieee80211_channel chans[],int maxchans,int * nchans,uint32_t flags)1334 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1335     uint32_t flags)
1336 {
1337 	struct ieee80211_channel *c;
1338 
1339 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1340 
1341 	if (*nchans >= maxchans)
1342 		return (ENOBUFS);
1343 
1344 #if 0
1345 	net80211_printf("%s: %d of %d: flags=0x%08x\n",
1346 	    __func__, *nchans, maxchans, flags);
1347 #endif
1348 
1349 	c = &chans[(*nchans)++];
1350 	c[0] = c[-1];
1351 	c->ic_flags = flags;
1352 	c->ic_vht_ch_freq1 = 0;
1353 	c->ic_vht_ch_freq2 = 0;
1354 	set_extchan(c);
1355 	set_vht_extchan(c);
1356 
1357 	return (0);
1358 }
1359 
1360 /*
1361  * XXX VHT-2GHz
1362  */
1363 static void
getflags_2ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1364 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1365 {
1366 	int nmodes;
1367 
1368 	nmodes = 0;
1369 	if (isset(bands, IEEE80211_MODE_11B))
1370 		flags[nmodes++] = IEEE80211_CHAN_B;
1371 	if (isset(bands, IEEE80211_MODE_11G))
1372 		flags[nmodes++] = IEEE80211_CHAN_G;
1373 	if (isset(bands, IEEE80211_MODE_11NG))
1374 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1375 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1376 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1377 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1378 	}
1379 	flags[nmodes] = 0;
1380 }
1381 
1382 static void
getflags_5ghz(const uint8_t bands[],uint32_t flags[],int cbw_flags)1383 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1384 {
1385 	int nmodes;
1386 
1387 	/*
1388 	 * The addchan_list() function seems to expect the flags array to
1389 	 * be in channel width order, so the VHT bits are interspersed
1390 	 * as appropriate to maintain said order.
1391 	 *
1392 	 * It also assumes HT40U is before HT40D.
1393 	 */
1394 	nmodes = 0;
1395 
1396 	/* 20MHz */
1397 	if (isset(bands, IEEE80211_MODE_11A))
1398 		flags[nmodes++] = IEEE80211_CHAN_A;
1399 	if (isset(bands, IEEE80211_MODE_11NA))
1400 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1401 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1402 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1403 		    IEEE80211_CHAN_VHT20;
1404 	}
1405 
1406 	/* 40MHz */
1407 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1408 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1409 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1410 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1411 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1412 		    IEEE80211_CHAN_VHT40U;
1413 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1414 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1415 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1416 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1417 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1418 		    IEEE80211_CHAN_VHT40D;
1419 
1420 	/* 80MHz */
1421 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1422 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1423 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1424 		    IEEE80211_CHAN_VHT80;
1425 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1426 		    IEEE80211_CHAN_VHT80;
1427 	}
1428 
1429 	/* VHT160 */
1430 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1431 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1432 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1433 		    IEEE80211_CHAN_VHT160;
1434 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1435 		    IEEE80211_CHAN_VHT160;
1436 	}
1437 
1438 	/* VHT80+80 */
1439 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1440 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1441 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1442 		    IEEE80211_CHAN_VHT80P80;
1443 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1444 		    IEEE80211_CHAN_VHT80P80;
1445 	}
1446 
1447 	flags[nmodes] = 0;
1448 }
1449 
1450 static void
getflags(const uint8_t bands[],uint32_t flags[],int cbw_flags)1451 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1452 {
1453 
1454 	flags[0] = 0;
1455 	if (isset(bands, IEEE80211_MODE_11A) ||
1456 	    isset(bands, IEEE80211_MODE_11NA) ||
1457 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1458 		if (isset(bands, IEEE80211_MODE_11B) ||
1459 		    isset(bands, IEEE80211_MODE_11G) ||
1460 		    isset(bands, IEEE80211_MODE_11NG) ||
1461 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1462 			return;
1463 
1464 		getflags_5ghz(bands, flags, cbw_flags);
1465 	} else
1466 		getflags_2ghz(bands, flags, cbw_flags);
1467 }
1468 
1469 /*
1470  * Add one 20 MHz channel into specified channel list.
1471  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1472  * channels if you have any B/G/N band bit set.
1473  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1474  */
1475 int
ieee80211_add_channel_cbw(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[],int cbw_flags)1476 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1477     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1478     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1479 {
1480 	uint32_t flags[IEEE80211_MODE_MAX];
1481 	int i, error;
1482 
1483 	getflags(bands, flags, cbw_flags);
1484 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1485 
1486 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1487 	    flags[0] | chan_flags);
1488 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1489 		error = copychan_prev(chans, maxchans, nchans,
1490 		    flags[i] | chan_flags);
1491 	}
1492 
1493 	return (error);
1494 }
1495 
1496 int
ieee80211_add_channel(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,uint16_t freq,int8_t maxregpower,uint32_t chan_flags,const uint8_t bands[])1497 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1498     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1499     uint32_t chan_flags, const uint8_t bands[])
1500 {
1501 
1502 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1503 	    maxregpower, chan_flags, bands, 0));
1504 }
1505 
1506 static struct ieee80211_channel *
findchannel(struct ieee80211_channel chans[],int nchans,uint16_t freq,uint32_t flags)1507 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1508     uint32_t flags)
1509 {
1510 	struct ieee80211_channel *c;
1511 	int i;
1512 
1513 	flags &= IEEE80211_CHAN_ALLTURBO;
1514 	/* brute force search */
1515 	for (i = 0; i < nchans; i++) {
1516 		c = &chans[i];
1517 		if (c->ic_freq == freq &&
1518 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1519 			return c;
1520 	}
1521 	return NULL;
1522 }
1523 
1524 /*
1525  * Add 40 MHz channel pair into specified channel list.
1526  */
1527 /* XXX VHT */
1528 int
ieee80211_add_channel_ht40(struct ieee80211_channel chans[],int maxchans,int * nchans,uint8_t ieee,int8_t maxregpower,uint32_t flags)1529 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1530     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1531 {
1532 	struct ieee80211_channel *cent, *extc;
1533 	uint16_t freq;
1534 	int error;
1535 
1536 	freq = ieee80211_ieee2mhz(ieee, flags);
1537 
1538 	/*
1539 	 * Each entry defines an HT40 channel pair; find the
1540 	 * center channel, then the extension channel above.
1541 	 */
1542 	flags |= IEEE80211_CHAN_HT20;
1543 	cent = findchannel(chans, *nchans, freq, flags);
1544 	if (cent == NULL)
1545 		return (EINVAL);
1546 
1547 	extc = findchannel(chans, *nchans, freq + 20, flags);
1548 	if (extc == NULL)
1549 		return (ENOENT);
1550 
1551 	flags &= ~IEEE80211_CHAN_HT;
1552 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1553 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1554 	if (error != 0)
1555 		return (error);
1556 
1557 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1558 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1559 
1560 	return (error);
1561 }
1562 
1563 /*
1564  * Fetch the center frequency for the primary channel.
1565  */
1566 uint32_t
ieee80211_get_channel_center_freq(const struct ieee80211_channel * c)1567 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1568 {
1569 
1570 	return (c->ic_freq);
1571 }
1572 
1573 /*
1574  * Fetch the center frequency for the primary BAND channel.
1575  *
1576  * For 5, 10, 20MHz channels it'll be the normally configured channel
1577  * frequency.
1578  *
1579  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1580  * wide channel, not the centre of the primary channel (that's ic_freq).
1581  *
1582  * For 80+80MHz channels this will be the centre of the primary
1583  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1584  */
1585 uint32_t
ieee80211_get_channel_center_freq1(const struct ieee80211_channel * c)1586 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1587 {
1588 
1589 	/*
1590 	 * VHT - use the pre-calculated centre frequency
1591 	 * of the given channel.
1592 	 */
1593 	if (IEEE80211_IS_CHAN_VHT(c))
1594 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1595 
1596 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1597 		return (c->ic_freq + 10);
1598 	}
1599 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1600 		return (c->ic_freq - 10);
1601 	}
1602 
1603 	return (c->ic_freq);
1604 }
1605 
1606 /*
1607  * For now, no 80+80 support; it will likely always return 0.
1608  */
1609 uint32_t
ieee80211_get_channel_center_freq2(const struct ieee80211_channel * c)1610 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1611 {
1612 
1613 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1614 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1615 
1616 	return (0);
1617 }
1618 
1619 /*
1620  * Adds channels into specified channel list (ieee[] array must be sorted).
1621  * Channels are already sorted.
1622  */
1623 static int
add_chanlist(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,uint32_t flags[])1624 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1625     const uint8_t ieee[], int nieee, uint32_t flags[])
1626 {
1627 	uint16_t freq;
1628 	int i, j, error;
1629 	int is_vht;
1630 
1631 	for (i = 0; i < nieee; i++) {
1632 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1633 		for (j = 0; flags[j] != 0; j++) {
1634 			/*
1635 			 * Notes:
1636 			 * + HT40 and VHT40 channels occur together, so
1637 			 *   we need to be careful that we actually allow that.
1638 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1639 			 *   make sure it's not skipped because of the overlap
1640 			 *   check used for (V)HT40.
1641 			 */
1642 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1643 
1644 			/* XXX TODO FIXME VHT80P80. */
1645 
1646 			/* Test for VHT160 analogue to the VHT80 below. */
1647 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1648 				if (! is_vht160_valid_freq(freq))
1649 					continue;
1650 
1651 			/*
1652 			 * Test for VHT80.
1653 			 * XXX This is all very broken right now.
1654 			 * What we /should/ do is:
1655 			 *
1656 			 * + check that the frequency is in the list of
1657 			 *   allowed VHT80 ranges; and
1658 			 * + the other 3 channels in the list are actually
1659 			 *   also available.
1660 			 */
1661 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1662 				if (! is_vht80_valid_freq(freq))
1663 					continue;
1664 
1665 			/*
1666 			 * Test for (V)HT40.
1667 			 *
1668 			 * This is also a fall through from VHT80; as we only
1669 			 * allow a VHT80 channel if the VHT40 combination is
1670 			 * also valid.  If the VHT40 form is not valid then
1671 			 * we certainly can't do VHT80..
1672 			 */
1673 			if (flags[j] & IEEE80211_CHAN_HT40D)
1674 				/*
1675 				 * Can't have a "lower" channel if we are the
1676 				 * first channel.
1677 				 *
1678 				 * Can't have a "lower" channel if it's below/
1679 				 * within 20MHz of the first channel.
1680 				 *
1681 				 * Can't have a "lower" channel if the channel
1682 				 * below it is not 20MHz away.
1683 				 */
1684 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1685 				    freq - 20 !=
1686 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1687 					continue;
1688 			if (flags[j] & IEEE80211_CHAN_HT40U)
1689 				/*
1690 				 * Can't have an "upper" channel if we are
1691 				 * the last channel.
1692 				 *
1693 				 * Can't have an "upper" channel be above the
1694 				 * last channel in the list.
1695 				 *
1696 				 * Can't have an "upper" channel if the next
1697 				 * channel according to the math isn't 20MHz
1698 				 * away.  (Likely for channel 13/14.)
1699 				 */
1700 				if (i == nieee - 1 ||
1701 				    ieee[i] + 4 > ieee[nieee - 1] ||
1702 				    freq + 20 !=
1703 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1704 					continue;
1705 
1706 			if (j == 0) {
1707 				error = addchan(chans, maxchans, nchans,
1708 				    ieee[i], freq, 0, flags[j]);
1709 			} else {
1710 				error = copychan_prev(chans, maxchans, nchans,
1711 				    flags[j]);
1712 			}
1713 			if (error != 0)
1714 				return (error);
1715 		}
1716 	}
1717 
1718 	return (0);
1719 }
1720 
1721 int
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1722 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1723     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1724     int cbw_flags)
1725 {
1726 	uint32_t flags[IEEE80211_MODE_MAX];
1727 
1728 	/* XXX no VHT for now */
1729 	getflags_2ghz(bands, flags, cbw_flags);
1730 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1731 
1732 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1733 }
1734 
1735 int
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t bands[],int cbw_flags)1736 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1737     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1738 {
1739 	const uint8_t default_chan_list[] =
1740 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1741 
1742 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1743 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1744 }
1745 
1746 int
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[],int maxchans,int * nchans,const uint8_t ieee[],int nieee,const uint8_t bands[],int cbw_flags)1747 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1748     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1749     int cbw_flags)
1750 {
1751 	/*
1752 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1753 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1754 	 */
1755 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1756 
1757 	getflags_5ghz(bands, flags, cbw_flags);
1758 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1759 
1760 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1761 }
1762 
1763 /*
1764  * Locate a channel given a frequency+flags.  We cache
1765  * the previous lookup to optimize switching between two
1766  * channels--as happens with dynamic turbo.
1767  */
1768 struct ieee80211_channel *
ieee80211_find_channel(struct ieee80211com * ic,int freq,int flags)1769 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1770 {
1771 	struct ieee80211_channel *c;
1772 
1773 	flags &= IEEE80211_CHAN_ALLTURBO;
1774 	c = ic->ic_prevchan;
1775 	if (c != NULL && c->ic_freq == freq &&
1776 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1777 		return c;
1778 	/* brute force search */
1779 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1780 }
1781 
1782 /*
1783  * Locate a channel given a channel number+flags.  We cache
1784  * the previous lookup to optimize switching between two
1785  * channels--as happens with dynamic turbo.
1786  */
1787 struct ieee80211_channel *
ieee80211_find_channel_byieee(struct ieee80211com * ic,int ieee,int flags)1788 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1789 {
1790 	struct ieee80211_channel *c;
1791 	int i;
1792 
1793 	flags &= IEEE80211_CHAN_ALLTURBO;
1794 	c = ic->ic_prevchan;
1795 	if (c != NULL && c->ic_ieee == ieee &&
1796 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1797 		return c;
1798 	/* brute force search */
1799 	for (i = 0; i < ic->ic_nchans; i++) {
1800 		c = &ic->ic_channels[i];
1801 		if (c->ic_ieee == ieee &&
1802 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1803 			return c;
1804 	}
1805 	return NULL;
1806 }
1807 
1808 /*
1809  * Lookup a channel suitable for the given rx status.
1810  *
1811  * This is used to find a channel for a frame (eg beacon, probe
1812  * response) based purely on the received PHY information.
1813  *
1814  * For now it tries to do it based on R_FREQ / R_IEEE.
1815  * This is enough for 11bg and 11a (and thus 11ng/11na)
1816  * but it will not be enough for GSM, PSB channels and the
1817  * like.  It also doesn't know about legacy-turbog and
1818  * legacy-turbo modes, which some offload NICs actually
1819  * support in weird ways.
1820  *
1821  * Takes the ic and rxstatus; returns the channel or NULL
1822  * if not found.
1823  *
1824  * XXX TODO: Add support for that when the need arises.
1825  */
1826 struct ieee80211_channel *
ieee80211_lookup_channel_rxstatus(struct ieee80211vap * vap,const struct ieee80211_rx_stats * rxs)1827 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1828     const struct ieee80211_rx_stats *rxs)
1829 {
1830 	struct ieee80211com *ic = vap->iv_ic;
1831 	uint32_t flags;
1832 	struct ieee80211_channel *c;
1833 
1834 	if (rxs == NULL)
1835 		return (NULL);
1836 
1837 	/*
1838 	 * Strictly speaking we only use freq for now,
1839 	 * however later on we may wish to just store
1840 	 * the ieee for verification.
1841 	 */
1842 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1843 		return (NULL);
1844 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1845 		return (NULL);
1846 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1847 		return (NULL);
1848 
1849 	/*
1850 	 * If the rx status contains a valid ieee/freq, then
1851 	 * ensure we populate the correct channel information
1852 	 * in rxchan before passing it up to the scan infrastructure.
1853 	 * Offload NICs will pass up beacons from all channels
1854 	 * during background scans.
1855 	 */
1856 
1857 	/* Determine a band */
1858 	switch (rxs->c_band) {
1859 	case IEEE80211_CHAN_2GHZ:
1860 		flags = IEEE80211_CHAN_G;
1861 		break;
1862 	case IEEE80211_CHAN_5GHZ:
1863 		flags = IEEE80211_CHAN_A;
1864 		break;
1865 	default:
1866 		if (rxs->c_freq < 3000) {
1867 			flags = IEEE80211_CHAN_G;
1868 		} else {
1869 			flags = IEEE80211_CHAN_A;
1870 		}
1871 		break;
1872 	}
1873 
1874 	/* Channel lookup */
1875 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1876 
1877 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1878 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1879 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1880 
1881 	return (c);
1882 }
1883 
1884 static void
addmedia(struct ifmedia * media,int caps,int addsta,int mode,int mword)1885 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1886 {
1887 #define	ADD(_ic, _s, _o) \
1888 	ifmedia_add(media, \
1889 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1890 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1891 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1892 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1893 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1894 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1895 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1896 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1897 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1898 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1899 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1900 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1901 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1902 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1903 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1904 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1905 	};
1906 	u_int mopt;
1907 
1908 	mopt = mopts[mode];
1909 	if (addsta)
1910 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1911 	if (caps & IEEE80211_C_IBSS)
1912 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1913 	if (caps & IEEE80211_C_HOSTAP)
1914 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1915 	if (caps & IEEE80211_C_AHDEMO)
1916 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1917 	if (caps & IEEE80211_C_MONITOR)
1918 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1919 	if (caps & IEEE80211_C_WDS)
1920 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1921 	if (caps & IEEE80211_C_MBSS)
1922 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1923 #undef ADD
1924 }
1925 
1926 /*
1927  * Setup the media data structures according to the channel and
1928  * rate tables.
1929  */
1930 static int
ieee80211_media_setup(struct ieee80211com * ic,struct ifmedia * media,int caps,int addsta,ifm_change_cb_t media_change,ifm_stat_cb_t media_stat)1931 ieee80211_media_setup(struct ieee80211com *ic,
1932 	struct ifmedia *media, int caps, int addsta,
1933 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1934 {
1935 	int i, j, rate, maxrate, mword, r;
1936 	enum ieee80211_phymode mode;
1937 	const struct ieee80211_rateset *rs;
1938 	struct ieee80211_rateset allrates;
1939 	struct ieee80211_node_txrate tn;
1940 
1941 	/*
1942 	 * Fill in media characteristics.
1943 	 */
1944 	ifmedia_init(media, 0, media_change, media_stat);
1945 	maxrate = 0;
1946 	/*
1947 	 * Add media for legacy operating modes.
1948 	 */
1949 	memset(&allrates, 0, sizeof(allrates));
1950 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1951 		if (isclr(ic->ic_modecaps, mode))
1952 			continue;
1953 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1954 		if (mode == IEEE80211_MODE_AUTO)
1955 			continue;
1956 		rs = &ic->ic_sup_rates[mode];
1957 		for (i = 0; i < rs->rs_nrates; i++) {
1958 			rate = rs->rs_rates[i];
1959 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate);
1960 			mword = ieee80211_rate2media(ic, &tn, mode);
1961 			if (mword == 0)
1962 				continue;
1963 			addmedia(media, caps, addsta, mode, mword);
1964 			/*
1965 			 * Add legacy rate to the collection of all rates.
1966 			 */
1967 			r = rate & IEEE80211_RATE_VAL;
1968 			for (j = 0; j < allrates.rs_nrates; j++)
1969 				if (allrates.rs_rates[j] == r)
1970 					break;
1971 			if (j == allrates.rs_nrates) {
1972 				/* unique, add to the set */
1973 				allrates.rs_rates[j] = r;
1974 				allrates.rs_nrates++;
1975 			}
1976 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1977 			if (rate > maxrate)
1978 				maxrate = rate;
1979 		}
1980 	}
1981 	for (i = 0; i < allrates.rs_nrates; i++) {
1982 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]);
1983 		mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO);
1984 		if (mword == 0)
1985 			continue;
1986 		/* NB: remove media options from mword */
1987 		addmedia(media, caps, addsta,
1988 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1989 	}
1990 	/*
1991 	 * Add HT/11n media.  Note that we do not have enough
1992 	 * bits in the media subtype to express the MCS so we
1993 	 * use a "placeholder" media subtype and any fixed MCS
1994 	 * must be specified with a different mechanism.
1995 	 */
1996 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1997 		if (isclr(ic->ic_modecaps, mode))
1998 			continue;
1999 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2000 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2001 	}
2002 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2003 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2004 		addmedia(media, caps, addsta,
2005 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2006 		i = ic->ic_txstream * 8 - 1;
2007 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2008 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2009 			rate = ieee80211_htrates[i].ht40_rate_400ns;
2010 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2011 			rate = ieee80211_htrates[i].ht40_rate_800ns;
2012 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2013 			rate = ieee80211_htrates[i].ht20_rate_400ns;
2014 		else
2015 			rate = ieee80211_htrates[i].ht20_rate_800ns;
2016 		if (rate > maxrate)
2017 			maxrate = rate;
2018 	}
2019 
2020 	/*
2021 	 * Add VHT media.
2022 	 * XXX-BZ skip "VHT_2GHZ" for now.
2023 	 */
2024 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2025 	    mode++) {
2026 		if (isclr(ic->ic_modecaps, mode))
2027 			continue;
2028 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2029 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2030 	}
2031 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2032 	       addmedia(media, caps, addsta,
2033 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2034 
2035 		/* XXX TODO: VHT maxrate */
2036 	}
2037 
2038 	return maxrate;
2039 }
2040 
2041 /* XXX inline or eliminate? */
2042 const struct ieee80211_rateset *
ieee80211_get_suprates(struct ieee80211com * ic,const struct ieee80211_channel * c)2043 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2044 {
2045 	/* XXX does this work for 11ng basic rates? */
2046 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2047 }
2048 
2049 /* XXX inline or eliminate? */
2050 const struct ieee80211_htrateset *
ieee80211_get_suphtrates(struct ieee80211com * ic,const struct ieee80211_channel * c)2051 ieee80211_get_suphtrates(struct ieee80211com *ic,
2052     const struct ieee80211_channel *c)
2053 {
2054 	return &ic->ic_sup_htrates;
2055 }
2056 
2057 void
ieee80211_announce(struct ieee80211com * ic)2058 ieee80211_announce(struct ieee80211com *ic)
2059 {
2060 	int i, rate, mword;
2061 	enum ieee80211_phymode mode;
2062 	const struct ieee80211_rateset *rs;
2063 	struct ieee80211_node_txrate tn;
2064 
2065 	/* NB: skip AUTO since it has no rates */
2066 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2067 		if (isclr(ic->ic_modecaps, mode))
2068 			continue;
2069 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2070 		rs = &ic->ic_sup_rates[mode];
2071 		for (i = 0; i < rs->rs_nrates; i++) {
2072 			tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]);
2073 			mword = ieee80211_rate2media(ic, &tn, mode);
2074 			if (mword == 0)
2075 				continue;
2076 			rate = ieee80211_media2rate(mword);
2077 			net80211_printf("%s%d%sMbps", (i != 0 ? " " : ""),
2078 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2079 		}
2080 		net80211_printf("\n");
2081 	}
2082 	ieee80211_ht_announce(ic);
2083 	ieee80211_vht_announce(ic);
2084 }
2085 
2086 void
ieee80211_announce_channels(struct ieee80211com * ic)2087 ieee80211_announce_channels(struct ieee80211com *ic)
2088 {
2089 	const struct ieee80211_channel *c;
2090 	char type;
2091 	int i, cw;
2092 
2093 	net80211_printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2094 	for (i = 0; i < ic->ic_nchans; i++) {
2095 		c = &ic->ic_channels[i];
2096 		if (IEEE80211_IS_CHAN_ST(c))
2097 			type = 'S';
2098 		else if (IEEE80211_IS_CHAN_108A(c))
2099 			type = 'T';
2100 		else if (IEEE80211_IS_CHAN_108G(c))
2101 			type = 'G';
2102 		else if (IEEE80211_IS_CHAN_HT(c))
2103 			type = 'n';
2104 		else if (IEEE80211_IS_CHAN_A(c))
2105 			type = 'a';
2106 		else if (IEEE80211_IS_CHAN_ANYG(c))
2107 			type = 'g';
2108 		else if (IEEE80211_IS_CHAN_B(c))
2109 			type = 'b';
2110 		else
2111 			type = 'f';
2112 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2113 			cw = 40;
2114 		else if (IEEE80211_IS_CHAN_HALF(c))
2115 			cw = 10;
2116 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2117 			cw = 5;
2118 		else
2119 			cw = 20;
2120 		net80211_printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2121 			, c->ic_ieee, c->ic_freq, type
2122 			, cw
2123 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2124 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2125 			, c->ic_maxregpower
2126 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2127 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2128 		);
2129 	}
2130 }
2131 
2132 static int
media2mode(const struct ifmedia_entry * ime,uint32_t flags,uint16_t * mode)2133 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2134 {
2135 	switch (IFM_MODE(ime->ifm_media)) {
2136 	case IFM_IEEE80211_11A:
2137 		*mode = IEEE80211_MODE_11A;
2138 		break;
2139 	case IFM_IEEE80211_11B:
2140 		*mode = IEEE80211_MODE_11B;
2141 		break;
2142 	case IFM_IEEE80211_11G:
2143 		*mode = IEEE80211_MODE_11G;
2144 		break;
2145 	case IFM_IEEE80211_FH:
2146 		*mode = IEEE80211_MODE_FH;
2147 		break;
2148 	case IFM_IEEE80211_11NA:
2149 		*mode = IEEE80211_MODE_11NA;
2150 		break;
2151 	case IFM_IEEE80211_11NG:
2152 		*mode = IEEE80211_MODE_11NG;
2153 		break;
2154 	case IFM_IEEE80211_VHT2G:
2155 		*mode = IEEE80211_MODE_VHT_2GHZ;
2156 		break;
2157 	case IFM_IEEE80211_VHT5G:
2158 		*mode = IEEE80211_MODE_VHT_5GHZ;
2159 		break;
2160 	case IFM_AUTO:
2161 		*mode = IEEE80211_MODE_AUTO;
2162 		break;
2163 	default:
2164 		return 0;
2165 	}
2166 	/*
2167 	 * Turbo mode is an ``option''.
2168 	 * XXX does not apply to AUTO
2169 	 */
2170 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2171 		if (*mode == IEEE80211_MODE_11A) {
2172 			if (flags & IEEE80211_F_TURBOP)
2173 				*mode = IEEE80211_MODE_TURBO_A;
2174 			else
2175 				*mode = IEEE80211_MODE_STURBO_A;
2176 		} else if (*mode == IEEE80211_MODE_11G)
2177 			*mode = IEEE80211_MODE_TURBO_G;
2178 		else
2179 			return 0;
2180 	}
2181 	/* XXX HT40 +/- */
2182 	return 1;
2183 }
2184 
2185 /*
2186  * Handle a media change request on the vap interface.
2187  */
2188 int
ieee80211_media_change(struct ifnet * ifp)2189 ieee80211_media_change(struct ifnet *ifp)
2190 {
2191 	struct ieee80211vap *vap = ifp->if_softc;
2192 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2193 	uint16_t newmode;
2194 
2195 	if (!media2mode(ime, vap->iv_flags, &newmode))
2196 		return EINVAL;
2197 	if (vap->iv_des_mode != newmode) {
2198 		vap->iv_des_mode = newmode;
2199 		/* XXX kick state machine if up+running */
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * Common code to calculate the media status word
2206  * from the operating mode and channel state.
2207  */
2208 static int
media_status(enum ieee80211_opmode opmode,const struct ieee80211_channel * chan)2209 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2210 {
2211 	int status;
2212 
2213 	status = IFM_IEEE80211;
2214 	switch (opmode) {
2215 	case IEEE80211_M_STA:
2216 		break;
2217 	case IEEE80211_M_IBSS:
2218 		status |= IFM_IEEE80211_ADHOC;
2219 		break;
2220 	case IEEE80211_M_HOSTAP:
2221 		status |= IFM_IEEE80211_HOSTAP;
2222 		break;
2223 	case IEEE80211_M_MONITOR:
2224 		status |= IFM_IEEE80211_MONITOR;
2225 		break;
2226 	case IEEE80211_M_AHDEMO:
2227 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2228 		break;
2229 	case IEEE80211_M_WDS:
2230 		status |= IFM_IEEE80211_WDS;
2231 		break;
2232 	case IEEE80211_M_MBSS:
2233 		status |= IFM_IEEE80211_MBSS;
2234 		break;
2235 	}
2236 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2237 		status |= IFM_IEEE80211_VHT5G;
2238 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2239 		status |= IFM_IEEE80211_VHT2G;
2240 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2241 		status |= IFM_IEEE80211_11NA;
2242 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2243 		status |= IFM_IEEE80211_11NG;
2244 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2245 		status |= IFM_IEEE80211_11A;
2246 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2247 		status |= IFM_IEEE80211_11B;
2248 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2249 		status |= IFM_IEEE80211_11G;
2250 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2251 		status |= IFM_IEEE80211_FH;
2252 	}
2253 	/* XXX else complain? */
2254 
2255 	if (IEEE80211_IS_CHAN_TURBO(chan))
2256 		status |= IFM_IEEE80211_TURBO;
2257 #if 0
2258 	if (IEEE80211_IS_CHAN_HT20(chan))
2259 		status |= IFM_IEEE80211_HT20;
2260 	if (IEEE80211_IS_CHAN_HT40(chan))
2261 		status |= IFM_IEEE80211_HT40;
2262 #endif
2263 	return status;
2264 }
2265 
2266 void
ieee80211_media_status(struct ifnet * ifp,struct ifmediareq * imr)2267 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2268 {
2269 	struct ieee80211vap *vap = ifp->if_softc;
2270 	struct ieee80211com *ic = vap->iv_ic;
2271 	enum ieee80211_phymode mode;
2272 	struct ieee80211_node_txrate tn;
2273 
2274 	imr->ifm_status = IFM_AVALID;
2275 	/*
2276 	 * NB: use the current channel's mode to lock down a xmit
2277 	 * rate only when running; otherwise we may have a mismatch
2278 	 * in which case the rate will not be convertible.
2279 	 */
2280 	if (vap->iv_state == IEEE80211_S_RUN ||
2281 	    vap->iv_state == IEEE80211_S_SLEEP) {
2282 		imr->ifm_status |= IFM_ACTIVE;
2283 		mode = ieee80211_chan2mode(ic->ic_curchan);
2284 	} else
2285 		mode = IEEE80211_MODE_AUTO;
2286 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2287 	/*
2288 	 * Calculate a current rate if possible.
2289 	 */
2290 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2291 		/*
2292 		 * A fixed rate is set, report that.
2293 		 */
2294 		tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(
2295 		    vap->iv_txparms[mode].ucastrate);
2296 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2297 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2298 		/*
2299 		 * In station mode report the current transmit rate.
2300 		 */
2301 		ieee80211_node_get_txrate(vap->iv_bss, &tn);
2302 		imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2303 	} else
2304 		imr->ifm_active |= IFM_AUTO;
2305 	if (imr->ifm_status & IFM_ACTIVE)
2306 		imr->ifm_current = imr->ifm_active;
2307 }
2308 
2309 /*
2310  * Set the current phy mode and recalculate the active channel
2311  * set based on the available channels for this mode.  Also
2312  * select a new default/current channel if the current one is
2313  * inappropriate for this mode.
2314  */
2315 int
ieee80211_setmode(struct ieee80211com * ic,enum ieee80211_phymode mode)2316 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2317 {
2318 	/*
2319 	 * Adjust basic rates in 11b/11g supported rate set.
2320 	 * Note that if operating on a hal/quarter rate channel
2321 	 * this is a noop as those rates sets are different
2322 	 * and used instead.
2323 	 */
2324 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2325 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2326 
2327 	ic->ic_curmode = mode;
2328 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2329 
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Return the phy mode for with the specified channel.
2335  */
2336 enum ieee80211_phymode
ieee80211_chan2mode(const struct ieee80211_channel * chan)2337 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2338 {
2339 
2340 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2341 		return IEEE80211_MODE_VHT_2GHZ;
2342 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2343 		return IEEE80211_MODE_VHT_5GHZ;
2344 	else if (IEEE80211_IS_CHAN_HTA(chan))
2345 		return IEEE80211_MODE_11NA;
2346 	else if (IEEE80211_IS_CHAN_HTG(chan))
2347 		return IEEE80211_MODE_11NG;
2348 	else if (IEEE80211_IS_CHAN_108G(chan))
2349 		return IEEE80211_MODE_TURBO_G;
2350 	else if (IEEE80211_IS_CHAN_ST(chan))
2351 		return IEEE80211_MODE_STURBO_A;
2352 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2353 		return IEEE80211_MODE_TURBO_A;
2354 	else if (IEEE80211_IS_CHAN_HALF(chan))
2355 		return IEEE80211_MODE_HALF;
2356 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2357 		return IEEE80211_MODE_QUARTER;
2358 	else if (IEEE80211_IS_CHAN_A(chan))
2359 		return IEEE80211_MODE_11A;
2360 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2361 		return IEEE80211_MODE_11G;
2362 	else if (IEEE80211_IS_CHAN_B(chan))
2363 		return IEEE80211_MODE_11B;
2364 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2365 		return IEEE80211_MODE_FH;
2366 
2367 	/* NB: should not get here */
2368 	net80211_printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2369 		__func__, chan->ic_freq, chan->ic_flags);
2370 	return IEEE80211_MODE_11B;
2371 }
2372 
2373 struct ratemedia {
2374 	u_int	match;	/* rate + mode */
2375 	u_int	media;	/* if_media rate */
2376 };
2377 
2378 static int
findmedia(const struct ratemedia rates[],int n,u_int match)2379 findmedia(const struct ratemedia rates[], int n, u_int match)
2380 {
2381 	int i;
2382 
2383 	for (i = 0; i < n; i++)
2384 		if (rates[i].match == match)
2385 			return rates[i].media;
2386 	return IFM_AUTO;
2387 }
2388 
2389 /*
2390  * Convert IEEE80211 rate value to ifmedia subtype.
2391  * Rate is either a legacy rate in units of 0.5Mbps
2392  * or an MCS index.
2393  */
2394 int
ieee80211_rate2media(struct ieee80211com * ic,const struct ieee80211_node_txrate * tr,enum ieee80211_phymode mode)2395 ieee80211_rate2media(struct ieee80211com *ic,
2396     const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode)
2397 {
2398 	static const struct ratemedia rates[] = {
2399 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2400 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2401 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2402 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2403 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2404 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2405 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2406 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2407 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2408 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2409 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2410 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2411 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2412 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2413 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2414 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2415 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2416 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2417 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2418 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2419 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2420 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2421 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2422 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2423 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2424 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2425 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2426 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2427 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2428 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2429 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2430 	};
2431 	static const struct ratemedia htrates[] = {
2432 		{   0, IFM_IEEE80211_MCS },
2433 		{   1, IFM_IEEE80211_MCS },
2434 		{   2, IFM_IEEE80211_MCS },
2435 		{   3, IFM_IEEE80211_MCS },
2436 		{   4, IFM_IEEE80211_MCS },
2437 		{   5, IFM_IEEE80211_MCS },
2438 		{   6, IFM_IEEE80211_MCS },
2439 		{   7, IFM_IEEE80211_MCS },
2440 		{   8, IFM_IEEE80211_MCS },
2441 		{   9, IFM_IEEE80211_MCS },
2442 		{  10, IFM_IEEE80211_MCS },
2443 		{  11, IFM_IEEE80211_MCS },
2444 		{  12, IFM_IEEE80211_MCS },
2445 		{  13, IFM_IEEE80211_MCS },
2446 		{  14, IFM_IEEE80211_MCS },
2447 		{  15, IFM_IEEE80211_MCS },
2448 		{  16, IFM_IEEE80211_MCS },
2449 		{  17, IFM_IEEE80211_MCS },
2450 		{  18, IFM_IEEE80211_MCS },
2451 		{  19, IFM_IEEE80211_MCS },
2452 		{  20, IFM_IEEE80211_MCS },
2453 		{  21, IFM_IEEE80211_MCS },
2454 		{  22, IFM_IEEE80211_MCS },
2455 		{  23, IFM_IEEE80211_MCS },
2456 		{  24, IFM_IEEE80211_MCS },
2457 		{  25, IFM_IEEE80211_MCS },
2458 		{  26, IFM_IEEE80211_MCS },
2459 		{  27, IFM_IEEE80211_MCS },
2460 		{  28, IFM_IEEE80211_MCS },
2461 		{  29, IFM_IEEE80211_MCS },
2462 		{  30, IFM_IEEE80211_MCS },
2463 		{  31, IFM_IEEE80211_MCS },
2464 		{  32, IFM_IEEE80211_MCS },
2465 		{  33, IFM_IEEE80211_MCS },
2466 		{  34, IFM_IEEE80211_MCS },
2467 		{  35, IFM_IEEE80211_MCS },
2468 		{  36, IFM_IEEE80211_MCS },
2469 		{  37, IFM_IEEE80211_MCS },
2470 		{  38, IFM_IEEE80211_MCS },
2471 		{  39, IFM_IEEE80211_MCS },
2472 		{  40, IFM_IEEE80211_MCS },
2473 		{  41, IFM_IEEE80211_MCS },
2474 		{  42, IFM_IEEE80211_MCS },
2475 		{  43, IFM_IEEE80211_MCS },
2476 		{  44, IFM_IEEE80211_MCS },
2477 		{  45, IFM_IEEE80211_MCS },
2478 		{  46, IFM_IEEE80211_MCS },
2479 		{  47, IFM_IEEE80211_MCS },
2480 		{  48, IFM_IEEE80211_MCS },
2481 		{  49, IFM_IEEE80211_MCS },
2482 		{  50, IFM_IEEE80211_MCS },
2483 		{  51, IFM_IEEE80211_MCS },
2484 		{  52, IFM_IEEE80211_MCS },
2485 		{  53, IFM_IEEE80211_MCS },
2486 		{  54, IFM_IEEE80211_MCS },
2487 		{  55, IFM_IEEE80211_MCS },
2488 		{  56, IFM_IEEE80211_MCS },
2489 		{  57, IFM_IEEE80211_MCS },
2490 		{  58, IFM_IEEE80211_MCS },
2491 		{  59, IFM_IEEE80211_MCS },
2492 		{  60, IFM_IEEE80211_MCS },
2493 		{  61, IFM_IEEE80211_MCS },
2494 		{  62, IFM_IEEE80211_MCS },
2495 		{  63, IFM_IEEE80211_MCS },
2496 		{  64, IFM_IEEE80211_MCS },
2497 		{  65, IFM_IEEE80211_MCS },
2498 		{  66, IFM_IEEE80211_MCS },
2499 		{  67, IFM_IEEE80211_MCS },
2500 		{  68, IFM_IEEE80211_MCS },
2501 		{  69, IFM_IEEE80211_MCS },
2502 		{  70, IFM_IEEE80211_MCS },
2503 		{  71, IFM_IEEE80211_MCS },
2504 		{  72, IFM_IEEE80211_MCS },
2505 		{  73, IFM_IEEE80211_MCS },
2506 		{  74, IFM_IEEE80211_MCS },
2507 		{  75, IFM_IEEE80211_MCS },
2508 		{  76, IFM_IEEE80211_MCS },
2509 	};
2510 	static const struct ratemedia vhtrates[] = {
2511 		{   0, IFM_IEEE80211_VHT },
2512 		{   1, IFM_IEEE80211_VHT },
2513 		{   2, IFM_IEEE80211_VHT },
2514 		{   3, IFM_IEEE80211_VHT },
2515 		{   4, IFM_IEEE80211_VHT },
2516 		{   5, IFM_IEEE80211_VHT },
2517 		{   6, IFM_IEEE80211_VHT },
2518 		{   7, IFM_IEEE80211_VHT },
2519 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2520 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2521 #if 0
2522 		/* Some QCA and BRCM seem to support this; offspec. */
2523 		{  10, IFM_IEEE80211_VHT },
2524 		{  11, IFM_IEEE80211_VHT },
2525 #endif
2526 	};
2527 	int m, rate;
2528 
2529 	/*
2530 	 * Check 11ac/11n rates first for match as an MCS.
2531 	 */
2532 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2533 		if (tr->type == IEEE80211_NODE_TXRATE_VHT) {
2534 			m = findmedia(vhtrates, nitems(vhtrates), tr->mcs);
2535 			if (m != IFM_AUTO)
2536 				return (m | IFM_IEEE80211_VHT);
2537 		}
2538 	} else if (mode == IEEE80211_MODE_11NA) {
2539 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2540 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2541 			m = findmedia(htrates, nitems(htrates),
2542 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2543 			if (m != IFM_AUTO)
2544 				return m | IFM_IEEE80211_11NA;
2545 		}
2546 	} else if (mode == IEEE80211_MODE_11NG) {
2547 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2548 		if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2549 			m = findmedia(htrates, nitems(htrates),
2550 			    tr->dot11rate & ~IEEE80211_RATE_MCS);
2551 			if (m != IFM_AUTO)
2552 				return m | IFM_IEEE80211_11NG;
2553 		}
2554 	}
2555 
2556 	/*
2557 	 * At this point it needs to be a dot11rate (legacy/HT) for the
2558 	 * rest of the logic to work.
2559 	 */
2560 	if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) &&
2561 	    (tr->type != IEEE80211_NODE_TXRATE_HT))
2562 		return (IFM_AUTO);
2563 	rate = tr->dot11rate & IEEE80211_RATE_VAL;
2564 
2565 	switch (mode) {
2566 	case IEEE80211_MODE_11A:
2567 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2568 	case IEEE80211_MODE_QUARTER:
2569 	case IEEE80211_MODE_11NA:
2570 	case IEEE80211_MODE_TURBO_A:
2571 	case IEEE80211_MODE_STURBO_A:
2572 		return findmedia(rates, nitems(rates),
2573 		    rate | IFM_IEEE80211_11A);
2574 	case IEEE80211_MODE_11B:
2575 		return findmedia(rates, nitems(rates),
2576 		    rate | IFM_IEEE80211_11B);
2577 	case IEEE80211_MODE_FH:
2578 		return findmedia(rates, nitems(rates),
2579 		    rate | IFM_IEEE80211_FH);
2580 	case IEEE80211_MODE_AUTO:
2581 		/* NB: ic may be NULL for some drivers */
2582 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2583 			return findmedia(rates, nitems(rates),
2584 			    rate | IFM_IEEE80211_FH);
2585 		/* NB: hack, 11g matches both 11b+11a rates */
2586 		/* fall thru... */
2587 	case IEEE80211_MODE_11G:
2588 	case IEEE80211_MODE_11NG:
2589 	case IEEE80211_MODE_TURBO_G:
2590 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2591 	case IEEE80211_MODE_VHT_2GHZ:
2592 	case IEEE80211_MODE_VHT_5GHZ:
2593 		/* XXX TODO: need to figure out mapping for VHT rates */
2594 		return IFM_AUTO;
2595 	}
2596 	return IFM_AUTO;
2597 }
2598 
2599 int
ieee80211_media2rate(int mword)2600 ieee80211_media2rate(int mword)
2601 {
2602 	static const int ieeerates[] = {
2603 		-1,		/* IFM_AUTO */
2604 		0,		/* IFM_MANUAL */
2605 		0,		/* IFM_NONE */
2606 		2,		/* IFM_IEEE80211_FH1 */
2607 		4,		/* IFM_IEEE80211_FH2 */
2608 		2,		/* IFM_IEEE80211_DS1 */
2609 		4,		/* IFM_IEEE80211_DS2 */
2610 		11,		/* IFM_IEEE80211_DS5 */
2611 		22,		/* IFM_IEEE80211_DS11 */
2612 		44,		/* IFM_IEEE80211_DS22 */
2613 		12,		/* IFM_IEEE80211_OFDM6 */
2614 		18,		/* IFM_IEEE80211_OFDM9 */
2615 		24,		/* IFM_IEEE80211_OFDM12 */
2616 		36,		/* IFM_IEEE80211_OFDM18 */
2617 		48,		/* IFM_IEEE80211_OFDM24 */
2618 		72,		/* IFM_IEEE80211_OFDM36 */
2619 		96,		/* IFM_IEEE80211_OFDM48 */
2620 		108,		/* IFM_IEEE80211_OFDM54 */
2621 		144,		/* IFM_IEEE80211_OFDM72 */
2622 		0,		/* IFM_IEEE80211_DS354k */
2623 		0,		/* IFM_IEEE80211_DS512k */
2624 		6,		/* IFM_IEEE80211_OFDM3 */
2625 		9,		/* IFM_IEEE80211_OFDM4 */
2626 		54,		/* IFM_IEEE80211_OFDM27 */
2627 		-1,		/* IFM_IEEE80211_MCS */
2628 		-1,		/* IFM_IEEE80211_VHT */
2629 	};
2630 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2631 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2632 }
2633 
2634 /*
2635  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2636  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2637  */
2638 #define	mix(a, b, c)							\
2639 do {									\
2640 	a -= b; a -= c; a ^= (c >> 13);					\
2641 	b -= c; b -= a; b ^= (a << 8);					\
2642 	c -= a; c -= b; c ^= (b >> 13);					\
2643 	a -= b; a -= c; a ^= (c >> 12);					\
2644 	b -= c; b -= a; b ^= (a << 16);					\
2645 	c -= a; c -= b; c ^= (b >> 5);					\
2646 	a -= b; a -= c; a ^= (c >> 3);					\
2647 	b -= c; b -= a; b ^= (a << 10);					\
2648 	c -= a; c -= b; c ^= (b >> 15);					\
2649 } while (/*CONSTCOND*/0)
2650 
2651 uint32_t
ieee80211_mac_hash(const struct ieee80211com * ic,const uint8_t addr[IEEE80211_ADDR_LEN])2652 ieee80211_mac_hash(const struct ieee80211com *ic,
2653 	const uint8_t addr[IEEE80211_ADDR_LEN])
2654 {
2655 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2656 
2657 	b += addr[5] << 8;
2658 	b += addr[4];
2659 	a += addr[3] << 24;
2660 	a += addr[2] << 16;
2661 	a += addr[1] << 8;
2662 	a += addr[0];
2663 
2664 	mix(a, b, c);
2665 
2666 	return c;
2667 }
2668 #undef mix
2669 
2670 char
ieee80211_channel_type_char(const struct ieee80211_channel * c)2671 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2672 {
2673 	if (IEEE80211_IS_CHAN_ST(c))
2674 		return 'S';
2675 	if (IEEE80211_IS_CHAN_108A(c))
2676 		return 'T';
2677 	if (IEEE80211_IS_CHAN_108G(c))
2678 		return 'G';
2679 	if (IEEE80211_IS_CHAN_VHT(c))
2680 		return 'v';
2681 	if (IEEE80211_IS_CHAN_HT(c))
2682 		return 'n';
2683 	if (IEEE80211_IS_CHAN_A(c))
2684 		return 'a';
2685 	if (IEEE80211_IS_CHAN_ANYG(c))
2686 		return 'g';
2687 	if (IEEE80211_IS_CHAN_B(c))
2688 		return 'b';
2689 	return 'f';
2690 }
2691 
2692 /*
2693  * Determine whether the given key in the given VAP is a global key.
2694  * (key index 0..3, shared between all stations on a VAP.)
2695  *
2696  * This is either a WEP key or a GROUP key.
2697  *
2698  * Note this will NOT return true if it is a IGTK key.
2699  */
2700 bool
ieee80211_is_key_global(const struct ieee80211vap * vap,const struct ieee80211_key * key)2701 ieee80211_is_key_global(const struct ieee80211vap *vap,
2702     const struct ieee80211_key *key)
2703 {
2704 	return (&vap->iv_nw_keys[0] <= key &&
2705 	    key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2706 }
2707 
2708 /*
2709  * Determine whether the given key in the given VAP is a unicast key.
2710  */
2711 bool
ieee80211_is_key_unicast(const struct ieee80211vap * vap,const struct ieee80211_key * key)2712 ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2713     const struct ieee80211_key *key)
2714 {
2715 	/*
2716 	 * This is a short-cut for now; eventually we will need
2717 	 * to support multiple unicast keys, IGTK, etc) so we
2718 	 * will absolutely need to fix the key flags.
2719 	 */
2720 	return (!ieee80211_is_key_global(vap, key));
2721 }
2722 
2723 /**
2724  * Determine whether the given control frame is from a known node
2725  * and destined to us.
2726  *
2727  * In some instances a control frame won't have a TA (eg ACKs), so
2728  * we should only verify the RA for those.
2729  *
2730  * @param ni	ieee80211_node representing the sender, or BSS node
2731  * @param m0	mbuf representing the 802.11 frame.
2732  * @returns	false if the frame is not a CTL frame (with a warning logged);
2733  *		true if the frame is from a known sender / valid recipient,
2734  *		false otherwise.
2735  */
2736 bool
ieee80211_is_ctl_frame_for_vap(struct ieee80211_node * ni,const struct mbuf * m0)2737 ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0)
2738 {
2739 	const struct ieee80211vap *vap = ni->ni_vap;
2740 	const struct ieee80211_frame *wh;
2741 	uint8_t subtype;
2742 
2743 	wh = mtod(m0, const struct ieee80211_frame *);
2744 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2745 
2746 	/* Verify it's a ctl frame. */
2747 	KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)",
2748 	    __func__, wh->i_fc[0]));
2749 	if (!IEEE80211_IS_CTL(wh)) {
2750 		net80211_vap_printf(vap,
2751 		    "%s: not a control frame (fc[0]=0x%04x)\n",
2752 		    __func__, wh->i_fc[0]);
2753 		return (false);
2754 	}
2755 
2756 	/* Verify the TA if present. */
2757 	switch (subtype) {
2758 	case IEEE80211_FC0_SUBTYPE_CTS:
2759 	case IEEE80211_FC0_SUBTYPE_ACK:
2760 		/* No TA. */
2761 		break;
2762 	default:
2763 		/*
2764 		 * Verify TA matches ni->ni_macaddr; for unknown
2765 		 * sources it will be the BSS node and ni->ni_macaddr
2766 		 * will the BSS MAC.
2767 		 */
2768 		if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr))
2769 			return (false);
2770 		break;
2771 	}
2772 
2773 	/* Verify the RA */
2774 	return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr));
2775 }
2776