1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6 * Copyright (c) 2012 IEEE
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 /*
32 * IEEE 802.11 protocol support.
33 */
34
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/ethernet.h> /* XXX for ether_sprintf */
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_adhoc.h>
54 #include <net80211/ieee80211_sta.h>
55 #include <net80211/ieee80211_hostap.h>
56 #include <net80211/ieee80211_wds.h>
57 #ifdef IEEE80211_SUPPORT_MESH
58 #include <net80211/ieee80211_mesh.h>
59 #endif
60 #include <net80211/ieee80211_monitor.h>
61 #include <net80211/ieee80211_input.h>
62
63 /* XXX tunables */
64 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */
65 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */
66
67 const char *mgt_subtype_name[] = {
68 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp",
69 "probe_req", "probe_resp", "timing_adv", "reserved#7",
70 "beacon", "atim", "disassoc", "auth",
71 "deauth", "action", "action_noack", "reserved#15"
72 };
73 const char *ctl_subtype_name[] = {
74 "reserved#0", "reserved#1", "reserved#2", "reserved#3",
75 "reserved#4", "reserved#5", "reserved#6", "control_wrap",
76 "bar", "ba", "ps_poll", "rts",
77 "cts", "ack", "cf_end", "cf_end_ack"
78 };
79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
80 "IBSS", /* IEEE80211_M_IBSS */
81 "STA", /* IEEE80211_M_STA */
82 "WDS", /* IEEE80211_M_WDS */
83 "AHDEMO", /* IEEE80211_M_AHDEMO */
84 "HOSTAP", /* IEEE80211_M_HOSTAP */
85 "MONITOR", /* IEEE80211_M_MONITOR */
86 "MBSS" /* IEEE80211_M_MBSS */
87 };
88 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
89 "INIT", /* IEEE80211_S_INIT */
90 "SCAN", /* IEEE80211_S_SCAN */
91 "AUTH", /* IEEE80211_S_AUTH */
92 "ASSOC", /* IEEE80211_S_ASSOC */
93 "CAC", /* IEEE80211_S_CAC */
94 "RUN", /* IEEE80211_S_RUN */
95 "CSA", /* IEEE80211_S_CSA */
96 "SLEEP", /* IEEE80211_S_SLEEP */
97 };
98 const char *ieee80211_wme_acnames[] = {
99 "WME_AC_BE",
100 "WME_AC_BK",
101 "WME_AC_VI",
102 "WME_AC_VO",
103 "WME_UPSD",
104 };
105
106 /*
107 * Reason code descriptions were (mostly) obtained from
108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109 */
110 const char *
ieee80211_reason_to_string(uint16_t reason)111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 switch (reason) {
114 case IEEE80211_REASON_UNSPECIFIED:
115 return ("unspecified");
116 case IEEE80211_REASON_AUTH_EXPIRE:
117 return ("previous authentication is expired");
118 case IEEE80211_REASON_AUTH_LEAVE:
119 return ("sending STA is leaving/has left IBSS or ESS");
120 case IEEE80211_REASON_ASSOC_EXPIRE:
121 return ("disassociated due to inactivity");
122 case IEEE80211_REASON_ASSOC_TOOMANY:
123 return ("too many associated STAs");
124 case IEEE80211_REASON_NOT_AUTHED:
125 return ("class 2 frame received from nonauthenticated STA");
126 case IEEE80211_REASON_NOT_ASSOCED:
127 return ("class 3 frame received from nonassociated STA");
128 case IEEE80211_REASON_ASSOC_LEAVE:
129 return ("sending STA is leaving/has left BSS");
130 case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 return ("STA requesting (re)association is not authenticated");
132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 return ("information in the Power Capability element is "
134 "unacceptable");
135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 return ("information in the Supported Channels element is "
137 "unacceptable");
138 case IEEE80211_REASON_IE_INVALID:
139 return ("invalid element");
140 case IEEE80211_REASON_MIC_FAILURE:
141 return ("MIC failure");
142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 return ("4-Way handshake timeout");
144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 return ("group key update timeout");
146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 return ("element in 4-Way handshake different from "
148 "(re)association request/probe response/beacon frame");
149 case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 return ("invalid group cipher");
151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 return ("invalid pairwise cipher");
153 case IEEE80211_REASON_AKMP_INVALID:
154 return ("invalid AKMP");
155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 return ("unsupported version in RSN IE");
157 case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 return ("invalid capabilities in RSN IE");
159 case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 return ("IEEE 802.1X authentication failed");
161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 return ("cipher suite rejected because of the security "
163 "policy");
164 case IEEE80211_REASON_UNSPECIFIED_QOS:
165 return ("unspecified (QoS-related)");
166 case IEEE80211_REASON_INSUFFICIENT_BW:
167 return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 case IEEE80211_REASON_TOOMANY_FRAMES:
169 return ("too many frames need to be acknowledged");
170 case IEEE80211_REASON_OUTSIDE_TXOP:
171 return ("STA is transmitting outside the limits of its TXOPs");
172 case IEEE80211_REASON_LEAVING_QBSS:
173 return ("requested from peer STA (the STA is "
174 "resetting/leaving the BSS)");
175 case IEEE80211_REASON_BAD_MECHANISM:
176 return ("requested from peer STA (it does not want to use "
177 "the mechanism)");
178 case IEEE80211_REASON_SETUP_NEEDED:
179 return ("requested from peer STA (setup is required for the "
180 "used mechanism)");
181 case IEEE80211_REASON_TIMEOUT:
182 return ("requested from peer STA (timeout)");
183 case IEEE80211_REASON_PEER_LINK_CANCELED:
184 return ("SME cancels the mesh peering instance (not related "
185 "to the maximum number of peer mesh STAs)");
186 case IEEE80211_REASON_MESH_MAX_PEERS:
187 return ("maximum number of peer mesh STAs was reached");
188 case IEEE80211_REASON_MESH_CPVIOLATION:
189 return ("the received information violates the Mesh "
190 "Configuration policy configured in the mesh STA "
191 "profile");
192 case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 return ("the mesh STA has received a Mesh Peering Close "
194 "message requesting to close the mesh peering");
195 case IEEE80211_REASON_MESH_MAX_RETRIES:
196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 "Peering Open messages, without receiving a Mesh "
198 "Peering Confirm message");
199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 return ("the confirmTimer for the mesh peering instance times "
201 "out");
202 case IEEE80211_REASON_MESH_INVALID_GTK:
203 return ("the mesh STA fails to unwrap the GTK or the values "
204 "in the wrapped contents do not match");
205 case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 return ("the mesh STA receives inconsistent information about "
207 "the mesh parameters between Mesh Peering Management "
208 "frames");
209 case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 return ("the mesh STA fails the authenticated mesh peering "
211 "exchange because due to failure in selecting "
212 "pairwise/group ciphersuite");
213 case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 return ("the mesh STA does not have proxy information for "
215 "this external destination");
216 case IEEE80211_REASON_MESH_PERR_NO_FI:
217 return ("the mesh STA does not have forwarding information "
218 "for this destination");
219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 return ("the mesh STA determines that the link to the next "
221 "hop of an active path in its forwarding information "
222 "is no longer usable");
223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 return ("the MAC address of the STA already exists in the "
225 "mesh BSS");
226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 return ("the mesh STA performs channel switch to meet "
228 "regulatory requirements");
229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 return ("the mesh STA performs channel switch with "
231 "unspecified reason");
232 default:
233 return ("reserved/unknown");
234 }
235 }
236
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void vap_update_wme(void *, int);
245 static void vap_update_slot(void *, int);
246 static void restart_vaps(void *, int);
247 static void vap_update_erp_protmode(void *, int);
248 static void vap_update_preamble(void *, int);
249 static void vap_update_ht_protmode(void *, int);
250 static void ieee80211_newstate_cb(void *, int);
251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
252 struct ieee80211_node *);
253
254 static int
null_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
256 const struct ieee80211_bpf_params *params)
257 {
258
259 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
260 m_freem(m);
261 return ENETDOWN;
262 }
263
264 void
ieee80211_proto_attach(struct ieee80211com * ic)265 ieee80211_proto_attach(struct ieee80211com *ic)
266 {
267 uint8_t hdrlen;
268
269 /* override the 802.3 setting */
270 hdrlen = ic->ic_headroom
271 + sizeof(struct ieee80211_qosframe_addr4)
272 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
273 + IEEE80211_WEP_EXTIVLEN;
274 /* XXX no way to recalculate on ifdetach */
275 max_linkhdr_grow(ALIGN(hdrlen));
276 //ic->ic_protmode = IEEE80211_PROT_CTSONLY;
277
278 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
279 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
280 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
281 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
282 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
283 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
284 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
285
286 ic->ic_wme.wme_hipri_switch_hysteresis =
287 AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
288
289 /* initialize management frame handlers */
290 ic->ic_send_mgmt = ieee80211_send_mgmt;
291 ic->ic_raw_xmit = null_raw_xmit;
292
293 ieee80211_adhoc_attach(ic);
294 ieee80211_sta_attach(ic);
295 ieee80211_wds_attach(ic);
296 ieee80211_hostap_attach(ic);
297 #ifdef IEEE80211_SUPPORT_MESH
298 ieee80211_mesh_attach(ic);
299 #endif
300 ieee80211_monitor_attach(ic);
301 }
302
303 void
ieee80211_proto_detach(struct ieee80211com * ic)304 ieee80211_proto_detach(struct ieee80211com *ic)
305 {
306 ieee80211_monitor_detach(ic);
307 #ifdef IEEE80211_SUPPORT_MESH
308 ieee80211_mesh_detach(ic);
309 #endif
310 ieee80211_hostap_detach(ic);
311 ieee80211_wds_detach(ic);
312 ieee80211_adhoc_detach(ic);
313 ieee80211_sta_detach(ic);
314 }
315
316 static void
null_update_beacon(struct ieee80211vap * vap,int item)317 null_update_beacon(struct ieee80211vap *vap, int item)
318 {
319 }
320
321 void
ieee80211_proto_vattach(struct ieee80211vap * vap)322 ieee80211_proto_vattach(struct ieee80211vap *vap)
323 {
324 struct ieee80211com *ic = vap->iv_ic;
325 struct ifnet *ifp = vap->iv_ifp;
326 int i;
327
328 /* override the 802.3 setting */
329 ifp->if_hdrlen = ic->ic_headroom
330 + sizeof(struct ieee80211_qosframe_addr4)
331 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
332 + IEEE80211_WEP_EXTIVLEN;
333
334 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
335 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
336 vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
337 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
338 callout_init(&vap->iv_mgtsend, 1);
339 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
340 TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap);
341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
343 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
344 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
345 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
346 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
347 /*
348 * Install default tx rate handling: no fixed rate, lowest
349 * supported rate for mgmt and multicast frames. Default
350 * max retry count. These settings can be changed by the
351 * driver and/or user applications.
352 */
353 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
354 if (isclr(ic->ic_modecaps, i))
355 continue;
356
357 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
358
359 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
360
361 /*
362 * Setting the management rate to MCS 0 assumes that the
363 * BSS Basic rate set is empty and the BSS Basic MCS set
364 * is not.
365 *
366 * Since we're not checking this, default to the lowest
367 * defined rate for this mode.
368 *
369 * At least one 11n AP (DLINK DIR-825) is reported to drop
370 * some MCS management traffic (eg BA response frames.)
371 *
372 * See also: 9.6.0 of the 802.11n-2009 specification.
373 */
374 #ifdef NOTYET
375 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
376 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
377 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
378 } else {
379 vap->iv_txparms[i].mgmtrate =
380 rs->rs_rates[0] & IEEE80211_RATE_VAL;
381 vap->iv_txparms[i].mcastrate =
382 rs->rs_rates[0] & IEEE80211_RATE_VAL;
383 }
384 #endif
385 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
386 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
387 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
388 }
389 vap->iv_roaming = IEEE80211_ROAMING_AUTO;
390
391 vap->iv_update_beacon = null_update_beacon;
392 vap->iv_deliver_data = ieee80211_deliver_data;
393 vap->iv_protmode = IEEE80211_PROT_CTSONLY;
394 vap->iv_update_bss = vap_update_bss;
395
396 /* attach support for operating mode */
397 ic->ic_vattach[vap->iv_opmode](vap);
398 }
399
400 void
ieee80211_proto_vdetach(struct ieee80211vap * vap)401 ieee80211_proto_vdetach(struct ieee80211vap *vap)
402 {
403 #define FREEAPPIE(ie) do { \
404 if (ie != NULL) \
405 IEEE80211_FREE(ie, M_80211_NODE_IE); \
406 } while (0)
407 /*
408 * Detach operating mode module.
409 */
410 if (vap->iv_opdetach != NULL)
411 vap->iv_opdetach(vap);
412 /*
413 * This should not be needed as we detach when reseting
414 * the state but be conservative here since the
415 * authenticator may do things like spawn kernel threads.
416 */
417 if (vap->iv_auth->ia_detach != NULL)
418 vap->iv_auth->ia_detach(vap);
419 /*
420 * Detach any ACL'ator.
421 */
422 if (vap->iv_acl != NULL)
423 vap->iv_acl->iac_detach(vap);
424
425 FREEAPPIE(vap->iv_appie_beacon);
426 FREEAPPIE(vap->iv_appie_probereq);
427 FREEAPPIE(vap->iv_appie_proberesp);
428 FREEAPPIE(vap->iv_appie_assocreq);
429 FREEAPPIE(vap->iv_appie_assocresp);
430 FREEAPPIE(vap->iv_appie_wpa);
431 #undef FREEAPPIE
432 }
433
434 /*
435 * Simple-minded authenticator module support.
436 */
437
438 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1)
439 /* XXX well-known names */
440 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
441 "wlan_internal", /* IEEE80211_AUTH_NONE */
442 "wlan_internal", /* IEEE80211_AUTH_OPEN */
443 "wlan_internal", /* IEEE80211_AUTH_SHARED */
444 "wlan_xauth", /* IEEE80211_AUTH_8021X */
445 "wlan_internal", /* IEEE80211_AUTH_AUTO */
446 "wlan_xauth", /* IEEE80211_AUTH_WPA */
447 };
448 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
449
450 static const struct ieee80211_authenticator auth_internal = {
451 .ia_name = "wlan_internal",
452 .ia_attach = NULL,
453 .ia_detach = NULL,
454 .ia_node_join = NULL,
455 .ia_node_leave = NULL,
456 };
457
458 /*
459 * Setup internal authenticators once; they are never unregistered.
460 */
461 static void
ieee80211_auth_setup(void)462 ieee80211_auth_setup(void)
463 {
464 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
465 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
466 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
467 }
468 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
469
470 const struct ieee80211_authenticator *
ieee80211_authenticator_get(int auth)471 ieee80211_authenticator_get(int auth)
472 {
473 if (auth >= IEEE80211_AUTH_MAX)
474 return NULL;
475 if (authenticators[auth] == NULL)
476 ieee80211_load_module(auth_modnames[auth]);
477 return authenticators[auth];
478 }
479
480 void
ieee80211_authenticator_register(int type,const struct ieee80211_authenticator * auth)481 ieee80211_authenticator_register(int type,
482 const struct ieee80211_authenticator *auth)
483 {
484 if (type >= IEEE80211_AUTH_MAX)
485 return;
486 authenticators[type] = auth;
487 }
488
489 void
ieee80211_authenticator_unregister(int type)490 ieee80211_authenticator_unregister(int type)
491 {
492
493 if (type >= IEEE80211_AUTH_MAX)
494 return;
495 authenticators[type] = NULL;
496 }
497
498 /*
499 * Very simple-minded ACL module support.
500 */
501 /* XXX just one for now */
502 static const struct ieee80211_aclator *acl = NULL;
503
504 void
ieee80211_aclator_register(const struct ieee80211_aclator * iac)505 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
506 {
507 printf("wlan: %s acl policy registered\n", iac->iac_name);
508 acl = iac;
509 }
510
511 void
ieee80211_aclator_unregister(const struct ieee80211_aclator * iac)512 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
513 {
514 if (acl == iac)
515 acl = NULL;
516 printf("wlan: %s acl policy unregistered\n", iac->iac_name);
517 }
518
519 const struct ieee80211_aclator *
ieee80211_aclator_get(const char * name)520 ieee80211_aclator_get(const char *name)
521 {
522 if (acl == NULL)
523 ieee80211_load_module("wlan_acl");
524 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
525 }
526
527 void
ieee80211_print_essid(const uint8_t * essid,int len)528 ieee80211_print_essid(const uint8_t *essid, int len)
529 {
530 const uint8_t *p;
531 int i;
532
533 if (len > IEEE80211_NWID_LEN)
534 len = IEEE80211_NWID_LEN;
535 /* determine printable or not */
536 for (i = 0, p = essid; i < len; i++, p++) {
537 if (*p < ' ' || *p > 0x7e)
538 break;
539 }
540 if (i == len) {
541 printf("\"");
542 for (i = 0, p = essid; i < len; i++, p++)
543 printf("%c", *p);
544 printf("\"");
545 } else {
546 printf("0x");
547 for (i = 0, p = essid; i < len; i++, p++)
548 printf("%02x", *p);
549 }
550 }
551
552 void
ieee80211_dump_pkt(struct ieee80211com * ic,const uint8_t * buf,int len,int rate,int rssi)553 ieee80211_dump_pkt(struct ieee80211com *ic,
554 const uint8_t *buf, int len, int rate, int rssi)
555 {
556 const struct ieee80211_frame *wh;
557 int i;
558
559 wh = (const struct ieee80211_frame *)buf;
560 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
561 case IEEE80211_FC1_DIR_NODS:
562 printf("NODS %s", ether_sprintf(wh->i_addr2));
563 printf("->%s", ether_sprintf(wh->i_addr1));
564 printf("(%s)", ether_sprintf(wh->i_addr3));
565 break;
566 case IEEE80211_FC1_DIR_TODS:
567 printf("TODS %s", ether_sprintf(wh->i_addr2));
568 printf("->%s", ether_sprintf(wh->i_addr3));
569 printf("(%s)", ether_sprintf(wh->i_addr1));
570 break;
571 case IEEE80211_FC1_DIR_FROMDS:
572 printf("FRDS %s", ether_sprintf(wh->i_addr3));
573 printf("->%s", ether_sprintf(wh->i_addr1));
574 printf("(%s)", ether_sprintf(wh->i_addr2));
575 break;
576 case IEEE80211_FC1_DIR_DSTODS:
577 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
578 printf("->%s", ether_sprintf(wh->i_addr3));
579 printf("(%s", ether_sprintf(wh->i_addr2));
580 printf("->%s)", ether_sprintf(wh->i_addr1));
581 break;
582 }
583 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
584 case IEEE80211_FC0_TYPE_DATA:
585 printf(" data");
586 break;
587 case IEEE80211_FC0_TYPE_MGT:
588 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
589 break;
590 default:
591 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
592 break;
593 }
594 if (IEEE80211_QOS_HAS_SEQ(wh)) {
595 const struct ieee80211_qosframe *qwh =
596 (const struct ieee80211_qosframe *)buf;
597 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
598 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
599 }
600 if (IEEE80211_IS_PROTECTED(wh)) {
601 int off;
602
603 off = ieee80211_anyhdrspace(ic, wh);
604 printf(" WEP [IV %.02x %.02x %.02x",
605 buf[off+0], buf[off+1], buf[off+2]);
606 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
607 printf(" %.02x %.02x %.02x",
608 buf[off+4], buf[off+5], buf[off+6]);
609 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
610 }
611 if (rate >= 0)
612 printf(" %dM", rate / 2);
613 if (rssi >= 0)
614 printf(" +%d", rssi);
615 printf("\n");
616 if (len > 0) {
617 for (i = 0; i < len; i++) {
618 if ((i & 1) == 0)
619 printf(" ");
620 printf("%02x", buf[i]);
621 }
622 printf("\n");
623 }
624 }
625
626 static __inline int
findrix(const struct ieee80211_rateset * rs,int r)627 findrix(const struct ieee80211_rateset *rs, int r)
628 {
629 int i;
630
631 for (i = 0; i < rs->rs_nrates; i++)
632 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
633 return i;
634 return -1;
635 }
636
637 int
ieee80211_fix_rate(struct ieee80211_node * ni,struct ieee80211_rateset * nrs,int flags)638 ieee80211_fix_rate(struct ieee80211_node *ni,
639 struct ieee80211_rateset *nrs, int flags)
640 {
641 struct ieee80211vap *vap = ni->ni_vap;
642 struct ieee80211com *ic = ni->ni_ic;
643 int i, j, rix, error;
644 int okrate, badrate, fixedrate, ucastrate;
645 const struct ieee80211_rateset *srs;
646 uint8_t r;
647
648 error = 0;
649 okrate = badrate = 0;
650 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
651 if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
652 /*
653 * Workaround awkwardness with fixed rate. We are called
654 * to check both the legacy rate set and the HT rate set
655 * but we must apply any legacy fixed rate check only to the
656 * legacy rate set and vice versa. We cannot tell what type
657 * of rate set we've been given (legacy or HT) but we can
658 * distinguish the fixed rate type (MCS have 0x80 set).
659 * So to deal with this the caller communicates whether to
660 * check MCS or legacy rate using the flags and we use the
661 * type of any fixed rate to avoid applying an MCS to a
662 * legacy rate and vice versa.
663 */
664 if (ucastrate & 0x80) {
665 if (flags & IEEE80211_F_DOFRATE)
666 flags &= ~IEEE80211_F_DOFRATE;
667 } else if ((ucastrate & 0x80) == 0) {
668 if (flags & IEEE80211_F_DOFMCS)
669 flags &= ~IEEE80211_F_DOFMCS;
670 }
671 /* NB: required to make MCS match below work */
672 ucastrate &= IEEE80211_RATE_VAL;
673 }
674 fixedrate = IEEE80211_FIXED_RATE_NONE;
675 /*
676 * XXX we are called to process both MCS and legacy rates;
677 * we must use the appropriate basic rate set or chaos will
678 * ensue; for now callers that want MCS must supply
679 * IEEE80211_F_DOBRS; at some point we'll need to split this
680 * function so there are two variants, one for MCS and one
681 * for legacy rates.
682 */
683 if (flags & IEEE80211_F_DOBRS)
684 srs = (const struct ieee80211_rateset *)
685 ieee80211_get_suphtrates(ic, ni->ni_chan);
686 else
687 srs = ieee80211_get_suprates(ic, ni->ni_chan);
688 for (i = 0; i < nrs->rs_nrates; ) {
689 if (flags & IEEE80211_F_DOSORT) {
690 /*
691 * Sort rates.
692 */
693 for (j = i + 1; j < nrs->rs_nrates; j++) {
694 if (IEEE80211_RV(nrs->rs_rates[i]) >
695 IEEE80211_RV(nrs->rs_rates[j])) {
696 r = nrs->rs_rates[i];
697 nrs->rs_rates[i] = nrs->rs_rates[j];
698 nrs->rs_rates[j] = r;
699 }
700 }
701 }
702 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
703 badrate = r;
704 /*
705 * Check for fixed rate.
706 */
707 if (r == ucastrate)
708 fixedrate = r;
709 /*
710 * Check against supported rates.
711 */
712 rix = findrix(srs, r);
713 if (flags & IEEE80211_F_DONEGO) {
714 if (rix < 0) {
715 /*
716 * A rate in the node's rate set is not
717 * supported. If this is a basic rate and we
718 * are operating as a STA then this is an error.
719 * Otherwise we just discard/ignore the rate.
720 */
721 if ((flags & IEEE80211_F_JOIN) &&
722 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
723 error++;
724 } else if ((flags & IEEE80211_F_JOIN) == 0) {
725 /*
726 * Overwrite with the supported rate
727 * value so any basic rate bit is set.
728 */
729 nrs->rs_rates[i] = srs->rs_rates[rix];
730 }
731 }
732 if ((flags & IEEE80211_F_DODEL) && rix < 0) {
733 /*
734 * Delete unacceptable rates.
735 */
736 nrs->rs_nrates--;
737 for (j = i; j < nrs->rs_nrates; j++)
738 nrs->rs_rates[j] = nrs->rs_rates[j + 1];
739 nrs->rs_rates[j] = 0;
740 continue;
741 }
742 if (rix >= 0)
743 okrate = nrs->rs_rates[i];
744 i++;
745 }
746 if (okrate == 0 || error != 0 ||
747 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
748 fixedrate != ucastrate)) {
749 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
750 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
751 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
752 return badrate | IEEE80211_RATE_BASIC;
753 } else
754 return IEEE80211_RV(okrate);
755 }
756
757 /*
758 * Reset 11g-related state.
759 *
760 * This is for per-VAP ERP/11g state.
761 *
762 * Eventually everything in ieee80211_reset_erp() will be
763 * per-VAP and in here.
764 */
765 void
ieee80211_vap_reset_erp(struct ieee80211vap * vap)766 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
767 {
768 struct ieee80211com *ic = vap->iv_ic;
769
770 vap->iv_nonerpsta = 0;
771 vap->iv_longslotsta = 0;
772
773 vap->iv_flags &= ~IEEE80211_F_USEPROT;
774 /*
775 * Set short preamble and ERP barker-preamble flags.
776 */
777 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
778 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
779 vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
780 vap->iv_flags &= ~IEEE80211_F_USEBARKER;
781 } else {
782 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
783 vap->iv_flags |= IEEE80211_F_USEBARKER;
784 }
785
786 /*
787 * Short slot time is enabled only when operating in 11g
788 * and not in an IBSS. We must also honor whether or not
789 * the driver is capable of doing it.
790 */
791 ieee80211_vap_set_shortslottime(vap,
792 IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
793 IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
794 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
795 vap->iv_opmode == IEEE80211_M_HOSTAP &&
796 (ic->ic_caps & IEEE80211_C_SHSLOT)));
797 }
798
799 /*
800 * Reset 11g-related state.
801 *
802 * Note this resets the global state and a caller should schedule
803 * a re-check of all the VAPs after setup to update said state.
804 */
805 void
ieee80211_reset_erp(struct ieee80211com * ic)806 ieee80211_reset_erp(struct ieee80211com *ic)
807 {
808 #if 0
809 ic->ic_flags &= ~IEEE80211_F_USEPROT;
810 /*
811 * Set short preamble and ERP barker-preamble flags.
812 */
813 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
814 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
815 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
816 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
817 } else {
818 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
819 ic->ic_flags |= IEEE80211_F_USEBARKER;
820 }
821 #endif
822 /* XXX TODO: schedule a new per-VAP ERP calculation */
823 }
824
825 static struct ieee80211_node *
vap_update_bss(struct ieee80211vap * vap,struct ieee80211_node * ni)826 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
827 {
828 struct ieee80211_node *obss;
829
830 IEEE80211_LOCK_ASSERT(vap->iv_ic);
831
832 obss = vap->iv_bss;
833 vap->iv_bss = ni;
834
835 return (obss);
836 }
837
838 /*
839 * Deferred slot time update.
840 *
841 * For per-VAP slot time configuration, call the VAP
842 * method if the VAP requires it. Otherwise, just call the
843 * older global method.
844 *
845 * If the per-VAP method is called then it's expected that
846 * the driver/firmware will take care of turning the per-VAP
847 * flags into slot time configuration.
848 *
849 * If the per-VAP method is not called then the global flags will be
850 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
851 * be set only if all of the vaps will have it set.
852 *
853 * Look at the comments for vap_update_erp_protmode() for more
854 * background; this assumes all VAPs are on the same channel.
855 */
856 static void
vap_update_slot(void * arg,int npending)857 vap_update_slot(void *arg, int npending)
858 {
859 struct ieee80211vap *vap = arg;
860 struct ieee80211com *ic = vap->iv_ic;
861 struct ieee80211vap *iv;
862 int num_shslot = 0, num_lgslot = 0;
863
864 /*
865 * Per-VAP path - we've already had the flags updated;
866 * so just notify the driver and move on.
867 */
868 if (vap->iv_updateslot != NULL) {
869 vap->iv_updateslot(vap);
870 return;
871 }
872
873 /*
874 * Iterate over all of the VAP flags to update the
875 * global flag.
876 *
877 * If all vaps have short slot enabled then flip on
878 * short slot. If any vap has it disabled then
879 * we leave it globally disabled. This should provide
880 * correct behaviour in a multi-BSS scenario where
881 * at least one VAP has short slot disabled for some
882 * reason.
883 */
884 IEEE80211_LOCK(ic);
885 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
886 if (iv->iv_flags & IEEE80211_F_SHSLOT)
887 num_shslot++;
888 else
889 num_lgslot++;
890 }
891
892 /*
893 * It looks backwards but - if the number of short slot VAPs
894 * is zero then we're not short slot. Else, we have one
895 * or more short slot VAPs and we're checking to see if ANY
896 * of them have short slot disabled.
897 */
898 if (num_shslot == 0)
899 ic->ic_flags &= ~IEEE80211_F_SHSLOT;
900 else if (num_lgslot == 0)
901 ic->ic_flags |= IEEE80211_F_SHSLOT;
902 IEEE80211_UNLOCK(ic);
903
904 /*
905 * Call the driver with our new global slot time flags.
906 */
907 if (ic->ic_updateslot != NULL)
908 ic->ic_updateslot(ic);
909 }
910
911 /*
912 * Deferred ERP protmode update.
913 *
914 * This currently calculates the global ERP protection mode flag
915 * based on each of the VAPs. Any VAP with it enabled is enough
916 * for the global flag to be enabled. All VAPs with it disabled
917 * is enough for it to be disabled.
918 *
919 * This may make sense right now for the supported hardware where
920 * net80211 is controlling the single channel configuration, but
921 * offload firmware that's doing channel changes (eg off-channel
922 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
923 * silly looking flag updates.
924 *
925 * Ideally the protection mode calculation is done based on the
926 * channel, and all VAPs using that channel will inherit it.
927 * But until that's what net80211 does, this wil have to do.
928 */
929 static void
vap_update_erp_protmode(void * arg,int npending)930 vap_update_erp_protmode(void *arg, int npending)
931 {
932 struct ieee80211vap *vap = arg;
933 struct ieee80211com *ic = vap->iv_ic;
934 struct ieee80211vap *iv;
935 int enable_protmode = 0;
936 int non_erp_present = 0;
937
938 /*
939 * Iterate over all of the VAPs to calculate the overlapping
940 * ERP protection mode configuration and ERP present math.
941 *
942 * For now we assume that if a driver can handle this per-VAP
943 * then it'll ignore the ic->ic_protmode variant and instead
944 * will look at the vap related flags.
945 */
946 IEEE80211_LOCK(ic);
947 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
948 if (iv->iv_flags & IEEE80211_F_USEPROT)
949 enable_protmode = 1;
950 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
951 non_erp_present = 1;
952 }
953
954 if (enable_protmode)
955 ic->ic_flags |= IEEE80211_F_USEPROT;
956 else
957 ic->ic_flags &= ~IEEE80211_F_USEPROT;
958
959 if (non_erp_present)
960 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
961 else
962 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
963
964 /* Beacon update on all VAPs */
965 ieee80211_notify_erp_locked(ic);
966
967 IEEE80211_UNLOCK(ic);
968
969 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
970 "%s: called; enable_protmode=%d, non_erp_present=%d\n",
971 __func__, enable_protmode, non_erp_present);
972
973 /*
974 * Now that the global configuration flags are calculated,
975 * notify the VAP about its configuration.
976 *
977 * The global flags will be used when assembling ERP IEs
978 * for multi-VAP operation, even if it's on a different
979 * channel. Yes, that's going to need fixing in the
980 * future.
981 */
982 if (vap->iv_erp_protmode_update != NULL)
983 vap->iv_erp_protmode_update(vap);
984 }
985
986 /*
987 * Deferred ERP short preamble/barker update.
988 *
989 * All VAPs need to use short preamble for it to be globally
990 * enabled or not.
991 *
992 * Look at the comments for vap_update_erp_protmode() for more
993 * background; this assumes all VAPs are on the same channel.
994 */
995 static void
vap_update_preamble(void * arg,int npending)996 vap_update_preamble(void *arg, int npending)
997 {
998 struct ieee80211vap *vap = arg;
999 struct ieee80211com *ic = vap->iv_ic;
1000 struct ieee80211vap *iv;
1001 int barker_count = 0, short_preamble_count = 0, count = 0;
1002
1003 /*
1004 * Iterate over all of the VAPs to calculate the overlapping
1005 * short or long preamble configuration.
1006 *
1007 * For now we assume that if a driver can handle this per-VAP
1008 * then it'll ignore the ic->ic_flags variant and instead
1009 * will look at the vap related flags.
1010 */
1011 IEEE80211_LOCK(ic);
1012 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1013 if (iv->iv_flags & IEEE80211_F_USEBARKER)
1014 barker_count++;
1015 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
1016 short_preamble_count++;
1017 count++;
1018 }
1019
1020 /*
1021 * As with vap_update_erp_protmode(), the global flags are
1022 * currently used for beacon IEs.
1023 */
1024 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1025 "%s: called; barker_count=%d, short_preamble_count=%d\n",
1026 __func__, barker_count, short_preamble_count);
1027
1028 /*
1029 * Only flip on short preamble if all of the VAPs support
1030 * it.
1031 */
1032 if (barker_count == 0 && short_preamble_count == count) {
1033 ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
1034 ic->ic_flags &= ~IEEE80211_F_USEBARKER;
1035 } else {
1036 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
1037 ic->ic_flags |= IEEE80211_F_USEBARKER;
1038 }
1039 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1040 "%s: global barker=%d preamble=%d\n",
1041 __func__,
1042 !! (ic->ic_flags & IEEE80211_F_USEBARKER),
1043 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
1044
1045 /* Beacon update on all VAPs */
1046 ieee80211_notify_erp_locked(ic);
1047
1048 IEEE80211_UNLOCK(ic);
1049
1050 /* Driver notification */
1051 if (vap->iv_preamble_update != NULL)
1052 vap->iv_preamble_update(vap);
1053 }
1054
1055 /*
1056 * Deferred HT protmode update and beacon update.
1057 *
1058 * Look at the comments for vap_update_erp_protmode() for more
1059 * background; this assumes all VAPs are on the same channel.
1060 */
1061 static void
vap_update_ht_protmode(void * arg,int npending)1062 vap_update_ht_protmode(void *arg, int npending)
1063 {
1064 struct ieee80211vap *vap = arg;
1065 struct ieee80211vap *iv;
1066 struct ieee80211com *ic = vap->iv_ic;
1067 int num_vaps = 0, num_pure = 0;
1068 int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
1069 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
1070 int num_nonhtpr = 0;
1071
1072 /*
1073 * Iterate over all of the VAPs to calculate everything.
1074 *
1075 * There are a few different flags to calculate:
1076 *
1077 * + whether there's HT only or HT+legacy stations;
1078 * + whether there's HT20, HT40, or HT20+HT40 stations;
1079 * + whether the desired protection mode is mixed, pure or
1080 * one of the two above.
1081 *
1082 * For now we assume that if a driver can handle this per-VAP
1083 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
1084 * variant and instead will look at the vap related variables.
1085 *
1086 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
1087 */
1088
1089 IEEE80211_LOCK(ic);
1090 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1091 num_vaps++;
1092 /* overlapping BSSes advertising non-HT status present */
1093 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
1094 num_nonht++;
1095 /* Operating mode flags */
1096 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
1097 num_nonhtpr++;
1098 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
1099 case IEEE80211_HTINFO_OPMODE_PURE:
1100 num_pure++;
1101 break;
1102 case IEEE80211_HTINFO_OPMODE_PROTOPT:
1103 num_optional++;
1104 break;
1105 case IEEE80211_HTINFO_OPMODE_HT20PR:
1106 num_ht2040++;
1107 break;
1108 }
1109
1110 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1111 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
1112 __func__,
1113 ieee80211_get_vap_ifname(iv),
1114 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
1115 iv->iv_curhtprotmode);
1116
1117 num_ht_sta += iv->iv_ht_sta_assoc;
1118 num_ht40_sta += iv->iv_ht40_sta_assoc;
1119 num_sta += iv->iv_sta_assoc;
1120 }
1121
1122 /*
1123 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
1124 * non-HT present), set it here. This shouldn't be used by
1125 * anything but the old overlapping BSS logic so if any drivers
1126 * consume it, it's up to date.
1127 */
1128 if (num_nonht > 0)
1129 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1130 else
1131 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1132
1133 /*
1134 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
1135 *
1136 * + If all VAPs are PURE, we can stay PURE.
1137 * + If all VAPs are PROTOPT, we can go to PROTOPT.
1138 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
1139 * Note that we may have a VAP with one HT20 and a VAP with one HT40;
1140 * So we look at the sum ht and sum ht40 sta counts; if we have a
1141 * HT station and the HT20 != HT40 count, we have to do HT20PR here.
1142 * Note all stations need to be HT for this to be an option.
1143 * + The fall-through is MIXED, because it means we have some odd
1144 * non HT40-involved combination of opmode and this is the most
1145 * sensible default.
1146 */
1147 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1148
1149 if (num_pure == num_vaps)
1150 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
1151
1152 if (num_optional == num_vaps)
1153 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
1154
1155 /*
1156 * Note: we need /a/ HT40 station somewhere for this to
1157 * be a possibility.
1158 */
1159 if ((num_ht2040 > 0) ||
1160 ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
1161 (num_ht_sta != num_ht40_sta)))
1162 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1163
1164 /*
1165 * Step 3 - if any of the stations across the VAPs are
1166 * non-HT then this needs to be flipped back to MIXED.
1167 */
1168 if (num_ht_sta != num_sta)
1169 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1170
1171 /*
1172 * Step 4 - If we see any overlapping BSS non-HT stations
1173 * via beacons then flip on NONHT_PRESENT.
1174 */
1175 if (num_nonhtpr > 0)
1176 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
1177
1178 /* Notify all VAPs to potentially update their beacons */
1179 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
1180 ieee80211_htinfo_notify(iv);
1181
1182 IEEE80211_UNLOCK(ic);
1183
1184 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1185 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
1186 __func__,
1187 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
1188 ic->ic_curhtprotmode);
1189
1190 /* Driver update */
1191 if (vap->iv_ht_protmode_update != NULL)
1192 vap->iv_ht_protmode_update(vap);
1193 }
1194
1195 /*
1196 * Set the short slot time state and notify the driver.
1197 *
1198 * This is the per-VAP slot time state.
1199 */
1200 void
ieee80211_vap_set_shortslottime(struct ieee80211vap * vap,int onoff)1201 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
1202 {
1203 struct ieee80211com *ic = vap->iv_ic;
1204
1205 /* XXX lock? */
1206
1207 /*
1208 * Only modify the per-VAP slot time.
1209 */
1210 if (onoff)
1211 vap->iv_flags |= IEEE80211_F_SHSLOT;
1212 else
1213 vap->iv_flags &= ~IEEE80211_F_SHSLOT;
1214
1215 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1216 "%s: called; onoff=%d\n", __func__, onoff);
1217 /* schedule the deferred slot flag update and update */
1218 ieee80211_runtask(ic, &vap->iv_slot_task);
1219 }
1220
1221 /*
1222 * Update the VAP short /long / barker preamble state and
1223 * update beacon state if needed.
1224 *
1225 * For now it simply copies the global flags into the per-vap
1226 * flags and schedules the callback. Later this will support
1227 * both global and per-VAP flags, especially useful for
1228 * and STA+STA multi-channel operation (eg p2p).
1229 */
1230 void
ieee80211_vap_update_preamble(struct ieee80211vap * vap)1231 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
1232 {
1233 struct ieee80211com *ic = vap->iv_ic;
1234
1235 /* XXX lock? */
1236
1237 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1238 "%s: called\n", __func__);
1239 /* schedule the deferred slot flag update and update */
1240 ieee80211_runtask(ic, &vap->iv_preamble_task);
1241 }
1242
1243 /*
1244 * Update the VAP 11g protection mode and update beacon state
1245 * if needed.
1246 */
1247 void
ieee80211_vap_update_erp_protmode(struct ieee80211vap * vap)1248 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
1249 {
1250 struct ieee80211com *ic = vap->iv_ic;
1251
1252 /* XXX lock? */
1253
1254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1255 "%s: called\n", __func__);
1256 /* schedule the deferred slot flag update and update */
1257 ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
1258 }
1259
1260 /*
1261 * Update the VAP 11n protection mode and update beacon state
1262 * if needed.
1263 */
1264 void
ieee80211_vap_update_ht_protmode(struct ieee80211vap * vap)1265 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
1266 {
1267 struct ieee80211com *ic = vap->iv_ic;
1268
1269 /* XXX lock? */
1270
1271 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1272 "%s: called\n", __func__);
1273 /* schedule the deferred protmode update */
1274 ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
1275 }
1276
1277 /*
1278 * Check if the specified rate set supports ERP.
1279 * NB: the rate set is assumed to be sorted.
1280 */
1281 int
ieee80211_iserp_rateset(const struct ieee80211_rateset * rs)1282 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
1283 {
1284 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
1285 int i, j;
1286
1287 if (rs->rs_nrates < nitems(rates))
1288 return 0;
1289 for (i = 0; i < nitems(rates); i++) {
1290 for (j = 0; j < rs->rs_nrates; j++) {
1291 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
1292 if (rates[i] == r)
1293 goto next;
1294 if (r > rates[i])
1295 return 0;
1296 }
1297 return 0;
1298 next:
1299 ;
1300 }
1301 return 1;
1302 }
1303
1304 /*
1305 * Mark the basic rates for the rate table based on the
1306 * operating mode. For real 11g we mark all the 11b rates
1307 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only
1308 * 11b rates. There's also a pseudo 11a-mode used to mark only
1309 * the basic OFDM rates.
1310 */
1311 static void
setbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode,int add)1312 setbasicrates(struct ieee80211_rateset *rs,
1313 enum ieee80211_phymode mode, int add)
1314 {
1315 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
1316 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } },
1317 [IEEE80211_MODE_11B] = { 2, { 2, 4 } },
1318 /* NB: mixed b/g */
1319 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } },
1320 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } },
1321 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } },
1322 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } },
1323 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } },
1324 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } },
1325 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } },
1326 /* NB: mixed b/g */
1327 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } },
1328 /* NB: mixed b/g */
1329 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } },
1330 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } },
1331 };
1332 int i, j;
1333
1334 for (i = 0; i < rs->rs_nrates; i++) {
1335 if (!add)
1336 rs->rs_rates[i] &= IEEE80211_RATE_VAL;
1337 for (j = 0; j < basic[mode].rs_nrates; j++)
1338 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
1339 rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
1340 break;
1341 }
1342 }
1343 }
1344
1345 /*
1346 * Set the basic rates in a rate set.
1347 */
1348 void
ieee80211_setbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode)1349 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
1350 enum ieee80211_phymode mode)
1351 {
1352 setbasicrates(rs, mode, 0);
1353 }
1354
1355 /*
1356 * Add basic rates to a rate set.
1357 */
1358 void
ieee80211_addbasicrates(struct ieee80211_rateset * rs,enum ieee80211_phymode mode)1359 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
1360 enum ieee80211_phymode mode)
1361 {
1362 setbasicrates(rs, mode, 1);
1363 }
1364
1365 /*
1366 * WME protocol support.
1367 *
1368 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
1369 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
1370 * Draft 2.0 Test Plan (Appendix D).
1371 *
1372 * Static/Dynamic Turbo mode settings come from Atheros.
1373 */
1374 typedef struct phyParamType {
1375 uint8_t aifsn;
1376 uint8_t logcwmin;
1377 uint8_t logcwmax;
1378 uint16_t txopLimit;
1379 uint8_t acm;
1380 } paramType;
1381
1382 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
1383 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 },
1384 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 },
1385 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 },
1386 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 },
1387 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 },
1388 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 },
1389 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 },
1390 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 },
1391 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 },
1392 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 },
1393 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 },
1394 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 },
1395 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 },
1396 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 },
1397 };
1398 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1399 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 },
1400 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 },
1401 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 },
1402 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 },
1403 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 },
1404 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 },
1405 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 },
1406 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 },
1407 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 },
1408 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 },
1409 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 },
1410 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 },
1411 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 },
1412 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 },
1413 };
1414 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1415 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 },
1416 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 },
1417 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 },
1418 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 },
1419 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 },
1420 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 },
1421 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 },
1422 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 },
1423 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 },
1424 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 },
1425 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 },
1426 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 },
1427 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 },
1428 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 },
1429 };
1430 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1431 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 },
1432 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 },
1433 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 },
1434 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 },
1435 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 },
1436 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1437 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1438 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1439 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 },
1440 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 },
1441 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 },
1442 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 },
1443 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 },
1444 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 },
1445 };
1446
1447 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1448 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 },
1449 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 },
1450 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 },
1451 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 },
1452 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 },
1453 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 },
1454 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 },
1455 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 },
1456 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 },
1457 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 },
1458 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 },
1459 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 },
1460 };
1461 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1462 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 },
1463 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 },
1464 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 },
1465 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 },
1466 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 },
1467 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 },
1468 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 },
1469 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 },
1470 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 },
1471 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 },
1472 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 },
1473 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 },
1474 };
1475 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1476 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 },
1477 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 },
1478 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 },
1479 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 },
1480 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 },
1481 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 },
1482 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 },
1483 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 },
1484 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 },
1485 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 },
1486 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 },
1487 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 },
1488 };
1489
1490 static void
_setifsparams(struct wmeParams * wmep,const paramType * phy)1491 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1492 {
1493 wmep->wmep_aifsn = phy->aifsn;
1494 wmep->wmep_logcwmin = phy->logcwmin;
1495 wmep->wmep_logcwmax = phy->logcwmax;
1496 wmep->wmep_txopLimit = phy->txopLimit;
1497 }
1498
1499 static void
setwmeparams(struct ieee80211vap * vap,const char * type,int ac,struct wmeParams * wmep,const paramType * phy)1500 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1501 struct wmeParams *wmep, const paramType *phy)
1502 {
1503 wmep->wmep_acm = phy->acm;
1504 _setifsparams(wmep, phy);
1505
1506 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1507 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1508 ieee80211_wme_acnames[ac], type,
1509 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1510 wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1511 }
1512
1513 static void
ieee80211_wme_initparams_locked(struct ieee80211vap * vap)1514 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1515 {
1516 struct ieee80211com *ic = vap->iv_ic;
1517 struct ieee80211_wme_state *wme = &ic->ic_wme;
1518 const paramType *pPhyParam, *pBssPhyParam;
1519 struct wmeParams *wmep;
1520 enum ieee80211_phymode mode;
1521 int i;
1522
1523 IEEE80211_LOCK_ASSERT(ic);
1524
1525 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1526 return;
1527
1528 /*
1529 * Clear the wme cap_info field so a qoscount from a previous
1530 * vap doesn't confuse later code which only parses the beacon
1531 * field and updates hardware when said field changes.
1532 * Otherwise the hardware is programmed with defaults, not what
1533 * the beacon actually announces.
1534 *
1535 * Note that we can't ever have 0xff as an actual value;
1536 * the only valid values are 0..15.
1537 */
1538 wme->wme_wmeChanParams.cap_info = 0xfe;
1539
1540 /*
1541 * Select mode; we can be called early in which case we
1542 * always use auto mode. We know we'll be called when
1543 * entering the RUN state with bsschan setup properly
1544 * so state will eventually get set correctly
1545 */
1546 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1547 mode = ieee80211_chan2mode(ic->ic_bsschan);
1548 else
1549 mode = IEEE80211_MODE_AUTO;
1550 for (i = 0; i < WME_NUM_AC; i++) {
1551 switch (i) {
1552 case WME_AC_BK:
1553 pPhyParam = &phyParamForAC_BK[mode];
1554 pBssPhyParam = &phyParamForAC_BK[mode];
1555 break;
1556 case WME_AC_VI:
1557 pPhyParam = &phyParamForAC_VI[mode];
1558 pBssPhyParam = &bssPhyParamForAC_VI[mode];
1559 break;
1560 case WME_AC_VO:
1561 pPhyParam = &phyParamForAC_VO[mode];
1562 pBssPhyParam = &bssPhyParamForAC_VO[mode];
1563 break;
1564 case WME_AC_BE:
1565 default:
1566 pPhyParam = &phyParamForAC_BE[mode];
1567 pBssPhyParam = &bssPhyParamForAC_BE[mode];
1568 break;
1569 }
1570 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1571 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1572 setwmeparams(vap, "chan", i, wmep, pPhyParam);
1573 } else {
1574 setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1575 }
1576 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1577 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1578 }
1579 /* NB: check ic_bss to avoid NULL deref on initial attach */
1580 if (vap->iv_bss != NULL) {
1581 /*
1582 * Calculate aggressive mode switching threshold based
1583 * on beacon interval. This doesn't need locking since
1584 * we're only called before entering the RUN state at
1585 * which point we start sending beacon frames.
1586 */
1587 wme->wme_hipri_switch_thresh =
1588 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1589 wme->wme_flags &= ~WME_F_AGGRMODE;
1590 ieee80211_wme_updateparams(vap);
1591 }
1592 }
1593
1594 void
ieee80211_wme_initparams(struct ieee80211vap * vap)1595 ieee80211_wme_initparams(struct ieee80211vap *vap)
1596 {
1597 struct ieee80211com *ic = vap->iv_ic;
1598
1599 IEEE80211_LOCK(ic);
1600 ieee80211_wme_initparams_locked(vap);
1601 IEEE80211_UNLOCK(ic);
1602 }
1603
1604 /*
1605 * Update WME parameters for ourself and the BSS.
1606 */
1607 void
ieee80211_wme_updateparams_locked(struct ieee80211vap * vap)1608 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1609 {
1610 static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1611 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 },
1612 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 },
1613 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 },
1614 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 },
1615 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 },
1616 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 },
1617 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 },
1618 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 },
1619 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 },
1620 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 },
1621 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1622 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1623 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1624 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/
1625 };
1626 struct ieee80211com *ic = vap->iv_ic;
1627 struct ieee80211_wme_state *wme = &ic->ic_wme;
1628 const struct wmeParams *wmep;
1629 struct wmeParams *chanp, *bssp;
1630 enum ieee80211_phymode mode;
1631 int i;
1632 int do_aggrmode = 0;
1633
1634 /*
1635 * Set up the channel access parameters for the physical
1636 * device. First populate the configured settings.
1637 */
1638 for (i = 0; i < WME_NUM_AC; i++) {
1639 chanp = &wme->wme_chanParams.cap_wmeParams[i];
1640 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1641 chanp->wmep_aifsn = wmep->wmep_aifsn;
1642 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1643 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1644 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1645
1646 chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1647 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1648 chanp->wmep_aifsn = wmep->wmep_aifsn;
1649 chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1650 chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1651 chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1652 }
1653
1654 /*
1655 * Select mode; we can be called early in which case we
1656 * always use auto mode. We know we'll be called when
1657 * entering the RUN state with bsschan setup properly
1658 * so state will eventually get set correctly
1659 */
1660 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1661 mode = ieee80211_chan2mode(ic->ic_bsschan);
1662 else
1663 mode = IEEE80211_MODE_AUTO;
1664
1665 /*
1666 * This implements aggressive mode as found in certain
1667 * vendors' AP's. When there is significant high
1668 * priority (VI/VO) traffic in the BSS throttle back BE
1669 * traffic by using conservative parameters. Otherwise
1670 * BE uses aggressive params to optimize performance of
1671 * legacy/non-QoS traffic.
1672 */
1673
1674 /* Hostap? Only if aggressive mode is enabled */
1675 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1676 (wme->wme_flags & WME_F_AGGRMODE) != 0)
1677 do_aggrmode = 1;
1678
1679 /*
1680 * Station? Only if we're in a non-QoS BSS.
1681 */
1682 else if ((vap->iv_opmode == IEEE80211_M_STA &&
1683 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1684 do_aggrmode = 1;
1685
1686 /*
1687 * IBSS? Only if we have WME enabled.
1688 */
1689 else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1690 (vap->iv_flags & IEEE80211_F_WME))
1691 do_aggrmode = 1;
1692
1693 /*
1694 * If WME is disabled on this VAP, default to aggressive mode
1695 * regardless of the configuration.
1696 */
1697 if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1698 do_aggrmode = 1;
1699
1700 /* XXX WDS? */
1701
1702 /* XXX MBSS? */
1703
1704 if (do_aggrmode) {
1705 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1706 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1707
1708 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1709 chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1710 aggrParam[mode].logcwmin;
1711 chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1712 aggrParam[mode].logcwmax;
1713 chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1714 (vap->iv_flags & IEEE80211_F_BURST) ?
1715 aggrParam[mode].txopLimit : 0;
1716 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1717 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1718 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1719 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1720 chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1721 }
1722
1723 /*
1724 * Change the contention window based on the number of associated
1725 * stations. If the number of associated stations is 1 and
1726 * aggressive mode is enabled, lower the contention window even
1727 * further.
1728 */
1729 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1730 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1731 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1732 [IEEE80211_MODE_AUTO] = 3,
1733 [IEEE80211_MODE_11A] = 3,
1734 [IEEE80211_MODE_11B] = 4,
1735 [IEEE80211_MODE_11G] = 3,
1736 [IEEE80211_MODE_FH] = 4,
1737 [IEEE80211_MODE_TURBO_A] = 3,
1738 [IEEE80211_MODE_TURBO_G] = 3,
1739 [IEEE80211_MODE_STURBO_A] = 3,
1740 [IEEE80211_MODE_HALF] = 3,
1741 [IEEE80211_MODE_QUARTER] = 3,
1742 [IEEE80211_MODE_11NA] = 3,
1743 [IEEE80211_MODE_11NG] = 3,
1744 [IEEE80211_MODE_VHT_2GHZ] = 3,
1745 [IEEE80211_MODE_VHT_5GHZ] = 3,
1746 };
1747 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1748 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1749
1750 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1751 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1752 "update %s (chan+bss) logcwmin %u\n",
1753 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1754 }
1755
1756 /* schedule the deferred WME update */
1757 ieee80211_runtask(ic, &vap->iv_wme_task);
1758
1759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1760 "%s: WME params updated, cap_info 0x%x\n", __func__,
1761 vap->iv_opmode == IEEE80211_M_STA ?
1762 wme->wme_wmeChanParams.cap_info :
1763 wme->wme_bssChanParams.cap_info);
1764 }
1765
1766 void
ieee80211_wme_updateparams(struct ieee80211vap * vap)1767 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1768 {
1769 struct ieee80211com *ic = vap->iv_ic;
1770
1771 if (ic->ic_caps & IEEE80211_C_WME) {
1772 IEEE80211_LOCK(ic);
1773 ieee80211_wme_updateparams_locked(vap);
1774 IEEE80211_UNLOCK(ic);
1775 }
1776 }
1777
1778 /*
1779 * Fetch the WME parameters for the given VAP.
1780 *
1781 * When net80211 grows p2p, etc support, this may return different
1782 * parameters for each VAP.
1783 */
1784 void
ieee80211_wme_vap_getparams(struct ieee80211vap * vap,struct chanAccParams * wp)1785 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1786 {
1787
1788 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1789 }
1790
1791 /*
1792 * For NICs which only support one set of WME parameters (ie, softmac NICs)
1793 * there may be different VAP WME parameters but only one is "active".
1794 * This returns the "NIC" WME parameters for the currently active
1795 * context.
1796 */
1797 void
ieee80211_wme_ic_getparams(struct ieee80211com * ic,struct chanAccParams * wp)1798 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1799 {
1800
1801 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1802 }
1803
1804 /*
1805 * Return whether to use QoS on a given WME queue.
1806 *
1807 * This is intended to be called from the transmit path of softmac drivers
1808 * which are setting NoAck bits in transmit descriptors.
1809 *
1810 * Ideally this would be set in some transmit field before the packet is
1811 * queued to the driver but net80211 isn't quite there yet.
1812 */
1813 int
ieee80211_wme_vap_ac_is_noack(struct ieee80211vap * vap,int ac)1814 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1815 {
1816 /* Bounds/sanity check */
1817 if (ac < 0 || ac >= WME_NUM_AC)
1818 return (0);
1819
1820 /* Again, there's only one global context for now */
1821 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1822 }
1823
1824 static void
parent_updown(void * arg,int npending)1825 parent_updown(void *arg, int npending)
1826 {
1827 struct ieee80211com *ic = arg;
1828
1829 ic->ic_parent(ic);
1830 }
1831
1832 static void
update_mcast(void * arg,int npending)1833 update_mcast(void *arg, int npending)
1834 {
1835 struct ieee80211com *ic = arg;
1836
1837 ic->ic_update_mcast(ic);
1838 }
1839
1840 static void
update_promisc(void * arg,int npending)1841 update_promisc(void *arg, int npending)
1842 {
1843 struct ieee80211com *ic = arg;
1844
1845 ic->ic_update_promisc(ic);
1846 }
1847
1848 static void
update_channel(void * arg,int npending)1849 update_channel(void *arg, int npending)
1850 {
1851 struct ieee80211com *ic = arg;
1852
1853 ic->ic_set_channel(ic);
1854 ieee80211_radiotap_chan_change(ic);
1855 }
1856
1857 static void
update_chw(void * arg,int npending)1858 update_chw(void *arg, int npending)
1859 {
1860 struct ieee80211com *ic = arg;
1861
1862 /*
1863 * XXX should we defer the channel width _config_ update until now?
1864 */
1865 ic->ic_update_chw(ic);
1866 }
1867
1868 /*
1869 * Deferred WME parameter and beacon update.
1870 *
1871 * In preparation for per-VAP WME configuration, call the VAP
1872 * method if the VAP requires it. Otherwise, just call the
1873 * older global method. There isn't a per-VAP WME configuration
1874 * just yet so for now just use the global configuration.
1875 */
1876 static void
vap_update_wme(void * arg,int npending)1877 vap_update_wme(void *arg, int npending)
1878 {
1879 struct ieee80211vap *vap = arg;
1880 struct ieee80211com *ic = vap->iv_ic;
1881 struct ieee80211_wme_state *wme = &ic->ic_wme;
1882
1883 /* Driver update */
1884 if (vap->iv_wme_update != NULL)
1885 vap->iv_wme_update(vap,
1886 ic->ic_wme.wme_chanParams.cap_wmeParams);
1887 else
1888 ic->ic_wme.wme_update(ic);
1889
1890 IEEE80211_LOCK(ic);
1891 /*
1892 * Arrange for the beacon update.
1893 *
1894 * XXX what about MBSS, WDS?
1895 */
1896 if (vap->iv_opmode == IEEE80211_M_HOSTAP
1897 || vap->iv_opmode == IEEE80211_M_IBSS) {
1898 /*
1899 * Arrange for a beacon update and bump the parameter
1900 * set number so associated stations load the new values.
1901 */
1902 wme->wme_bssChanParams.cap_info =
1903 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1904 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1905 }
1906 IEEE80211_UNLOCK(ic);
1907 }
1908
1909 static void
restart_vaps(void * arg,int npending)1910 restart_vaps(void *arg, int npending)
1911 {
1912 struct ieee80211com *ic = arg;
1913
1914 ieee80211_suspend_all(ic);
1915 ieee80211_resume_all(ic);
1916 }
1917
1918 /*
1919 * Block until the parent is in a known state. This is
1920 * used after any operations that dispatch a task (e.g.
1921 * to auto-configure the parent device up/down).
1922 */
1923 void
ieee80211_waitfor_parent(struct ieee80211com * ic)1924 ieee80211_waitfor_parent(struct ieee80211com *ic)
1925 {
1926 taskqueue_block(ic->ic_tq);
1927 ieee80211_draintask(ic, &ic->ic_parent_task);
1928 ieee80211_draintask(ic, &ic->ic_mcast_task);
1929 ieee80211_draintask(ic, &ic->ic_promisc_task);
1930 ieee80211_draintask(ic, &ic->ic_chan_task);
1931 ieee80211_draintask(ic, &ic->ic_bmiss_task);
1932 ieee80211_draintask(ic, &ic->ic_chw_task);
1933 taskqueue_unblock(ic->ic_tq);
1934 }
1935
1936 /*
1937 * Check to see whether the current channel needs reset.
1938 *
1939 * Some devices don't handle being given an invalid channel
1940 * in their operating mode very well (eg wpi(4) will throw a
1941 * firmware exception.)
1942 *
1943 * Return 0 if we're ok, 1 if the channel needs to be reset.
1944 *
1945 * See PR kern/202502.
1946 */
1947 static int
ieee80211_start_check_reset_chan(struct ieee80211vap * vap)1948 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1949 {
1950 struct ieee80211com *ic = vap->iv_ic;
1951
1952 if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1953 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1954 (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1955 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1956 return (1);
1957 return (0);
1958 }
1959
1960 /*
1961 * Reset the curchan to a known good state.
1962 */
1963 static void
ieee80211_start_reset_chan(struct ieee80211vap * vap)1964 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1965 {
1966 struct ieee80211com *ic = vap->iv_ic;
1967
1968 ic->ic_curchan = &ic->ic_channels[0];
1969 }
1970
1971 /*
1972 * Start a vap running. If this is the first vap to be
1973 * set running on the underlying device then we
1974 * automatically bring the device up.
1975 */
1976 void
ieee80211_start_locked(struct ieee80211vap * vap)1977 ieee80211_start_locked(struct ieee80211vap *vap)
1978 {
1979 struct ifnet *ifp = vap->iv_ifp;
1980 struct ieee80211com *ic = vap->iv_ic;
1981
1982 IEEE80211_LOCK_ASSERT(ic);
1983
1984 IEEE80211_DPRINTF(vap,
1985 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1986 "start running, %d vaps running\n", ic->ic_nrunning);
1987
1988 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1989 /*
1990 * Mark us running. Note that it's ok to do this first;
1991 * if we need to bring the parent device up we defer that
1992 * to avoid dropping the com lock. We expect the device
1993 * to respond to being marked up by calling back into us
1994 * through ieee80211_start_all at which point we'll come
1995 * back in here and complete the work.
1996 */
1997 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1998 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
1999
2000 /*
2001 * We are not running; if this we are the first vap
2002 * to be brought up auto-up the parent if necessary.
2003 */
2004 if (ic->ic_nrunning++ == 0) {
2005 /* reset the channel to a known good channel */
2006 if (ieee80211_start_check_reset_chan(vap))
2007 ieee80211_start_reset_chan(vap);
2008
2009 IEEE80211_DPRINTF(vap,
2010 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2011 "%s: up parent %s\n", __func__, ic->ic_name);
2012 ieee80211_runtask(ic, &ic->ic_parent_task);
2013 return;
2014 }
2015 }
2016 /*
2017 * If the parent is up and running, then kick the
2018 * 802.11 state machine as appropriate.
2019 */
2020 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
2021 if (vap->iv_opmode == IEEE80211_M_STA) {
2022 #if 0
2023 /* XXX bypasses scan too easily; disable for now */
2024 /*
2025 * Try to be intelligent about clocking the state
2026 * machine. If we're currently in RUN state then
2027 * we should be able to apply any new state/parameters
2028 * simply by re-associating. Otherwise we need to
2029 * re-scan to select an appropriate ap.
2030 */
2031 if (vap->iv_state >= IEEE80211_S_RUN)
2032 ieee80211_new_state_locked(vap,
2033 IEEE80211_S_ASSOC, 1);
2034 else
2035 #endif
2036 ieee80211_new_state_locked(vap,
2037 IEEE80211_S_SCAN, 0);
2038 } else {
2039 /*
2040 * For monitor+wds mode there's nothing to do but
2041 * start running. Otherwise if this is the first
2042 * vap to be brought up, start a scan which may be
2043 * preempted if the station is locked to a particular
2044 * channel.
2045 */
2046 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
2047 if (vap->iv_opmode == IEEE80211_M_MONITOR ||
2048 vap->iv_opmode == IEEE80211_M_WDS)
2049 ieee80211_new_state_locked(vap,
2050 IEEE80211_S_RUN, -1);
2051 else
2052 ieee80211_new_state_locked(vap,
2053 IEEE80211_S_SCAN, 0);
2054 }
2055 }
2056 }
2057
2058 /*
2059 * Start a single vap.
2060 */
2061 void
ieee80211_init(void * arg)2062 ieee80211_init(void *arg)
2063 {
2064 struct ieee80211vap *vap = arg;
2065
2066 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2067 "%s\n", __func__);
2068
2069 IEEE80211_LOCK(vap->iv_ic);
2070 ieee80211_start_locked(vap);
2071 IEEE80211_UNLOCK(vap->iv_ic);
2072 }
2073
2074 /*
2075 * Start all runnable vap's on a device.
2076 */
2077 void
ieee80211_start_all(struct ieee80211com * ic)2078 ieee80211_start_all(struct ieee80211com *ic)
2079 {
2080 struct ieee80211vap *vap;
2081
2082 IEEE80211_LOCK(ic);
2083 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2084 struct ifnet *ifp = vap->iv_ifp;
2085 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
2086 ieee80211_start_locked(vap);
2087 }
2088 IEEE80211_UNLOCK(ic);
2089 }
2090
2091 /*
2092 * Stop a vap. We force it down using the state machine
2093 * then mark it's ifnet not running. If this is the last
2094 * vap running on the underlying device then we close it
2095 * too to insure it will be properly initialized when the
2096 * next vap is brought up.
2097 */
2098 void
ieee80211_stop_locked(struct ieee80211vap * vap)2099 ieee80211_stop_locked(struct ieee80211vap *vap)
2100 {
2101 struct ieee80211com *ic = vap->iv_ic;
2102 struct ifnet *ifp = vap->iv_ifp;
2103
2104 IEEE80211_LOCK_ASSERT(ic);
2105
2106 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2107 "stop running, %d vaps running\n", ic->ic_nrunning);
2108
2109 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
2110 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2111 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */
2112 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2113 if (--ic->ic_nrunning == 0) {
2114 IEEE80211_DPRINTF(vap,
2115 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2116 "down parent %s\n", ic->ic_name);
2117 ieee80211_runtask(ic, &ic->ic_parent_task);
2118 }
2119 }
2120 }
2121
2122 void
ieee80211_stop(struct ieee80211vap * vap)2123 ieee80211_stop(struct ieee80211vap *vap)
2124 {
2125 struct ieee80211com *ic = vap->iv_ic;
2126
2127 IEEE80211_LOCK(ic);
2128 ieee80211_stop_locked(vap);
2129 IEEE80211_UNLOCK(ic);
2130 }
2131
2132 /*
2133 * Stop all vap's running on a device.
2134 */
2135 void
ieee80211_stop_all(struct ieee80211com * ic)2136 ieee80211_stop_all(struct ieee80211com *ic)
2137 {
2138 struct ieee80211vap *vap;
2139
2140 IEEE80211_LOCK(ic);
2141 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2142 struct ifnet *ifp = vap->iv_ifp;
2143 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */
2144 ieee80211_stop_locked(vap);
2145 }
2146 IEEE80211_UNLOCK(ic);
2147
2148 ieee80211_waitfor_parent(ic);
2149 }
2150
2151 /*
2152 * Stop all vap's running on a device and arrange
2153 * for those that were running to be resumed.
2154 */
2155 void
ieee80211_suspend_all(struct ieee80211com * ic)2156 ieee80211_suspend_all(struct ieee80211com *ic)
2157 {
2158 struct ieee80211vap *vap;
2159
2160 IEEE80211_LOCK(ic);
2161 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2162 struct ifnet *ifp = vap->iv_ifp;
2163 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */
2164 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
2165 ieee80211_stop_locked(vap);
2166 }
2167 }
2168 IEEE80211_UNLOCK(ic);
2169
2170 ieee80211_waitfor_parent(ic);
2171 }
2172
2173 /*
2174 * Start all vap's marked for resume.
2175 */
2176 void
ieee80211_resume_all(struct ieee80211com * ic)2177 ieee80211_resume_all(struct ieee80211com *ic)
2178 {
2179 struct ieee80211vap *vap;
2180
2181 IEEE80211_LOCK(ic);
2182 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2183 struct ifnet *ifp = vap->iv_ifp;
2184 if (!IFNET_IS_UP_RUNNING(ifp) &&
2185 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
2186 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
2187 ieee80211_start_locked(vap);
2188 }
2189 }
2190 IEEE80211_UNLOCK(ic);
2191 }
2192
2193 /*
2194 * Restart all vap's running on a device.
2195 */
2196 void
ieee80211_restart_all(struct ieee80211com * ic)2197 ieee80211_restart_all(struct ieee80211com *ic)
2198 {
2199 /*
2200 * NB: do not use ieee80211_runtask here, we will
2201 * block & drain net80211 taskqueue.
2202 */
2203 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
2204 }
2205
2206 void
ieee80211_beacon_miss(struct ieee80211com * ic)2207 ieee80211_beacon_miss(struct ieee80211com *ic)
2208 {
2209 IEEE80211_LOCK(ic);
2210 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2211 /* Process in a taskq, the handler may reenter the driver */
2212 ieee80211_runtask(ic, &ic->ic_bmiss_task);
2213 }
2214 IEEE80211_UNLOCK(ic);
2215 }
2216
2217 static void
beacon_miss(void * arg,int npending)2218 beacon_miss(void *arg, int npending)
2219 {
2220 struct ieee80211com *ic = arg;
2221 struct ieee80211vap *vap;
2222
2223 IEEE80211_LOCK(ic);
2224 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2225 /*
2226 * We only pass events through for sta vap's in RUN+ state;
2227 * may be too restrictive but for now this saves all the
2228 * handlers duplicating these checks.
2229 */
2230 if (vap->iv_opmode == IEEE80211_M_STA &&
2231 vap->iv_state >= IEEE80211_S_RUN &&
2232 vap->iv_bmiss != NULL)
2233 vap->iv_bmiss(vap);
2234 }
2235 IEEE80211_UNLOCK(ic);
2236 }
2237
2238 static void
beacon_swmiss(void * arg,int npending)2239 beacon_swmiss(void *arg, int npending)
2240 {
2241 struct ieee80211vap *vap = arg;
2242 struct ieee80211com *ic = vap->iv_ic;
2243
2244 IEEE80211_LOCK(ic);
2245 if (vap->iv_state >= IEEE80211_S_RUN) {
2246 /* XXX Call multiple times if npending > zero? */
2247 vap->iv_bmiss(vap);
2248 }
2249 IEEE80211_UNLOCK(ic);
2250 }
2251
2252 /*
2253 * Software beacon miss handling. Check if any beacons
2254 * were received in the last period. If not post a
2255 * beacon miss; otherwise reset the counter.
2256 */
2257 void
ieee80211_swbmiss(void * arg)2258 ieee80211_swbmiss(void *arg)
2259 {
2260 struct ieee80211vap *vap = arg;
2261 struct ieee80211com *ic = vap->iv_ic;
2262
2263 IEEE80211_LOCK_ASSERT(ic);
2264
2265 KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2266 ("wrong state %d", vap->iv_state));
2267
2268 if (ic->ic_flags & IEEE80211_F_SCAN) {
2269 /*
2270 * If scanning just ignore and reset state. If we get a
2271 * bmiss after coming out of scan because we haven't had
2272 * time to receive a beacon then we should probe the AP
2273 * before posting a real bmiss (unless iv_bmiss_max has
2274 * been artifiically lowered). A cleaner solution might
2275 * be to disable the timer on scan start/end but to handle
2276 * case of multiple sta vap's we'd need to disable the
2277 * timers of all affected vap's.
2278 */
2279 vap->iv_swbmiss_count = 0;
2280 } else if (vap->iv_swbmiss_count == 0) {
2281 if (vap->iv_bmiss != NULL)
2282 ieee80211_runtask(ic, &vap->iv_swbmiss_task);
2283 } else
2284 vap->iv_swbmiss_count = 0;
2285 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
2286 ieee80211_swbmiss, vap);
2287 }
2288
2289 /*
2290 * Start an 802.11h channel switch. We record the parameters,
2291 * mark the operation pending, notify each vap through the
2292 * beacon update mechanism so it can update the beacon frame
2293 * contents, and then switch vap's to CSA state to block outbound
2294 * traffic. Devices that handle CSA directly can use the state
2295 * switch to do the right thing so long as they call
2296 * ieee80211_csa_completeswitch when it's time to complete the
2297 * channel change. Devices that depend on the net80211 layer can
2298 * use ieee80211_beacon_update to handle the countdown and the
2299 * channel switch.
2300 */
2301 void
ieee80211_csa_startswitch(struct ieee80211com * ic,struct ieee80211_channel * c,int mode,int count)2302 ieee80211_csa_startswitch(struct ieee80211com *ic,
2303 struct ieee80211_channel *c, int mode, int count)
2304 {
2305 struct ieee80211vap *vap;
2306
2307 IEEE80211_LOCK_ASSERT(ic);
2308
2309 ic->ic_csa_newchan = c;
2310 ic->ic_csa_mode = mode;
2311 ic->ic_csa_count = count;
2312 ic->ic_flags |= IEEE80211_F_CSAPENDING;
2313 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2314 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2315 vap->iv_opmode == IEEE80211_M_IBSS ||
2316 vap->iv_opmode == IEEE80211_M_MBSS)
2317 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
2318 /* switch to CSA state to block outbound traffic */
2319 if (vap->iv_state == IEEE80211_S_RUN)
2320 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
2321 }
2322 ieee80211_notify_csa(ic, c, mode, count);
2323 }
2324
2325 /*
2326 * Complete the channel switch by transitioning all CSA VAPs to RUN.
2327 * This is called by both the completion and cancellation functions
2328 * so each VAP is placed back in the RUN state and can thus transmit.
2329 */
2330 static void
csa_completeswitch(struct ieee80211com * ic)2331 csa_completeswitch(struct ieee80211com *ic)
2332 {
2333 struct ieee80211vap *vap;
2334
2335 ic->ic_csa_newchan = NULL;
2336 ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
2337
2338 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2339 if (vap->iv_state == IEEE80211_S_CSA)
2340 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2341 }
2342
2343 /*
2344 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
2345 * We clear state and move all vap's in CSA state to RUN state
2346 * so they can again transmit.
2347 *
2348 * Although this may not be completely correct, update the BSS channel
2349 * for each VAP to the newly configured channel. The setcurchan sets
2350 * the current operating channel for the interface (so the radio does
2351 * switch over) but the VAP BSS isn't updated, leading to incorrectly
2352 * reported information via ioctl.
2353 */
2354 void
ieee80211_csa_completeswitch(struct ieee80211com * ic)2355 ieee80211_csa_completeswitch(struct ieee80211com *ic)
2356 {
2357 struct ieee80211vap *vap;
2358
2359 IEEE80211_LOCK_ASSERT(ic);
2360
2361 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
2362
2363 ieee80211_setcurchan(ic, ic->ic_csa_newchan);
2364 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2365 if (vap->iv_state == IEEE80211_S_CSA)
2366 vap->iv_bss->ni_chan = ic->ic_curchan;
2367
2368 csa_completeswitch(ic);
2369 }
2370
2371 /*
2372 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
2373 * We clear state and move all vap's in CSA state to RUN state
2374 * so they can again transmit.
2375 */
2376 void
ieee80211_csa_cancelswitch(struct ieee80211com * ic)2377 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2378 {
2379 IEEE80211_LOCK_ASSERT(ic);
2380
2381 csa_completeswitch(ic);
2382 }
2383
2384 /*
2385 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2386 * We clear state and move all vap's in CAC state to RUN state.
2387 */
2388 void
ieee80211_cac_completeswitch(struct ieee80211vap * vap0)2389 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2390 {
2391 struct ieee80211com *ic = vap0->iv_ic;
2392 struct ieee80211vap *vap;
2393
2394 IEEE80211_LOCK(ic);
2395 /*
2396 * Complete CAC state change for lead vap first; then
2397 * clock all the other vap's waiting.
2398 */
2399 KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2400 ("wrong state %d", vap0->iv_state));
2401 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2402
2403 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2404 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2405 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2406 IEEE80211_UNLOCK(ic);
2407 }
2408
2409 /*
2410 * Force all vap's other than the specified vap to the INIT state
2411 * and mark them as waiting for a scan to complete. These vaps
2412 * will be brought up when the scan completes and the scanning vap
2413 * reaches RUN state by wakeupwaiting.
2414 */
2415 static void
markwaiting(struct ieee80211vap * vap0)2416 markwaiting(struct ieee80211vap *vap0)
2417 {
2418 struct ieee80211com *ic = vap0->iv_ic;
2419 struct ieee80211vap *vap;
2420
2421 IEEE80211_LOCK_ASSERT(ic);
2422
2423 /*
2424 * A vap list entry can not disappear since we are running on the
2425 * taskqueue and a vap destroy will queue and drain another state
2426 * change task.
2427 */
2428 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2429 if (vap == vap0)
2430 continue;
2431 if (vap->iv_state != IEEE80211_S_INIT) {
2432 /* NB: iv_newstate may drop the lock */
2433 vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2434 IEEE80211_LOCK_ASSERT(ic);
2435 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2436 }
2437 }
2438 }
2439
2440 /*
2441 * Wakeup all vap's waiting for a scan to complete. This is the
2442 * companion to markwaiting (above) and is used to coordinate
2443 * multiple vaps scanning.
2444 * This is called from the state taskqueue.
2445 */
2446 static void
wakeupwaiting(struct ieee80211vap * vap0)2447 wakeupwaiting(struct ieee80211vap *vap0)
2448 {
2449 struct ieee80211com *ic = vap0->iv_ic;
2450 struct ieee80211vap *vap;
2451
2452 IEEE80211_LOCK_ASSERT(ic);
2453
2454 /*
2455 * A vap list entry can not disappear since we are running on the
2456 * taskqueue and a vap destroy will queue and drain another state
2457 * change task.
2458 */
2459 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2460 if (vap == vap0)
2461 continue;
2462 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2463 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2464 /* NB: sta's cannot go INIT->RUN */
2465 /* NB: iv_newstate may drop the lock */
2466
2467 /*
2468 * This is problematic if the interface has OACTIVE
2469 * set. Only the deferred ieee80211_newstate_cb()
2470 * will end up actually /clearing/ the OACTIVE
2471 * flag on a state transition to RUN from a non-RUN
2472 * state.
2473 *
2474 * But, we're not actually deferring this callback;
2475 * and when the deferred call occurs it shows up as
2476 * a RUN->RUN transition! So the flag isn't/wasn't
2477 * cleared!
2478 *
2479 * I'm also not sure if it's correct to actually
2480 * do the transitions here fully through the deferred
2481 * paths either as other things can be invoked as
2482 * part of that state machine.
2483 *
2484 * So just keep this in mind when looking at what
2485 * the markwaiting/wakeupwaiting routines are doing
2486 * and how they invoke vap state changes.
2487 */
2488
2489 vap->iv_newstate(vap,
2490 vap->iv_opmode == IEEE80211_M_STA ?
2491 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2492 IEEE80211_LOCK_ASSERT(ic);
2493 }
2494 }
2495 }
2496
2497 static int
_ieee80211_newstate_get_next_empty_slot(struct ieee80211vap * vap)2498 _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap)
2499 {
2500 int nstate_num;
2501
2502 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2503
2504 if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM)
2505 return (-1);
2506
2507 nstate_num = vap->iv_nstate_b + vap->iv_nstate_n;
2508 nstate_num %= NET80211_IV_NSTATE_NUM;
2509 vap->iv_nstate_n++;
2510
2511 return (nstate_num);
2512 }
2513
2514 static int
_ieee80211_newstate_get_next_pending_slot(struct ieee80211vap * vap)2515 _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap)
2516 {
2517 int nstate_num;
2518
2519 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2520
2521 KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n",
2522 __func__, vap, vap->iv_nstate_n));
2523
2524 nstate_num = vap->iv_nstate_b;
2525 vap->iv_nstate_b++;
2526 if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM)
2527 vap->iv_nstate_b = 0;
2528 vap->iv_nstate_n--;
2529
2530 return (nstate_num);
2531 }
2532
2533 static int
_ieee80211_newstate_get_npending(struct ieee80211vap * vap)2534 _ieee80211_newstate_get_npending(struct ieee80211vap *vap)
2535 {
2536
2537 IEEE80211_LOCK_ASSERT(vap->iv_ic);
2538
2539 return (vap->iv_nstate_n);
2540 }
2541
2542 /*
2543 * Handle post state change work common to all operating modes.
2544 */
2545 static void
ieee80211_newstate_cb(void * xvap,int npending)2546 ieee80211_newstate_cb(void *xvap, int npending)
2547 {
2548 struct ieee80211vap *vap = xvap;
2549 struct ieee80211com *ic = vap->iv_ic;
2550 enum ieee80211_state nstate, ostate;
2551 int arg, rc, nstate_num;
2552
2553 KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n",
2554 __func__, vap, npending));
2555 IEEE80211_LOCK(ic);
2556 nstate_num = _ieee80211_newstate_get_next_pending_slot(vap);
2557
2558 /*
2559 * Update the historic fields for now as they are used in some
2560 * drivers and reduce code changes for now.
2561 */
2562 vap->iv_nstate = nstate = vap->iv_nstates[nstate_num];
2563 arg = vap->iv_nstate_args[nstate_num];
2564
2565 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2566 "%s:%d: running state update %s -> %s (%d)\n",
2567 __func__, __LINE__,
2568 ieee80211_state_name[vap->iv_state],
2569 ieee80211_state_name[nstate],
2570 npending);
2571
2572 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2573 /*
2574 * We have been requested to drop back to the INIT before
2575 * proceeding to the new state.
2576 */
2577 /* Deny any state changes while we are here. */
2578 vap->iv_nstate = IEEE80211_S_INIT;
2579 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2580 "%s: %s -> %s arg %d -> %s arg %d\n", __func__,
2581 ieee80211_state_name[vap->iv_state],
2582 ieee80211_state_name[vap->iv_nstate], 0,
2583 ieee80211_state_name[nstate], arg);
2584 vap->iv_newstate(vap, vap->iv_nstate, 0);
2585 IEEE80211_LOCK_ASSERT(ic);
2586 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2587 IEEE80211_FEXT_STATEWAIT);
2588 /* enqueue new state transition after cancel_scan() task */
2589 ieee80211_new_state_locked(vap, nstate, arg);
2590 goto done;
2591 }
2592
2593 ostate = vap->iv_state;
2594 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2595 /*
2596 * SCAN was forced; e.g. on beacon miss. Force other running
2597 * vap's to INIT state and mark them as waiting for the scan to
2598 * complete. This insures they don't interfere with our
2599 * scanning. Since we are single threaded the vaps can not
2600 * transition again while we are executing.
2601 *
2602 * XXX not always right, assumes ap follows sta
2603 */
2604 markwaiting(vap);
2605 }
2606 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2607 "%s: %s -> %s arg %d\n", __func__,
2608 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2609
2610 rc = vap->iv_newstate(vap, nstate, arg);
2611 IEEE80211_LOCK_ASSERT(ic);
2612 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2613 if (rc != 0) {
2614 /* State transition failed */
2615 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2616 KASSERT(nstate != IEEE80211_S_INIT,
2617 ("INIT state change failed"));
2618 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2619 "%s: %s returned error %d\n", __func__,
2620 ieee80211_state_name[nstate], rc);
2621 goto done;
2622 }
2623
2624 /*
2625 * Handle the case of a RUN->RUN transition occuring when STA + AP
2626 * VAPs occur on the same radio.
2627 *
2628 * The mark and wakeup waiting routines call iv_newstate() directly,
2629 * but they do not end up deferring state changes here.
2630 * Thus, although the VAP newstate method sees a transition
2631 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
2632 * transition. If OACTIVE is set then it is never cleared.
2633 *
2634 * So, if we're here and the state is RUN, just clear OACTIVE.
2635 * At some point if the markwaiting/wakeupwaiting paths end up
2636 * also invoking the deferred state updates then this will
2637 * be no-op code - and also if OACTIVE is finally retired, it'll
2638 * also be no-op code.
2639 */
2640 if (nstate == IEEE80211_S_RUN) {
2641 /*
2642 * OACTIVE may be set on the vap if the upper layer
2643 * tried to transmit (e.g. IPv6 NDP) before we reach
2644 * RUN state. Clear it and restart xmit.
2645 *
2646 * Note this can also happen as a result of SLEEP->RUN
2647 * (i.e. coming out of power save mode).
2648 *
2649 * Historically this was done only for a state change
2650 * but is needed earlier; see next comment. The 2nd half
2651 * of the work is still only done in case of an actual
2652 * state change below.
2653 */
2654 /*
2655 * Unblock the VAP queue; a RUN->RUN state can happen
2656 * on a STA+AP setup on the AP vap. See wakeupwaiting().
2657 */
2658 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2659
2660 /*
2661 * XXX TODO Kick-start a VAP queue - this should be a method!
2662 */
2663 }
2664
2665 /* No actual transition, skip post processing */
2666 if (ostate == nstate)
2667 goto done;
2668
2669 if (nstate == IEEE80211_S_RUN) {
2670
2671 /* bring up any vaps waiting on us */
2672 wakeupwaiting(vap);
2673 } else if (nstate == IEEE80211_S_INIT) {
2674 /*
2675 * Flush the scan cache if we did the last scan (XXX?)
2676 * and flush any frames on send queues from this vap.
2677 * Note the mgt q is used only for legacy drivers and
2678 * will go away shortly.
2679 */
2680 ieee80211_scan_flush(vap);
2681
2682 /*
2683 * XXX TODO: ic/vap queue flush
2684 */
2685 }
2686 done:
2687 IEEE80211_UNLOCK(ic);
2688 }
2689
2690 /*
2691 * Public interface for initiating a state machine change.
2692 * This routine single-threads the request and coordinates
2693 * the scheduling of multiple vaps for the purpose of selecting
2694 * an operating channel. Specifically the following scenarios
2695 * are handled:
2696 * o only one vap can be selecting a channel so on transition to
2697 * SCAN state if another vap is already scanning then
2698 * mark the caller for later processing and return without
2699 * doing anything (XXX? expectations by caller of synchronous operation)
2700 * o only one vap can be doing CAC of a channel so on transition to
2701 * CAC state if another vap is already scanning for radar then
2702 * mark the caller for later processing and return without
2703 * doing anything (XXX? expectations by caller of synchronous operation)
2704 * o if another vap is already running when a request is made
2705 * to SCAN then an operating channel has been chosen; bypass
2706 * the scan and just join the channel
2707 *
2708 * Note that the state change call is done through the iv_newstate
2709 * method pointer so any driver routine gets invoked. The driver
2710 * will normally call back into operating mode-specific
2711 * ieee80211_newstate routines (below) unless it needs to completely
2712 * bypass the state machine (e.g. because the firmware has it's
2713 * own idea how things should work). Bypassing the net80211 layer
2714 * is usually a mistake and indicates lack of proper integration
2715 * with the net80211 layer.
2716 */
2717 int
ieee80211_new_state_locked(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)2718 ieee80211_new_state_locked(struct ieee80211vap *vap,
2719 enum ieee80211_state nstate, int arg)
2720 {
2721 struct ieee80211com *ic = vap->iv_ic;
2722 struct ieee80211vap *vp;
2723 enum ieee80211_state ostate;
2724 int nrunning, nscanning, nstate_num;
2725
2726 IEEE80211_LOCK_ASSERT(ic);
2727
2728 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2729 if (vap->iv_nstate == IEEE80211_S_INIT ||
2730 ((vap->iv_state == IEEE80211_S_INIT ||
2731 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2732 vap->iv_nstate == IEEE80211_S_SCAN &&
2733 nstate > IEEE80211_S_SCAN)) {
2734 /*
2735 * XXX The vap is being stopped/started,
2736 * do not allow any other state changes
2737 * until this is completed.
2738 */
2739 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2740 "%s:%d: %s -> %s (%s) transition discarded\n",
2741 __func__, __LINE__,
2742 ieee80211_state_name[vap->iv_state],
2743 ieee80211_state_name[nstate],
2744 ieee80211_state_name[vap->iv_nstate]);
2745 return -1;
2746 }
2747 }
2748
2749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2750 "%s:%d: starting state update %s -> %s (%s)\n",
2751 __func__, __LINE__,
2752 ieee80211_state_name[vap->iv_state],
2753 ieee80211_state_name[vap->iv_nstate],
2754 ieee80211_state_name[nstate]);
2755
2756 nrunning = nscanning = 0;
2757 /* XXX can track this state instead of calculating */
2758 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2759 if (vp != vap) {
2760 if (vp->iv_state >= IEEE80211_S_RUN)
2761 nrunning++;
2762 /* XXX doesn't handle bg scan */
2763 /* NB: CAC+AUTH+ASSOC treated like SCAN */
2764 else if (vp->iv_state > IEEE80211_S_INIT)
2765 nscanning++;
2766 }
2767 }
2768 /*
2769 * Look ahead for the "old state" at that point when the last queued
2770 * state transition is run.
2771 */
2772 if (vap->iv_nstate_n == 0) {
2773 ostate = vap->iv_state;
2774 } else {
2775 nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM;
2776 ostate = vap->iv_nstates[nstate_num];
2777 }
2778 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2779 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
2780 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
2781 nrunning, nscanning);
2782 switch (nstate) {
2783 case IEEE80211_S_SCAN:
2784 if (ostate == IEEE80211_S_INIT) {
2785 /*
2786 * INIT -> SCAN happens on initial bringup.
2787 */
2788 KASSERT(!(nscanning && nrunning),
2789 ("%d scanning and %d running", nscanning, nrunning));
2790 if (nscanning) {
2791 /*
2792 * Someone is scanning, defer our state
2793 * change until the work has completed.
2794 */
2795 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2796 "%s: defer %s -> %s\n",
2797 __func__, ieee80211_state_name[ostate],
2798 ieee80211_state_name[nstate]);
2799 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2800 return 0;
2801 }
2802 if (nrunning) {
2803 /*
2804 * Someone is operating; just join the channel
2805 * they have chosen.
2806 */
2807 /* XXX kill arg? */
2808 /* XXX check each opmode, adhoc? */
2809 if (vap->iv_opmode == IEEE80211_M_STA)
2810 nstate = IEEE80211_S_SCAN;
2811 else
2812 nstate = IEEE80211_S_RUN;
2813 #ifdef IEEE80211_DEBUG
2814 if (nstate != IEEE80211_S_SCAN) {
2815 IEEE80211_DPRINTF(vap,
2816 IEEE80211_MSG_STATE,
2817 "%s: override, now %s -> %s\n",
2818 __func__,
2819 ieee80211_state_name[ostate],
2820 ieee80211_state_name[nstate]);
2821 }
2822 #endif
2823 }
2824 }
2825 break;
2826 case IEEE80211_S_RUN:
2827 if (vap->iv_opmode == IEEE80211_M_WDS &&
2828 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2829 nscanning) {
2830 /*
2831 * Legacy WDS with someone else scanning; don't
2832 * go online until that completes as we should
2833 * follow the other vap to the channel they choose.
2834 */
2835 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2836 "%s: defer %s -> %s (legacy WDS)\n", __func__,
2837 ieee80211_state_name[ostate],
2838 ieee80211_state_name[nstate]);
2839 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2840 return 0;
2841 }
2842 if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2843 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2844 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2845 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2846 /*
2847 * This is a DFS channel, transition to CAC state
2848 * instead of RUN. This allows us to initiate
2849 * Channel Availability Check (CAC) as specified
2850 * by 11h/DFS.
2851 */
2852 nstate = IEEE80211_S_CAC;
2853 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2854 "%s: override %s -> %s (DFS)\n", __func__,
2855 ieee80211_state_name[ostate],
2856 ieee80211_state_name[nstate]);
2857 }
2858 break;
2859 case IEEE80211_S_INIT:
2860 /* cancel any scan in progress */
2861 ieee80211_cancel_scan(vap);
2862 if (ostate == IEEE80211_S_INIT ) {
2863 /* XXX don't believe this */
2864 /* INIT -> INIT. nothing to do */
2865 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2866 }
2867 /* fall thru... */
2868 default:
2869 break;
2870 }
2871 /*
2872 * Defer the state change to a thread.
2873 * We support up-to NET80211_IV_NSTATE_NUM pending state changes
2874 * using a separate task for each. Otherwise, if we enqueue
2875 * more than one state change they will be folded together,
2876 * npedning will be > 1 and we may run then out of sequence with
2877 * other events.
2878 * This is kind-of a hack after 10 years but we know how to provoke
2879 * these cases now (and seen them in the wild).
2880 */
2881 nstate_num = _ieee80211_newstate_get_next_empty_slot(vap);
2882 if (nstate_num == -1) {
2883 /*
2884 * This is really bad and we should just go kaboom.
2885 * Instead drop it. No one checks the return code anyway.
2886 */
2887 ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) "
2888 "transition lost. %d/%d pending state changes:\n",
2889 __func__, __LINE__,
2890 ieee80211_state_name[vap->iv_state],
2891 ieee80211_state_name[vap->iv_nstate],
2892 ieee80211_state_name[nstate],
2893 _ieee80211_newstate_get_npending(vap),
2894 NET80211_IV_NSTATE_NUM);
2895
2896 return (EAGAIN);
2897 }
2898 vap->iv_nstates[nstate_num] = nstate;
2899 vap->iv_nstate_args[nstate_num] = arg;
2900 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2901 ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]);
2902 return EINPROGRESS;
2903 }
2904
2905 int
ieee80211_new_state(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)2906 ieee80211_new_state(struct ieee80211vap *vap,
2907 enum ieee80211_state nstate, int arg)
2908 {
2909 struct ieee80211com *ic = vap->iv_ic;
2910 int rc;
2911
2912 IEEE80211_LOCK(ic);
2913 rc = ieee80211_new_state_locked(vap, nstate, arg);
2914 IEEE80211_UNLOCK(ic);
2915 return rc;
2916 }
2917