xref: /linux/net/wireless/util.c (revision c7979c3917fa1326dae3607e1c6a04c12057b194)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023, 2025 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ)
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	else
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 	case NL80211_BAND_LC:
78 		if (chan == 14)
79 			return MHZ_TO_KHZ(2484);
80 		else if (chan < 14)
81 			return MHZ_TO_KHZ(2407 + chan * 5);
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return MHZ_TO_KHZ(4000 + chan * 5);
86 		else
87 			return MHZ_TO_KHZ(5000 + chan * 5);
88 		break;
89 	case NL80211_BAND_6GHZ:
90 		/* see 802.11ax D6.1 27.3.23.2 */
91 		if (chan == 2)
92 			return MHZ_TO_KHZ(5935);
93 		if (chan <= 233)
94 			return MHZ_TO_KHZ(5950 + chan * 5);
95 		break;
96 	case NL80211_BAND_60GHZ:
97 		if (chan < 7)
98 			return MHZ_TO_KHZ(56160 + chan * 2160);
99 		break;
100 	case NL80211_BAND_S1GHZ:
101 		return 902000 + chan * 500;
102 	default:
103 		;
104 	}
105 	return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108 
109 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111 {
112 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 		return NL80211_CHAN_WIDTH_20_NOHT;
114 
115 	/*S1G defines a single allowed channel width per channel.
116 	 * Extract that width here.
117 	 */
118 	if (chan->flags & IEEE80211_CHAN_1MHZ)
119 		return NL80211_CHAN_WIDTH_1;
120 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 		return NL80211_CHAN_WIDTH_2;
122 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 		return NL80211_CHAN_WIDTH_4;
124 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 		return NL80211_CHAN_WIDTH_8;
126 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 		return NL80211_CHAN_WIDTH_16;
128 
129 	pr_err("unknown channel width for channel at %dKHz?\n",
130 	       ieee80211_channel_to_khz(chan));
131 
132 	return NL80211_CHAN_WIDTH_1;
133 }
134 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135 
ieee80211_freq_khz_to_channel(u32 freq)136 int ieee80211_freq_khz_to_channel(u32 freq)
137 {
138 	/* TODO: just handle MHz for now */
139 	freq = KHZ_TO_MHZ(freq);
140 
141 	/* see 802.11 17.3.8.3.2 and Annex J */
142 	if (freq == 2484)
143 		return 14;
144 	else if (freq < 2484)
145 		return (freq - 2407) / 5;
146 	else if (freq >= 4910 && freq <= 4980)
147 		return (freq - 4000) / 5;
148 	else if (freq < 5925)
149 		return (freq - 5000) / 5;
150 	else if (freq == 5935)
151 		return 2;
152 	else if (freq <= 45000) /* DMG band lower limit */
153 		/* see 802.11ax D6.1 27.3.22.2 */
154 		return (freq - 5950) / 5;
155 	else if (freq >= 58320 && freq <= 70200)
156 		return (freq - 56160) / 2160;
157 	else
158 		return 0;
159 }
160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 						    u32 freq)
164 {
165 	enum nl80211_band band;
166 	struct ieee80211_supported_band *sband;
167 	int i;
168 
169 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 		sband = wiphy->bands[band];
171 
172 		if (!sband)
173 			continue;
174 
175 		for (i = 0; i < sband->n_channels; i++) {
176 			struct ieee80211_channel *chan = &sband->channels[i];
177 
178 			if (ieee80211_channel_to_khz(chan) == freq)
179 				return chan;
180 		}
181 	}
182 
183 	return NULL;
184 }
185 EXPORT_SYMBOL(ieee80211_get_channel_khz);
186 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188 {
189 	int i, want;
190 
191 	switch (sband->band) {
192 	case NL80211_BAND_5GHZ:
193 	case NL80211_BAND_6GHZ:
194 		want = 3;
195 		for (i = 0; i < sband->n_bitrates; i++) {
196 			if (sband->bitrates[i].bitrate == 60 ||
197 			    sband->bitrates[i].bitrate == 120 ||
198 			    sband->bitrates[i].bitrate == 240) {
199 				sband->bitrates[i].flags |=
200 					IEEE80211_RATE_MANDATORY_A;
201 				want--;
202 			}
203 		}
204 		WARN_ON(want);
205 		break;
206 	case NL80211_BAND_2GHZ:
207 	case NL80211_BAND_LC:
208 		want = 7;
209 		for (i = 0; i < sband->n_bitrates; i++) {
210 			switch (sband->bitrates[i].bitrate) {
211 			case 10:
212 			case 20:
213 			case 55:
214 			case 110:
215 				sband->bitrates[i].flags |=
216 					IEEE80211_RATE_MANDATORY_B |
217 					IEEE80211_RATE_MANDATORY_G;
218 				want--;
219 				break;
220 			case 60:
221 			case 120:
222 			case 240:
223 				sband->bitrates[i].flags |=
224 					IEEE80211_RATE_MANDATORY_G;
225 				want--;
226 				fallthrough;
227 			default:
228 				sband->bitrates[i].flags |=
229 					IEEE80211_RATE_ERP_G;
230 				break;
231 			}
232 		}
233 		WARN_ON(want != 0 && want != 3);
234 		break;
235 	case NL80211_BAND_60GHZ:
236 		/* check for mandatory HT MCS 1..4 */
237 		WARN_ON(!sband->ht_cap.ht_supported);
238 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 		break;
240 	case NL80211_BAND_S1GHZ:
241 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 		 * mandatory is ok.
243 		 */
244 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 		break;
246 	case NUM_NL80211_BANDS:
247 	default:
248 		WARN_ON(1);
249 		break;
250 	}
251 }
252 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254 {
255 	enum nl80211_band band;
256 
257 	for (band = 0; band < NUM_NL80211_BANDS; band++)
258 		if (wiphy->bands[band])
259 			set_mandatory_flags_band(wiphy->bands[band]);
260 }
261 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263 {
264 	int i;
265 	for (i = 0; i < wiphy->n_cipher_suites; i++)
266 		if (cipher == wiphy->cipher_suites[i])
267 			return true;
268 	return false;
269 }
270 
271 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273 {
274 	struct wiphy *wiphy = &rdev->wiphy;
275 	int i;
276 
277 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 		switch (wiphy->cipher_suites[i]) {
279 		case WLAN_CIPHER_SUITE_AES_CMAC:
280 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 			return true;
284 		}
285 	}
286 
287 	return false;
288 }
289 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 			    int key_idx, bool pairwise)
292 {
293 	int max_key_idx;
294 
295 	if (pairwise)
296 		max_key_idx = 3;
297 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 		 wiphy_ext_feature_isset(&rdev->wiphy,
300 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 		max_key_idx = 7;
302 	else if (cfg80211_igtk_cipher_supported(rdev))
303 		max_key_idx = 5;
304 	else
305 		max_key_idx = 3;
306 
307 	if (key_idx < 0 || key_idx > max_key_idx)
308 		return false;
309 
310 	return true;
311 }
312 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 				   struct key_params *params, int key_idx,
315 				   bool pairwise, const u8 *mac_addr)
316 {
317 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 		return -EINVAL;
319 
320 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 		return -EINVAL;
322 
323 	if (pairwise && !mac_addr)
324 		return -EINVAL;
325 
326 	switch (params->cipher) {
327 	case WLAN_CIPHER_SUITE_TKIP:
328 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 		if ((pairwise && key_idx) ||
330 		    params->mode != NL80211_KEY_RX_TX)
331 			return -EINVAL;
332 		break;
333 	case WLAN_CIPHER_SUITE_CCMP:
334 	case WLAN_CIPHER_SUITE_CCMP_256:
335 	case WLAN_CIPHER_SUITE_GCMP:
336 	case WLAN_CIPHER_SUITE_GCMP_256:
337 		/* IEEE802.11-2016 allows only 0 and - when supporting
338 		 * Extended Key ID - 1 as index for pairwise keys.
339 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 		 * the driver supports Extended Key ID.
341 		 * @NL80211_KEY_SET_TX can't be set when installing and
342 		 * validating a key.
343 		 */
344 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 		    params->mode == NL80211_KEY_SET_TX)
346 			return -EINVAL;
347 		if (wiphy_ext_feature_isset(&rdev->wiphy,
348 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 			if (pairwise && (key_idx < 0 || key_idx > 1))
350 				return -EINVAL;
351 		} else if (pairwise && key_idx) {
352 			return -EINVAL;
353 		}
354 		break;
355 	case WLAN_CIPHER_SUITE_AES_CMAC:
356 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 		/* Disallow BIP (group-only) cipher as pairwise cipher */
360 		if (pairwise)
361 			return -EINVAL;
362 		if (key_idx < 4)
363 			return -EINVAL;
364 		break;
365 	case WLAN_CIPHER_SUITE_WEP40:
366 	case WLAN_CIPHER_SUITE_WEP104:
367 		if (key_idx > 3)
368 			return -EINVAL;
369 		break;
370 	default:
371 		break;
372 	}
373 
374 	switch (params->cipher) {
375 	case WLAN_CIPHER_SUITE_WEP40:
376 		if (params->key_len != WLAN_KEY_LEN_WEP40)
377 			return -EINVAL;
378 		break;
379 	case WLAN_CIPHER_SUITE_TKIP:
380 		if (params->key_len != WLAN_KEY_LEN_TKIP)
381 			return -EINVAL;
382 		break;
383 	case WLAN_CIPHER_SUITE_CCMP:
384 		if (params->key_len != WLAN_KEY_LEN_CCMP)
385 			return -EINVAL;
386 		break;
387 	case WLAN_CIPHER_SUITE_CCMP_256:
388 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 			return -EINVAL;
390 		break;
391 	case WLAN_CIPHER_SUITE_GCMP:
392 		if (params->key_len != WLAN_KEY_LEN_GCMP)
393 			return -EINVAL;
394 		break;
395 	case WLAN_CIPHER_SUITE_GCMP_256:
396 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 			return -EINVAL;
398 		break;
399 	case WLAN_CIPHER_SUITE_WEP104:
400 		if (params->key_len != WLAN_KEY_LEN_WEP104)
401 			return -EINVAL;
402 		break;
403 	case WLAN_CIPHER_SUITE_AES_CMAC:
404 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 			return -EINVAL;
406 		break;
407 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 			return -EINVAL;
410 		break;
411 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 			return -EINVAL;
414 		break;
415 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 			return -EINVAL;
418 		break;
419 	default:
420 		/*
421 		 * We don't know anything about this algorithm,
422 		 * allow using it -- but the driver must check
423 		 * all parameters! We still check below whether
424 		 * or not the driver supports this algorithm,
425 		 * of course.
426 		 */
427 		break;
428 	}
429 
430 	if (params->seq) {
431 		switch (params->cipher) {
432 		case WLAN_CIPHER_SUITE_WEP40:
433 		case WLAN_CIPHER_SUITE_WEP104:
434 			/* These ciphers do not use key sequence */
435 			return -EINVAL;
436 		case WLAN_CIPHER_SUITE_TKIP:
437 		case WLAN_CIPHER_SUITE_CCMP:
438 		case WLAN_CIPHER_SUITE_CCMP_256:
439 		case WLAN_CIPHER_SUITE_GCMP:
440 		case WLAN_CIPHER_SUITE_GCMP_256:
441 		case WLAN_CIPHER_SUITE_AES_CMAC:
442 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 			if (params->seq_len != 6)
446 				return -EINVAL;
447 			break;
448 		}
449 	}
450 
451 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 		return -EINVAL;
453 
454 	return 0;
455 }
456 
ieee80211_hdrlen(__le16 fc)457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458 {
459 	unsigned int hdrlen = 24;
460 
461 	if (ieee80211_is_ext(fc)) {
462 		hdrlen = 4;
463 		goto out;
464 	}
465 
466 	if (ieee80211_is_data(fc)) {
467 		if (ieee80211_has_a4(fc))
468 			hdrlen = 30;
469 		if (ieee80211_is_data_qos(fc)) {
470 			hdrlen += IEEE80211_QOS_CTL_LEN;
471 			if (ieee80211_has_order(fc))
472 				hdrlen += IEEE80211_HT_CTL_LEN;
473 		}
474 		goto out;
475 	}
476 
477 	if (ieee80211_is_mgmt(fc)) {
478 		if (ieee80211_has_order(fc))
479 			hdrlen += IEEE80211_HT_CTL_LEN;
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_ctl(fc)) {
484 		/*
485 		 * ACK and CTS are 10 bytes, all others 16. To see how
486 		 * to get this condition consider
487 		 *   subtype mask:   0b0000000011110000 (0x00F0)
488 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
489 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
490 		 *   bits that matter:         ^^^      (0x00E0)
491 		 *   value of those: 0b0000000011000000 (0x00C0)
492 		 */
493 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 			hdrlen = 10;
495 		else
496 			hdrlen = 16;
497 	}
498 out:
499 	return hdrlen;
500 }
501 EXPORT_SYMBOL(ieee80211_hdrlen);
502 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504 {
505 	const struct ieee80211_hdr *hdr =
506 			(const struct ieee80211_hdr *)skb->data;
507 	unsigned int hdrlen;
508 
509 	if (unlikely(skb->len < 10))
510 		return 0;
511 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 	if (unlikely(hdrlen > skb->len))
513 		return 0;
514 	return hdrlen;
515 }
516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517 
__ieee80211_get_mesh_hdrlen(u8 flags)518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519 {
520 	int ae = flags & MESH_FLAGS_AE;
521 	/* 802.11-2012, 8.2.4.7.3 */
522 	switch (ae) {
523 	default:
524 	case 0:
525 		return 6;
526 	case MESH_FLAGS_AE_A4:
527 		return 12;
528 	case MESH_FLAGS_AE_A5_A6:
529 		return 18;
530 	}
531 }
532 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534 {
535 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536 }
537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538 
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540 {
541 	const __be16 *hdr_proto = hdr + ETH_ALEN;
542 
543 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 	      *hdr_proto != htons(ETH_P_AARP) &&
545 	      *hdr_proto != htons(ETH_P_IPX)) &&
546 	    !ether_addr_equal(hdr, bridge_tunnel_header))
547 		return false;
548 
549 	*proto = *hdr_proto;
550 
551 	return true;
552 }
553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554 
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556 {
557 	const void *mesh_addr;
558 	struct {
559 		struct ethhdr eth;
560 		u8 flags;
561 	} payload;
562 	int hdrlen;
563 	int ret;
564 
565 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 	if (ret)
567 		return ret;
568 
569 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570 
571 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 						   &payload.eth.h_proto)))
574 		hdrlen += ETH_ALEN + 2;
575 	else if (!pskb_may_pull(skb, hdrlen))
576 		return -EINVAL;
577 	else
578 		payload.eth.h_proto = htons(skb->len - hdrlen);
579 
580 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 	switch (payload.flags & MESH_FLAGS_AE) {
582 	case MESH_FLAGS_AE_A4:
583 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 		break;
585 	case MESH_FLAGS_AE_A5_A6:
586 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 		break;
588 	default:
589 		break;
590 	}
591 
592 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 				  const u8 *addr, enum nl80211_iftype iftype,
601 				  u8 data_offset, bool is_amsdu)
602 {
603 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 	struct {
605 		u8 hdr[ETH_ALEN] __aligned(2);
606 		__be16 proto;
607 	} payload;
608 	struct ethhdr tmp;
609 	u16 hdrlen;
610 
611 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 		return -1;
613 
614 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 	if (skb->len < hdrlen)
616 		return -1;
617 
618 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 	 * header
620 	 * IEEE 802.11 address fields:
621 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 	 *   0     0   DA    SA    BSSID n/a
623 	 *   0     1   DA    BSSID SA    n/a
624 	 *   1     0   BSSID SA    DA    n/a
625 	 *   1     1   RA    TA    DA    SA
626 	 */
627 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629 
630 	switch (hdr->frame_control &
631 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 	case cpu_to_le16(IEEE80211_FCTL_TODS):
633 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 			     iftype != NL80211_IFTYPE_AP_VLAN &&
635 			     iftype != NL80211_IFTYPE_P2P_GO))
636 			return -1;
637 		break;
638 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 			     iftype != NL80211_IFTYPE_AP_VLAN &&
641 			     iftype != NL80211_IFTYPE_STATION))
642 			return -1;
643 		break;
644 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 		if ((iftype != NL80211_IFTYPE_STATION &&
646 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
648 		    (is_multicast_ether_addr(tmp.h_dest) &&
649 		     ether_addr_equal(tmp.h_source, addr)))
650 			return -1;
651 		break;
652 	case cpu_to_le16(0):
653 		if (iftype != NL80211_IFTYPE_ADHOC &&
654 		    iftype != NL80211_IFTYPE_STATION &&
655 		    iftype != NL80211_IFTYPE_OCB)
656 				return -1;
657 		break;
658 	}
659 
660 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
664 		hdrlen += ETH_ALEN + 2;
665 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 	} else {
667 		tmp.h_proto = htons(skb->len - hdrlen);
668 	}
669 
670 	pskb_pull(skb, hdrlen);
671 
672 	if (!ehdr)
673 		ehdr = skb_push(skb, sizeof(struct ethhdr));
674 	memcpy(ehdr, &tmp, sizeof(tmp));
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679 
680 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)681 __frame_add_frag(struct sk_buff *skb, struct page *page,
682 		 void *ptr, int len, int size)
683 {
684 	struct skb_shared_info *sh = skb_shinfo(skb);
685 	int page_offset;
686 
687 	get_page(page);
688 	page_offset = ptr - page_address(page);
689 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690 }
691 
692 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 			    int offset, int len)
695 {
696 	struct skb_shared_info *sh = skb_shinfo(skb);
697 	const skb_frag_t *frag = &sh->frags[0];
698 	struct page *frag_page;
699 	void *frag_ptr;
700 	int frag_len, frag_size;
701 	int head_size = skb->len - skb->data_len;
702 	int cur_len;
703 
704 	frag_page = virt_to_head_page(skb->head);
705 	frag_ptr = skb->data;
706 	frag_size = head_size;
707 
708 	while (offset >= frag_size) {
709 		offset -= frag_size;
710 		frag_page = skb_frag_page(frag);
711 		frag_ptr = skb_frag_address(frag);
712 		frag_size = skb_frag_size(frag);
713 		frag++;
714 	}
715 
716 	frag_ptr += offset;
717 	frag_len = frag_size - offset;
718 
719 	cur_len = min(len, frag_len);
720 
721 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 	len -= cur_len;
723 
724 	while (len > 0) {
725 		frag_len = skb_frag_size(frag);
726 		cur_len = min(len, frag_len);
727 		__frame_add_frag(frame, skb_frag_page(frag),
728 				 skb_frag_address(frag), cur_len, frag_len);
729 		len -= cur_len;
730 		frag++;
731 	}
732 }
733 
734 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 		       int offset, int len, bool reuse_frag,
737 		       int min_len)
738 {
739 	struct sk_buff *frame;
740 	int cur_len = len;
741 
742 	if (skb->len - offset < len)
743 		return NULL;
744 
745 	/*
746 	 * When reusing fragments, copy some data to the head to simplify
747 	 * ethernet header handling and speed up protocol header processing
748 	 * in the stack later.
749 	 */
750 	if (reuse_frag)
751 		cur_len = min_t(int, len, min_len);
752 
753 	/*
754 	 * Allocate and reserve two bytes more for payload
755 	 * alignment since sizeof(struct ethhdr) is 14.
756 	 */
757 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 	if (!frame)
759 		return NULL;
760 
761 	frame->priority = skb->priority;
762 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764 
765 	len -= cur_len;
766 	if (!len)
767 		return frame;
768 
769 	offset += cur_len;
770 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771 
772 	return frame;
773 }
774 
775 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777 {
778 	__le16 *field_le = field;
779 	__be16 *field_be = field;
780 	u16 len;
781 
782 	if (hdr_type >= 2)
783 		len = le16_to_cpu(*field_le);
784 	else
785 		len = be16_to_cpu(*field_be);
786 	if (hdr_type)
787 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788 
789 	return len;
790 }
791 
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793 {
794 	int offset = 0, subframe_len, padding;
795 
796 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 		int remaining = skb->len - offset;
798 		struct {
799 		    __be16 len;
800 		    u8 mesh_flags;
801 		} hdr;
802 		u16 len;
803 
804 		if (sizeof(hdr) > remaining)
805 			return false;
806 
807 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 			return false;
809 
810 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 						      mesh_hdr);
812 		subframe_len = sizeof(struct ethhdr) + len;
813 		padding = (4 - subframe_len) & 0x3;
814 
815 		if (subframe_len > remaining)
816 			return false;
817 	}
818 
819 	return true;
820 }
821 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822 
823 
824 /*
825  * Detects if an MSDU frame was maliciously converted into an A-MSDU
826  * frame by an adversary. This is done by parsing the received frame
827  * as if it were a regular MSDU, even though the A-MSDU flag is set.
828  *
829  * For non-mesh interfaces, detection involves checking whether the
830  * payload, when interpreted as an MSDU, begins with a valid RFC1042
831  * header. This is done by comparing the A-MSDU subheader's destination
832  * address to the start of the RFC1042 header.
833  *
834  * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
835  * and an optional variable-length Mesh Address Extension field before
836  * the RFC1042 header. The position of the RFC1042 header must therefore
837  * be calculated based on the mesh header length.
838  *
839  * Since this function intentionally parses an A-MSDU frame as an MSDU,
840  * it only assumes that the A-MSDU subframe header is present, and
841  * beyond this it performs its own bounds checks under the assumption
842  * that the frame is instead parsed as a non-aggregated MSDU.
843  */
844 static bool
is_amsdu_aggregation_attack(struct ethhdr * eth,struct sk_buff * skb,enum nl80211_iftype iftype)845 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
846 			    enum nl80211_iftype iftype)
847 {
848 	int offset;
849 
850 	/* Non-mesh case can be directly compared */
851 	if (iftype != NL80211_IFTYPE_MESH_POINT)
852 		return ether_addr_equal(eth->h_dest, rfc1042_header);
853 
854 	offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]);
855 	if (offset == 6) {
856 		/* Mesh case with empty address extension field */
857 		return ether_addr_equal(eth->h_source, rfc1042_header);
858 	} else if (offset + ETH_ALEN <= skb->len) {
859 		/* Mesh case with non-empty address extension field */
860 		u8 temp[ETH_ALEN];
861 
862 		skb_copy_bits(skb, offset, temp, ETH_ALEN);
863 		return ether_addr_equal(temp, rfc1042_header);
864 	}
865 
866 	return false;
867 }
868 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)869 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
870 			      const u8 *addr, enum nl80211_iftype iftype,
871 			      const unsigned int extra_headroom,
872 			      const u8 *check_da, const u8 *check_sa,
873 			      u8 mesh_control)
874 {
875 	unsigned int hlen = ALIGN(extra_headroom, 4);
876 	struct sk_buff *frame = NULL;
877 	int offset = 0;
878 	struct {
879 		struct ethhdr eth;
880 		uint8_t flags;
881 	} hdr;
882 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
883 	bool reuse_skb = false;
884 	bool last = false;
885 	int copy_len = sizeof(hdr.eth);
886 
887 	if (iftype == NL80211_IFTYPE_MESH_POINT)
888 		copy_len = sizeof(hdr);
889 
890 	while (!last) {
891 		int remaining = skb->len - offset;
892 		unsigned int subframe_len;
893 		int len, mesh_len = 0;
894 		u8 padding;
895 
896 		if (copy_len > remaining)
897 			goto purge;
898 
899 		skb_copy_bits(skb, offset, &hdr, copy_len);
900 		if (iftype == NL80211_IFTYPE_MESH_POINT)
901 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
902 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
903 						      mesh_control);
904 		subframe_len = sizeof(struct ethhdr) + len;
905 		padding = (4 - subframe_len) & 0x3;
906 
907 		/* the last MSDU has no padding */
908 		if (subframe_len > remaining)
909 			goto purge;
910 		/* mitigate A-MSDU aggregation injection attacks, to be
911 		 * checked when processing first subframe (offset == 0).
912 		 */
913 		if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype))
914 			goto purge;
915 
916 		offset += sizeof(struct ethhdr);
917 		last = remaining <= subframe_len + padding;
918 
919 		/* FIXME: should we really accept multicast DA? */
920 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
921 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
922 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
923 			offset += len + padding;
924 			continue;
925 		}
926 
927 		/* reuse skb for the last subframe */
928 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
929 			skb_pull(skb, offset);
930 			frame = skb;
931 			reuse_skb = true;
932 		} else {
933 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
934 						       reuse_frag, 32 + mesh_len);
935 			if (!frame)
936 				goto purge;
937 
938 			offset += len + padding;
939 		}
940 
941 		skb_reset_network_header(frame);
942 		frame->dev = skb->dev;
943 		frame->priority = skb->priority;
944 
945 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
946 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
947 			skb_pull(frame, ETH_ALEN + 2);
948 
949 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
950 		__skb_queue_tail(list, frame);
951 	}
952 
953 	if (!reuse_skb)
954 		dev_kfree_skb(skb);
955 
956 	return;
957 
958  purge:
959 	__skb_queue_purge(list);
960 	dev_kfree_skb(skb);
961 }
962 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
963 
964 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)965 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
966 				    struct cfg80211_qos_map *qos_map)
967 {
968 	unsigned int dscp;
969 	unsigned char vlan_priority;
970 	unsigned int ret;
971 
972 	/* skb->priority values from 256->263 are magic values to
973 	 * directly indicate a specific 802.1d priority.  This is used
974 	 * to allow 802.1d priority to be passed directly in from VLAN
975 	 * tags, etc.
976 	 */
977 	if (skb->priority >= 256 && skb->priority <= 263) {
978 		ret = skb->priority - 256;
979 		goto out;
980 	}
981 
982 	if (skb_vlan_tag_present(skb)) {
983 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
984 			>> VLAN_PRIO_SHIFT;
985 		if (vlan_priority > 0) {
986 			ret = vlan_priority;
987 			goto out;
988 		}
989 	}
990 
991 	switch (skb->protocol) {
992 	case htons(ETH_P_IP):
993 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
994 		break;
995 	case htons(ETH_P_IPV6):
996 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
997 		break;
998 	case htons(ETH_P_MPLS_UC):
999 	case htons(ETH_P_MPLS_MC): {
1000 		struct mpls_label mpls_tmp, *mpls;
1001 
1002 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
1003 					  sizeof(*mpls), &mpls_tmp);
1004 		if (!mpls)
1005 			return 0;
1006 
1007 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
1008 			>> MPLS_LS_TC_SHIFT;
1009 		goto out;
1010 	}
1011 	case htons(ETH_P_80221):
1012 		/* 802.21 is always network control traffic */
1013 		return 7;
1014 	default:
1015 		return 0;
1016 	}
1017 
1018 	if (qos_map) {
1019 		unsigned int i, tmp_dscp = dscp >> 2;
1020 
1021 		for (i = 0; i < qos_map->num_des; i++) {
1022 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
1023 				ret = qos_map->dscp_exception[i].up;
1024 				goto out;
1025 			}
1026 		}
1027 
1028 		for (i = 0; i < 8; i++) {
1029 			if (tmp_dscp >= qos_map->up[i].low &&
1030 			    tmp_dscp <= qos_map->up[i].high) {
1031 				ret = i;
1032 				goto out;
1033 			}
1034 		}
1035 	}
1036 
1037 	/* The default mapping as defined Section 2.3 in RFC8325: The three
1038 	 * Most Significant Bits (MSBs) of the DSCP are used as the
1039 	 * corresponding L2 markings.
1040 	 */
1041 	ret = dscp >> 5;
1042 
1043 	/* Handle specific DSCP values for which the default mapping (as
1044 	 * described above) doesn't adhere to the intended usage of the DSCP
1045 	 * value. See section 4 in RFC8325. Specifically, for the following
1046 	 * Diffserv Service Classes no update is needed:
1047 	 * - Standard: DF
1048 	 * - Low Priority Data: CS1
1049 	 * - Multimedia Conferencing: AF41, AF42, AF43
1050 	 * - Network Control Traffic: CS7
1051 	 * - Real-Time Interactive: CS4
1052 	 * - Signaling: CS5
1053 	 */
1054 	switch (dscp >> 2) {
1055 	case 10:
1056 	case 12:
1057 	case 14:
1058 		/* High throughput data: AF11, AF12, AF13 */
1059 		ret = 0;
1060 		break;
1061 	case 16:
1062 		/* Operations, Administration, and Maintenance and Provisioning:
1063 		 * CS2
1064 		 */
1065 		ret = 0;
1066 		break;
1067 	case 18:
1068 	case 20:
1069 	case 22:
1070 		/* Low latency data: AF21, AF22, AF23 */
1071 		ret = 3;
1072 		break;
1073 	case 24:
1074 		/* Broadcasting video: CS3 */
1075 		ret = 4;
1076 		break;
1077 	case 26:
1078 	case 28:
1079 	case 30:
1080 		/* Multimedia Streaming: AF31, AF32, AF33 */
1081 		ret = 4;
1082 		break;
1083 	case 44:
1084 		/* Voice Admit: VA */
1085 		ret = 6;
1086 		break;
1087 	case 46:
1088 		/* Telephony traffic: EF */
1089 		ret = 6;
1090 		break;
1091 	case 48:
1092 		/* Network Control Traffic: CS6 */
1093 		ret = 7;
1094 		break;
1095 	}
1096 out:
1097 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1098 }
1099 EXPORT_SYMBOL(cfg80211_classify8021d);
1100 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1101 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1102 {
1103 	const struct cfg80211_bss_ies *ies;
1104 
1105 	ies = rcu_dereference(bss->ies);
1106 	if (!ies)
1107 		return NULL;
1108 
1109 	return cfg80211_find_elem(id, ies->data, ies->len);
1110 }
1111 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1112 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1113 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1114 {
1115 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1116 	struct net_device *dev = wdev->netdev;
1117 	int i;
1118 
1119 	if (!wdev->connect_keys)
1120 		return;
1121 
1122 	for (i = 0; i < 4; i++) {
1123 		if (!wdev->connect_keys->params[i].cipher)
1124 			continue;
1125 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1126 				 &wdev->connect_keys->params[i])) {
1127 			netdev_err(dev, "failed to set key %d\n", i);
1128 			continue;
1129 		}
1130 		if (wdev->connect_keys->def == i &&
1131 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1132 			netdev_err(dev, "failed to set defkey %d\n", i);
1133 			continue;
1134 		}
1135 	}
1136 
1137 	kfree_sensitive(wdev->connect_keys);
1138 	wdev->connect_keys = NULL;
1139 }
1140 
cfg80211_process_wdev_events(struct wireless_dev * wdev)1141 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1142 {
1143 	struct cfg80211_event *ev;
1144 	unsigned long flags;
1145 
1146 	spin_lock_irqsave(&wdev->event_lock, flags);
1147 	while (!list_empty(&wdev->event_list)) {
1148 		ev = list_first_entry(&wdev->event_list,
1149 				      struct cfg80211_event, list);
1150 		list_del(&ev->list);
1151 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1152 
1153 		switch (ev->type) {
1154 		case EVENT_CONNECT_RESULT:
1155 			__cfg80211_connect_result(
1156 				wdev->netdev,
1157 				&ev->cr,
1158 				ev->cr.status == WLAN_STATUS_SUCCESS);
1159 			break;
1160 		case EVENT_ROAMED:
1161 			__cfg80211_roamed(wdev, &ev->rm);
1162 			break;
1163 		case EVENT_DISCONNECTED:
1164 			__cfg80211_disconnected(wdev->netdev,
1165 						ev->dc.ie, ev->dc.ie_len,
1166 						ev->dc.reason,
1167 						!ev->dc.locally_generated);
1168 			break;
1169 		case EVENT_IBSS_JOINED:
1170 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1171 					       ev->ij.channel);
1172 			break;
1173 		case EVENT_STOPPED:
1174 			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1175 			break;
1176 		case EVENT_PORT_AUTHORIZED:
1177 			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1178 						   ev->pa.td_bitmap,
1179 						   ev->pa.td_bitmap_len);
1180 			break;
1181 		}
1182 
1183 		kfree(ev);
1184 
1185 		spin_lock_irqsave(&wdev->event_lock, flags);
1186 	}
1187 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1188 }
1189 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1190 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1191 {
1192 	struct wireless_dev *wdev;
1193 
1194 	lockdep_assert_held(&rdev->wiphy.mtx);
1195 
1196 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1197 		cfg80211_process_wdev_events(wdev);
1198 }
1199 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1200 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1201 			  struct net_device *dev, enum nl80211_iftype ntype,
1202 			  struct vif_params *params)
1203 {
1204 	int err;
1205 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1206 
1207 	lockdep_assert_held(&rdev->wiphy.mtx);
1208 
1209 	/* don't support changing VLANs, you just re-create them */
1210 	if (otype == NL80211_IFTYPE_AP_VLAN)
1211 		return -EOPNOTSUPP;
1212 
1213 	/* cannot change into P2P device or NAN */
1214 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1215 	    ntype == NL80211_IFTYPE_NAN)
1216 		return -EOPNOTSUPP;
1217 
1218 	if (!rdev->ops->change_virtual_intf ||
1219 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1220 		return -EOPNOTSUPP;
1221 
1222 	if (ntype != otype) {
1223 		/* if it's part of a bridge, reject changing type to station/ibss */
1224 		if (netif_is_bridge_port(dev) &&
1225 		    (ntype == NL80211_IFTYPE_ADHOC ||
1226 		     ntype == NL80211_IFTYPE_STATION ||
1227 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1228 			return -EBUSY;
1229 
1230 		dev->ieee80211_ptr->use_4addr = false;
1231 		rdev_set_qos_map(rdev, dev, NULL);
1232 
1233 		switch (otype) {
1234 		case NL80211_IFTYPE_AP:
1235 		case NL80211_IFTYPE_P2P_GO:
1236 			cfg80211_stop_ap(rdev, dev, -1, true);
1237 			break;
1238 		case NL80211_IFTYPE_ADHOC:
1239 			cfg80211_leave_ibss(rdev, dev, false);
1240 			break;
1241 		case NL80211_IFTYPE_STATION:
1242 		case NL80211_IFTYPE_P2P_CLIENT:
1243 			cfg80211_disconnect(rdev, dev,
1244 					    WLAN_REASON_DEAUTH_LEAVING, true);
1245 			break;
1246 		case NL80211_IFTYPE_MESH_POINT:
1247 			/* mesh should be handled? */
1248 			break;
1249 		case NL80211_IFTYPE_OCB:
1250 			cfg80211_leave_ocb(rdev, dev);
1251 			break;
1252 		default:
1253 			break;
1254 		}
1255 
1256 		cfg80211_process_rdev_events(rdev);
1257 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1258 
1259 		memset(&dev->ieee80211_ptr->u, 0,
1260 		       sizeof(dev->ieee80211_ptr->u));
1261 		memset(&dev->ieee80211_ptr->links, 0,
1262 		       sizeof(dev->ieee80211_ptr->links));
1263 	}
1264 
1265 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1266 
1267 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1268 
1269 	if (!err && params && params->use_4addr != -1)
1270 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1271 
1272 	if (!err) {
1273 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1274 		switch (ntype) {
1275 		case NL80211_IFTYPE_STATION:
1276 			if (dev->ieee80211_ptr->use_4addr)
1277 				break;
1278 			fallthrough;
1279 		case NL80211_IFTYPE_OCB:
1280 		case NL80211_IFTYPE_P2P_CLIENT:
1281 		case NL80211_IFTYPE_ADHOC:
1282 			dev->priv_flags |= IFF_DONT_BRIDGE;
1283 			break;
1284 		case NL80211_IFTYPE_P2P_GO:
1285 		case NL80211_IFTYPE_AP:
1286 		case NL80211_IFTYPE_AP_VLAN:
1287 		case NL80211_IFTYPE_MESH_POINT:
1288 			/* bridging OK */
1289 			break;
1290 		case NL80211_IFTYPE_MONITOR:
1291 			/* monitor can't bridge anyway */
1292 			break;
1293 		case NL80211_IFTYPE_UNSPECIFIED:
1294 		case NUM_NL80211_IFTYPES:
1295 			/* not happening */
1296 			break;
1297 		case NL80211_IFTYPE_P2P_DEVICE:
1298 		case NL80211_IFTYPE_WDS:
1299 		case NL80211_IFTYPE_NAN:
1300 			WARN_ON(1);
1301 			break;
1302 		}
1303 	}
1304 
1305 	if (!err && ntype != otype && netif_running(dev)) {
1306 		cfg80211_update_iface_num(rdev, ntype, 1);
1307 		cfg80211_update_iface_num(rdev, otype, -1);
1308 	}
1309 
1310 	return err;
1311 }
1312 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1313 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1314 {
1315 	int modulation, streams, bitrate;
1316 
1317 	/* the formula below does only work for MCS values smaller than 32 */
1318 	if (WARN_ON_ONCE(rate->mcs >= 32))
1319 		return 0;
1320 
1321 	modulation = rate->mcs & 7;
1322 	streams = (rate->mcs >> 3) + 1;
1323 
1324 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1325 
1326 	if (modulation < 4)
1327 		bitrate *= (modulation + 1);
1328 	else if (modulation == 4)
1329 		bitrate *= (modulation + 2);
1330 	else
1331 		bitrate *= (modulation + 3);
1332 
1333 	bitrate *= streams;
1334 
1335 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1336 		bitrate = (bitrate / 9) * 10;
1337 
1338 	/* do NOT round down here */
1339 	return (bitrate + 50000) / 100000;
1340 }
1341 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1342 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1343 {
1344 	static const u32 __mcs2bitrate[] = {
1345 		/* control PHY */
1346 		[0] =   275,
1347 		/* SC PHY */
1348 		[1] =  3850,
1349 		[2] =  7700,
1350 		[3] =  9625,
1351 		[4] = 11550,
1352 		[5] = 12512, /* 1251.25 mbps */
1353 		[6] = 15400,
1354 		[7] = 19250,
1355 		[8] = 23100,
1356 		[9] = 25025,
1357 		[10] = 30800,
1358 		[11] = 38500,
1359 		[12] = 46200,
1360 		/* OFDM PHY */
1361 		[13] =  6930,
1362 		[14] =  8662, /* 866.25 mbps */
1363 		[15] = 13860,
1364 		[16] = 17325,
1365 		[17] = 20790,
1366 		[18] = 27720,
1367 		[19] = 34650,
1368 		[20] = 41580,
1369 		[21] = 45045,
1370 		[22] = 51975,
1371 		[23] = 62370,
1372 		[24] = 67568, /* 6756.75 mbps */
1373 		/* LP-SC PHY */
1374 		[25] =  6260,
1375 		[26] =  8340,
1376 		[27] = 11120,
1377 		[28] = 12510,
1378 		[29] = 16680,
1379 		[30] = 22240,
1380 		[31] = 25030,
1381 	};
1382 
1383 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1384 		return 0;
1385 
1386 	return __mcs2bitrate[rate->mcs];
1387 }
1388 
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1389 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1390 {
1391 	static const u32 __mcs2bitrate[] = {
1392 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1393 		[7 - 6] = 50050, /* MCS 12.1 */
1394 		[8 - 6] = 53900,
1395 		[9 - 6] = 57750,
1396 		[10 - 6] = 63900,
1397 		[11 - 6] = 75075,
1398 		[12 - 6] = 80850,
1399 	};
1400 
1401 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1402 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1403 		return 0;
1404 
1405 	return __mcs2bitrate[rate->mcs - 6];
1406 }
1407 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1408 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1409 {
1410 	static const u32 __mcs2bitrate[] = {
1411 		/* control PHY */
1412 		[0] =   275,
1413 		/* SC PHY */
1414 		[1] =  3850,
1415 		[2] =  7700,
1416 		[3] =  9625,
1417 		[4] = 11550,
1418 		[5] = 12512, /* 1251.25 mbps */
1419 		[6] = 13475,
1420 		[7] = 15400,
1421 		[8] = 19250,
1422 		[9] = 23100,
1423 		[10] = 25025,
1424 		[11] = 26950,
1425 		[12] = 30800,
1426 		[13] = 38500,
1427 		[14] = 46200,
1428 		[15] = 50050,
1429 		[16] = 53900,
1430 		[17] = 57750,
1431 		[18] = 69300,
1432 		[19] = 75075,
1433 		[20] = 80850,
1434 	};
1435 
1436 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1437 		return 0;
1438 
1439 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1440 }
1441 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1442 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1443 {
1444 	static const u32 base[4][12] = {
1445 		{   6500000,
1446 		   13000000,
1447 		   19500000,
1448 		   26000000,
1449 		   39000000,
1450 		   52000000,
1451 		   58500000,
1452 		   65000000,
1453 		   78000000,
1454 		/* not in the spec, but some devices use this: */
1455 		   86700000,
1456 		   97500000,
1457 		  108300000,
1458 		},
1459 		{  13500000,
1460 		   27000000,
1461 		   40500000,
1462 		   54000000,
1463 		   81000000,
1464 		  108000000,
1465 		  121500000,
1466 		  135000000,
1467 		  162000000,
1468 		  180000000,
1469 		  202500000,
1470 		  225000000,
1471 		},
1472 		{  29300000,
1473 		   58500000,
1474 		   87800000,
1475 		  117000000,
1476 		  175500000,
1477 		  234000000,
1478 		  263300000,
1479 		  292500000,
1480 		  351000000,
1481 		  390000000,
1482 		  438800000,
1483 		  487500000,
1484 		},
1485 		{  58500000,
1486 		  117000000,
1487 		  175500000,
1488 		  234000000,
1489 		  351000000,
1490 		  468000000,
1491 		  526500000,
1492 		  585000000,
1493 		  702000000,
1494 		  780000000,
1495 		  877500000,
1496 		  975000000,
1497 		},
1498 	};
1499 	u32 bitrate;
1500 	int idx;
1501 
1502 	if (rate->mcs > 11)
1503 		goto warn;
1504 
1505 	switch (rate->bw) {
1506 	case RATE_INFO_BW_160:
1507 		idx = 3;
1508 		break;
1509 	case RATE_INFO_BW_80:
1510 		idx = 2;
1511 		break;
1512 	case RATE_INFO_BW_40:
1513 		idx = 1;
1514 		break;
1515 	case RATE_INFO_BW_5:
1516 	case RATE_INFO_BW_10:
1517 	default:
1518 		goto warn;
1519 	case RATE_INFO_BW_20:
1520 		idx = 0;
1521 	}
1522 
1523 	bitrate = base[idx][rate->mcs];
1524 	bitrate *= rate->nss;
1525 
1526 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1527 		bitrate = (bitrate / 9) * 10;
1528 
1529 	/* do NOT round down here */
1530 	return (bitrate + 50000) / 100000;
1531  warn:
1532 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1533 		  rate->bw, rate->mcs, rate->nss);
1534 	return 0;
1535 }
1536 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1537 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1538 {
1539 #define SCALE 6144
1540 	u32 mcs_divisors[14] = {
1541 		102399, /* 16.666666... */
1542 		 51201, /*  8.333333... */
1543 		 34134, /*  5.555555... */
1544 		 25599, /*  4.166666... */
1545 		 17067, /*  2.777777... */
1546 		 12801, /*  2.083333... */
1547 		 11377, /*  1.851725... */
1548 		 10239, /*  1.666666... */
1549 		  8532, /*  1.388888... */
1550 		  7680, /*  1.250000... */
1551 		  6828, /*  1.111111... */
1552 		  6144, /*  1.000000... */
1553 		  5690, /*  0.926106... */
1554 		  5120, /*  0.833333... */
1555 	};
1556 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1557 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1558 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1559 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1560 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1561 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1562 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1563 	u64 tmp;
1564 	u32 result;
1565 
1566 	if (WARN_ON_ONCE(rate->mcs > 13))
1567 		return 0;
1568 
1569 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1570 		return 0;
1571 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1572 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1573 		return 0;
1574 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1575 		return 0;
1576 
1577 	if (rate->bw == RATE_INFO_BW_160 ||
1578 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1579 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1580 		result = rates_160M[rate->he_gi];
1581 	else if (rate->bw == RATE_INFO_BW_80 ||
1582 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1583 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1584 		result = rates_996[rate->he_gi];
1585 	else if (rate->bw == RATE_INFO_BW_40 ||
1586 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1587 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1588 		result = rates_484[rate->he_gi];
1589 	else if (rate->bw == RATE_INFO_BW_20 ||
1590 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1591 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1592 		result = rates_242[rate->he_gi];
1593 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1594 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1595 		result = rates_106[rate->he_gi];
1596 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1597 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1598 		result = rates_52[rate->he_gi];
1599 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1600 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1601 		result = rates_26[rate->he_gi];
1602 	else {
1603 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1604 		     rate->bw, rate->he_ru_alloc);
1605 		return 0;
1606 	}
1607 
1608 	/* now scale to the appropriate MCS */
1609 	tmp = result;
1610 	tmp *= SCALE;
1611 	do_div(tmp, mcs_divisors[rate->mcs]);
1612 	result = tmp;
1613 
1614 	/* and take NSS, DCM into account */
1615 	result = (result * rate->nss) / 8;
1616 	if (rate->he_dcm)
1617 		result /= 2;
1618 
1619 	return result / 10000;
1620 }
1621 
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1622 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1623 {
1624 #define SCALE 6144
1625 	static const u32 mcs_divisors[16] = {
1626 		102399, /* 16.666666... */
1627 		 51201, /*  8.333333... */
1628 		 34134, /*  5.555555... */
1629 		 25599, /*  4.166666... */
1630 		 17067, /*  2.777777... */
1631 		 12801, /*  2.083333... */
1632 		 11377, /*  1.851725... */
1633 		 10239, /*  1.666666... */
1634 		  8532, /*  1.388888... */
1635 		  7680, /*  1.250000... */
1636 		  6828, /*  1.111111... */
1637 		  6144, /*  1.000000... */
1638 		  5690, /*  0.926106... */
1639 		  5120, /*  0.833333... */
1640 		409600, /* 66.666666... */
1641 		204800, /* 33.333333... */
1642 	};
1643 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1644 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1645 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1646 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1647 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1648 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1649 	u64 tmp;
1650 	u32 result;
1651 
1652 	if (WARN_ON_ONCE(rate->mcs > 15))
1653 		return 0;
1654 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1655 		return 0;
1656 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1657 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1658 		return 0;
1659 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1660 		return 0;
1661 
1662 	/* Bandwidth checks for MCS 14 */
1663 	if (rate->mcs == 14) {
1664 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1665 		     rate->bw != RATE_INFO_BW_80 &&
1666 		     rate->bw != RATE_INFO_BW_160 &&
1667 		     rate->bw != RATE_INFO_BW_320) ||
1668 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1669 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1670 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1671 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1672 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1673 			     rate->bw, rate->eht_ru_alloc);
1674 			return 0;
1675 		}
1676 	}
1677 
1678 	if (rate->bw == RATE_INFO_BW_320 ||
1679 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1680 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1681 		result = 4 * rates_996[rate->eht_gi];
1682 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1684 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1685 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1686 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1687 		result = 3 * rates_996[rate->eht_gi];
1688 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1689 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1690 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1691 	else if (rate->bw == RATE_INFO_BW_160 ||
1692 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1693 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1694 		result = 2 * rates_996[rate->eht_gi];
1695 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1696 		 rate->eht_ru_alloc ==
1697 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1698 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1699 			 + rates_242[rate->eht_gi];
1700 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1701 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1702 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1703 	else if (rate->bw == RATE_INFO_BW_80 ||
1704 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1705 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1706 		result = rates_996[rate->eht_gi];
1707 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1708 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1709 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1710 	else if (rate->bw == RATE_INFO_BW_40 ||
1711 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1712 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1713 		result = rates_484[rate->eht_gi];
1714 	else if (rate->bw == RATE_INFO_BW_20 ||
1715 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1716 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1717 		result = rates_242[rate->eht_gi];
1718 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1719 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1720 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1721 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1722 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1723 		result = rates_106[rate->eht_gi];
1724 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1725 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1726 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1727 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1728 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1729 		result = rates_52[rate->eht_gi];
1730 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1731 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1732 		result = rates_26[rate->eht_gi];
1733 	else {
1734 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1735 		     rate->bw, rate->eht_ru_alloc);
1736 		return 0;
1737 	}
1738 
1739 	/* now scale to the appropriate MCS */
1740 	tmp = result;
1741 	tmp *= SCALE;
1742 	do_div(tmp, mcs_divisors[rate->mcs]);
1743 
1744 	/* and take NSS */
1745 	tmp *= rate->nss;
1746 	do_div(tmp, 8);
1747 
1748 	result = tmp;
1749 
1750 	return result / 10000;
1751 }
1752 
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1753 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1754 {
1755 	/* For 1, 2, 4, 8 and 16 MHz channels */
1756 	static const u32 base[5][11] = {
1757 		{  300000,
1758 		   600000,
1759 		   900000,
1760 		  1200000,
1761 		  1800000,
1762 		  2400000,
1763 		  2700000,
1764 		  3000000,
1765 		  3600000,
1766 		  4000000,
1767 		  /* MCS 10 supported in 1 MHz only */
1768 		  150000,
1769 		},
1770 		{  650000,
1771 		  1300000,
1772 		  1950000,
1773 		  2600000,
1774 		  3900000,
1775 		  5200000,
1776 		  5850000,
1777 		  6500000,
1778 		  7800000,
1779 		  /* MCS 9 not valid */
1780 		},
1781 		{  1350000,
1782 		   2700000,
1783 		   4050000,
1784 		   5400000,
1785 		   8100000,
1786 		  10800000,
1787 		  12150000,
1788 		  13500000,
1789 		  16200000,
1790 		  18000000,
1791 		},
1792 		{  2925000,
1793 		   5850000,
1794 		   8775000,
1795 		  11700000,
1796 		  17550000,
1797 		  23400000,
1798 		  26325000,
1799 		  29250000,
1800 		  35100000,
1801 		  39000000,
1802 		},
1803 		{  8580000,
1804 		  11700000,
1805 		  17550000,
1806 		  23400000,
1807 		  35100000,
1808 		  46800000,
1809 		  52650000,
1810 		  58500000,
1811 		  70200000,
1812 		  78000000,
1813 		},
1814 	};
1815 	u32 bitrate;
1816 	/* default is 1 MHz index */
1817 	int idx = 0;
1818 
1819 	if (rate->mcs >= 11)
1820 		goto warn;
1821 
1822 	switch (rate->bw) {
1823 	case RATE_INFO_BW_16:
1824 		idx = 4;
1825 		break;
1826 	case RATE_INFO_BW_8:
1827 		idx = 3;
1828 		break;
1829 	case RATE_INFO_BW_4:
1830 		idx = 2;
1831 		break;
1832 	case RATE_INFO_BW_2:
1833 		idx = 1;
1834 		break;
1835 	case RATE_INFO_BW_1:
1836 		idx = 0;
1837 		break;
1838 	case RATE_INFO_BW_5:
1839 	case RATE_INFO_BW_10:
1840 	case RATE_INFO_BW_20:
1841 	case RATE_INFO_BW_40:
1842 	case RATE_INFO_BW_80:
1843 	case RATE_INFO_BW_160:
1844 	default:
1845 		goto warn;
1846 	}
1847 
1848 	bitrate = base[idx][rate->mcs];
1849 	bitrate *= rate->nss;
1850 
1851 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1852 		bitrate = (bitrate / 9) * 10;
1853 	/* do NOT round down here */
1854 	return (bitrate + 50000) / 100000;
1855 warn:
1856 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1857 		  rate->bw, rate->mcs, rate->nss);
1858 	return 0;
1859 }
1860 
cfg80211_calculate_bitrate(struct rate_info * rate)1861 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1862 {
1863 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1864 		return cfg80211_calculate_bitrate_ht(rate);
1865 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1866 		return cfg80211_calculate_bitrate_dmg(rate);
1867 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1868 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1869 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1870 		return cfg80211_calculate_bitrate_edmg(rate);
1871 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1872 		return cfg80211_calculate_bitrate_vht(rate);
1873 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1874 		return cfg80211_calculate_bitrate_he(rate);
1875 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1876 		return cfg80211_calculate_bitrate_eht(rate);
1877 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1878 		return cfg80211_calculate_bitrate_s1g(rate);
1879 
1880 	return rate->legacy;
1881 }
1882 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1883 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1884 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1885 			  enum ieee80211_p2p_attr_id attr,
1886 			  u8 *buf, unsigned int bufsize)
1887 {
1888 	u8 *out = buf;
1889 	u16 attr_remaining = 0;
1890 	bool desired_attr = false;
1891 	u16 desired_len = 0;
1892 
1893 	while (len > 0) {
1894 		unsigned int iedatalen;
1895 		unsigned int copy;
1896 		const u8 *iedata;
1897 
1898 		if (len < 2)
1899 			return -EILSEQ;
1900 		iedatalen = ies[1];
1901 		if (iedatalen + 2 > len)
1902 			return -EILSEQ;
1903 
1904 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1905 			goto cont;
1906 
1907 		if (iedatalen < 4)
1908 			goto cont;
1909 
1910 		iedata = ies + 2;
1911 
1912 		/* check WFA OUI, P2P subtype */
1913 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1914 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1915 			goto cont;
1916 
1917 		iedatalen -= 4;
1918 		iedata += 4;
1919 
1920 		/* check attribute continuation into this IE */
1921 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1922 		if (copy && desired_attr) {
1923 			desired_len += copy;
1924 			if (out) {
1925 				memcpy(out, iedata, min(bufsize, copy));
1926 				out += min(bufsize, copy);
1927 				bufsize -= min(bufsize, copy);
1928 			}
1929 
1930 
1931 			if (copy == attr_remaining)
1932 				return desired_len;
1933 		}
1934 
1935 		attr_remaining -= copy;
1936 		if (attr_remaining)
1937 			goto cont;
1938 
1939 		iedatalen -= copy;
1940 		iedata += copy;
1941 
1942 		while (iedatalen > 0) {
1943 			u16 attr_len;
1944 
1945 			/* P2P attribute ID & size must fit */
1946 			if (iedatalen < 3)
1947 				return -EILSEQ;
1948 			desired_attr = iedata[0] == attr;
1949 			attr_len = get_unaligned_le16(iedata + 1);
1950 			iedatalen -= 3;
1951 			iedata += 3;
1952 
1953 			copy = min_t(unsigned int, attr_len, iedatalen);
1954 
1955 			if (desired_attr) {
1956 				desired_len += copy;
1957 				if (out) {
1958 					memcpy(out, iedata, min(bufsize, copy));
1959 					out += min(bufsize, copy);
1960 					bufsize -= min(bufsize, copy);
1961 				}
1962 
1963 				if (copy == attr_len)
1964 					return desired_len;
1965 			}
1966 
1967 			iedata += copy;
1968 			iedatalen -= copy;
1969 			attr_remaining = attr_len - copy;
1970 		}
1971 
1972  cont:
1973 		len -= ies[1] + 2;
1974 		ies += ies[1] + 2;
1975 	}
1976 
1977 	if (attr_remaining && desired_attr)
1978 		return -EILSEQ;
1979 
1980 	return -ENOENT;
1981 }
1982 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1983 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1984 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1985 {
1986 	int i;
1987 
1988 	/* Make sure array values are legal */
1989 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1990 		return false;
1991 
1992 	i = 0;
1993 	while (i < n_ids) {
1994 		if (ids[i] == WLAN_EID_EXTENSION) {
1995 			if (id_ext && (ids[i + 1] == id))
1996 				return true;
1997 
1998 			i += 2;
1999 			continue;
2000 		}
2001 
2002 		if (ids[i] == id && !id_ext)
2003 			return true;
2004 
2005 		i++;
2006 	}
2007 	return false;
2008 }
2009 
skip_ie(const u8 * ies,size_t ielen,size_t pos)2010 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
2011 {
2012 	/* we assume a validly formed IEs buffer */
2013 	u8 len = ies[pos + 1];
2014 
2015 	pos += 2 + len;
2016 
2017 	/* the IE itself must have 255 bytes for fragments to follow */
2018 	if (len < 255)
2019 		return pos;
2020 
2021 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
2022 		len = ies[pos + 1];
2023 		pos += 2 + len;
2024 	}
2025 
2026 	return pos;
2027 }
2028 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)2029 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
2030 			      const u8 *ids, int n_ids,
2031 			      const u8 *after_ric, int n_after_ric,
2032 			      size_t offset)
2033 {
2034 	size_t pos = offset;
2035 
2036 	while (pos < ielen) {
2037 		u8 ext = 0;
2038 
2039 		if (ies[pos] == WLAN_EID_EXTENSION)
2040 			ext = 2;
2041 		if ((pos + ext) >= ielen)
2042 			break;
2043 
2044 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
2045 					  ies[pos] == WLAN_EID_EXTENSION))
2046 			break;
2047 
2048 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2049 			pos = skip_ie(ies, ielen, pos);
2050 
2051 			while (pos < ielen) {
2052 				if (ies[pos] == WLAN_EID_EXTENSION)
2053 					ext = 2;
2054 				else
2055 					ext = 0;
2056 
2057 				if ((pos + ext) >= ielen)
2058 					break;
2059 
2060 				if (!ieee80211_id_in_list(after_ric,
2061 							  n_after_ric,
2062 							  ies[pos + ext],
2063 							  ext == 2))
2064 					pos = skip_ie(ies, ielen, pos);
2065 				else
2066 					break;
2067 			}
2068 		} else {
2069 			pos = skip_ie(ies, ielen, pos);
2070 		}
2071 	}
2072 
2073 	return pos;
2074 }
2075 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2076 
ieee80211_fragment_element(struct sk_buff * skb,u8 * len_pos,u8 frag_id)2077 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2078 {
2079 	unsigned int elem_len;
2080 
2081 	if (!len_pos)
2082 		return;
2083 
2084 	elem_len = skb->data + skb->len - len_pos - 1;
2085 
2086 	while (elem_len > 255) {
2087 		/* this one is 255 */
2088 		*len_pos = 255;
2089 		/* remaining data gets smaller */
2090 		elem_len -= 255;
2091 		/* make space for the fragment ID/len in SKB */
2092 		skb_put(skb, 2);
2093 		/* shift back the remaining data to place fragment ID/len */
2094 		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2095 		/* place the fragment ID */
2096 		len_pos += 255 + 1;
2097 		*len_pos = frag_id;
2098 		/* and point to fragment length to update later */
2099 		len_pos++;
2100 	}
2101 
2102 	*len_pos = elem_len;
2103 }
2104 EXPORT_SYMBOL(ieee80211_fragment_element);
2105 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2106 bool ieee80211_operating_class_to_band(u8 operating_class,
2107 				       enum nl80211_band *band)
2108 {
2109 	switch (operating_class) {
2110 	case 112:
2111 	case 115 ... 127:
2112 	case 128 ... 130:
2113 		*band = NL80211_BAND_5GHZ;
2114 		return true;
2115 	case 131 ... 135:
2116 	case 137:
2117 		*band = NL80211_BAND_6GHZ;
2118 		return true;
2119 	case 81:
2120 	case 82:
2121 	case 83:
2122 	case 84:
2123 		*band = NL80211_BAND_2GHZ;
2124 		return true;
2125 	case 180:
2126 		*band = NL80211_BAND_60GHZ;
2127 		return true;
2128 	}
2129 
2130 	return false;
2131 }
2132 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2133 
ieee80211_operating_class_to_chandef(u8 operating_class,struct ieee80211_channel * chan,struct cfg80211_chan_def * chandef)2134 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2135 					  struct ieee80211_channel *chan,
2136 					  struct cfg80211_chan_def *chandef)
2137 {
2138 	u32 control_freq, offset = 0;
2139 	enum nl80211_band band;
2140 
2141 	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2142 	    !chan || band != chan->band)
2143 		return false;
2144 
2145 	control_freq = chan->center_freq;
2146 	chandef->chan = chan;
2147 
2148 	if (control_freq >= 5955)
2149 		offset = control_freq - 5955;
2150 	else if (control_freq >= 5745)
2151 		offset = control_freq - 5745;
2152 	else if (control_freq >= 5180)
2153 		offset = control_freq - 5180;
2154 	offset /= 20;
2155 
2156 	switch (operating_class) {
2157 	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2158 	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2159 	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2160 	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2161 	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2162 	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2163 	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2164 	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2165 	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2166 		chandef->center_freq1 = control_freq;
2167 		chandef->width = NL80211_CHAN_WIDTH_20;
2168 		return true;
2169 	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2170 	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2171 	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2172 	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2173 	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2174 		chandef->center_freq1 = control_freq + 10;
2175 		chandef->width = NL80211_CHAN_WIDTH_40;
2176 		return true;
2177 	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2178 	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2179 	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2180 	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2181 	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2182 		chandef->center_freq1 = control_freq - 10;
2183 		chandef->width = NL80211_CHAN_WIDTH_40;
2184 		return true;
2185 	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2186 		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2187 		chandef->width = NL80211_CHAN_WIDTH_40;
2188 		return true;
2189 	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2190 	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2191 		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2192 		chandef->width = NL80211_CHAN_WIDTH_80;
2193 		return true;
2194 	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2195 	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2196 		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2197 		chandef->width = NL80211_CHAN_WIDTH_160;
2198 		return true;
2199 	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2200 	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2201 		  /* The center_freq2 of 80+80 MHz is unknown */
2202 	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2203 		  /* 320-1 or 320-2 channelization is unknown */
2204 	default:
2205 		return false;
2206 	}
2207 }
2208 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2209 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2210 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2211 					  u8 *op_class)
2212 {
2213 	u8 vht_opclass;
2214 	u32 freq = chandef->center_freq1;
2215 
2216 	if (freq >= 2412 && freq <= 2472) {
2217 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2218 			return false;
2219 
2220 		/* 2.407 GHz, channels 1..13 */
2221 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2222 			if (freq > chandef->chan->center_freq)
2223 				*op_class = 83; /* HT40+ */
2224 			else
2225 				*op_class = 84; /* HT40- */
2226 		} else {
2227 			*op_class = 81;
2228 		}
2229 
2230 		return true;
2231 	}
2232 
2233 	if (freq == 2484) {
2234 		/* channel 14 is only for IEEE 802.11b */
2235 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2236 			return false;
2237 
2238 		*op_class = 82; /* channel 14 */
2239 		return true;
2240 	}
2241 
2242 	switch (chandef->width) {
2243 	case NL80211_CHAN_WIDTH_80:
2244 		vht_opclass = 128;
2245 		break;
2246 	case NL80211_CHAN_WIDTH_160:
2247 		vht_opclass = 129;
2248 		break;
2249 	case NL80211_CHAN_WIDTH_80P80:
2250 		vht_opclass = 130;
2251 		break;
2252 	case NL80211_CHAN_WIDTH_10:
2253 	case NL80211_CHAN_WIDTH_5:
2254 		return false; /* unsupported for now */
2255 	default:
2256 		vht_opclass = 0;
2257 		break;
2258 	}
2259 
2260 	/* 5 GHz, channels 36..48 */
2261 	if (freq >= 5180 && freq <= 5240) {
2262 		if (vht_opclass) {
2263 			*op_class = vht_opclass;
2264 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265 			if (freq > chandef->chan->center_freq)
2266 				*op_class = 116;
2267 			else
2268 				*op_class = 117;
2269 		} else {
2270 			*op_class = 115;
2271 		}
2272 
2273 		return true;
2274 	}
2275 
2276 	/* 5 GHz, channels 52..64 */
2277 	if (freq >= 5260 && freq <= 5320) {
2278 		if (vht_opclass) {
2279 			*op_class = vht_opclass;
2280 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2281 			if (freq > chandef->chan->center_freq)
2282 				*op_class = 119;
2283 			else
2284 				*op_class = 120;
2285 		} else {
2286 			*op_class = 118;
2287 		}
2288 
2289 		return true;
2290 	}
2291 
2292 	/* 5 GHz, channels 100..144 */
2293 	if (freq >= 5500 && freq <= 5720) {
2294 		if (vht_opclass) {
2295 			*op_class = vht_opclass;
2296 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2297 			if (freq > chandef->chan->center_freq)
2298 				*op_class = 122;
2299 			else
2300 				*op_class = 123;
2301 		} else {
2302 			*op_class = 121;
2303 		}
2304 
2305 		return true;
2306 	}
2307 
2308 	/* 5 GHz, channels 149..169 */
2309 	if (freq >= 5745 && freq <= 5845) {
2310 		if (vht_opclass) {
2311 			*op_class = vht_opclass;
2312 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2313 			if (freq > chandef->chan->center_freq)
2314 				*op_class = 126;
2315 			else
2316 				*op_class = 127;
2317 		} else if (freq <= 5805) {
2318 			*op_class = 124;
2319 		} else {
2320 			*op_class = 125;
2321 		}
2322 
2323 		return true;
2324 	}
2325 
2326 	/* 56.16 GHz, channel 1..4 */
2327 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2328 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2329 			return false;
2330 
2331 		*op_class = 180;
2332 		return true;
2333 	}
2334 
2335 	/* not supported yet */
2336 	return false;
2337 }
2338 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2339 
cfg80211_wdev_bi(struct wireless_dev * wdev)2340 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2341 {
2342 	switch (wdev->iftype) {
2343 	case NL80211_IFTYPE_AP:
2344 	case NL80211_IFTYPE_P2P_GO:
2345 		WARN_ON(wdev->valid_links);
2346 		return wdev->links[0].ap.beacon_interval;
2347 	case NL80211_IFTYPE_MESH_POINT:
2348 		return wdev->u.mesh.beacon_interval;
2349 	case NL80211_IFTYPE_ADHOC:
2350 		return wdev->u.ibss.beacon_interval;
2351 	default:
2352 		break;
2353 	}
2354 
2355 	return 0;
2356 }
2357 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different,int radio_idx)2358 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2359 				       u32 *beacon_int_gcd,
2360 				       bool *beacon_int_different,
2361 				       int radio_idx)
2362 {
2363 	struct cfg80211_registered_device *rdev;
2364 	struct wireless_dev *wdev;
2365 
2366 	*beacon_int_gcd = 0;
2367 	*beacon_int_different = false;
2368 
2369 	rdev = wiphy_to_rdev(wiphy);
2370 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2371 		int wdev_bi;
2372 
2373 		/* this feature isn't supported with MLO */
2374 		if (wdev->valid_links)
2375 			continue;
2376 
2377 		/* skip wdevs not active on the given wiphy radio */
2378 		if (radio_idx >= 0 &&
2379 		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2380 			continue;
2381 
2382 		wdev_bi = cfg80211_wdev_bi(wdev);
2383 
2384 		if (!wdev_bi)
2385 			continue;
2386 
2387 		if (!*beacon_int_gcd) {
2388 			*beacon_int_gcd = wdev_bi;
2389 			continue;
2390 		}
2391 
2392 		if (wdev_bi == *beacon_int_gcd)
2393 			continue;
2394 
2395 		*beacon_int_different = true;
2396 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2397 	}
2398 
2399 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2400 		if (*beacon_int_gcd)
2401 			*beacon_int_different = true;
2402 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2403 	}
2404 }
2405 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2406 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2407 				 enum nl80211_iftype iftype, u32 beacon_int)
2408 {
2409 	/*
2410 	 * This is just a basic pre-condition check; if interface combinations
2411 	 * are possible the driver must already be checking those with a call
2412 	 * to cfg80211_check_combinations(), in which case we'll validate more
2413 	 * through the cfg80211_calculate_bi_data() call and code in
2414 	 * cfg80211_iter_combinations().
2415 	 */
2416 
2417 	if (beacon_int < 10 || beacon_int > 10000)
2418 		return -EINVAL;
2419 
2420 	return 0;
2421 }
2422 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2423 int cfg80211_iter_combinations(struct wiphy *wiphy,
2424 			       struct iface_combination_params *params,
2425 			       void (*iter)(const struct ieee80211_iface_combination *c,
2426 					    void *data),
2427 			       void *data)
2428 {
2429 	const struct wiphy_radio *radio = NULL;
2430 	const struct ieee80211_iface_combination *c, *cs;
2431 	const struct ieee80211_regdomain *regdom;
2432 	enum nl80211_dfs_regions region = 0;
2433 	int i, j, n, iftype;
2434 	int num_interfaces = 0;
2435 	u32 used_iftypes = 0;
2436 	u32 beacon_int_gcd;
2437 	bool beacon_int_different;
2438 
2439 	if (params->radio_idx >= 0)
2440 		radio = &wiphy->radio[params->radio_idx];
2441 
2442 	/*
2443 	 * This is a bit strange, since the iteration used to rely only on
2444 	 * the data given by the driver, but here it now relies on context,
2445 	 * in form of the currently operating interfaces.
2446 	 * This is OK for all current users, and saves us from having to
2447 	 * push the GCD calculations into all the drivers.
2448 	 * In the future, this should probably rely more on data that's in
2449 	 * cfg80211 already - the only thing not would appear to be any new
2450 	 * interfaces (while being brought up) and channel/radar data.
2451 	 */
2452 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2453 				   &beacon_int_gcd, &beacon_int_different,
2454 				   params->radio_idx);
2455 
2456 	if (params->radar_detect) {
2457 		rcu_read_lock();
2458 		regdom = rcu_dereference(cfg80211_regdomain);
2459 		if (regdom)
2460 			region = regdom->dfs_region;
2461 		rcu_read_unlock();
2462 	}
2463 
2464 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2465 		num_interfaces += params->iftype_num[iftype];
2466 		if (params->iftype_num[iftype] > 0 &&
2467 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2468 			used_iftypes |= BIT(iftype);
2469 	}
2470 
2471 	if (radio) {
2472 		cs = radio->iface_combinations;
2473 		n = radio->n_iface_combinations;
2474 	} else {
2475 		cs = wiphy->iface_combinations;
2476 		n = wiphy->n_iface_combinations;
2477 	}
2478 	for (i = 0; i < n; i++) {
2479 		struct ieee80211_iface_limit *limits;
2480 		u32 all_iftypes = 0;
2481 
2482 		c = &cs[i];
2483 		if (num_interfaces > c->max_interfaces)
2484 			continue;
2485 		if (params->num_different_channels > c->num_different_channels)
2486 			continue;
2487 
2488 		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2489 				       GFP_KERNEL);
2490 		if (!limits)
2491 			return -ENOMEM;
2492 
2493 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2494 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2495 				continue;
2496 			for (j = 0; j < c->n_limits; j++) {
2497 				all_iftypes |= limits[j].types;
2498 				if (!(limits[j].types & BIT(iftype)))
2499 					continue;
2500 				if (limits[j].max < params->iftype_num[iftype])
2501 					goto cont;
2502 				limits[j].max -= params->iftype_num[iftype];
2503 			}
2504 		}
2505 
2506 		if (params->radar_detect !=
2507 			(c->radar_detect_widths & params->radar_detect))
2508 			goto cont;
2509 
2510 		if (params->radar_detect && c->radar_detect_regions &&
2511 		    !(c->radar_detect_regions & BIT(region)))
2512 			goto cont;
2513 
2514 		/* Finally check that all iftypes that we're currently
2515 		 * using are actually part of this combination. If they
2516 		 * aren't then we can't use this combination and have
2517 		 * to continue to the next.
2518 		 */
2519 		if ((all_iftypes & used_iftypes) != used_iftypes)
2520 			goto cont;
2521 
2522 		if (beacon_int_gcd) {
2523 			if (c->beacon_int_min_gcd &&
2524 			    beacon_int_gcd < c->beacon_int_min_gcd)
2525 				goto cont;
2526 			if (!c->beacon_int_min_gcd && beacon_int_different)
2527 				goto cont;
2528 		}
2529 
2530 		/* This combination covered all interface types and
2531 		 * supported the requested numbers, so we're good.
2532 		 */
2533 
2534 		(*iter)(c, data);
2535  cont:
2536 		kfree(limits);
2537 	}
2538 
2539 	return 0;
2540 }
2541 EXPORT_SYMBOL(cfg80211_iter_combinations);
2542 
2543 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2544 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2545 			  void *data)
2546 {
2547 	int *num = data;
2548 	(*num)++;
2549 }
2550 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2551 int cfg80211_check_combinations(struct wiphy *wiphy,
2552 				struct iface_combination_params *params)
2553 {
2554 	int err, num = 0;
2555 
2556 	err = cfg80211_iter_combinations(wiphy, params,
2557 					 cfg80211_iter_sum_ifcombs, &num);
2558 	if (err)
2559 		return err;
2560 	if (num == 0)
2561 		return -EBUSY;
2562 
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL(cfg80211_check_combinations);
2566 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2567 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2568 			   const u8 *rates, unsigned int n_rates,
2569 			   u32 *mask)
2570 {
2571 	int i, j;
2572 
2573 	if (!sband)
2574 		return -EINVAL;
2575 
2576 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2577 		return -EINVAL;
2578 
2579 	*mask = 0;
2580 
2581 	for (i = 0; i < n_rates; i++) {
2582 		int rate = (rates[i] & 0x7f) * 5;
2583 		bool found = false;
2584 
2585 		for (j = 0; j < sband->n_bitrates; j++) {
2586 			if (sband->bitrates[j].bitrate == rate) {
2587 				found = true;
2588 				*mask |= BIT(j);
2589 				break;
2590 			}
2591 		}
2592 		if (!found)
2593 			return -EINVAL;
2594 	}
2595 
2596 	/*
2597 	 * mask must have at least one bit set here since we
2598 	 * didn't accept a 0-length rates array nor allowed
2599 	 * entries in the array that didn't exist
2600 	 */
2601 
2602 	return 0;
2603 }
2604 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2605 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2606 {
2607 	enum nl80211_band band;
2608 	unsigned int n_channels = 0;
2609 
2610 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2611 		if (wiphy->bands[band])
2612 			n_channels += wiphy->bands[band]->n_channels;
2613 
2614 	return n_channels;
2615 }
2616 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2617 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2618 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2619 			 struct station_info *sinfo)
2620 {
2621 	struct cfg80211_registered_device *rdev;
2622 	struct wireless_dev *wdev;
2623 
2624 	wdev = dev->ieee80211_ptr;
2625 	if (!wdev)
2626 		return -EOPNOTSUPP;
2627 
2628 	rdev = wiphy_to_rdev(wdev->wiphy);
2629 	if (!rdev->ops->get_station)
2630 		return -EOPNOTSUPP;
2631 
2632 	memset(sinfo, 0, sizeof(*sinfo));
2633 
2634 	guard(wiphy)(&rdev->wiphy);
2635 
2636 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2637 }
2638 EXPORT_SYMBOL(cfg80211_get_station);
2639 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2640 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2641 {
2642 	int i;
2643 
2644 	if (!f)
2645 		return;
2646 
2647 	kfree(f->serv_spec_info);
2648 	kfree(f->srf_bf);
2649 	kfree(f->srf_macs);
2650 	for (i = 0; i < f->num_rx_filters; i++)
2651 		kfree(f->rx_filters[i].filter);
2652 
2653 	for (i = 0; i < f->num_tx_filters; i++)
2654 		kfree(f->tx_filters[i].filter);
2655 
2656 	kfree(f->rx_filters);
2657 	kfree(f->tx_filters);
2658 	kfree(f);
2659 }
2660 EXPORT_SYMBOL(cfg80211_free_nan_func);
2661 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2662 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2663 				u32 center_freq_khz, u32 bw_khz)
2664 {
2665 	u32 start_freq_khz, end_freq_khz;
2666 
2667 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2668 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2669 
2670 	if (start_freq_khz >= freq_range->start_freq_khz &&
2671 	    end_freq_khz <= freq_range->end_freq_khz)
2672 		return true;
2673 
2674 	return false;
2675 }
2676 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2677 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2678 {
2679 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2680 				sizeof(*(sinfo->pertid)),
2681 				gfp);
2682 	if (!sinfo->pertid)
2683 		return -ENOMEM;
2684 
2685 	return 0;
2686 }
2687 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2688 
2689 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2690 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2691 const unsigned char rfc1042_header[] __aligned(2) =
2692 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2693 EXPORT_SYMBOL(rfc1042_header);
2694 
2695 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2696 const unsigned char bridge_tunnel_header[] __aligned(2) =
2697 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2698 EXPORT_SYMBOL(bridge_tunnel_header);
2699 
2700 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2701 struct iapp_layer2_update {
2702 	u8 da[ETH_ALEN];	/* broadcast */
2703 	u8 sa[ETH_ALEN];	/* STA addr */
2704 	__be16 len;		/* 6 */
2705 	u8 dsap;		/* 0 */
2706 	u8 ssap;		/* 0 */
2707 	u8 control;
2708 	u8 xid_info[3];
2709 } __packed;
2710 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2711 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2712 {
2713 	struct iapp_layer2_update *msg;
2714 	struct sk_buff *skb;
2715 
2716 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2717 	 * bridge devices */
2718 
2719 	skb = dev_alloc_skb(sizeof(*msg));
2720 	if (!skb)
2721 		return;
2722 	msg = skb_put(skb, sizeof(*msg));
2723 
2724 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2725 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2726 
2727 	eth_broadcast_addr(msg->da);
2728 	ether_addr_copy(msg->sa, addr);
2729 	msg->len = htons(6);
2730 	msg->dsap = 0;
2731 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2732 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2733 				 * F=0 (no poll command; unsolicited frame) */
2734 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2735 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2736 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2737 
2738 	skb->dev = dev;
2739 	skb->protocol = eth_type_trans(skb, dev);
2740 	memset(skb->cb, 0, sizeof(skb->cb));
2741 	netif_rx(skb);
2742 }
2743 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2744 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2745 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2746 			      enum ieee80211_vht_chanwidth bw,
2747 			      int mcs, bool ext_nss_bw_capable,
2748 			      unsigned int max_vht_nss)
2749 {
2750 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2751 	int ext_nss_bw;
2752 	int supp_width;
2753 	int i, mcs_encoding;
2754 
2755 	if (map == 0xffff)
2756 		return 0;
2757 
2758 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2759 		return 0;
2760 	if (mcs <= 7)
2761 		mcs_encoding = 0;
2762 	else if (mcs == 8)
2763 		mcs_encoding = 1;
2764 	else
2765 		mcs_encoding = 2;
2766 
2767 	if (!max_vht_nss) {
2768 		/* find max_vht_nss for the given MCS */
2769 		for (i = 7; i >= 0; i--) {
2770 			int supp = (map >> (2 * i)) & 3;
2771 
2772 			if (supp == 3)
2773 				continue;
2774 
2775 			if (supp >= mcs_encoding) {
2776 				max_vht_nss = i + 1;
2777 				break;
2778 			}
2779 		}
2780 	}
2781 
2782 	if (!(cap->supp_mcs.tx_mcs_map &
2783 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2784 		return max_vht_nss;
2785 
2786 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2787 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2788 	supp_width = le32_get_bits(cap->vht_cap_info,
2789 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2790 
2791 	/* if not capable, treat ext_nss_bw as 0 */
2792 	if (!ext_nss_bw_capable)
2793 		ext_nss_bw = 0;
2794 
2795 	/* This is invalid */
2796 	if (supp_width == 3)
2797 		return 0;
2798 
2799 	/* This is an invalid combination so pretend nothing is supported */
2800 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2801 		return 0;
2802 
2803 	/*
2804 	 * Cover all the special cases according to IEEE 802.11-2016
2805 	 * Table 9-250. All other cases are either factor of 1 or not
2806 	 * valid/supported.
2807 	 */
2808 	switch (bw) {
2809 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2810 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2811 		if ((supp_width == 1 || supp_width == 2) &&
2812 		    ext_nss_bw == 3)
2813 			return 2 * max_vht_nss;
2814 		break;
2815 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2816 		if (supp_width == 0 &&
2817 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2818 			return max_vht_nss / 2;
2819 		if (supp_width == 0 &&
2820 		    ext_nss_bw == 3)
2821 			return (3 * max_vht_nss) / 4;
2822 		if (supp_width == 1 &&
2823 		    ext_nss_bw == 3)
2824 			return 2 * max_vht_nss;
2825 		break;
2826 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2827 		if (supp_width == 0 && ext_nss_bw == 1)
2828 			return 0; /* not possible */
2829 		if (supp_width == 0 &&
2830 		    ext_nss_bw == 2)
2831 			return max_vht_nss / 2;
2832 		if (supp_width == 0 &&
2833 		    ext_nss_bw == 3)
2834 			return (3 * max_vht_nss) / 4;
2835 		if (supp_width == 1 &&
2836 		    ext_nss_bw == 0)
2837 			return 0; /* not possible */
2838 		if (supp_width == 1 &&
2839 		    ext_nss_bw == 1)
2840 			return max_vht_nss / 2;
2841 		if (supp_width == 1 &&
2842 		    ext_nss_bw == 2)
2843 			return (3 * max_vht_nss) / 4;
2844 		break;
2845 	}
2846 
2847 	/* not covered or invalid combination received */
2848 	return max_vht_nss;
2849 }
2850 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2851 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2852 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2853 			     bool is_4addr, u8 check_swif)
2854 
2855 {
2856 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2857 
2858 	switch (check_swif) {
2859 	case 0:
2860 		if (is_vlan && is_4addr)
2861 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2862 		return wiphy->interface_modes & BIT(iftype);
2863 	case 1:
2864 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2865 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2866 		return wiphy->software_iftypes & BIT(iftype);
2867 	default:
2868 		break;
2869 	}
2870 
2871 	return false;
2872 }
2873 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2874 
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2875 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2876 {
2877 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2878 
2879 	lockdep_assert_wiphy(wdev->wiphy);
2880 
2881 	switch (wdev->iftype) {
2882 	case NL80211_IFTYPE_AP:
2883 	case NL80211_IFTYPE_P2P_GO:
2884 		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2885 		break;
2886 	default:
2887 		/* per-link not relevant */
2888 		break;
2889 	}
2890 
2891 	rdev_del_intf_link(rdev, wdev, link_id);
2892 
2893 	wdev->valid_links &= ~BIT(link_id);
2894 	eth_zero_addr(wdev->links[link_id].addr);
2895 }
2896 
cfg80211_remove_links(struct wireless_dev * wdev)2897 void cfg80211_remove_links(struct wireless_dev *wdev)
2898 {
2899 	unsigned int link_id;
2900 
2901 	/*
2902 	 * links are controlled by upper layers (userspace/cfg)
2903 	 * only for AP mode, so only remove them here for AP
2904 	 */
2905 	if (wdev->iftype != NL80211_IFTYPE_AP)
2906 		return;
2907 
2908 	if (wdev->valid_links) {
2909 		for_each_valid_link(wdev, link_id)
2910 			cfg80211_remove_link(wdev, link_id);
2911 	}
2912 }
2913 
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2914 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2915 				 struct wireless_dev *wdev)
2916 {
2917 	cfg80211_remove_links(wdev);
2918 
2919 	return rdev_del_virtual_intf(rdev, wdev);
2920 }
2921 
2922 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2923 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2924 {
2925 	int i;
2926 
2927 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2928 		if (wiphy->iftype_ext_capab[i].iftype == type)
2929 			return &wiphy->iftype_ext_capab[i];
2930 	}
2931 
2932 	return NULL;
2933 }
2934 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2935 
2936 static bool
ieee80211_radio_freq_range_valid(const struct wiphy_radio * radio,u32 freq,u32 width)2937 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2938 				 u32 freq, u32 width)
2939 {
2940 	const struct wiphy_radio_freq_range *r;
2941 	int i;
2942 
2943 	for (i = 0; i < radio->n_freq_range; i++) {
2944 		r = &radio->freq_range[i];
2945 		if (freq - width / 2 >= r->start_freq &&
2946 		    freq + width / 2 <= r->end_freq)
2947 			return true;
2948 	}
2949 
2950 	return false;
2951 }
2952 
cfg80211_radio_chandef_valid(const struct wiphy_radio * radio,const struct cfg80211_chan_def * chandef)2953 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2954 				  const struct cfg80211_chan_def *chandef)
2955 {
2956 	u32 freq, width;
2957 
2958 	freq = ieee80211_chandef_to_khz(chandef);
2959 	width = cfg80211_chandef_get_width(chandef);
2960 	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2961 		return false;
2962 
2963 	freq = MHZ_TO_KHZ(chandef->center_freq2);
2964 	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2965 		return false;
2966 
2967 	return true;
2968 }
2969 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2970 
cfg80211_wdev_channel_allowed(struct wireless_dev * wdev,struct ieee80211_channel * chan)2971 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2972 				   struct ieee80211_channel *chan)
2973 {
2974 	struct wiphy *wiphy = wdev->wiphy;
2975 	const struct wiphy_radio *radio;
2976 	struct cfg80211_chan_def chandef;
2977 	u32 radio_mask;
2978 	int i;
2979 
2980 	radio_mask = wdev->radio_mask;
2981 	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2982 		return true;
2983 
2984 	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2985 	for (i = 0; i < wiphy->n_radio; i++) {
2986 		if (!(radio_mask & BIT(i)))
2987 			continue;
2988 
2989 		radio = &wiphy->radio[i];
2990 		if (!cfg80211_radio_chandef_valid(radio, &chandef))
2991 			continue;
2992 
2993 		return true;
2994 	}
2995 
2996 	return false;
2997 }
2998 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
2999