xref: /freebsd/sys/net80211/ieee80211_output.c (revision 9bfb1405332c6c847dd29e4db4dd3afb56662021)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63 
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67 
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76 
77 #include <security/mac/mac_framework.h>
78 
79 #define	ETHER_HEADER_COPY(dst, src) \
80 	memcpy(dst, src, sizeof(struct ether_header))
81 
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85 
86 #ifdef IEEE80211_DEBUG
87 /*
88  * Decide if an outbound management frame should be
89  * printed when debugging is enabled.  This filters some
90  * of the less interesting frames that come frequently
91  * (e.g. beacons).
92  */
93 static __inline int
doprint(struct ieee80211vap * vap,int subtype)94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 	switch (subtype) {
97 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 		return (vap->iv_opmode == IEEE80211_M_IBSS);
99 	}
100 	return 1;
101 }
102 #endif
103 
104 /*
105  * Transmit a frame to the given destination on the given VAP.
106  *
107  * It's up to the caller to figure out the details of who this
108  * is going to and resolving the node.
109  *
110  * This routine takes care of queuing it for power save,
111  * A-MPDU state stuff, fast-frames state stuff, encapsulation
112  * if required, then passing it up to the driver layer.
113  *
114  * This routine (for now) consumes the mbuf and frees the node
115  * reference; it ideally will return a TX status which reflects
116  * whether the mbuf was consumed or not, so the caller can
117  * free the mbuf (if appropriate) and the node reference (again,
118  * if appropriate.)
119  */
120 int
ieee80211_vap_pkt_send_dest(struct ieee80211vap * vap,struct mbuf * m,struct ieee80211_node * ni)121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122     struct ieee80211_node *ni)
123 {
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *ifp = vap->iv_ifp;
126 	int mcast;
127 	int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 	int do_amsdu = 0;
130 	int do_ampdu_amsdu = 0;
131 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 	int do_ff = 0;
133 #endif
134 
135 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 	    (m->m_flags & M_PWR_SAV) == 0) {
137 		/*
138 		 * Station in power save mode; pass the frame
139 		 * to the 802.11 layer and continue.  We'll get
140 		 * the frame back when the time is right.
141 		 * XXX lose WDS vap linkage?
142 		 */
143 		if (ieee80211_pwrsave(ni, m) != 0)
144 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 		ieee80211_free_node(ni);
146 
147 		/*
148 		 * We queued it fine, so tell the upper layer
149 		 * that we consumed it.
150 		 */
151 		return (0);
152 	}
153 	/* calculate priority so drivers can find the tx queue */
154 	if (ieee80211_classify(ni, m)) {
155 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 		    ni->ni_macaddr, NULL,
157 		    "%s", "classification failure");
158 		vap->iv_stats.is_tx_classify++;
159 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 		m_freem(m);
161 		ieee80211_free_node(ni);
162 
163 		/* XXX better status? */
164 		return (0);
165 	}
166 	/*
167 	 * Stash the node pointer.  Note that we do this after
168 	 * any call to ieee80211_dwds_mcast because that code
169 	 * uses any existing value for rcvif to identify the
170 	 * interface it (might have been) received on.
171 	 */
172 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 	m->m_pkthdr.rcvif = (void *)ni;
174 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175 
176 	BPF_MTAP(ifp, m);		/* 802.3 tx */
177 
178 	/*
179 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 	 *
181 	 * A-MPDU depends upon vap/node config.
182 	 * A-MSDU depends upon vap/node config.
183 	 * FF depends upon vap config, IE and whether
184 	 *  it's 11abg (and not 11n/11ac/etc.)
185 	 *
186 	 * Note that these flags indiciate whether we can do
187 	 * it at all, rather than the situation (eg traffic type.)
188 	 */
189 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 	do_ff =
195 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199 
200 	/*
201 	 * Check if A-MPDU tx aggregation is setup or if we
202 	 * should try to enable it.  The sta must be associated
203 	 * with HT and A-MPDU enabled for use.  When the policy
204 	 * routine decides we should enable A-MPDU we issue an
205 	 * ADDBA request and wait for a reply.  The frame being
206 	 * encapsulated will go out w/o using A-MPDU, or possibly
207 	 * it might be collected by the driver and held/retransmit.
208 	 * The default ic_ampdu_enable routine handles staggering
209 	 * ADDBA requests in case the receiver NAK's us or we are
210 	 * otherwise unable to establish a BA stream.
211 	 *
212 	 * Don't treat group-addressed frames as candidates for aggregation;
213 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 	 * frames will always have sequence numbers allocated from the NON_QOS
215 	 * TID.
216 	 */
217 	if (!IEEE80211_CONF_AMPDU_OFFLOAD(ic) && do_ampdu) {
218 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221 
222 			ieee80211_txampdu_count_packet(tap);
223 			if (IEEE80211_AMPDU_RUNNING(tap)) {
224 				/*
225 				 * Operational, mark frame for aggregation.
226 				 *
227 				 * XXX do tx aggregation here
228 				 */
229 				m->m_flags |= M_AMPDU_MPDU;
230 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 			    ic->ic_ampdu_enable(ni, tap)) {
232 				/*
233 				 * Not negotiated yet, request service.
234 				 */
235 				ieee80211_ampdu_request(ni, tap);
236 				/* XXX hold frame for reply? */
237 			}
238 			/*
239 			 * Now update the no-ampdu flag.  A-MPDU may have been
240 			 * started or administratively disabled above; so now we
241 			 * know whether we're running yet or not.
242 			 *
243 			 * This will let us know whether we should be doing A-MSDU
244 			 * at this point.  We only do A-MSDU if we're either not
245 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 			 * is available.
247 			 *
248 			 * Whilst here, update the amsdu-ampdu flag.  The above may
249 			 * have also set or cleared the amsdu-in-ampdu txa_flags
250 			 * combination so we can correctly do A-MPDU + A-MSDU.
251 			 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 			    || (IEEE80211_AMPDU_NACKED(tap)));
255 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 		}
258 	}
259 
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 	/*
262 	 * Check for AMSDU/FF; queue for aggregation
263 	 *
264 	 * Note: we don't bother trying to do fast frames or
265 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
266 	 * likely could do it for FF (because it's a magic
267 	 * atheros tunnel LLC type) but I don't think we're going
268 	 * to really need to.  For A-MSDU we'd have to set the
269 	 * A-MSDU QoS bit in the wifi header, so we just plain
270 	 * can't do it.
271 	 */
272 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 		if ((! mcast) &&
274 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 		    ieee80211_amsdu_tx_ok(ni)) {
276 			m = ieee80211_amsdu_check(ni, m);
277 			if (m == NULL) {
278 				/* NB: any ni ref held on stageq */
279 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 				    "%s: amsdu_check queued frame\n",
281 				    __func__);
282 				return (0);
283 			}
284 		} else if ((! mcast) && do_ff) {
285 			m = ieee80211_ff_check(ni, m);
286 			if (m == NULL) {
287 				/* NB: any ni ref held on stageq */
288 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 				    "%s: ff_check queued frame\n",
290 				    __func__);
291 				return (0);
292 			}
293 		}
294 	}
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296 
297 	/*
298 	 * Grab the TX lock - serialise the TX process from this
299 	 * point (where TX state is being checked/modified)
300 	 * through to driver queue.
301 	 */
302 	IEEE80211_TX_LOCK(ic);
303 
304 	/*
305 	 * XXX make the encap and transmit code a separate function
306 	 * so things like the FF (and later A-MSDU) path can just call
307 	 * it for flushed frames.
308 	 */
309 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 		/*
311 		 * Encapsulate the packet in prep for transmission.
312 		 */
313 		m = ieee80211_encap(vap, ni, m);
314 		if (m == NULL) {
315 			/* NB: stat+msg handled in ieee80211_encap */
316 			IEEE80211_TX_UNLOCK(ic);
317 			ieee80211_free_node(ni);
318 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 			return (ENOBUFS);
320 		}
321 	}
322 	(void) ieee80211_parent_xmitpkt(ic, m);
323 
324 	/*
325 	 * Unlock at this point - no need to hold it across
326 	 * ieee80211_free_node() (ie, the comlock)
327 	 */
328 	IEEE80211_TX_UNLOCK(ic);
329 	ic->ic_lastdata = ticks;
330 
331 	return (0);
332 }
333 
334 /*
335  * Send the given mbuf through the given vap.
336  *
337  * This consumes the mbuf regardless of whether the transmit
338  * was successful or not.
339  *
340  * This does none of the initial checks that ieee80211_start()
341  * does (eg CAC timeout, interface wakeup) - the caller must
342  * do this first.
343  */
344 static int
ieee80211_start_pkt(struct ieee80211vap * vap,struct mbuf * m)345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define	IS_DWDS(vap) \
348 	(vap->iv_opmode == IEEE80211_M_WDS && \
349 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 	struct ieee80211com *ic = vap->iv_ic;
351 	struct ifnet *ifp = vap->iv_ifp;
352 	struct ieee80211_node *ni;
353 	struct ether_header *eh;
354 
355 	/*
356 	 * Cancel any background scan.
357 	 */
358 	if (ic->ic_flags & IEEE80211_F_SCAN)
359 		ieee80211_cancel_anyscan(vap);
360 	/*
361 	 * Find the node for the destination so we can do
362 	 * things like power save and fast frames aggregation.
363 	 *
364 	 * NB: past this point various code assumes the first
365 	 *     mbuf has the 802.3 header present (and contiguous).
366 	 */
367 	ni = NULL;
368 	if (m->m_len < sizeof(struct ether_header) &&
369 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 		    "discard frame, %s\n", "m_pullup failed");
372 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
373 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 		return (ENOBUFS);
375 	}
376 	eh = mtod(m, struct ether_header *);
377 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 		if (IS_DWDS(vap)) {
379 			/*
380 			 * Only unicast frames from the above go out
381 			 * DWDS vaps; multicast frames are handled by
382 			 * dispatching the frame as it comes through
383 			 * the AP vap (see below).
384 			 */
385 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
387 			vap->iv_stats.is_dwds_mcast++;
388 			m_freem(m);
389 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 			/* XXX better status? */
391 			return (ENOBUFS);
392 		}
393 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 			/*
395 			 * Spam DWDS vap's w/ multicast traffic.
396 			 */
397 			/* XXX only if dwds in use? */
398 			ieee80211_dwds_mcast(vap, m);
399 		}
400 	}
401 #ifdef IEEE80211_SUPPORT_MESH
402 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 		if (ni == NULL) {
406 			/* NB: ieee80211_find_txnode does stat+msg */
407 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 			m_freem(m);
409 			/* XXX better status? */
410 			return (ENOBUFS);
411 		}
412 		if (ni->ni_associd == 0 &&
413 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 			    eh->ether_dhost, NULL,
416 			    "sta not associated (type 0x%04x)",
417 			    htons(eh->ether_type));
418 			vap->iv_stats.is_tx_notassoc++;
419 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 			m_freem(m);
421 			ieee80211_free_node(ni);
422 			/* XXX better status? */
423 			return (ENOBUFS);
424 		}
425 #ifdef IEEE80211_SUPPORT_MESH
426 	} else {
427 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 			/*
429 			 * Proxy station only if configured.
430 			 */
431 			if (!ieee80211_mesh_isproxyena(vap)) {
432 				IEEE80211_DISCARD_MAC(vap,
433 				    IEEE80211_MSG_OUTPUT |
434 				    IEEE80211_MSG_MESH,
435 				    eh->ether_dhost, NULL,
436 				    "%s", "proxy not enabled");
437 				vap->iv_stats.is_mesh_notproxy++;
438 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 				m_freem(m);
440 				/* XXX better status? */
441 				return (ENOBUFS);
442 			}
443 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 			    "forward frame from DS SA(%6D), DA(%6D)\n",
445 			    eh->ether_shost, ":",
446 			    eh->ether_dhost, ":");
447 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 		}
449 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 		if (ni == NULL) {
451 			/*
452 			 * NB: ieee80211_mesh_discover holds/disposes
453 			 * frame (e.g. queueing on path discovery).
454 			 */
455 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 			/* XXX better status? */
457 			return (ENOBUFS);
458 		}
459 	}
460 #endif
461 
462 	/*
463 	 * We've resolved the sender, so attempt to transmit it.
464 	 */
465 
466 	if (vap->iv_state == IEEE80211_S_SLEEP) {
467 		/*
468 		 * In power save; queue frame and then  wakeup device
469 		 * for transmit.
470 		 */
471 		ic->ic_lastdata = ticks;
472 		if (ieee80211_pwrsave(ni, m) != 0)
473 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 		ieee80211_free_node(ni);
475 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 		return (0);
477 	}
478 
479 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 		return (ENOBUFS);
481 	return (0);
482 #undef	IS_DWDS
483 }
484 
485 /*
486  * Start method for vap's.  All packets from the stack come
487  * through here.  We handle common processing of the packets
488  * before dispatching them to the underlying device.
489  *
490  * if_transmit() requires that the mbuf be consumed by this call
491  * regardless of the return condition.
492  */
493 int
ieee80211_vap_transmit(struct ifnet * ifp,struct mbuf * m)494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 	struct ieee80211vap *vap = ifp->if_softc;
497 	struct ieee80211com *ic = vap->iv_ic;
498 
499 	/*
500 	 * No data frames go out unless we're running.
501 	 * Note in particular this covers CAC and CSA
502 	 * states (though maybe we should check muting
503 	 * for CSA).
504 	 */
505 	if (vap->iv_state != IEEE80211_S_RUN &&
506 	    vap->iv_state != IEEE80211_S_SLEEP) {
507 		IEEE80211_LOCK(ic);
508 		/* re-check under the com lock to avoid races */
509 		if (vap->iv_state != IEEE80211_S_RUN &&
510 		    vap->iv_state != IEEE80211_S_SLEEP) {
511 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 			    "%s: ignore queue, in %s state\n",
513 			    __func__, ieee80211_state_name[vap->iv_state]);
514 			vap->iv_stats.is_tx_badstate++;
515 			IEEE80211_UNLOCK(ic);
516 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 			m_freem(m);
518 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 			return (ENETDOWN);
520 		}
521 		IEEE80211_UNLOCK(ic);
522 	}
523 
524 	/*
525 	 * Sanitize mbuf flags for net80211 use.  We cannot
526 	 * clear M_PWR_SAV or M_MORE_DATA because these may
527 	 * be set for frames that are re-submitted from the
528 	 * power save queue.
529 	 *
530 	 * NB: This must be done before ieee80211_classify as
531 	 *     it marks EAPOL in frames with M_EAPOL.
532 	 */
533 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534 
535 	/*
536 	 * Bump to the packet transmission path.
537 	 * The mbuf will be consumed here.
538 	 */
539 	return (ieee80211_start_pkt(vap, m));
540 }
541 
542 void
ieee80211_vap_qflush(struct ifnet * ifp)543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545 
546 	/* Empty for now */
547 }
548 
549 /*
550  * 802.11 raw output routine.
551  *
552  * XXX TODO: this (and other send routines) should correctly
553  * XXX keep the pwr mgmt bit set if it decides to call into the
554  * XXX driver to send a frame whilst the state is SLEEP.
555  *
556  * Otherwise the peer may decide that we're awake and flood us
557  * with traffic we are still too asleep to receive!
558  */
559 int
ieee80211_raw_output(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561     struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 	struct ieee80211com *ic = vap->iv_ic;
564 	int error;
565 
566 	/*
567 	 * Set node - the caller has taken a reference, so ensure
568 	 * that the mbuf has the same node value that
569 	 * it would if it were going via the normal path.
570 	 */
571 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 	m->m_pkthdr.rcvif = (void *)ni;
573 
574 	/*
575 	 * Attempt to add bpf transmit parameters.
576 	 *
577 	 * For now it's ok to fail; the raw_xmit api still takes
578 	 * them as an option.
579 	 *
580 	 * Later on when ic_raw_xmit() has params removed,
581 	 * they'll have to be added - so fail the transmit if
582 	 * they can't be.
583 	 */
584 	if (params)
585 		(void) ieee80211_add_xmit_params(m, params);
586 
587 	error = ic->ic_raw_xmit(ni, m, params);
588 	if (error) {
589 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 		ieee80211_free_node(ni);
591 	}
592 	return (error);
593 }
594 
595 static int
ieee80211_validate_frame(struct mbuf * m,const struct ieee80211_bpf_params * params)596 ieee80211_validate_frame(struct mbuf *m,
597     const struct ieee80211_bpf_params *params)
598 {
599 	struct ieee80211_frame *wh;
600 	int type;
601 
602 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 		return (EINVAL);
604 
605 	wh = mtod(m, struct ieee80211_frame *);
606 	if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607 		return (EINVAL);
608 
609 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610 	if (type != IEEE80211_FC0_TYPE_DATA) {
611 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612 		    IEEE80211_FC1_DIR_NODS)
613 			return (EINVAL);
614 
615 		if (type != IEEE80211_FC0_TYPE_MGT &&
616 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617 			return (EINVAL);
618 
619 		/* XXX skip other field checks? */
620 	}
621 
622 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623 	    (IEEE80211_IS_PROTECTED(wh))) {
624 		int subtype;
625 
626 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627 
628 		/*
629 		 * See IEEE Std 802.11-2012,
630 		 * 8.2.4.1.9 'Protected Frame field'
631 		 */
632 		/* XXX no support for robust management frames yet. */
633 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
634 		    (type == IEEE80211_FC0_TYPE_MGT &&
635 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636 			return (EINVAL);
637 
638 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639 	}
640 
641 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642 		return (EINVAL);
643 
644 	return (0);
645 }
646 
647 static int
ieee80211_validate_rate(struct ieee80211_node * ni,uint8_t rate)648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649 {
650 	struct ieee80211com *ic = ni->ni_ic;
651 
652 	if (IEEE80211_IS_HT_RATE(rate)) {
653 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654 			return (EINVAL);
655 
656 		rate = IEEE80211_RV(rate);
657 		if (rate <= 31) {
658 			if (rate > ic->ic_txstream * 8 - 1)
659 				return (EINVAL);
660 
661 			return (0);
662 		}
663 
664 		if (rate == 32) {
665 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666 				return (EINVAL);
667 
668 			return (0);
669 		}
670 
671 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672 			return (EINVAL);
673 
674 		switch (ic->ic_txstream) {
675 		case 0:
676 		case 1:
677 			return (EINVAL);
678 		case 2:
679 			if (rate > 38)
680 				return (EINVAL);
681 
682 			return (0);
683 		case 3:
684 			if (rate > 52)
685 				return (EINVAL);
686 
687 			return (0);
688 		case 4:
689 		default:
690 			if (rate > 76)
691 				return (EINVAL);
692 
693 			return (0);
694 		}
695 	}
696 
697 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
698 		return (EINVAL);
699 
700 	return (0);
701 }
702 
703 static int
ieee80211_sanitize_rates(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705     const struct ieee80211_bpf_params *params)
706 {
707 	int error;
708 
709 	if (!params)
710 		return (0);	/* nothing to do */
711 
712 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713 	if (params->ibp_rate0 != 0) {
714 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
715 		if (error != 0)
716 			return (error);
717 	} else {
718 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719 		/* XXX __DECONST? */
720 		(void) m;
721 	}
722 
723 	if (params->ibp_rate1 != 0 &&
724 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725 		return (error);
726 
727 	if (params->ibp_rate2 != 0 &&
728 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729 		return (error);
730 
731 	if (params->ibp_rate3 != 0 &&
732 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733 		return (error);
734 
735 	return (0);
736 }
737 
738 /*
739  * 802.11 output routine. This is (currently) used only to
740  * connect bpf write calls to the 802.11 layer for injecting
741  * raw 802.11 frames.
742  */
743 int
ieee80211_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)744 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745 	const struct sockaddr *dst, struct route *ro)
746 {
747 #define senderr(e) do { error = (e); goto bad;} while (0)
748 	const struct ieee80211_bpf_params *params = NULL;
749 	struct ieee80211_node *ni = NULL;
750 	struct ieee80211vap *vap;
751 	struct ieee80211_frame *wh;
752 	struct ieee80211com *ic = NULL;
753 	int error;
754 	int ret;
755 
756 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757 		/*
758 		 * Short-circuit requests if the vap is marked OACTIVE
759 		 * as this can happen because a packet came down through
760 		 * ieee80211_start before the vap entered RUN state in
761 		 * which case it's ok to just drop the frame.  This
762 		 * should not be necessary but callers of if_output don't
763 		 * check OACTIVE.
764 		 */
765 		senderr(ENETDOWN);
766 	}
767 	vap = ifp->if_softc;
768 	ic = vap->iv_ic;
769 	/*
770 	 * Hand to the 802.3 code if not tagged as
771 	 * a raw 802.11 frame.
772 	 */
773 	if (dst->sa_family != AF_IEEE80211)
774 		return vap->iv_output(ifp, m, dst, ro);
775 #ifdef MAC
776 	error = mac_ifnet_check_transmit(ifp, m);
777 	if (error)
778 		senderr(error);
779 #endif
780 	if (ieee80211_vap_ifp_check_is_monitor(vap))
781 		senderr(ENETDOWN);
782 	if (!IFNET_IS_UP_RUNNING(ifp))
783 		senderr(ENETDOWN);
784 	if (vap->iv_state == IEEE80211_S_CAC) {
785 		IEEE80211_DPRINTF(vap,
786 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
787 		    "block %s frame in CAC state\n", "raw data");
788 		vap->iv_stats.is_tx_badstate++;
789 		senderr(EIO);		/* XXX */
790 	} else if (vap->iv_state == IEEE80211_S_SCAN)
791 		senderr(EIO);
792 	/* XXX bypass bridge, pfil, carp, etc. */
793 
794 	/*
795 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
796 	 * present by setting the sa_len field of the sockaddr (yes,
797 	 * this is a hack).
798 	 * NB: we assume sa_data is suitably aligned to cast.
799 	 */
800 	if (dst->sa_len != 0)
801 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
802 
803 	error = ieee80211_validate_frame(m, params);
804 	if (error != 0)
805 		senderr(error);
806 
807 	wh = mtod(m, struct ieee80211_frame *);
808 
809 	/* locate destination node */
810 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
811 	case IEEE80211_FC1_DIR_NODS:
812 	case IEEE80211_FC1_DIR_FROMDS:
813 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
814 		break;
815 	case IEEE80211_FC1_DIR_TODS:
816 	case IEEE80211_FC1_DIR_DSTODS:
817 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
818 		break;
819 	default:
820 		senderr(EDOOFUS);
821 	}
822 	if (ni == NULL) {
823 		/*
824 		 * Permit packets w/ bpf params through regardless
825 		 * (see below about sa_len).
826 		 */
827 		if (dst->sa_len == 0)
828 			senderr(EHOSTUNREACH);
829 		ni = ieee80211_ref_node(vap->iv_bss);
830 	}
831 
832 	/*
833 	 * Sanitize mbuf for net80211 flags leaked from above.
834 	 *
835 	 * NB: This must be done before ieee80211_classify as
836 	 *     it marks EAPOL in frames with M_EAPOL.
837 	 */
838 	m->m_flags &= ~M_80211_TX;
839 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
840 
841 	if (IEEE80211_IS_DATA(wh)) {
842 		/* calculate priority so drivers can find the tx queue */
843 		if (ieee80211_classify(ni, m))
844 			senderr(EIO);		/* XXX */
845 
846 		/* NB: ieee80211_encap does not include 802.11 header */
847 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
848 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
849 	} else
850 		M_WME_SETAC(m, WME_AC_BE);
851 
852 	error = ieee80211_sanitize_rates(ni, m, params);
853 	if (error != 0)
854 		senderr(error);
855 
856 	IEEE80211_NODE_STAT(ni, tx_data);
857 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
858 		IEEE80211_NODE_STAT(ni, tx_mcast);
859 		m->m_flags |= M_MCAST;
860 	} else
861 		IEEE80211_NODE_STAT(ni, tx_ucast);
862 
863 	IEEE80211_TX_LOCK(ic);
864 	ret = ieee80211_raw_output(vap, ni, m, params);
865 	IEEE80211_TX_UNLOCK(ic);
866 	return (ret);
867 bad:
868 	if (m != NULL)
869 		m_freem(m);
870 	if (ni != NULL)
871 		ieee80211_free_node(ni);
872 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
873 	return error;
874 #undef senderr
875 }
876 
877 /*
878  * Set the direction field and address fields of an outgoing
879  * frame.  Note this should be called early on in constructing
880  * a frame as it sets i_fc[1]; other bits can then be or'd in.
881  */
882 void
ieee80211_send_setup(struct ieee80211_node * ni,struct mbuf * m,int type,int tid,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN])883 ieee80211_send_setup(
884 	struct ieee80211_node *ni,
885 	struct mbuf *m,
886 	int type, int tid,
887 	const uint8_t sa[IEEE80211_ADDR_LEN],
888 	const uint8_t da[IEEE80211_ADDR_LEN],
889 	const uint8_t bssid[IEEE80211_ADDR_LEN])
890 {
891 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
892 	struct ieee80211vap *vap = ni->ni_vap;
893 	struct ieee80211_tx_ampdu *tap;
894 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
895 
896 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
897 
898 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
899 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
900 		switch (vap->iv_opmode) {
901 		case IEEE80211_M_STA:
902 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
903 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
904 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
905 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
906 			break;
907 		case IEEE80211_M_IBSS:
908 		case IEEE80211_M_AHDEMO:
909 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
910 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
911 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
912 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
913 			break;
914 		case IEEE80211_M_HOSTAP:
915 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
916 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
917 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
918 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
919 			break;
920 		case IEEE80211_M_WDS:
921 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
922 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
923 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
924 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
925 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
926 			break;
927 		case IEEE80211_M_MBSS:
928 #ifdef IEEE80211_SUPPORT_MESH
929 			if (IEEE80211_IS_MULTICAST(da)) {
930 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
931 				/* XXX next hop */
932 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
933 				IEEE80211_ADDR_COPY(wh->i_addr2,
934 				    vap->iv_myaddr);
935 			} else {
936 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
937 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
938 				IEEE80211_ADDR_COPY(wh->i_addr2,
939 				    vap->iv_myaddr);
940 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
941 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
942 			}
943 #endif
944 			break;
945 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
946 			break;
947 		}
948 	} else {
949 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
950 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
951 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
952 #ifdef IEEE80211_SUPPORT_MESH
953 		if (vap->iv_opmode == IEEE80211_M_MBSS)
954 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
955 		else
956 #endif
957 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
958 	}
959 	*(uint16_t *)&wh->i_dur[0] = 0;
960 
961 	/*
962 	 * XXX TODO: this is what the TX lock is for.
963 	 * Here we're incrementing sequence numbers, and they
964 	 * need to be in lock-step with what the driver is doing
965 	 * both in TX ordering and crypto encap (IV increment.)
966 	 *
967 	 * If the driver does seqno itself, then we can skip
968 	 * assigning sequence numbers here, and we can avoid
969 	 * requiring the TX lock.
970 	 */
971 	tap = &ni->ni_tx_ampdu[tid];
972 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
973 		m->m_flags |= M_AMPDU_MPDU;
974 
975 		/* NB: zero out i_seq field (for s/w encryption etc) */
976 		*(uint16_t *)&wh->i_seq[0] = 0;
977 	} else if (!IEEE80211_CONF_SEQNO_OFFLOAD(ni->ni_ic))
978 		ieee80211_output_seqno_assign(ni, tid, m);
979 
980 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
981 		m->m_flags |= M_MCAST;
982 #undef WH4
983 }
984 
985 /*
986  * Send a management frame to the specified node.  The node pointer
987  * must have a reference as the pointer will be passed to the driver
988  * and potentially held for a long time.  If the frame is successfully
989  * dispatched to the driver, then it is responsible for freeing the
990  * reference (and potentially free'ing up any associated storage);
991  * otherwise deal with reclaiming any reference (on error).
992  */
993 int
ieee80211_mgmt_output(struct ieee80211_node * ni,struct mbuf * m,int type,struct ieee80211_bpf_params * params)994 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
995 	struct ieee80211_bpf_params *params)
996 {
997 	struct ieee80211vap *vap = ni->ni_vap;
998 	struct ieee80211com *ic = ni->ni_ic;
999 	struct ieee80211_frame *wh;
1000 	int ret;
1001 
1002 	KASSERT(ni != NULL, ("null node"));
1003 
1004 	if (vap->iv_state == IEEE80211_S_CAC) {
1005 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1006 		    ni, "block %s frame in CAC state",
1007 			ieee80211_mgt_subtype_name(type));
1008 		vap->iv_stats.is_tx_badstate++;
1009 		ieee80211_free_node(ni);
1010 		m_freem(m);
1011 		return EIO;		/* XXX */
1012 	}
1013 
1014 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1015 	if (m == NULL) {
1016 		ieee80211_free_node(ni);
1017 		return ENOMEM;
1018 	}
1019 
1020 	IEEE80211_TX_LOCK(ic);
1021 
1022 	wh = mtod(m, struct ieee80211_frame *);
1023 	ieee80211_send_setup(ni, m,
1024 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1025 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1026 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1027 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1028 		    "encrypting frame (%s)", __func__);
1029 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1030 	}
1031 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1032 
1033 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1034 	M_WME_SETAC(m, params->ibp_pri);
1035 
1036 #ifdef IEEE80211_DEBUG
1037 	/* avoid printing too many frames */
1038 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1039 	    ieee80211_msg_dumppkts(vap)) {
1040 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1041 		    ether_sprintf(wh->i_addr1),
1042 		    ieee80211_mgt_subtype_name(type),
1043 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1044 	}
1045 #endif
1046 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1047 
1048 	ret = ieee80211_raw_output(vap, ni, m, params);
1049 	IEEE80211_TX_UNLOCK(ic);
1050 	return (ret);
1051 }
1052 
1053 static void
ieee80211_nulldata_transmitted(struct ieee80211_node * ni,void * arg,int status)1054 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1055     int status)
1056 {
1057 	struct ieee80211vap *vap = ni->ni_vap;
1058 
1059 	wakeup(vap);
1060 }
1061 
1062 /*
1063  * Send a null data frame to the specified node.  If the station
1064  * is setup for QoS then a QoS Null Data frame is constructed.
1065  * If this is a WDS station then a 4-address frame is constructed.
1066  *
1067  * NB: the caller is assumed to have setup a node reference
1068  *     for use; this is necessary to deal with a race condition
1069  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1070  *     we must cleanup any node reference on error;  however we
1071  *     can safely just unref it as we know it will never be the
1072  *     last reference to the node.
1073  */
1074 int
ieee80211_send_nulldata(struct ieee80211_node * ni)1075 ieee80211_send_nulldata(struct ieee80211_node *ni)
1076 {
1077 	struct ieee80211vap *vap = ni->ni_vap;
1078 	struct ieee80211com *ic = ni->ni_ic;
1079 	struct mbuf *m;
1080 	struct ieee80211_frame *wh;
1081 	int hdrlen;
1082 	uint8_t *frm;
1083 	int ret;
1084 
1085 	/* Don't send NULL frames if we've been configured not to do so. */
1086 	if ((ic->ic_flags_ext & IEEE80211_FEXT_NO_NULLDATA) != 0) {
1087 		ieee80211_node_decref(ni);
1088 		return (0);
1089 	}
1090 
1091 	if (vap->iv_state == IEEE80211_S_CAC) {
1092 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1093 		    ni, "block %s frame in CAC state", "null data");
1094 		ieee80211_node_decref(ni);
1095 		vap->iv_stats.is_tx_badstate++;
1096 		return EIO;		/* XXX */
1097 	}
1098 
1099 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1100 		hdrlen = sizeof(struct ieee80211_qosframe);
1101 	else
1102 		hdrlen = sizeof(struct ieee80211_frame);
1103 	/* NB: only WDS vap's get 4-address frames */
1104 	if (vap->iv_opmode == IEEE80211_M_WDS)
1105 		hdrlen += IEEE80211_ADDR_LEN;
1106 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1107 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1108 
1109 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1110 	if (m == NULL) {
1111 		/* XXX debug msg */
1112 		ieee80211_node_decref(ni);
1113 		vap->iv_stats.is_tx_nobuf++;
1114 		return ENOMEM;
1115 	}
1116 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1117 	    ("leading space %zd", M_LEADINGSPACE(m)));
1118 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1119 	if (m == NULL) {
1120 		/* NB: cannot happen */
1121 		ieee80211_free_node(ni);
1122 		return ENOMEM;
1123 	}
1124 
1125 	IEEE80211_TX_LOCK(ic);
1126 
1127 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1128 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1129 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1130 		uint8_t *qos;
1131 
1132 		ieee80211_send_setup(ni, m,
1133 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1134 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1135 
1136 		if (vap->iv_opmode == IEEE80211_M_WDS)
1137 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1138 		else
1139 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1140 		qos[0] = tid & IEEE80211_QOS_TID;
1141 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1142 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1143 		qos[1] = 0;
1144 	} else {
1145 		ieee80211_send_setup(ni, m,
1146 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1147 		    IEEE80211_NONQOS_TID,
1148 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1149 	}
1150 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1151 		/* NB: power management bit is never sent by an AP */
1152 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1153 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1154 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1155 	}
1156 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1157 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1158 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1159 		    NULL);
1160 	}
1161 	m->m_len = m->m_pkthdr.len = hdrlen;
1162 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1163 
1164 	M_WME_SETAC(m, WME_AC_BE);
1165 
1166 	IEEE80211_NODE_STAT(ni, tx_data);
1167 
1168 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1169 	    "send %snull data frame on channel %u, pwr mgt %s",
1170 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1171 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1172 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1173 
1174 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1175 	IEEE80211_TX_UNLOCK(ic);
1176 	return (ret);
1177 }
1178 
1179 /*
1180  * Assign priority to a frame based on any vlan tag assigned
1181  * to the station and/or any Diffserv setting in an IP header.
1182  * Finally, if an ACM policy is setup (in station mode) it's
1183  * applied.
1184  */
1185 int
ieee80211_classify(struct ieee80211_node * ni,struct mbuf * m)1186 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1187 {
1188 	const struct ether_header *eh = NULL;
1189 	uint16_t ether_type;
1190 	int v_wme_ac, d_wme_ac, ac;
1191 
1192 	if (__predict_false(m->m_flags & M_ENCAP)) {
1193 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1194 		struct llc *llc;
1195 		int hdrlen, subtype;
1196 
1197 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1198 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1199 			ac = WME_AC_BE;
1200 			goto done;
1201 		}
1202 
1203 		hdrlen = ieee80211_hdrsize(wh);
1204 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1205 			return 1;
1206 
1207 		llc = (struct llc *)mtodo(m, hdrlen);
1208 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1209 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1210 		    llc->llc_control != LLC_UI ||
1211 		    llc->llc_snap.org_code[0] != 0 ||
1212 		    llc->llc_snap.org_code[1] != 0 ||
1213 		    llc->llc_snap.org_code[2] != 0)
1214 			return 1;
1215 
1216 		ether_type = llc->llc_snap.ether_type;
1217 	} else {
1218 		eh = mtod(m, struct ether_header *);
1219 		ether_type = eh->ether_type;
1220 	}
1221 
1222 	/*
1223 	 * Always promote PAE/EAPOL frames to high priority.
1224 	 */
1225 	if (ether_type == htons(ETHERTYPE_PAE)) {
1226 		/* NB: mark so others don't need to check header */
1227 		m->m_flags |= M_EAPOL;
1228 		ac = WME_AC_VO;
1229 		goto done;
1230 	}
1231 	/*
1232 	 * Non-qos traffic goes to BE.
1233 	 */
1234 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1235 		ac = WME_AC_BE;
1236 		goto done;
1237 	}
1238 
1239 	/*
1240 	 * If node has a vlan tag then all traffic
1241 	 * to it must have a matching tag.
1242 	 */
1243 	v_wme_ac = 0;
1244 	if (ni->ni_vlan != 0) {
1245 		 if ((m->m_flags & M_VLANTAG) == 0) {
1246 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1247 			return 1;
1248 		}
1249 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1250 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1251 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1252 			return 1;
1253 		}
1254 		/* map vlan priority to AC */
1255 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1256 	}
1257 
1258 	if (eh == NULL)
1259 		goto no_eh;
1260 
1261 	/* XXX m_copydata may be too slow for fast path */
1262 	switch (ntohs(eh->ether_type)) {
1263 #ifdef INET
1264 	case ETHERTYPE_IP:
1265 	{
1266 		uint8_t tos;
1267 		/*
1268 		 * IP frame, map the DSCP bits from the TOS field.
1269 		 */
1270 		/* NB: ip header may not be in first mbuf */
1271 		m_copydata(m, sizeof(struct ether_header) +
1272 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1273 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1274 		d_wme_ac = TID_TO_WME_AC(tos);
1275 		break;
1276 	}
1277 #endif
1278 #ifdef INET6
1279 	case ETHERTYPE_IPV6:
1280 	{
1281 		uint32_t flow;
1282 		uint8_t tos;
1283 		/*
1284 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1285 		 */
1286 		m_copydata(m, sizeof(struct ether_header) +
1287 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1288 		    (caddr_t) &flow);
1289 		tos = (uint8_t)(ntohl(flow) >> 20);
1290 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1291 		d_wme_ac = TID_TO_WME_AC(tos);
1292 		break;
1293 	}
1294 #endif
1295 	default:
1296 no_eh:
1297 		d_wme_ac = WME_AC_BE;
1298 		break;
1299 	}
1300 
1301 	/*
1302 	 * Use highest priority AC.
1303 	 */
1304 	if (v_wme_ac > d_wme_ac)
1305 		ac = v_wme_ac;
1306 	else
1307 		ac = d_wme_ac;
1308 
1309 	/*
1310 	 * Apply ACM policy.
1311 	 */
1312 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1313 		static const int acmap[4] = {
1314 			WME_AC_BK,	/* WME_AC_BE */
1315 			WME_AC_BK,	/* WME_AC_BK */
1316 			WME_AC_BE,	/* WME_AC_VI */
1317 			WME_AC_VI,	/* WME_AC_VO */
1318 		};
1319 		struct ieee80211com *ic = ni->ni_ic;
1320 
1321 		while (ac != WME_AC_BK &&
1322 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1323 			ac = acmap[ac];
1324 	}
1325 done:
1326 	M_WME_SETAC(m, ac);
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Insure there is sufficient contiguous space to encapsulate the
1332  * 802.11 data frame.  If room isn't already there, arrange for it.
1333  * Drivers and cipher modules assume we have done the necessary work
1334  * and fail rudely if they don't find the space they need.
1335  */
1336 struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap * vap,int hdrsize,struct ieee80211_key * key,struct mbuf * m)1337 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1338 	struct ieee80211_key *key, struct mbuf *m)
1339 {
1340 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1341 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1342 
1343 	if (key != NULL) {
1344 		/* XXX belongs in crypto code? */
1345 		needed_space += key->wk_cipher->ic_header;
1346 		/* XXX frags */
1347 		/*
1348 		 * When crypto is being done in the host we must insure
1349 		 * the data are writable for the cipher routines; clone
1350 		 * a writable mbuf chain.
1351 		 * XXX handle SWMIC specially
1352 		 */
1353 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1354 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1355 			if (m == NULL) {
1356 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1357 				    "%s: cannot get writable mbuf\n", __func__);
1358 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1359 				return NULL;
1360 			}
1361 		}
1362 	}
1363 	/*
1364 	 * We know we are called just before stripping an Ethernet
1365 	 * header and prepending an LLC header.  This means we know
1366 	 * there will be
1367 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1368 	 * bytes recovered to which we need additional space for the
1369 	 * 802.11 header and any crypto header.
1370 	 */
1371 	/* XXX check trailing space and copy instead? */
1372 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1373 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1374 		if (n == NULL) {
1375 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1376 			    "%s: cannot expand storage\n", __func__);
1377 			vap->iv_stats.is_tx_nobuf++;
1378 			m_freem(m);
1379 			return NULL;
1380 		}
1381 		KASSERT(needed_space <= MHLEN,
1382 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1383 		/*
1384 		 * Setup new mbuf to have leading space to prepend the
1385 		 * 802.11 header and any crypto header bits that are
1386 		 * required (the latter are added when the driver calls
1387 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1388 		 */
1389 		/* NB: must be first 'cuz it clobbers m_data */
1390 		m_move_pkthdr(n, m);
1391 		n->m_len = 0;			/* NB: m_gethdr does not set */
1392 		n->m_data += needed_space;
1393 		/*
1394 		 * Pull up Ethernet header to create the expected layout.
1395 		 * We could use m_pullup but that's overkill (i.e. we don't
1396 		 * need the actual data) and it cannot fail so do it inline
1397 		 * for speed.
1398 		 */
1399 		/* NB: struct ether_header is known to be contiguous */
1400 		n->m_len += sizeof(struct ether_header);
1401 		m->m_len -= sizeof(struct ether_header);
1402 		m->m_data += sizeof(struct ether_header);
1403 		/*
1404 		 * Replace the head of the chain.
1405 		 */
1406 		n->m_next = m;
1407 		m = n;
1408 	}
1409 	return m;
1410 #undef TO_BE_RECLAIMED
1411 }
1412 
1413 /*
1414  * Return the transmit key to use in sending a unicast frame.
1415  * If a unicast key is set we use that.  When no unicast key is set
1416  * we fall back to the default transmit key.
1417  */
1418 static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1419 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1420 	struct ieee80211_node *ni)
1421 {
1422 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1423 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1424 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1425 			return NULL;
1426 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1427 	} else {
1428 		return &ni->ni_ucastkey;
1429 	}
1430 }
1431 
1432 /*
1433  * Return the transmit key to use in sending a multicast frame.
1434  * Multicast traffic always uses the group key which is installed as
1435  * the default tx key.
1436  */
1437 static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1438 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1439 	struct ieee80211_node *ni)
1440 {
1441 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1442 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1443 		return NULL;
1444 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1445 }
1446 
1447 /*
1448  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1449  * If an error is encountered NULL is returned.  The caller is required
1450  * to provide a node reference and pullup the ethernet header in the
1451  * first mbuf.
1452  *
1453  * NB: Packet is assumed to be processed by ieee80211_classify which
1454  *     marked EAPOL frames w/ M_EAPOL.
1455  */
1456 struct mbuf *
ieee80211_encap(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m)1457 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1458     struct mbuf *m)
1459 {
1460 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1461 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1462 	struct ieee80211com *ic = ni->ni_ic;
1463 #ifdef IEEE80211_SUPPORT_MESH
1464 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1465 	struct ieee80211_meshcntl_ae10 *mc;
1466 	struct ieee80211_mesh_route *rt = NULL;
1467 	int dir = -1;
1468 #endif
1469 	struct ether_header eh;
1470 	struct ieee80211_frame *wh;
1471 	struct ieee80211_key *key;
1472 	struct llc *llc;
1473 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1474 	int meshhdrsize, meshae;
1475 	uint8_t *qos;
1476 	int is_amsdu = 0;
1477 
1478 	IEEE80211_TX_LOCK_ASSERT(ic);
1479 
1480 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1481 
1482 	/*
1483 	 * Copy existing Ethernet header to a safe place.  The
1484 	 * rest of the code assumes it's ok to strip it when
1485 	 * reorganizing state for the final encapsulation.
1486 	 */
1487 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1488 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1489 
1490 	/*
1491 	 * Insure space for additional headers.  First identify
1492 	 * transmit key to use in calculating any buffer adjustments
1493 	 * required.  This is also used below to do privacy
1494 	 * encapsulation work.  Then calculate the 802.11 header
1495 	 * size and any padding required by the driver.
1496 	 *
1497 	 * Note key may be NULL if we fall back to the default
1498 	 * transmit key and that is not set.  In that case the
1499 	 * buffer may not be expanded as needed by the cipher
1500 	 * routines, but they will/should discard it.
1501 	 */
1502 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1503 		if (vap->iv_opmode == IEEE80211_M_STA ||
1504 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1505 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1506 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1507 			key = ieee80211_crypto_getucastkey(vap, ni);
1508 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1509 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1510 			/*
1511 			 * Use ucastkey for DWDS transmit nodes, multicast
1512 			 * or otherwise.
1513 			 *
1514 			 * This is required to ensure that multicast frames
1515 			 * from a DWDS AP to a DWDS STA is encrypted with
1516 			 * a key that can actually work.
1517 			 *
1518 			 * There's no default key for multicast traffic
1519 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1520 			 * AP VAP, the dynamically created per-STA WDS node)
1521 			 * so encap fails and transmit fails.
1522 			 */
1523 			key = ieee80211_crypto_getucastkey(vap, ni);
1524 		} else {
1525 			key = ieee80211_crypto_getmcastkey(vap, ni);
1526 		}
1527 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1528 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1529 			    eh.ether_dhost,
1530 			    "no default transmit key (%s) deftxkey %u",
1531 			    __func__, vap->iv_def_txkey);
1532 			vap->iv_stats.is_tx_nodefkey++;
1533 			goto bad;
1534 		}
1535 	} else
1536 		key = NULL;
1537 	/*
1538 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1539 	 * frames so suppress use.  This may be an issue if other
1540 	 * ap's require all data frames to be QoS-encapsulated
1541 	 * once negotiated in which case we'll need to make this
1542 	 * configurable.
1543 	 *
1544 	 * Don't send multicast QoS frames.
1545 	 * Technically multicast frames can be QoS if all stations in the
1546 	 * BSS are also QoS.
1547 	 *
1548 	 * NB: mesh data frames are QoS, including multicast frames.
1549 	 */
1550 	addqos =
1551 	    (((is_mcast == 0) && (ni->ni_flags &
1552 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1553 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1554 	    (m->m_flags & M_EAPOL) == 0;
1555 
1556 	if (addqos)
1557 		hdrsize = sizeof(struct ieee80211_qosframe);
1558 	else
1559 		hdrsize = sizeof(struct ieee80211_frame);
1560 #ifdef IEEE80211_SUPPORT_MESH
1561 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1562 		/*
1563 		 * Mesh data frames are encapsulated according to the
1564 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1565 		 * o Group Addressed data (aka multicast) originating
1566 		 *   at the local sta are sent w/ 3-address format and
1567 		 *   address extension mode 00
1568 		 * o Individually Addressed data (aka unicast) originating
1569 		 *   at the local sta are sent w/ 4-address format and
1570 		 *   address extension mode 00
1571 		 * o Group Addressed data forwarded from a non-mesh sta are
1572 		 *   sent w/ 3-address format and address extension mode 01
1573 		 * o Individually Address data from another sta are sent
1574 		 *   w/ 4-address format and address extension mode 10
1575 		 */
1576 		is4addr = 0;		/* NB: don't use, disable */
1577 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1578 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1579 			KASSERT(rt != NULL, ("route is NULL"));
1580 			dir = IEEE80211_FC1_DIR_DSTODS;
1581 			hdrsize += IEEE80211_ADDR_LEN;
1582 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1583 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1584 				    vap->iv_myaddr)) {
1585 					IEEE80211_NOTE_MAC(vap,
1586 					    IEEE80211_MSG_MESH,
1587 					    eh.ether_dhost,
1588 					    "%s", "trying to send to ourself");
1589 					goto bad;
1590 				}
1591 				meshae = IEEE80211_MESH_AE_10;
1592 				meshhdrsize =
1593 				    sizeof(struct ieee80211_meshcntl_ae10);
1594 			} else {
1595 				meshae = IEEE80211_MESH_AE_00;
1596 				meshhdrsize =
1597 				    sizeof(struct ieee80211_meshcntl);
1598 			}
1599 		} else {
1600 			dir = IEEE80211_FC1_DIR_FROMDS;
1601 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1602 				/* proxy group */
1603 				meshae = IEEE80211_MESH_AE_01;
1604 				meshhdrsize =
1605 				    sizeof(struct ieee80211_meshcntl_ae01);
1606 			} else {
1607 				/* group */
1608 				meshae = IEEE80211_MESH_AE_00;
1609 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1610 			}
1611 		}
1612 	} else {
1613 #endif
1614 		/*
1615 		 * 4-address frames need to be generated for:
1616 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1617 		 * o packets sent through a vap marked for relaying
1618 		 *   (e.g. a station operating with dynamic WDS)
1619 		 */
1620 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1621 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1622 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1623 		if (is4addr)
1624 			hdrsize += IEEE80211_ADDR_LEN;
1625 		meshhdrsize = meshae = 0;
1626 #ifdef IEEE80211_SUPPORT_MESH
1627 	}
1628 #endif
1629 	/*
1630 	 * Honor driver DATAPAD requirement.
1631 	 */
1632 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1633 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1634 	else
1635 		hdrspace = hdrsize;
1636 
1637 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1638 		/*
1639 		 * Normal frame.
1640 		 */
1641 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1642 		if (m == NULL) {
1643 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1644 			goto bad;
1645 		}
1646 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1647 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1648 		llc = mtod(m, struct llc *);
1649 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1650 		llc->llc_control = LLC_UI;
1651 		llc->llc_snap.org_code[0] = 0;
1652 		llc->llc_snap.org_code[1] = 0;
1653 		llc->llc_snap.org_code[2] = 0;
1654 		llc->llc_snap.ether_type = eh.ether_type;
1655 	} else {
1656 #ifdef IEEE80211_SUPPORT_SUPERG
1657 		/*
1658 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1659 		 *
1660 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1661 		 * anywhere for some reason.  But, since 11n requires
1662 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1663 		 */
1664 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1665 		if (ieee80211_amsdu_tx_ok(ni)) {
1666 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1667 			is_amsdu = 1;
1668 		} else {
1669 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1670 		}
1671 		if (m == NULL)
1672 #endif
1673 			goto bad;
1674 	}
1675 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1676 
1677 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1678 	if (m == NULL) {
1679 		vap->iv_stats.is_tx_nobuf++;
1680 		goto bad;
1681 	}
1682 	wh = mtod(m, struct ieee80211_frame *);
1683 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1684 	*(uint16_t *)wh->i_dur = 0;
1685 	qos = NULL;	/* NB: quiet compiler */
1686 	if (is4addr) {
1687 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1688 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1689 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1690 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1691 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1692 	} else switch (vap->iv_opmode) {
1693 	case IEEE80211_M_STA:
1694 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1695 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1696 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1697 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1698 		break;
1699 	case IEEE80211_M_IBSS:
1700 	case IEEE80211_M_AHDEMO:
1701 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1702 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1703 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1704 		/*
1705 		 * NB: always use the bssid from iv_bss as the
1706 		 *     neighbor's may be stale after an ibss merge
1707 		 */
1708 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1709 		break;
1710 	case IEEE80211_M_HOSTAP:
1711 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1712 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1713 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1714 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1715 		break;
1716 #ifdef IEEE80211_SUPPORT_MESH
1717 	case IEEE80211_M_MBSS:
1718 		/* NB: offset by hdrspace to deal with DATAPAD */
1719 		mc = (struct ieee80211_meshcntl_ae10 *)
1720 		     (mtod(m, uint8_t *) + hdrspace);
1721 		wh->i_fc[1] = dir;
1722 		switch (meshae) {
1723 		case IEEE80211_MESH_AE_00:	/* no proxy */
1724 			mc->mc_flags = 0;
1725 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1726 				IEEE80211_ADDR_COPY(wh->i_addr1,
1727 				    ni->ni_macaddr);
1728 				IEEE80211_ADDR_COPY(wh->i_addr2,
1729 				    vap->iv_myaddr);
1730 				IEEE80211_ADDR_COPY(wh->i_addr3,
1731 				    eh.ether_dhost);
1732 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1733 				    eh.ether_shost);
1734 				qos =((struct ieee80211_qosframe_addr4 *)
1735 				    wh)->i_qos;
1736 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1737 				 /* mcast */
1738 				IEEE80211_ADDR_COPY(wh->i_addr1,
1739 				    eh.ether_dhost);
1740 				IEEE80211_ADDR_COPY(wh->i_addr2,
1741 				    vap->iv_myaddr);
1742 				IEEE80211_ADDR_COPY(wh->i_addr3,
1743 				    eh.ether_shost);
1744 				qos = ((struct ieee80211_qosframe *)
1745 				    wh)->i_qos;
1746 			}
1747 			break;
1748 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1749 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1750 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1751 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1752 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1753 			mc->mc_flags = 1;
1754 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1755 			    eh.ether_shost);
1756 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1757 			break;
1758 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1759 			KASSERT(rt != NULL, ("route is NULL"));
1760 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1761 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1762 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1763 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1764 			mc->mc_flags = IEEE80211_MESH_AE_10;
1765 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1766 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1767 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1768 			break;
1769 		default:
1770 			KASSERT(0, ("meshae %d", meshae));
1771 			break;
1772 		}
1773 		mc->mc_ttl = ms->ms_ttl;
1774 		ms->ms_seq++;
1775 		le32enc(mc->mc_seq, ms->ms_seq);
1776 		break;
1777 #endif
1778 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1779 	default:
1780 		goto bad;
1781 	}
1782 	if (m->m_flags & M_MORE_DATA)
1783 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1784 	if (addqos) {
1785 		int ac, tid;
1786 
1787 		if (is4addr) {
1788 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1789 		/* NB: mesh case handled earlier */
1790 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1791 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1792 		ac = M_WME_GETAC(m);
1793 		/* map from access class/queue to 11e header priorty value */
1794 		tid = WME_AC_TO_TID(ac);
1795 		qos[0] = tid & IEEE80211_QOS_TID;
1796 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1797 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1798 #ifdef IEEE80211_SUPPORT_MESH
1799 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1800 			qos[1] = IEEE80211_QOS_MC;
1801 		else
1802 #endif
1803 			qos[1] = 0;
1804 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1805 
1806 		/*
1807 		 * If this is an A-MSDU then ensure we set the
1808 		 * relevant field.
1809 		 */
1810 		if (is_amsdu)
1811 			qos[0] |= IEEE80211_QOS_AMSDU;
1812 
1813 		/*
1814 		 * XXX TODO TX lock is needed for atomic updates of sequence
1815 		 * numbers.  If the driver does it, then don't do it here;
1816 		 * and we don't need the TX lock held.
1817 		 */
1818 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1819 			if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1820 				ieee80211_output_seqno_assign(ni, tid, m);
1821 		} else {
1822 			/*
1823 			 * NB: don't assign a sequence # to potential
1824 			 * aggregates; we expect this happens at the
1825 			 * point the frame comes off any aggregation q
1826 			 * as otherwise we may introduce holes in the
1827 			 * BA sequence space and/or make window accouting
1828 			 * more difficult.
1829 			 *
1830 			 * XXX may want to control this with a driver
1831 			 * capability; this may also change when we pull
1832 			 * aggregation up into net80211
1833 			 */
1834 			/* NB: zero out i_seq field (for s/w encryption etc) */
1835 			*(uint16_t *)wh->i_seq = 0;
1836 		}
1837 	} else {
1838 		if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1839 			ieee80211_output_seqno_assign(ni, IEEE80211_NONQOS_TID,
1840 			    m);
1841 		/*
1842 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1843 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1844 		 */
1845 		if (is_amsdu)
1846 			net80211_vap_printf(vap,
1847 			    "%s: XXX ERROR: is_amsdu set; not QoS!\n",
1848 			    __func__);
1849 	}
1850 
1851 	/*
1852 	 * Check if xmit fragmentation is required.
1853 	 *
1854 	 * If the hardware does fragmentation offload, then don't bother
1855 	 * doing it here.
1856 	 *
1857 	 * Don't send AMPDU/FF/AMSDU through fragmentation.
1858 	 *
1859 	 * 802.11-2016 10.2.7 (Fragmentation/defragmentation overview)
1860 	 */
1861 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1862 		txfrag = 0;
1863 	else
1864 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1865 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1866 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1867 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1868 
1869 	if (key != NULL) {
1870 		/*
1871 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1872 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1873 		 */
1874 		if ((m->m_flags & M_EAPOL) == 0 ||
1875 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1876 		     (vap->iv_opmode == IEEE80211_M_STA ?
1877 		      !IEEE80211_KEY_UNDEFINED(key) :
1878 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1879 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1880 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1881 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1882 				    eh.ether_dhost,
1883 				    "%s", "enmic failed, discard frame");
1884 				vap->iv_stats.is_crypto_enmicfail++;
1885 				goto bad;
1886 			}
1887 		}
1888 	}
1889 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1890 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1891 		goto bad;
1892 
1893 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1894 
1895 	IEEE80211_NODE_STAT(ni, tx_data);
1896 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1897 		IEEE80211_NODE_STAT(ni, tx_mcast);
1898 		m->m_flags |= M_MCAST;
1899 	} else
1900 		IEEE80211_NODE_STAT(ni, tx_ucast);
1901 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1902 
1903 	return m;
1904 bad:
1905 	if (m != NULL)
1906 		m_freem(m);
1907 	return NULL;
1908 #undef WH4
1909 #undef MC01
1910 }
1911 
1912 /**
1913  * @brief Free an 802.11 frame mbuf.
1914  *
1915  * Note that since a "frame" may consist of an mbuf packet
1916  * list containing the 802.11 fragments that make up said
1917  * frame, it will free everything in the mbuf packet list.
1918  *
1919  * @param m     mbuf packet list to free
1920  */
1921 void
ieee80211_free_mbuf(struct mbuf * m)1922 ieee80211_free_mbuf(struct mbuf *m)
1923 {
1924 	struct mbuf *next;
1925 
1926 	if (m == NULL)
1927 		return;
1928 
1929 	do {
1930 		next = m->m_nextpkt;
1931 		m->m_nextpkt = NULL;
1932 		m_freem(m);
1933 	} while ((m = next) != NULL);
1934 }
1935 
1936 /**
1937  * @brief Fragment the frame according to the specified mtu.
1938  *
1939  * This implements the fragmentation part of 802.11-2016 10.2.7
1940  * (Fragmentation/defragmentation overview.)
1941  *
1942  * The size of the 802.11 header (w/o padding) is provided
1943  * so we don't need to recalculate it.  We create a new
1944  * mbuf for each fragment and chain it through m_nextpkt;
1945  * we might be able to optimize this by reusing the original
1946  * packet's mbufs but that is significantly more complicated.
1947  *
1948  * A node reference is NOT acquired for each fragment in
1949  * the list - the caller is assumed to have taken a node
1950  * reference for the whole list.  The fragment mbufs do not
1951  * have a node pointer.
1952  *
1953  * Fragments will have the sequence number and fragment numbers
1954  * assigned.  However, Fragments will NOT have a sequence number
1955  * assigned via M_SEQNO_SET.
1956  *
1957  * This must be called after assigning sequence numbers; it
1958  * modifies the i_seq field in the 802.11 header to include
1959  * the fragment number.
1960  *
1961  * @param vap		ieee80211vap interface
1962  * @param m0		pointer to mbuf list to fragment
1963  * @param hdrsize	header size to reserver
1964  * @param ciphdrsize	crypto cipher header size to reserve
1965  * @param mtu		maximum fragment size
1966  * @retval 1 if successful, with the mbuf pointed at by m0
1967  *   turned into an mbuf list of fragments (with the original
1968  *   mbuf being truncated.)
1969  * @retval 0 if failure, the mbuf needs to be freed by the caller
1970  */
1971 static int
ieee80211_fragment(struct ieee80211vap * vap,struct mbuf * m0,u_int hdrsize,u_int ciphdrsize,u_int mtu)1972 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1973 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1974 {
1975 	struct ieee80211com *ic = vap->iv_ic;
1976 	struct ieee80211_frame *wh, *whf;
1977 	struct mbuf *m, *prev;
1978 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1979 	u_int hdrspace;
1980 
1981 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1982 	KASSERT(m0->m_pkthdr.len > mtu,
1983 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1984 
1985 	/*
1986 	 * Honor driver DATAPAD requirement.
1987 	 */
1988 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1989 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1990 	else
1991 		hdrspace = hdrsize;
1992 
1993 	wh = mtod(m0, struct ieee80211_frame *);
1994 	/* NB: mark the first frag; it will be propagated below */
1995 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1996 	totalhdrsize = hdrspace + ciphdrsize;
1997 	fragno = 1;
1998 	off = mtu - ciphdrsize;
1999 	remainder = m0->m_pkthdr.len - off;
2000 	prev = m0;
2001 	do {
2002 		fragsize = MIN(totalhdrsize + remainder, mtu);
2003 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2004 		if (m == NULL)
2005 			goto bad;
2006 		/* leave room to prepend any cipher header */
2007 		m_align(m, fragsize - ciphdrsize);
2008 
2009 		/*
2010 		 * Form the header in the fragment.  Note that since
2011 		 * we mark the first fragment with the MORE_FRAG bit
2012 		 * it automatically is propagated to each fragment; we
2013 		 * need only clear it on the last fragment (done below).
2014 		 * NB: frag 1+ dont have Mesh Control field present.
2015 		 */
2016 		whf = mtod(m, struct ieee80211_frame *);
2017 		memcpy(whf, wh, hdrsize);
2018 #ifdef IEEE80211_SUPPORT_MESH
2019 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2020 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2021 #endif
2022 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2023 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2024 				IEEE80211_SEQ_FRAG_SHIFT);
2025 		fragno++;
2026 
2027 		payload = fragsize - totalhdrsize;
2028 		/* NB: destination is known to be contiguous */
2029 
2030 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2031 		m->m_len = hdrspace + payload;
2032 		m->m_pkthdr.len = hdrspace + payload;
2033 		m->m_flags |= M_FRAG;
2034 
2035 		/* chain up the fragment */
2036 		prev->m_nextpkt = m;
2037 		prev = m;
2038 
2039 		/* deduct fragment just formed */
2040 		remainder -= payload;
2041 		off += payload;
2042 	} while (remainder != 0);
2043 
2044 	/* set the last fragment */
2045 	m->m_flags |= M_LASTFRAG;
2046 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2047 
2048 	/* strip first mbuf now that everything has been copied */
2049 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2050 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2051 
2052 	vap->iv_stats.is_tx_fragframes++;
2053 	vap->iv_stats.is_tx_frags += fragno-1;
2054 
2055 	return 1;
2056 bad:
2057 	/* reclaim fragments but leave original frame for caller to free */
2058 	ieee80211_free_mbuf(m0->m_nextpkt);
2059 	m0->m_nextpkt = NULL;
2060 	return 0;
2061 }
2062 
2063 /*
2064  * Add a supported rates element id to a frame.
2065  */
2066 uint8_t *
ieee80211_add_rates(uint8_t * frm,const struct ieee80211_rateset * rs)2067 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2068 {
2069 	int nrates;
2070 
2071 	*frm++ = IEEE80211_ELEMID_RATES;
2072 	nrates = rs->rs_nrates;
2073 	if (nrates > IEEE80211_RATE_SIZE)
2074 		nrates = IEEE80211_RATE_SIZE;
2075 	*frm++ = nrates;
2076 	memcpy(frm, rs->rs_rates, nrates);
2077 	return frm + nrates;
2078 }
2079 
2080 /*
2081  * Add an extended supported rates element id to a frame.
2082  */
2083 uint8_t *
ieee80211_add_xrates(uint8_t * frm,const struct ieee80211_rateset * rs)2084 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2085 {
2086 	/*
2087 	 * Add an extended supported rates element if operating in 11g mode.
2088 	 */
2089 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2090 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2091 		*frm++ = IEEE80211_ELEMID_XRATES;
2092 		*frm++ = nrates;
2093 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2094 		frm += nrates;
2095 	}
2096 	return frm;
2097 }
2098 
2099 /*
2100  * Add an ssid element to a frame.
2101  */
2102 uint8_t *
ieee80211_add_ssid(uint8_t * frm,const uint8_t * ssid,u_int len)2103 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2104 {
2105 	*frm++ = IEEE80211_ELEMID_SSID;
2106 	*frm++ = len;
2107 	memcpy(frm, ssid, len);
2108 	return frm + len;
2109 }
2110 
2111 /*
2112  * Add an erp element to a frame.
2113  */
2114 static uint8_t *
ieee80211_add_erp(uint8_t * frm,struct ieee80211vap * vap)2115 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2116 {
2117 	struct ieee80211com *ic = vap->iv_ic;
2118 	uint8_t erp;
2119 
2120 	*frm++ = IEEE80211_ELEMID_ERP;
2121 	*frm++ = 1;
2122 	erp = 0;
2123 
2124 	/*
2125 	 * TODO:  This uses the global flags for now because
2126 	 * the per-VAP flags are fine for per-VAP, but don't
2127 	 * take into account which VAPs share the same channel
2128 	 * and which are on different channels.
2129 	 *
2130 	 * ERP and HT/VHT protection mode is a function of
2131 	 * how many stations are on a channel, not specifically
2132 	 * the VAP or global.  But, until we grow that status,
2133 	 * the global flag will have to do.
2134 	 */
2135 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2136 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2137 
2138 	/*
2139 	 * TODO: same as above; these should be based not
2140 	 * on the vap or ic flags, but instead on a combination
2141 	 * of per-VAP and channels.
2142 	 */
2143 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2144 		erp |= IEEE80211_ERP_USE_PROTECTION;
2145 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2146 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2147 	*frm++ = erp;
2148 	return frm;
2149 }
2150 
2151 /*
2152  * Add a CFParams element to a frame.
2153  */
2154 static uint8_t *
ieee80211_add_cfparms(uint8_t * frm,struct ieee80211com * ic)2155 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2156 {
2157 #define	ADDSHORT(frm, v) do {	\
2158 	le16enc(frm, v);	\
2159 	frm += 2;		\
2160 } while (0)
2161 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2162 	*frm++ = 6;
2163 	*frm++ = 0;		/* CFP count */
2164 	*frm++ = 2;		/* CFP period */
2165 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2166 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2167 	return frm;
2168 #undef ADDSHORT
2169 }
2170 
2171 static __inline uint8_t *
add_appie(uint8_t * frm,const struct ieee80211_appie * ie)2172 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2173 {
2174 	memcpy(frm, ie->ie_data, ie->ie_len);
2175 	return frm + ie->ie_len;
2176 }
2177 
2178 static __inline uint8_t *
add_ie(uint8_t * frm,const uint8_t * ie)2179 add_ie(uint8_t *frm, const uint8_t *ie)
2180 {
2181 	memcpy(frm, ie, 2 + ie[1]);
2182 	return frm + 2 + ie[1];
2183 }
2184 
2185 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2186 /*
2187  * Add a WME information element to a frame.
2188  */
2189 uint8_t *
ieee80211_add_wme_info(uint8_t * frm,struct ieee80211_wme_state * wme,struct ieee80211_node * ni)2190 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2191     struct ieee80211_node *ni)
2192 {
2193 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2194 	struct ieee80211vap *vap = ni->ni_vap;
2195 
2196 	*frm++ = IEEE80211_ELEMID_VENDOR;
2197 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2198 	memcpy(frm, oui, sizeof(oui));
2199 	frm += sizeof(oui);
2200 	*frm++ = WME_INFO_OUI_SUBTYPE;
2201 	*frm++ = WME_VERSION;
2202 
2203 	/* QoS info field depends upon operating mode */
2204 	switch (vap->iv_opmode) {
2205 	case IEEE80211_M_HOSTAP:
2206 		*frm = wme->wme_bssChanParams.cap_info;
2207 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2208 			*frm |= WME_CAPINFO_UAPSD_EN;
2209 		frm++;
2210 		break;
2211 	case IEEE80211_M_STA:
2212 		/*
2213 		 * NB: UAPSD drivers must set this up in their
2214 		 * VAP creation method.
2215 		 */
2216 		*frm++ = vap->iv_uapsdinfo;
2217 		break;
2218 	default:
2219 		*frm++ = 0;
2220 		break;
2221 	}
2222 
2223 	return frm;
2224 }
2225 
2226 /*
2227  * Add a WME parameters element to a frame.
2228  */
2229 static uint8_t *
ieee80211_add_wme_param(uint8_t * frm,struct ieee80211_wme_state * wme,int uapsd_enable)2230 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2231     int uapsd_enable)
2232 {
2233 #define	ADDSHORT(frm, v) do {	\
2234 	le16enc(frm, v);	\
2235 	frm += 2;		\
2236 } while (0)
2237 	/* NB: this works 'cuz a param has an info at the front */
2238 	static const struct ieee80211_wme_info param = {
2239 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2240 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2241 		.wme_oui	= { WME_OUI_BYTES },
2242 		.wme_type	= WME_OUI_TYPE,
2243 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2244 		.wme_version	= WME_VERSION,
2245 	};
2246 	int i;
2247 
2248 	memcpy(frm, &param, sizeof(param));
2249 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2250 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2251 	if (uapsd_enable)
2252 		*frm |= WME_CAPINFO_UAPSD_EN;
2253 	frm++;
2254 	*frm++ = 0;					/* reserved field */
2255 	/* XXX TODO - U-APSD bits - SP, flags below */
2256 	for (i = 0; i < WME_NUM_AC; i++) {
2257 		const struct wmeParams *ac =
2258 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2259 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2260 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2261 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2262 		       ;
2263 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2264 			    WME_PARAM_LOGCWMAX)
2265 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2266 			    WME_PARAM_LOGCWMIN)
2267 		       ;
2268 		ADDSHORT(frm, ac->wmep_txopLimit);
2269 	}
2270 	return frm;
2271 #undef ADDSHORT
2272 }
2273 #undef WME_OUI_BYTES
2274 
2275 /*
2276  * Add an 11h Power Constraint element to a frame.
2277  */
2278 static uint8_t *
ieee80211_add_powerconstraint(uint8_t * frm,struct ieee80211vap * vap)2279 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2280 {
2281 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2282 	/* XXX per-vap tx power limit? */
2283 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2284 
2285 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2286 	frm[1] = 1;
2287 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2288 	return frm + 3;
2289 }
2290 
2291 /*
2292  * Add an 11h Power Capability element to a frame.
2293  */
2294 static uint8_t *
ieee80211_add_powercapability(uint8_t * frm,const struct ieee80211_channel * c)2295 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2296 {
2297 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2298 	frm[1] = 2;
2299 	frm[2] = c->ic_minpower;
2300 	frm[3] = c->ic_maxpower;
2301 	return frm + 4;
2302 }
2303 
2304 /*
2305  * Add an 11h Supported Channels element to a frame.
2306  */
2307 static uint8_t *
ieee80211_add_supportedchannels(uint8_t * frm,struct ieee80211com * ic)2308 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2309 {
2310 	static const int ielen = 26;
2311 
2312 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2313 	frm[1] = ielen;
2314 	/* XXX not correct */
2315 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2316 	return frm + 2 + ielen;
2317 }
2318 
2319 /*
2320  * Add an 11h Quiet time element to a frame.
2321  */
2322 static uint8_t *
ieee80211_add_quiet(uint8_t * frm,struct ieee80211vap * vap,int update)2323 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2324 {
2325 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2326 
2327 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2328 	quiet->len = 6;
2329 
2330 	/*
2331 	 * Only update every beacon interval - otherwise probe responses
2332 	 * would update the quiet count value.
2333 	 */
2334 	if (update) {
2335 		if (vap->iv_quiet_count_value == 1)
2336 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2337 		else if (vap->iv_quiet_count_value > 1)
2338 			vap->iv_quiet_count_value--;
2339 	}
2340 
2341 	if (vap->iv_quiet_count_value == 0) {
2342 		/* value 0 is reserved as per 802.11h standerd */
2343 		vap->iv_quiet_count_value = 1;
2344 	}
2345 
2346 	quiet->tbttcount = vap->iv_quiet_count_value;
2347 	quiet->period = vap->iv_quiet_period;
2348 	quiet->duration = htole16(vap->iv_quiet_duration);
2349 	quiet->offset = htole16(vap->iv_quiet_offset);
2350 	return frm + sizeof(*quiet);
2351 }
2352 
2353 /*
2354  * Add an 11h Channel Switch Announcement element to a frame.
2355  * Note that we use the per-vap CSA count to adjust the global
2356  * counter so we can use this routine to form probe response
2357  * frames and get the current count.
2358  */
2359 static uint8_t *
ieee80211_add_csa(uint8_t * frm,struct ieee80211vap * vap)2360 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2361 {
2362 	struct ieee80211com *ic = vap->iv_ic;
2363 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2364 
2365 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2366 	csa->csa_len = 3;
2367 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2368 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2369 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2370 	return frm + sizeof(*csa);
2371 }
2372 
2373 /*
2374  * Add an 11h country information element to a frame.
2375  */
2376 static uint8_t *
ieee80211_add_countryie(uint8_t * frm,struct ieee80211com * ic)2377 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2378 {
2379 
2380 	if (ic->ic_countryie == NULL ||
2381 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2382 		/*
2383 		 * Handle lazy construction of ie.  This is done on
2384 		 * first use and after a channel change that requires
2385 		 * re-calculation.
2386 		 */
2387 		if (ic->ic_countryie != NULL)
2388 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2389 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2390 		if (ic->ic_countryie == NULL)
2391 			return frm;
2392 		ic->ic_countryie_chan = ic->ic_bsschan;
2393 	}
2394 	return add_appie(frm, ic->ic_countryie);
2395 }
2396 
2397 uint8_t *
ieee80211_add_wpa(uint8_t * frm,const struct ieee80211vap * vap)2398 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2399 {
2400 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2401 		return (add_ie(frm, vap->iv_wpa_ie));
2402 	else {
2403 		/* XXX else complain? */
2404 		return (frm);
2405 	}
2406 }
2407 
2408 uint8_t *
ieee80211_add_rsn(uint8_t * frm,const struct ieee80211vap * vap)2409 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2410 {
2411 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2412 		return (add_ie(frm, vap->iv_rsn_ie));
2413 	else {
2414 		/* XXX else complain? */
2415 		return (frm);
2416 	}
2417 }
2418 
2419 uint8_t *
ieee80211_add_qos(uint8_t * frm,const struct ieee80211_node * ni)2420 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2421 {
2422 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2423 		*frm++ = IEEE80211_ELEMID_QOS;
2424 		*frm++ = 1;
2425 		*frm++ = 0;
2426 	}
2427 
2428 	return (frm);
2429 }
2430 
2431 /*
2432  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2433  * and any optional information element data;  some helper functions as FW based
2434  * HW scans need some of that information passed too.
2435  */
2436 static uint32_t
ieee80211_probereq_ie_len(struct ieee80211vap * vap,struct ieee80211com * ic)2437 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2438 {
2439 	const struct ieee80211_rateset *rs;
2440 
2441 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2442 
2443 	/*
2444 	 * prreq frame format
2445 	 *	[tlv] ssid
2446 	 *	[tlv] supported rates
2447 	 *	[tlv] extended supported rates (if needed)
2448 	 *	[tlv] HT cap (optional)
2449 	 *	[tlv] VHT cap (optional)
2450 	 *	[tlv] WPA (optional)
2451 	 *	[tlv] user-specified ie's
2452 	 */
2453 	return ( 2 + IEEE80211_NWID_LEN
2454 	       + 2 + IEEE80211_RATE_SIZE
2455 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2456 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2457 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2458 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2459 	                sizeof(struct ieee80211_ie_htcap) : 0)
2460 #ifdef notyet
2461 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2462 	       + 2 + sizeof(struct ieee80211_vht_cap)
2463 #endif
2464 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2465 	           vap->iv_wpa_ie[1] : 0)
2466 	       + (vap->iv_appie_probereq != NULL ?
2467 		   vap->iv_appie_probereq->ie_len : 0)
2468 	);
2469 }
2470 
2471 int
ieee80211_probereq_ie(struct ieee80211vap * vap,struct ieee80211com * ic,uint8_t ** frmp,uint32_t * frmlen,const uint8_t * ssid,size_t ssidlen,bool alloc)2472 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2473     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2474     bool alloc)
2475 {
2476 	const struct ieee80211_rateset *rs;
2477 	uint8_t	*frm;
2478 	uint32_t len;
2479 
2480 	if (!alloc && (frmp == NULL || frmlen == NULL))
2481 		return (EINVAL);
2482 
2483 	len = ieee80211_probereq_ie_len(vap, ic);
2484 	if (!alloc && len > *frmlen)
2485 		return (ENOBUFS);
2486 
2487 	/* For HW scans we usually do not pass in the SSID as IE. */
2488 	if (ssidlen == -1)
2489 		len -= (2 + IEEE80211_NWID_LEN);
2490 
2491 	if (alloc) {
2492 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2493 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2494 		*frmp = frm;
2495 		*frmlen = len;
2496 	} else
2497 		frm = *frmp;
2498 
2499 	if (ssidlen != -1)
2500 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2501 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2502 	frm = ieee80211_add_rates(frm, rs);
2503 	frm = ieee80211_add_xrates(frm, rs);
2504 
2505 	/*
2506 	 * Note: we can't use bss; we don't have one yet.
2507 	 *
2508 	 * So, we should announce our capabilities
2509 	 * in this channel mode (2g/5g), not the
2510 	 * channel details itself.
2511 	 */
2512 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2513 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2514 		struct ieee80211_channel *c;
2515 
2516 		/*
2517 		 * Get the HT channel that we should try upgrading to.
2518 		 * If we can do 40MHz then this'll upgrade it appropriately.
2519 		 */
2520 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2521 		    vap->iv_flags_ht);
2522 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2523 	}
2524 
2525 	/*
2526 	 * XXX TODO: need to figure out what/how to update the
2527 	 * VHT channel.
2528 	 */
2529 #ifdef notyet
2530 	if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2531 		struct ieee80211_channel *c;
2532 
2533 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2534 		    vap->iv_flags_ht);
2535 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2536 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2537 	}
2538 #endif
2539 
2540 	frm = ieee80211_add_wpa(frm, vap);
2541 	if (vap->iv_appie_probereq != NULL)
2542 		frm = add_appie(frm, vap->iv_appie_probereq);
2543 
2544 	if (!alloc) {
2545 		*frmp = frm;
2546 		*frmlen = len;
2547 	}
2548 
2549 	return (0);
2550 }
2551 
2552 int
ieee80211_send_probereq(struct ieee80211_node * ni,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t * ssid,size_t ssidlen)2553 ieee80211_send_probereq(struct ieee80211_node *ni,
2554 	const uint8_t sa[IEEE80211_ADDR_LEN],
2555 	const uint8_t da[IEEE80211_ADDR_LEN],
2556 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2557 	const uint8_t *ssid, size_t ssidlen)
2558 {
2559 	struct ieee80211vap *vap = ni->ni_vap;
2560 	struct ieee80211com *ic = ni->ni_ic;
2561 	struct ieee80211_node *bss;
2562 	const struct ieee80211_txparam *tp;
2563 	struct ieee80211_bpf_params params;
2564 	struct mbuf *m;
2565 	uint8_t *frm;
2566 	uint32_t frmlen;
2567 	int ret;
2568 
2569 	bss = ieee80211_ref_node(vap->iv_bss);
2570 
2571 	if (vap->iv_state == IEEE80211_S_CAC) {
2572 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2573 		    "block %s frame in CAC state", "probe request");
2574 		vap->iv_stats.is_tx_badstate++;
2575 		ieee80211_free_node(bss);
2576 		return EIO;		/* XXX */
2577 	}
2578 
2579 	/*
2580 	 * Hold a reference on the node so it doesn't go away until after
2581 	 * the xmit is complete all the way in the driver.  On error we
2582 	 * will remove our reference.
2583 	 */
2584 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2585 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2586 		__func__, __LINE__,
2587 		ni, ether_sprintf(ni->ni_macaddr),
2588 		ieee80211_node_refcnt(ni)+1);
2589 	ieee80211_ref_node(ni);
2590 
2591 	/* See comments above for entire frame format. */
2592 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2593 	m = ieee80211_getmgtframe(&frm,
2594 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2595 	if (m == NULL) {
2596 		vap->iv_stats.is_tx_nobuf++;
2597 		ieee80211_free_node(ni);
2598 		ieee80211_free_node(bss);
2599 		return ENOMEM;
2600 	}
2601 
2602 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2603 	    false);
2604 	KASSERT(ret == 0,
2605 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2606 
2607 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2608 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2609 	    ("leading space %zd", M_LEADINGSPACE(m)));
2610 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2611 	if (m == NULL) {
2612 		/* NB: cannot happen */
2613 		ieee80211_free_node(ni);
2614 		ieee80211_free_node(bss);
2615 		return ENOMEM;
2616 	}
2617 
2618 	IEEE80211_TX_LOCK(ic);
2619 	ieee80211_send_setup(ni, m,
2620 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2621 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2622 	/* XXX power management? */
2623 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2624 
2625 	M_WME_SETAC(m, WME_AC_BE);
2626 
2627 	IEEE80211_NODE_STAT(ni, tx_probereq);
2628 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2629 
2630 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2631 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2632 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2633 	    ether_sprintf(bssid),
2634 	    sa, ":",
2635 	    da, ":",
2636 	    ssidlen, ssid);
2637 
2638 	memset(&params, 0, sizeof(params));
2639 	params.ibp_pri = M_WME_GETAC(m);
2640 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2641 	params.ibp_rate0 = tp->mgmtrate;
2642 	if (IEEE80211_IS_MULTICAST(da)) {
2643 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2644 		params.ibp_try0 = 1;
2645 	} else
2646 		params.ibp_try0 = tp->maxretry;
2647 	params.ibp_power = ni->ni_txpower;
2648 	ret = ieee80211_raw_output(vap, ni, m, &params);
2649 	IEEE80211_TX_UNLOCK(ic);
2650 	ieee80211_free_node(bss);
2651 	return (ret);
2652 }
2653 
2654 /*
2655  * Calculate capability information for mgt frames.
2656  *
2657  * This fills out the 16 bit capability field in various management
2658  * frames for non-DMG STAs.  DMG STAs are not supported.
2659  *
2660  * See 802.11-2020 9.4.1.4 (Capability Information Field) for the
2661  * field definitions.
2662  */
2663 uint16_t
ieee80211_getcapinfo(struct ieee80211vap * vap,struct ieee80211_channel * chan)2664 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2665 {
2666 	uint16_t capinfo;
2667 
2668 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2669 
2670 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2671 		capinfo = IEEE80211_CAPINFO_ESS;
2672 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2673 		capinfo = IEEE80211_CAPINFO_IBSS;
2674 	else
2675 		capinfo = 0;
2676 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2677 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2678 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2679 	    IEEE80211_IS_CHAN_2GHZ(chan))
2680 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2681 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2682 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2683 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2684 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2685 	return capinfo;
2686 }
2687 
2688 /*
2689  * Send a management frame.  The node is for the destination (or ic_bss
2690  * when in station mode).  Nodes other than ic_bss have their reference
2691  * count bumped to reflect our use for an indeterminant time.
2692  */
2693 int
ieee80211_send_mgmt(struct ieee80211_node * ni,int type,int arg)2694 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2695 {
2696 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2697 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2698 	struct ieee80211vap *vap = ni->ni_vap;
2699 	struct ieee80211com *ic = ni->ni_ic;
2700 	struct ieee80211_node *bss = vap->iv_bss;
2701 	struct ieee80211_bpf_params params;
2702 	struct mbuf *m;
2703 	uint8_t *frm;
2704 	uint16_t capinfo;
2705 	int has_challenge, is_shared_key, ret, status;
2706 
2707 	KASSERT(ni != NULL, ("null node"));
2708 
2709 	/*
2710 	 * Hold a reference on the node so it doesn't go away until after
2711 	 * the xmit is complete all the way in the driver.  On error we
2712 	 * will remove our reference.
2713 	 */
2714 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2715 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2716 		__func__, __LINE__,
2717 		ni, ether_sprintf(ni->ni_macaddr),
2718 		ieee80211_node_refcnt(ni)+1);
2719 	ieee80211_ref_node(ni);
2720 
2721 	memset(&params, 0, sizeof(params));
2722 	switch (type) {
2723 	case IEEE80211_FC0_SUBTYPE_AUTH:
2724 		status = arg >> 16;
2725 		arg &= 0xffff;
2726 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2727 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2728 		    ni->ni_challenge != NULL);
2729 
2730 		/*
2731 		 * Deduce whether we're doing open authentication or
2732 		 * shared key authentication.  We do the latter if
2733 		 * we're in the middle of a shared key authentication
2734 		 * handshake or if we're initiating an authentication
2735 		 * request and configured to use shared key.
2736 		 */
2737 		is_shared_key = has_challenge ||
2738 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2739 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2740 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2741 
2742 		m = ieee80211_getmgtframe(&frm,
2743 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2744 			  3 * sizeof(uint16_t)
2745 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2746 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2747 		if (m == NULL)
2748 			senderr(ENOMEM, is_tx_nobuf);
2749 
2750 		((uint16_t *)frm)[0] =
2751 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2752 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2753 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2754 		((uint16_t *)frm)[2] = htole16(status);/* status */
2755 
2756 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2757 			((uint16_t *)frm)[3] =
2758 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2759 			    IEEE80211_ELEMID_CHALLENGE);
2760 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2761 			    IEEE80211_CHALLENGE_LEN);
2762 			m->m_pkthdr.len = m->m_len =
2763 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2764 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2765 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2766 				    "request encrypt frame (%s)", __func__);
2767 				/* mark frame for encryption */
2768 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2769 			}
2770 		} else
2771 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2772 
2773 		/* XXX not right for shared key */
2774 		if (status == IEEE80211_STATUS_SUCCESS)
2775 			IEEE80211_NODE_STAT(ni, tx_auth);
2776 		else
2777 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2778 
2779 		if (vap->iv_opmode == IEEE80211_M_STA)
2780 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2781 				(void *) vap->iv_state);
2782 		break;
2783 
2784 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2785 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2786 		    "send station deauthenticate (reason: %d (%s))", arg,
2787 		    ieee80211_reason_to_string(arg));
2788 		m = ieee80211_getmgtframe(&frm,
2789 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2790 			sizeof(uint16_t));
2791 		if (m == NULL)
2792 			senderr(ENOMEM, is_tx_nobuf);
2793 		*(uint16_t *)frm = htole16(arg);	/* reason */
2794 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2795 
2796 		IEEE80211_NODE_STAT(ni, tx_deauth);
2797 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2798 
2799 		ieee80211_node_unauthorize(ni);		/* port closed */
2800 		break;
2801 
2802 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2803 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2804 		/*
2805 		 * asreq frame format
2806 		 *	[2] capability information
2807 		 *	[2] listen interval
2808 		 *	[6*] current AP address (reassoc only)
2809 		 *	[tlv] ssid
2810 		 *	[tlv] supported rates
2811 		 *	[tlv] extended supported rates
2812 		 *	[4] power capability (optional)
2813 		 *	[28] supported channels (optional)
2814 		 *	[tlv] HT capabilities
2815 		 *	[tlv] VHT capabilities
2816 		 *	[tlv] WME (optional)
2817 		 *	[tlv] Vendor OUI HT capabilities (optional)
2818 		 *	[tlv] Atheros capabilities (if negotiated)
2819 		 *	[tlv] AppIE's (optional)
2820 		 */
2821 		m = ieee80211_getmgtframe(&frm,
2822 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2823 			 sizeof(uint16_t)
2824 		       + sizeof(uint16_t)
2825 		       + IEEE80211_ADDR_LEN
2826 		       + 2 + IEEE80211_NWID_LEN
2827 		       + 2 + IEEE80211_RATE_SIZE
2828 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2829 		       + 4
2830 		       + 2 + 26
2831 		       + sizeof(struct ieee80211_wme_info)
2832 		       + sizeof(struct ieee80211_ie_htcap)
2833 		       + 2 + sizeof(struct ieee80211_vht_cap)
2834 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2835 #ifdef IEEE80211_SUPPORT_SUPERG
2836 		       + sizeof(struct ieee80211_ath_ie)
2837 #endif
2838 		       + (vap->iv_appie_wpa != NULL ?
2839 				vap->iv_appie_wpa->ie_len : 0)
2840 		       + (vap->iv_appie_assocreq != NULL ?
2841 				vap->iv_appie_assocreq->ie_len : 0)
2842 		);
2843 		if (m == NULL)
2844 			senderr(ENOMEM, is_tx_nobuf);
2845 
2846 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2847 		    ("wrong mode %u", vap->iv_opmode));
2848 		capinfo = IEEE80211_CAPINFO_ESS;
2849 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2850 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2851 		/*
2852 		 * NB: Some 11a AP's reject the request when
2853 		 *     short preamble is set.
2854 		 */
2855 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2856 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2857 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2858 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2859 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2860 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2861 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2862 		    (vap->iv_flags & IEEE80211_F_DOTH))
2863 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2864 		*(uint16_t *)frm = htole16(capinfo);
2865 		frm += 2;
2866 
2867 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2868 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2869 						    bss->ni_intval));
2870 		frm += 2;
2871 
2872 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2873 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2874 			frm += IEEE80211_ADDR_LEN;
2875 		}
2876 
2877 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2878 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2879 		frm = ieee80211_add_rsn(frm, vap);
2880 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2881 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2882 			frm = ieee80211_add_powercapability(frm,
2883 			    ic->ic_curchan);
2884 			frm = ieee80211_add_supportedchannels(frm, ic);
2885 		}
2886 
2887 		/*
2888 		 * Check the channel - we may be using an 11n NIC with an
2889 		 * 11n capable station, but we're configured to be an 11b
2890 		 * channel.
2891 		 */
2892 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2893 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2894 		    ni->ni_ies.htcap_ie != NULL &&
2895 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2896 			frm = ieee80211_add_htcap(frm, ni);
2897 		}
2898 
2899 		if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2900 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2901 		    ni->ni_ies.vhtcap_ie != NULL &&
2902 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2903 			frm = ieee80211_add_vhtcap(frm, ni);
2904 		}
2905 
2906 		frm = ieee80211_add_wpa(frm, vap);
2907 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2908 		    ni->ni_ies.wme_ie != NULL)
2909 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2910 
2911 		/*
2912 		 * Same deal - only send HT info if we're on an 11n
2913 		 * capable channel.
2914 		 */
2915 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2916 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2917 		    ni->ni_ies.htcap_ie != NULL &&
2918 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2919 			frm = ieee80211_add_htcap_vendor(frm, ni);
2920 		}
2921 #ifdef IEEE80211_SUPPORT_SUPERG
2922 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2923 			frm = ieee80211_add_ath(frm,
2924 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2925 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2926 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2927 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2928 		}
2929 #endif /* IEEE80211_SUPPORT_SUPERG */
2930 		if (vap->iv_appie_assocreq != NULL)
2931 			frm = add_appie(frm, vap->iv_appie_assocreq);
2932 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2933 
2934 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2935 			(void *) vap->iv_state);
2936 		break;
2937 
2938 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2939 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2940 		/*
2941 		 * asresp frame format
2942 		 *	[2] capability information
2943 		 *	[2] status
2944 		 *	[2] association ID
2945 		 *	[tlv] supported rates
2946 		 *	[tlv] extended supported rates
2947 		 *	[tlv] HT capabilities (standard, if STA enabled)
2948 		 *	[tlv] HT information (standard, if STA enabled)
2949 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2950 		 *	[tlv] VHT information (standard, if STA enabled)
2951 		 *	[tlv] WME (if configured and STA enabled)
2952 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2953 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2954 		 *	[tlv] Atheros capabilities (if STA enabled)
2955 		 *	[tlv] AppIE's (optional)
2956 		 */
2957 		m = ieee80211_getmgtframe(&frm,
2958 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2959 			 sizeof(uint16_t)
2960 		       + sizeof(uint16_t)
2961 		       + sizeof(uint16_t)
2962 		       + 2 + IEEE80211_RATE_SIZE
2963 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2964 		       + sizeof(struct ieee80211_ie_htcap) + 4
2965 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2966 		       + 2 + sizeof(struct ieee80211_vht_cap)
2967 		       + 2 + sizeof(struct ieee80211_vht_operation)
2968 		       + sizeof(struct ieee80211_wme_param)
2969 #ifdef IEEE80211_SUPPORT_SUPERG
2970 		       + sizeof(struct ieee80211_ath_ie)
2971 #endif
2972 		       + (vap->iv_appie_assocresp != NULL ?
2973 				vap->iv_appie_assocresp->ie_len : 0)
2974 		);
2975 		if (m == NULL)
2976 			senderr(ENOMEM, is_tx_nobuf);
2977 
2978 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2979 		*(uint16_t *)frm = htole16(capinfo);
2980 		frm += 2;
2981 
2982 		*(uint16_t *)frm = htole16(arg);	/* status */
2983 		frm += 2;
2984 
2985 		if (arg == IEEE80211_STATUS_SUCCESS) {
2986 			*(uint16_t *)frm = htole16(ni->ni_associd);
2987 			IEEE80211_NODE_STAT(ni, tx_assoc);
2988 		} else
2989 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2990 		frm += 2;
2991 
2992 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2993 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2994 		/* NB: respond according to what we received */
2995 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2996 			frm = ieee80211_add_htcap(frm, ni);
2997 			frm = ieee80211_add_htinfo(frm, ni);
2998 		}
2999 		if ((vap->iv_flags & IEEE80211_F_WME) &&
3000 		    ni->ni_ies.wme_ie != NULL)
3001 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3002 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3003 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
3004 			frm = ieee80211_add_htcap_vendor(frm, ni);
3005 			frm = ieee80211_add_htinfo_vendor(frm, ni);
3006 		}
3007 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
3008 			frm = ieee80211_add_vhtcap(frm, ni);
3009 			frm = ieee80211_add_vhtinfo(frm, ni);
3010 		}
3011 #ifdef IEEE80211_SUPPORT_SUPERG
3012 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3013 			frm = ieee80211_add_ath(frm,
3014 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3015 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3016 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3017 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3018 #endif /* IEEE80211_SUPPORT_SUPERG */
3019 		if (vap->iv_appie_assocresp != NULL)
3020 			frm = add_appie(frm, vap->iv_appie_assocresp);
3021 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3022 		break;
3023 
3024 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3025 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3026 		    "send station disassociate (reason: %d (%s))", arg,
3027 		    ieee80211_reason_to_string(arg));
3028 		m = ieee80211_getmgtframe(&frm,
3029 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3030 			sizeof(uint16_t));
3031 		if (m == NULL)
3032 			senderr(ENOMEM, is_tx_nobuf);
3033 		*(uint16_t *)frm = htole16(arg);	/* reason */
3034 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3035 
3036 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3037 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3038 		break;
3039 
3040 	default:
3041 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3042 		    "invalid mgmt frame type %u", type);
3043 		senderr(EINVAL, is_tx_unknownmgt);
3044 		/* NOTREACHED */
3045 	}
3046 
3047 	/* NB: force non-ProbeResp frames to the highest queue */
3048 	params.ibp_pri = WME_AC_VO;
3049 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3050 	/* NB: we know all frames are unicast */
3051 	params.ibp_try0 = bss->ni_txparms->maxretry;
3052 	params.ibp_power = bss->ni_txpower;
3053 	return ieee80211_mgmt_output(ni, m, type, &params);
3054 bad:
3055 	ieee80211_free_node(ni);
3056 	return ret;
3057 #undef senderr
3058 #undef HTFLAGS
3059 }
3060 
3061 /*
3062  * Return an mbuf with a probe response frame in it.
3063  * Space is left to prepend and 802.11 header at the
3064  * front but it's left to the caller to fill in.
3065  */
3066 struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node * bss,int legacy)3067 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3068 {
3069 	struct ieee80211vap *vap = bss->ni_vap;
3070 	struct ieee80211com *ic = bss->ni_ic;
3071 	const struct ieee80211_rateset *rs;
3072 	struct mbuf *m;
3073 	uint16_t capinfo;
3074 	uint8_t *frm;
3075 
3076 	/*
3077 	 * probe response frame format
3078 	 *	[8] time stamp
3079 	 *	[2] beacon interval
3080 	 *	[2] cabability information
3081 	 *	[tlv] ssid
3082 	 *	[tlv] supported rates
3083 	 *	[tlv] parameter set (FH/DS)
3084 	 *	[tlv] parameter set (IBSS)
3085 	 *	[tlv] country (optional)
3086 	 *	[3] power control (optional)
3087 	 *	[5] channel switch announcement (CSA) (optional)
3088 	 *	[tlv] extended rate phy (ERP)
3089 	 *	[tlv] extended supported rates
3090 	 *	[tlv] RSN (optional)
3091 	 *	[tlv] HT capabilities
3092 	 *	[tlv] HT information
3093 	 *	[tlv] VHT capabilities
3094 	 *	[tlv] VHT information
3095 	 *	[tlv] WPA (optional)
3096 	 *	[tlv] WME (optional)
3097 	 *	[tlv] Vendor OUI HT capabilities (optional)
3098 	 *	[tlv] Vendor OUI HT information (optional)
3099 	 *	[tlv] Atheros capabilities
3100 	 *	[tlv] AppIE's (optional)
3101 	 *	[tlv] Mesh ID (MBSS)
3102 	 *	[tlv] Mesh Conf (MBSS)
3103 	 */
3104 	m = ieee80211_getmgtframe(&frm,
3105 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3106 		 8
3107 	       + sizeof(uint16_t)
3108 	       + sizeof(uint16_t)
3109 	       + 2 + IEEE80211_NWID_LEN
3110 	       + 2 + IEEE80211_RATE_SIZE
3111 	       + 7	/* max(7,3) */
3112 	       + IEEE80211_COUNTRY_MAX_SIZE
3113 	       + 3
3114 	       + sizeof(struct ieee80211_csa_ie)
3115 	       + sizeof(struct ieee80211_quiet_ie)
3116 	       + 3
3117 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3118 	       + sizeof(struct ieee80211_ie_wpa)
3119 	       + sizeof(struct ieee80211_ie_htcap)
3120 	       + sizeof(struct ieee80211_ie_htinfo)
3121 	       + sizeof(struct ieee80211_ie_wpa)
3122 	       + sizeof(struct ieee80211_wme_param)
3123 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3124 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3125 	       + 2 + sizeof(struct ieee80211_vht_cap)
3126 	       + 2 + sizeof(struct ieee80211_vht_operation)
3127 #ifdef IEEE80211_SUPPORT_SUPERG
3128 	       + sizeof(struct ieee80211_ath_ie)
3129 #endif
3130 #ifdef IEEE80211_SUPPORT_MESH
3131 	       + 2 + IEEE80211_MESHID_LEN
3132 	       + sizeof(struct ieee80211_meshconf_ie)
3133 #endif
3134 	       + (vap->iv_appie_proberesp != NULL ?
3135 			vap->iv_appie_proberesp->ie_len : 0)
3136 	);
3137 	if (m == NULL) {
3138 		vap->iv_stats.is_tx_nobuf++;
3139 		return NULL;
3140 	}
3141 
3142 	memset(frm, 0, 8);	/* timestamp should be filled later */
3143 	frm += 8;
3144 	*(uint16_t *)frm = htole16(bss->ni_intval);
3145 	frm += 2;
3146 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3147 	*(uint16_t *)frm = htole16(capinfo);
3148 	frm += 2;
3149 
3150 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3151 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3152 	frm = ieee80211_add_rates(frm, rs);
3153 
3154 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3155 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3156 		*frm++ = 5;
3157 		*frm++ = bss->ni_fhdwell & 0x00ff;
3158 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3159 		*frm++ = IEEE80211_FH_CHANSET(
3160 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3161 		*frm++ = IEEE80211_FH_CHANPAT(
3162 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3163 		*frm++ = bss->ni_fhindex;
3164 	} else {
3165 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3166 		*frm++ = 1;
3167 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3168 	}
3169 
3170 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3171 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3172 		*frm++ = 2;
3173 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3174 	}
3175 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3176 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3177 		frm = ieee80211_add_countryie(frm, ic);
3178 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3179 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3180 			frm = ieee80211_add_powerconstraint(frm, vap);
3181 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3182 			frm = ieee80211_add_csa(frm, vap);
3183 	}
3184 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3185 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3186 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3187 			if (vap->iv_quiet)
3188 				frm = ieee80211_add_quiet(frm, vap, 0);
3189 		}
3190 	}
3191 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3192 		frm = ieee80211_add_erp(frm, vap);
3193 	frm = ieee80211_add_xrates(frm, rs);
3194 	frm = ieee80211_add_rsn(frm, vap);
3195 	/*
3196 	 * NB: legacy 11b clients do not get certain ie's.
3197 	 *     The caller identifies such clients by passing
3198 	 *     a token in legacy to us.  Could expand this to be
3199 	 *     any legacy client for stuff like HT ie's.
3200 	 */
3201 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3202 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3203 		frm = ieee80211_add_htcap(frm, bss);
3204 		frm = ieee80211_add_htinfo(frm, bss);
3205 	}
3206 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3207 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3208 		frm = ieee80211_add_vhtcap(frm, bss);
3209 		frm = ieee80211_add_vhtinfo(frm, bss);
3210 	}
3211 	frm = ieee80211_add_wpa(frm, vap);
3212 	if (vap->iv_flags & IEEE80211_F_WME)
3213 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3214 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3215 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3216 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3217 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3218 		frm = ieee80211_add_htcap_vendor(frm, bss);
3219 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3220 	}
3221 #ifdef IEEE80211_SUPPORT_SUPERG
3222 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3223 	    legacy != IEEE80211_SEND_LEGACY_11B)
3224 		frm = ieee80211_add_athcaps(frm, bss);
3225 #endif
3226 	if (vap->iv_appie_proberesp != NULL)
3227 		frm = add_appie(frm, vap->iv_appie_proberesp);
3228 #ifdef IEEE80211_SUPPORT_MESH
3229 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3230 		frm = ieee80211_add_meshid(frm, vap);
3231 		frm = ieee80211_add_meshconf(frm, vap);
3232 	}
3233 #endif
3234 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3235 
3236 	return m;
3237 }
3238 
3239 /*
3240  * Send a probe response frame to the specified mac address.
3241  * This does not go through the normal mgt frame api so we
3242  * can specify the destination address and re-use the bss node
3243  * for the sta reference.
3244  */
3245 int
ieee80211_send_proberesp(struct ieee80211vap * vap,const uint8_t da[IEEE80211_ADDR_LEN],int legacy)3246 ieee80211_send_proberesp(struct ieee80211vap *vap,
3247 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3248 {
3249 	struct ieee80211_node *bss = vap->iv_bss;
3250 	struct ieee80211com *ic = vap->iv_ic;
3251 	struct mbuf *m;
3252 	int ret;
3253 
3254 	if (vap->iv_state == IEEE80211_S_CAC) {
3255 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3256 		    "block %s frame in CAC state", "probe response");
3257 		vap->iv_stats.is_tx_badstate++;
3258 		return EIO;		/* XXX */
3259 	}
3260 
3261 	/*
3262 	 * Hold a reference on the node so it doesn't go away until after
3263 	 * the xmit is complete all the way in the driver.  On error we
3264 	 * will remove our reference.
3265 	 */
3266 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3267 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3268 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3269 	    ieee80211_node_refcnt(bss)+1);
3270 	ieee80211_ref_node(bss);
3271 
3272 	m = ieee80211_alloc_proberesp(bss, legacy);
3273 	if (m == NULL) {
3274 		ieee80211_free_node(bss);
3275 		return ENOMEM;
3276 	}
3277 
3278 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3279 	KASSERT(m != NULL, ("no room for header"));
3280 
3281 	IEEE80211_TX_LOCK(ic);
3282 	ieee80211_send_setup(bss, m,
3283 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3284 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3285 	/* XXX power management? */
3286 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3287 
3288 	M_WME_SETAC(m, WME_AC_BE);
3289 
3290 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3291 	    "send probe resp on channel %u to %s%s\n",
3292 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3293 	    legacy ? " <legacy>" : "");
3294 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3295 
3296 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3297 	IEEE80211_TX_UNLOCK(ic);
3298 	return (ret);
3299 }
3300 
3301 /*
3302  * Allocate and build a RTS (Request To Send) control frame.
3303  */
3304 struct mbuf *
ieee80211_alloc_rts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],const uint8_t ta[IEEE80211_ADDR_LEN],uint16_t dur)3305 ieee80211_alloc_rts(struct ieee80211com *ic,
3306 	const uint8_t ra[IEEE80211_ADDR_LEN],
3307 	const uint8_t ta[IEEE80211_ADDR_LEN],
3308 	uint16_t dur)
3309 {
3310 	struct ieee80211_frame_rts *rts;
3311 	struct mbuf *m;
3312 
3313 	/* XXX honor ic_headroom */
3314 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3315 	if (m != NULL) {
3316 		rts = mtod(m, struct ieee80211_frame_rts *);
3317 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3318 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3319 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3320 		*(u_int16_t *)rts->i_dur = htole16(dur);
3321 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3322 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3323 
3324 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3325 	}
3326 	return m;
3327 }
3328 
3329 /*
3330  * Allocate and build a CTS (Clear To Send) control frame.
3331  */
3332 struct mbuf *
ieee80211_alloc_cts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],uint16_t dur)3333 ieee80211_alloc_cts(struct ieee80211com *ic,
3334 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3335 {
3336 	struct ieee80211_frame_cts *cts;
3337 	struct mbuf *m;
3338 
3339 	/* XXX honor ic_headroom */
3340 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3341 	if (m != NULL) {
3342 		cts = mtod(m, struct ieee80211_frame_cts *);
3343 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3344 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3345 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3346 		*(u_int16_t *)cts->i_dur = htole16(dur);
3347 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3348 
3349 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3350 	}
3351 	return m;
3352 }
3353 
3354 /*
3355  * Wrapper for CTS/RTS frame allocation.
3356  */
3357 struct mbuf *
ieee80211_alloc_prot(struct ieee80211_node * ni,const struct mbuf * m,uint8_t rate,int prot)3358 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3359     uint8_t rate, int prot)
3360 {
3361 	struct ieee80211com *ic = ni->ni_ic;
3362 	struct ieee80211vap *vap = ni->ni_vap;
3363 	const struct ieee80211_frame *wh;
3364 	struct mbuf *mprot;
3365 	uint16_t dur;
3366 	int pktlen, isshort;
3367 
3368 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3369 	    prot == IEEE80211_PROT_CTSONLY,
3370 	    ("wrong protection type %d", prot));
3371 
3372 	wh = mtod(m, const struct ieee80211_frame *);
3373 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3374 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3375 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3376 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3377 
3378 	if (prot == IEEE80211_PROT_RTSCTS) {
3379 		/* NB: CTS is the same size as an ACK */
3380 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3381 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3382 	} else
3383 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3384 
3385 	return (mprot);
3386 }
3387 
3388 static void
ieee80211_tx_mgt_timeout(void * arg)3389 ieee80211_tx_mgt_timeout(void *arg)
3390 {
3391 	struct ieee80211vap *vap = arg;
3392 
3393 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3394 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3395 	    ieee80211_opmode_name[vap->iv_opmode],
3396 	    ieee80211_state_name[vap->iv_state],
3397 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3398 
3399 	IEEE80211_LOCK(vap->iv_ic);
3400 	if (vap->iv_state != IEEE80211_S_INIT &&
3401 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3402 		/*
3403 		 * NB: it's safe to specify a timeout as the reason here;
3404 		 *     it'll only be used in the right state.
3405 		 */
3406 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3407 			IEEE80211_SCAN_FAIL_TIMEOUT);
3408 	}
3409 	IEEE80211_UNLOCK(vap->iv_ic);
3410 }
3411 
3412 /*
3413  * This is the callback set on net80211-sourced transmitted
3414  * authentication request frames.
3415  *
3416  * This does a couple of things:
3417  *
3418  * + If the frame transmitted was a success, it schedules a future
3419  *   event which will transition the interface to scan.
3420  *   If a state transition _then_ occurs before that event occurs,
3421  *   said state transition will cancel this callout.
3422  *
3423  * + If the frame transmit was a failure, it immediately schedules
3424  *   the transition back to scan.
3425  */
3426 static void
ieee80211_tx_mgt_cb(struct ieee80211_node * ni,void * arg,int status)3427 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3428 {
3429 	struct ieee80211vap *vap = ni->ni_vap;
3430 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3431 
3432 	/*
3433 	 * Frame transmit completed; arrange timer callback.  If
3434 	 * transmit was successfully we wait for response.  Otherwise
3435 	 * we arrange an immediate callback instead of doing the
3436 	 * callback directly since we don't know what state the driver
3437 	 * is in (e.g. what locks it is holding).  This work should
3438 	 * not be too time-critical and not happen too often so the
3439 	 * added overhead is acceptable.
3440 	 *
3441 	 * XXX what happens if !acked but response shows up before callback?
3442 	 */
3443 	if (vap->iv_state == ostate) {
3444 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3445 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3446 		    ieee80211_opmode_name[vap->iv_opmode],
3447 		    ieee80211_state_name[vap->iv_state], arg, status);
3448 
3449 		callout_reset(&vap->iv_mgtsend,
3450 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3451 			ieee80211_tx_mgt_timeout, vap);
3452 	}
3453 }
3454 
3455 static void
ieee80211_beacon_construct(struct mbuf * m,uint8_t * frm,struct ieee80211_node * ni)3456 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3457 	struct ieee80211_node *ni)
3458 {
3459 	struct ieee80211vap *vap = ni->ni_vap;
3460 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3461 	struct ieee80211com *ic = ni->ni_ic;
3462 	struct ieee80211_rateset *rs = &ni->ni_rates;
3463 	uint16_t capinfo;
3464 
3465 	/*
3466 	 * beacon frame format
3467 	 *
3468 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3469 	 * vendor extensions should be at the end, etc.
3470 	 *
3471 	 *	[8] time stamp
3472 	 *	[2] beacon interval
3473 	 *	[2] cabability information
3474 	 *	[tlv] ssid
3475 	 *	[tlv] supported rates
3476 	 *	[3] parameter set (DS)
3477 	 *	[8] CF parameter set (optional)
3478 	 *	[tlv] parameter set (IBSS/TIM)
3479 	 *	[tlv] country (optional)
3480 	 *	[3] power control (optional)
3481 	 *	[5] channel switch announcement (CSA) (optional)
3482 	 * XXX TODO: Quiet
3483 	 * XXX TODO: IBSS DFS
3484 	 * XXX TODO: TPC report
3485 	 *	[tlv] extended rate phy (ERP)
3486 	 *	[tlv] extended supported rates
3487 	 *	[tlv] RSN parameters
3488 	 * XXX TODO: BSSLOAD
3489 	 * (XXX EDCA parameter set, QoS capability?)
3490 	 * XXX TODO: AP channel report
3491 	 *
3492 	 *	[tlv] HT capabilities
3493 	 *	[tlv] HT information
3494 	 *	XXX TODO: 20/40 BSS coexistence
3495 	 * Mesh:
3496 	 * XXX TODO: Meshid
3497 	 * XXX TODO: mesh config
3498 	 * XXX TODO: mesh awake window
3499 	 * XXX TODO: beacon timing (mesh, etc)
3500 	 * XXX TODO: MCCAOP Advertisement Overview
3501 	 * XXX TODO: MCCAOP Advertisement
3502 	 * XXX TODO: Mesh channel switch parameters
3503 	 * VHT:
3504 	 * XXX TODO: VHT capabilities
3505 	 * XXX TODO: VHT operation
3506 	 * XXX TODO: VHT transmit power envelope
3507 	 * XXX TODO: channel switch wrapper element
3508 	 * XXX TODO: extended BSS load element
3509 	 *
3510 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3511 	 *	[tlv] WPA parameters
3512 	 *	[tlv] WME parameters
3513 	 *	[tlv] Vendor OUI HT capabilities (optional)
3514 	 *	[tlv] Vendor OUI HT information (optional)
3515 	 *	[tlv] Atheros capabilities (optional)
3516 	 *	[tlv] TDMA parameters (optional)
3517 	 *	[tlv] Mesh ID (MBSS)
3518 	 *	[tlv] Mesh Conf (MBSS)
3519 	 *	[tlv] application data (optional)
3520 	 */
3521 
3522 	memset(bo, 0, sizeof(*bo));
3523 
3524 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3525 	frm += 8;
3526 	*(uint16_t *)frm = htole16(ni->ni_intval);
3527 	frm += 2;
3528 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3529 	bo->bo_caps = (uint16_t *)frm;
3530 	*(uint16_t *)frm = htole16(capinfo);
3531 	frm += 2;
3532 	*frm++ = IEEE80211_ELEMID_SSID;
3533 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3534 		*frm++ = ni->ni_esslen;
3535 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3536 		frm += ni->ni_esslen;
3537 	} else
3538 		*frm++ = 0;
3539 	frm = ieee80211_add_rates(frm, rs);
3540 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3541 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3542 		*frm++ = 1;
3543 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3544 	}
3545 	if (ic->ic_flags & IEEE80211_F_PCF) {
3546 		bo->bo_cfp = frm;
3547 		frm = ieee80211_add_cfparms(frm, ic);
3548 	}
3549 	bo->bo_tim = frm;
3550 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3551 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3552 		*frm++ = 2;
3553 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3554 		bo->bo_tim_len = 0;
3555 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3556 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3557 		/* TIM IE is the same for Mesh and Hostap */
3558 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3559 
3560 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3561 		tie->tim_len = 4;	/* length */
3562 		tie->tim_count = 0;	/* DTIM count */
3563 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3564 		tie->tim_bitctl = 0;	/* bitmap control */
3565 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3566 		frm += sizeof(struct ieee80211_tim_ie);
3567 		bo->bo_tim_len = 1;
3568 	}
3569 	bo->bo_tim_trailer = frm;
3570 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3571 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3572 		frm = ieee80211_add_countryie(frm, ic);
3573 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3574 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3575 			frm = ieee80211_add_powerconstraint(frm, vap);
3576 		bo->bo_csa = frm;
3577 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3578 			frm = ieee80211_add_csa(frm, vap);
3579 	} else
3580 		bo->bo_csa = frm;
3581 
3582 	bo->bo_quiet = NULL;
3583 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3584 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3585 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3586 		    (vap->iv_quiet == 1)) {
3587 			/*
3588 			 * We only insert the quiet IE offset if
3589 			 * the quiet IE is enabled.  Otherwise don't
3590 			 * put it here or we'll just overwrite
3591 			 * some other beacon contents.
3592 			 */
3593 			if (vap->iv_quiet) {
3594 				bo->bo_quiet = frm;
3595 				frm = ieee80211_add_quiet(frm,vap, 0);
3596 			}
3597 		}
3598 	}
3599 
3600 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3601 		bo->bo_erp = frm;
3602 		frm = ieee80211_add_erp(frm, vap);
3603 	}
3604 	frm = ieee80211_add_xrates(frm, rs);
3605 	frm = ieee80211_add_rsn(frm, vap);
3606 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3607 		frm = ieee80211_add_htcap(frm, ni);
3608 		bo->bo_htinfo = frm;
3609 		frm = ieee80211_add_htinfo(frm, ni);
3610 	}
3611 
3612 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3613 		frm = ieee80211_add_vhtcap(frm, ni);
3614 		bo->bo_vhtinfo = frm;
3615 		frm = ieee80211_add_vhtinfo(frm, ni);
3616 		/* Transmit power envelope */
3617 		/* Channel switch wrapper element */
3618 		/* Extended bss load element */
3619 	}
3620 
3621 	frm = ieee80211_add_wpa(frm, vap);
3622 	if (vap->iv_flags & IEEE80211_F_WME) {
3623 		bo->bo_wme = frm;
3624 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3625 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3626 	}
3627 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3628 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3629 		frm = ieee80211_add_htcap_vendor(frm, ni);
3630 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3631 	}
3632 
3633 #ifdef IEEE80211_SUPPORT_SUPERG
3634 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3635 		bo->bo_ath = frm;
3636 		frm = ieee80211_add_athcaps(frm, ni);
3637 	}
3638 #endif
3639 #ifdef IEEE80211_SUPPORT_TDMA
3640 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3641 		bo->bo_tdma = frm;
3642 		frm = ieee80211_add_tdma(frm, vap);
3643 	}
3644 #endif
3645 	if (vap->iv_appie_beacon != NULL) {
3646 		bo->bo_appie = frm;
3647 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3648 		frm = add_appie(frm, vap->iv_appie_beacon);
3649 	}
3650 
3651 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3652 #ifdef IEEE80211_SUPPORT_MESH
3653 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3654 		frm = ieee80211_add_meshid(frm, vap);
3655 		bo->bo_meshconf = frm;
3656 		frm = ieee80211_add_meshconf(frm, vap);
3657 	}
3658 #endif
3659 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3660 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3661 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3662 }
3663 
3664 /*
3665  * Allocate a beacon frame and fillin the appropriate bits.
3666  */
3667 struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node * ni)3668 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3669 {
3670 	struct ieee80211vap *vap = ni->ni_vap;
3671 	struct ieee80211com *ic = ni->ni_ic;
3672 	struct ieee80211_frame *wh;
3673 	struct mbuf *m;
3674 	int pktlen;
3675 	uint8_t *frm;
3676 
3677 	/*
3678 	 * Update the "We're putting the quiet IE in the beacon" state.
3679 	 */
3680 	if (vap->iv_quiet == 1)
3681 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3682 	else if (vap->iv_quiet == 0)
3683 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3684 
3685 	/*
3686 	 * beacon frame format
3687 	 *
3688 	 * Note: This needs updating for 802.11-2012.
3689 	 *
3690 	 *	[8] time stamp
3691 	 *	[2] beacon interval
3692 	 *	[2] cabability information
3693 	 *	[tlv] ssid
3694 	 *	[tlv] supported rates
3695 	 *	[3] parameter set (DS)
3696 	 *	[8] CF parameter set (optional)
3697 	 *	[tlv] parameter set (IBSS/TIM)
3698 	 *	[tlv] country (optional)
3699 	 *	[3] power control (optional)
3700 	 *	[5] channel switch announcement (CSA) (optional)
3701 	 *	[tlv] extended rate phy (ERP)
3702 	 *	[tlv] extended supported rates
3703 	 *	[tlv] RSN parameters
3704 	 *	[tlv] HT capabilities
3705 	 *	[tlv] HT information
3706 	 *	[tlv] VHT capabilities
3707 	 *	[tlv] VHT operation
3708 	 *	[tlv] Vendor OUI HT capabilities (optional)
3709 	 *	[tlv] Vendor OUI HT information (optional)
3710 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3711 	 *	[tlv] WPA parameters
3712 	 *	[tlv] WME parameters
3713 	 *	[tlv] TDMA parameters (optional)
3714 	 *	[tlv] Mesh ID (MBSS)
3715 	 *	[tlv] Mesh Conf (MBSS)
3716 	 *	[tlv] application data (optional)
3717 	 * NB: we allocate the max space required for the TIM bitmap.
3718 	 * XXX how big is this?
3719 	 */
3720 	pktlen =   8					/* time stamp */
3721 		 + sizeof(uint16_t)			/* beacon interval */
3722 		 + sizeof(uint16_t)			/* capabilities */
3723 		 + 2 + ni->ni_esslen			/* ssid */
3724 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3725 	         + 2 + 1				/* DS parameters */
3726 		 + 2 + 6				/* CF parameters */
3727 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3728 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3729 		 + 2 + 1				/* power control */
3730 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3731 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3732 		 + 2 + 1				/* ERP */
3733 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3734 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3735 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3736 		 /* XXX conditional? */
3737 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3738 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3739 		 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3740 		 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3741 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3742 			sizeof(struct ieee80211_wme_param) : 0)
3743 #ifdef IEEE80211_SUPPORT_SUPERG
3744 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3745 #endif
3746 #ifdef IEEE80211_SUPPORT_TDMA
3747 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3748 			sizeof(struct ieee80211_tdma_param) : 0)
3749 #endif
3750 #ifdef IEEE80211_SUPPORT_MESH
3751 		 + 2 + ni->ni_meshidlen
3752 		 + sizeof(struct ieee80211_meshconf_ie)
3753 #endif
3754 		 + IEEE80211_MAX_APPIE
3755 		 ;
3756 	m = ieee80211_getmgtframe(&frm,
3757 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3758 	if (m == NULL) {
3759 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3760 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3761 		vap->iv_stats.is_tx_nobuf++;
3762 		return NULL;
3763 	}
3764 	ieee80211_beacon_construct(m, frm, ni);
3765 
3766 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3767 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3768 	wh = mtod(m, struct ieee80211_frame *);
3769 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3770 	    IEEE80211_FC0_SUBTYPE_BEACON;
3771 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3772 	*(uint16_t *)wh->i_dur = 0;
3773 	IEEE80211_ADDR_COPY(wh->i_addr1,
3774 	    ieee80211_vap_get_broadcast_address(vap));
3775 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3776 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3777 	*(uint16_t *)wh->i_seq = 0;
3778 
3779 	return m;
3780 }
3781 
3782 /*
3783  * Update the dynamic parts of a beacon frame based on the current state.
3784  */
3785 int
ieee80211_beacon_update(struct ieee80211_node * ni,struct mbuf * m,int mcast)3786 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3787 {
3788 	struct ieee80211vap *vap = ni->ni_vap;
3789 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3790 	struct ieee80211com *ic = ni->ni_ic;
3791 	int len_changed = 0;
3792 	uint16_t capinfo;
3793 
3794 	IEEE80211_LOCK(ic);
3795 	/*
3796 	 * Handle 11h channel change when we've reached the count.
3797 	 * We must recalculate the beacon frame contents to account
3798 	 * for the new channel.  Note we do this only for the first
3799 	 * vap that reaches this point; subsequent vaps just update
3800 	 * their beacon state to reflect the recalculated channel.
3801 	 */
3802 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3803 	    vap->iv_csa_count == ic->ic_csa_count) {
3804 		vap->iv_csa_count = 0;
3805 		/*
3806 		 * Effect channel change before reconstructing the beacon
3807 		 * frame contents as many places reference ni_chan.
3808 		 */
3809 		if (ic->ic_csa_newchan != NULL)
3810 			ieee80211_csa_completeswitch(ic);
3811 		/*
3812 		 * NB: ieee80211_beacon_construct clears all pending
3813 		 * updates in bo_flags so we don't need to explicitly
3814 		 * clear IEEE80211_BEACON_CSA.
3815 		 */
3816 		ieee80211_beacon_construct(m,
3817 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3818 
3819 		/* XXX do WME aggressive mode processing? */
3820 		IEEE80211_UNLOCK(ic);
3821 		return 1;		/* just assume length changed */
3822 	}
3823 
3824 	/*
3825 	 * Handle the quiet time element being added and removed.
3826 	 * Again, for now we just cheat and reconstruct the whole
3827 	 * beacon - that way the gap is provided as appropriate.
3828 	 *
3829 	 * So, track whether we have already added the IE versus
3830 	 * whether we want to be adding the IE.
3831 	 */
3832 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3833 	    (vap->iv_quiet == 0)) {
3834 		/*
3835 		 * Quiet time beacon IE enabled, but it's disabled;
3836 		 * recalc
3837 		 */
3838 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3839 		ieee80211_beacon_construct(m,
3840 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3841 		/* XXX do WME aggressive mode processing? */
3842 		IEEE80211_UNLOCK(ic);
3843 		return 1;		/* just assume length changed */
3844 	}
3845 
3846 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3847 	    (vap->iv_quiet == 1)) {
3848 		/*
3849 		 * Quiet time beacon IE disabled, but it's now enabled;
3850 		 * recalc
3851 		 */
3852 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3853 		ieee80211_beacon_construct(m,
3854 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3855 		/* XXX do WME aggressive mode processing? */
3856 		IEEE80211_UNLOCK(ic);
3857 		return 1;		/* just assume length changed */
3858 	}
3859 
3860 	/*
3861 	 * XXX TODO Strictly speaking this should be incremented with the TX
3862 	 * lock held so as to serialise access to the non-qos TID sequence
3863 	 * number space.
3864 	 *
3865 	 * If the driver identifies it does its own TX seqno management then
3866 	 * we can skip this (and still not do the TX seqno.)
3867 	 */
3868 
3869 	/* TODO: IEEE80211_CONF_SEQNO_OFFLOAD() */
3870 	ieee80211_output_beacon_seqno_assign(ni, m);
3871 
3872 	/* XXX faster to recalculate entirely or just changes? */
3873 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3874 	*bo->bo_caps = htole16(capinfo);
3875 
3876 	if (vap->iv_flags & IEEE80211_F_WME) {
3877 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3878 
3879 		/*
3880 		 * Check for aggressive mode change.  When there is
3881 		 * significant high priority traffic in the BSS
3882 		 * throttle back BE traffic by using conservative
3883 		 * parameters.  Otherwise BE uses aggressive params
3884 		 * to optimize performance of legacy/non-QoS traffic.
3885 		 */
3886 		if (wme->wme_flags & WME_F_AGGRMODE) {
3887 			if (wme->wme_hipri_traffic >
3888 			    wme->wme_hipri_switch_thresh) {
3889 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3890 				    "%s: traffic %u, disable aggressive mode\n",
3891 				    __func__, wme->wme_hipri_traffic);
3892 				wme->wme_flags &= ~WME_F_AGGRMODE;
3893 				ieee80211_wme_updateparams_locked(vap);
3894 				wme->wme_hipri_traffic =
3895 					wme->wme_hipri_switch_hysteresis;
3896 			} else
3897 				wme->wme_hipri_traffic = 0;
3898 		} else {
3899 			if (wme->wme_hipri_traffic <=
3900 			    wme->wme_hipri_switch_thresh) {
3901 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3902 				    "%s: traffic %u, enable aggressive mode\n",
3903 				    __func__, wme->wme_hipri_traffic);
3904 				wme->wme_flags |= WME_F_AGGRMODE;
3905 				ieee80211_wme_updateparams_locked(vap);
3906 				wme->wme_hipri_traffic = 0;
3907 			} else
3908 				wme->wme_hipri_traffic =
3909 					wme->wme_hipri_switch_hysteresis;
3910 		}
3911 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3912 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3913 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3914 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3915 		}
3916 	}
3917 
3918 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3919 		ieee80211_ht_update_beacon(vap, bo);
3920 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3921 	}
3922 #ifdef IEEE80211_SUPPORT_TDMA
3923 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3924 		/*
3925 		 * NB: the beacon is potentially updated every TBTT.
3926 		 */
3927 		ieee80211_tdma_update_beacon(vap, bo);
3928 	}
3929 #endif
3930 #ifdef IEEE80211_SUPPORT_MESH
3931 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3932 		ieee80211_mesh_update_beacon(vap, bo);
3933 #endif
3934 
3935 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3936 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3937 		struct ieee80211_tim_ie *tie =
3938 			(struct ieee80211_tim_ie *) bo->bo_tim;
3939 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3940 			u_int timlen, timoff, i;
3941 			/*
3942 			 * ATIM/DTIM needs updating.  If it fits in the
3943 			 * current space allocated then just copy in the
3944 			 * new bits.  Otherwise we need to move any trailing
3945 			 * data to make room.  Note that we know there is
3946 			 * contiguous space because ieee80211_beacon_allocate
3947 			 * insures there is space in the mbuf to write a
3948 			 * maximal-size virtual bitmap (based on iv_max_aid).
3949 			 */
3950 			/*
3951 			 * Calculate the bitmap size and offset, copy any
3952 			 * trailer out of the way, and then copy in the
3953 			 * new bitmap and update the information element.
3954 			 * Note that the tim bitmap must contain at least
3955 			 * one byte and any offset must be even.
3956 			 */
3957 			if (vap->iv_ps_pending != 0) {
3958 				timoff = 128;		/* impossibly large */
3959 				for (i = 0; i < vap->iv_tim_len; i++)
3960 					if (vap->iv_tim_bitmap[i]) {
3961 						timoff = i &~ 1;
3962 						break;
3963 					}
3964 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3965 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3966 					if (vap->iv_tim_bitmap[i])
3967 						break;
3968 				timlen = 1 + (i - timoff);
3969 			} else {
3970 				timoff = 0;
3971 				timlen = 1;
3972 			}
3973 
3974 			/*
3975 			 * TODO: validate this!
3976 			 */
3977 			if (timlen != bo->bo_tim_len) {
3978 				/* copy up/down trailer */
3979 				int adjust = tie->tim_bitmap+timlen
3980 					   - bo->bo_tim_trailer;
3981 				ovbcopy(bo->bo_tim_trailer,
3982 				    bo->bo_tim_trailer+adjust,
3983 				    bo->bo_tim_trailer_len);
3984 				bo->bo_tim_trailer += adjust;
3985 				bo->bo_erp += adjust;
3986 				bo->bo_htinfo += adjust;
3987 				bo->bo_vhtinfo += adjust;
3988 #ifdef IEEE80211_SUPPORT_SUPERG
3989 				bo->bo_ath += adjust;
3990 #endif
3991 #ifdef IEEE80211_SUPPORT_TDMA
3992 				bo->bo_tdma += adjust;
3993 #endif
3994 #ifdef IEEE80211_SUPPORT_MESH
3995 				bo->bo_meshconf += adjust;
3996 #endif
3997 				bo->bo_appie += adjust;
3998 				bo->bo_wme += adjust;
3999 				bo->bo_csa += adjust;
4000 				bo->bo_quiet += adjust;
4001 				bo->bo_tim_len = timlen;
4002 
4003 				/* update information element */
4004 				tie->tim_len = 3 + timlen;
4005 				tie->tim_bitctl = timoff;
4006 				len_changed = 1;
4007 			}
4008 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4009 				bo->bo_tim_len);
4010 
4011 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4012 
4013 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4014 				"%s: TIM updated, pending %u, off %u, len %u\n",
4015 				__func__, vap->iv_ps_pending, timoff, timlen);
4016 		}
4017 		/* count down DTIM period */
4018 		if (tie->tim_count == 0)
4019 			tie->tim_count = tie->tim_period - 1;
4020 		else
4021 			tie->tim_count--;
4022 		/* update state for buffered multicast frames on DTIM */
4023 		if (mcast && tie->tim_count == 0)
4024 			tie->tim_bitctl |= 1;
4025 		else
4026 			tie->tim_bitctl &= ~1;
4027 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4028 			struct ieee80211_csa_ie *csa =
4029 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4030 
4031 			/*
4032 			 * Insert or update CSA ie.  If we're just starting
4033 			 * to count down to the channel switch then we need
4034 			 * to insert the CSA ie.  Otherwise we just need to
4035 			 * drop the count.  The actual change happens above
4036 			 * when the vap's count reaches the target count.
4037 			 */
4038 			if (vap->iv_csa_count == 0) {
4039 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4040 				bo->bo_erp += sizeof(*csa);
4041 				bo->bo_htinfo += sizeof(*csa);
4042 				bo->bo_vhtinfo += sizeof(*csa);
4043 				bo->bo_wme += sizeof(*csa);
4044 #ifdef IEEE80211_SUPPORT_SUPERG
4045 				bo->bo_ath += sizeof(*csa);
4046 #endif
4047 #ifdef IEEE80211_SUPPORT_TDMA
4048 				bo->bo_tdma += sizeof(*csa);
4049 #endif
4050 #ifdef IEEE80211_SUPPORT_MESH
4051 				bo->bo_meshconf += sizeof(*csa);
4052 #endif
4053 				bo->bo_appie += sizeof(*csa);
4054 				bo->bo_csa_trailer_len += sizeof(*csa);
4055 				bo->bo_quiet += sizeof(*csa);
4056 				bo->bo_tim_trailer_len += sizeof(*csa);
4057 				m->m_len += sizeof(*csa);
4058 				m->m_pkthdr.len += sizeof(*csa);
4059 
4060 				ieee80211_add_csa(bo->bo_csa, vap);
4061 			} else
4062 				csa->csa_count--;
4063 			vap->iv_csa_count++;
4064 			/* NB: don't clear IEEE80211_BEACON_CSA */
4065 		}
4066 
4067 		/*
4068 		 * Only add the quiet time IE if we've enabled it
4069 		 * as appropriate.
4070 		 */
4071 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4072 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4073 			if (vap->iv_quiet &&
4074 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4075 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4076 			}
4077 		}
4078 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4079 			/*
4080 			 * ERP element needs updating.
4081 			 */
4082 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4083 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4084 		}
4085 #ifdef IEEE80211_SUPPORT_SUPERG
4086 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4087 			ieee80211_add_athcaps(bo->bo_ath, ni);
4088 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4089 		}
4090 #endif
4091 	}
4092 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4093 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4094 		int aielen;
4095 		uint8_t *frm;
4096 
4097 		aielen = 0;
4098 		if (aie != NULL)
4099 			aielen += aie->ie_len;
4100 		if (aielen != bo->bo_appie_len) {
4101 			/* copy up/down trailer */
4102 			int adjust = aielen - bo->bo_appie_len;
4103 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4104 				bo->bo_tim_trailer_len);
4105 			bo->bo_tim_trailer += adjust;
4106 			bo->bo_appie += adjust;
4107 			bo->bo_appie_len = aielen;
4108 
4109 			len_changed = 1;
4110 		}
4111 		frm = bo->bo_appie;
4112 		if (aie != NULL)
4113 			frm  = add_appie(frm, aie);
4114 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4115 	}
4116 	IEEE80211_UNLOCK(ic);
4117 
4118 	return len_changed;
4119 }
4120 
4121 /*
4122  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4123  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4124  * header at the front that must be stripped before prepending the
4125  * LLC followed by the Ethernet header passed in (with an Ethernet
4126  * type that specifies the payload size).
4127  */
4128 struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap * vap,struct mbuf * m,const struct ether_header * eh)4129 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4130 	const struct ether_header *eh)
4131 {
4132 	struct llc *llc;
4133 	uint16_t payload;
4134 
4135 	/* XXX optimize by combining m_adj+M_PREPEND */
4136 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4137 	llc = mtod(m, struct llc *);
4138 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4139 	llc->llc_control = LLC_UI;
4140 	llc->llc_snap.org_code[0] = 0;
4141 	llc->llc_snap.org_code[1] = 0;
4142 	llc->llc_snap.org_code[2] = 0;
4143 	llc->llc_snap.ether_type = eh->ether_type;
4144 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4145 
4146 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4147 	if (m == NULL) {		/* XXX cannot happen */
4148 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4149 			"%s: no space for ether_header\n", __func__);
4150 		vap->iv_stats.is_tx_nobuf++;
4151 		return NULL;
4152 	}
4153 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4154 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4155 	return m;
4156 }
4157 
4158 /*
4159  * Complete an mbuf transmission.
4160  *
4161  * For now, this simply processes a completed frame after the
4162  * driver has completed it's transmission and/or retransmission.
4163  * It assumes the frame is an 802.11 encapsulated frame.
4164  *
4165  * Later on it will grow to become the exit path for a given frame
4166  * from the driver and, depending upon how it's been encapsulated
4167  * and already transmitted, it may end up doing A-MPDU retransmission,
4168  * power save requeuing, etc.
4169  *
4170  * In order for the above to work, the driver entry point to this
4171  * must not hold any driver locks.  Thus, the driver needs to delay
4172  * any actual mbuf completion until it can release said locks.
4173  *
4174  * This frees the mbuf and if the mbuf has a node reference,
4175  * the node reference will be freed.
4176  */
4177 void
ieee80211_tx_complete(struct ieee80211_node * ni,struct mbuf * m,int status)4178 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4179 {
4180 
4181 	if (ni != NULL) {
4182 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4183 
4184 		if (status == 0) {
4185 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4186 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4187 			if (m->m_flags & M_MCAST)
4188 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4189 		} else
4190 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4191 		if (m->m_flags & M_TXCB) {
4192 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4193 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4194 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4195 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4196 			ieee80211_process_callback(ni, m, status);
4197 		}
4198 		ieee80211_free_node(ni);
4199 	}
4200 	m_freem(m);
4201 }
4202 
4203 /**
4204  * @brief Assign a sequence number to the given frame.
4205  *
4206  * Check the frame type and TID and assign a suitable sequence number
4207  * from the correct sequence number space.
4208  *
4209  * This implements the components of 802.11-2020 10.3.2.14.2
4210  * (Transmitter Requirements) that net80211 currently supports.
4211  *
4212  * It assumes the mbuf has been encapsulated, and has the TID assigned
4213  * if it is a QoS frame.
4214  *
4215  * Note this also clears any existing fragment ID in the header, so it
4216  * must be called first before assigning fragment IDs.
4217  *
4218  * @param ni	ieee80211_node this frame will be transmitted to
4219  * @param arg_tid	A temporary check, existing callers may set
4220  *    this to a TID variable they were using, and this routine
4221  *    will verify it against what's in the frame and complain if
4222  *    they don't match.  For new callers, use -1.
4223  * @param m	mbuf to populate the sequence number into
4224  */
4225 void
ieee80211_output_seqno_assign(struct ieee80211_node * ni,int arg_tid,struct mbuf * m)4226 ieee80211_output_seqno_assign(struct ieee80211_node *ni, int arg_tid,
4227     struct mbuf *m)
4228 {
4229 	struct ieee80211_frame *wh;
4230 	ieee80211_seq seqno;
4231 	uint8_t tid, type, subtype;
4232 
4233 	wh = mtod(m, struct ieee80211_frame *);
4234 	tid = ieee80211_gettid(wh);
4235 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4236 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4237 
4238 	/*
4239 	 * Find places where the passed in TID doesn't match gettid()
4240 	 * and log.  I'll have to then go and chase those down.
4241 	 *
4242 	 * If the caller knows its already setup the TID in the frame
4243 	 * correctly then it can pass in -1 and this check will be
4244 	 * skipped.
4245 	 */
4246 	if (arg_tid != -1 && tid != arg_tid)
4247 		ic_printf(ni->ni_vap->iv_ic,
4248 		    "%s: called; TID mismatch; tid=%u, arg_tid=%d\n",
4249 		    __func__, tid, arg_tid);
4250 
4251 
4252 	/* 802.11-2020 10.3.2.14.2 (Transmitter Requirements) sections */
4253 
4254 	/* SNS7 - unicast PV1 management frame */
4255 
4256 	/* SNS6 - unicast PV1 data frame */
4257 
4258 	/* SNS5 - QoS NULL frames */
4259 	if (IEEE80211_QOS_HAS_SEQ(wh) && IEEE80211_IS_QOS_NULL(wh))
4260 		seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4261 
4262 	/* SNS4 - QMF STA transmitting a QMF */
4263 
4264 	/* SNS3 - QoS STA; Time Priority Management frame */
4265 
4266 	/* SNS2 - unicast QoS STA, data frame, excluding SNS5 */
4267 	else if (IEEE80211_QOS_HAS_SEQ(wh) &&
4268 	    !IEEE80211_IS_MULTICAST(wh->i_addr1))
4269 		seqno = ieee80211_tx_seqno_fetch_incr(ni, tid);
4270 
4271 	/* SNS1 - Baseline (everything else) */
4272 	else if (IEEE80211_HAS_SEQ(type, subtype))
4273 		seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4274 	else
4275 		seqno = 0;
4276 
4277 	/*
4278 	 * Assign the sequence number, clearing out any existing
4279 	 * sequence and fragment numbers.
4280 	 */
4281 	*(uint16_t *)&wh->i_seq[0] =
4282 	    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4283 	M_SEQNO_SET(m, seqno);
4284 }
4285 
4286 /**
4287  * @brief Assign a sequence number to the given beacon frame.
4288  *
4289  * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements)
4290  *
4291  * @param ni	ieee80211_node this frame will be transmitted to
4292  * @param m		mbuf to populate the sequence number into
4293  */
4294 void
ieee80211_output_beacon_seqno_assign(struct ieee80211_node * ni,struct mbuf * m)4295 ieee80211_output_beacon_seqno_assign(struct ieee80211_node *ni, struct mbuf *m)
4296 {
4297 	struct ieee80211_frame *wh;
4298 	ieee80211_seq seqno;
4299 
4300 	wh = mtod(m, struct ieee80211_frame *);
4301 
4302 	seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4303 	*(uint16_t *)&wh->i_seq[0] =
4304 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4305 	M_SEQNO_SET(m, seqno);
4306 }
4307