1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40
41 #include <sys/socket.h>
42
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76
77 #include <security/mac/mac_framework.h>
78
79 #define ETHER_HEADER_COPY(dst, src) \
80 memcpy(dst, src, sizeof(struct ether_header))
81
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85
86 #ifdef IEEE80211_DEBUG
87 /*
88 * Decide if an outbound management frame should be
89 * printed when debugging is enabled. This filters some
90 * of the less interesting frames that come frequently
91 * (e.g. beacons).
92 */
93 static __inline int
doprint(struct ieee80211vap * vap,int subtype)94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 switch (subtype) {
97 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 return (vap->iv_opmode == IEEE80211_M_IBSS);
99 }
100 return 1;
101 }
102 #endif
103
104 /*
105 * Transmit a frame to the given destination on the given VAP.
106 *
107 * It's up to the caller to figure out the details of who this
108 * is going to and resolving the node.
109 *
110 * This routine takes care of queuing it for power save,
111 * A-MPDU state stuff, fast-frames state stuff, encapsulation
112 * if required, then passing it up to the driver layer.
113 *
114 * This routine (for now) consumes the mbuf and frees the node
115 * reference; it ideally will return a TX status which reflects
116 * whether the mbuf was consumed or not, so the caller can
117 * free the mbuf (if appropriate) and the node reference (again,
118 * if appropriate.)
119 */
120 int
ieee80211_vap_pkt_send_dest(struct ieee80211vap * vap,struct mbuf * m,struct ieee80211_node * ni)121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122 struct ieee80211_node *ni)
123 {
124 struct ieee80211com *ic = vap->iv_ic;
125 struct ifnet *ifp = vap->iv_ifp;
126 int mcast;
127 int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 int do_amsdu = 0;
130 int do_ampdu_amsdu = 0;
131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 int do_ff = 0;
133 #endif
134
135 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 (m->m_flags & M_PWR_SAV) == 0) {
137 /*
138 * Station in power save mode; pass the frame
139 * to the 802.11 layer and continue. We'll get
140 * the frame back when the time is right.
141 * XXX lose WDS vap linkage?
142 */
143 if (ieee80211_pwrsave(ni, m) != 0)
144 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 ieee80211_free_node(ni);
146
147 /*
148 * We queued it fine, so tell the upper layer
149 * that we consumed it.
150 */
151 return (0);
152 }
153 /* calculate priority so drivers can find the tx queue */
154 if (ieee80211_classify(ni, m)) {
155 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 ni->ni_macaddr, NULL,
157 "%s", "classification failure");
158 vap->iv_stats.is_tx_classify++;
159 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 m_freem(m);
161 ieee80211_free_node(ni);
162
163 /* XXX better status? */
164 return (0);
165 }
166 /*
167 * Stash the node pointer. Note that we do this after
168 * any call to ieee80211_dwds_mcast because that code
169 * uses any existing value for rcvif to identify the
170 * interface it (might have been) received on.
171 */
172 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 m->m_pkthdr.rcvif = (void *)ni;
174 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175
176 BPF_MTAP(ifp, m); /* 802.3 tx */
177
178 /*
179 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 *
181 * A-MPDU depends upon vap/node config.
182 * A-MSDU depends upon vap/node config.
183 * FF depends upon vap config, IE and whether
184 * it's 11abg (and not 11n/11ac/etc.)
185 *
186 * Note that these flags indiciate whether we can do
187 * it at all, rather than the situation (eg traffic type.)
188 */
189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 do_ff =
195 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199
200 /*
201 * Check if A-MPDU tx aggregation is setup or if we
202 * should try to enable it. The sta must be associated
203 * with HT and A-MPDU enabled for use. When the policy
204 * routine decides we should enable A-MPDU we issue an
205 * ADDBA request and wait for a reply. The frame being
206 * encapsulated will go out w/o using A-MPDU, or possibly
207 * it might be collected by the driver and held/retransmit.
208 * The default ic_ampdu_enable routine handles staggering
209 * ADDBA requests in case the receiver NAK's us or we are
210 * otherwise unable to establish a BA stream.
211 *
212 * Don't treat group-addressed frames as candidates for aggregation;
213 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 * frames will always have sequence numbers allocated from the NON_QOS
215 * TID.
216 */
217 if (!IEEE80211_CONF_AMPDU_OFFLOAD(ic) && do_ampdu) {
218 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221
222 ieee80211_txampdu_count_packet(tap);
223 if (IEEE80211_AMPDU_RUNNING(tap)) {
224 /*
225 * Operational, mark frame for aggregation.
226 *
227 * XXX do tx aggregation here
228 */
229 m->m_flags |= M_AMPDU_MPDU;
230 } else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 ic->ic_ampdu_enable(ni, tap)) {
232 /*
233 * Not negotiated yet, request service.
234 */
235 ieee80211_ampdu_request(ni, tap);
236 /* XXX hold frame for reply? */
237 }
238 /*
239 * Now update the no-ampdu flag. A-MPDU may have been
240 * started or administratively disabled above; so now we
241 * know whether we're running yet or not.
242 *
243 * This will let us know whether we should be doing A-MSDU
244 * at this point. We only do A-MSDU if we're either not
245 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 * is available.
247 *
248 * Whilst here, update the amsdu-ampdu flag. The above may
249 * have also set or cleared the amsdu-in-ampdu txa_flags
250 * combination so we can correctly do A-MPDU + A-MSDU.
251 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 || (IEEE80211_AMPDU_NACKED(tap)));
255 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 }
258 }
259
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 /*
262 * Check for AMSDU/FF; queue for aggregation
263 *
264 * Note: we don't bother trying to do fast frames or
265 * A-MSDU encapsulation for 802.3 drivers. Now, we
266 * likely could do it for FF (because it's a magic
267 * atheros tunnel LLC type) but I don't think we're going
268 * to really need to. For A-MSDU we'd have to set the
269 * A-MSDU QoS bit in the wifi header, so we just plain
270 * can't do it.
271 */
272 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 if ((! mcast) &&
274 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 ieee80211_amsdu_tx_ok(ni)) {
276 m = ieee80211_amsdu_check(ni, m);
277 if (m == NULL) {
278 /* NB: any ni ref held on stageq */
279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 "%s: amsdu_check queued frame\n",
281 __func__);
282 return (0);
283 }
284 } else if ((! mcast) && do_ff) {
285 m = ieee80211_ff_check(ni, m);
286 if (m == NULL) {
287 /* NB: any ni ref held on stageq */
288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 "%s: ff_check queued frame\n",
290 __func__);
291 return (0);
292 }
293 }
294 }
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296
297 /*
298 * Grab the TX lock - serialise the TX process from this
299 * point (where TX state is being checked/modified)
300 * through to driver queue.
301 */
302 IEEE80211_TX_LOCK(ic);
303
304 /*
305 * XXX make the encap and transmit code a separate function
306 * so things like the FF (and later A-MSDU) path can just call
307 * it for flushed frames.
308 */
309 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 /*
311 * Encapsulate the packet in prep for transmission.
312 */
313 m = ieee80211_encap(vap, ni, m);
314 if (m == NULL) {
315 /* NB: stat+msg handled in ieee80211_encap */
316 IEEE80211_TX_UNLOCK(ic);
317 ieee80211_free_node(ni);
318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 return (ENOBUFS);
320 }
321 }
322 (void) ieee80211_parent_xmitpkt(ic, m);
323
324 /*
325 * Unlock at this point - no need to hold it across
326 * ieee80211_free_node() (ie, the comlock)
327 */
328 IEEE80211_TX_UNLOCK(ic);
329 ic->ic_lastdata = ticks;
330
331 return (0);
332 }
333
334 /*
335 * Send the given mbuf through the given vap.
336 *
337 * This consumes the mbuf regardless of whether the transmit
338 * was successful or not.
339 *
340 * This does none of the initial checks that ieee80211_start()
341 * does (eg CAC timeout, interface wakeup) - the caller must
342 * do this first.
343 */
344 static int
ieee80211_start_pkt(struct ieee80211vap * vap,struct mbuf * m)345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define IS_DWDS(vap) \
348 (vap->iv_opmode == IEEE80211_M_WDS && \
349 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 struct ieee80211com *ic = vap->iv_ic;
351 struct ifnet *ifp = vap->iv_ifp;
352 struct ieee80211_node *ni;
353 struct ether_header *eh;
354
355 /*
356 * Cancel any background scan.
357 */
358 if (ic->ic_flags & IEEE80211_F_SCAN)
359 ieee80211_cancel_anyscan(vap);
360 /*
361 * Find the node for the destination so we can do
362 * things like power save and fast frames aggregation.
363 *
364 * NB: past this point various code assumes the first
365 * mbuf has the 802.3 header present (and contiguous).
366 */
367 ni = NULL;
368 if (m->m_len < sizeof(struct ether_header) &&
369 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 "discard frame, %s\n", "m_pullup failed");
372 vap->iv_stats.is_tx_nobuf++; /* XXX */
373 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 return (ENOBUFS);
375 }
376 eh = mtod(m, struct ether_header *);
377 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 if (IS_DWDS(vap)) {
379 /*
380 * Only unicast frames from the above go out
381 * DWDS vaps; multicast frames are handled by
382 * dispatching the frame as it comes through
383 * the AP vap (see below).
384 */
385 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 eh->ether_dhost, "mcast", "%s", "on DWDS");
387 vap->iv_stats.is_dwds_mcast++;
388 m_freem(m);
389 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 /* XXX better status? */
391 return (ENOBUFS);
392 }
393 if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 /*
395 * Spam DWDS vap's w/ multicast traffic.
396 */
397 /* XXX only if dwds in use? */
398 ieee80211_dwds_mcast(vap, m);
399 }
400 }
401 #ifdef IEEE80211_SUPPORT_MESH
402 if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 if (ni == NULL) {
406 /* NB: ieee80211_find_txnode does stat+msg */
407 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 m_freem(m);
409 /* XXX better status? */
410 return (ENOBUFS);
411 }
412 if (ni->ni_associd == 0 &&
413 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 eh->ether_dhost, NULL,
416 "sta not associated (type 0x%04x)",
417 htons(eh->ether_type));
418 vap->iv_stats.is_tx_notassoc++;
419 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 m_freem(m);
421 ieee80211_free_node(ni);
422 /* XXX better status? */
423 return (ENOBUFS);
424 }
425 #ifdef IEEE80211_SUPPORT_MESH
426 } else {
427 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 /*
429 * Proxy station only if configured.
430 */
431 if (!ieee80211_mesh_isproxyena(vap)) {
432 IEEE80211_DISCARD_MAC(vap,
433 IEEE80211_MSG_OUTPUT |
434 IEEE80211_MSG_MESH,
435 eh->ether_dhost, NULL,
436 "%s", "proxy not enabled");
437 vap->iv_stats.is_mesh_notproxy++;
438 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 m_freem(m);
440 /* XXX better status? */
441 return (ENOBUFS);
442 }
443 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 "forward frame from DS SA(%6D), DA(%6D)\n",
445 eh->ether_shost, ":",
446 eh->ether_dhost, ":");
447 ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 }
449 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 if (ni == NULL) {
451 /*
452 * NB: ieee80211_mesh_discover holds/disposes
453 * frame (e.g. queueing on path discovery).
454 */
455 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 /* XXX better status? */
457 return (ENOBUFS);
458 }
459 }
460 #endif
461
462 /*
463 * We've resolved the sender, so attempt to transmit it.
464 */
465
466 if (vap->iv_state == IEEE80211_S_SLEEP) {
467 /*
468 * In power save; queue frame and then wakeup device
469 * for transmit.
470 */
471 ic->ic_lastdata = ticks;
472 if (ieee80211_pwrsave(ni, m) != 0)
473 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 ieee80211_free_node(ni);
475 ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 return (0);
477 }
478
479 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 return (ENOBUFS);
481 return (0);
482 #undef IS_DWDS
483 }
484
485 /*
486 * Start method for vap's. All packets from the stack come
487 * through here. We handle common processing of the packets
488 * before dispatching them to the underlying device.
489 *
490 * if_transmit() requires that the mbuf be consumed by this call
491 * regardless of the return condition.
492 */
493 int
ieee80211_vap_transmit(struct ifnet * ifp,struct mbuf * m)494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 struct ieee80211vap *vap = ifp->if_softc;
497 struct ieee80211com *ic = vap->iv_ic;
498
499 /*
500 * No data frames go out unless we're running.
501 * Note in particular this covers CAC and CSA
502 * states (though maybe we should check muting
503 * for CSA).
504 */
505 if (vap->iv_state != IEEE80211_S_RUN &&
506 vap->iv_state != IEEE80211_S_SLEEP) {
507 IEEE80211_LOCK(ic);
508 /* re-check under the com lock to avoid races */
509 if (vap->iv_state != IEEE80211_S_RUN &&
510 vap->iv_state != IEEE80211_S_SLEEP) {
511 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 "%s: ignore queue, in %s state\n",
513 __func__, ieee80211_state_name[vap->iv_state]);
514 vap->iv_stats.is_tx_badstate++;
515 IEEE80211_UNLOCK(ic);
516 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 m_freem(m);
518 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 return (ENETDOWN);
520 }
521 IEEE80211_UNLOCK(ic);
522 }
523
524 /*
525 * Sanitize mbuf flags for net80211 use. We cannot
526 * clear M_PWR_SAV or M_MORE_DATA because these may
527 * be set for frames that are re-submitted from the
528 * power save queue.
529 *
530 * NB: This must be done before ieee80211_classify as
531 * it marks EAPOL in frames with M_EAPOL.
532 */
533 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534
535 /*
536 * Bump to the packet transmission path.
537 * The mbuf will be consumed here.
538 */
539 return (ieee80211_start_pkt(vap, m));
540 }
541
542 void
ieee80211_vap_qflush(struct ifnet * ifp)543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545
546 /* Empty for now */
547 }
548
549 /*
550 * 802.11 raw output routine.
551 *
552 * XXX TODO: this (and other send routines) should correctly
553 * XXX keep the pwr mgmt bit set if it decides to call into the
554 * XXX driver to send a frame whilst the state is SLEEP.
555 *
556 * Otherwise the peer may decide that we're awake and flood us
557 * with traffic we are still too asleep to receive!
558 */
559 int
ieee80211_raw_output(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561 struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 struct ieee80211com *ic = vap->iv_ic;
564 int error;
565
566 /*
567 * Set node - the caller has taken a reference, so ensure
568 * that the mbuf has the same node value that
569 * it would if it were going via the normal path.
570 */
571 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 m->m_pkthdr.rcvif = (void *)ni;
573
574 /*
575 * Attempt to add bpf transmit parameters.
576 *
577 * For now it's ok to fail; the raw_xmit api still takes
578 * them as an option.
579 *
580 * Later on when ic_raw_xmit() has params removed,
581 * they'll have to be added - so fail the transmit if
582 * they can't be.
583 */
584 if (params)
585 (void) ieee80211_add_xmit_params(m, params);
586
587 error = ic->ic_raw_xmit(ni, m, params);
588 if (error) {
589 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 ieee80211_free_node(ni);
591 }
592 return (error);
593 }
594
595 static int
ieee80211_validate_frame(struct mbuf * m,const struct ieee80211_bpf_params * params)596 ieee80211_validate_frame(struct mbuf *m,
597 const struct ieee80211_bpf_params *params)
598 {
599 struct ieee80211_frame *wh;
600 int type;
601
602 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 return (EINVAL);
604
605 wh = mtod(m, struct ieee80211_frame *);
606 if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607 return (EINVAL);
608
609 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610 if (type != IEEE80211_FC0_TYPE_DATA) {
611 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612 IEEE80211_FC1_DIR_NODS)
613 return (EINVAL);
614
615 if (type != IEEE80211_FC0_TYPE_MGT &&
616 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617 return (EINVAL);
618
619 /* XXX skip other field checks? */
620 }
621
622 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623 (IEEE80211_IS_PROTECTED(wh))) {
624 int subtype;
625
626 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627
628 /*
629 * See IEEE Std 802.11-2012,
630 * 8.2.4.1.9 'Protected Frame field'
631 */
632 /* XXX no support for robust management frames yet. */
633 if (!(type == IEEE80211_FC0_TYPE_DATA ||
634 (type == IEEE80211_FC0_TYPE_MGT &&
635 subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636 return (EINVAL);
637
638 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639 }
640
641 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642 return (EINVAL);
643
644 return (0);
645 }
646
647 static int
ieee80211_validate_rate(struct ieee80211_node * ni,uint8_t rate)648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649 {
650 struct ieee80211com *ic = ni->ni_ic;
651
652 if (IEEE80211_IS_HT_RATE(rate)) {
653 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654 return (EINVAL);
655
656 rate = IEEE80211_RV(rate);
657 if (rate <= 31) {
658 if (rate > ic->ic_txstream * 8 - 1)
659 return (EINVAL);
660
661 return (0);
662 }
663
664 if (rate == 32) {
665 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666 return (EINVAL);
667
668 return (0);
669 }
670
671 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672 return (EINVAL);
673
674 switch (ic->ic_txstream) {
675 case 0:
676 case 1:
677 return (EINVAL);
678 case 2:
679 if (rate > 38)
680 return (EINVAL);
681
682 return (0);
683 case 3:
684 if (rate > 52)
685 return (EINVAL);
686
687 return (0);
688 case 4:
689 default:
690 if (rate > 76)
691 return (EINVAL);
692
693 return (0);
694 }
695 }
696
697 if (!ieee80211_isratevalid(ic->ic_rt, rate))
698 return (EINVAL);
699
700 return (0);
701 }
702
703 static int
ieee80211_sanitize_rates(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705 const struct ieee80211_bpf_params *params)
706 {
707 int error;
708
709 if (!params)
710 return (0); /* nothing to do */
711
712 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713 if (params->ibp_rate0 != 0) {
714 error = ieee80211_validate_rate(ni, params->ibp_rate0);
715 if (error != 0)
716 return (error);
717 } else {
718 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719 /* XXX __DECONST? */
720 (void) m;
721 }
722
723 if (params->ibp_rate1 != 0 &&
724 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725 return (error);
726
727 if (params->ibp_rate2 != 0 &&
728 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729 return (error);
730
731 if (params->ibp_rate3 != 0 &&
732 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733 return (error);
734
735 return (0);
736 }
737
738 /*
739 * 802.11 output routine. This is (currently) used only to
740 * connect bpf write calls to the 802.11 layer for injecting
741 * raw 802.11 frames.
742 */
743 int
ieee80211_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)744 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745 const struct sockaddr *dst, struct route *ro)
746 {
747 #define senderr(e) do { error = (e); goto bad;} while (0)
748 const struct ieee80211_bpf_params *params = NULL;
749 struct ieee80211_node *ni = NULL;
750 struct ieee80211vap *vap;
751 struct ieee80211_frame *wh;
752 struct ieee80211com *ic = NULL;
753 int error;
754 int ret;
755
756 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757 /*
758 * Short-circuit requests if the vap is marked OACTIVE
759 * as this can happen because a packet came down through
760 * ieee80211_start before the vap entered RUN state in
761 * which case it's ok to just drop the frame. This
762 * should not be necessary but callers of if_output don't
763 * check OACTIVE.
764 */
765 senderr(ENETDOWN);
766 }
767 vap = ifp->if_softc;
768 ic = vap->iv_ic;
769 /*
770 * Hand to the 802.3 code if not tagged as
771 * a raw 802.11 frame.
772 */
773 if (dst->sa_family != AF_IEEE80211)
774 return vap->iv_output(ifp, m, dst, ro);
775 #ifdef MAC
776 error = mac_ifnet_check_transmit(ifp, m);
777 if (error)
778 senderr(error);
779 #endif
780 if (ieee80211_vap_ifp_check_is_monitor(vap))
781 senderr(ENETDOWN);
782 if (!IFNET_IS_UP_RUNNING(ifp))
783 senderr(ENETDOWN);
784 if (vap->iv_state == IEEE80211_S_CAC) {
785 IEEE80211_DPRINTF(vap,
786 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
787 "block %s frame in CAC state\n", "raw data");
788 vap->iv_stats.is_tx_badstate++;
789 senderr(EIO); /* XXX */
790 } else if (vap->iv_state == IEEE80211_S_SCAN)
791 senderr(EIO);
792 /* XXX bypass bridge, pfil, carp, etc. */
793
794 /*
795 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
796 * present by setting the sa_len field of the sockaddr (yes,
797 * this is a hack).
798 * NB: we assume sa_data is suitably aligned to cast.
799 */
800 if (dst->sa_len != 0)
801 params = (const struct ieee80211_bpf_params *)dst->sa_data;
802
803 error = ieee80211_validate_frame(m, params);
804 if (error != 0)
805 senderr(error);
806
807 wh = mtod(m, struct ieee80211_frame *);
808
809 /* locate destination node */
810 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
811 case IEEE80211_FC1_DIR_NODS:
812 case IEEE80211_FC1_DIR_FROMDS:
813 ni = ieee80211_find_txnode(vap, wh->i_addr1);
814 break;
815 case IEEE80211_FC1_DIR_TODS:
816 case IEEE80211_FC1_DIR_DSTODS:
817 ni = ieee80211_find_txnode(vap, wh->i_addr3);
818 break;
819 default:
820 senderr(EDOOFUS);
821 }
822 if (ni == NULL) {
823 /*
824 * Permit packets w/ bpf params through regardless
825 * (see below about sa_len).
826 */
827 if (dst->sa_len == 0)
828 senderr(EHOSTUNREACH);
829 ni = ieee80211_ref_node(vap->iv_bss);
830 }
831
832 /*
833 * Sanitize mbuf for net80211 flags leaked from above.
834 *
835 * NB: This must be done before ieee80211_classify as
836 * it marks EAPOL in frames with M_EAPOL.
837 */
838 m->m_flags &= ~M_80211_TX;
839 m->m_flags |= M_ENCAP; /* mark encapsulated */
840
841 if (IEEE80211_IS_DATA(wh)) {
842 /* calculate priority so drivers can find the tx queue */
843 if (ieee80211_classify(ni, m))
844 senderr(EIO); /* XXX */
845
846 /* NB: ieee80211_encap does not include 802.11 header */
847 IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
848 m->m_pkthdr.len - ieee80211_hdrsize(wh));
849 } else
850 M_WME_SETAC(m, WME_AC_BE);
851
852 error = ieee80211_sanitize_rates(ni, m, params);
853 if (error != 0)
854 senderr(error);
855
856 IEEE80211_NODE_STAT(ni, tx_data);
857 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
858 IEEE80211_NODE_STAT(ni, tx_mcast);
859 m->m_flags |= M_MCAST;
860 } else
861 IEEE80211_NODE_STAT(ni, tx_ucast);
862
863 IEEE80211_TX_LOCK(ic);
864 ret = ieee80211_raw_output(vap, ni, m, params);
865 IEEE80211_TX_UNLOCK(ic);
866 return (ret);
867 bad:
868 if (m != NULL)
869 m_freem(m);
870 if (ni != NULL)
871 ieee80211_free_node(ni);
872 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
873 return error;
874 #undef senderr
875 }
876
877 /*
878 * Set the direction field and address fields of an outgoing
879 * frame. Note this should be called early on in constructing
880 * a frame as it sets i_fc[1]; other bits can then be or'd in.
881 */
882 void
ieee80211_send_setup(struct ieee80211_node * ni,struct mbuf * m,int type,int tid,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN])883 ieee80211_send_setup(
884 struct ieee80211_node *ni,
885 struct mbuf *m,
886 int type, int tid,
887 const uint8_t sa[IEEE80211_ADDR_LEN],
888 const uint8_t da[IEEE80211_ADDR_LEN],
889 const uint8_t bssid[IEEE80211_ADDR_LEN])
890 {
891 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
892 struct ieee80211vap *vap = ni->ni_vap;
893 struct ieee80211_tx_ampdu *tap;
894 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
895
896 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
897
898 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
899 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
900 switch (vap->iv_opmode) {
901 case IEEE80211_M_STA:
902 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
903 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
904 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
905 IEEE80211_ADDR_COPY(wh->i_addr3, da);
906 break;
907 case IEEE80211_M_IBSS:
908 case IEEE80211_M_AHDEMO:
909 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
910 IEEE80211_ADDR_COPY(wh->i_addr1, da);
911 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
912 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
913 break;
914 case IEEE80211_M_HOSTAP:
915 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
916 IEEE80211_ADDR_COPY(wh->i_addr1, da);
917 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
918 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
919 break;
920 case IEEE80211_M_WDS:
921 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
922 IEEE80211_ADDR_COPY(wh->i_addr1, da);
923 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
924 IEEE80211_ADDR_COPY(wh->i_addr3, da);
925 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
926 break;
927 case IEEE80211_M_MBSS:
928 #ifdef IEEE80211_SUPPORT_MESH
929 if (IEEE80211_IS_MULTICAST(da)) {
930 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
931 /* XXX next hop */
932 IEEE80211_ADDR_COPY(wh->i_addr1, da);
933 IEEE80211_ADDR_COPY(wh->i_addr2,
934 vap->iv_myaddr);
935 } else {
936 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
937 IEEE80211_ADDR_COPY(wh->i_addr1, da);
938 IEEE80211_ADDR_COPY(wh->i_addr2,
939 vap->iv_myaddr);
940 IEEE80211_ADDR_COPY(wh->i_addr3, da);
941 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
942 }
943 #endif
944 break;
945 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
946 break;
947 }
948 } else {
949 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
950 IEEE80211_ADDR_COPY(wh->i_addr1, da);
951 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
952 #ifdef IEEE80211_SUPPORT_MESH
953 if (vap->iv_opmode == IEEE80211_M_MBSS)
954 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
955 else
956 #endif
957 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
958 }
959 *(uint16_t *)&wh->i_dur[0] = 0;
960
961 /*
962 * XXX TODO: this is what the TX lock is for.
963 * Here we're incrementing sequence numbers, and they
964 * need to be in lock-step with what the driver is doing
965 * both in TX ordering and crypto encap (IV increment.)
966 *
967 * If the driver does seqno itself, then we can skip
968 * assigning sequence numbers here, and we can avoid
969 * requiring the TX lock.
970 */
971 tap = &ni->ni_tx_ampdu[tid];
972 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
973 m->m_flags |= M_AMPDU_MPDU;
974
975 /* NB: zero out i_seq field (for s/w encryption etc) */
976 *(uint16_t *)&wh->i_seq[0] = 0;
977 } else if (!IEEE80211_CONF_SEQNO_OFFLOAD(ni->ni_ic))
978 ieee80211_output_seqno_assign(ni, tid, m);
979
980 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
981 m->m_flags |= M_MCAST;
982 #undef WH4
983 }
984
985 /*
986 * Send a management frame to the specified node. The node pointer
987 * must have a reference as the pointer will be passed to the driver
988 * and potentially held for a long time. If the frame is successfully
989 * dispatched to the driver, then it is responsible for freeing the
990 * reference (and potentially free'ing up any associated storage);
991 * otherwise deal with reclaiming any reference (on error).
992 */
993 int
ieee80211_mgmt_output(struct ieee80211_node * ni,struct mbuf * m,int type,struct ieee80211_bpf_params * params)994 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
995 struct ieee80211_bpf_params *params)
996 {
997 struct ieee80211vap *vap = ni->ni_vap;
998 struct ieee80211com *ic = ni->ni_ic;
999 struct ieee80211_frame *wh;
1000 int ret;
1001
1002 KASSERT(ni != NULL, ("null node"));
1003
1004 if (vap->iv_state == IEEE80211_S_CAC) {
1005 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1006 ni, "block %s frame in CAC state",
1007 ieee80211_mgt_subtype_name(type));
1008 vap->iv_stats.is_tx_badstate++;
1009 ieee80211_free_node(ni);
1010 m_freem(m);
1011 return EIO; /* XXX */
1012 }
1013
1014 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1015 if (m == NULL) {
1016 ieee80211_free_node(ni);
1017 return ENOMEM;
1018 }
1019
1020 IEEE80211_TX_LOCK(ic);
1021
1022 wh = mtod(m, struct ieee80211_frame *);
1023 ieee80211_send_setup(ni, m,
1024 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1025 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1026 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1027 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1028 "encrypting frame (%s)", __func__);
1029 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1030 }
1031 m->m_flags |= M_ENCAP; /* mark encapsulated */
1032
1033 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1034 M_WME_SETAC(m, params->ibp_pri);
1035
1036 #ifdef IEEE80211_DEBUG
1037 /* avoid printing too many frames */
1038 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1039 ieee80211_msg_dumppkts(vap)) {
1040 ieee80211_note(vap, "[%s] send %s on channel %u\n",
1041 ether_sprintf(wh->i_addr1),
1042 ieee80211_mgt_subtype_name(type),
1043 ieee80211_chan2ieee(ic, ic->ic_curchan));
1044 }
1045 #endif
1046 IEEE80211_NODE_STAT(ni, tx_mgmt);
1047
1048 ret = ieee80211_raw_output(vap, ni, m, params);
1049 IEEE80211_TX_UNLOCK(ic);
1050 return (ret);
1051 }
1052
1053 static void
ieee80211_nulldata_transmitted(struct ieee80211_node * ni,void * arg,int status)1054 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1055 int status)
1056 {
1057 struct ieee80211vap *vap = ni->ni_vap;
1058
1059 wakeup(vap);
1060 }
1061
1062 /*
1063 * Send a null data frame to the specified node. If the station
1064 * is setup for QoS then a QoS Null Data frame is constructed.
1065 * If this is a WDS station then a 4-address frame is constructed.
1066 *
1067 * NB: the caller is assumed to have setup a node reference
1068 * for use; this is necessary to deal with a race condition
1069 * when probing for inactive stations. Like ieee80211_mgmt_output
1070 * we must cleanup any node reference on error; however we
1071 * can safely just unref it as we know it will never be the
1072 * last reference to the node.
1073 */
1074 int
ieee80211_send_nulldata(struct ieee80211_node * ni)1075 ieee80211_send_nulldata(struct ieee80211_node *ni)
1076 {
1077 struct ieee80211vap *vap = ni->ni_vap;
1078 struct ieee80211com *ic = ni->ni_ic;
1079 struct mbuf *m;
1080 struct ieee80211_frame *wh;
1081 int hdrlen;
1082 uint8_t *frm;
1083 int ret;
1084
1085 /* Don't send NULL frames if we've been configured not to do so. */
1086 if ((ic->ic_flags_ext & IEEE80211_FEXT_NO_NULLDATA) != 0) {
1087 ieee80211_node_decref(ni);
1088 return (0);
1089 }
1090
1091 if (vap->iv_state == IEEE80211_S_CAC) {
1092 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1093 ni, "block %s frame in CAC state", "null data");
1094 ieee80211_node_decref(ni);
1095 vap->iv_stats.is_tx_badstate++;
1096 return EIO; /* XXX */
1097 }
1098
1099 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1100 hdrlen = sizeof(struct ieee80211_qosframe);
1101 else
1102 hdrlen = sizeof(struct ieee80211_frame);
1103 /* NB: only WDS vap's get 4-address frames */
1104 if (vap->iv_opmode == IEEE80211_M_WDS)
1105 hdrlen += IEEE80211_ADDR_LEN;
1106 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1107 hdrlen = roundup(hdrlen, sizeof(uint32_t));
1108
1109 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1110 if (m == NULL) {
1111 /* XXX debug msg */
1112 ieee80211_node_decref(ni);
1113 vap->iv_stats.is_tx_nobuf++;
1114 return ENOMEM;
1115 }
1116 KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1117 ("leading space %zd", M_LEADINGSPACE(m)));
1118 M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1119 if (m == NULL) {
1120 /* NB: cannot happen */
1121 ieee80211_free_node(ni);
1122 return ENOMEM;
1123 }
1124
1125 IEEE80211_TX_LOCK(ic);
1126
1127 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1128 if (ni->ni_flags & IEEE80211_NODE_QOS) {
1129 const int tid = WME_AC_TO_TID(WME_AC_BE);
1130 uint8_t *qos;
1131
1132 ieee80211_send_setup(ni, m,
1133 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1134 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1135
1136 if (vap->iv_opmode == IEEE80211_M_WDS)
1137 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1138 else
1139 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1140 qos[0] = tid & IEEE80211_QOS_TID;
1141 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1142 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1143 qos[1] = 0;
1144 } else {
1145 ieee80211_send_setup(ni, m,
1146 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1147 IEEE80211_NONQOS_TID,
1148 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1149 }
1150 if (vap->iv_opmode != IEEE80211_M_WDS) {
1151 /* NB: power management bit is never sent by an AP */
1152 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1153 vap->iv_opmode != IEEE80211_M_HOSTAP)
1154 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1155 }
1156 if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1157 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1158 ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1159 NULL);
1160 }
1161 m->m_len = m->m_pkthdr.len = hdrlen;
1162 m->m_flags |= M_ENCAP; /* mark encapsulated */
1163
1164 M_WME_SETAC(m, WME_AC_BE);
1165
1166 IEEE80211_NODE_STAT(ni, tx_data);
1167
1168 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1169 "send %snull data frame on channel %u, pwr mgt %s",
1170 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1171 ieee80211_chan2ieee(ic, ic->ic_curchan),
1172 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1173
1174 ret = ieee80211_raw_output(vap, ni, m, NULL);
1175 IEEE80211_TX_UNLOCK(ic);
1176 return (ret);
1177 }
1178
1179 /*
1180 * Assign priority to a frame based on any vlan tag assigned
1181 * to the station and/or any Diffserv setting in an IP header.
1182 * Finally, if an ACM policy is setup (in station mode) it's
1183 * applied.
1184 */
1185 int
ieee80211_classify(struct ieee80211_node * ni,struct mbuf * m)1186 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1187 {
1188 const struct ether_header *eh = NULL;
1189 uint16_t ether_type;
1190 int v_wme_ac, d_wme_ac, ac;
1191
1192 if (__predict_false(m->m_flags & M_ENCAP)) {
1193 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1194 struct llc *llc;
1195 int hdrlen, subtype;
1196
1197 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1198 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1199 ac = WME_AC_BE;
1200 goto done;
1201 }
1202
1203 hdrlen = ieee80211_hdrsize(wh);
1204 if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1205 return 1;
1206
1207 llc = (struct llc *)mtodo(m, hdrlen);
1208 if (llc->llc_dsap != LLC_SNAP_LSAP ||
1209 llc->llc_ssap != LLC_SNAP_LSAP ||
1210 llc->llc_control != LLC_UI ||
1211 llc->llc_snap.org_code[0] != 0 ||
1212 llc->llc_snap.org_code[1] != 0 ||
1213 llc->llc_snap.org_code[2] != 0)
1214 return 1;
1215
1216 ether_type = llc->llc_snap.ether_type;
1217 } else {
1218 eh = mtod(m, struct ether_header *);
1219 ether_type = eh->ether_type;
1220 }
1221
1222 /*
1223 * Always promote PAE/EAPOL frames to high priority.
1224 */
1225 if (ether_type == htons(ETHERTYPE_PAE)) {
1226 /* NB: mark so others don't need to check header */
1227 m->m_flags |= M_EAPOL;
1228 ac = WME_AC_VO;
1229 goto done;
1230 }
1231 /*
1232 * Non-qos traffic goes to BE.
1233 */
1234 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1235 ac = WME_AC_BE;
1236 goto done;
1237 }
1238
1239 /*
1240 * If node has a vlan tag then all traffic
1241 * to it must have a matching tag.
1242 */
1243 v_wme_ac = 0;
1244 if (ni->ni_vlan != 0) {
1245 if ((m->m_flags & M_VLANTAG) == 0) {
1246 IEEE80211_NODE_STAT(ni, tx_novlantag);
1247 return 1;
1248 }
1249 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1250 EVL_VLANOFTAG(ni->ni_vlan)) {
1251 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1252 return 1;
1253 }
1254 /* map vlan priority to AC */
1255 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1256 }
1257
1258 if (eh == NULL)
1259 goto no_eh;
1260
1261 /* XXX m_copydata may be too slow for fast path */
1262 switch (ntohs(eh->ether_type)) {
1263 #ifdef INET
1264 case ETHERTYPE_IP:
1265 {
1266 uint8_t tos;
1267 /*
1268 * IP frame, map the DSCP bits from the TOS field.
1269 */
1270 /* NB: ip header may not be in first mbuf */
1271 m_copydata(m, sizeof(struct ether_header) +
1272 offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1273 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1274 d_wme_ac = TID_TO_WME_AC(tos);
1275 break;
1276 }
1277 #endif
1278 #ifdef INET6
1279 case ETHERTYPE_IPV6:
1280 {
1281 uint32_t flow;
1282 uint8_t tos;
1283 /*
1284 * IPv6 frame, map the DSCP bits from the traffic class field.
1285 */
1286 m_copydata(m, sizeof(struct ether_header) +
1287 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1288 (caddr_t) &flow);
1289 tos = (uint8_t)(ntohl(flow) >> 20);
1290 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1291 d_wme_ac = TID_TO_WME_AC(tos);
1292 break;
1293 }
1294 #endif
1295 default:
1296 no_eh:
1297 d_wme_ac = WME_AC_BE;
1298 break;
1299 }
1300
1301 /*
1302 * Use highest priority AC.
1303 */
1304 if (v_wme_ac > d_wme_ac)
1305 ac = v_wme_ac;
1306 else
1307 ac = d_wme_ac;
1308
1309 /*
1310 * Apply ACM policy.
1311 */
1312 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1313 static const int acmap[4] = {
1314 WME_AC_BK, /* WME_AC_BE */
1315 WME_AC_BK, /* WME_AC_BK */
1316 WME_AC_BE, /* WME_AC_VI */
1317 WME_AC_VI, /* WME_AC_VO */
1318 };
1319 struct ieee80211com *ic = ni->ni_ic;
1320
1321 while (ac != WME_AC_BK &&
1322 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1323 ac = acmap[ac];
1324 }
1325 done:
1326 M_WME_SETAC(m, ac);
1327 return 0;
1328 }
1329
1330 /*
1331 * Insure there is sufficient contiguous space to encapsulate the
1332 * 802.11 data frame. If room isn't already there, arrange for it.
1333 * Drivers and cipher modules assume we have done the necessary work
1334 * and fail rudely if they don't find the space they need.
1335 */
1336 struct mbuf *
ieee80211_mbuf_adjust(struct ieee80211vap * vap,int hdrsize,struct ieee80211_key * key,struct mbuf * m)1337 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1338 struct ieee80211_key *key, struct mbuf *m)
1339 {
1340 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1341 int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1342
1343 if (key != NULL) {
1344 /* XXX belongs in crypto code? */
1345 needed_space += key->wk_cipher->ic_header;
1346 /* XXX frags */
1347 /*
1348 * When crypto is being done in the host we must insure
1349 * the data are writable for the cipher routines; clone
1350 * a writable mbuf chain.
1351 * XXX handle SWMIC specially
1352 */
1353 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1354 m = m_unshare(m, IEEE80211_M_NOWAIT);
1355 if (m == NULL) {
1356 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1357 "%s: cannot get writable mbuf\n", __func__);
1358 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1359 return NULL;
1360 }
1361 }
1362 }
1363 /*
1364 * We know we are called just before stripping an Ethernet
1365 * header and prepending an LLC header. This means we know
1366 * there will be
1367 * sizeof(struct ether_header) - sizeof(struct llc)
1368 * bytes recovered to which we need additional space for the
1369 * 802.11 header and any crypto header.
1370 */
1371 /* XXX check trailing space and copy instead? */
1372 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1373 struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1374 if (n == NULL) {
1375 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1376 "%s: cannot expand storage\n", __func__);
1377 vap->iv_stats.is_tx_nobuf++;
1378 m_freem(m);
1379 return NULL;
1380 }
1381 KASSERT(needed_space <= MHLEN,
1382 ("not enough room, need %u got %d\n", needed_space, MHLEN));
1383 /*
1384 * Setup new mbuf to have leading space to prepend the
1385 * 802.11 header and any crypto header bits that are
1386 * required (the latter are added when the driver calls
1387 * back to ieee80211_crypto_encap to do crypto encapsulation).
1388 */
1389 /* NB: must be first 'cuz it clobbers m_data */
1390 m_move_pkthdr(n, m);
1391 n->m_len = 0; /* NB: m_gethdr does not set */
1392 n->m_data += needed_space;
1393 /*
1394 * Pull up Ethernet header to create the expected layout.
1395 * We could use m_pullup but that's overkill (i.e. we don't
1396 * need the actual data) and it cannot fail so do it inline
1397 * for speed.
1398 */
1399 /* NB: struct ether_header is known to be contiguous */
1400 n->m_len += sizeof(struct ether_header);
1401 m->m_len -= sizeof(struct ether_header);
1402 m->m_data += sizeof(struct ether_header);
1403 /*
1404 * Replace the head of the chain.
1405 */
1406 n->m_next = m;
1407 m = n;
1408 }
1409 return m;
1410 #undef TO_BE_RECLAIMED
1411 }
1412
1413 /*
1414 * Return the transmit key to use in sending a unicast frame.
1415 * If a unicast key is set we use that. When no unicast key is set
1416 * we fall back to the default transmit key.
1417 */
1418 static __inline struct ieee80211_key *
ieee80211_crypto_getucastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1419 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1420 struct ieee80211_node *ni)
1421 {
1422 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1423 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1424 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1425 return NULL;
1426 return &vap->iv_nw_keys[vap->iv_def_txkey];
1427 } else {
1428 return &ni->ni_ucastkey;
1429 }
1430 }
1431
1432 /*
1433 * Return the transmit key to use in sending a multicast frame.
1434 * Multicast traffic always uses the group key which is installed as
1435 * the default tx key.
1436 */
1437 static __inline struct ieee80211_key *
ieee80211_crypto_getmcastkey(struct ieee80211vap * vap,struct ieee80211_node * ni)1438 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1439 struct ieee80211_node *ni)
1440 {
1441 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1442 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1443 return NULL;
1444 return &vap->iv_nw_keys[vap->iv_def_txkey];
1445 }
1446
1447 /*
1448 * Encapsulate an outbound data frame. The mbuf chain is updated.
1449 * If an error is encountered NULL is returned. The caller is required
1450 * to provide a node reference and pullup the ethernet header in the
1451 * first mbuf.
1452 *
1453 * NB: Packet is assumed to be processed by ieee80211_classify which
1454 * marked EAPOL frames w/ M_EAPOL.
1455 */
1456 struct mbuf *
ieee80211_encap(struct ieee80211vap * vap,struct ieee80211_node * ni,struct mbuf * m)1457 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1458 struct mbuf *m)
1459 {
1460 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1461 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1462 struct ieee80211com *ic = ni->ni_ic;
1463 #ifdef IEEE80211_SUPPORT_MESH
1464 struct ieee80211_mesh_state *ms = vap->iv_mesh;
1465 struct ieee80211_meshcntl_ae10 *mc;
1466 struct ieee80211_mesh_route *rt = NULL;
1467 int dir = -1;
1468 #endif
1469 struct ether_header eh;
1470 struct ieee80211_frame *wh;
1471 struct ieee80211_key *key;
1472 struct llc *llc;
1473 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1474 int meshhdrsize, meshae;
1475 uint8_t *qos;
1476 int is_amsdu = 0;
1477
1478 IEEE80211_TX_LOCK_ASSERT(ic);
1479
1480 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1481
1482 /*
1483 * Copy existing Ethernet header to a safe place. The
1484 * rest of the code assumes it's ok to strip it when
1485 * reorganizing state for the final encapsulation.
1486 */
1487 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1488 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1489
1490 /*
1491 * Insure space for additional headers. First identify
1492 * transmit key to use in calculating any buffer adjustments
1493 * required. This is also used below to do privacy
1494 * encapsulation work. Then calculate the 802.11 header
1495 * size and any padding required by the driver.
1496 *
1497 * Note key may be NULL if we fall back to the default
1498 * transmit key and that is not set. In that case the
1499 * buffer may not be expanded as needed by the cipher
1500 * routines, but they will/should discard it.
1501 */
1502 if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1503 if (vap->iv_opmode == IEEE80211_M_STA ||
1504 !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1505 (vap->iv_opmode == IEEE80211_M_WDS &&
1506 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1507 key = ieee80211_crypto_getucastkey(vap, ni);
1508 } else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1509 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1510 /*
1511 * Use ucastkey for DWDS transmit nodes, multicast
1512 * or otherwise.
1513 *
1514 * This is required to ensure that multicast frames
1515 * from a DWDS AP to a DWDS STA is encrypted with
1516 * a key that can actually work.
1517 *
1518 * There's no default key for multicast traffic
1519 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1520 * AP VAP, the dynamically created per-STA WDS node)
1521 * so encap fails and transmit fails.
1522 */
1523 key = ieee80211_crypto_getucastkey(vap, ni);
1524 } else {
1525 key = ieee80211_crypto_getmcastkey(vap, ni);
1526 }
1527 if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1528 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1529 eh.ether_dhost,
1530 "no default transmit key (%s) deftxkey %u",
1531 __func__, vap->iv_def_txkey);
1532 vap->iv_stats.is_tx_nodefkey++;
1533 goto bad;
1534 }
1535 } else
1536 key = NULL;
1537 /*
1538 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1539 * frames so suppress use. This may be an issue if other
1540 * ap's require all data frames to be QoS-encapsulated
1541 * once negotiated in which case we'll need to make this
1542 * configurable.
1543 *
1544 * Don't send multicast QoS frames.
1545 * Technically multicast frames can be QoS if all stations in the
1546 * BSS are also QoS.
1547 *
1548 * NB: mesh data frames are QoS, including multicast frames.
1549 */
1550 addqos =
1551 (((is_mcast == 0) && (ni->ni_flags &
1552 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1553 (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1554 (m->m_flags & M_EAPOL) == 0;
1555
1556 if (addqos)
1557 hdrsize = sizeof(struct ieee80211_qosframe);
1558 else
1559 hdrsize = sizeof(struct ieee80211_frame);
1560 #ifdef IEEE80211_SUPPORT_MESH
1561 if (vap->iv_opmode == IEEE80211_M_MBSS) {
1562 /*
1563 * Mesh data frames are encapsulated according to the
1564 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1565 * o Group Addressed data (aka multicast) originating
1566 * at the local sta are sent w/ 3-address format and
1567 * address extension mode 00
1568 * o Individually Addressed data (aka unicast) originating
1569 * at the local sta are sent w/ 4-address format and
1570 * address extension mode 00
1571 * o Group Addressed data forwarded from a non-mesh sta are
1572 * sent w/ 3-address format and address extension mode 01
1573 * o Individually Address data from another sta are sent
1574 * w/ 4-address format and address extension mode 10
1575 */
1576 is4addr = 0; /* NB: don't use, disable */
1577 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1578 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1579 KASSERT(rt != NULL, ("route is NULL"));
1580 dir = IEEE80211_FC1_DIR_DSTODS;
1581 hdrsize += IEEE80211_ADDR_LEN;
1582 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1583 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1584 vap->iv_myaddr)) {
1585 IEEE80211_NOTE_MAC(vap,
1586 IEEE80211_MSG_MESH,
1587 eh.ether_dhost,
1588 "%s", "trying to send to ourself");
1589 goto bad;
1590 }
1591 meshae = IEEE80211_MESH_AE_10;
1592 meshhdrsize =
1593 sizeof(struct ieee80211_meshcntl_ae10);
1594 } else {
1595 meshae = IEEE80211_MESH_AE_00;
1596 meshhdrsize =
1597 sizeof(struct ieee80211_meshcntl);
1598 }
1599 } else {
1600 dir = IEEE80211_FC1_DIR_FROMDS;
1601 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1602 /* proxy group */
1603 meshae = IEEE80211_MESH_AE_01;
1604 meshhdrsize =
1605 sizeof(struct ieee80211_meshcntl_ae01);
1606 } else {
1607 /* group */
1608 meshae = IEEE80211_MESH_AE_00;
1609 meshhdrsize = sizeof(struct ieee80211_meshcntl);
1610 }
1611 }
1612 } else {
1613 #endif
1614 /*
1615 * 4-address frames need to be generated for:
1616 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1617 * o packets sent through a vap marked for relaying
1618 * (e.g. a station operating with dynamic WDS)
1619 */
1620 is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1621 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1622 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1623 if (is4addr)
1624 hdrsize += IEEE80211_ADDR_LEN;
1625 meshhdrsize = meshae = 0;
1626 #ifdef IEEE80211_SUPPORT_MESH
1627 }
1628 #endif
1629 /*
1630 * Honor driver DATAPAD requirement.
1631 */
1632 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1633 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1634 else
1635 hdrspace = hdrsize;
1636
1637 if (__predict_true((m->m_flags & M_FF) == 0)) {
1638 /*
1639 * Normal frame.
1640 */
1641 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1642 if (m == NULL) {
1643 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1644 goto bad;
1645 }
1646 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1647 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1648 llc = mtod(m, struct llc *);
1649 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1650 llc->llc_control = LLC_UI;
1651 llc->llc_snap.org_code[0] = 0;
1652 llc->llc_snap.org_code[1] = 0;
1653 llc->llc_snap.org_code[2] = 0;
1654 llc->llc_snap.ether_type = eh.ether_type;
1655 } else {
1656 #ifdef IEEE80211_SUPPORT_SUPERG
1657 /*
1658 * Aggregated frame. Check if it's for AMSDU or FF.
1659 *
1660 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1661 * anywhere for some reason. But, since 11n requires
1662 * AMSDU RX, we can just assume "11n" == "AMSDU".
1663 */
1664 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1665 if (ieee80211_amsdu_tx_ok(ni)) {
1666 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1667 is_amsdu = 1;
1668 } else {
1669 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1670 }
1671 if (m == NULL)
1672 #endif
1673 goto bad;
1674 }
1675 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1676
1677 M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1678 if (m == NULL) {
1679 vap->iv_stats.is_tx_nobuf++;
1680 goto bad;
1681 }
1682 wh = mtod(m, struct ieee80211_frame *);
1683 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1684 *(uint16_t *)wh->i_dur = 0;
1685 qos = NULL; /* NB: quiet compiler */
1686 if (is4addr) {
1687 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1688 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1689 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1690 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1691 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1692 } else switch (vap->iv_opmode) {
1693 case IEEE80211_M_STA:
1694 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1695 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1696 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1697 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1698 break;
1699 case IEEE80211_M_IBSS:
1700 case IEEE80211_M_AHDEMO:
1701 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1702 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1703 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1704 /*
1705 * NB: always use the bssid from iv_bss as the
1706 * neighbor's may be stale after an ibss merge
1707 */
1708 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1709 break;
1710 case IEEE80211_M_HOSTAP:
1711 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1712 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1713 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1714 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1715 break;
1716 #ifdef IEEE80211_SUPPORT_MESH
1717 case IEEE80211_M_MBSS:
1718 /* NB: offset by hdrspace to deal with DATAPAD */
1719 mc = (struct ieee80211_meshcntl_ae10 *)
1720 (mtod(m, uint8_t *) + hdrspace);
1721 wh->i_fc[1] = dir;
1722 switch (meshae) {
1723 case IEEE80211_MESH_AE_00: /* no proxy */
1724 mc->mc_flags = 0;
1725 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1726 IEEE80211_ADDR_COPY(wh->i_addr1,
1727 ni->ni_macaddr);
1728 IEEE80211_ADDR_COPY(wh->i_addr2,
1729 vap->iv_myaddr);
1730 IEEE80211_ADDR_COPY(wh->i_addr3,
1731 eh.ether_dhost);
1732 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1733 eh.ether_shost);
1734 qos =((struct ieee80211_qosframe_addr4 *)
1735 wh)->i_qos;
1736 } else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1737 /* mcast */
1738 IEEE80211_ADDR_COPY(wh->i_addr1,
1739 eh.ether_dhost);
1740 IEEE80211_ADDR_COPY(wh->i_addr2,
1741 vap->iv_myaddr);
1742 IEEE80211_ADDR_COPY(wh->i_addr3,
1743 eh.ether_shost);
1744 qos = ((struct ieee80211_qosframe *)
1745 wh)->i_qos;
1746 }
1747 break;
1748 case IEEE80211_MESH_AE_01: /* mcast, proxy */
1749 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1750 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1751 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1752 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1753 mc->mc_flags = 1;
1754 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1755 eh.ether_shost);
1756 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1757 break;
1758 case IEEE80211_MESH_AE_10: /* ucast, proxy */
1759 KASSERT(rt != NULL, ("route is NULL"));
1760 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1761 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1762 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1763 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1764 mc->mc_flags = IEEE80211_MESH_AE_10;
1765 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1766 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1767 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1768 break;
1769 default:
1770 KASSERT(0, ("meshae %d", meshae));
1771 break;
1772 }
1773 mc->mc_ttl = ms->ms_ttl;
1774 ms->ms_seq++;
1775 le32enc(mc->mc_seq, ms->ms_seq);
1776 break;
1777 #endif
1778 case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1779 default:
1780 goto bad;
1781 }
1782 if (m->m_flags & M_MORE_DATA)
1783 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1784 if (addqos) {
1785 int ac, tid;
1786
1787 if (is4addr) {
1788 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1789 /* NB: mesh case handled earlier */
1790 } else if (vap->iv_opmode != IEEE80211_M_MBSS)
1791 qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1792 ac = M_WME_GETAC(m);
1793 /* map from access class/queue to 11e header priorty value */
1794 tid = WME_AC_TO_TID(ac);
1795 qos[0] = tid & IEEE80211_QOS_TID;
1796 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1797 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1798 #ifdef IEEE80211_SUPPORT_MESH
1799 if (vap->iv_opmode == IEEE80211_M_MBSS)
1800 qos[1] = IEEE80211_QOS_MC;
1801 else
1802 #endif
1803 qos[1] = 0;
1804 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1805
1806 /*
1807 * If this is an A-MSDU then ensure we set the
1808 * relevant field.
1809 */
1810 if (is_amsdu)
1811 qos[0] |= IEEE80211_QOS_AMSDU;
1812
1813 /*
1814 * XXX TODO TX lock is needed for atomic updates of sequence
1815 * numbers. If the driver does it, then don't do it here;
1816 * and we don't need the TX lock held.
1817 */
1818 if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1819 if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1820 ieee80211_output_seqno_assign(ni, tid, m);
1821 } else {
1822 /*
1823 * NB: don't assign a sequence # to potential
1824 * aggregates; we expect this happens at the
1825 * point the frame comes off any aggregation q
1826 * as otherwise we may introduce holes in the
1827 * BA sequence space and/or make window accouting
1828 * more difficult.
1829 *
1830 * XXX may want to control this with a driver
1831 * capability; this may also change when we pull
1832 * aggregation up into net80211
1833 */
1834 /* NB: zero out i_seq field (for s/w encryption etc) */
1835 *(uint16_t *)wh->i_seq = 0;
1836 }
1837 } else {
1838 if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1839 ieee80211_output_seqno_assign(ni, IEEE80211_NONQOS_TID,
1840 m);
1841 /*
1842 * XXX TODO: we shouldn't allow EAPOL, etc that would
1843 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1844 */
1845 if (is_amsdu)
1846 net80211_vap_printf(vap,
1847 "%s: XXX ERROR: is_amsdu set; not QoS!\n",
1848 __func__);
1849 }
1850
1851 /*
1852 * Check if xmit fragmentation is required.
1853 *
1854 * If the hardware does fragmentation offload, then don't bother
1855 * doing it here.
1856 *
1857 * Don't send AMPDU/FF/AMSDU through fragmentation.
1858 *
1859 * 802.11-2016 10.2.7 (Fragmentation/defragmentation overview)
1860 */
1861 if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1862 txfrag = 0;
1863 else
1864 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1865 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1866 (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1867 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1868
1869 if (key != NULL) {
1870 /*
1871 * IEEE 802.1X: send EAPOL frames always in the clear.
1872 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1873 */
1874 if ((m->m_flags & M_EAPOL) == 0 ||
1875 ((vap->iv_flags & IEEE80211_F_WPA) &&
1876 (vap->iv_opmode == IEEE80211_M_STA ?
1877 !IEEE80211_KEY_UNDEFINED(key) :
1878 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1879 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1880 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1881 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1882 eh.ether_dhost,
1883 "%s", "enmic failed, discard frame");
1884 vap->iv_stats.is_crypto_enmicfail++;
1885 goto bad;
1886 }
1887 }
1888 }
1889 if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1890 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1891 goto bad;
1892
1893 m->m_flags |= M_ENCAP; /* mark encapsulated */
1894
1895 IEEE80211_NODE_STAT(ni, tx_data);
1896 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1897 IEEE80211_NODE_STAT(ni, tx_mcast);
1898 m->m_flags |= M_MCAST;
1899 } else
1900 IEEE80211_NODE_STAT(ni, tx_ucast);
1901 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1902
1903 return m;
1904 bad:
1905 if (m != NULL)
1906 m_freem(m);
1907 return NULL;
1908 #undef WH4
1909 #undef MC01
1910 }
1911
1912 /**
1913 * @brief Free an 802.11 frame mbuf.
1914 *
1915 * Note that since a "frame" may consist of an mbuf packet
1916 * list containing the 802.11 fragments that make up said
1917 * frame, it will free everything in the mbuf packet list.
1918 *
1919 * @param m mbuf packet list to free
1920 */
1921 void
ieee80211_free_mbuf(struct mbuf * m)1922 ieee80211_free_mbuf(struct mbuf *m)
1923 {
1924 struct mbuf *next;
1925
1926 if (m == NULL)
1927 return;
1928
1929 do {
1930 next = m->m_nextpkt;
1931 m->m_nextpkt = NULL;
1932 m_freem(m);
1933 } while ((m = next) != NULL);
1934 }
1935
1936 /**
1937 * @brief Fragment the frame according to the specified mtu.
1938 *
1939 * This implements the fragmentation part of 802.11-2016 10.2.7
1940 * (Fragmentation/defragmentation overview.)
1941 *
1942 * The size of the 802.11 header (w/o padding) is provided
1943 * so we don't need to recalculate it. We create a new
1944 * mbuf for each fragment and chain it through m_nextpkt;
1945 * we might be able to optimize this by reusing the original
1946 * packet's mbufs but that is significantly more complicated.
1947 *
1948 * A node reference is NOT acquired for each fragment in
1949 * the list - the caller is assumed to have taken a node
1950 * reference for the whole list. The fragment mbufs do not
1951 * have a node pointer.
1952 *
1953 * Fragments will have the sequence number and fragment numbers
1954 * assigned. However, Fragments will NOT have a sequence number
1955 * assigned via M_SEQNO_SET.
1956 *
1957 * This must be called after assigning sequence numbers; it
1958 * modifies the i_seq field in the 802.11 header to include
1959 * the fragment number.
1960 *
1961 * @param vap ieee80211vap interface
1962 * @param m0 pointer to mbuf list to fragment
1963 * @param hdrsize header size to reserver
1964 * @param ciphdrsize crypto cipher header size to reserve
1965 * @param mtu maximum fragment size
1966 * @retval 1 if successful, with the mbuf pointed at by m0
1967 * turned into an mbuf list of fragments (with the original
1968 * mbuf being truncated.)
1969 * @retval 0 if failure, the mbuf needs to be freed by the caller
1970 */
1971 static int
ieee80211_fragment(struct ieee80211vap * vap,struct mbuf * m0,u_int hdrsize,u_int ciphdrsize,u_int mtu)1972 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1973 u_int hdrsize, u_int ciphdrsize, u_int mtu)
1974 {
1975 struct ieee80211com *ic = vap->iv_ic;
1976 struct ieee80211_frame *wh, *whf;
1977 struct mbuf *m, *prev;
1978 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1979 u_int hdrspace;
1980
1981 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1982 KASSERT(m0->m_pkthdr.len > mtu,
1983 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1984
1985 /*
1986 * Honor driver DATAPAD requirement.
1987 */
1988 if (ic->ic_flags & IEEE80211_F_DATAPAD)
1989 hdrspace = roundup(hdrsize, sizeof(uint32_t));
1990 else
1991 hdrspace = hdrsize;
1992
1993 wh = mtod(m0, struct ieee80211_frame *);
1994 /* NB: mark the first frag; it will be propagated below */
1995 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1996 totalhdrsize = hdrspace + ciphdrsize;
1997 fragno = 1;
1998 off = mtu - ciphdrsize;
1999 remainder = m0->m_pkthdr.len - off;
2000 prev = m0;
2001 do {
2002 fragsize = MIN(totalhdrsize + remainder, mtu);
2003 m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2004 if (m == NULL)
2005 goto bad;
2006 /* leave room to prepend any cipher header */
2007 m_align(m, fragsize - ciphdrsize);
2008
2009 /*
2010 * Form the header in the fragment. Note that since
2011 * we mark the first fragment with the MORE_FRAG bit
2012 * it automatically is propagated to each fragment; we
2013 * need only clear it on the last fragment (done below).
2014 * NB: frag 1+ dont have Mesh Control field present.
2015 */
2016 whf = mtod(m, struct ieee80211_frame *);
2017 memcpy(whf, wh, hdrsize);
2018 #ifdef IEEE80211_SUPPORT_MESH
2019 if (vap->iv_opmode == IEEE80211_M_MBSS)
2020 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2021 #endif
2022 *(uint16_t *)&whf->i_seq[0] |= htole16(
2023 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
2024 IEEE80211_SEQ_FRAG_SHIFT);
2025 fragno++;
2026
2027 payload = fragsize - totalhdrsize;
2028 /* NB: destination is known to be contiguous */
2029
2030 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2031 m->m_len = hdrspace + payload;
2032 m->m_pkthdr.len = hdrspace + payload;
2033 m->m_flags |= M_FRAG;
2034
2035 /* chain up the fragment */
2036 prev->m_nextpkt = m;
2037 prev = m;
2038
2039 /* deduct fragment just formed */
2040 remainder -= payload;
2041 off += payload;
2042 } while (remainder != 0);
2043
2044 /* set the last fragment */
2045 m->m_flags |= M_LASTFRAG;
2046 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2047
2048 /* strip first mbuf now that everything has been copied */
2049 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2050 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2051
2052 vap->iv_stats.is_tx_fragframes++;
2053 vap->iv_stats.is_tx_frags += fragno-1;
2054
2055 return 1;
2056 bad:
2057 /* reclaim fragments but leave original frame for caller to free */
2058 ieee80211_free_mbuf(m0->m_nextpkt);
2059 m0->m_nextpkt = NULL;
2060 return 0;
2061 }
2062
2063 /*
2064 * Add a supported rates element id to a frame.
2065 */
2066 uint8_t *
ieee80211_add_rates(uint8_t * frm,const struct ieee80211_rateset * rs)2067 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2068 {
2069 int nrates;
2070
2071 *frm++ = IEEE80211_ELEMID_RATES;
2072 nrates = rs->rs_nrates;
2073 if (nrates > IEEE80211_RATE_SIZE)
2074 nrates = IEEE80211_RATE_SIZE;
2075 *frm++ = nrates;
2076 memcpy(frm, rs->rs_rates, nrates);
2077 return frm + nrates;
2078 }
2079
2080 /*
2081 * Add an extended supported rates element id to a frame.
2082 */
2083 uint8_t *
ieee80211_add_xrates(uint8_t * frm,const struct ieee80211_rateset * rs)2084 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2085 {
2086 /*
2087 * Add an extended supported rates element if operating in 11g mode.
2088 */
2089 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2090 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2091 *frm++ = IEEE80211_ELEMID_XRATES;
2092 *frm++ = nrates;
2093 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2094 frm += nrates;
2095 }
2096 return frm;
2097 }
2098
2099 /*
2100 * Add an ssid element to a frame.
2101 */
2102 uint8_t *
ieee80211_add_ssid(uint8_t * frm,const uint8_t * ssid,u_int len)2103 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2104 {
2105 *frm++ = IEEE80211_ELEMID_SSID;
2106 *frm++ = len;
2107 memcpy(frm, ssid, len);
2108 return frm + len;
2109 }
2110
2111 /*
2112 * Add an erp element to a frame.
2113 */
2114 static uint8_t *
ieee80211_add_erp(uint8_t * frm,struct ieee80211vap * vap)2115 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2116 {
2117 struct ieee80211com *ic = vap->iv_ic;
2118 uint8_t erp;
2119
2120 *frm++ = IEEE80211_ELEMID_ERP;
2121 *frm++ = 1;
2122 erp = 0;
2123
2124 /*
2125 * TODO: This uses the global flags for now because
2126 * the per-VAP flags are fine for per-VAP, but don't
2127 * take into account which VAPs share the same channel
2128 * and which are on different channels.
2129 *
2130 * ERP and HT/VHT protection mode is a function of
2131 * how many stations are on a channel, not specifically
2132 * the VAP or global. But, until we grow that status,
2133 * the global flag will have to do.
2134 */
2135 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2136 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2137
2138 /*
2139 * TODO: same as above; these should be based not
2140 * on the vap or ic flags, but instead on a combination
2141 * of per-VAP and channels.
2142 */
2143 if (ic->ic_flags & IEEE80211_F_USEPROT)
2144 erp |= IEEE80211_ERP_USE_PROTECTION;
2145 if (ic->ic_flags & IEEE80211_F_USEBARKER)
2146 erp |= IEEE80211_ERP_LONG_PREAMBLE;
2147 *frm++ = erp;
2148 return frm;
2149 }
2150
2151 /*
2152 * Add a CFParams element to a frame.
2153 */
2154 static uint8_t *
ieee80211_add_cfparms(uint8_t * frm,struct ieee80211com * ic)2155 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2156 {
2157 #define ADDSHORT(frm, v) do { \
2158 le16enc(frm, v); \
2159 frm += 2; \
2160 } while (0)
2161 *frm++ = IEEE80211_ELEMID_CFPARMS;
2162 *frm++ = 6;
2163 *frm++ = 0; /* CFP count */
2164 *frm++ = 2; /* CFP period */
2165 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2166 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2167 return frm;
2168 #undef ADDSHORT
2169 }
2170
2171 static __inline uint8_t *
add_appie(uint8_t * frm,const struct ieee80211_appie * ie)2172 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2173 {
2174 memcpy(frm, ie->ie_data, ie->ie_len);
2175 return frm + ie->ie_len;
2176 }
2177
2178 static __inline uint8_t *
add_ie(uint8_t * frm,const uint8_t * ie)2179 add_ie(uint8_t *frm, const uint8_t *ie)
2180 {
2181 memcpy(frm, ie, 2 + ie[1]);
2182 return frm + 2 + ie[1];
2183 }
2184
2185 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
2186 /*
2187 * Add a WME information element to a frame.
2188 */
2189 uint8_t *
ieee80211_add_wme_info(uint8_t * frm,struct ieee80211_wme_state * wme,struct ieee80211_node * ni)2190 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2191 struct ieee80211_node *ni)
2192 {
2193 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2194 struct ieee80211vap *vap = ni->ni_vap;
2195
2196 *frm++ = IEEE80211_ELEMID_VENDOR;
2197 *frm++ = sizeof(struct ieee80211_wme_info) - 2;
2198 memcpy(frm, oui, sizeof(oui));
2199 frm += sizeof(oui);
2200 *frm++ = WME_INFO_OUI_SUBTYPE;
2201 *frm++ = WME_VERSION;
2202
2203 /* QoS info field depends upon operating mode */
2204 switch (vap->iv_opmode) {
2205 case IEEE80211_M_HOSTAP:
2206 *frm = wme->wme_bssChanParams.cap_info;
2207 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2208 *frm |= WME_CAPINFO_UAPSD_EN;
2209 frm++;
2210 break;
2211 case IEEE80211_M_STA:
2212 /*
2213 * NB: UAPSD drivers must set this up in their
2214 * VAP creation method.
2215 */
2216 *frm++ = vap->iv_uapsdinfo;
2217 break;
2218 default:
2219 *frm++ = 0;
2220 break;
2221 }
2222
2223 return frm;
2224 }
2225
2226 /*
2227 * Add a WME parameters element to a frame.
2228 */
2229 static uint8_t *
ieee80211_add_wme_param(uint8_t * frm,struct ieee80211_wme_state * wme,int uapsd_enable)2230 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2231 int uapsd_enable)
2232 {
2233 #define ADDSHORT(frm, v) do { \
2234 le16enc(frm, v); \
2235 frm += 2; \
2236 } while (0)
2237 /* NB: this works 'cuz a param has an info at the front */
2238 static const struct ieee80211_wme_info param = {
2239 .wme_id = IEEE80211_ELEMID_VENDOR,
2240 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
2241 .wme_oui = { WME_OUI_BYTES },
2242 .wme_type = WME_OUI_TYPE,
2243 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
2244 .wme_version = WME_VERSION,
2245 };
2246 int i;
2247
2248 memcpy(frm, ¶m, sizeof(param));
2249 frm += __offsetof(struct ieee80211_wme_info, wme_info);
2250 *frm = wme->wme_bssChanParams.cap_info; /* AC info */
2251 if (uapsd_enable)
2252 *frm |= WME_CAPINFO_UAPSD_EN;
2253 frm++;
2254 *frm++ = 0; /* reserved field */
2255 /* XXX TODO - U-APSD bits - SP, flags below */
2256 for (i = 0; i < WME_NUM_AC; i++) {
2257 const struct wmeParams *ac =
2258 &wme->wme_bssChanParams.cap_wmeParams[i];
2259 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2260 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2261 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2262 ;
2263 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2264 WME_PARAM_LOGCWMAX)
2265 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2266 WME_PARAM_LOGCWMIN)
2267 ;
2268 ADDSHORT(frm, ac->wmep_txopLimit);
2269 }
2270 return frm;
2271 #undef ADDSHORT
2272 }
2273 #undef WME_OUI_BYTES
2274
2275 /*
2276 * Add an 11h Power Constraint element to a frame.
2277 */
2278 static uint8_t *
ieee80211_add_powerconstraint(uint8_t * frm,struct ieee80211vap * vap)2279 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2280 {
2281 const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2282 /* XXX per-vap tx power limit? */
2283 int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2284
2285 frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2286 frm[1] = 1;
2287 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2288 return frm + 3;
2289 }
2290
2291 /*
2292 * Add an 11h Power Capability element to a frame.
2293 */
2294 static uint8_t *
ieee80211_add_powercapability(uint8_t * frm,const struct ieee80211_channel * c)2295 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2296 {
2297 frm[0] = IEEE80211_ELEMID_PWRCAP;
2298 frm[1] = 2;
2299 frm[2] = c->ic_minpower;
2300 frm[3] = c->ic_maxpower;
2301 return frm + 4;
2302 }
2303
2304 /*
2305 * Add an 11h Supported Channels element to a frame.
2306 */
2307 static uint8_t *
ieee80211_add_supportedchannels(uint8_t * frm,struct ieee80211com * ic)2308 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2309 {
2310 static const int ielen = 26;
2311
2312 frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2313 frm[1] = ielen;
2314 /* XXX not correct */
2315 memcpy(frm+2, ic->ic_chan_avail, ielen);
2316 return frm + 2 + ielen;
2317 }
2318
2319 /*
2320 * Add an 11h Quiet time element to a frame.
2321 */
2322 static uint8_t *
ieee80211_add_quiet(uint8_t * frm,struct ieee80211vap * vap,int update)2323 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2324 {
2325 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2326
2327 quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2328 quiet->len = 6;
2329
2330 /*
2331 * Only update every beacon interval - otherwise probe responses
2332 * would update the quiet count value.
2333 */
2334 if (update) {
2335 if (vap->iv_quiet_count_value == 1)
2336 vap->iv_quiet_count_value = vap->iv_quiet_count;
2337 else if (vap->iv_quiet_count_value > 1)
2338 vap->iv_quiet_count_value--;
2339 }
2340
2341 if (vap->iv_quiet_count_value == 0) {
2342 /* value 0 is reserved as per 802.11h standerd */
2343 vap->iv_quiet_count_value = 1;
2344 }
2345
2346 quiet->tbttcount = vap->iv_quiet_count_value;
2347 quiet->period = vap->iv_quiet_period;
2348 quiet->duration = htole16(vap->iv_quiet_duration);
2349 quiet->offset = htole16(vap->iv_quiet_offset);
2350 return frm + sizeof(*quiet);
2351 }
2352
2353 /*
2354 * Add an 11h Channel Switch Announcement element to a frame.
2355 * Note that we use the per-vap CSA count to adjust the global
2356 * counter so we can use this routine to form probe response
2357 * frames and get the current count.
2358 */
2359 static uint8_t *
ieee80211_add_csa(uint8_t * frm,struct ieee80211vap * vap)2360 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2361 {
2362 struct ieee80211com *ic = vap->iv_ic;
2363 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2364
2365 csa->csa_ie = IEEE80211_ELEMID_CSA;
2366 csa->csa_len = 3;
2367 csa->csa_mode = 1; /* XXX force quiet on channel */
2368 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2369 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2370 return frm + sizeof(*csa);
2371 }
2372
2373 /*
2374 * Add an 11h country information element to a frame.
2375 */
2376 static uint8_t *
ieee80211_add_countryie(uint8_t * frm,struct ieee80211com * ic)2377 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2378 {
2379
2380 if (ic->ic_countryie == NULL ||
2381 ic->ic_countryie_chan != ic->ic_bsschan) {
2382 /*
2383 * Handle lazy construction of ie. This is done on
2384 * first use and after a channel change that requires
2385 * re-calculation.
2386 */
2387 if (ic->ic_countryie != NULL)
2388 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2389 ic->ic_countryie = ieee80211_alloc_countryie(ic);
2390 if (ic->ic_countryie == NULL)
2391 return frm;
2392 ic->ic_countryie_chan = ic->ic_bsschan;
2393 }
2394 return add_appie(frm, ic->ic_countryie);
2395 }
2396
2397 uint8_t *
ieee80211_add_wpa(uint8_t * frm,const struct ieee80211vap * vap)2398 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2399 {
2400 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2401 return (add_ie(frm, vap->iv_wpa_ie));
2402 else {
2403 /* XXX else complain? */
2404 return (frm);
2405 }
2406 }
2407
2408 uint8_t *
ieee80211_add_rsn(uint8_t * frm,const struct ieee80211vap * vap)2409 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2410 {
2411 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2412 return (add_ie(frm, vap->iv_rsn_ie));
2413 else {
2414 /* XXX else complain? */
2415 return (frm);
2416 }
2417 }
2418
2419 uint8_t *
ieee80211_add_qos(uint8_t * frm,const struct ieee80211_node * ni)2420 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2421 {
2422 if (ni->ni_flags & IEEE80211_NODE_QOS) {
2423 *frm++ = IEEE80211_ELEMID_QOS;
2424 *frm++ = 1;
2425 *frm++ = 0;
2426 }
2427
2428 return (frm);
2429 }
2430
2431 /*
2432 * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2433 * and any optional information element data; some helper functions as FW based
2434 * HW scans need some of that information passed too.
2435 */
2436 static uint32_t
ieee80211_probereq_ie_len(struct ieee80211vap * vap,struct ieee80211com * ic)2437 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2438 {
2439 const struct ieee80211_rateset *rs;
2440
2441 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2442
2443 /*
2444 * prreq frame format
2445 * [tlv] ssid
2446 * [tlv] supported rates
2447 * [tlv] extended supported rates (if needed)
2448 * [tlv] HT cap (optional)
2449 * [tlv] VHT cap (optional)
2450 * [tlv] WPA (optional)
2451 * [tlv] user-specified ie's
2452 */
2453 return ( 2 + IEEE80211_NWID_LEN
2454 + 2 + IEEE80211_RATE_SIZE
2455 + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2456 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2457 + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2458 (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2459 sizeof(struct ieee80211_ie_htcap) : 0)
2460 #ifdef notyet
2461 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2462 + 2 + sizeof(struct ieee80211_vht_cap)
2463 #endif
2464 + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2465 vap->iv_wpa_ie[1] : 0)
2466 + (vap->iv_appie_probereq != NULL ?
2467 vap->iv_appie_probereq->ie_len : 0)
2468 );
2469 }
2470
2471 int
ieee80211_probereq_ie(struct ieee80211vap * vap,struct ieee80211com * ic,uint8_t ** frmp,uint32_t * frmlen,const uint8_t * ssid,size_t ssidlen,bool alloc)2472 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2473 uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2474 bool alloc)
2475 {
2476 const struct ieee80211_rateset *rs;
2477 uint8_t *frm;
2478 uint32_t len;
2479
2480 if (!alloc && (frmp == NULL || frmlen == NULL))
2481 return (EINVAL);
2482
2483 len = ieee80211_probereq_ie_len(vap, ic);
2484 if (!alloc && len > *frmlen)
2485 return (ENOBUFS);
2486
2487 /* For HW scans we usually do not pass in the SSID as IE. */
2488 if (ssidlen == -1)
2489 len -= (2 + IEEE80211_NWID_LEN);
2490
2491 if (alloc) {
2492 frm = IEEE80211_MALLOC(len, M_80211_VAP,
2493 IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2494 *frmp = frm;
2495 *frmlen = len;
2496 } else
2497 frm = *frmp;
2498
2499 if (ssidlen != -1)
2500 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2501 rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2502 frm = ieee80211_add_rates(frm, rs);
2503 frm = ieee80211_add_xrates(frm, rs);
2504
2505 /*
2506 * Note: we can't use bss; we don't have one yet.
2507 *
2508 * So, we should announce our capabilities
2509 * in this channel mode (2g/5g), not the
2510 * channel details itself.
2511 */
2512 if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2513 (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2514 struct ieee80211_channel *c;
2515
2516 /*
2517 * Get the HT channel that we should try upgrading to.
2518 * If we can do 40MHz then this'll upgrade it appropriately.
2519 */
2520 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2521 vap->iv_flags_ht);
2522 frm = ieee80211_add_htcap_ch(frm, vap, c);
2523 }
2524
2525 /*
2526 * XXX TODO: need to figure out what/how to update the
2527 * VHT channel.
2528 */
2529 #ifdef notyet
2530 if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2531 struct ieee80211_channel *c;
2532
2533 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2534 vap->iv_flags_ht);
2535 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2536 frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2537 }
2538 #endif
2539
2540 frm = ieee80211_add_wpa(frm, vap);
2541 if (vap->iv_appie_probereq != NULL)
2542 frm = add_appie(frm, vap->iv_appie_probereq);
2543
2544 if (!alloc) {
2545 *frmp = frm;
2546 *frmlen = len;
2547 }
2548
2549 return (0);
2550 }
2551
2552 int
ieee80211_send_probereq(struct ieee80211_node * ni,const uint8_t sa[IEEE80211_ADDR_LEN],const uint8_t da[IEEE80211_ADDR_LEN],const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t * ssid,size_t ssidlen)2553 ieee80211_send_probereq(struct ieee80211_node *ni,
2554 const uint8_t sa[IEEE80211_ADDR_LEN],
2555 const uint8_t da[IEEE80211_ADDR_LEN],
2556 const uint8_t bssid[IEEE80211_ADDR_LEN],
2557 const uint8_t *ssid, size_t ssidlen)
2558 {
2559 struct ieee80211vap *vap = ni->ni_vap;
2560 struct ieee80211com *ic = ni->ni_ic;
2561 struct ieee80211_node *bss;
2562 const struct ieee80211_txparam *tp;
2563 struct ieee80211_bpf_params params;
2564 struct mbuf *m;
2565 uint8_t *frm;
2566 uint32_t frmlen;
2567 int ret;
2568
2569 bss = ieee80211_ref_node(vap->iv_bss);
2570
2571 if (vap->iv_state == IEEE80211_S_CAC) {
2572 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2573 "block %s frame in CAC state", "probe request");
2574 vap->iv_stats.is_tx_badstate++;
2575 ieee80211_free_node(bss);
2576 return EIO; /* XXX */
2577 }
2578
2579 /*
2580 * Hold a reference on the node so it doesn't go away until after
2581 * the xmit is complete all the way in the driver. On error we
2582 * will remove our reference.
2583 */
2584 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2585 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2586 __func__, __LINE__,
2587 ni, ether_sprintf(ni->ni_macaddr),
2588 ieee80211_node_refcnt(ni)+1);
2589 ieee80211_ref_node(ni);
2590
2591 /* See comments above for entire frame format. */
2592 frmlen = ieee80211_probereq_ie_len(vap, ic);
2593 m = ieee80211_getmgtframe(&frm,
2594 ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2595 if (m == NULL) {
2596 vap->iv_stats.is_tx_nobuf++;
2597 ieee80211_free_node(ni);
2598 ieee80211_free_node(bss);
2599 return ENOMEM;
2600 }
2601
2602 ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2603 false);
2604 KASSERT(ret == 0,
2605 ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2606
2607 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2608 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2609 ("leading space %zd", M_LEADINGSPACE(m)));
2610 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2611 if (m == NULL) {
2612 /* NB: cannot happen */
2613 ieee80211_free_node(ni);
2614 ieee80211_free_node(bss);
2615 return ENOMEM;
2616 }
2617
2618 IEEE80211_TX_LOCK(ic);
2619 ieee80211_send_setup(ni, m,
2620 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2621 IEEE80211_NONQOS_TID, sa, da, bssid);
2622 /* XXX power management? */
2623 m->m_flags |= M_ENCAP; /* mark encapsulated */
2624
2625 M_WME_SETAC(m, WME_AC_BE);
2626
2627 IEEE80211_NODE_STAT(ni, tx_probereq);
2628 IEEE80211_NODE_STAT(ni, tx_mgmt);
2629
2630 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2631 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2632 ieee80211_chan2ieee(ic, ic->ic_curchan),
2633 ether_sprintf(bssid),
2634 sa, ":",
2635 da, ":",
2636 ssidlen, ssid);
2637
2638 memset(¶ms, 0, sizeof(params));
2639 params.ibp_pri = M_WME_GETAC(m);
2640 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2641 params.ibp_rate0 = tp->mgmtrate;
2642 if (IEEE80211_IS_MULTICAST(da)) {
2643 params.ibp_flags |= IEEE80211_BPF_NOACK;
2644 params.ibp_try0 = 1;
2645 } else
2646 params.ibp_try0 = tp->maxretry;
2647 params.ibp_power = ni->ni_txpower;
2648 ret = ieee80211_raw_output(vap, ni, m, ¶ms);
2649 IEEE80211_TX_UNLOCK(ic);
2650 ieee80211_free_node(bss);
2651 return (ret);
2652 }
2653
2654 /*
2655 * Calculate capability information for mgt frames.
2656 *
2657 * This fills out the 16 bit capability field in various management
2658 * frames for non-DMG STAs. DMG STAs are not supported.
2659 *
2660 * See 802.11-2020 9.4.1.4 (Capability Information Field) for the
2661 * field definitions.
2662 */
2663 uint16_t
ieee80211_getcapinfo(struct ieee80211vap * vap,struct ieee80211_channel * chan)2664 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2665 {
2666 uint16_t capinfo;
2667
2668 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2669
2670 if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2671 capinfo = IEEE80211_CAPINFO_ESS;
2672 else if (vap->iv_opmode == IEEE80211_M_IBSS)
2673 capinfo = IEEE80211_CAPINFO_IBSS;
2674 else
2675 capinfo = 0;
2676 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2677 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2678 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2679 IEEE80211_IS_CHAN_2GHZ(chan))
2680 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2681 if (vap->iv_flags & IEEE80211_F_SHSLOT)
2682 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2683 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2684 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2685 return capinfo;
2686 }
2687
2688 /*
2689 * Send a management frame. The node is for the destination (or ic_bss
2690 * when in station mode). Nodes other than ic_bss have their reference
2691 * count bumped to reflect our use for an indeterminant time.
2692 */
2693 int
ieee80211_send_mgmt(struct ieee80211_node * ni,int type,int arg)2694 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2695 {
2696 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2697 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2698 struct ieee80211vap *vap = ni->ni_vap;
2699 struct ieee80211com *ic = ni->ni_ic;
2700 struct ieee80211_node *bss = vap->iv_bss;
2701 struct ieee80211_bpf_params params;
2702 struct mbuf *m;
2703 uint8_t *frm;
2704 uint16_t capinfo;
2705 int has_challenge, is_shared_key, ret, status;
2706
2707 KASSERT(ni != NULL, ("null node"));
2708
2709 /*
2710 * Hold a reference on the node so it doesn't go away until after
2711 * the xmit is complete all the way in the driver. On error we
2712 * will remove our reference.
2713 */
2714 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2715 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2716 __func__, __LINE__,
2717 ni, ether_sprintf(ni->ni_macaddr),
2718 ieee80211_node_refcnt(ni)+1);
2719 ieee80211_ref_node(ni);
2720
2721 memset(¶ms, 0, sizeof(params));
2722 switch (type) {
2723 case IEEE80211_FC0_SUBTYPE_AUTH:
2724 status = arg >> 16;
2725 arg &= 0xffff;
2726 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2727 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2728 ni->ni_challenge != NULL);
2729
2730 /*
2731 * Deduce whether we're doing open authentication or
2732 * shared key authentication. We do the latter if
2733 * we're in the middle of a shared key authentication
2734 * handshake or if we're initiating an authentication
2735 * request and configured to use shared key.
2736 */
2737 is_shared_key = has_challenge ||
2738 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2739 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2740 bss->ni_authmode == IEEE80211_AUTH_SHARED);
2741
2742 m = ieee80211_getmgtframe(&frm,
2743 ic->ic_headroom + sizeof(struct ieee80211_frame),
2744 3 * sizeof(uint16_t)
2745 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2746 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2747 if (m == NULL)
2748 senderr(ENOMEM, is_tx_nobuf);
2749
2750 ((uint16_t *)frm)[0] =
2751 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2752 : htole16(IEEE80211_AUTH_ALG_OPEN);
2753 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2754 ((uint16_t *)frm)[2] = htole16(status);/* status */
2755
2756 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2757 ((uint16_t *)frm)[3] =
2758 htole16((IEEE80211_CHALLENGE_LEN << 8) |
2759 IEEE80211_ELEMID_CHALLENGE);
2760 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2761 IEEE80211_CHALLENGE_LEN);
2762 m->m_pkthdr.len = m->m_len =
2763 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2764 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2765 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2766 "request encrypt frame (%s)", __func__);
2767 /* mark frame for encryption */
2768 params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2769 }
2770 } else
2771 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2772
2773 /* XXX not right for shared key */
2774 if (status == IEEE80211_STATUS_SUCCESS)
2775 IEEE80211_NODE_STAT(ni, tx_auth);
2776 else
2777 IEEE80211_NODE_STAT(ni, tx_auth_fail);
2778
2779 if (vap->iv_opmode == IEEE80211_M_STA)
2780 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2781 (void *) vap->iv_state);
2782 break;
2783
2784 case IEEE80211_FC0_SUBTYPE_DEAUTH:
2785 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2786 "send station deauthenticate (reason: %d (%s))", arg,
2787 ieee80211_reason_to_string(arg));
2788 m = ieee80211_getmgtframe(&frm,
2789 ic->ic_headroom + sizeof(struct ieee80211_frame),
2790 sizeof(uint16_t));
2791 if (m == NULL)
2792 senderr(ENOMEM, is_tx_nobuf);
2793 *(uint16_t *)frm = htole16(arg); /* reason */
2794 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2795
2796 IEEE80211_NODE_STAT(ni, tx_deauth);
2797 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2798
2799 ieee80211_node_unauthorize(ni); /* port closed */
2800 break;
2801
2802 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2803 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2804 /*
2805 * asreq frame format
2806 * [2] capability information
2807 * [2] listen interval
2808 * [6*] current AP address (reassoc only)
2809 * [tlv] ssid
2810 * [tlv] supported rates
2811 * [tlv] extended supported rates
2812 * [4] power capability (optional)
2813 * [28] supported channels (optional)
2814 * [tlv] HT capabilities
2815 * [tlv] VHT capabilities
2816 * [tlv] WME (optional)
2817 * [tlv] Vendor OUI HT capabilities (optional)
2818 * [tlv] Atheros capabilities (if negotiated)
2819 * [tlv] AppIE's (optional)
2820 */
2821 m = ieee80211_getmgtframe(&frm,
2822 ic->ic_headroom + sizeof(struct ieee80211_frame),
2823 sizeof(uint16_t)
2824 + sizeof(uint16_t)
2825 + IEEE80211_ADDR_LEN
2826 + 2 + IEEE80211_NWID_LEN
2827 + 2 + IEEE80211_RATE_SIZE
2828 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2829 + 4
2830 + 2 + 26
2831 + sizeof(struct ieee80211_wme_info)
2832 + sizeof(struct ieee80211_ie_htcap)
2833 + 2 + sizeof(struct ieee80211_vht_cap)
2834 + 4 + sizeof(struct ieee80211_ie_htcap)
2835 #ifdef IEEE80211_SUPPORT_SUPERG
2836 + sizeof(struct ieee80211_ath_ie)
2837 #endif
2838 + (vap->iv_appie_wpa != NULL ?
2839 vap->iv_appie_wpa->ie_len : 0)
2840 + (vap->iv_appie_assocreq != NULL ?
2841 vap->iv_appie_assocreq->ie_len : 0)
2842 );
2843 if (m == NULL)
2844 senderr(ENOMEM, is_tx_nobuf);
2845
2846 KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2847 ("wrong mode %u", vap->iv_opmode));
2848 capinfo = IEEE80211_CAPINFO_ESS;
2849 if (vap->iv_flags & IEEE80211_F_PRIVACY)
2850 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2851 /*
2852 * NB: Some 11a AP's reject the request when
2853 * short preamble is set.
2854 */
2855 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2856 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2857 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2858 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2859 (ic->ic_caps & IEEE80211_C_SHSLOT))
2860 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2861 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2862 (vap->iv_flags & IEEE80211_F_DOTH))
2863 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2864 *(uint16_t *)frm = htole16(capinfo);
2865 frm += 2;
2866
2867 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2868 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2869 bss->ni_intval));
2870 frm += 2;
2871
2872 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2873 IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2874 frm += IEEE80211_ADDR_LEN;
2875 }
2876
2877 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2878 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2879 frm = ieee80211_add_rsn(frm, vap);
2880 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2881 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2882 frm = ieee80211_add_powercapability(frm,
2883 ic->ic_curchan);
2884 frm = ieee80211_add_supportedchannels(frm, ic);
2885 }
2886
2887 /*
2888 * Check the channel - we may be using an 11n NIC with an
2889 * 11n capable station, but we're configured to be an 11b
2890 * channel.
2891 */
2892 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2893 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2894 ni->ni_ies.htcap_ie != NULL &&
2895 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2896 frm = ieee80211_add_htcap(frm, ni);
2897 }
2898
2899 if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2900 IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2901 ni->ni_ies.vhtcap_ie != NULL &&
2902 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2903 frm = ieee80211_add_vhtcap(frm, ni);
2904 }
2905
2906 frm = ieee80211_add_wpa(frm, vap);
2907 if ((vap->iv_flags & IEEE80211_F_WME) &&
2908 ni->ni_ies.wme_ie != NULL)
2909 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2910
2911 /*
2912 * Same deal - only send HT info if we're on an 11n
2913 * capable channel.
2914 */
2915 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2916 IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2917 ni->ni_ies.htcap_ie != NULL &&
2918 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2919 frm = ieee80211_add_htcap_vendor(frm, ni);
2920 }
2921 #ifdef IEEE80211_SUPPORT_SUPERG
2922 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2923 frm = ieee80211_add_ath(frm,
2924 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2925 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2926 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2927 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2928 }
2929 #endif /* IEEE80211_SUPPORT_SUPERG */
2930 if (vap->iv_appie_assocreq != NULL)
2931 frm = add_appie(frm, vap->iv_appie_assocreq);
2932 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2933
2934 ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2935 (void *) vap->iv_state);
2936 break;
2937
2938 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2939 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2940 /*
2941 * asresp frame format
2942 * [2] capability information
2943 * [2] status
2944 * [2] association ID
2945 * [tlv] supported rates
2946 * [tlv] extended supported rates
2947 * [tlv] HT capabilities (standard, if STA enabled)
2948 * [tlv] HT information (standard, if STA enabled)
2949 * [tlv] VHT capabilities (standard, if STA enabled)
2950 * [tlv] VHT information (standard, if STA enabled)
2951 * [tlv] WME (if configured and STA enabled)
2952 * [tlv] HT capabilities (vendor OUI, if STA enabled)
2953 * [tlv] HT information (vendor OUI, if STA enabled)
2954 * [tlv] Atheros capabilities (if STA enabled)
2955 * [tlv] AppIE's (optional)
2956 */
2957 m = ieee80211_getmgtframe(&frm,
2958 ic->ic_headroom + sizeof(struct ieee80211_frame),
2959 sizeof(uint16_t)
2960 + sizeof(uint16_t)
2961 + sizeof(uint16_t)
2962 + 2 + IEEE80211_RATE_SIZE
2963 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2964 + sizeof(struct ieee80211_ie_htcap) + 4
2965 + sizeof(struct ieee80211_ie_htinfo) + 4
2966 + 2 + sizeof(struct ieee80211_vht_cap)
2967 + 2 + sizeof(struct ieee80211_vht_operation)
2968 + sizeof(struct ieee80211_wme_param)
2969 #ifdef IEEE80211_SUPPORT_SUPERG
2970 + sizeof(struct ieee80211_ath_ie)
2971 #endif
2972 + (vap->iv_appie_assocresp != NULL ?
2973 vap->iv_appie_assocresp->ie_len : 0)
2974 );
2975 if (m == NULL)
2976 senderr(ENOMEM, is_tx_nobuf);
2977
2978 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2979 *(uint16_t *)frm = htole16(capinfo);
2980 frm += 2;
2981
2982 *(uint16_t *)frm = htole16(arg); /* status */
2983 frm += 2;
2984
2985 if (arg == IEEE80211_STATUS_SUCCESS) {
2986 *(uint16_t *)frm = htole16(ni->ni_associd);
2987 IEEE80211_NODE_STAT(ni, tx_assoc);
2988 } else
2989 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2990 frm += 2;
2991
2992 frm = ieee80211_add_rates(frm, &ni->ni_rates);
2993 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2994 /* NB: respond according to what we received */
2995 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2996 frm = ieee80211_add_htcap(frm, ni);
2997 frm = ieee80211_add_htinfo(frm, ni);
2998 }
2999 if ((vap->iv_flags & IEEE80211_F_WME) &&
3000 ni->ni_ies.wme_ie != NULL)
3001 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3002 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3003 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
3004 frm = ieee80211_add_htcap_vendor(frm, ni);
3005 frm = ieee80211_add_htinfo_vendor(frm, ni);
3006 }
3007 if (ni->ni_flags & IEEE80211_NODE_VHT) {
3008 frm = ieee80211_add_vhtcap(frm, ni);
3009 frm = ieee80211_add_vhtinfo(frm, ni);
3010 }
3011 #ifdef IEEE80211_SUPPORT_SUPERG
3012 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3013 frm = ieee80211_add_ath(frm,
3014 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3015 ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3016 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3017 vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3018 #endif /* IEEE80211_SUPPORT_SUPERG */
3019 if (vap->iv_appie_assocresp != NULL)
3020 frm = add_appie(frm, vap->iv_appie_assocresp);
3021 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3022 break;
3023
3024 case IEEE80211_FC0_SUBTYPE_DISASSOC:
3025 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3026 "send station disassociate (reason: %d (%s))", arg,
3027 ieee80211_reason_to_string(arg));
3028 m = ieee80211_getmgtframe(&frm,
3029 ic->ic_headroom + sizeof(struct ieee80211_frame),
3030 sizeof(uint16_t));
3031 if (m == NULL)
3032 senderr(ENOMEM, is_tx_nobuf);
3033 *(uint16_t *)frm = htole16(arg); /* reason */
3034 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3035
3036 IEEE80211_NODE_STAT(ni, tx_disassoc);
3037 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3038 break;
3039
3040 default:
3041 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3042 "invalid mgmt frame type %u", type);
3043 senderr(EINVAL, is_tx_unknownmgt);
3044 /* NOTREACHED */
3045 }
3046
3047 /* NB: force non-ProbeResp frames to the highest queue */
3048 params.ibp_pri = WME_AC_VO;
3049 params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3050 /* NB: we know all frames are unicast */
3051 params.ibp_try0 = bss->ni_txparms->maxretry;
3052 params.ibp_power = bss->ni_txpower;
3053 return ieee80211_mgmt_output(ni, m, type, ¶ms);
3054 bad:
3055 ieee80211_free_node(ni);
3056 return ret;
3057 #undef senderr
3058 #undef HTFLAGS
3059 }
3060
3061 /*
3062 * Return an mbuf with a probe response frame in it.
3063 * Space is left to prepend and 802.11 header at the
3064 * front but it's left to the caller to fill in.
3065 */
3066 struct mbuf *
ieee80211_alloc_proberesp(struct ieee80211_node * bss,int legacy)3067 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3068 {
3069 struct ieee80211vap *vap = bss->ni_vap;
3070 struct ieee80211com *ic = bss->ni_ic;
3071 const struct ieee80211_rateset *rs;
3072 struct mbuf *m;
3073 uint16_t capinfo;
3074 uint8_t *frm;
3075
3076 /*
3077 * probe response frame format
3078 * [8] time stamp
3079 * [2] beacon interval
3080 * [2] cabability information
3081 * [tlv] ssid
3082 * [tlv] supported rates
3083 * [tlv] parameter set (FH/DS)
3084 * [tlv] parameter set (IBSS)
3085 * [tlv] country (optional)
3086 * [3] power control (optional)
3087 * [5] channel switch announcement (CSA) (optional)
3088 * [tlv] extended rate phy (ERP)
3089 * [tlv] extended supported rates
3090 * [tlv] RSN (optional)
3091 * [tlv] HT capabilities
3092 * [tlv] HT information
3093 * [tlv] VHT capabilities
3094 * [tlv] VHT information
3095 * [tlv] WPA (optional)
3096 * [tlv] WME (optional)
3097 * [tlv] Vendor OUI HT capabilities (optional)
3098 * [tlv] Vendor OUI HT information (optional)
3099 * [tlv] Atheros capabilities
3100 * [tlv] AppIE's (optional)
3101 * [tlv] Mesh ID (MBSS)
3102 * [tlv] Mesh Conf (MBSS)
3103 */
3104 m = ieee80211_getmgtframe(&frm,
3105 ic->ic_headroom + sizeof(struct ieee80211_frame),
3106 8
3107 + sizeof(uint16_t)
3108 + sizeof(uint16_t)
3109 + 2 + IEEE80211_NWID_LEN
3110 + 2 + IEEE80211_RATE_SIZE
3111 + 7 /* max(7,3) */
3112 + IEEE80211_COUNTRY_MAX_SIZE
3113 + 3
3114 + sizeof(struct ieee80211_csa_ie)
3115 + sizeof(struct ieee80211_quiet_ie)
3116 + 3
3117 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3118 + sizeof(struct ieee80211_ie_wpa)
3119 + sizeof(struct ieee80211_ie_htcap)
3120 + sizeof(struct ieee80211_ie_htinfo)
3121 + sizeof(struct ieee80211_ie_wpa)
3122 + sizeof(struct ieee80211_wme_param)
3123 + 4 + sizeof(struct ieee80211_ie_htcap)
3124 + 4 + sizeof(struct ieee80211_ie_htinfo)
3125 + 2 + sizeof(struct ieee80211_vht_cap)
3126 + 2 + sizeof(struct ieee80211_vht_operation)
3127 #ifdef IEEE80211_SUPPORT_SUPERG
3128 + sizeof(struct ieee80211_ath_ie)
3129 #endif
3130 #ifdef IEEE80211_SUPPORT_MESH
3131 + 2 + IEEE80211_MESHID_LEN
3132 + sizeof(struct ieee80211_meshconf_ie)
3133 #endif
3134 + (vap->iv_appie_proberesp != NULL ?
3135 vap->iv_appie_proberesp->ie_len : 0)
3136 );
3137 if (m == NULL) {
3138 vap->iv_stats.is_tx_nobuf++;
3139 return NULL;
3140 }
3141
3142 memset(frm, 0, 8); /* timestamp should be filled later */
3143 frm += 8;
3144 *(uint16_t *)frm = htole16(bss->ni_intval);
3145 frm += 2;
3146 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3147 *(uint16_t *)frm = htole16(capinfo);
3148 frm += 2;
3149
3150 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3151 rs = ieee80211_get_suprates(ic, bss->ni_chan);
3152 frm = ieee80211_add_rates(frm, rs);
3153
3154 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3155 *frm++ = IEEE80211_ELEMID_FHPARMS;
3156 *frm++ = 5;
3157 *frm++ = bss->ni_fhdwell & 0x00ff;
3158 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3159 *frm++ = IEEE80211_FH_CHANSET(
3160 ieee80211_chan2ieee(ic, bss->ni_chan));
3161 *frm++ = IEEE80211_FH_CHANPAT(
3162 ieee80211_chan2ieee(ic, bss->ni_chan));
3163 *frm++ = bss->ni_fhindex;
3164 } else {
3165 *frm++ = IEEE80211_ELEMID_DSPARMS;
3166 *frm++ = 1;
3167 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3168 }
3169
3170 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3171 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3172 *frm++ = 2;
3173 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3174 }
3175 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3176 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3177 frm = ieee80211_add_countryie(frm, ic);
3178 if (vap->iv_flags & IEEE80211_F_DOTH) {
3179 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3180 frm = ieee80211_add_powerconstraint(frm, vap);
3181 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3182 frm = ieee80211_add_csa(frm, vap);
3183 }
3184 if (vap->iv_flags & IEEE80211_F_DOTH) {
3185 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3186 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3187 if (vap->iv_quiet)
3188 frm = ieee80211_add_quiet(frm, vap, 0);
3189 }
3190 }
3191 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3192 frm = ieee80211_add_erp(frm, vap);
3193 frm = ieee80211_add_xrates(frm, rs);
3194 frm = ieee80211_add_rsn(frm, vap);
3195 /*
3196 * NB: legacy 11b clients do not get certain ie's.
3197 * The caller identifies such clients by passing
3198 * a token in legacy to us. Could expand this to be
3199 * any legacy client for stuff like HT ie's.
3200 */
3201 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3202 legacy != IEEE80211_SEND_LEGACY_11B) {
3203 frm = ieee80211_add_htcap(frm, bss);
3204 frm = ieee80211_add_htinfo(frm, bss);
3205 }
3206 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3207 legacy != IEEE80211_SEND_LEGACY_11B) {
3208 frm = ieee80211_add_vhtcap(frm, bss);
3209 frm = ieee80211_add_vhtinfo(frm, bss);
3210 }
3211 frm = ieee80211_add_wpa(frm, vap);
3212 if (vap->iv_flags & IEEE80211_F_WME)
3213 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3214 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3215 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3216 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3217 legacy != IEEE80211_SEND_LEGACY_11B) {
3218 frm = ieee80211_add_htcap_vendor(frm, bss);
3219 frm = ieee80211_add_htinfo_vendor(frm, bss);
3220 }
3221 #ifdef IEEE80211_SUPPORT_SUPERG
3222 if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3223 legacy != IEEE80211_SEND_LEGACY_11B)
3224 frm = ieee80211_add_athcaps(frm, bss);
3225 #endif
3226 if (vap->iv_appie_proberesp != NULL)
3227 frm = add_appie(frm, vap->iv_appie_proberesp);
3228 #ifdef IEEE80211_SUPPORT_MESH
3229 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3230 frm = ieee80211_add_meshid(frm, vap);
3231 frm = ieee80211_add_meshconf(frm, vap);
3232 }
3233 #endif
3234 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3235
3236 return m;
3237 }
3238
3239 /*
3240 * Send a probe response frame to the specified mac address.
3241 * This does not go through the normal mgt frame api so we
3242 * can specify the destination address and re-use the bss node
3243 * for the sta reference.
3244 */
3245 int
ieee80211_send_proberesp(struct ieee80211vap * vap,const uint8_t da[IEEE80211_ADDR_LEN],int legacy)3246 ieee80211_send_proberesp(struct ieee80211vap *vap,
3247 const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3248 {
3249 struct ieee80211_node *bss = vap->iv_bss;
3250 struct ieee80211com *ic = vap->iv_ic;
3251 struct mbuf *m;
3252 int ret;
3253
3254 if (vap->iv_state == IEEE80211_S_CAC) {
3255 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3256 "block %s frame in CAC state", "probe response");
3257 vap->iv_stats.is_tx_badstate++;
3258 return EIO; /* XXX */
3259 }
3260
3261 /*
3262 * Hold a reference on the node so it doesn't go away until after
3263 * the xmit is complete all the way in the driver. On error we
3264 * will remove our reference.
3265 */
3266 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3267 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3268 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3269 ieee80211_node_refcnt(bss)+1);
3270 ieee80211_ref_node(bss);
3271
3272 m = ieee80211_alloc_proberesp(bss, legacy);
3273 if (m == NULL) {
3274 ieee80211_free_node(bss);
3275 return ENOMEM;
3276 }
3277
3278 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3279 KASSERT(m != NULL, ("no room for header"));
3280
3281 IEEE80211_TX_LOCK(ic);
3282 ieee80211_send_setup(bss, m,
3283 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3284 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3285 /* XXX power management? */
3286 m->m_flags |= M_ENCAP; /* mark encapsulated */
3287
3288 M_WME_SETAC(m, WME_AC_BE);
3289
3290 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3291 "send probe resp on channel %u to %s%s\n",
3292 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3293 legacy ? " <legacy>" : "");
3294 IEEE80211_NODE_STAT(bss, tx_mgmt);
3295
3296 ret = ieee80211_raw_output(vap, bss, m, NULL);
3297 IEEE80211_TX_UNLOCK(ic);
3298 return (ret);
3299 }
3300
3301 /*
3302 * Allocate and build a RTS (Request To Send) control frame.
3303 */
3304 struct mbuf *
ieee80211_alloc_rts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],const uint8_t ta[IEEE80211_ADDR_LEN],uint16_t dur)3305 ieee80211_alloc_rts(struct ieee80211com *ic,
3306 const uint8_t ra[IEEE80211_ADDR_LEN],
3307 const uint8_t ta[IEEE80211_ADDR_LEN],
3308 uint16_t dur)
3309 {
3310 struct ieee80211_frame_rts *rts;
3311 struct mbuf *m;
3312
3313 /* XXX honor ic_headroom */
3314 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3315 if (m != NULL) {
3316 rts = mtod(m, struct ieee80211_frame_rts *);
3317 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3318 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3319 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3320 *(u_int16_t *)rts->i_dur = htole16(dur);
3321 IEEE80211_ADDR_COPY(rts->i_ra, ra);
3322 IEEE80211_ADDR_COPY(rts->i_ta, ta);
3323
3324 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3325 }
3326 return m;
3327 }
3328
3329 /*
3330 * Allocate and build a CTS (Clear To Send) control frame.
3331 */
3332 struct mbuf *
ieee80211_alloc_cts(struct ieee80211com * ic,const uint8_t ra[IEEE80211_ADDR_LEN],uint16_t dur)3333 ieee80211_alloc_cts(struct ieee80211com *ic,
3334 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3335 {
3336 struct ieee80211_frame_cts *cts;
3337 struct mbuf *m;
3338
3339 /* XXX honor ic_headroom */
3340 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3341 if (m != NULL) {
3342 cts = mtod(m, struct ieee80211_frame_cts *);
3343 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3344 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3345 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3346 *(u_int16_t *)cts->i_dur = htole16(dur);
3347 IEEE80211_ADDR_COPY(cts->i_ra, ra);
3348
3349 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3350 }
3351 return m;
3352 }
3353
3354 /*
3355 * Wrapper for CTS/RTS frame allocation.
3356 */
3357 struct mbuf *
ieee80211_alloc_prot(struct ieee80211_node * ni,const struct mbuf * m,uint8_t rate,int prot)3358 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3359 uint8_t rate, int prot)
3360 {
3361 struct ieee80211com *ic = ni->ni_ic;
3362 struct ieee80211vap *vap = ni->ni_vap;
3363 const struct ieee80211_frame *wh;
3364 struct mbuf *mprot;
3365 uint16_t dur;
3366 int pktlen, isshort;
3367
3368 KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3369 prot == IEEE80211_PROT_CTSONLY,
3370 ("wrong protection type %d", prot));
3371
3372 wh = mtod(m, const struct ieee80211_frame *);
3373 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3374 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3375 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3376 + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3377
3378 if (prot == IEEE80211_PROT_RTSCTS) {
3379 /* NB: CTS is the same size as an ACK */
3380 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3381 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3382 } else
3383 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3384
3385 return (mprot);
3386 }
3387
3388 static void
ieee80211_tx_mgt_timeout(void * arg)3389 ieee80211_tx_mgt_timeout(void *arg)
3390 {
3391 struct ieee80211vap *vap = arg;
3392
3393 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3394 "vap %p mode %s state %s flags %#x & %#x\n", vap,
3395 ieee80211_opmode_name[vap->iv_opmode],
3396 ieee80211_state_name[vap->iv_state],
3397 vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3398
3399 IEEE80211_LOCK(vap->iv_ic);
3400 if (vap->iv_state != IEEE80211_S_INIT &&
3401 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3402 /*
3403 * NB: it's safe to specify a timeout as the reason here;
3404 * it'll only be used in the right state.
3405 */
3406 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3407 IEEE80211_SCAN_FAIL_TIMEOUT);
3408 }
3409 IEEE80211_UNLOCK(vap->iv_ic);
3410 }
3411
3412 /*
3413 * This is the callback set on net80211-sourced transmitted
3414 * authentication request frames.
3415 *
3416 * This does a couple of things:
3417 *
3418 * + If the frame transmitted was a success, it schedules a future
3419 * event which will transition the interface to scan.
3420 * If a state transition _then_ occurs before that event occurs,
3421 * said state transition will cancel this callout.
3422 *
3423 * + If the frame transmit was a failure, it immediately schedules
3424 * the transition back to scan.
3425 */
3426 static void
ieee80211_tx_mgt_cb(struct ieee80211_node * ni,void * arg,int status)3427 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3428 {
3429 struct ieee80211vap *vap = ni->ni_vap;
3430 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3431
3432 /*
3433 * Frame transmit completed; arrange timer callback. If
3434 * transmit was successfully we wait for response. Otherwise
3435 * we arrange an immediate callback instead of doing the
3436 * callback directly since we don't know what state the driver
3437 * is in (e.g. what locks it is holding). This work should
3438 * not be too time-critical and not happen too often so the
3439 * added overhead is acceptable.
3440 *
3441 * XXX what happens if !acked but response shows up before callback?
3442 */
3443 if (vap->iv_state == ostate) {
3444 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3445 "ni %p mode %s state %s arg %p status %d\n", ni,
3446 ieee80211_opmode_name[vap->iv_opmode],
3447 ieee80211_state_name[vap->iv_state], arg, status);
3448
3449 callout_reset(&vap->iv_mgtsend,
3450 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3451 ieee80211_tx_mgt_timeout, vap);
3452 }
3453 }
3454
3455 static void
ieee80211_beacon_construct(struct mbuf * m,uint8_t * frm,struct ieee80211_node * ni)3456 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3457 struct ieee80211_node *ni)
3458 {
3459 struct ieee80211vap *vap = ni->ni_vap;
3460 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3461 struct ieee80211com *ic = ni->ni_ic;
3462 struct ieee80211_rateset *rs = &ni->ni_rates;
3463 uint16_t capinfo;
3464
3465 /*
3466 * beacon frame format
3467 *
3468 * TODO: update to 802.11-2012; a lot of stuff has changed;
3469 * vendor extensions should be at the end, etc.
3470 *
3471 * [8] time stamp
3472 * [2] beacon interval
3473 * [2] cabability information
3474 * [tlv] ssid
3475 * [tlv] supported rates
3476 * [3] parameter set (DS)
3477 * [8] CF parameter set (optional)
3478 * [tlv] parameter set (IBSS/TIM)
3479 * [tlv] country (optional)
3480 * [3] power control (optional)
3481 * [5] channel switch announcement (CSA) (optional)
3482 * XXX TODO: Quiet
3483 * XXX TODO: IBSS DFS
3484 * XXX TODO: TPC report
3485 * [tlv] extended rate phy (ERP)
3486 * [tlv] extended supported rates
3487 * [tlv] RSN parameters
3488 * XXX TODO: BSSLOAD
3489 * (XXX EDCA parameter set, QoS capability?)
3490 * XXX TODO: AP channel report
3491 *
3492 * [tlv] HT capabilities
3493 * [tlv] HT information
3494 * XXX TODO: 20/40 BSS coexistence
3495 * Mesh:
3496 * XXX TODO: Meshid
3497 * XXX TODO: mesh config
3498 * XXX TODO: mesh awake window
3499 * XXX TODO: beacon timing (mesh, etc)
3500 * XXX TODO: MCCAOP Advertisement Overview
3501 * XXX TODO: MCCAOP Advertisement
3502 * XXX TODO: Mesh channel switch parameters
3503 * VHT:
3504 * XXX TODO: VHT capabilities
3505 * XXX TODO: VHT operation
3506 * XXX TODO: VHT transmit power envelope
3507 * XXX TODO: channel switch wrapper element
3508 * XXX TODO: extended BSS load element
3509 *
3510 * XXX Vendor-specific OIDs (e.g. Atheros)
3511 * [tlv] WPA parameters
3512 * [tlv] WME parameters
3513 * [tlv] Vendor OUI HT capabilities (optional)
3514 * [tlv] Vendor OUI HT information (optional)
3515 * [tlv] Atheros capabilities (optional)
3516 * [tlv] TDMA parameters (optional)
3517 * [tlv] Mesh ID (MBSS)
3518 * [tlv] Mesh Conf (MBSS)
3519 * [tlv] application data (optional)
3520 */
3521
3522 memset(bo, 0, sizeof(*bo));
3523
3524 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3525 frm += 8;
3526 *(uint16_t *)frm = htole16(ni->ni_intval);
3527 frm += 2;
3528 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3529 bo->bo_caps = (uint16_t *)frm;
3530 *(uint16_t *)frm = htole16(capinfo);
3531 frm += 2;
3532 *frm++ = IEEE80211_ELEMID_SSID;
3533 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3534 *frm++ = ni->ni_esslen;
3535 memcpy(frm, ni->ni_essid, ni->ni_esslen);
3536 frm += ni->ni_esslen;
3537 } else
3538 *frm++ = 0;
3539 frm = ieee80211_add_rates(frm, rs);
3540 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3541 *frm++ = IEEE80211_ELEMID_DSPARMS;
3542 *frm++ = 1;
3543 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3544 }
3545 if (ic->ic_flags & IEEE80211_F_PCF) {
3546 bo->bo_cfp = frm;
3547 frm = ieee80211_add_cfparms(frm, ic);
3548 }
3549 bo->bo_tim = frm;
3550 if (vap->iv_opmode == IEEE80211_M_IBSS) {
3551 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
3552 *frm++ = 2;
3553 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3554 bo->bo_tim_len = 0;
3555 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3556 vap->iv_opmode == IEEE80211_M_MBSS) {
3557 /* TIM IE is the same for Mesh and Hostap */
3558 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3559
3560 tie->tim_ie = IEEE80211_ELEMID_TIM;
3561 tie->tim_len = 4; /* length */
3562 tie->tim_count = 0; /* DTIM count */
3563 tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3564 tie->tim_bitctl = 0; /* bitmap control */
3565 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3566 frm += sizeof(struct ieee80211_tim_ie);
3567 bo->bo_tim_len = 1;
3568 }
3569 bo->bo_tim_trailer = frm;
3570 if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3571 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3572 frm = ieee80211_add_countryie(frm, ic);
3573 if (vap->iv_flags & IEEE80211_F_DOTH) {
3574 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3575 frm = ieee80211_add_powerconstraint(frm, vap);
3576 bo->bo_csa = frm;
3577 if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3578 frm = ieee80211_add_csa(frm, vap);
3579 } else
3580 bo->bo_csa = frm;
3581
3582 bo->bo_quiet = NULL;
3583 if (vap->iv_flags & IEEE80211_F_DOTH) {
3584 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3585 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3586 (vap->iv_quiet == 1)) {
3587 /*
3588 * We only insert the quiet IE offset if
3589 * the quiet IE is enabled. Otherwise don't
3590 * put it here or we'll just overwrite
3591 * some other beacon contents.
3592 */
3593 if (vap->iv_quiet) {
3594 bo->bo_quiet = frm;
3595 frm = ieee80211_add_quiet(frm,vap, 0);
3596 }
3597 }
3598 }
3599
3600 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3601 bo->bo_erp = frm;
3602 frm = ieee80211_add_erp(frm, vap);
3603 }
3604 frm = ieee80211_add_xrates(frm, rs);
3605 frm = ieee80211_add_rsn(frm, vap);
3606 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3607 frm = ieee80211_add_htcap(frm, ni);
3608 bo->bo_htinfo = frm;
3609 frm = ieee80211_add_htinfo(frm, ni);
3610 }
3611
3612 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3613 frm = ieee80211_add_vhtcap(frm, ni);
3614 bo->bo_vhtinfo = frm;
3615 frm = ieee80211_add_vhtinfo(frm, ni);
3616 /* Transmit power envelope */
3617 /* Channel switch wrapper element */
3618 /* Extended bss load element */
3619 }
3620
3621 frm = ieee80211_add_wpa(frm, vap);
3622 if (vap->iv_flags & IEEE80211_F_WME) {
3623 bo->bo_wme = frm;
3624 frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3625 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3626 }
3627 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3628 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3629 frm = ieee80211_add_htcap_vendor(frm, ni);
3630 frm = ieee80211_add_htinfo_vendor(frm, ni);
3631 }
3632
3633 #ifdef IEEE80211_SUPPORT_SUPERG
3634 if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3635 bo->bo_ath = frm;
3636 frm = ieee80211_add_athcaps(frm, ni);
3637 }
3638 #endif
3639 #ifdef IEEE80211_SUPPORT_TDMA
3640 if (vap->iv_caps & IEEE80211_C_TDMA) {
3641 bo->bo_tdma = frm;
3642 frm = ieee80211_add_tdma(frm, vap);
3643 }
3644 #endif
3645 if (vap->iv_appie_beacon != NULL) {
3646 bo->bo_appie = frm;
3647 bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3648 frm = add_appie(frm, vap->iv_appie_beacon);
3649 }
3650
3651 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3652 #ifdef IEEE80211_SUPPORT_MESH
3653 if (vap->iv_opmode == IEEE80211_M_MBSS) {
3654 frm = ieee80211_add_meshid(frm, vap);
3655 bo->bo_meshconf = frm;
3656 frm = ieee80211_add_meshconf(frm, vap);
3657 }
3658 #endif
3659 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3660 bo->bo_csa_trailer_len = frm - bo->bo_csa;
3661 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3662 }
3663
3664 /*
3665 * Allocate a beacon frame and fillin the appropriate bits.
3666 */
3667 struct mbuf *
ieee80211_beacon_alloc(struct ieee80211_node * ni)3668 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3669 {
3670 struct ieee80211vap *vap = ni->ni_vap;
3671 struct ieee80211com *ic = ni->ni_ic;
3672 struct ieee80211_frame *wh;
3673 struct mbuf *m;
3674 int pktlen;
3675 uint8_t *frm;
3676
3677 /*
3678 * Update the "We're putting the quiet IE in the beacon" state.
3679 */
3680 if (vap->iv_quiet == 1)
3681 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3682 else if (vap->iv_quiet == 0)
3683 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3684
3685 /*
3686 * beacon frame format
3687 *
3688 * Note: This needs updating for 802.11-2012.
3689 *
3690 * [8] time stamp
3691 * [2] beacon interval
3692 * [2] cabability information
3693 * [tlv] ssid
3694 * [tlv] supported rates
3695 * [3] parameter set (DS)
3696 * [8] CF parameter set (optional)
3697 * [tlv] parameter set (IBSS/TIM)
3698 * [tlv] country (optional)
3699 * [3] power control (optional)
3700 * [5] channel switch announcement (CSA) (optional)
3701 * [tlv] extended rate phy (ERP)
3702 * [tlv] extended supported rates
3703 * [tlv] RSN parameters
3704 * [tlv] HT capabilities
3705 * [tlv] HT information
3706 * [tlv] VHT capabilities
3707 * [tlv] VHT operation
3708 * [tlv] Vendor OUI HT capabilities (optional)
3709 * [tlv] Vendor OUI HT information (optional)
3710 * XXX Vendor-specific OIDs (e.g. Atheros)
3711 * [tlv] WPA parameters
3712 * [tlv] WME parameters
3713 * [tlv] TDMA parameters (optional)
3714 * [tlv] Mesh ID (MBSS)
3715 * [tlv] Mesh Conf (MBSS)
3716 * [tlv] application data (optional)
3717 * NB: we allocate the max space required for the TIM bitmap.
3718 * XXX how big is this?
3719 */
3720 pktlen = 8 /* time stamp */
3721 + sizeof(uint16_t) /* beacon interval */
3722 + sizeof(uint16_t) /* capabilities */
3723 + 2 + ni->ni_esslen /* ssid */
3724 + 2 + IEEE80211_RATE_SIZE /* supported rates */
3725 + 2 + 1 /* DS parameters */
3726 + 2 + 6 /* CF parameters */
3727 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3728 + IEEE80211_COUNTRY_MAX_SIZE /* country */
3729 + 2 + 1 /* power control */
3730 + sizeof(struct ieee80211_csa_ie) /* CSA */
3731 + sizeof(struct ieee80211_quiet_ie) /* Quiet */
3732 + 2 + 1 /* ERP */
3733 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3734 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3735 2*sizeof(struct ieee80211_ie_wpa) : 0)
3736 /* XXX conditional? */
3737 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3738 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3739 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3740 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3741 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3742 sizeof(struct ieee80211_wme_param) : 0)
3743 #ifdef IEEE80211_SUPPORT_SUPERG
3744 + sizeof(struct ieee80211_ath_ie) /* ATH */
3745 #endif
3746 #ifdef IEEE80211_SUPPORT_TDMA
3747 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3748 sizeof(struct ieee80211_tdma_param) : 0)
3749 #endif
3750 #ifdef IEEE80211_SUPPORT_MESH
3751 + 2 + ni->ni_meshidlen
3752 + sizeof(struct ieee80211_meshconf_ie)
3753 #endif
3754 + IEEE80211_MAX_APPIE
3755 ;
3756 m = ieee80211_getmgtframe(&frm,
3757 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3758 if (m == NULL) {
3759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3760 "%s: cannot get buf; size %u\n", __func__, pktlen);
3761 vap->iv_stats.is_tx_nobuf++;
3762 return NULL;
3763 }
3764 ieee80211_beacon_construct(m, frm, ni);
3765
3766 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3767 KASSERT(m != NULL, ("no space for 802.11 header?"));
3768 wh = mtod(m, struct ieee80211_frame *);
3769 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3770 IEEE80211_FC0_SUBTYPE_BEACON;
3771 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3772 *(uint16_t *)wh->i_dur = 0;
3773 IEEE80211_ADDR_COPY(wh->i_addr1,
3774 ieee80211_vap_get_broadcast_address(vap));
3775 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3776 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3777 *(uint16_t *)wh->i_seq = 0;
3778
3779 return m;
3780 }
3781
3782 /*
3783 * Update the dynamic parts of a beacon frame based on the current state.
3784 */
3785 int
ieee80211_beacon_update(struct ieee80211_node * ni,struct mbuf * m,int mcast)3786 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3787 {
3788 struct ieee80211vap *vap = ni->ni_vap;
3789 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3790 struct ieee80211com *ic = ni->ni_ic;
3791 int len_changed = 0;
3792 uint16_t capinfo;
3793
3794 IEEE80211_LOCK(ic);
3795 /*
3796 * Handle 11h channel change when we've reached the count.
3797 * We must recalculate the beacon frame contents to account
3798 * for the new channel. Note we do this only for the first
3799 * vap that reaches this point; subsequent vaps just update
3800 * their beacon state to reflect the recalculated channel.
3801 */
3802 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3803 vap->iv_csa_count == ic->ic_csa_count) {
3804 vap->iv_csa_count = 0;
3805 /*
3806 * Effect channel change before reconstructing the beacon
3807 * frame contents as many places reference ni_chan.
3808 */
3809 if (ic->ic_csa_newchan != NULL)
3810 ieee80211_csa_completeswitch(ic);
3811 /*
3812 * NB: ieee80211_beacon_construct clears all pending
3813 * updates in bo_flags so we don't need to explicitly
3814 * clear IEEE80211_BEACON_CSA.
3815 */
3816 ieee80211_beacon_construct(m,
3817 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3818
3819 /* XXX do WME aggressive mode processing? */
3820 IEEE80211_UNLOCK(ic);
3821 return 1; /* just assume length changed */
3822 }
3823
3824 /*
3825 * Handle the quiet time element being added and removed.
3826 * Again, for now we just cheat and reconstruct the whole
3827 * beacon - that way the gap is provided as appropriate.
3828 *
3829 * So, track whether we have already added the IE versus
3830 * whether we want to be adding the IE.
3831 */
3832 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3833 (vap->iv_quiet == 0)) {
3834 /*
3835 * Quiet time beacon IE enabled, but it's disabled;
3836 * recalc
3837 */
3838 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3839 ieee80211_beacon_construct(m,
3840 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3841 /* XXX do WME aggressive mode processing? */
3842 IEEE80211_UNLOCK(ic);
3843 return 1; /* just assume length changed */
3844 }
3845
3846 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3847 (vap->iv_quiet == 1)) {
3848 /*
3849 * Quiet time beacon IE disabled, but it's now enabled;
3850 * recalc
3851 */
3852 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3853 ieee80211_beacon_construct(m,
3854 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3855 /* XXX do WME aggressive mode processing? */
3856 IEEE80211_UNLOCK(ic);
3857 return 1; /* just assume length changed */
3858 }
3859
3860 /*
3861 * XXX TODO Strictly speaking this should be incremented with the TX
3862 * lock held so as to serialise access to the non-qos TID sequence
3863 * number space.
3864 *
3865 * If the driver identifies it does its own TX seqno management then
3866 * we can skip this (and still not do the TX seqno.)
3867 */
3868
3869 /* TODO: IEEE80211_CONF_SEQNO_OFFLOAD() */
3870 ieee80211_output_beacon_seqno_assign(ni, m);
3871
3872 /* XXX faster to recalculate entirely or just changes? */
3873 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3874 *bo->bo_caps = htole16(capinfo);
3875
3876 if (vap->iv_flags & IEEE80211_F_WME) {
3877 struct ieee80211_wme_state *wme = &ic->ic_wme;
3878
3879 /*
3880 * Check for aggressive mode change. When there is
3881 * significant high priority traffic in the BSS
3882 * throttle back BE traffic by using conservative
3883 * parameters. Otherwise BE uses aggressive params
3884 * to optimize performance of legacy/non-QoS traffic.
3885 */
3886 if (wme->wme_flags & WME_F_AGGRMODE) {
3887 if (wme->wme_hipri_traffic >
3888 wme->wme_hipri_switch_thresh) {
3889 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3890 "%s: traffic %u, disable aggressive mode\n",
3891 __func__, wme->wme_hipri_traffic);
3892 wme->wme_flags &= ~WME_F_AGGRMODE;
3893 ieee80211_wme_updateparams_locked(vap);
3894 wme->wme_hipri_traffic =
3895 wme->wme_hipri_switch_hysteresis;
3896 } else
3897 wme->wme_hipri_traffic = 0;
3898 } else {
3899 if (wme->wme_hipri_traffic <=
3900 wme->wme_hipri_switch_thresh) {
3901 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3902 "%s: traffic %u, enable aggressive mode\n",
3903 __func__, wme->wme_hipri_traffic);
3904 wme->wme_flags |= WME_F_AGGRMODE;
3905 ieee80211_wme_updateparams_locked(vap);
3906 wme->wme_hipri_traffic = 0;
3907 } else
3908 wme->wme_hipri_traffic =
3909 wme->wme_hipri_switch_hysteresis;
3910 }
3911 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3912 (void) ieee80211_add_wme_param(bo->bo_wme, wme,
3913 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3914 clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3915 }
3916 }
3917
3918 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3919 ieee80211_ht_update_beacon(vap, bo);
3920 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3921 }
3922 #ifdef IEEE80211_SUPPORT_TDMA
3923 if (vap->iv_caps & IEEE80211_C_TDMA) {
3924 /*
3925 * NB: the beacon is potentially updated every TBTT.
3926 */
3927 ieee80211_tdma_update_beacon(vap, bo);
3928 }
3929 #endif
3930 #ifdef IEEE80211_SUPPORT_MESH
3931 if (vap->iv_opmode == IEEE80211_M_MBSS)
3932 ieee80211_mesh_update_beacon(vap, bo);
3933 #endif
3934
3935 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3936 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3937 struct ieee80211_tim_ie *tie =
3938 (struct ieee80211_tim_ie *) bo->bo_tim;
3939 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3940 u_int timlen, timoff, i;
3941 /*
3942 * ATIM/DTIM needs updating. If it fits in the
3943 * current space allocated then just copy in the
3944 * new bits. Otherwise we need to move any trailing
3945 * data to make room. Note that we know there is
3946 * contiguous space because ieee80211_beacon_allocate
3947 * insures there is space in the mbuf to write a
3948 * maximal-size virtual bitmap (based on iv_max_aid).
3949 */
3950 /*
3951 * Calculate the bitmap size and offset, copy any
3952 * trailer out of the way, and then copy in the
3953 * new bitmap and update the information element.
3954 * Note that the tim bitmap must contain at least
3955 * one byte and any offset must be even.
3956 */
3957 if (vap->iv_ps_pending != 0) {
3958 timoff = 128; /* impossibly large */
3959 for (i = 0; i < vap->iv_tim_len; i++)
3960 if (vap->iv_tim_bitmap[i]) {
3961 timoff = i &~ 1;
3962 break;
3963 }
3964 KASSERT(timoff != 128, ("tim bitmap empty!"));
3965 for (i = vap->iv_tim_len-1; i >= timoff; i--)
3966 if (vap->iv_tim_bitmap[i])
3967 break;
3968 timlen = 1 + (i - timoff);
3969 } else {
3970 timoff = 0;
3971 timlen = 1;
3972 }
3973
3974 /*
3975 * TODO: validate this!
3976 */
3977 if (timlen != bo->bo_tim_len) {
3978 /* copy up/down trailer */
3979 int adjust = tie->tim_bitmap+timlen
3980 - bo->bo_tim_trailer;
3981 ovbcopy(bo->bo_tim_trailer,
3982 bo->bo_tim_trailer+adjust,
3983 bo->bo_tim_trailer_len);
3984 bo->bo_tim_trailer += adjust;
3985 bo->bo_erp += adjust;
3986 bo->bo_htinfo += adjust;
3987 bo->bo_vhtinfo += adjust;
3988 #ifdef IEEE80211_SUPPORT_SUPERG
3989 bo->bo_ath += adjust;
3990 #endif
3991 #ifdef IEEE80211_SUPPORT_TDMA
3992 bo->bo_tdma += adjust;
3993 #endif
3994 #ifdef IEEE80211_SUPPORT_MESH
3995 bo->bo_meshconf += adjust;
3996 #endif
3997 bo->bo_appie += adjust;
3998 bo->bo_wme += adjust;
3999 bo->bo_csa += adjust;
4000 bo->bo_quiet += adjust;
4001 bo->bo_tim_len = timlen;
4002
4003 /* update information element */
4004 tie->tim_len = 3 + timlen;
4005 tie->tim_bitctl = timoff;
4006 len_changed = 1;
4007 }
4008 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4009 bo->bo_tim_len);
4010
4011 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4012
4013 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4014 "%s: TIM updated, pending %u, off %u, len %u\n",
4015 __func__, vap->iv_ps_pending, timoff, timlen);
4016 }
4017 /* count down DTIM period */
4018 if (tie->tim_count == 0)
4019 tie->tim_count = tie->tim_period - 1;
4020 else
4021 tie->tim_count--;
4022 /* update state for buffered multicast frames on DTIM */
4023 if (mcast && tie->tim_count == 0)
4024 tie->tim_bitctl |= 1;
4025 else
4026 tie->tim_bitctl &= ~1;
4027 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4028 struct ieee80211_csa_ie *csa =
4029 (struct ieee80211_csa_ie *) bo->bo_csa;
4030
4031 /*
4032 * Insert or update CSA ie. If we're just starting
4033 * to count down to the channel switch then we need
4034 * to insert the CSA ie. Otherwise we just need to
4035 * drop the count. The actual change happens above
4036 * when the vap's count reaches the target count.
4037 */
4038 if (vap->iv_csa_count == 0) {
4039 memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4040 bo->bo_erp += sizeof(*csa);
4041 bo->bo_htinfo += sizeof(*csa);
4042 bo->bo_vhtinfo += sizeof(*csa);
4043 bo->bo_wme += sizeof(*csa);
4044 #ifdef IEEE80211_SUPPORT_SUPERG
4045 bo->bo_ath += sizeof(*csa);
4046 #endif
4047 #ifdef IEEE80211_SUPPORT_TDMA
4048 bo->bo_tdma += sizeof(*csa);
4049 #endif
4050 #ifdef IEEE80211_SUPPORT_MESH
4051 bo->bo_meshconf += sizeof(*csa);
4052 #endif
4053 bo->bo_appie += sizeof(*csa);
4054 bo->bo_csa_trailer_len += sizeof(*csa);
4055 bo->bo_quiet += sizeof(*csa);
4056 bo->bo_tim_trailer_len += sizeof(*csa);
4057 m->m_len += sizeof(*csa);
4058 m->m_pkthdr.len += sizeof(*csa);
4059
4060 ieee80211_add_csa(bo->bo_csa, vap);
4061 } else
4062 csa->csa_count--;
4063 vap->iv_csa_count++;
4064 /* NB: don't clear IEEE80211_BEACON_CSA */
4065 }
4066
4067 /*
4068 * Only add the quiet time IE if we've enabled it
4069 * as appropriate.
4070 */
4071 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4072 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4073 if (vap->iv_quiet &&
4074 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4075 ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4076 }
4077 }
4078 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4079 /*
4080 * ERP element needs updating.
4081 */
4082 (void) ieee80211_add_erp(bo->bo_erp, vap);
4083 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4084 }
4085 #ifdef IEEE80211_SUPPORT_SUPERG
4086 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
4087 ieee80211_add_athcaps(bo->bo_ath, ni);
4088 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4089 }
4090 #endif
4091 }
4092 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4093 const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4094 int aielen;
4095 uint8_t *frm;
4096
4097 aielen = 0;
4098 if (aie != NULL)
4099 aielen += aie->ie_len;
4100 if (aielen != bo->bo_appie_len) {
4101 /* copy up/down trailer */
4102 int adjust = aielen - bo->bo_appie_len;
4103 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4104 bo->bo_tim_trailer_len);
4105 bo->bo_tim_trailer += adjust;
4106 bo->bo_appie += adjust;
4107 bo->bo_appie_len = aielen;
4108
4109 len_changed = 1;
4110 }
4111 frm = bo->bo_appie;
4112 if (aie != NULL)
4113 frm = add_appie(frm, aie);
4114 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4115 }
4116 IEEE80211_UNLOCK(ic);
4117
4118 return len_changed;
4119 }
4120
4121 /*
4122 * Do Ethernet-LLC encapsulation for each payload in a fast frame
4123 * tunnel encapsulation. The frame is assumed to have an Ethernet
4124 * header at the front that must be stripped before prepending the
4125 * LLC followed by the Ethernet header passed in (with an Ethernet
4126 * type that specifies the payload size).
4127 */
4128 struct mbuf *
ieee80211_ff_encap1(struct ieee80211vap * vap,struct mbuf * m,const struct ether_header * eh)4129 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4130 const struct ether_header *eh)
4131 {
4132 struct llc *llc;
4133 uint16_t payload;
4134
4135 /* XXX optimize by combining m_adj+M_PREPEND */
4136 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4137 llc = mtod(m, struct llc *);
4138 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4139 llc->llc_control = LLC_UI;
4140 llc->llc_snap.org_code[0] = 0;
4141 llc->llc_snap.org_code[1] = 0;
4142 llc->llc_snap.org_code[2] = 0;
4143 llc->llc_snap.ether_type = eh->ether_type;
4144 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
4145
4146 M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4147 if (m == NULL) { /* XXX cannot happen */
4148 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4149 "%s: no space for ether_header\n", __func__);
4150 vap->iv_stats.is_tx_nobuf++;
4151 return NULL;
4152 }
4153 ETHER_HEADER_COPY(mtod(m, void *), eh);
4154 mtod(m, struct ether_header *)->ether_type = htons(payload);
4155 return m;
4156 }
4157
4158 /*
4159 * Complete an mbuf transmission.
4160 *
4161 * For now, this simply processes a completed frame after the
4162 * driver has completed it's transmission and/or retransmission.
4163 * It assumes the frame is an 802.11 encapsulated frame.
4164 *
4165 * Later on it will grow to become the exit path for a given frame
4166 * from the driver and, depending upon how it's been encapsulated
4167 * and already transmitted, it may end up doing A-MPDU retransmission,
4168 * power save requeuing, etc.
4169 *
4170 * In order for the above to work, the driver entry point to this
4171 * must not hold any driver locks. Thus, the driver needs to delay
4172 * any actual mbuf completion until it can release said locks.
4173 *
4174 * This frees the mbuf and if the mbuf has a node reference,
4175 * the node reference will be freed.
4176 */
4177 void
ieee80211_tx_complete(struct ieee80211_node * ni,struct mbuf * m,int status)4178 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4179 {
4180
4181 if (ni != NULL) {
4182 struct ifnet *ifp = ni->ni_vap->iv_ifp;
4183
4184 if (status == 0) {
4185 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4186 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4187 if (m->m_flags & M_MCAST)
4188 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4189 } else
4190 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4191 if (m->m_flags & M_TXCB) {
4192 IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4193 "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4194 ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4195 ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4196 ieee80211_process_callback(ni, m, status);
4197 }
4198 ieee80211_free_node(ni);
4199 }
4200 m_freem(m);
4201 }
4202
4203 /**
4204 * @brief Assign a sequence number to the given frame.
4205 *
4206 * Check the frame type and TID and assign a suitable sequence number
4207 * from the correct sequence number space.
4208 *
4209 * This implements the components of 802.11-2020 10.3.2.14.2
4210 * (Transmitter Requirements) that net80211 currently supports.
4211 *
4212 * It assumes the mbuf has been encapsulated, and has the TID assigned
4213 * if it is a QoS frame.
4214 *
4215 * Note this also clears any existing fragment ID in the header, so it
4216 * must be called first before assigning fragment IDs.
4217 *
4218 * @param ni ieee80211_node this frame will be transmitted to
4219 * @param arg_tid A temporary check, existing callers may set
4220 * this to a TID variable they were using, and this routine
4221 * will verify it against what's in the frame and complain if
4222 * they don't match. For new callers, use -1.
4223 * @param m mbuf to populate the sequence number into
4224 */
4225 void
ieee80211_output_seqno_assign(struct ieee80211_node * ni,int arg_tid,struct mbuf * m)4226 ieee80211_output_seqno_assign(struct ieee80211_node *ni, int arg_tid,
4227 struct mbuf *m)
4228 {
4229 struct ieee80211_frame *wh;
4230 ieee80211_seq seqno;
4231 uint8_t tid, type, subtype;
4232
4233 wh = mtod(m, struct ieee80211_frame *);
4234 tid = ieee80211_gettid(wh);
4235 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4236 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4237
4238 /*
4239 * Find places where the passed in TID doesn't match gettid()
4240 * and log. I'll have to then go and chase those down.
4241 *
4242 * If the caller knows its already setup the TID in the frame
4243 * correctly then it can pass in -1 and this check will be
4244 * skipped.
4245 */
4246 if (arg_tid != -1 && tid != arg_tid)
4247 ic_printf(ni->ni_vap->iv_ic,
4248 "%s: called; TID mismatch; tid=%u, arg_tid=%d\n",
4249 __func__, tid, arg_tid);
4250
4251
4252 /* 802.11-2020 10.3.2.14.2 (Transmitter Requirements) sections */
4253
4254 /* SNS7 - unicast PV1 management frame */
4255
4256 /* SNS6 - unicast PV1 data frame */
4257
4258 /* SNS5 - QoS NULL frames */
4259 if (IEEE80211_QOS_HAS_SEQ(wh) && IEEE80211_IS_QOS_NULL(wh))
4260 seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4261
4262 /* SNS4 - QMF STA transmitting a QMF */
4263
4264 /* SNS3 - QoS STA; Time Priority Management frame */
4265
4266 /* SNS2 - unicast QoS STA, data frame, excluding SNS5 */
4267 else if (IEEE80211_QOS_HAS_SEQ(wh) &&
4268 !IEEE80211_IS_MULTICAST(wh->i_addr1))
4269 seqno = ieee80211_tx_seqno_fetch_incr(ni, tid);
4270
4271 /* SNS1 - Baseline (everything else) */
4272 else if (IEEE80211_HAS_SEQ(type, subtype))
4273 seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4274 else
4275 seqno = 0;
4276
4277 /*
4278 * Assign the sequence number, clearing out any existing
4279 * sequence and fragment numbers.
4280 */
4281 *(uint16_t *)&wh->i_seq[0] =
4282 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4283 M_SEQNO_SET(m, seqno);
4284 }
4285
4286 /**
4287 * @brief Assign a sequence number to the given beacon frame.
4288 *
4289 * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements)
4290 *
4291 * @param ni ieee80211_node this frame will be transmitted to
4292 * @param m mbuf to populate the sequence number into
4293 */
4294 void
ieee80211_output_beacon_seqno_assign(struct ieee80211_node * ni,struct mbuf * m)4295 ieee80211_output_beacon_seqno_assign(struct ieee80211_node *ni, struct mbuf *m)
4296 {
4297 struct ieee80211_frame *wh;
4298 ieee80211_seq seqno;
4299
4300 wh = mtod(m, struct ieee80211_frame *);
4301
4302 seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4303 *(uint16_t *)&wh->i_seq[0] =
4304 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4305 M_SEQNO_SET(m, seqno);
4306 }
4307