1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 struct ieee80211_rate *bitrates;
49 u32 mandatory_rates = 0;
50 enum ieee80211_rate_flags mandatory_flag;
51 int i;
52
53 if (WARN_ON(!sband))
54 return 1;
55
56 if (sband->band == NL80211_BAND_2GHZ)
57 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 else
59 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 case NL80211_BAND_LC:
78 if (chan == 14)
79 return MHZ_TO_KHZ(2484);
80 else if (chan < 14)
81 return MHZ_TO_KHZ(2407 + chan * 5);
82 break;
83 case NL80211_BAND_5GHZ:
84 if (chan >= 182 && chan <= 196)
85 return MHZ_TO_KHZ(4000 + chan * 5);
86 else
87 return MHZ_TO_KHZ(5000 + chan * 5);
88 break;
89 case NL80211_BAND_6GHZ:
90 /* see 802.11ax D6.1 27.3.23.2 */
91 if (chan == 2)
92 return MHZ_TO_KHZ(5935);
93 if (chan <= 233)
94 return MHZ_TO_KHZ(5950 + chan * 5);
95 break;
96 case NL80211_BAND_60GHZ:
97 if (chan < 7)
98 return MHZ_TO_KHZ(56160 + chan * 2160);
99 break;
100 case NL80211_BAND_S1GHZ:
101 return 902000 + chan * 500;
102 default:
103 ;
104 }
105 return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108
109 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)110 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
111 {
112 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
113 return NL80211_CHAN_WIDTH_20_NOHT;
114
115 /*S1G defines a single allowed channel width per channel.
116 * Extract that width here.
117 */
118 if (chan->flags & IEEE80211_CHAN_1MHZ)
119 return NL80211_CHAN_WIDTH_1;
120 else if (chan->flags & IEEE80211_CHAN_2MHZ)
121 return NL80211_CHAN_WIDTH_2;
122 else if (chan->flags & IEEE80211_CHAN_4MHZ)
123 return NL80211_CHAN_WIDTH_4;
124 else if (chan->flags & IEEE80211_CHAN_8MHZ)
125 return NL80211_CHAN_WIDTH_8;
126 else if (chan->flags & IEEE80211_CHAN_16MHZ)
127 return NL80211_CHAN_WIDTH_16;
128
129 pr_err("unknown channel width for channel at %dKHz?\n",
130 ieee80211_channel_to_khz(chan));
131
132 return NL80211_CHAN_WIDTH_1;
133 }
134 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
135
ieee80211_freq_khz_to_channel(u32 freq)136 int ieee80211_freq_khz_to_channel(u32 freq)
137 {
138 /* TODO: just handle MHz for now */
139 freq = KHZ_TO_MHZ(freq);
140
141 /* see 802.11 17.3.8.3.2 and Annex J */
142 if (freq == 2484)
143 return 14;
144 else if (freq < 2484)
145 return (freq - 2407) / 5;
146 else if (freq >= 4910 && freq <= 4980)
147 return (freq - 4000) / 5;
148 else if (freq < 5925)
149 return (freq - 5000) / 5;
150 else if (freq == 5935)
151 return 2;
152 else if (freq <= 45000) /* DMG band lower limit */
153 /* see 802.11ax D6.1 27.3.22.2 */
154 return (freq - 5950) / 5;
155 else if (freq >= 58320 && freq <= 70200)
156 return (freq - 56160) / 2160;
157 else
158 return 0;
159 }
160 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
161
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)162 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
163 u32 freq)
164 {
165 enum nl80211_band band;
166 struct ieee80211_supported_band *sband;
167 int i;
168
169 for (band = 0; band < NUM_NL80211_BANDS; band++) {
170 sband = wiphy->bands[band];
171
172 if (!sband)
173 continue;
174
175 for (i = 0; i < sband->n_channels; i++) {
176 struct ieee80211_channel *chan = &sband->channels[i];
177
178 if (ieee80211_channel_to_khz(chan) == freq)
179 return chan;
180 }
181 }
182
183 return NULL;
184 }
185 EXPORT_SYMBOL(ieee80211_get_channel_khz);
186
set_mandatory_flags_band(struct ieee80211_supported_band * sband)187 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
188 {
189 int i, want;
190
191 switch (sband->band) {
192 case NL80211_BAND_5GHZ:
193 case NL80211_BAND_6GHZ:
194 want = 3;
195 for (i = 0; i < sband->n_bitrates; i++) {
196 if (sband->bitrates[i].bitrate == 60 ||
197 sband->bitrates[i].bitrate == 120 ||
198 sband->bitrates[i].bitrate == 240) {
199 sband->bitrates[i].flags |=
200 IEEE80211_RATE_MANDATORY_A;
201 want--;
202 }
203 }
204 WARN_ON(want);
205 break;
206 case NL80211_BAND_2GHZ:
207 case NL80211_BAND_LC:
208 want = 7;
209 for (i = 0; i < sband->n_bitrates; i++) {
210 switch (sband->bitrates[i].bitrate) {
211 case 10:
212 case 20:
213 case 55:
214 case 110:
215 sband->bitrates[i].flags |=
216 IEEE80211_RATE_MANDATORY_B |
217 IEEE80211_RATE_MANDATORY_G;
218 want--;
219 break;
220 case 60:
221 case 120:
222 case 240:
223 sband->bitrates[i].flags |=
224 IEEE80211_RATE_MANDATORY_G;
225 want--;
226 fallthrough;
227 default:
228 sband->bitrates[i].flags |=
229 IEEE80211_RATE_ERP_G;
230 break;
231 }
232 }
233 WARN_ON(want != 0 && want != 3);
234 break;
235 case NL80211_BAND_60GHZ:
236 /* check for mandatory HT MCS 1..4 */
237 WARN_ON(!sband->ht_cap.ht_supported);
238 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
239 break;
240 case NL80211_BAND_S1GHZ:
241 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
242 * mandatory is ok.
243 */
244 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
245 break;
246 case NUM_NL80211_BANDS:
247 default:
248 WARN_ON(1);
249 break;
250 }
251 }
252
ieee80211_set_bitrate_flags(struct wiphy * wiphy)253 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
254 {
255 enum nl80211_band band;
256
257 for (band = 0; band < NUM_NL80211_BANDS; band++)
258 if (wiphy->bands[band])
259 set_mandatory_flags_band(wiphy->bands[band]);
260 }
261
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)262 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
263 {
264 int i;
265 for (i = 0; i < wiphy->n_cipher_suites; i++)
266 if (cipher == wiphy->cipher_suites[i])
267 return true;
268 return false;
269 }
270
271 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)272 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
273 {
274 struct wiphy *wiphy = &rdev->wiphy;
275 int i;
276
277 for (i = 0; i < wiphy->n_cipher_suites; i++) {
278 switch (wiphy->cipher_suites[i]) {
279 case WLAN_CIPHER_SUITE_AES_CMAC:
280 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
281 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
282 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
283 return true;
284 }
285 }
286
287 return false;
288 }
289
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)290 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
291 int key_idx, bool pairwise)
292 {
293 int max_key_idx;
294
295 if (pairwise)
296 max_key_idx = 3;
297 else if (wiphy_ext_feature_isset(&rdev->wiphy,
298 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
299 wiphy_ext_feature_isset(&rdev->wiphy,
300 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
301 max_key_idx = 7;
302 else if (cfg80211_igtk_cipher_supported(rdev))
303 max_key_idx = 5;
304 else
305 max_key_idx = 3;
306
307 if (key_idx < 0 || key_idx > max_key_idx)
308 return false;
309
310 return true;
311 }
312
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)313 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
314 struct key_params *params, int key_idx,
315 bool pairwise, const u8 *mac_addr)
316 {
317 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
318 return -EINVAL;
319
320 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
321 return -EINVAL;
322
323 if (pairwise && !mac_addr)
324 return -EINVAL;
325
326 switch (params->cipher) {
327 case WLAN_CIPHER_SUITE_TKIP:
328 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
329 if ((pairwise && key_idx) ||
330 params->mode != NL80211_KEY_RX_TX)
331 return -EINVAL;
332 break;
333 case WLAN_CIPHER_SUITE_CCMP:
334 case WLAN_CIPHER_SUITE_CCMP_256:
335 case WLAN_CIPHER_SUITE_GCMP:
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 /* IEEE802.11-2016 allows only 0 and - when supporting
338 * Extended Key ID - 1 as index for pairwise keys.
339 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
340 * the driver supports Extended Key ID.
341 * @NL80211_KEY_SET_TX can't be set when installing and
342 * validating a key.
343 */
344 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
345 params->mode == NL80211_KEY_SET_TX)
346 return -EINVAL;
347 if (wiphy_ext_feature_isset(&rdev->wiphy,
348 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
349 if (pairwise && (key_idx < 0 || key_idx > 1))
350 return -EINVAL;
351 } else if (pairwise && key_idx) {
352 return -EINVAL;
353 }
354 break;
355 case WLAN_CIPHER_SUITE_AES_CMAC:
356 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
357 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
358 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
359 /* Disallow BIP (group-only) cipher as pairwise cipher */
360 if (pairwise)
361 return -EINVAL;
362 if (key_idx < 4)
363 return -EINVAL;
364 break;
365 case WLAN_CIPHER_SUITE_WEP40:
366 case WLAN_CIPHER_SUITE_WEP104:
367 if (key_idx > 3)
368 return -EINVAL;
369 break;
370 default:
371 break;
372 }
373
374 switch (params->cipher) {
375 case WLAN_CIPHER_SUITE_WEP40:
376 if (params->key_len != WLAN_KEY_LEN_WEP40)
377 return -EINVAL;
378 break;
379 case WLAN_CIPHER_SUITE_TKIP:
380 if (params->key_len != WLAN_KEY_LEN_TKIP)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_CCMP:
384 if (params->key_len != WLAN_KEY_LEN_CCMP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP_256:
388 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_GCMP:
392 if (params->key_len != WLAN_KEY_LEN_GCMP)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP_256:
396 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_WEP104:
400 if (params->key_len != WLAN_KEY_LEN_WEP104)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_AES_CMAC:
404 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
408 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
417 return -EINVAL;
418 break;
419 default:
420 /*
421 * We don't know anything about this algorithm,
422 * allow using it -- but the driver must check
423 * all parameters! We still check below whether
424 * or not the driver supports this algorithm,
425 * of course.
426 */
427 break;
428 }
429
430 if (params->seq) {
431 switch (params->cipher) {
432 case WLAN_CIPHER_SUITE_WEP40:
433 case WLAN_CIPHER_SUITE_WEP104:
434 /* These ciphers do not use key sequence */
435 return -EINVAL;
436 case WLAN_CIPHER_SUITE_TKIP:
437 case WLAN_CIPHER_SUITE_CCMP:
438 case WLAN_CIPHER_SUITE_CCMP_256:
439 case WLAN_CIPHER_SUITE_GCMP:
440 case WLAN_CIPHER_SUITE_GCMP_256:
441 case WLAN_CIPHER_SUITE_AES_CMAC:
442 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
443 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
444 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
445 if (params->seq_len != 6)
446 return -EINVAL;
447 break;
448 }
449 }
450
451 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
452 return -EINVAL;
453
454 return 0;
455 }
456
ieee80211_hdrlen(__le16 fc)457 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
458 {
459 unsigned int hdrlen = 24;
460
461 if (ieee80211_is_ext(fc)) {
462 hdrlen = 4;
463 goto out;
464 }
465
466 if (ieee80211_is_data(fc)) {
467 if (ieee80211_has_a4(fc))
468 hdrlen = 30;
469 if (ieee80211_is_data_qos(fc)) {
470 hdrlen += IEEE80211_QOS_CTL_LEN;
471 if (ieee80211_has_order(fc))
472 hdrlen += IEEE80211_HT_CTL_LEN;
473 }
474 goto out;
475 }
476
477 if (ieee80211_is_mgmt(fc)) {
478 if (ieee80211_has_order(fc))
479 hdrlen += IEEE80211_HT_CTL_LEN;
480 goto out;
481 }
482
483 if (ieee80211_is_ctl(fc)) {
484 /*
485 * ACK and CTS are 10 bytes, all others 16. To see how
486 * to get this condition consider
487 * subtype mask: 0b0000000011110000 (0x00F0)
488 * ACK subtype: 0b0000000011010000 (0x00D0)
489 * CTS subtype: 0b0000000011000000 (0x00C0)
490 * bits that matter: ^^^ (0x00E0)
491 * value of those: 0b0000000011000000 (0x00C0)
492 */
493 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
494 hdrlen = 10;
495 else
496 hdrlen = 16;
497 }
498 out:
499 return hdrlen;
500 }
501 EXPORT_SYMBOL(ieee80211_hdrlen);
502
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)503 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
504 {
505 const struct ieee80211_hdr *hdr =
506 (const struct ieee80211_hdr *)skb->data;
507 unsigned int hdrlen;
508
509 if (unlikely(skb->len < 10))
510 return 0;
511 hdrlen = ieee80211_hdrlen(hdr->frame_control);
512 if (unlikely(hdrlen > skb->len))
513 return 0;
514 return hdrlen;
515 }
516 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
517
__ieee80211_get_mesh_hdrlen(u8 flags)518 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
519 {
520 int ae = flags & MESH_FLAGS_AE;
521 /* 802.11-2012, 8.2.4.7.3 */
522 switch (ae) {
523 default:
524 case 0:
525 return 6;
526 case MESH_FLAGS_AE_A4:
527 return 12;
528 case MESH_FLAGS_AE_A5_A6:
529 return 18;
530 }
531 }
532
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)533 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
534 {
535 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
536 }
537 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
538
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)539 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
540 {
541 const __be16 *hdr_proto = hdr + ETH_ALEN;
542
543 if (!(ether_addr_equal(hdr, rfc1042_header) &&
544 *hdr_proto != htons(ETH_P_AARP) &&
545 *hdr_proto != htons(ETH_P_IPX)) &&
546 !ether_addr_equal(hdr, bridge_tunnel_header))
547 return false;
548
549 *proto = *hdr_proto;
550
551 return true;
552 }
553 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
554
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)555 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
556 {
557 const void *mesh_addr;
558 struct {
559 struct ethhdr eth;
560 u8 flags;
561 } payload;
562 int hdrlen;
563 int ret;
564
565 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
566 if (ret)
567 return ret;
568
569 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
570
571 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
572 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
573 &payload.eth.h_proto)))
574 hdrlen += ETH_ALEN + 2;
575 else if (!pskb_may_pull(skb, hdrlen))
576 return -EINVAL;
577 else
578 payload.eth.h_proto = htons(skb->len - hdrlen);
579
580 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
581 switch (payload.flags & MESH_FLAGS_AE) {
582 case MESH_FLAGS_AE_A4:
583 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
584 break;
585 case MESH_FLAGS_AE_A5_A6:
586 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
587 break;
588 default:
589 break;
590 }
591
592 pskb_pull(skb, hdrlen - sizeof(payload.eth));
593 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
594
595 return 0;
596 }
597 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
598
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)599 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
600 const u8 *addr, enum nl80211_iftype iftype,
601 u8 data_offset, bool is_amsdu)
602 {
603 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
604 struct {
605 u8 hdr[ETH_ALEN] __aligned(2);
606 __be16 proto;
607 } payload;
608 struct ethhdr tmp;
609 u16 hdrlen;
610
611 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
612 return -1;
613
614 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
615 if (skb->len < hdrlen)
616 return -1;
617
618 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
619 * header
620 * IEEE 802.11 address fields:
621 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
622 * 0 0 DA SA BSSID n/a
623 * 0 1 DA BSSID SA n/a
624 * 1 0 BSSID SA DA n/a
625 * 1 1 RA TA DA SA
626 */
627 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
628 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
629
630 switch (hdr->frame_control &
631 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
632 case cpu_to_le16(IEEE80211_FCTL_TODS):
633 if (unlikely(iftype != NL80211_IFTYPE_AP &&
634 iftype != NL80211_IFTYPE_AP_VLAN &&
635 iftype != NL80211_IFTYPE_P2P_GO))
636 return -1;
637 break;
638 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
639 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_STATION))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
645 if ((iftype != NL80211_IFTYPE_STATION &&
646 iftype != NL80211_IFTYPE_P2P_CLIENT &&
647 iftype != NL80211_IFTYPE_MESH_POINT) ||
648 (is_multicast_ether_addr(tmp.h_dest) &&
649 ether_addr_equal(tmp.h_source, addr)))
650 return -1;
651 break;
652 case cpu_to_le16(0):
653 if (iftype != NL80211_IFTYPE_ADHOC &&
654 iftype != NL80211_IFTYPE_STATION &&
655 iftype != NL80211_IFTYPE_OCB)
656 return -1;
657 break;
658 }
659
660 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
661 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
662 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
663 /* remove RFC1042 or Bridge-Tunnel encapsulation */
664 hdrlen += ETH_ALEN + 2;
665 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
666 } else {
667 tmp.h_proto = htons(skb->len - hdrlen);
668 }
669
670 pskb_pull(skb, hdrlen);
671
672 if (!ehdr)
673 ehdr = skb_push(skb, sizeof(struct ethhdr));
674 memcpy(ehdr, &tmp, sizeof(tmp));
675
676 return 0;
677 }
678 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
679
680 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)681 __frame_add_frag(struct sk_buff *skb, struct page *page,
682 void *ptr, int len, int size)
683 {
684 struct skb_shared_info *sh = skb_shinfo(skb);
685 int page_offset;
686
687 get_page(page);
688 page_offset = ptr - page_address(page);
689 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
690 }
691
692 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)693 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
694 int offset, int len)
695 {
696 struct skb_shared_info *sh = skb_shinfo(skb);
697 const skb_frag_t *frag = &sh->frags[0];
698 struct page *frag_page;
699 void *frag_ptr;
700 int frag_len, frag_size;
701 int head_size = skb->len - skb->data_len;
702 int cur_len;
703
704 frag_page = virt_to_head_page(skb->head);
705 frag_ptr = skb->data;
706 frag_size = head_size;
707
708 while (offset >= frag_size) {
709 offset -= frag_size;
710 frag_page = skb_frag_page(frag);
711 frag_ptr = skb_frag_address(frag);
712 frag_size = skb_frag_size(frag);
713 frag++;
714 }
715
716 frag_ptr += offset;
717 frag_len = frag_size - offset;
718
719 cur_len = min(len, frag_len);
720
721 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
722 len -= cur_len;
723
724 while (len > 0) {
725 frag_len = skb_frag_size(frag);
726 cur_len = min(len, frag_len);
727 __frame_add_frag(frame, skb_frag_page(frag),
728 skb_frag_address(frag), cur_len, frag_len);
729 len -= cur_len;
730 frag++;
731 }
732 }
733
734 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)735 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
736 int offset, int len, bool reuse_frag,
737 int min_len)
738 {
739 struct sk_buff *frame;
740 int cur_len = len;
741
742 if (skb->len - offset < len)
743 return NULL;
744
745 /*
746 * When reusing framents, copy some data to the head to simplify
747 * ethernet header handling and speed up protocol header processing
748 * in the stack later.
749 */
750 if (reuse_frag)
751 cur_len = min_t(int, len, min_len);
752
753 /*
754 * Allocate and reserve two bytes more for payload
755 * alignment since sizeof(struct ethhdr) is 14.
756 */
757 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
758 if (!frame)
759 return NULL;
760
761 frame->priority = skb->priority;
762 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
763 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
764
765 len -= cur_len;
766 if (!len)
767 return frame;
768
769 offset += cur_len;
770 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
771
772 return frame;
773 }
774
775 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)776 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
777 {
778 __le16 *field_le = field;
779 __be16 *field_be = field;
780 u16 len;
781
782 if (hdr_type >= 2)
783 len = le16_to_cpu(*field_le);
784 else
785 len = be16_to_cpu(*field_be);
786 if (hdr_type)
787 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
788
789 return len;
790 }
791
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)792 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
793 {
794 int offset = 0, subframe_len, padding;
795
796 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
797 int remaining = skb->len - offset;
798 struct {
799 __be16 len;
800 u8 mesh_flags;
801 } hdr;
802 u16 len;
803
804 if (sizeof(hdr) > remaining)
805 return false;
806
807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 return false;
809
810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 mesh_hdr);
812 subframe_len = sizeof(struct ethhdr) + len;
813 padding = (4 - subframe_len) & 0x3;
814
815 if (subframe_len > remaining)
816 return false;
817 }
818
819 return true;
820 }
821 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
822
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)823 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
824 const u8 *addr, enum nl80211_iftype iftype,
825 const unsigned int extra_headroom,
826 const u8 *check_da, const u8 *check_sa,
827 u8 mesh_control)
828 {
829 unsigned int hlen = ALIGN(extra_headroom, 4);
830 struct sk_buff *frame = NULL;
831 int offset = 0;
832 struct {
833 struct ethhdr eth;
834 uint8_t flags;
835 } hdr;
836 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
837 bool reuse_skb = false;
838 bool last = false;
839 int copy_len = sizeof(hdr.eth);
840
841 if (iftype == NL80211_IFTYPE_MESH_POINT)
842 copy_len = sizeof(hdr);
843
844 while (!last) {
845 int remaining = skb->len - offset;
846 unsigned int subframe_len;
847 int len, mesh_len = 0;
848 u8 padding;
849
850 if (copy_len > remaining)
851 goto purge;
852
853 skb_copy_bits(skb, offset, &hdr, copy_len);
854 if (iftype == NL80211_IFTYPE_MESH_POINT)
855 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
856 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
857 mesh_control);
858 subframe_len = sizeof(struct ethhdr) + len;
859 padding = (4 - subframe_len) & 0x3;
860
861 /* the last MSDU has no padding */
862 if (subframe_len > remaining)
863 goto purge;
864 /* mitigate A-MSDU aggregation injection attacks */
865 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866 goto purge;
867
868 offset += sizeof(struct ethhdr);
869 last = remaining <= subframe_len + padding;
870
871 /* FIXME: should we really accept multicast DA? */
872 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875 offset += len + padding;
876 continue;
877 }
878
879 /* reuse skb for the last subframe */
880 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881 skb_pull(skb, offset);
882 frame = skb;
883 reuse_skb = true;
884 } else {
885 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886 reuse_frag, 32 + mesh_len);
887 if (!frame)
888 goto purge;
889
890 offset += len + padding;
891 }
892
893 skb_reset_network_header(frame);
894 frame->dev = skb->dev;
895 frame->priority = skb->priority;
896
897 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899 skb_pull(frame, ETH_ALEN + 2);
900
901 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902 __skb_queue_tail(list, frame);
903 }
904
905 if (!reuse_skb)
906 dev_kfree_skb(skb);
907
908 return;
909
910 purge:
911 __skb_queue_purge(list);
912 dev_kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)917 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918 struct cfg80211_qos_map *qos_map)
919 {
920 unsigned int dscp;
921 unsigned char vlan_priority;
922 unsigned int ret;
923
924 /* skb->priority values from 256->263 are magic values to
925 * directly indicate a specific 802.1d priority. This is used
926 * to allow 802.1d priority to be passed directly in from VLAN
927 * tags, etc.
928 */
929 if (skb->priority >= 256 && skb->priority <= 263) {
930 ret = skb->priority - 256;
931 goto out;
932 }
933
934 if (skb_vlan_tag_present(skb)) {
935 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936 >> VLAN_PRIO_SHIFT;
937 if (vlan_priority > 0) {
938 ret = vlan_priority;
939 goto out;
940 }
941 }
942
943 switch (skb->protocol) {
944 case htons(ETH_P_IP):
945 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946 break;
947 case htons(ETH_P_IPV6):
948 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949 break;
950 case htons(ETH_P_MPLS_UC):
951 case htons(ETH_P_MPLS_MC): {
952 struct mpls_label mpls_tmp, *mpls;
953
954 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955 sizeof(*mpls), &mpls_tmp);
956 if (!mpls)
957 return 0;
958
959 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960 >> MPLS_LS_TC_SHIFT;
961 goto out;
962 }
963 case htons(ETH_P_80221):
964 /* 802.21 is always network control traffic */
965 return 7;
966 default:
967 return 0;
968 }
969
970 if (qos_map) {
971 unsigned int i, tmp_dscp = dscp >> 2;
972
973 for (i = 0; i < qos_map->num_des; i++) {
974 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975 ret = qos_map->dscp_exception[i].up;
976 goto out;
977 }
978 }
979
980 for (i = 0; i < 8; i++) {
981 if (tmp_dscp >= qos_map->up[i].low &&
982 tmp_dscp <= qos_map->up[i].high) {
983 ret = i;
984 goto out;
985 }
986 }
987 }
988
989 /* The default mapping as defined Section 2.3 in RFC8325: The three
990 * Most Significant Bits (MSBs) of the DSCP are used as the
991 * corresponding L2 markings.
992 */
993 ret = dscp >> 5;
994
995 /* Handle specific DSCP values for which the default mapping (as
996 * described above) doesn't adhere to the intended usage of the DSCP
997 * value. See section 4 in RFC8325. Specifically, for the following
998 * Diffserv Service Classes no update is needed:
999 * - Standard: DF
1000 * - Low Priority Data: CS1
1001 * - Multimedia Conferencing: AF41, AF42, AF43
1002 * - Network Control Traffic: CS7
1003 * - Real-Time Interactive: CS4
1004 * - Signaling: CS5
1005 */
1006 switch (dscp >> 2) {
1007 case 10:
1008 case 12:
1009 case 14:
1010 /* High throughput data: AF11, AF12, AF13 */
1011 ret = 0;
1012 break;
1013 case 16:
1014 /* Operations, Administration, and Maintenance and Provisioning:
1015 * CS2
1016 */
1017 ret = 0;
1018 break;
1019 case 18:
1020 case 20:
1021 case 22:
1022 /* Low latency data: AF21, AF22, AF23 */
1023 ret = 3;
1024 break;
1025 case 24:
1026 /* Broadcasting video: CS3 */
1027 ret = 4;
1028 break;
1029 case 26:
1030 case 28:
1031 case 30:
1032 /* Multimedia Streaming: AF31, AF32, AF33 */
1033 ret = 4;
1034 break;
1035 case 44:
1036 /* Voice Admit: VA */
1037 ret = 6;
1038 break;
1039 case 46:
1040 /* Telephony traffic: EF */
1041 ret = 6;
1042 break;
1043 case 48:
1044 /* Network Control Traffic: CS6 */
1045 ret = 7;
1046 break;
1047 }
1048 out:
1049 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1050 }
1051 EXPORT_SYMBOL(cfg80211_classify8021d);
1052
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1053 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1054 {
1055 const struct cfg80211_bss_ies *ies;
1056
1057 ies = rcu_dereference(bss->ies);
1058 if (!ies)
1059 return NULL;
1060
1061 return cfg80211_find_elem(id, ies->data, ies->len);
1062 }
1063 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1064
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1065 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1066 {
1067 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1068 struct net_device *dev = wdev->netdev;
1069 int i;
1070
1071 if (!wdev->connect_keys)
1072 return;
1073
1074 for (i = 0; i < 4; i++) {
1075 if (!wdev->connect_keys->params[i].cipher)
1076 continue;
1077 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1078 &wdev->connect_keys->params[i])) {
1079 netdev_err(dev, "failed to set key %d\n", i);
1080 continue;
1081 }
1082 if (wdev->connect_keys->def == i &&
1083 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1084 netdev_err(dev, "failed to set defkey %d\n", i);
1085 continue;
1086 }
1087 }
1088
1089 kfree_sensitive(wdev->connect_keys);
1090 wdev->connect_keys = NULL;
1091 }
1092
cfg80211_process_wdev_events(struct wireless_dev * wdev)1093 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1094 {
1095 struct cfg80211_event *ev;
1096 unsigned long flags;
1097
1098 spin_lock_irqsave(&wdev->event_lock, flags);
1099 while (!list_empty(&wdev->event_list)) {
1100 ev = list_first_entry(&wdev->event_list,
1101 struct cfg80211_event, list);
1102 list_del(&ev->list);
1103 spin_unlock_irqrestore(&wdev->event_lock, flags);
1104
1105 switch (ev->type) {
1106 case EVENT_CONNECT_RESULT:
1107 __cfg80211_connect_result(
1108 wdev->netdev,
1109 &ev->cr,
1110 ev->cr.status == WLAN_STATUS_SUCCESS);
1111 break;
1112 case EVENT_ROAMED:
1113 __cfg80211_roamed(wdev, &ev->rm);
1114 break;
1115 case EVENT_DISCONNECTED:
1116 __cfg80211_disconnected(wdev->netdev,
1117 ev->dc.ie, ev->dc.ie_len,
1118 ev->dc.reason,
1119 !ev->dc.locally_generated);
1120 break;
1121 case EVENT_IBSS_JOINED:
1122 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1123 ev->ij.channel);
1124 break;
1125 case EVENT_STOPPED:
1126 cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1127 break;
1128 case EVENT_PORT_AUTHORIZED:
1129 __cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1130 ev->pa.td_bitmap,
1131 ev->pa.td_bitmap_len);
1132 break;
1133 }
1134
1135 kfree(ev);
1136
1137 spin_lock_irqsave(&wdev->event_lock, flags);
1138 }
1139 spin_unlock_irqrestore(&wdev->event_lock, flags);
1140 }
1141
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1142 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1143 {
1144 struct wireless_dev *wdev;
1145
1146 lockdep_assert_held(&rdev->wiphy.mtx);
1147
1148 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1149 cfg80211_process_wdev_events(wdev);
1150 }
1151
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1152 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1153 struct net_device *dev, enum nl80211_iftype ntype,
1154 struct vif_params *params)
1155 {
1156 int err;
1157 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1158
1159 lockdep_assert_held(&rdev->wiphy.mtx);
1160
1161 /* don't support changing VLANs, you just re-create them */
1162 if (otype == NL80211_IFTYPE_AP_VLAN)
1163 return -EOPNOTSUPP;
1164
1165 /* cannot change into P2P device or NAN */
1166 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1167 ntype == NL80211_IFTYPE_NAN)
1168 return -EOPNOTSUPP;
1169
1170 if (!rdev->ops->change_virtual_intf ||
1171 !(rdev->wiphy.interface_modes & (1 << ntype)))
1172 return -EOPNOTSUPP;
1173
1174 if (ntype != otype) {
1175 /* if it's part of a bridge, reject changing type to station/ibss */
1176 if (netif_is_bridge_port(dev) &&
1177 (ntype == NL80211_IFTYPE_ADHOC ||
1178 ntype == NL80211_IFTYPE_STATION ||
1179 ntype == NL80211_IFTYPE_P2P_CLIENT))
1180 return -EBUSY;
1181
1182 dev->ieee80211_ptr->use_4addr = false;
1183 rdev_set_qos_map(rdev, dev, NULL);
1184
1185 switch (otype) {
1186 case NL80211_IFTYPE_AP:
1187 case NL80211_IFTYPE_P2P_GO:
1188 cfg80211_stop_ap(rdev, dev, -1, true);
1189 break;
1190 case NL80211_IFTYPE_ADHOC:
1191 cfg80211_leave_ibss(rdev, dev, false);
1192 break;
1193 case NL80211_IFTYPE_STATION:
1194 case NL80211_IFTYPE_P2P_CLIENT:
1195 cfg80211_disconnect(rdev, dev,
1196 WLAN_REASON_DEAUTH_LEAVING, true);
1197 break;
1198 case NL80211_IFTYPE_MESH_POINT:
1199 /* mesh should be handled? */
1200 break;
1201 case NL80211_IFTYPE_OCB:
1202 cfg80211_leave_ocb(rdev, dev);
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 cfg80211_process_rdev_events(rdev);
1209 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1210
1211 memset(&dev->ieee80211_ptr->u, 0,
1212 sizeof(dev->ieee80211_ptr->u));
1213 memset(&dev->ieee80211_ptr->links, 0,
1214 sizeof(dev->ieee80211_ptr->links));
1215 }
1216
1217 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1218
1219 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1220
1221 if (!err && params && params->use_4addr != -1)
1222 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1223
1224 if (!err) {
1225 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1226 switch (ntype) {
1227 case NL80211_IFTYPE_STATION:
1228 if (dev->ieee80211_ptr->use_4addr)
1229 break;
1230 fallthrough;
1231 case NL80211_IFTYPE_OCB:
1232 case NL80211_IFTYPE_P2P_CLIENT:
1233 case NL80211_IFTYPE_ADHOC:
1234 dev->priv_flags |= IFF_DONT_BRIDGE;
1235 break;
1236 case NL80211_IFTYPE_P2P_GO:
1237 case NL80211_IFTYPE_AP:
1238 case NL80211_IFTYPE_AP_VLAN:
1239 case NL80211_IFTYPE_MESH_POINT:
1240 /* bridging OK */
1241 break;
1242 case NL80211_IFTYPE_MONITOR:
1243 /* monitor can't bridge anyway */
1244 break;
1245 case NL80211_IFTYPE_UNSPECIFIED:
1246 case NUM_NL80211_IFTYPES:
1247 /* not happening */
1248 break;
1249 case NL80211_IFTYPE_P2P_DEVICE:
1250 case NL80211_IFTYPE_WDS:
1251 case NL80211_IFTYPE_NAN:
1252 WARN_ON(1);
1253 break;
1254 }
1255 }
1256
1257 if (!err && ntype != otype && netif_running(dev)) {
1258 cfg80211_update_iface_num(rdev, ntype, 1);
1259 cfg80211_update_iface_num(rdev, otype, -1);
1260 }
1261
1262 return err;
1263 }
1264
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1265 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1266 {
1267 int modulation, streams, bitrate;
1268
1269 /* the formula below does only work for MCS values smaller than 32 */
1270 if (WARN_ON_ONCE(rate->mcs >= 32))
1271 return 0;
1272
1273 modulation = rate->mcs & 7;
1274 streams = (rate->mcs >> 3) + 1;
1275
1276 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1277
1278 if (modulation < 4)
1279 bitrate *= (modulation + 1);
1280 else if (modulation == 4)
1281 bitrate *= (modulation + 2);
1282 else
1283 bitrate *= (modulation + 3);
1284
1285 bitrate *= streams;
1286
1287 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1288 bitrate = (bitrate / 9) * 10;
1289
1290 /* do NOT round down here */
1291 return (bitrate + 50000) / 100000;
1292 }
1293
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1294 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1295 {
1296 static const u32 __mcs2bitrate[] = {
1297 /* control PHY */
1298 [0] = 275,
1299 /* SC PHY */
1300 [1] = 3850,
1301 [2] = 7700,
1302 [3] = 9625,
1303 [4] = 11550,
1304 [5] = 12512, /* 1251.25 mbps */
1305 [6] = 15400,
1306 [7] = 19250,
1307 [8] = 23100,
1308 [9] = 25025,
1309 [10] = 30800,
1310 [11] = 38500,
1311 [12] = 46200,
1312 /* OFDM PHY */
1313 [13] = 6930,
1314 [14] = 8662, /* 866.25 mbps */
1315 [15] = 13860,
1316 [16] = 17325,
1317 [17] = 20790,
1318 [18] = 27720,
1319 [19] = 34650,
1320 [20] = 41580,
1321 [21] = 45045,
1322 [22] = 51975,
1323 [23] = 62370,
1324 [24] = 67568, /* 6756.75 mbps */
1325 /* LP-SC PHY */
1326 [25] = 6260,
1327 [26] = 8340,
1328 [27] = 11120,
1329 [28] = 12510,
1330 [29] = 16680,
1331 [30] = 22240,
1332 [31] = 25030,
1333 };
1334
1335 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1336 return 0;
1337
1338 return __mcs2bitrate[rate->mcs];
1339 }
1340
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1341 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1342 {
1343 static const u32 __mcs2bitrate[] = {
1344 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1345 [7 - 6] = 50050, /* MCS 12.1 */
1346 [8 - 6] = 53900,
1347 [9 - 6] = 57750,
1348 [10 - 6] = 63900,
1349 [11 - 6] = 75075,
1350 [12 - 6] = 80850,
1351 };
1352
1353 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1354 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1355 return 0;
1356
1357 return __mcs2bitrate[rate->mcs - 6];
1358 }
1359
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1360 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1361 {
1362 static const u32 __mcs2bitrate[] = {
1363 /* control PHY */
1364 [0] = 275,
1365 /* SC PHY */
1366 [1] = 3850,
1367 [2] = 7700,
1368 [3] = 9625,
1369 [4] = 11550,
1370 [5] = 12512, /* 1251.25 mbps */
1371 [6] = 13475,
1372 [7] = 15400,
1373 [8] = 19250,
1374 [9] = 23100,
1375 [10] = 25025,
1376 [11] = 26950,
1377 [12] = 30800,
1378 [13] = 38500,
1379 [14] = 46200,
1380 [15] = 50050,
1381 [16] = 53900,
1382 [17] = 57750,
1383 [18] = 69300,
1384 [19] = 75075,
1385 [20] = 80850,
1386 };
1387
1388 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1389 return 0;
1390
1391 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1392 }
1393
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1394 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1395 {
1396 static const u32 base[4][12] = {
1397 { 6500000,
1398 13000000,
1399 19500000,
1400 26000000,
1401 39000000,
1402 52000000,
1403 58500000,
1404 65000000,
1405 78000000,
1406 /* not in the spec, but some devices use this: */
1407 86700000,
1408 97500000,
1409 108300000,
1410 },
1411 { 13500000,
1412 27000000,
1413 40500000,
1414 54000000,
1415 81000000,
1416 108000000,
1417 121500000,
1418 135000000,
1419 162000000,
1420 180000000,
1421 202500000,
1422 225000000,
1423 },
1424 { 29300000,
1425 58500000,
1426 87800000,
1427 117000000,
1428 175500000,
1429 234000000,
1430 263300000,
1431 292500000,
1432 351000000,
1433 390000000,
1434 438800000,
1435 487500000,
1436 },
1437 { 58500000,
1438 117000000,
1439 175500000,
1440 234000000,
1441 351000000,
1442 468000000,
1443 526500000,
1444 585000000,
1445 702000000,
1446 780000000,
1447 877500000,
1448 975000000,
1449 },
1450 };
1451 u32 bitrate;
1452 int idx;
1453
1454 if (rate->mcs > 11)
1455 goto warn;
1456
1457 switch (rate->bw) {
1458 case RATE_INFO_BW_160:
1459 idx = 3;
1460 break;
1461 case RATE_INFO_BW_80:
1462 idx = 2;
1463 break;
1464 case RATE_INFO_BW_40:
1465 idx = 1;
1466 break;
1467 case RATE_INFO_BW_5:
1468 case RATE_INFO_BW_10:
1469 default:
1470 goto warn;
1471 case RATE_INFO_BW_20:
1472 idx = 0;
1473 }
1474
1475 bitrate = base[idx][rate->mcs];
1476 bitrate *= rate->nss;
1477
1478 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1479 bitrate = (bitrate / 9) * 10;
1480
1481 /* do NOT round down here */
1482 return (bitrate + 50000) / 100000;
1483 warn:
1484 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1485 rate->bw, rate->mcs, rate->nss);
1486 return 0;
1487 }
1488
cfg80211_calculate_bitrate_he(struct rate_info * rate)1489 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1490 {
1491 #define SCALE 6144
1492 u32 mcs_divisors[14] = {
1493 102399, /* 16.666666... */
1494 51201, /* 8.333333... */
1495 34134, /* 5.555555... */
1496 25599, /* 4.166666... */
1497 17067, /* 2.777777... */
1498 12801, /* 2.083333... */
1499 11377, /* 1.851725... */
1500 10239, /* 1.666666... */
1501 8532, /* 1.388888... */
1502 7680, /* 1.250000... */
1503 6828, /* 1.111111... */
1504 6144, /* 1.000000... */
1505 5690, /* 0.926106... */
1506 5120, /* 0.833333... */
1507 };
1508 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1509 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1510 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1511 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1512 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1513 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1514 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1515 u64 tmp;
1516 u32 result;
1517
1518 if (WARN_ON_ONCE(rate->mcs > 13))
1519 return 0;
1520
1521 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1522 return 0;
1523 if (WARN_ON_ONCE(rate->he_ru_alloc >
1524 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1525 return 0;
1526 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1527 return 0;
1528
1529 if (rate->bw == RATE_INFO_BW_160 ||
1530 (rate->bw == RATE_INFO_BW_HE_RU &&
1531 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1532 result = rates_160M[rate->he_gi];
1533 else if (rate->bw == RATE_INFO_BW_80 ||
1534 (rate->bw == RATE_INFO_BW_HE_RU &&
1535 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1536 result = rates_996[rate->he_gi];
1537 else if (rate->bw == RATE_INFO_BW_40 ||
1538 (rate->bw == RATE_INFO_BW_HE_RU &&
1539 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1540 result = rates_484[rate->he_gi];
1541 else if (rate->bw == RATE_INFO_BW_20 ||
1542 (rate->bw == RATE_INFO_BW_HE_RU &&
1543 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1544 result = rates_242[rate->he_gi];
1545 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1546 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1547 result = rates_106[rate->he_gi];
1548 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1549 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1550 result = rates_52[rate->he_gi];
1551 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1552 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1553 result = rates_26[rate->he_gi];
1554 else {
1555 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1556 rate->bw, rate->he_ru_alloc);
1557 return 0;
1558 }
1559
1560 /* now scale to the appropriate MCS */
1561 tmp = result;
1562 tmp *= SCALE;
1563 do_div(tmp, mcs_divisors[rate->mcs]);
1564 result = tmp;
1565
1566 /* and take NSS, DCM into account */
1567 result = (result * rate->nss) / 8;
1568 if (rate->he_dcm)
1569 result /= 2;
1570
1571 return result / 10000;
1572 }
1573
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1574 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1575 {
1576 #define SCALE 6144
1577 static const u32 mcs_divisors[16] = {
1578 102399, /* 16.666666... */
1579 51201, /* 8.333333... */
1580 34134, /* 5.555555... */
1581 25599, /* 4.166666... */
1582 17067, /* 2.777777... */
1583 12801, /* 2.083333... */
1584 11377, /* 1.851725... */
1585 10239, /* 1.666666... */
1586 8532, /* 1.388888... */
1587 7680, /* 1.250000... */
1588 6828, /* 1.111111... */
1589 6144, /* 1.000000... */
1590 5690, /* 0.926106... */
1591 5120, /* 0.833333... */
1592 409600, /* 66.666666... */
1593 204800, /* 33.333333... */
1594 };
1595 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1596 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1597 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1598 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1599 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1600 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1601 u64 tmp;
1602 u32 result;
1603
1604 if (WARN_ON_ONCE(rate->mcs > 15))
1605 return 0;
1606 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1607 return 0;
1608 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1609 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1610 return 0;
1611 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1612 return 0;
1613
1614 /* Bandwidth checks for MCS 14 */
1615 if (rate->mcs == 14) {
1616 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1617 rate->bw != RATE_INFO_BW_80 &&
1618 rate->bw != RATE_INFO_BW_160 &&
1619 rate->bw != RATE_INFO_BW_320) ||
1620 (rate->bw == RATE_INFO_BW_EHT_RU &&
1621 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1622 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1623 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1624 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1625 rate->bw, rate->eht_ru_alloc);
1626 return 0;
1627 }
1628 }
1629
1630 if (rate->bw == RATE_INFO_BW_320 ||
1631 (rate->bw == RATE_INFO_BW_EHT_RU &&
1632 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1633 result = 4 * rates_996[rate->eht_gi];
1634 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1636 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1637 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1638 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1639 result = 3 * rates_996[rate->eht_gi];
1640 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1641 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1642 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1643 else if (rate->bw == RATE_INFO_BW_160 ||
1644 (rate->bw == RATE_INFO_BW_EHT_RU &&
1645 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1646 result = 2 * rates_996[rate->eht_gi];
1647 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1648 rate->eht_ru_alloc ==
1649 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1650 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1651 + rates_242[rate->eht_gi];
1652 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1653 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1654 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1655 else if (rate->bw == RATE_INFO_BW_80 ||
1656 (rate->bw == RATE_INFO_BW_EHT_RU &&
1657 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1658 result = rates_996[rate->eht_gi];
1659 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1660 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1661 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1662 else if (rate->bw == RATE_INFO_BW_40 ||
1663 (rate->bw == RATE_INFO_BW_EHT_RU &&
1664 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1665 result = rates_484[rate->eht_gi];
1666 else if (rate->bw == RATE_INFO_BW_20 ||
1667 (rate->bw == RATE_INFO_BW_EHT_RU &&
1668 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1669 result = rates_242[rate->eht_gi];
1670 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1671 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1672 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1673 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1675 result = rates_106[rate->eht_gi];
1676 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1677 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1678 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1679 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1680 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1681 result = rates_52[rate->eht_gi];
1682 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1683 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1684 result = rates_26[rate->eht_gi];
1685 else {
1686 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1687 rate->bw, rate->eht_ru_alloc);
1688 return 0;
1689 }
1690
1691 /* now scale to the appropriate MCS */
1692 tmp = result;
1693 tmp *= SCALE;
1694 do_div(tmp, mcs_divisors[rate->mcs]);
1695
1696 /* and take NSS */
1697 tmp *= rate->nss;
1698 do_div(tmp, 8);
1699
1700 result = tmp;
1701
1702 return result / 10000;
1703 }
1704
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1705 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1706 {
1707 /* For 1, 2, 4, 8 and 16 MHz channels */
1708 static const u32 base[5][11] = {
1709 { 300000,
1710 600000,
1711 900000,
1712 1200000,
1713 1800000,
1714 2400000,
1715 2700000,
1716 3000000,
1717 3600000,
1718 4000000,
1719 /* MCS 10 supported in 1 MHz only */
1720 150000,
1721 },
1722 { 650000,
1723 1300000,
1724 1950000,
1725 2600000,
1726 3900000,
1727 5200000,
1728 5850000,
1729 6500000,
1730 7800000,
1731 /* MCS 9 not valid */
1732 },
1733 { 1350000,
1734 2700000,
1735 4050000,
1736 5400000,
1737 8100000,
1738 10800000,
1739 12150000,
1740 13500000,
1741 16200000,
1742 18000000,
1743 },
1744 { 2925000,
1745 5850000,
1746 8775000,
1747 11700000,
1748 17550000,
1749 23400000,
1750 26325000,
1751 29250000,
1752 35100000,
1753 39000000,
1754 },
1755 { 8580000,
1756 11700000,
1757 17550000,
1758 23400000,
1759 35100000,
1760 46800000,
1761 52650000,
1762 58500000,
1763 70200000,
1764 78000000,
1765 },
1766 };
1767 u32 bitrate;
1768 /* default is 1 MHz index */
1769 int idx = 0;
1770
1771 if (rate->mcs >= 11)
1772 goto warn;
1773
1774 switch (rate->bw) {
1775 case RATE_INFO_BW_16:
1776 idx = 4;
1777 break;
1778 case RATE_INFO_BW_8:
1779 idx = 3;
1780 break;
1781 case RATE_INFO_BW_4:
1782 idx = 2;
1783 break;
1784 case RATE_INFO_BW_2:
1785 idx = 1;
1786 break;
1787 case RATE_INFO_BW_1:
1788 idx = 0;
1789 break;
1790 case RATE_INFO_BW_5:
1791 case RATE_INFO_BW_10:
1792 case RATE_INFO_BW_20:
1793 case RATE_INFO_BW_40:
1794 case RATE_INFO_BW_80:
1795 case RATE_INFO_BW_160:
1796 default:
1797 goto warn;
1798 }
1799
1800 bitrate = base[idx][rate->mcs];
1801 bitrate *= rate->nss;
1802
1803 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1804 bitrate = (bitrate / 9) * 10;
1805 /* do NOT round down here */
1806 return (bitrate + 50000) / 100000;
1807 warn:
1808 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1809 rate->bw, rate->mcs, rate->nss);
1810 return 0;
1811 }
1812
cfg80211_calculate_bitrate(struct rate_info * rate)1813 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1814 {
1815 if (rate->flags & RATE_INFO_FLAGS_MCS)
1816 return cfg80211_calculate_bitrate_ht(rate);
1817 if (rate->flags & RATE_INFO_FLAGS_DMG)
1818 return cfg80211_calculate_bitrate_dmg(rate);
1819 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1820 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1821 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1822 return cfg80211_calculate_bitrate_edmg(rate);
1823 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1824 return cfg80211_calculate_bitrate_vht(rate);
1825 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1826 return cfg80211_calculate_bitrate_he(rate);
1827 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1828 return cfg80211_calculate_bitrate_eht(rate);
1829 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1830 return cfg80211_calculate_bitrate_s1g(rate);
1831
1832 return rate->legacy;
1833 }
1834 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1835
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1836 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1837 enum ieee80211_p2p_attr_id attr,
1838 u8 *buf, unsigned int bufsize)
1839 {
1840 u8 *out = buf;
1841 u16 attr_remaining = 0;
1842 bool desired_attr = false;
1843 u16 desired_len = 0;
1844
1845 while (len > 0) {
1846 unsigned int iedatalen;
1847 unsigned int copy;
1848 const u8 *iedata;
1849
1850 if (len < 2)
1851 return -EILSEQ;
1852 iedatalen = ies[1];
1853 if (iedatalen + 2 > len)
1854 return -EILSEQ;
1855
1856 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1857 goto cont;
1858
1859 if (iedatalen < 4)
1860 goto cont;
1861
1862 iedata = ies + 2;
1863
1864 /* check WFA OUI, P2P subtype */
1865 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1866 iedata[2] != 0x9a || iedata[3] != 0x09)
1867 goto cont;
1868
1869 iedatalen -= 4;
1870 iedata += 4;
1871
1872 /* check attribute continuation into this IE */
1873 copy = min_t(unsigned int, attr_remaining, iedatalen);
1874 if (copy && desired_attr) {
1875 desired_len += copy;
1876 if (out) {
1877 memcpy(out, iedata, min(bufsize, copy));
1878 out += min(bufsize, copy);
1879 bufsize -= min(bufsize, copy);
1880 }
1881
1882
1883 if (copy == attr_remaining)
1884 return desired_len;
1885 }
1886
1887 attr_remaining -= copy;
1888 if (attr_remaining)
1889 goto cont;
1890
1891 iedatalen -= copy;
1892 iedata += copy;
1893
1894 while (iedatalen > 0) {
1895 u16 attr_len;
1896
1897 /* P2P attribute ID & size must fit */
1898 if (iedatalen < 3)
1899 return -EILSEQ;
1900 desired_attr = iedata[0] == attr;
1901 attr_len = get_unaligned_le16(iedata + 1);
1902 iedatalen -= 3;
1903 iedata += 3;
1904
1905 copy = min_t(unsigned int, attr_len, iedatalen);
1906
1907 if (desired_attr) {
1908 desired_len += copy;
1909 if (out) {
1910 memcpy(out, iedata, min(bufsize, copy));
1911 out += min(bufsize, copy);
1912 bufsize -= min(bufsize, copy);
1913 }
1914
1915 if (copy == attr_len)
1916 return desired_len;
1917 }
1918
1919 iedata += copy;
1920 iedatalen -= copy;
1921 attr_remaining = attr_len - copy;
1922 }
1923
1924 cont:
1925 len -= ies[1] + 2;
1926 ies += ies[1] + 2;
1927 }
1928
1929 if (attr_remaining && desired_attr)
1930 return -EILSEQ;
1931
1932 return -ENOENT;
1933 }
1934 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1935
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1936 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1937 {
1938 int i;
1939
1940 /* Make sure array values are legal */
1941 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1942 return false;
1943
1944 i = 0;
1945 while (i < n_ids) {
1946 if (ids[i] == WLAN_EID_EXTENSION) {
1947 if (id_ext && (ids[i + 1] == id))
1948 return true;
1949
1950 i += 2;
1951 continue;
1952 }
1953
1954 if (ids[i] == id && !id_ext)
1955 return true;
1956
1957 i++;
1958 }
1959 return false;
1960 }
1961
skip_ie(const u8 * ies,size_t ielen,size_t pos)1962 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1963 {
1964 /* we assume a validly formed IEs buffer */
1965 u8 len = ies[pos + 1];
1966
1967 pos += 2 + len;
1968
1969 /* the IE itself must have 255 bytes for fragments to follow */
1970 if (len < 255)
1971 return pos;
1972
1973 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1974 len = ies[pos + 1];
1975 pos += 2 + len;
1976 }
1977
1978 return pos;
1979 }
1980
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1981 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1982 const u8 *ids, int n_ids,
1983 const u8 *after_ric, int n_after_ric,
1984 size_t offset)
1985 {
1986 size_t pos = offset;
1987
1988 while (pos < ielen) {
1989 u8 ext = 0;
1990
1991 if (ies[pos] == WLAN_EID_EXTENSION)
1992 ext = 2;
1993 if ((pos + ext) >= ielen)
1994 break;
1995
1996 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1997 ies[pos] == WLAN_EID_EXTENSION))
1998 break;
1999
2000 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2001 pos = skip_ie(ies, ielen, pos);
2002
2003 while (pos < ielen) {
2004 if (ies[pos] == WLAN_EID_EXTENSION)
2005 ext = 2;
2006 else
2007 ext = 0;
2008
2009 if ((pos + ext) >= ielen)
2010 break;
2011
2012 if (!ieee80211_id_in_list(after_ric,
2013 n_after_ric,
2014 ies[pos + ext],
2015 ext == 2))
2016 pos = skip_ie(ies, ielen, pos);
2017 else
2018 break;
2019 }
2020 } else {
2021 pos = skip_ie(ies, ielen, pos);
2022 }
2023 }
2024
2025 return pos;
2026 }
2027 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2028
ieee80211_fragment_element(struct sk_buff * skb,u8 * len_pos,u8 frag_id)2029 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2030 {
2031 unsigned int elem_len;
2032
2033 if (!len_pos)
2034 return;
2035
2036 elem_len = skb->data + skb->len - len_pos - 1;
2037
2038 while (elem_len > 255) {
2039 /* this one is 255 */
2040 *len_pos = 255;
2041 /* remaining data gets smaller */
2042 elem_len -= 255;
2043 /* make space for the fragment ID/len in SKB */
2044 skb_put(skb, 2);
2045 /* shift back the remaining data to place fragment ID/len */
2046 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2047 /* place the fragment ID */
2048 len_pos += 255 + 1;
2049 *len_pos = frag_id;
2050 /* and point to fragment length to update later */
2051 len_pos++;
2052 }
2053
2054 *len_pos = elem_len;
2055 }
2056 EXPORT_SYMBOL(ieee80211_fragment_element);
2057
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2058 bool ieee80211_operating_class_to_band(u8 operating_class,
2059 enum nl80211_band *band)
2060 {
2061 switch (operating_class) {
2062 case 112:
2063 case 115 ... 127:
2064 case 128 ... 130:
2065 *band = NL80211_BAND_5GHZ;
2066 return true;
2067 case 131 ... 135:
2068 case 137:
2069 *band = NL80211_BAND_6GHZ;
2070 return true;
2071 case 81:
2072 case 82:
2073 case 83:
2074 case 84:
2075 *band = NL80211_BAND_2GHZ;
2076 return true;
2077 case 180:
2078 *band = NL80211_BAND_60GHZ;
2079 return true;
2080 }
2081
2082 return false;
2083 }
2084 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2085
ieee80211_operating_class_to_chandef(u8 operating_class,struct ieee80211_channel * chan,struct cfg80211_chan_def * chandef)2086 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2087 struct ieee80211_channel *chan,
2088 struct cfg80211_chan_def *chandef)
2089 {
2090 u32 control_freq, offset = 0;
2091 enum nl80211_band band;
2092
2093 if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2094 !chan || band != chan->band)
2095 return false;
2096
2097 control_freq = chan->center_freq;
2098 chandef->chan = chan;
2099
2100 if (control_freq >= 5955)
2101 offset = control_freq - 5955;
2102 else if (control_freq >= 5745)
2103 offset = control_freq - 5745;
2104 else if (control_freq >= 5180)
2105 offset = control_freq - 5180;
2106 offset /= 20;
2107
2108 switch (operating_class) {
2109 case 81: /* 2 GHz band; 20 MHz; channels 1..13 */
2110 case 82: /* 2 GHz band; 20 MHz; channel 14 */
2111 case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2112 case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2113 case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2114 case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2115 case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2116 case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2117 case 136: /* 6 GHz band; 20 MHz; channel 2 */
2118 chandef->center_freq1 = control_freq;
2119 chandef->width = NL80211_CHAN_WIDTH_20;
2120 return true;
2121 case 83: /* 2 GHz band; 40 MHz; channels 1..9 */
2122 case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2123 case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2124 case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2125 case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2126 chandef->center_freq1 = control_freq + 10;
2127 chandef->width = NL80211_CHAN_WIDTH_40;
2128 return true;
2129 case 84: /* 2 GHz band; 40 MHz; channels 5..13 */
2130 case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2131 case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2132 case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2133 case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2134 chandef->center_freq1 = control_freq - 10;
2135 chandef->width = NL80211_CHAN_WIDTH_40;
2136 return true;
2137 case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2138 chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2139 chandef->width = NL80211_CHAN_WIDTH_40;
2140 return true;
2141 case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2142 case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2143 chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2144 chandef->width = NL80211_CHAN_WIDTH_80;
2145 return true;
2146 case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2147 case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2148 chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2149 chandef->width = NL80211_CHAN_WIDTH_160;
2150 return true;
2151 case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2152 case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2153 /* The center_freq2 of 80+80 MHz is unknown */
2154 case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2155 /* 320-1 or 320-2 channelization is unknown */
2156 default:
2157 return false;
2158 }
2159 }
2160 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2161
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2162 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2163 u8 *op_class)
2164 {
2165 u8 vht_opclass;
2166 u32 freq = chandef->center_freq1;
2167
2168 if (freq >= 2412 && freq <= 2472) {
2169 if (chandef->width > NL80211_CHAN_WIDTH_40)
2170 return false;
2171
2172 /* 2.407 GHz, channels 1..13 */
2173 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2174 if (freq > chandef->chan->center_freq)
2175 *op_class = 83; /* HT40+ */
2176 else
2177 *op_class = 84; /* HT40- */
2178 } else {
2179 *op_class = 81;
2180 }
2181
2182 return true;
2183 }
2184
2185 if (freq == 2484) {
2186 /* channel 14 is only for IEEE 802.11b */
2187 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2188 return false;
2189
2190 *op_class = 82; /* channel 14 */
2191 return true;
2192 }
2193
2194 switch (chandef->width) {
2195 case NL80211_CHAN_WIDTH_80:
2196 vht_opclass = 128;
2197 break;
2198 case NL80211_CHAN_WIDTH_160:
2199 vht_opclass = 129;
2200 break;
2201 case NL80211_CHAN_WIDTH_80P80:
2202 vht_opclass = 130;
2203 break;
2204 case NL80211_CHAN_WIDTH_10:
2205 case NL80211_CHAN_WIDTH_5:
2206 return false; /* unsupported for now */
2207 default:
2208 vht_opclass = 0;
2209 break;
2210 }
2211
2212 /* 5 GHz, channels 36..48 */
2213 if (freq >= 5180 && freq <= 5240) {
2214 if (vht_opclass) {
2215 *op_class = vht_opclass;
2216 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2217 if (freq > chandef->chan->center_freq)
2218 *op_class = 116;
2219 else
2220 *op_class = 117;
2221 } else {
2222 *op_class = 115;
2223 }
2224
2225 return true;
2226 }
2227
2228 /* 5 GHz, channels 52..64 */
2229 if (freq >= 5260 && freq <= 5320) {
2230 if (vht_opclass) {
2231 *op_class = vht_opclass;
2232 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2233 if (freq > chandef->chan->center_freq)
2234 *op_class = 119;
2235 else
2236 *op_class = 120;
2237 } else {
2238 *op_class = 118;
2239 }
2240
2241 return true;
2242 }
2243
2244 /* 5 GHz, channels 100..144 */
2245 if (freq >= 5500 && freq <= 5720) {
2246 if (vht_opclass) {
2247 *op_class = vht_opclass;
2248 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2249 if (freq > chandef->chan->center_freq)
2250 *op_class = 122;
2251 else
2252 *op_class = 123;
2253 } else {
2254 *op_class = 121;
2255 }
2256
2257 return true;
2258 }
2259
2260 /* 5 GHz, channels 149..169 */
2261 if (freq >= 5745 && freq <= 5845) {
2262 if (vht_opclass) {
2263 *op_class = vht_opclass;
2264 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2265 if (freq > chandef->chan->center_freq)
2266 *op_class = 126;
2267 else
2268 *op_class = 127;
2269 } else if (freq <= 5805) {
2270 *op_class = 124;
2271 } else {
2272 *op_class = 125;
2273 }
2274
2275 return true;
2276 }
2277
2278 /* 56.16 GHz, channel 1..4 */
2279 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2280 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2281 return false;
2282
2283 *op_class = 180;
2284 return true;
2285 }
2286
2287 /* not supported yet */
2288 return false;
2289 }
2290 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2291
cfg80211_wdev_bi(struct wireless_dev * wdev)2292 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2293 {
2294 switch (wdev->iftype) {
2295 case NL80211_IFTYPE_AP:
2296 case NL80211_IFTYPE_P2P_GO:
2297 WARN_ON(wdev->valid_links);
2298 return wdev->links[0].ap.beacon_interval;
2299 case NL80211_IFTYPE_MESH_POINT:
2300 return wdev->u.mesh.beacon_interval;
2301 case NL80211_IFTYPE_ADHOC:
2302 return wdev->u.ibss.beacon_interval;
2303 default:
2304 break;
2305 }
2306
2307 return 0;
2308 }
2309
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different,int radio_idx)2310 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2311 u32 *beacon_int_gcd,
2312 bool *beacon_int_different,
2313 int radio_idx)
2314 {
2315 struct cfg80211_registered_device *rdev;
2316 struct wireless_dev *wdev;
2317
2318 *beacon_int_gcd = 0;
2319 *beacon_int_different = false;
2320
2321 rdev = wiphy_to_rdev(wiphy);
2322 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2323 int wdev_bi;
2324
2325 /* this feature isn't supported with MLO */
2326 if (wdev->valid_links)
2327 continue;
2328
2329 /* skip wdevs not active on the given wiphy radio */
2330 if (radio_idx >= 0 &&
2331 !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2332 continue;
2333
2334 wdev_bi = cfg80211_wdev_bi(wdev);
2335
2336 if (!wdev_bi)
2337 continue;
2338
2339 if (!*beacon_int_gcd) {
2340 *beacon_int_gcd = wdev_bi;
2341 continue;
2342 }
2343
2344 if (wdev_bi == *beacon_int_gcd)
2345 continue;
2346
2347 *beacon_int_different = true;
2348 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2349 }
2350
2351 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2352 if (*beacon_int_gcd)
2353 *beacon_int_different = true;
2354 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2355 }
2356 }
2357
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2358 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2359 enum nl80211_iftype iftype, u32 beacon_int)
2360 {
2361 /*
2362 * This is just a basic pre-condition check; if interface combinations
2363 * are possible the driver must already be checking those with a call
2364 * to cfg80211_check_combinations(), in which case we'll validate more
2365 * through the cfg80211_calculate_bi_data() call and code in
2366 * cfg80211_iter_combinations().
2367 */
2368
2369 if (beacon_int < 10 || beacon_int > 10000)
2370 return -EINVAL;
2371
2372 return 0;
2373 }
2374
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2375 int cfg80211_iter_combinations(struct wiphy *wiphy,
2376 struct iface_combination_params *params,
2377 void (*iter)(const struct ieee80211_iface_combination *c,
2378 void *data),
2379 void *data)
2380 {
2381 const struct wiphy_radio *radio = NULL;
2382 const struct ieee80211_iface_combination *c, *cs;
2383 const struct ieee80211_regdomain *regdom;
2384 enum nl80211_dfs_regions region = 0;
2385 int i, j, n, iftype;
2386 int num_interfaces = 0;
2387 u32 used_iftypes = 0;
2388 u32 beacon_int_gcd;
2389 bool beacon_int_different;
2390
2391 if (params->radio_idx >= 0)
2392 radio = &wiphy->radio[params->radio_idx];
2393
2394 /*
2395 * This is a bit strange, since the iteration used to rely only on
2396 * the data given by the driver, but here it now relies on context,
2397 * in form of the currently operating interfaces.
2398 * This is OK for all current users, and saves us from having to
2399 * push the GCD calculations into all the drivers.
2400 * In the future, this should probably rely more on data that's in
2401 * cfg80211 already - the only thing not would appear to be any new
2402 * interfaces (while being brought up) and channel/radar data.
2403 */
2404 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2405 &beacon_int_gcd, &beacon_int_different,
2406 params->radio_idx);
2407
2408 if (params->radar_detect) {
2409 rcu_read_lock();
2410 regdom = rcu_dereference(cfg80211_regdomain);
2411 if (regdom)
2412 region = regdom->dfs_region;
2413 rcu_read_unlock();
2414 }
2415
2416 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2417 num_interfaces += params->iftype_num[iftype];
2418 if (params->iftype_num[iftype] > 0 &&
2419 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2420 used_iftypes |= BIT(iftype);
2421 }
2422
2423 if (radio) {
2424 cs = radio->iface_combinations;
2425 n = radio->n_iface_combinations;
2426 } else {
2427 cs = wiphy->iface_combinations;
2428 n = wiphy->n_iface_combinations;
2429 }
2430 for (i = 0; i < n; i++) {
2431 struct ieee80211_iface_limit *limits;
2432 u32 all_iftypes = 0;
2433
2434 c = &cs[i];
2435 if (num_interfaces > c->max_interfaces)
2436 continue;
2437 if (params->num_different_channels > c->num_different_channels)
2438 continue;
2439
2440 limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2441 GFP_KERNEL);
2442 if (!limits)
2443 return -ENOMEM;
2444
2445 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2446 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2447 continue;
2448 for (j = 0; j < c->n_limits; j++) {
2449 all_iftypes |= limits[j].types;
2450 if (!(limits[j].types & BIT(iftype)))
2451 continue;
2452 if (limits[j].max < params->iftype_num[iftype])
2453 goto cont;
2454 limits[j].max -= params->iftype_num[iftype];
2455 }
2456 }
2457
2458 if (params->radar_detect !=
2459 (c->radar_detect_widths & params->radar_detect))
2460 goto cont;
2461
2462 if (params->radar_detect && c->radar_detect_regions &&
2463 !(c->radar_detect_regions & BIT(region)))
2464 goto cont;
2465
2466 /* Finally check that all iftypes that we're currently
2467 * using are actually part of this combination. If they
2468 * aren't then we can't use this combination and have
2469 * to continue to the next.
2470 */
2471 if ((all_iftypes & used_iftypes) != used_iftypes)
2472 goto cont;
2473
2474 if (beacon_int_gcd) {
2475 if (c->beacon_int_min_gcd &&
2476 beacon_int_gcd < c->beacon_int_min_gcd)
2477 goto cont;
2478 if (!c->beacon_int_min_gcd && beacon_int_different)
2479 goto cont;
2480 }
2481
2482 /* This combination covered all interface types and
2483 * supported the requested numbers, so we're good.
2484 */
2485
2486 (*iter)(c, data);
2487 cont:
2488 kfree(limits);
2489 }
2490
2491 return 0;
2492 }
2493 EXPORT_SYMBOL(cfg80211_iter_combinations);
2494
2495 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2496 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2497 void *data)
2498 {
2499 int *num = data;
2500 (*num)++;
2501 }
2502
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2503 int cfg80211_check_combinations(struct wiphy *wiphy,
2504 struct iface_combination_params *params)
2505 {
2506 int err, num = 0;
2507
2508 err = cfg80211_iter_combinations(wiphy, params,
2509 cfg80211_iter_sum_ifcombs, &num);
2510 if (err)
2511 return err;
2512 if (num == 0)
2513 return -EBUSY;
2514
2515 return 0;
2516 }
2517 EXPORT_SYMBOL(cfg80211_check_combinations);
2518
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2519 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2520 const u8 *rates, unsigned int n_rates,
2521 u32 *mask)
2522 {
2523 int i, j;
2524
2525 if (!sband)
2526 return -EINVAL;
2527
2528 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2529 return -EINVAL;
2530
2531 *mask = 0;
2532
2533 for (i = 0; i < n_rates; i++) {
2534 int rate = (rates[i] & 0x7f) * 5;
2535 bool found = false;
2536
2537 for (j = 0; j < sband->n_bitrates; j++) {
2538 if (sband->bitrates[j].bitrate == rate) {
2539 found = true;
2540 *mask |= BIT(j);
2541 break;
2542 }
2543 }
2544 if (!found)
2545 return -EINVAL;
2546 }
2547
2548 /*
2549 * mask must have at least one bit set here since we
2550 * didn't accept a 0-length rates array nor allowed
2551 * entries in the array that didn't exist
2552 */
2553
2554 return 0;
2555 }
2556
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2557 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2558 {
2559 enum nl80211_band band;
2560 unsigned int n_channels = 0;
2561
2562 for (band = 0; band < NUM_NL80211_BANDS; band++)
2563 if (wiphy->bands[band])
2564 n_channels += wiphy->bands[band]->n_channels;
2565
2566 return n_channels;
2567 }
2568 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2569
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2570 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2571 struct station_info *sinfo)
2572 {
2573 struct cfg80211_registered_device *rdev;
2574 struct wireless_dev *wdev;
2575 int ret;
2576
2577 wdev = dev->ieee80211_ptr;
2578 if (!wdev)
2579 return -EOPNOTSUPP;
2580
2581 rdev = wiphy_to_rdev(wdev->wiphy);
2582 if (!rdev->ops->get_station)
2583 return -EOPNOTSUPP;
2584
2585 memset(sinfo, 0, sizeof(*sinfo));
2586
2587 wiphy_lock(&rdev->wiphy);
2588 ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2589 wiphy_unlock(&rdev->wiphy);
2590
2591 return ret;
2592 }
2593 EXPORT_SYMBOL(cfg80211_get_station);
2594
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2595 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2596 {
2597 int i;
2598
2599 if (!f)
2600 return;
2601
2602 kfree(f->serv_spec_info);
2603 kfree(f->srf_bf);
2604 kfree(f->srf_macs);
2605 for (i = 0; i < f->num_rx_filters; i++)
2606 kfree(f->rx_filters[i].filter);
2607
2608 for (i = 0; i < f->num_tx_filters; i++)
2609 kfree(f->tx_filters[i].filter);
2610
2611 kfree(f->rx_filters);
2612 kfree(f->tx_filters);
2613 kfree(f);
2614 }
2615 EXPORT_SYMBOL(cfg80211_free_nan_func);
2616
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2617 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2618 u32 center_freq_khz, u32 bw_khz)
2619 {
2620 u32 start_freq_khz, end_freq_khz;
2621
2622 start_freq_khz = center_freq_khz - (bw_khz / 2);
2623 end_freq_khz = center_freq_khz + (bw_khz / 2);
2624
2625 if (start_freq_khz >= freq_range->start_freq_khz &&
2626 end_freq_khz <= freq_range->end_freq_khz)
2627 return true;
2628
2629 return false;
2630 }
2631
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2632 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2633 {
2634 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2635 sizeof(*(sinfo->pertid)),
2636 gfp);
2637 if (!sinfo->pertid)
2638 return -ENOMEM;
2639
2640 return 0;
2641 }
2642 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2643
2644 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2645 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2646 const unsigned char rfc1042_header[] __aligned(2) =
2647 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2648 EXPORT_SYMBOL(rfc1042_header);
2649
2650 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2651 const unsigned char bridge_tunnel_header[] __aligned(2) =
2652 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2653 EXPORT_SYMBOL(bridge_tunnel_header);
2654
2655 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2656 struct iapp_layer2_update {
2657 u8 da[ETH_ALEN]; /* broadcast */
2658 u8 sa[ETH_ALEN]; /* STA addr */
2659 __be16 len; /* 6 */
2660 u8 dsap; /* 0 */
2661 u8 ssap; /* 0 */
2662 u8 control;
2663 u8 xid_info[3];
2664 } __packed;
2665
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2666 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2667 {
2668 struct iapp_layer2_update *msg;
2669 struct sk_buff *skb;
2670
2671 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2672 * bridge devices */
2673
2674 skb = dev_alloc_skb(sizeof(*msg));
2675 if (!skb)
2676 return;
2677 msg = skb_put(skb, sizeof(*msg));
2678
2679 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2680 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2681
2682 eth_broadcast_addr(msg->da);
2683 ether_addr_copy(msg->sa, addr);
2684 msg->len = htons(6);
2685 msg->dsap = 0;
2686 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2687 msg->control = 0xaf; /* XID response lsb.1111F101.
2688 * F=0 (no poll command; unsolicited frame) */
2689 msg->xid_info[0] = 0x81; /* XID format identifier */
2690 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2691 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2692
2693 skb->dev = dev;
2694 skb->protocol = eth_type_trans(skb, dev);
2695 memset(skb->cb, 0, sizeof(skb->cb));
2696 netif_rx(skb);
2697 }
2698 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2699
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2700 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2701 enum ieee80211_vht_chanwidth bw,
2702 int mcs, bool ext_nss_bw_capable,
2703 unsigned int max_vht_nss)
2704 {
2705 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2706 int ext_nss_bw;
2707 int supp_width;
2708 int i, mcs_encoding;
2709
2710 if (map == 0xffff)
2711 return 0;
2712
2713 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2714 return 0;
2715 if (mcs <= 7)
2716 mcs_encoding = 0;
2717 else if (mcs == 8)
2718 mcs_encoding = 1;
2719 else
2720 mcs_encoding = 2;
2721
2722 if (!max_vht_nss) {
2723 /* find max_vht_nss for the given MCS */
2724 for (i = 7; i >= 0; i--) {
2725 int supp = (map >> (2 * i)) & 3;
2726
2727 if (supp == 3)
2728 continue;
2729
2730 if (supp >= mcs_encoding) {
2731 max_vht_nss = i + 1;
2732 break;
2733 }
2734 }
2735 }
2736
2737 if (!(cap->supp_mcs.tx_mcs_map &
2738 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2739 return max_vht_nss;
2740
2741 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2742 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2743 supp_width = le32_get_bits(cap->vht_cap_info,
2744 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2745
2746 /* if not capable, treat ext_nss_bw as 0 */
2747 if (!ext_nss_bw_capable)
2748 ext_nss_bw = 0;
2749
2750 /* This is invalid */
2751 if (supp_width == 3)
2752 return 0;
2753
2754 /* This is an invalid combination so pretend nothing is supported */
2755 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2756 return 0;
2757
2758 /*
2759 * Cover all the special cases according to IEEE 802.11-2016
2760 * Table 9-250. All other cases are either factor of 1 or not
2761 * valid/supported.
2762 */
2763 switch (bw) {
2764 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2765 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2766 if ((supp_width == 1 || supp_width == 2) &&
2767 ext_nss_bw == 3)
2768 return 2 * max_vht_nss;
2769 break;
2770 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2771 if (supp_width == 0 &&
2772 (ext_nss_bw == 1 || ext_nss_bw == 2))
2773 return max_vht_nss / 2;
2774 if (supp_width == 0 &&
2775 ext_nss_bw == 3)
2776 return (3 * max_vht_nss) / 4;
2777 if (supp_width == 1 &&
2778 ext_nss_bw == 3)
2779 return 2 * max_vht_nss;
2780 break;
2781 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2782 if (supp_width == 0 && ext_nss_bw == 1)
2783 return 0; /* not possible */
2784 if (supp_width == 0 &&
2785 ext_nss_bw == 2)
2786 return max_vht_nss / 2;
2787 if (supp_width == 0 &&
2788 ext_nss_bw == 3)
2789 return (3 * max_vht_nss) / 4;
2790 if (supp_width == 1 &&
2791 ext_nss_bw == 0)
2792 return 0; /* not possible */
2793 if (supp_width == 1 &&
2794 ext_nss_bw == 1)
2795 return max_vht_nss / 2;
2796 if (supp_width == 1 &&
2797 ext_nss_bw == 2)
2798 return (3 * max_vht_nss) / 4;
2799 break;
2800 }
2801
2802 /* not covered or invalid combination received */
2803 return max_vht_nss;
2804 }
2805 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2806
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2807 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2808 bool is_4addr, u8 check_swif)
2809
2810 {
2811 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2812
2813 switch (check_swif) {
2814 case 0:
2815 if (is_vlan && is_4addr)
2816 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2817 return wiphy->interface_modes & BIT(iftype);
2818 case 1:
2819 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2820 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2821 return wiphy->software_iftypes & BIT(iftype);
2822 default:
2823 break;
2824 }
2825
2826 return false;
2827 }
2828 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2829
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2830 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2831 {
2832 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2833
2834 lockdep_assert_wiphy(wdev->wiphy);
2835
2836 switch (wdev->iftype) {
2837 case NL80211_IFTYPE_AP:
2838 case NL80211_IFTYPE_P2P_GO:
2839 cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2840 break;
2841 default:
2842 /* per-link not relevant */
2843 break;
2844 }
2845
2846 wdev->valid_links &= ~BIT(link_id);
2847
2848 rdev_del_intf_link(rdev, wdev, link_id);
2849
2850 eth_zero_addr(wdev->links[link_id].addr);
2851 }
2852
cfg80211_remove_links(struct wireless_dev * wdev)2853 void cfg80211_remove_links(struct wireless_dev *wdev)
2854 {
2855 unsigned int link_id;
2856
2857 /*
2858 * links are controlled by upper layers (userspace/cfg)
2859 * only for AP mode, so only remove them here for AP
2860 */
2861 if (wdev->iftype != NL80211_IFTYPE_AP)
2862 return;
2863
2864 if (wdev->valid_links) {
2865 for_each_valid_link(wdev, link_id)
2866 cfg80211_remove_link(wdev, link_id);
2867 }
2868 }
2869
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2870 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2871 struct wireless_dev *wdev)
2872 {
2873 cfg80211_remove_links(wdev);
2874
2875 return rdev_del_virtual_intf(rdev, wdev);
2876 }
2877
2878 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2879 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2880 {
2881 int i;
2882
2883 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2884 if (wiphy->iftype_ext_capab[i].iftype == type)
2885 return &wiphy->iftype_ext_capab[i];
2886 }
2887
2888 return NULL;
2889 }
2890 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2891
2892 static bool
ieee80211_radio_freq_range_valid(const struct wiphy_radio * radio,u32 freq,u32 width)2893 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2894 u32 freq, u32 width)
2895 {
2896 const struct wiphy_radio_freq_range *r;
2897 int i;
2898
2899 for (i = 0; i < radio->n_freq_range; i++) {
2900 r = &radio->freq_range[i];
2901 if (freq - width / 2 >= r->start_freq &&
2902 freq + width / 2 <= r->end_freq)
2903 return true;
2904 }
2905
2906 return false;
2907 }
2908
cfg80211_radio_chandef_valid(const struct wiphy_radio * radio,const struct cfg80211_chan_def * chandef)2909 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2910 const struct cfg80211_chan_def *chandef)
2911 {
2912 u32 freq, width;
2913
2914 freq = ieee80211_chandef_to_khz(chandef);
2915 width = nl80211_chan_width_to_mhz(chandef->width);
2916 if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2917 return false;
2918
2919 freq = MHZ_TO_KHZ(chandef->center_freq2);
2920 if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2921 return false;
2922
2923 return true;
2924 }
2925 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2926