xref: /freebsd/sys/net80211/ieee80211_superg.c (revision 674362e27015394e105125598cb1518506ae1efa)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_wlan.h"
30 
31 #ifdef	IEEE80211_SUPPORT_SUPERG
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/endian.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_var.h>
43 #include <net/if_llc.h>
44 #include <net/if_media.h>
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_input.h>
50 #include <net80211/ieee80211_phy.h>
51 #include <net80211/ieee80211_superg.h>
52 
53 /*
54  * Atheros fast-frame encapsulation format.
55  * FF max payload:
56  * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
57  *   8   +   4   +  4   +   14  +   8   + 1500 +  6   +   14  +   8   + 1500
58  * = 3066
59  */
60 /* fast frame header is 32-bits */
61 #define	ATH_FF_PROTO	0x0000003f	/* protocol */
62 #define	ATH_FF_PROTO_S	0
63 #define	ATH_FF_FTYPE	0x000000c0	/* frame type */
64 #define	ATH_FF_FTYPE_S	6
65 #define	ATH_FF_HLEN32	0x00000300	/* optional hdr length */
66 #define	ATH_FF_HLEN32_S	8
67 #define	ATH_FF_SEQNUM	0x001ffc00	/* sequence number */
68 #define	ATH_FF_SEQNUM_S	10
69 #define	ATH_FF_OFFSET	0xffe00000	/* offset to 2nd payload */
70 #define	ATH_FF_OFFSET_S	21
71 
72 #define	ATH_FF_MAX_HDR_PAD	4
73 #define	ATH_FF_MAX_SEP_PAD	6
74 #define	ATH_FF_MAX_HDR		30
75 
76 #define	ATH_FF_PROTO_L2TUNNEL	0	/* L2 tunnel protocol */
77 #define	ATH_FF_ETH_TYPE		0x88bd	/* Ether type for encapsulated frames */
78 #define	ATH_FF_SNAP_ORGCODE_0	0x00
79 #define	ATH_FF_SNAP_ORGCODE_1	0x03
80 #define	ATH_FF_SNAP_ORGCODE_2	0x7f
81 
82 #define	ATH_FF_TXQMIN	2		/* min txq depth for staging */
83 #define	ATH_FF_TXQMAX	50		/* maximum # of queued frames allowed */
84 #define	ATH_FF_STAGEMAX	5		/* max waiting period for staged frame*/
85 
86 #define	ETHER_HEADER_COPY(dst, src) \
87 	memcpy(dst, src, sizeof(struct ether_header))
88 
89 static	int ieee80211_ffppsmin = 2;	/* pps threshold for ff aggregation */
90 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW,
91 	&ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
92 static	int ieee80211_ffagemax = -1;	/* max time frames held on stage q */
93 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax,
94     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
95     &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
96     "max hold time for fast-frame staging (ms)");
97 
98 static void
ff_age_all(void * arg,int npending)99 ff_age_all(void *arg, int npending)
100 {
101 	struct ieee80211com *ic = arg;
102 
103 	/* XXX cache timer value somewhere (racy) */
104 	ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1);
105 }
106 
107 void
ieee80211_superg_attach(struct ieee80211com * ic)108 ieee80211_superg_attach(struct ieee80211com *ic)
109 {
110 	struct ieee80211_superg *sg;
111 
112 	IEEE80211_FF_LOCK_INIT(ic, ic->ic_name);
113 
114 	sg = (struct ieee80211_superg *) IEEE80211_MALLOC(
115 	     sizeof(struct ieee80211_superg), M_80211_VAP,
116 	     IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
117 	if (sg == NULL) {
118 		net80211_ic_printf(ic,
119 		    "%s: cannot allocate SuperG state block\n", __func__);
120 		return;
121 	}
122 	TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic);
123 	ic->ic_superg = sg;
124 
125 	/*
126 	 * Default to not being so aggressive for FF/AMSDU
127 	 * aging, otherwise we may hold a frame around
128 	 * for way too long before we expire it out.
129 	 */
130 	ieee80211_ffagemax = msecs_to_ticks(2);
131 }
132 
133 void
ieee80211_superg_detach(struct ieee80211com * ic)134 ieee80211_superg_detach(struct ieee80211com *ic)
135 {
136 
137 	if (ic->ic_superg != NULL) {
138 		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
139 
140 		while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0)
141 			taskqueue_drain_timeout(ic->ic_tq, qtask);
142 		IEEE80211_FREE(ic->ic_superg, M_80211_VAP);
143 		ic->ic_superg = NULL;
144 	}
145 	IEEE80211_FF_LOCK_DESTROY(ic);
146 }
147 
148 void
ieee80211_superg_vattach(struct ieee80211vap * vap)149 ieee80211_superg_vattach(struct ieee80211vap *vap)
150 {
151 	struct ieee80211com *ic = vap->iv_ic;
152 
153 	if (ic->ic_superg == NULL)	/* NB: can't do fast-frames w/o state */
154 		vap->iv_caps &= ~IEEE80211_C_FF;
155 	if (vap->iv_caps & IEEE80211_C_FF)
156 		vap->iv_flags |= IEEE80211_F_FF;
157 	/* NB: we only implement sta mode */
158 	if (vap->iv_opmode == IEEE80211_M_STA &&
159 	    (vap->iv_caps & IEEE80211_C_TURBOP))
160 		vap->iv_flags |= IEEE80211_F_TURBOP;
161 }
162 
163 void
ieee80211_superg_vdetach(struct ieee80211vap * vap)164 ieee80211_superg_vdetach(struct ieee80211vap *vap)
165 {
166 }
167 
168 #define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
169 /*
170  * Add a WME information element to a frame.
171  */
172 uint8_t *
ieee80211_add_ath(uint8_t * frm,uint8_t caps,ieee80211_keyix defkeyix)173 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
174 {
175 	static const struct ieee80211_ath_ie info = {
176 		.ath_id		= IEEE80211_ELEMID_VENDOR,
177 		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
178 		.ath_oui	= { ATH_OUI_BYTES },
179 		.ath_oui_type	= ATH_OUI_TYPE,
180 		.ath_oui_subtype= ATH_OUI_SUBTYPE,
181 		.ath_version	= ATH_OUI_VERSION,
182 	};
183 	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
184 
185 	memcpy(frm, &info, sizeof(info));
186 	ath->ath_capability = caps;
187 	if (defkeyix != IEEE80211_KEYIX_NONE) {
188 		ath->ath_defkeyix[0] = (defkeyix & 0xff);
189 		ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
190 	} else {
191 		ath->ath_defkeyix[0] = 0xff;
192 		ath->ath_defkeyix[1] = 0x7f;
193 	}
194 	return frm + sizeof(info);
195 }
196 #undef ATH_OUI_BYTES
197 
198 uint8_t *
ieee80211_add_athcaps(uint8_t * frm,const struct ieee80211_node * bss)199 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
200 {
201 	const struct ieee80211vap *vap = bss->ni_vap;
202 
203 	return ieee80211_add_ath(frm,
204 	    vap->iv_flags & IEEE80211_F_ATHEROS,
205 	    ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
206 	    bss->ni_authmode != IEEE80211_AUTH_8021X) ?
207 	    vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
208 }
209 
210 void
ieee80211_parse_ath(struct ieee80211_node * ni,uint8_t * ie)211 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
212 {
213 	const struct ieee80211_ath_ie *ath =
214 		(const struct ieee80211_ath_ie *) ie;
215 
216 	ni->ni_ath_flags = ath->ath_capability;
217 	ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix);
218 }
219 
220 int
ieee80211_parse_athparams(struct ieee80211_node * ni,uint8_t * frm,const struct ieee80211_frame * wh)221 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
222 	const struct ieee80211_frame *wh)
223 {
224 	struct ieee80211vap *vap = ni->ni_vap;
225 	const struct ieee80211_ath_ie *ath;
226 	u_int len = frm[1];
227 	int capschanged;
228 	uint16_t defkeyix;
229 
230 	if (len < sizeof(struct ieee80211_ath_ie)-2) {
231 		IEEE80211_DISCARD_IE(vap,
232 		    IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
233 		    wh, "Atheros", "too short, len %u", len);
234 		return -1;
235 	}
236 	ath = (const struct ieee80211_ath_ie *)frm;
237 	capschanged = (ni->ni_ath_flags != ath->ath_capability);
238 	defkeyix = le16dec(ath->ath_defkeyix);
239 	if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
240 		ni->ni_ath_flags = ath->ath_capability;
241 		ni->ni_ath_defkeyix = defkeyix;
242 		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
243 		    "ath ie change: new caps 0x%x defkeyix 0x%x",
244 		    ni->ni_ath_flags, ni->ni_ath_defkeyix);
245 	}
246 	if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
247 		uint16_t curflags, newflags;
248 
249 		/*
250 		 * Check for turbo mode switch.  Calculate flags
251 		 * for the new mode and effect the switch.
252 		 */
253 		newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
254 		/* NB: BOOST is not in ic_flags, so get it from the ie */
255 		if (ath->ath_capability & ATHEROS_CAP_BOOST)
256 			newflags |= IEEE80211_CHAN_TURBO;
257 		else
258 			newflags &= ~IEEE80211_CHAN_TURBO;
259 		if (newflags != curflags)
260 			ieee80211_dturbo_switch(vap, newflags);
261 	}
262 	return capschanged;
263 }
264 
265 /*
266  * Decap the encapsulated frame pair and dispatch the first
267  * for delivery.  The second frame is returned for delivery
268  * via the normal path.
269  */
270 struct mbuf *
ieee80211_ff_decap(struct ieee80211_node * ni,struct mbuf * m)271 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
272 {
273 #define	FF_LLC_SIZE	(sizeof(struct ether_header) + sizeof(struct llc))
274 	struct ieee80211vap *vap = ni->ni_vap;
275 	struct llc *llc;
276 	uint32_t ath;
277 	struct mbuf *n;
278 	int framelen;
279 
280 	/* NB: we assume caller does this check for us */
281 	KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
282 	    ("ff not negotiated"));
283 	/*
284 	 * Check for fast-frame tunnel encapsulation.
285 	 */
286 	if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
287 		return m;
288 	if (m->m_len < FF_LLC_SIZE &&
289 	    (m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
290 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
291 		    ni->ni_macaddr, "fast-frame",
292 		    "%s", "m_pullup(llc) failed");
293 		vap->iv_stats.is_rx_tooshort++;
294 		return NULL;
295 	}
296 	llc = (struct llc *)(mtod(m, uint8_t *) +
297 	    sizeof(struct ether_header));
298 	if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
299 		return m;
300 	m_adj(m, FF_LLC_SIZE);
301 	m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
302 	if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
303 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
304 		    ni->ni_macaddr, "fast-frame",
305 		    "unsupport tunnel protocol, header 0x%x", ath);
306 		vap->iv_stats.is_ff_badhdr++;
307 		m_freem(m);
308 		return NULL;
309 	}
310 	/* NB: skip header and alignment padding */
311 	m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
312 
313 	vap->iv_stats.is_ff_decap++;
314 
315 	/*
316 	 * Decap the first frame, bust it apart from the
317 	 * second and deliver; then decap the second frame
318 	 * and return it to the caller for normal delivery.
319 	 */
320 	m = ieee80211_decap1(m, &framelen);
321 	if (m == NULL) {
322 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
323 		    ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
324 		vap->iv_stats.is_ff_tooshort++;
325 		return NULL;
326 	}
327 	n = m_split(m, framelen, IEEE80211_M_NOWAIT);
328 	if (n == NULL) {
329 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
330 		    ni->ni_macaddr, "fast-frame",
331 		    "%s", "unable to split encapsulated frames");
332 		vap->iv_stats.is_ff_split++;
333 		m_freem(m);			/* NB: must reclaim */
334 		return NULL;
335 	}
336 	/* XXX not right for WDS */
337 	vap->iv_deliver_data(vap, ni, m);	/* 1st of pair */
338 
339 	/*
340 	 * Decap second frame.
341 	 */
342 	m_adj(n, roundup2(framelen, 4) - framelen);	/* padding */
343 	n = ieee80211_decap1(n, &framelen);
344 	if (n == NULL) {
345 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
346 		    ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
347 		vap->iv_stats.is_ff_tooshort++;
348 	}
349 	/* XXX verify framelen against mbuf contents */
350 	return n;				/* 2nd delivered by caller */
351 #undef FF_LLC_SIZE
352 }
353 
354 /*
355  * Fast frame encapsulation.  There must be two packets
356  * chained with m_nextpkt.  We do header adjustment for
357  * each, add the tunnel encapsulation, and then concatenate
358  * the mbuf chains to form a single frame for transmission.
359  */
360 struct mbuf *
ieee80211_ff_encap(struct ieee80211vap * vap,struct mbuf * m1,int hdrspace,struct ieee80211_key * key)361 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
362 	struct ieee80211_key *key)
363 {
364 	struct mbuf *m2;
365 	struct ether_header eh1, eh2;
366 	struct llc *llc;
367 	struct mbuf *m;
368 	int pad;
369 
370 	m2 = m1->m_nextpkt;
371 	if (m2 == NULL) {
372 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
373 		    "%s: only one frame\n", __func__);
374 		goto bad;
375 	}
376 	m1->m_nextpkt = NULL;
377 
378 	/*
379 	 * Adjust to include 802.11 header requirement.
380 	 */
381 	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
382 	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
383 	m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1);
384 	if (m1 == NULL) {
385 		net80211_vap_printf(vap, "%s: failed initial mbuf_adjust\n",
386 		    __func__);
387 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
388 		m_freem(m2);
389 		goto bad;
390 	}
391 
392 	/*
393 	 * Copy second frame's Ethernet header out of line
394 	 * and adjust for possible padding in case there isn't room
395 	 * at the end of first frame.
396 	 */
397 	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
398 	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
399 	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
400 	if (m2 == NULL) {
401 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
402 		net80211_vap_printf(vap, "%s: failed second \n", __func__);
403 		goto bad;
404 	}
405 
406 	/*
407 	 * Now do tunnel encapsulation.  First, each
408 	 * frame gets a standard encapsulation.
409 	 */
410 	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
411 	if (m1 == NULL)
412 		goto bad;
413 	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
414 	if (m2 == NULL)
415 		goto bad;
416 
417 	/*
418 	 * Pad leading frame to a 4-byte boundary.  If there
419 	 * is space at the end of the first frame, put it
420 	 * there; otherwise prepend to the front of the second
421 	 * frame.  We know doing the second will always work
422 	 * because we reserve space above.  We prefer appending
423 	 * as this typically has better DMA alignment properties.
424 	 */
425 	for (m = m1; m->m_next != NULL; m = m->m_next)
426 		;
427 	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
428 	if (pad) {
429 		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
430 			m2->m_data -= pad;
431 			m2->m_len += pad;
432 			m2->m_pkthdr.len += pad;
433 		} else {				/* append to first */
434 			m->m_len += pad;
435 			m1->m_pkthdr.len += pad;
436 		}
437 	}
438 
439 	/*
440 	 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the
441 	 * QoS header.
442 	 *
443 	 * XXX optimize by prepending together
444 	 */
445 	m->m_next = m2;			/* NB: last mbuf from above */
446 	m1->m_pkthdr.len += m2->m_pkthdr.len;
447 	M_PREPEND(m1, sizeof(uint32_t)+2, IEEE80211_M_NOWAIT);
448 	if (m1 == NULL) {		/* XXX cannot happen */
449 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
450 		    "%s: no space for tunnel header\n", __func__);
451 		vap->iv_stats.is_tx_nobuf++;
452 		return NULL;
453 	}
454 	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
455 
456 	M_PREPEND(m1, sizeof(struct llc), IEEE80211_M_NOWAIT);
457 	if (m1 == NULL) {		/* XXX cannot happen */
458 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
459 		    "%s: no space for llc header\n", __func__);
460 		vap->iv_stats.is_tx_nobuf++;
461 		return NULL;
462 	}
463 	llc = mtod(m1, struct llc *);
464 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
465 	llc->llc_control = LLC_UI;
466 	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
467 	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
468 	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
469 	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
470 
471 	vap->iv_stats.is_ff_encap++;
472 
473 	return m1;
474 bad:
475 	vap->iv_stats.is_ff_encapfail++;
476 	if (m1 != NULL)
477 		m_freem(m1);
478 	if (m2 != NULL)
479 		m_freem(m2);
480 	return NULL;
481 }
482 
483 /*
484  * A-MSDU encapsulation.
485  *
486  * This assumes just two frames for now, since we're borrowing the
487  * same queuing code and infrastructure as fast-frames.
488  *
489  * There must be two packets chained with m_nextpkt.
490  * We do header adjustment for each, and then concatenate the mbuf chains
491  * to form a single frame for transmission.
492  */
493 struct mbuf *
ieee80211_amsdu_encap(struct ieee80211vap * vap,struct mbuf * m1,int hdrspace,struct ieee80211_key * key)494 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
495 	struct ieee80211_key *key)
496 {
497 	struct mbuf *m2;
498 	struct ether_header eh1, eh2;
499 	struct mbuf *m;
500 	int pad;
501 
502 	m2 = m1->m_nextpkt;
503 	if (m2 == NULL) {
504 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
505 		    "%s: only one frame\n", __func__);
506 		goto bad;
507 	}
508 	m1->m_nextpkt = NULL;
509 
510 	/*
511 	 * Include A-MSDU header in adjusting header layout.
512 	 */
513 	KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
514 	ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
515 	m1 = ieee80211_mbuf_adjust(vap,
516 		hdrspace + sizeof(struct llc) + sizeof(uint32_t) +
517 		    sizeof(struct ether_header),
518 		key, m1);
519 	if (m1 == NULL) {
520 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
521 		m_freem(m2);
522 		goto bad;
523 	}
524 
525 	/*
526 	 * Copy second frame's Ethernet header out of line
527 	 * and adjust for encapsulation headers.  Note that
528 	 * we make room for padding in case there isn't room
529 	 * at the end of first frame.
530 	 */
531 	KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
532 	ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
533 	m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
534 	if (m2 == NULL) {
535 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
536 		goto bad;
537 	}
538 
539 	/*
540 	 * Now do tunnel encapsulation.  First, each
541 	 * frame gets a standard encapsulation.
542 	 */
543 	m1 = ieee80211_ff_encap1(vap, m1, &eh1);
544 	if (m1 == NULL)
545 		goto bad;
546 	m2 = ieee80211_ff_encap1(vap, m2, &eh2);
547 	if (m2 == NULL)
548 		goto bad;
549 
550 	/*
551 	 * Pad leading frame to a 4-byte boundary.  If there
552 	 * is space at the end of the first frame, put it
553 	 * there; otherwise prepend to the front of the second
554 	 * frame.  We know doing the second will always work
555 	 * because we reserve space above.  We prefer appending
556 	 * as this typically has better DMA alignment properties.
557 	 */
558 	for (m = m1; m->m_next != NULL; m = m->m_next)
559 		;
560 	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
561 	if (pad) {
562 		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
563 			m2->m_data -= pad;
564 			m2->m_len += pad;
565 			m2->m_pkthdr.len += pad;
566 		} else {				/* append to first */
567 			m->m_len += pad;
568 			m1->m_pkthdr.len += pad;
569 		}
570 	}
571 
572 	/*
573 	 * Now, stick 'em together.
574 	 */
575 	m->m_next = m2;			/* NB: last mbuf from above */
576 	m1->m_pkthdr.len += m2->m_pkthdr.len;
577 
578 	vap->iv_stats.is_amsdu_encap++;
579 
580 	return m1;
581 bad:
582 	vap->iv_stats.is_amsdu_encapfail++;
583 	if (m1 != NULL)
584 		m_freem(m1);
585 	if (m2 != NULL)
586 		m_freem(m2);
587 	return NULL;
588 }
589 
590 static void
ff_transmit(struct ieee80211_node * ni,struct mbuf * m)591 ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
592 {
593 	struct ieee80211vap *vap = ni->ni_vap;
594 	struct ieee80211com *ic = ni->ni_ic;
595 
596 	IEEE80211_TX_LOCK_ASSERT(ic);
597 
598 	/* encap and xmit */
599 	m = ieee80211_encap(vap, ni, m);
600 	if (m != NULL)
601 		(void) ieee80211_parent_xmitpkt(ic, m);
602 	else
603 		ieee80211_free_node(ni);
604 }
605 
606 /*
607  * Flush frames to device; note we re-use the linked list
608  * the frames were stored on and use the sentinel (unchanged)
609  * which may be non-NULL.
610  */
611 static void
ff_flush(struct mbuf * head,struct mbuf * last)612 ff_flush(struct mbuf *head, struct mbuf *last)
613 {
614 	struct mbuf *m, *next;
615 	struct ieee80211_node *ni;
616 	struct ieee80211vap *vap;
617 
618 	for (m = head; m != last; m = next) {
619 		next = m->m_nextpkt;
620 		m->m_nextpkt = NULL;
621 
622 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
623 		vap = ni->ni_vap;
624 
625 		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
626 		    "%s: flush frame, age %u", __func__, M_AGE_GET(m));
627 		vap->iv_stats.is_ff_flush++;
628 
629 		ff_transmit(ni, m);
630 	}
631 }
632 
633 /*
634  * Age frames on the staging queue.
635  */
636 void
ieee80211_ff_age(struct ieee80211com * ic,struct ieee80211_stageq * sq,int quanta)637 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
638     int quanta)
639 {
640 	struct mbuf *m, *head;
641 	struct ieee80211_node *ni;
642 
643 	IEEE80211_FF_LOCK(ic);
644 	if (sq->depth == 0) {
645 		IEEE80211_FF_UNLOCK(ic);
646 		return;		/* nothing to do */
647 	}
648 
649 	KASSERT(sq->head != NULL, ("stageq empty"));
650 
651 	head = sq->head;
652 	while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
653 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
654 
655 		/* clear staging ref to frame */
656 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
657 		KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty"));
658 		ni->ni_tx_superg[tid] = NULL;
659 
660 		sq->head = m->m_nextpkt;
661 		sq->depth--;
662 	}
663 	if (m == NULL)
664 		sq->tail = NULL;
665 	else
666 		M_AGE_SUB(m, quanta);
667 	IEEE80211_FF_UNLOCK(ic);
668 
669 	IEEE80211_TX_LOCK(ic);
670 	ff_flush(head, m);
671 	IEEE80211_TX_UNLOCK(ic);
672 }
673 
674 static void
stageq_add(struct ieee80211com * ic,struct ieee80211_stageq * sq,struct mbuf * m)675 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m)
676 {
677 	int age = ieee80211_ffagemax;
678 
679 	IEEE80211_FF_LOCK_ASSERT(ic);
680 
681 	if (sq->tail != NULL) {
682 		sq->tail->m_nextpkt = m;
683 		age -= M_AGE_GET(sq->head);
684 	} else {
685 		sq->head = m;
686 
687 		struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
688 		taskqueue_enqueue_timeout(ic->ic_tq, qtask, age);
689 	}
690 	KASSERT(age >= 0, ("age %d", age));
691 	M_AGE_SET(m, age);
692 	m->m_nextpkt = NULL;
693 	sq->tail = m;
694 	sq->depth++;
695 }
696 
697 static void
stageq_remove(struct ieee80211com * ic,struct ieee80211_stageq * sq,struct mbuf * mstaged)698 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged)
699 {
700 	struct mbuf *m, *mprev;
701 
702 	IEEE80211_FF_LOCK_ASSERT(ic);
703 
704 	mprev = NULL;
705 	for (m = sq->head; m != NULL; m = m->m_nextpkt) {
706 		if (m == mstaged) {
707 			if (mprev == NULL)
708 				sq->head = m->m_nextpkt;
709 			else
710 				mprev->m_nextpkt = m->m_nextpkt;
711 			if (sq->tail == m)
712 				sq->tail = mprev;
713 			sq->depth--;
714 			return;
715 		}
716 		mprev = m;
717 	}
718 	net80211_ic_printf(ic, "%s: packet not found\n", __func__);
719 }
720 
721 static uint32_t
ff_approx_txtime(struct ieee80211_node * ni,const struct mbuf * m1,const struct mbuf * m2)722 ff_approx_txtime(struct ieee80211_node *ni,
723 	const struct mbuf *m1, const struct mbuf *m2)
724 {
725 	struct ieee80211_node_txrate txr;
726 	struct ieee80211com *ic = ni->ni_ic;
727 	struct ieee80211vap *vap = ni->ni_vap;
728 	uint32_t framelen;
729 	uint32_t frame_time;
730 	uint8_t dot11rate;
731 
732 	/*
733 	 * Approximate the frame length to be transmitted. A swag to add
734 	 * the following maximal values to the skb payload:
735 	 *   - 32: 802.11 encap + CRC
736 	 *   - 24: encryption overhead (if wep bit)
737 	 *   - 4 + 6: fast-frame header and padding
738 	 *   - 16: 2 LLC FF tunnel headers
739 	 *   - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
740 	 */
741 	framelen = m1->m_pkthdr.len + 32 +
742 	    ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
743 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
744 		framelen += 24;
745 	if (m2 != NULL)
746 		framelen += m2->m_pkthdr.len;
747 
748 	ieee80211_node_get_txrate(ni, &txr);
749 
750 	switch (txr.type) {
751 	case IEEE80211_NODE_TXRATE_LEGACY:
752 		dot11rate = ieee80211_node_get_txrate_dot11rate(ni);
753 		frame_time = ieee80211_compute_duration(ic->ic_rt, framelen,
754 			    dot11rate, 0);
755 		break;
756 	case IEEE80211_NODE_TXRATE_HT:
757 		/* TODO: check ht40/shortgi */
758 		dot11rate = ieee80211_node_get_txrate_dot11rate(ni);
759 		frame_time = ieee80211_compute_duration_ht(framelen,
760 		    dot11rate,
761 		    IEEE80211_HT_RC_2_STREAMS(dot11rate),
762 		    0, /* isht40 */
763 		    0); /* isshortgi */
764 		break;
765 	case IEEE80211_NODE_TXRATE_VHT:
766 		/* TODO: there's no VHT frame length calculation just yet */
767 		frame_time = 1000;	/* 1ms */
768 		break;
769 	case IEEE80211_NODE_TXRATE_UNDEFINED:
770 		/* TODO: proper error handling */
771 		frame_time = 4000; /* 4ms */
772 		break;
773 	}
774 
775 	return (frame_time);
776 }
777 
778 /*
779  * Check if the supplied frame can be partnered with an existing
780  * or pending frame.  Return a reference to any frame that should be
781  * sent on return; otherwise return NULL.
782  */
783 struct mbuf *
ieee80211_ff_check(struct ieee80211_node * ni,struct mbuf * m)784 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
785 {
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ieee80211com *ic = ni->ni_ic;
788 	struct ieee80211_superg *sg = ic->ic_superg;
789 	const int pri = M_WME_GETAC(m);
790 	struct ieee80211_stageq *sq;
791 	struct ieee80211_tx_ampdu *tap;
792 	struct mbuf *mstaged;
793 	uint32_t txtime, limit;
794 
795 	IEEE80211_TX_UNLOCK_ASSERT(ic);
796 
797 	IEEE80211_LOCK(ic);
798 	limit = IEEE80211_TXOP_TO_US(
799 	    ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
800 	IEEE80211_UNLOCK(ic);
801 
802 	/*
803 	 * Check if the supplied frame can be aggregated.
804 	 *
805 	 * NB: we allow EAPOL frames to be aggregated with other ucast traffic.
806 	 *     Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
807 	 *     be aggregated with other types of frames when encryption is on?
808 	 */
809 	IEEE80211_FF_LOCK(ic);
810 	tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)];
811 	mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)];
812 	/* XXX NOTE: reusing packet counter state from A-MPDU */
813 	/*
814 	 * XXX NOTE: this means we're double-counting; it should just
815 	 * be done in ieee80211_output.c once for both superg and A-MPDU.
816 	 */
817 	ieee80211_txampdu_count_packet(tap);
818 
819 	/*
820 	 * When not in station mode never aggregate a multicast
821 	 * frame; this insures, for example, that a combined frame
822 	 * does not require multiple encryption keys.
823 	 */
824 	if (vap->iv_opmode != IEEE80211_M_STA &&
825 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
826 		/* XXX flush staged frame? */
827 		IEEE80211_FF_UNLOCK(ic);
828 		return m;
829 	}
830 	/*
831 	 * If there is no frame to combine with and the pps is
832 	 * too low; then do not attempt to aggregate this frame.
833 	 */
834 	if (mstaged == NULL &&
835 	    ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
836 		IEEE80211_FF_UNLOCK(ic);
837 		return m;
838 	}
839 	sq = &sg->ff_stageq[pri];
840 	/*
841 	 * Check the txop limit to insure the aggregate fits.
842 	 */
843 	if (limit != 0 &&
844 	    (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
845 		/*
846 		 * Aggregate too long, return to the caller for direct
847 		 * transmission.  In addition, flush any pending frame
848 		 * before sending this one.
849 		 */
850 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
851 		    "%s: txtime %u exceeds txop limit %u\n",
852 		    __func__, txtime, limit);
853 
854 		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
855 		if (mstaged != NULL)
856 			stageq_remove(ic, sq, mstaged);
857 		IEEE80211_FF_UNLOCK(ic);
858 
859 		if (mstaged != NULL) {
860 			IEEE80211_TX_LOCK(ic);
861 			IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
862 			    "%s: flush staged frame", __func__);
863 			/* encap and xmit */
864 			ff_transmit(ni, mstaged);
865 			IEEE80211_TX_UNLOCK(ic);
866 		}
867 		return m;		/* NB: original frame */
868 	}
869 	/*
870 	 * An aggregation candidate.  If there's a frame to partner
871 	 * with then combine and return for processing.  Otherwise
872 	 * save this frame and wait for a partner to show up (or
873 	 * the frame to be flushed).  Note that staged frames also
874 	 * hold their node reference.
875 	 */
876 	if (mstaged != NULL) {
877 		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
878 		stageq_remove(ic, sq, mstaged);
879 		IEEE80211_FF_UNLOCK(ic);
880 
881 		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
882 		    "%s: aggregate fast-frame", __func__);
883 		/*
884 		 * Release the node reference; we only need
885 		 * the one already in mstaged.
886 		 */
887 		KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
888 		    ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
889 		ieee80211_free_node(ni);
890 
891 		m->m_nextpkt = NULL;
892 		mstaged->m_nextpkt = m;
893 		mstaged->m_flags |= M_FF; /* NB: mark for encap work */
894 	} else {
895 		KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL,
896 		    ("ni_tx_superg[]: %p",
897 		    ni->ni_tx_superg[WME_AC_TO_TID(pri)]));
898 		ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m;
899 
900 		stageq_add(ic, sq, m);
901 		IEEE80211_FF_UNLOCK(ic);
902 
903 		IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
904 		    "%s: stage frame, %u queued", __func__, sq->depth);
905 		/* NB: mstaged is NULL */
906 	}
907 	return mstaged;
908 }
909 
910 struct mbuf *
ieee80211_amsdu_check(struct ieee80211_node * ni,struct mbuf * m)911 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m)
912 {
913 	/*
914 	 * XXX TODO: actually enforce the node support
915 	 * and HTCAP requirements for the maximum A-MSDU
916 	 * size.
917 	 */
918 
919 	/* First: software A-MSDU transmit? */
920 	if (! ieee80211_amsdu_tx_ok(ni))
921 		return (m);
922 
923 	/* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */
924 	if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST))
925 		return (m);
926 
927 	/* Next - needs to be a data frame, non-broadcast, etc */
928 	if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
929 		return (m);
930 
931 	return (ieee80211_ff_check(ni, m));
932 }
933 
934 void
ieee80211_ff_node_init(struct ieee80211_node * ni)935 ieee80211_ff_node_init(struct ieee80211_node *ni)
936 {
937 	/*
938 	 * Clean FF state on re-associate.  This handles the case
939 	 * where a station leaves w/o notifying us and then returns
940 	 * before node is reaped for inactivity.
941 	 */
942 	ieee80211_ff_node_cleanup(ni);
943 }
944 
945 void
ieee80211_ff_node_cleanup(struct ieee80211_node * ni)946 ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
947 {
948 	struct ieee80211com *ic = ni->ni_ic;
949 	struct ieee80211_superg *sg = ic->ic_superg;
950 	struct mbuf *m, *next_m, *head;
951 	int tid;
952 
953 	IEEE80211_FF_LOCK(ic);
954 	head = NULL;
955 	for (tid = 0; tid < WME_NUM_TID; tid++) {
956 		int ac = TID_TO_WME_AC(tid);
957 		/*
958 		 * XXX Initialise the packet counter.
959 		 *
960 		 * This may be double-work for 11n stations;
961 		 * but without it we never setup things.
962 		 */
963 		ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]);
964 		m = ni->ni_tx_superg[tid];
965 		if (m != NULL) {
966 			ni->ni_tx_superg[tid] = NULL;
967 			stageq_remove(ic, &sg->ff_stageq[ac], m);
968 			m->m_nextpkt = head;
969 			head = m;
970 		}
971 	}
972 	IEEE80211_FF_UNLOCK(ic);
973 
974 	/*
975 	 * Free mbufs, taking care to not dereference the mbuf after
976 	 * we free it (hence grabbing m_nextpkt before we free it.)
977 	 */
978 	m = head;
979 	while (m != NULL) {
980 		next_m = m->m_nextpkt;
981 		m_freem(m);
982 		ieee80211_free_node(ni);
983 		m = next_m;
984 	}
985 }
986 
987 /*
988  * Switch between turbo and non-turbo operating modes.
989  * Use the specified channel flags to locate the new
990  * channel, update 802.11 state, and then call back into
991  * the driver to effect the change.
992  */
993 void
ieee80211_dturbo_switch(struct ieee80211vap * vap,int newflags)994 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
995 {
996 	struct ieee80211com *ic = vap->iv_ic;
997 	struct ieee80211_channel *chan;
998 
999 	chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
1000 	if (chan == NULL) {		/* XXX should not happen */
1001 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1002 		    "%s: no channel with freq %u flags 0x%x\n",
1003 		    __func__, ic->ic_bsschan->ic_freq, newflags);
1004 		return;
1005 	}
1006 
1007 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1008 	    "%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
1009 	    ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
1010 	    ieee80211_phymode_name[ieee80211_chan2mode(chan)],
1011 	    chan->ic_freq, chan->ic_flags);
1012 
1013 	ic->ic_bsschan = chan;
1014 	ic->ic_prevchan = ic->ic_curchan;
1015 	ic->ic_curchan = chan;
1016 	ic->ic_rt = ieee80211_get_ratetable(chan);
1017 	ic->ic_set_channel(ic);
1018 	ieee80211_radiotap_chan_change(ic);
1019 	/* NB: do not need to reset ERP state 'cuz we're in sta mode */
1020 }
1021 
1022 /*
1023  * Return the current ``state'' of an Atheros capbility.
1024  * If associated in station mode report the negotiated
1025  * setting. Otherwise report the current setting.
1026  */
1027 static int
getathcap(struct ieee80211vap * vap,int cap)1028 getathcap(struct ieee80211vap *vap, int cap)
1029 {
1030 	if (vap->iv_opmode == IEEE80211_M_STA &&
1031 	    vap->iv_state == IEEE80211_S_RUN)
1032 		return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
1033 	else
1034 		return (vap->iv_flags & cap) != 0;
1035 }
1036 
1037 static int
superg_ioctl_get80211(struct ieee80211vap * vap,struct ieee80211req * ireq)1038 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1039 {
1040 	switch (ireq->i_type) {
1041 	case IEEE80211_IOC_FF:
1042 		ireq->i_val = getathcap(vap, IEEE80211_F_FF);
1043 		break;
1044 	case IEEE80211_IOC_TURBOP:
1045 		ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
1046 		break;
1047 	default:
1048 		return ENOSYS;
1049 	}
1050 	return 0;
1051 }
1052 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
1053 
1054 static int
superg_ioctl_set80211(struct ieee80211vap * vap,struct ieee80211req * ireq)1055 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
1056 {
1057 	switch (ireq->i_type) {
1058 	case IEEE80211_IOC_FF:
1059 		if (ireq->i_val) {
1060 			if ((vap->iv_caps & IEEE80211_C_FF) == 0)
1061 				return EOPNOTSUPP;
1062 			vap->iv_flags |= IEEE80211_F_FF;
1063 		} else
1064 			vap->iv_flags &= ~IEEE80211_F_FF;
1065 		return ENETRESET;
1066 	case IEEE80211_IOC_TURBOP:
1067 		if (ireq->i_val) {
1068 			if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
1069 				return EOPNOTSUPP;
1070 			vap->iv_flags |= IEEE80211_F_TURBOP;
1071 		} else
1072 			vap->iv_flags &= ~IEEE80211_F_TURBOP;
1073 		return ENETRESET;
1074 	default:
1075 		return ENOSYS;
1076 	}
1077 }
1078 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);
1079 
1080 #endif	/* IEEE80211_SUPPORT_SUPERG */
1081