xref: /freebsd/sys/net80211/ieee80211_crypto.c (revision 1f76551e1a5e98673f31043d11366ca41d4f56fe)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic crypto support.
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/if.h>
43 #include <net/if_media.h>
44 #include <net/ethernet.h>		/* XXX ETHER_HDR_LEN */
45 
46 #include <net80211/ieee80211_var.h>
47 
48 MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state");
49 
50 static	int _ieee80211_crypto_delkey(struct ieee80211vap *,
51 		struct ieee80211_key *);
52 
53 /*
54  * Table of registered cipher modules.
55  */
56 static	const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
57 
58 /*
59  * Default "null" key management routines.
60  */
61 static int
null_key_alloc(struct ieee80211vap * vap,struct ieee80211_key * k,ieee80211_keyix * keyix,ieee80211_keyix * rxkeyix)62 null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
63 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
64 {
65 
66 	if (!ieee80211_is_key_global(vap, k)) {
67 		/*
68 		 * Not in the global key table, the driver should handle this
69 		 * by allocating a slot in the h/w key table/cache.  In
70 		 * lieu of that return key slot 0 for any unicast key
71 		 * request.  We disallow the request if this is a group key.
72 		 * This default policy does the right thing for legacy hardware
73 		 * with a 4 key table.  It also handles devices that pass
74 		 * packets through untouched when marked with the WEP bit
75 		 * and key index 0.
76 		 */
77 		if (k->wk_flags & IEEE80211_KEY_GROUP)
78 			return 0;
79 		*keyix = 0;	/* NB: use key index 0 for ucast key */
80 	} else {
81 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
82 	}
83 	*rxkeyix = IEEE80211_KEYIX_NONE;	/* XXX maybe *keyix? */
84 	return 1;
85 }
86 static int
null_key_delete(struct ieee80211vap * vap,const struct ieee80211_key * k)87 null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
88 {
89 	return 1;
90 }
91 static 	int
null_key_set(struct ieee80211vap * vap,const struct ieee80211_key * k)92 null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
93 {
94 	return 1;
95 }
null_key_update(struct ieee80211vap * vap)96 static void null_key_update(struct ieee80211vap *vap) {}
97 
98 /*
99  * Write-arounds for common operations.
100  */
101 static __inline void
cipher_detach(struct ieee80211_key * key)102 cipher_detach(struct ieee80211_key *key)
103 {
104 	key->wk_cipher->ic_detach(key);
105 }
106 
107 static __inline void *
cipher_attach(struct ieee80211vap * vap,struct ieee80211_key * key)108 cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key)
109 {
110 	return key->wk_cipher->ic_attach(vap, key);
111 }
112 
113 /*
114  * Wrappers for driver key management methods.
115  */
116 static __inline int
dev_key_alloc(struct ieee80211vap * vap,struct ieee80211_key * key,ieee80211_keyix * keyix,ieee80211_keyix * rxkeyix)117 dev_key_alloc(struct ieee80211vap *vap,
118 	struct ieee80211_key *key,
119 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
120 {
121 	return vap->iv_key_alloc(vap, key, keyix, rxkeyix);
122 }
123 
124 static __inline int
dev_key_delete(struct ieee80211vap * vap,const struct ieee80211_key * key)125 dev_key_delete(struct ieee80211vap *vap,
126 	const struct ieee80211_key *key)
127 {
128 	return vap->iv_key_delete(vap, key);
129 }
130 
131 static __inline int
dev_key_set(struct ieee80211vap * vap,const struct ieee80211_key * key)132 dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key)
133 {
134 	return vap->iv_key_set(vap, key);
135 }
136 
137 /*
138  * Setup crypto support for a device/shared instance.
139  */
140 void
ieee80211_crypto_attach(struct ieee80211com * ic)141 ieee80211_crypto_attach(struct ieee80211com *ic)
142 {
143 	/* NB: we assume everything is pre-zero'd */
144 	ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
145 
146 	/*
147 	 * Default set of net80211 supported ciphers.
148 	 *
149 	 * These are the default set that all drivers are expected to
150 	 * support, either/or in hardware and software.
151 	 *
152 	 * Drivers can add their own support to this and the
153 	 * hardware cipher list (ic_cryptocaps.)
154 	 */
155 	ic->ic_sw_cryptocaps = IEEE80211_CRYPTO_WEP |
156 	    IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM;
157 
158 	/*
159 	 * Default set of key management types supported by net80211.
160 	 *
161 	 * These are supported by software net80211 and announced/
162 	 * driven by hostapd + wpa_supplicant.
163 	 *
164 	 * Drivers doing full supplicant offload must not set
165 	 * anything here.
166 	 *
167 	 * Note that IEEE80211_C_WPA1 and IEEE80211_C_WPA2 are the
168 	 * "old" style way of drivers announcing key management
169 	 * capabilities.  There are many, many more key management
170 	 * suites in 802.11-2016 (see 9.4.2.25.3 - AKM suites.)
171 	 * For now they still need to be set - these flags are checked
172 	 * when assembling a beacon to reserve space for the WPA
173 	 * vendor IE (WPA 1) and RSN IE (WPA 2).
174 	 */
175 	ic->ic_sw_keymgmtcaps = 0;
176 }
177 
178 /*
179  * Teardown crypto support.
180  */
181 void
ieee80211_crypto_detach(struct ieee80211com * ic)182 ieee80211_crypto_detach(struct ieee80211com *ic)
183 {
184 }
185 
186 /*
187  * Set the supported ciphers for software encryption.
188  */
189 void
ieee80211_crypto_set_supported_software_ciphers(struct ieee80211com * ic,uint32_t cipher_set)190 ieee80211_crypto_set_supported_software_ciphers(struct ieee80211com *ic,
191     uint32_t cipher_set)
192 {
193 	ic->ic_sw_cryptocaps = cipher_set;
194 }
195 
196 /*
197  * Set the supported ciphers for hardware encryption.
198  */
199 void
ieee80211_crypto_set_supported_hardware_ciphers(struct ieee80211com * ic,uint32_t cipher_set)200 ieee80211_crypto_set_supported_hardware_ciphers(struct ieee80211com *ic,
201     uint32_t cipher_set)
202 {
203 	ic->ic_cryptocaps = cipher_set;
204 }
205 
206 /*
207  * Set the supported software key management by the driver.
208  *
209  * These are the key management suites that are supported via
210  * the driver via hostapd/wpa_supplicant.
211  *
212  * Key management which is completely offloaded (ie, the supplicant
213  * runs in hardware/firmware) must not be set here.
214  */
215 void
ieee80211_crypto_set_supported_driver_keymgmt(struct ieee80211com * ic,uint32_t keymgmt_set)216 ieee80211_crypto_set_supported_driver_keymgmt(struct ieee80211com *ic,
217     uint32_t keymgmt_set)
218 {
219 
220 	ic->ic_sw_keymgmtcaps = keymgmt_set;
221 }
222 
223 /*
224  * Setup crypto support for a vap.
225  */
226 void
ieee80211_crypto_vattach(struct ieee80211vap * vap)227 ieee80211_crypto_vattach(struct ieee80211vap *vap)
228 {
229 	int i;
230 
231 	/* NB: we assume everything is pre-zero'd */
232 	vap->iv_max_keyix = IEEE80211_WEP_NKID;
233 	vap->iv_def_txkey = IEEE80211_KEYIX_NONE;
234 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
235 		ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i],
236 			IEEE80211_KEYIX_NONE);
237 	/*
238 	 * Initialize the driver key support routines to noop entries.
239 	 * This is useful especially for the cipher test modules.
240 	 */
241 	vap->iv_key_alloc = null_key_alloc;
242 	vap->iv_key_set = null_key_set;
243 	vap->iv_key_delete = null_key_delete;
244 	vap->iv_key_update_begin = null_key_update;
245 	vap->iv_key_update_end = null_key_update;
246 }
247 
248 /*
249  * Teardown crypto support for a vap.
250  */
251 void
ieee80211_crypto_vdetach(struct ieee80211vap * vap)252 ieee80211_crypto_vdetach(struct ieee80211vap *vap)
253 {
254 	ieee80211_crypto_delglobalkeys(vap);
255 }
256 
257 /*
258  * Register a crypto cipher module.
259  */
260 void
ieee80211_crypto_register(const struct ieee80211_cipher * cip)261 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
262 {
263 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
264 		net80211_printf("%s: cipher %s has an invalid cipher index %u\n",
265 			__func__, cip->ic_name, cip->ic_cipher);
266 		return;
267 	}
268 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
269 		net80211_printf("%s: cipher %s registered with a different template\n",
270 			__func__, cip->ic_name);
271 		return;
272 	}
273 	ciphers[cip->ic_cipher] = cip;
274 }
275 
276 /*
277  * Unregister a crypto cipher module.
278  */
279 void
ieee80211_crypto_unregister(const struct ieee80211_cipher * cip)280 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
281 {
282 	if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
283 		net80211_printf("%s: cipher %s has an invalid cipher index %u\n",
284 			__func__, cip->ic_name, cip->ic_cipher);
285 		return;
286 	}
287 	if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
288 		net80211_printf("%s: cipher %s registered with a different template\n",
289 			__func__, cip->ic_name);
290 		return;
291 	}
292 	/* NB: don't complain about not being registered */
293 	/* XXX disallow if references */
294 	ciphers[cip->ic_cipher] = NULL;
295 }
296 
297 int
ieee80211_crypto_available(u_int cipher)298 ieee80211_crypto_available(u_int cipher)
299 {
300 	return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
301 }
302 
303 /* XXX well-known names! */
304 static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = {
305 	[IEEE80211_CIPHER_WEP]	   = "wlan_wep",
306 	[IEEE80211_CIPHER_TKIP]	   = "wlan_tkip",
307 	[IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb",
308 	[IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp",
309 	[IEEE80211_CIPHER_TKIPMIC] = "#4",	/* NB: reserved */
310 	[IEEE80211_CIPHER_CKIP]	   = "wlan_ckip",
311 	[IEEE80211_CIPHER_NONE]	   = "wlan_none",
312 	[IEEE80211_CIPHER_AES_CCM_256] = "wlan_ccmp",
313 	[IEEE80211_CIPHER_BIP_CMAC_128] = "wlan_bip_cmac",
314 	[IEEE80211_CIPHER_BIP_CMAC_256] = "wlan_bip_cmac",
315 	[IEEE80211_CIPHER_BIP_GMAC_128] = "wlan_bip_gmac",
316 	[IEEE80211_CIPHER_BIP_GMAC_256] = "wlan_bip_gmac",
317 	[IEEE80211_CIPHER_AES_GCM_128]  = "wlan_gcmp",
318 	[IEEE80211_CIPHER_AES_GCM_256]  = "wlan_gcmp",
319 };
320 
321 /* NB: there must be no overlap between user-supplied and device-owned flags */
322 CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0);
323 
324 /*
325  * Establish a relationship between the specified key and cipher
326  * and, if necessary, allocate a hardware index from the driver.
327  * Note that when a fixed key index is required it must be specified.
328  *
329  * This must be the first call applied to a key; all the other key
330  * routines assume wk_cipher is setup.
331  *
332  * Locking must be handled by the caller using:
333  *	ieee80211_key_update_begin(vap);
334  *	ieee80211_key_update_end(vap);
335  */
336 int
ieee80211_crypto_newkey(struct ieee80211vap * vap,int cipher,int flags,struct ieee80211_key * key)337 ieee80211_crypto_newkey(struct ieee80211vap *vap,
338 	int cipher, int flags, struct ieee80211_key *key)
339 {
340 	struct ieee80211com *ic = vap->iv_ic;
341 	const struct ieee80211_cipher *cip;
342 	ieee80211_keyix keyix, rxkeyix;
343 	void *keyctx;
344 	int oflags;
345 
346 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
347 	    "%s: cipher %u flags 0x%x keyix %u\n",
348 	    __func__, cipher, flags, key->wk_keyix);
349 
350 	/*
351 	 * Validate cipher and set reference to cipher routines.
352 	 */
353 	if (cipher >= IEEE80211_CIPHER_MAX) {
354 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
355 		    "%s: invalid cipher %u\n", __func__, cipher);
356 		vap->iv_stats.is_crypto_badcipher++;
357 		return 0;
358 	}
359 	cip = ciphers[cipher];
360 	if (cip == NULL) {
361 		/*
362 		 * Auto-load cipher module if we have a well-known name
363 		 * for it.  It might be better to use string names rather
364 		 * than numbers and craft a module name based on the cipher
365 		 * name; e.g. wlan_cipher_<cipher-name>.
366 		 */
367 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
368 		    "%s: unregistered cipher %u, load module %s\n",
369 		    __func__, cipher, cipher_modnames[cipher]);
370 		ieee80211_load_module(cipher_modnames[cipher]);
371 		/*
372 		 * If cipher module loaded it should immediately
373 		 * call ieee80211_crypto_register which will fill
374 		 * in the entry in the ciphers array.
375 		 */
376 		cip = ciphers[cipher];
377 		if (cip == NULL) {
378 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
379 			    "%s: unable to load cipher %u, module %s\n",
380 			    __func__, cipher, cipher_modnames[cipher]);
381 			vap->iv_stats.is_crypto_nocipher++;
382 			return 0;
383 		}
384 	}
385 
386 	oflags = key->wk_flags;
387 	flags &= IEEE80211_KEY_COMMON;
388 	/* NB: preserve device attributes */
389 	flags |= (oflags & IEEE80211_KEY_DEVICE);
390 	/*
391 	 * If the hardware does not support the cipher then
392 	 * fallback to a host-based implementation.
393 	 */
394 	if ((ic->ic_cryptocaps & (1<<cipher)) == 0) {
395 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
396 		    "%s: no h/w support for cipher %s, falling back to s/w\n",
397 		    __func__, cip->ic_name);
398 		flags |= IEEE80211_KEY_SWCRYPT;
399 	}
400 	/*
401 	 * Check if the software cipher is available; if not then
402 	 * fail it early.
403 	 *
404 	 * Some devices do not support all ciphers in software
405 	 * (for example they don't support a "raw" data path.)
406 	 */
407 	if ((flags & IEEE80211_KEY_SWCRYPT) &&
408 	    (ic->ic_sw_cryptocaps & (1<<cipher)) == 0) {
409 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
410 		    "%s: no s/w support for cipher %s, rejecting\n",
411 		    __func__, cip->ic_name);
412 		vap->iv_stats.is_crypto_swcipherfail++;
413 		return (0);
414 	}
415 	/*
416 	 * Hardware TKIP with software MIC is an important
417 	 * combination; we handle it by flagging each key,
418 	 * the cipher modules honor it.
419 	 */
420 	if (cipher == IEEE80211_CIPHER_TKIP &&
421 	    (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) {
422 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
423 		    "%s: no h/w support for TKIP MIC, falling back to s/w\n",
424 		    __func__);
425 		flags |= IEEE80211_KEY_SWMIC;
426 	}
427 
428 	/*
429 	 * Bind cipher to key instance.  Note we do this
430 	 * after checking the device capabilities so the
431 	 * cipher module can optimize space usage based on
432 	 * whether or not it needs to do the cipher work.
433 	 */
434 	if (key->wk_cipher != cip || key->wk_flags != flags) {
435 		/*
436 		 * Fillin the flags so cipher modules can see s/w
437 		 * crypto requirements and potentially allocate
438 		 * different state and/or attach different method
439 		 * pointers.
440 		 */
441 		key->wk_flags = flags;
442 		keyctx = cip->ic_attach(vap, key);
443 		if (keyctx == NULL) {
444 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
445 				"%s: unable to attach cipher %s\n",
446 				__func__, cip->ic_name);
447 			key->wk_flags = oflags;	/* restore old flags */
448 			vap->iv_stats.is_crypto_attachfail++;
449 			return 0;
450 		}
451 		cipher_detach(key);
452 		key->wk_cipher = cip;		/* XXX refcnt? */
453 		key->wk_private = keyctx;
454 	}
455 
456 	/*
457 	 * Ask the driver for a key index if we don't have one.
458 	 * Note that entries in the global key table always have
459 	 * an index; this means it's safe to call this routine
460 	 * for these entries just to setup the reference to the
461 	 * cipher template.  Note also that when using software
462 	 * crypto we also call the driver to give us a key index.
463 	 */
464 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) {
465 		if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) {
466 			/*
467 			 * Unable to setup driver state.
468 			 */
469 			vap->iv_stats.is_crypto_keyfail++;
470 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
471 			    "%s: unable to setup cipher %s\n",
472 			    __func__, cip->ic_name);
473 			return 0;
474 		}
475 		if (key->wk_flags != flags) {
476 			/*
477 			 * Driver overrode flags we setup; typically because
478 			 * resources were unavailable to handle _this_ key.
479 			 * Re-attach the cipher context to allow cipher
480 			 * modules to handle differing requirements.
481 			 */
482 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
483 			    "%s: driver override for cipher %s, flags "
484 			    "%b -> %b\n", __func__, cip->ic_name,
485 			    oflags, IEEE80211_KEY_BITS,
486 			    key->wk_flags, IEEE80211_KEY_BITS);
487 			keyctx = cip->ic_attach(vap, key);
488 			if (keyctx == NULL) {
489 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
490 				    "%s: unable to attach cipher %s with "
491 				    "flags %b\n", __func__, cip->ic_name,
492 				    key->wk_flags, IEEE80211_KEY_BITS);
493 				key->wk_flags = oflags;	/* restore old flags */
494 				vap->iv_stats.is_crypto_attachfail++;
495 				return 0;
496 			}
497 			cipher_detach(key);
498 			key->wk_cipher = cip;		/* XXX refcnt? */
499 			key->wk_private = keyctx;
500 		}
501 		key->wk_keyix = keyix;
502 		key->wk_rxkeyix = rxkeyix;
503 		key->wk_flags |= IEEE80211_KEY_DEVKEY;
504 	}
505 	return 1;
506 }
507 
508 /*
509  * Remove the key (no locking, for internal use).
510  */
511 static int
_ieee80211_crypto_delkey(struct ieee80211vap * vap,struct ieee80211_key * key)512 _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
513 {
514 	KASSERT(key->wk_cipher != NULL, ("No cipher!"));
515 
516 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
517 	    "%s: %s keyix %u flags %b rsc %ju tsc %ju len %u\n",
518 	    __func__, key->wk_cipher->ic_name,
519 	    key->wk_keyix, key->wk_flags, IEEE80211_KEY_BITS,
520 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
521 	    key->wk_keylen);
522 
523 	if (key->wk_flags & IEEE80211_KEY_DEVKEY) {
524 		/*
525 		 * Remove hardware entry.
526 		 */
527 		/* XXX key cache */
528 		if (!dev_key_delete(vap, key)) {
529 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
530 			    "%s: driver did not delete key index %u\n",
531 			    __func__, key->wk_keyix);
532 			vap->iv_stats.is_crypto_delkey++;
533 			/* XXX recovery? */
534 		}
535 	}
536 	cipher_detach(key);
537 	memset(key, 0, sizeof(*key));
538 	ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE);
539 	return 1;
540 }
541 
542 /*
543  * Remove the specified key.
544  */
545 int
ieee80211_crypto_delkey(struct ieee80211vap * vap,struct ieee80211_key * key)546 ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key)
547 {
548 	int status;
549 
550 	ieee80211_key_update_begin(vap);
551 	status = _ieee80211_crypto_delkey(vap, key);
552 	ieee80211_key_update_end(vap);
553 	return status;
554 }
555 
556 /*
557  * Clear the global key table.
558  */
559 void
ieee80211_crypto_delglobalkeys(struct ieee80211vap * vap)560 ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap)
561 {
562 	int i;
563 
564 	ieee80211_key_update_begin(vap);
565 	for (i = 0; i < IEEE80211_WEP_NKID; i++)
566 		(void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]);
567 	ieee80211_key_update_end(vap);
568 }
569 
570 /*
571  * Set the contents of the specified key.
572  *
573  * Locking must be handled by the caller using:
574  *	ieee80211_key_update_begin(vap);
575  *	ieee80211_key_update_end(vap);
576  */
577 int
ieee80211_crypto_setkey(struct ieee80211vap * vap,struct ieee80211_key * key)578 ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key)
579 {
580 	const struct ieee80211_cipher *cip = key->wk_cipher;
581 
582 	KASSERT(cip != NULL, ("No cipher!"));
583 
584 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
585 	    "%s: %s keyix %u flags %b mac %s rsc %ju tsc %ju len %u\n",
586 	    __func__, cip->ic_name, key->wk_keyix,
587 	    key->wk_flags, IEEE80211_KEY_BITS, ether_sprintf(key->wk_macaddr),
588 	    key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc,
589 	    key->wk_keylen);
590 
591 	if ((key->wk_flags & IEEE80211_KEY_DEVKEY)  == 0) {
592 		/* XXX nothing allocated, should not happen */
593 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
594 		    "%s: no device key setup done; should not happen!\n",
595 		    __func__);
596 		vap->iv_stats.is_crypto_setkey_nokey++;
597 		return 0;
598 	}
599 	/*
600 	 * Give cipher a chance to validate key contents.
601 	 * XXX should happen before modifying state.
602 	 */
603 	if (!cip->ic_setkey(key)) {
604 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO,
605 		    "%s: cipher %s rejected key index %u len %u flags %b\n",
606 		    __func__, cip->ic_name, key->wk_keyix,
607 		    key->wk_keylen, key->wk_flags, IEEE80211_KEY_BITS);
608 		vap->iv_stats.is_crypto_setkey_cipher++;
609 		return 0;
610 	}
611 	return dev_key_set(vap, key);
612 }
613 
614 /**
615  * @brief Return index if the key is a WEP key (0..3); -1 otherwise.
616  *
617  * This is different to "get_keyid" which defaults to returning
618  * 0 for unicast keys; it assumes that it won't be used for WEP.
619  *
620  * @param vap the current VAP
621  * @param k ieee80211_key to check
622  * @returns 0..3 if it's a global/WEP key, -1 otherwise.
623  */
624 int
ieee80211_crypto_get_key_wepidx(const struct ieee80211vap * vap,const struct ieee80211_key * k)625 ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap,
626     const struct ieee80211_key *k)
627 {
628 
629 	if (ieee80211_is_key_global(vap, k)) {
630 		return (k - vap->iv_nw_keys);
631 	}
632 	return (-1);
633 }
634 
635 /**
636  * @brief Return the index of a unicast, global or IGTK key.
637  *
638  * Return the index of a key.  For unicast keys the index is 0..1.
639  * For global/WEP keys it's 0..3.  For IGTK keys its 4..5.
640  *
641  * TODO: support >1 unicast key
642  * TODO: support IGTK keys
643  *
644  * @param vap the current VAP
645  * @param k ieee80211_key to check
646  * @returns 0..3 for a WEP/global key, 0..1 for unicast key, 4..5 for IGTK key
647  */
648 uint8_t
ieee80211_crypto_get_keyid(struct ieee80211vap * vap,struct ieee80211_key * k)649 ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k)
650 {
651 	if (ieee80211_is_key_global(vap, k)) {
652 		return (k - vap->iv_nw_keys);
653 	}
654 
655 	return (0);
656 }
657 
658 /**
659  * @param Return the key to use for encrypting an mbuf frame to a node
660  *
661  * This routine chooses a suitable key used to encrypt the given frame with.
662  * It doesn't do the encryption; it only chooses the key.  If a key is not
663  * available then the routine will return NULL.
664  *
665  * It's up to the caller to enforce whether a key is absolutely required or not.
666  *
667  * @param ni The ieee80211_node to send the frame to
668  * @param m the mbuf to encrypt
669  * @returns the ieee80211_key to encrypt with, or NULL if there's no suitable key
670  */
671 struct ieee80211_key *
ieee80211_crypto_get_txkey(struct ieee80211_node * ni,struct mbuf * m)672 ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m)
673 {
674 	struct ieee80211vap *vap = ni->ni_vap;
675 	struct ieee80211_frame *wh;
676 
677 	/*
678 	 * Multicast traffic always uses the multicast key.
679 	 *
680 	 * Historically we would fall back to the default
681 	 * transmit key if there was no unicast key.  This
682 	 * behaviour was documented up to IEEE Std 802.11-2016,
683 	 * 12.9.2.2 Per-MSDU/Per-A-MSDU Tx pseudocode, in the
684 	 * 'else' case but is no longer in later versions of
685 	 * the standard.  Additionally falling back to the
686 	 * group key for unicast was a security risk.
687 	 */
688 	wh = mtod(m, struct ieee80211_frame *);
689 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
690 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) {
691 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
692 			    wh->i_addr1,
693 			    "no default transmit key (%s) deftxkey %u",
694 			    __func__, vap->iv_def_txkey);
695 			vap->iv_stats.is_tx_nodefkey++;
696 			return NULL;
697 		}
698 		return &vap->iv_nw_keys[vap->iv_def_txkey];
699 	}
700 
701 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
702 		return NULL;
703 	return &ni->ni_ucastkey;
704 }
705 
706 /**
707  * @brief Privacy encapsulate and encrypt the given mbuf.
708  *
709  * This routine handles the mechanics of encryption - expanding the
710  * mbuf to add privacy headers, IV, ICV, MIC, MMIC, and then encrypts
711  * the given mbuf if required.
712  *
713  * This should be called by the driver in its TX path as part of
714  * encapsulation before passing frames to the hardware/firmware
715  * queues.
716  *
717  * Drivers/hardware which does its own entirely offload path
718  * should still call this for completeness - it indicates to the
719  * driver that the frame itself should be encrypted.
720  *
721  * The driver should have set capability bits in the attach /
722  * key allocation path to disable various encapsulation/encryption
723  * features.
724  *
725  * @param ni ieee80211_node for this frame
726  * @param mbuf mbuf to modify
727  * @returns the key used if the frame is to be encrypted, NULL otherwise
728  */
729 struct ieee80211_key *
ieee80211_crypto_encap(struct ieee80211_node * ni,struct mbuf * m)730 ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m)
731 {
732 	struct ieee80211_key *k;
733 	const struct ieee80211_cipher *cip;
734 
735 	if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) {
736 		cip = k->wk_cipher;
737 		return (cip->ic_encap(k, m) ? k : NULL);
738 	}
739 
740 	return NULL;
741 }
742 
743 /**
744  * @brief Decapsulate and validate an encrypted frame.
745  *
746  * This handles an encrypted frame (one with the privacy bit set.)
747  * It also obeys the key / config / receive packet flags for how
748  * the driver says its already been processed.
749  *
750  * Unlike ieee80211_crypto_encap(), this isn't called in the driver.
751  * Instead, drivers passed the potentially decrypted frame - fully,
752  * partial, or not at all - and net80211 will call this as appropriate.
753  *
754  * This handles NICs (like ath(4)) which have a variable size between
755  * the 802.11 header and 802.11 payload due to DMA alignment / encryption
756  * engine concerns.
757  *
758  * If the frame was decrypted and validated successfully then 1 is returned
759  * and the mbuf can be treated as an 802.11 frame.  If it is not decrypted
760  * successfully or it was decrypted but failed validation/checks, then
761  * 0 is returned.
762  *
763  * @param ni ieee80211_node for received frame
764  * @param m mbuf frame to receive
765  * @param hdrlen length of the 802.11 header, including trailing null bytes
766  * @param key pointer to ieee80211_key that will be set if appropriate
767  * @returns 0 if the frame wasn't decrypted/validated, 1 if decrypted/validated.
768  */
769 int
ieee80211_crypto_decap(struct ieee80211_node * ni,struct mbuf * m,int hdrlen,struct ieee80211_key ** key)770 ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen,
771     struct ieee80211_key **key)
772 {
773 #define	IEEE80211_WEP_HDRLEN	(IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
774 #define	IEEE80211_WEP_MINLEN \
775 	(sizeof(struct ieee80211_frame) + \
776 	IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
777 	struct ieee80211vap *vap = ni->ni_vap;
778 	struct ieee80211_key *k;
779 	struct ieee80211_frame *wh;
780 	const struct ieee80211_rx_stats *rxs;
781 	const struct ieee80211_cipher *cip;
782 	uint8_t keyid;
783 
784 	/*
785 	 * Check for hardware decryption and IV stripping.
786 	 * If the IV is stripped then we definitely can't find a key.
787 	 * Set the key to NULL but return true; upper layers
788 	 * will need to handle a NULL key for a successful
789 	 * decrypt.
790 	 */
791 	rxs = ieee80211_get_rx_params_ptr(m);
792 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
793 		if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) {
794 			/*
795 			 * Hardware decrypted, IV stripped.
796 			 * We can't find a key with a stripped IV.
797 			 * Return successful.
798 			 */
799 			*key = NULL;
800 			return (1);
801 		}
802 	}
803 
804 	/* NB: this minimum size data frame could be bigger */
805 	if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
806 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
807 			"%s: WEP data frame too short, len %u\n",
808 			__func__, m->m_pkthdr.len);
809 		vap->iv_stats.is_rx_tooshort++;	/* XXX need unique stat? */
810 		*key = NULL;
811 		return (0);
812 	}
813 
814 	/*
815 	 * Locate the key. If unicast and there is no unicast
816 	 * key then we fall back to the key id in the header.
817 	 * This assumes unicast keys are only configured when
818 	 * the key id in the header is meaningless (typically 0).
819 	 */
820 	wh = mtod(m, struct ieee80211_frame *);
821 	m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid);
822 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
823 	    IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey))
824 		k = &vap->iv_nw_keys[keyid >> 6];
825 	else
826 		k = &ni->ni_ucastkey;
827 
828 	/*
829 	 * Ensure crypto header is contiguous and long enough for all
830 	 * decap work.
831 	 */
832 	cip = k->wk_cipher;
833 	if (m->m_len < hdrlen + cip->ic_header) {
834 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
835 		    "frame is too short (%d < %u) for crypto decap",
836 		    cip->ic_name, m->m_len, hdrlen + cip->ic_header);
837 		vap->iv_stats.is_rx_tooshort++;
838 		*key = NULL;
839 		return (0);
840 	}
841 
842 	/*
843 	 * Attempt decryption.
844 	 *
845 	 * If we fail then don't return the key - return NULL
846 	 * and an error.
847 	 */
848 	if (cip->ic_decap(k, m, hdrlen)) {
849 		/* success */
850 		*key = k;
851 		return (1);
852 	}
853 
854 	/* Failure */
855 	*key = NULL;
856 	return (0);
857 #undef IEEE80211_WEP_MINLEN
858 #undef IEEE80211_WEP_HDRLEN
859 }
860 
861 /**
862  * @brief Check and remove any post-defragmentation MIC from an MSDU.
863  *
864  * This is called after defragmentation.  Crypto types that implement
865  * a MIC/ICV check per MSDU will not implement this function.
866  *
867  * As an example, TKIP decapsulation covers both MIC/ICV checks per
868  * MPDU (the "WEP" ICV) and then a Michael MIC verification on the
869  * defragmented MSDU.  Please see 802.11-2020 12.5.2.1.3 (TKIP decapsulation)
870  * for more information.
871  *
872  * @param vap	the current VAP
873  * @param k	the current key
874  * @param m	the mbuf representing the MSDU
875  * @param f	set to 1 to force a MSDU MIC check, even if HW decrypted
876  * @returns	0 if error / MIC check failed, 1 if OK
877  */
878 int
ieee80211_crypto_demic(struct ieee80211vap * vap,struct ieee80211_key * k,struct mbuf * m,int force)879 ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k,
880     struct mbuf *m, int force)
881 {
882 	const struct ieee80211_cipher *cip;
883 	const struct ieee80211_rx_stats *rxs;
884 	struct ieee80211_frame *wh;
885 
886 	rxs = ieee80211_get_rx_params_ptr(m);
887 	wh = mtod(m, struct ieee80211_frame *);
888 
889 	/*
890 	 * Handle demic / mic errors from hardware-decrypted offload devices.
891 	 */
892 	if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) {
893 		if ((rxs->c_pktflags & IEEE80211_RX_F_FAIL_MMIC) != 0) {
894 			/*
895 			 * Hardware has said MMIC failed.  We don't care about
896 			 * whether it was stripped or not.
897 			 *
898 			 * Eventually - teach the demic methods in crypto
899 			 * modules to handle a NULL key and not to dereference
900 			 * it.
901 			 */
902 			ieee80211_notify_michael_failure(vap, wh,
903 			    IEEE80211_KEYIX_NONE);
904 			return (0);
905 		}
906 
907 		if ((rxs->c_pktflags &
908 		    (IEEE80211_RX_F_MIC_STRIP|IEEE80211_RX_F_MMIC_STRIP)) != 0) {
909 			/*
910 			 * Hardware has decrypted and not indicated a
911 			 * MIC failure and has stripped the MIC.
912 			 * We may not have a key, so for now just
913 			 * return OK.
914 			 */
915 			return (1);
916 		}
917 	}
918 
919 	/*
920 	 * If we don't have a key at this point then we don't
921 	 * have to demic anything.
922 	 */
923 	if (k == NULL)
924 		return (1);
925 
926 	cip = k->wk_cipher;
927 	return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
928 }
929 
930 static void
load_ucastkey(void * arg,struct ieee80211_node * ni)931 load_ucastkey(void *arg, struct ieee80211_node *ni)
932 {
933 	struct ieee80211vap *vap = ni->ni_vap;
934 	struct ieee80211_key *k;
935 
936 	if (vap->iv_state != IEEE80211_S_RUN)
937 		return;
938 	k = &ni->ni_ucastkey;
939 	if (k->wk_flags & IEEE80211_KEY_DEVKEY)
940 		dev_key_set(vap, k);
941 }
942 
943 /*
944  * Re-load all keys known to the 802.11 layer that may
945  * have hardware state backing them.  This is used by
946  * drivers on resume to push keys down into the device.
947  */
948 void
ieee80211_crypto_reload_keys(struct ieee80211com * ic)949 ieee80211_crypto_reload_keys(struct ieee80211com *ic)
950 {
951 	struct ieee80211vap *vap;
952 	int i;
953 
954 	/*
955 	 * Keys in the global key table of each vap.
956 	 */
957 	/* NB: used only during resume so don't lock for now */
958 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
959 		if (vap->iv_state != IEEE80211_S_RUN)
960 			continue;
961 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
962 			const struct ieee80211_key *k = &vap->iv_nw_keys[i];
963 			if (k->wk_flags & IEEE80211_KEY_DEVKEY)
964 				dev_key_set(vap, k);
965 		}
966 	}
967 	/*
968 	 * Unicast keys.
969 	 */
970 	ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL);
971 }
972 
973 /*
974  * Set the default key index for WEP, or KEYIX_NONE for no default TX key.
975  *
976  * This should be done as part of a key update block (iv_key_update_begin /
977  * iv_key_update_end.)
978  */
979 void
ieee80211_crypto_set_deftxkey(struct ieee80211vap * vap,ieee80211_keyix kid)980 ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
981 {
982 
983 	/* XXX TODO: assert we're in a key update block */
984 
985 	vap->iv_update_deftxkey(vap, kid);
986 }
987 
988 /**
989  * @brief Calculate the AAD required for this frame for AES-GCM/AES-CCM.
990  *
991  * The contents are described in 802.11-2020 12.5.3.3.3 (Construct AAD)
992  * under AES-CCM and are shared with AES-GCM as covered in 12.5.5.3.3
993  * (Construct AAD) (AES-GCM).
994  *
995  * NOTE: the first two bytes are a 16 bit big-endian length, which are used
996  * by AES-CCM as part of the Adata field (RFC 3610, section 2.2
997  * (Authentication)) to indicate the length of the Adata field itself.
998  * Since this is small and fits in 0xfeff bytes, the length field
999  * uses the two byte big endian option.
1000  *
1001  * AES-GCM doesn't require the length at the beginning and will need to
1002  * skip it.
1003  *
1004  * TODO: net80211 currently doesn't support negotiating SPP (Signaling
1005  * and Payload Protected A-MSDUs) and thus bit 7 of the QoS control field
1006  * is always masked.
1007  *
1008  * TODO: net80211 currently doesn't support DMG (802.11ad) so bit 7
1009  * (A-MSDU present) and bit 8 (A-MSDU type) are always masked.
1010  *
1011  * @param wh	802.11 frame to calculate the AAD over
1012  * @param aad	AAD (additional authentication data) buffer
1013  * @param len	The AAD buffer length in bytes.
1014  * @returns	The number of AAD payload bytes (ignoring the first two
1015  * 		bytes, which are the AAD payload length in big-endian).
1016  */
1017 uint16_t
ieee80211_crypto_init_aad(const struct ieee80211_frame * wh,uint8_t * aad,int len)1018 ieee80211_crypto_init_aad(const struct ieee80211_frame *wh, uint8_t *aad,
1019     int len)
1020 {
1021 	uint16_t aad_len;
1022 
1023 	memset(aad, 0, len);
1024 
1025 	/*
1026 	 * AAD for PV0 MPDUs:
1027 	 *
1028 	 * FC with bits 4..6 and 11..13 masked to zero; 14 is always one
1029 	 * A1 | A2 | A3
1030 	 * SC with bits 4..15 (seq#) masked to zero
1031 	 * A4 (if present)
1032 	 * QC (if present)
1033 	 */
1034 	aad[0] = 0;	/* AAD length >> 8 */
1035 	/* NB: aad[1] set below */
1036 	aad[2] = wh->i_fc[0] & 0x8f;	/* see above for bitfields */
1037 	aad[3] = wh->i_fc[1] & 0xc7;	/* see above for bitfields */
1038 	/* mask aad[3] b7 if frame is data frame w/ QoS control field */
1039 	if (IEEE80211_IS_QOS_ANY(wh))
1040 		aad[3] &= 0x7f;
1041 
1042 	/* NB: we know 3 addresses are contiguous */
1043 	memcpy(aad + 4, wh->i_addr1, 3 * IEEE80211_ADDR_LEN);
1044 	aad[22] = wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK;
1045 	aad[23] = 0; /* all bits masked */
1046 	/*
1047 	 * Construct variable-length portion of AAD based
1048 	 * on whether this is a 4-address frame/QOS frame.
1049 	 * We always zero-pad to 32 bytes before running it
1050 	 * through the cipher.
1051 	 */
1052 	if (IEEE80211_IS_DSTODS(wh)) {
1053 		IEEE80211_ADDR_COPY(aad + 24,
1054 			((const struct ieee80211_frame_addr4 *)wh)->i_addr4);
1055 		if (IEEE80211_IS_QOS_ANY(wh)) {
1056 			const struct ieee80211_qosframe_addr4 *qwh4 =
1057 				(const struct ieee80211_qosframe_addr4 *) wh;
1058 			/* TODO: SPP A-MSDU / A-MSDU present bit */
1059 			aad[30] = qwh4->i_qos[0] & 0x0f;/* just priority bits */
1060 			aad[31] = 0;
1061 			aad_len = aad[1] = 22 + IEEE80211_ADDR_LEN + 2;
1062 		} else {
1063 			*(uint16_t *)&aad[30] = 0;
1064 			aad_len = aad[1] = 22 + IEEE80211_ADDR_LEN;
1065 		}
1066 	} else {
1067 		if (IEEE80211_IS_QOS_ANY(wh)) {
1068 			const struct ieee80211_qosframe *qwh =
1069 				(const struct ieee80211_qosframe*) wh;
1070 			/* TODO: SPP A-MSDU / A-MSDU present bit */
1071 			aad[24] = qwh->i_qos[0] & 0x0f;	/* just priority bits */
1072 			aad[25] = 0;
1073 			aad_len = aad[1] = 22 + 2;
1074 		} else {
1075 			*(uint16_t *)&aad[24] = 0;
1076 			aad_len = aad[1] = 22;
1077 		}
1078 		*(uint16_t *)&aad[26] = 0;
1079 		*(uint32_t *)&aad[28] = 0;
1080 	}
1081 
1082 	return (aad_len);
1083 }
1084