1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include <net/libeth/rx.h>
5 #include <net/libeth/tx.h>
6
7 #include "idpf.h"
8 #include "idpf_virtchnl.h"
9
10 struct idpf_tx_stash {
11 struct hlist_node hlist;
12 struct libeth_sqe buf;
13 };
14
15 #define idpf_tx_buf_compl_tag(buf) (*(u32 *)&(buf)->priv)
16 LIBETH_SQE_CHECK_PRIV(u32);
17
18 static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
19 unsigned int count);
20
21 /**
22 * idpf_buf_lifo_push - push a buffer pointer onto stack
23 * @stack: pointer to stack struct
24 * @buf: pointer to buf to push
25 *
26 * Returns 0 on success, negative on failure
27 **/
idpf_buf_lifo_push(struct idpf_buf_lifo * stack,struct idpf_tx_stash * buf)28 static int idpf_buf_lifo_push(struct idpf_buf_lifo *stack,
29 struct idpf_tx_stash *buf)
30 {
31 if (unlikely(stack->top == stack->size))
32 return -ENOSPC;
33
34 stack->bufs[stack->top++] = buf;
35
36 return 0;
37 }
38
39 /**
40 * idpf_buf_lifo_pop - pop a buffer pointer from stack
41 * @stack: pointer to stack struct
42 **/
idpf_buf_lifo_pop(struct idpf_buf_lifo * stack)43 static struct idpf_tx_stash *idpf_buf_lifo_pop(struct idpf_buf_lifo *stack)
44 {
45 if (unlikely(!stack->top))
46 return NULL;
47
48 return stack->bufs[--stack->top];
49 }
50
51 /**
52 * idpf_tx_timeout - Respond to a Tx Hang
53 * @netdev: network interface device structure
54 * @txqueue: TX queue
55 */
idpf_tx_timeout(struct net_device * netdev,unsigned int txqueue)56 void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
57 {
58 struct idpf_adapter *adapter = idpf_netdev_to_adapter(netdev);
59
60 adapter->tx_timeout_count++;
61
62 netdev_err(netdev, "Detected Tx timeout: Count %d, Queue %d\n",
63 adapter->tx_timeout_count, txqueue);
64 if (!idpf_is_reset_in_prog(adapter)) {
65 set_bit(IDPF_HR_FUNC_RESET, adapter->flags);
66 queue_delayed_work(adapter->vc_event_wq,
67 &adapter->vc_event_task,
68 msecs_to_jiffies(10));
69 }
70 }
71
72 /**
73 * idpf_tx_buf_rel_all - Free any empty Tx buffers
74 * @txq: queue to be cleaned
75 */
idpf_tx_buf_rel_all(struct idpf_tx_queue * txq)76 static void idpf_tx_buf_rel_all(struct idpf_tx_queue *txq)
77 {
78 struct libeth_sq_napi_stats ss = { };
79 struct idpf_buf_lifo *buf_stack;
80 struct idpf_tx_stash *stash;
81 struct libeth_cq_pp cp = {
82 .dev = txq->dev,
83 .ss = &ss,
84 };
85 struct hlist_node *tmp;
86 u32 i, tag;
87
88 /* Buffers already cleared, nothing to do */
89 if (!txq->tx_buf)
90 return;
91
92 /* Free all the Tx buffer sk_buffs */
93 for (i = 0; i < txq->desc_count; i++)
94 libeth_tx_complete(&txq->tx_buf[i], &cp);
95
96 kfree(txq->tx_buf);
97 txq->tx_buf = NULL;
98
99 if (!idpf_queue_has(FLOW_SCH_EN, txq))
100 return;
101
102 buf_stack = &txq->stash->buf_stack;
103 if (!buf_stack->bufs)
104 return;
105
106 /*
107 * If a Tx timeout occurred, there are potentially still bufs in the
108 * hash table, free them here.
109 */
110 hash_for_each_safe(txq->stash->sched_buf_hash, tag, tmp, stash,
111 hlist) {
112 if (!stash)
113 continue;
114
115 libeth_tx_complete(&stash->buf, &cp);
116 hash_del(&stash->hlist);
117 idpf_buf_lifo_push(buf_stack, stash);
118 }
119
120 for (i = 0; i < buf_stack->size; i++)
121 kfree(buf_stack->bufs[i]);
122
123 kfree(buf_stack->bufs);
124 buf_stack->bufs = NULL;
125 }
126
127 /**
128 * idpf_tx_desc_rel - Free Tx resources per queue
129 * @txq: Tx descriptor ring for a specific queue
130 *
131 * Free all transmit software resources
132 */
idpf_tx_desc_rel(struct idpf_tx_queue * txq)133 static void idpf_tx_desc_rel(struct idpf_tx_queue *txq)
134 {
135 idpf_tx_buf_rel_all(txq);
136 netdev_tx_reset_subqueue(txq->netdev, txq->idx);
137
138 if (!txq->desc_ring)
139 return;
140
141 dmam_free_coherent(txq->dev, txq->size, txq->desc_ring, txq->dma);
142 txq->desc_ring = NULL;
143 txq->next_to_use = 0;
144 txq->next_to_clean = 0;
145 }
146
147 /**
148 * idpf_compl_desc_rel - Free completion resources per queue
149 * @complq: completion queue
150 *
151 * Free all completion software resources.
152 */
idpf_compl_desc_rel(struct idpf_compl_queue * complq)153 static void idpf_compl_desc_rel(struct idpf_compl_queue *complq)
154 {
155 if (!complq->comp)
156 return;
157
158 dma_free_coherent(complq->netdev->dev.parent, complq->size,
159 complq->comp, complq->dma);
160 complq->comp = NULL;
161 complq->next_to_use = 0;
162 complq->next_to_clean = 0;
163 }
164
165 /**
166 * idpf_tx_desc_rel_all - Free Tx Resources for All Queues
167 * @vport: virtual port structure
168 *
169 * Free all transmit software resources
170 */
idpf_tx_desc_rel_all(struct idpf_vport * vport)171 static void idpf_tx_desc_rel_all(struct idpf_vport *vport)
172 {
173 int i, j;
174
175 if (!vport->txq_grps)
176 return;
177
178 for (i = 0; i < vport->num_txq_grp; i++) {
179 struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
180
181 for (j = 0; j < txq_grp->num_txq; j++)
182 idpf_tx_desc_rel(txq_grp->txqs[j]);
183
184 if (idpf_is_queue_model_split(vport->txq_model))
185 idpf_compl_desc_rel(txq_grp->complq);
186 }
187 }
188
189 /**
190 * idpf_tx_buf_alloc_all - Allocate memory for all buffer resources
191 * @tx_q: queue for which the buffers are allocated
192 *
193 * Returns 0 on success, negative on failure
194 */
idpf_tx_buf_alloc_all(struct idpf_tx_queue * tx_q)195 static int idpf_tx_buf_alloc_all(struct idpf_tx_queue *tx_q)
196 {
197 struct idpf_buf_lifo *buf_stack;
198 int buf_size;
199 int i;
200
201 /* Allocate book keeping buffers only. Buffers to be supplied to HW
202 * are allocated by kernel network stack and received as part of skb
203 */
204 buf_size = sizeof(struct idpf_tx_buf) * tx_q->desc_count;
205 tx_q->tx_buf = kzalloc(buf_size, GFP_KERNEL);
206 if (!tx_q->tx_buf)
207 return -ENOMEM;
208
209 if (!idpf_queue_has(FLOW_SCH_EN, tx_q))
210 return 0;
211
212 buf_stack = &tx_q->stash->buf_stack;
213
214 /* Initialize tx buf stack for out-of-order completions if
215 * flow scheduling offload is enabled
216 */
217 buf_stack->bufs = kcalloc(tx_q->desc_count, sizeof(*buf_stack->bufs),
218 GFP_KERNEL);
219 if (!buf_stack->bufs)
220 return -ENOMEM;
221
222 buf_stack->size = tx_q->desc_count;
223 buf_stack->top = tx_q->desc_count;
224
225 for (i = 0; i < tx_q->desc_count; i++) {
226 buf_stack->bufs[i] = kzalloc(sizeof(*buf_stack->bufs[i]),
227 GFP_KERNEL);
228 if (!buf_stack->bufs[i])
229 return -ENOMEM;
230 }
231
232 return 0;
233 }
234
235 /**
236 * idpf_tx_desc_alloc - Allocate the Tx descriptors
237 * @vport: vport to allocate resources for
238 * @tx_q: the tx ring to set up
239 *
240 * Returns 0 on success, negative on failure
241 */
idpf_tx_desc_alloc(const struct idpf_vport * vport,struct idpf_tx_queue * tx_q)242 static int idpf_tx_desc_alloc(const struct idpf_vport *vport,
243 struct idpf_tx_queue *tx_q)
244 {
245 struct device *dev = tx_q->dev;
246 int err;
247
248 err = idpf_tx_buf_alloc_all(tx_q);
249 if (err)
250 goto err_alloc;
251
252 tx_q->size = tx_q->desc_count * sizeof(*tx_q->base_tx);
253
254 /* Allocate descriptors also round up to nearest 4K */
255 tx_q->size = ALIGN(tx_q->size, 4096);
256 tx_q->desc_ring = dmam_alloc_coherent(dev, tx_q->size, &tx_q->dma,
257 GFP_KERNEL);
258 if (!tx_q->desc_ring) {
259 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
260 tx_q->size);
261 err = -ENOMEM;
262 goto err_alloc;
263 }
264
265 tx_q->next_to_use = 0;
266 tx_q->next_to_clean = 0;
267 idpf_queue_set(GEN_CHK, tx_q);
268
269 return 0;
270
271 err_alloc:
272 idpf_tx_desc_rel(tx_q);
273
274 return err;
275 }
276
277 /**
278 * idpf_compl_desc_alloc - allocate completion descriptors
279 * @vport: vport to allocate resources for
280 * @complq: completion queue to set up
281 *
282 * Return: 0 on success, -errno on failure.
283 */
idpf_compl_desc_alloc(const struct idpf_vport * vport,struct idpf_compl_queue * complq)284 static int idpf_compl_desc_alloc(const struct idpf_vport *vport,
285 struct idpf_compl_queue *complq)
286 {
287 complq->size = array_size(complq->desc_count, sizeof(*complq->comp));
288
289 complq->comp = dma_alloc_coherent(complq->netdev->dev.parent,
290 complq->size, &complq->dma,
291 GFP_KERNEL);
292 if (!complq->comp)
293 return -ENOMEM;
294
295 complq->next_to_use = 0;
296 complq->next_to_clean = 0;
297 idpf_queue_set(GEN_CHK, complq);
298
299 return 0;
300 }
301
302 /**
303 * idpf_tx_desc_alloc_all - allocate all queues Tx resources
304 * @vport: virtual port private structure
305 *
306 * Returns 0 on success, negative on failure
307 */
idpf_tx_desc_alloc_all(struct idpf_vport * vport)308 static int idpf_tx_desc_alloc_all(struct idpf_vport *vport)
309 {
310 int err = 0;
311 int i, j;
312
313 /* Setup buffer queues. In single queue model buffer queues and
314 * completion queues will be same
315 */
316 for (i = 0; i < vport->num_txq_grp; i++) {
317 for (j = 0; j < vport->txq_grps[i].num_txq; j++) {
318 struct idpf_tx_queue *txq = vport->txq_grps[i].txqs[j];
319 u8 gen_bits = 0;
320 u16 bufidx_mask;
321
322 err = idpf_tx_desc_alloc(vport, txq);
323 if (err) {
324 pci_err(vport->adapter->pdev,
325 "Allocation for Tx Queue %u failed\n",
326 i);
327 goto err_out;
328 }
329
330 if (!idpf_is_queue_model_split(vport->txq_model))
331 continue;
332
333 txq->compl_tag_cur_gen = 0;
334
335 /* Determine the number of bits in the bufid
336 * mask and add one to get the start of the
337 * generation bits
338 */
339 bufidx_mask = txq->desc_count - 1;
340 while (bufidx_mask >> 1) {
341 txq->compl_tag_gen_s++;
342 bufidx_mask = bufidx_mask >> 1;
343 }
344 txq->compl_tag_gen_s++;
345
346 gen_bits = IDPF_TX_SPLITQ_COMPL_TAG_WIDTH -
347 txq->compl_tag_gen_s;
348 txq->compl_tag_gen_max = GETMAXVAL(gen_bits);
349
350 /* Set bufid mask based on location of first
351 * gen bit; it cannot simply be the descriptor
352 * ring size-1 since we can have size values
353 * where not all of those bits are set.
354 */
355 txq->compl_tag_bufid_m =
356 GETMAXVAL(txq->compl_tag_gen_s);
357 }
358
359 if (!idpf_is_queue_model_split(vport->txq_model))
360 continue;
361
362 /* Setup completion queues */
363 err = idpf_compl_desc_alloc(vport, vport->txq_grps[i].complq);
364 if (err) {
365 pci_err(vport->adapter->pdev,
366 "Allocation for Tx Completion Queue %u failed\n",
367 i);
368 goto err_out;
369 }
370 }
371
372 err_out:
373 if (err)
374 idpf_tx_desc_rel_all(vport);
375
376 return err;
377 }
378
379 /**
380 * idpf_rx_page_rel - Release an rx buffer page
381 * @rx_buf: the buffer to free
382 */
idpf_rx_page_rel(struct libeth_fqe * rx_buf)383 static void idpf_rx_page_rel(struct libeth_fqe *rx_buf)
384 {
385 if (unlikely(!rx_buf->page))
386 return;
387
388 page_pool_put_full_page(rx_buf->page->pp, rx_buf->page, false);
389
390 rx_buf->page = NULL;
391 rx_buf->offset = 0;
392 }
393
394 /**
395 * idpf_rx_hdr_buf_rel_all - Release header buffer memory
396 * @bufq: queue to use
397 */
idpf_rx_hdr_buf_rel_all(struct idpf_buf_queue * bufq)398 static void idpf_rx_hdr_buf_rel_all(struct idpf_buf_queue *bufq)
399 {
400 struct libeth_fq fq = {
401 .fqes = bufq->hdr_buf,
402 .pp = bufq->hdr_pp,
403 };
404
405 for (u32 i = 0; i < bufq->desc_count; i++)
406 idpf_rx_page_rel(&bufq->hdr_buf[i]);
407
408 libeth_rx_fq_destroy(&fq);
409 bufq->hdr_buf = NULL;
410 bufq->hdr_pp = NULL;
411 }
412
413 /**
414 * idpf_rx_buf_rel_bufq - Free all Rx buffer resources for a buffer queue
415 * @bufq: queue to be cleaned
416 */
idpf_rx_buf_rel_bufq(struct idpf_buf_queue * bufq)417 static void idpf_rx_buf_rel_bufq(struct idpf_buf_queue *bufq)
418 {
419 struct libeth_fq fq = {
420 .fqes = bufq->buf,
421 .pp = bufq->pp,
422 };
423
424 /* queue already cleared, nothing to do */
425 if (!bufq->buf)
426 return;
427
428 /* Free all the bufs allocated and given to hw on Rx queue */
429 for (u32 i = 0; i < bufq->desc_count; i++)
430 idpf_rx_page_rel(&bufq->buf[i]);
431
432 if (idpf_queue_has(HSPLIT_EN, bufq))
433 idpf_rx_hdr_buf_rel_all(bufq);
434
435 libeth_rx_fq_destroy(&fq);
436 bufq->buf = NULL;
437 bufq->pp = NULL;
438 }
439
440 /**
441 * idpf_rx_buf_rel_all - Free all Rx buffer resources for a receive queue
442 * @rxq: queue to be cleaned
443 */
idpf_rx_buf_rel_all(struct idpf_rx_queue * rxq)444 static void idpf_rx_buf_rel_all(struct idpf_rx_queue *rxq)
445 {
446 struct libeth_fq fq = {
447 .fqes = rxq->rx_buf,
448 .pp = rxq->pp,
449 };
450
451 if (!rxq->rx_buf)
452 return;
453
454 for (u32 i = 0; i < rxq->desc_count; i++)
455 idpf_rx_page_rel(&rxq->rx_buf[i]);
456
457 libeth_rx_fq_destroy(&fq);
458 rxq->rx_buf = NULL;
459 rxq->pp = NULL;
460 }
461
462 /**
463 * idpf_rx_desc_rel - Free a specific Rx q resources
464 * @rxq: queue to clean the resources from
465 * @dev: device to free DMA memory
466 * @model: single or split queue model
467 *
468 * Free a specific rx queue resources
469 */
idpf_rx_desc_rel(struct idpf_rx_queue * rxq,struct device * dev,u32 model)470 static void idpf_rx_desc_rel(struct idpf_rx_queue *rxq, struct device *dev,
471 u32 model)
472 {
473 if (!rxq)
474 return;
475
476 if (rxq->skb) {
477 dev_kfree_skb_any(rxq->skb);
478 rxq->skb = NULL;
479 }
480
481 if (!idpf_is_queue_model_split(model))
482 idpf_rx_buf_rel_all(rxq);
483
484 rxq->next_to_alloc = 0;
485 rxq->next_to_clean = 0;
486 rxq->next_to_use = 0;
487 if (!rxq->desc_ring)
488 return;
489
490 dmam_free_coherent(dev, rxq->size, rxq->desc_ring, rxq->dma);
491 rxq->desc_ring = NULL;
492 }
493
494 /**
495 * idpf_rx_desc_rel_bufq - free buffer queue resources
496 * @bufq: buffer queue to clean the resources from
497 * @dev: device to free DMA memory
498 */
idpf_rx_desc_rel_bufq(struct idpf_buf_queue * bufq,struct device * dev)499 static void idpf_rx_desc_rel_bufq(struct idpf_buf_queue *bufq,
500 struct device *dev)
501 {
502 if (!bufq)
503 return;
504
505 idpf_rx_buf_rel_bufq(bufq);
506
507 bufq->next_to_alloc = 0;
508 bufq->next_to_clean = 0;
509 bufq->next_to_use = 0;
510
511 if (!bufq->split_buf)
512 return;
513
514 dma_free_coherent(dev, bufq->size, bufq->split_buf, bufq->dma);
515 bufq->split_buf = NULL;
516 }
517
518 /**
519 * idpf_rx_desc_rel_all - Free Rx Resources for All Queues
520 * @vport: virtual port structure
521 *
522 * Free all rx queues resources
523 */
idpf_rx_desc_rel_all(struct idpf_vport * vport)524 static void idpf_rx_desc_rel_all(struct idpf_vport *vport)
525 {
526 struct device *dev = &vport->adapter->pdev->dev;
527 struct idpf_rxq_group *rx_qgrp;
528 u16 num_rxq;
529 int i, j;
530
531 if (!vport->rxq_grps)
532 return;
533
534 for (i = 0; i < vport->num_rxq_grp; i++) {
535 rx_qgrp = &vport->rxq_grps[i];
536
537 if (!idpf_is_queue_model_split(vport->rxq_model)) {
538 for (j = 0; j < rx_qgrp->singleq.num_rxq; j++)
539 idpf_rx_desc_rel(rx_qgrp->singleq.rxqs[j], dev,
540 VIRTCHNL2_QUEUE_MODEL_SINGLE);
541 continue;
542 }
543
544 num_rxq = rx_qgrp->splitq.num_rxq_sets;
545 for (j = 0; j < num_rxq; j++)
546 idpf_rx_desc_rel(&rx_qgrp->splitq.rxq_sets[j]->rxq,
547 dev, VIRTCHNL2_QUEUE_MODEL_SPLIT);
548
549 if (!rx_qgrp->splitq.bufq_sets)
550 continue;
551
552 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
553 struct idpf_bufq_set *bufq_set =
554 &rx_qgrp->splitq.bufq_sets[j];
555
556 idpf_rx_desc_rel_bufq(&bufq_set->bufq, dev);
557 }
558 }
559 }
560
561 /**
562 * idpf_rx_buf_hw_update - Store the new tail and head values
563 * @bufq: queue to bump
564 * @val: new head index
565 */
idpf_rx_buf_hw_update(struct idpf_buf_queue * bufq,u32 val)566 static void idpf_rx_buf_hw_update(struct idpf_buf_queue *bufq, u32 val)
567 {
568 bufq->next_to_use = val;
569
570 if (unlikely(!bufq->tail))
571 return;
572
573 /* writel has an implicit memory barrier */
574 writel(val, bufq->tail);
575 }
576
577 /**
578 * idpf_rx_hdr_buf_alloc_all - Allocate memory for header buffers
579 * @bufq: ring to use
580 *
581 * Returns 0 on success, negative on failure.
582 */
idpf_rx_hdr_buf_alloc_all(struct idpf_buf_queue * bufq)583 static int idpf_rx_hdr_buf_alloc_all(struct idpf_buf_queue *bufq)
584 {
585 struct libeth_fq fq = {
586 .count = bufq->desc_count,
587 .type = LIBETH_FQE_HDR,
588 .nid = idpf_q_vector_to_mem(bufq->q_vector),
589 };
590 int ret;
591
592 ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
593 if (ret)
594 return ret;
595
596 bufq->hdr_pp = fq.pp;
597 bufq->hdr_buf = fq.fqes;
598 bufq->hdr_truesize = fq.truesize;
599 bufq->rx_hbuf_size = fq.buf_len;
600
601 return 0;
602 }
603
604 /**
605 * idpf_rx_post_buf_refill - Post buffer id to refill queue
606 * @refillq: refill queue to post to
607 * @buf_id: buffer id to post
608 */
idpf_rx_post_buf_refill(struct idpf_sw_queue * refillq,u16 buf_id)609 static void idpf_rx_post_buf_refill(struct idpf_sw_queue *refillq, u16 buf_id)
610 {
611 u32 nta = refillq->next_to_use;
612
613 /* store the buffer ID and the SW maintained GEN bit to the refillq */
614 refillq->ring[nta] =
615 FIELD_PREP(IDPF_RX_BI_BUFID_M, buf_id) |
616 FIELD_PREP(IDPF_RX_BI_GEN_M,
617 idpf_queue_has(GEN_CHK, refillq));
618
619 if (unlikely(++nta == refillq->desc_count)) {
620 nta = 0;
621 idpf_queue_change(GEN_CHK, refillq);
622 }
623
624 refillq->next_to_use = nta;
625 }
626
627 /**
628 * idpf_rx_post_buf_desc - Post buffer to bufq descriptor ring
629 * @bufq: buffer queue to post to
630 * @buf_id: buffer id to post
631 *
632 * Returns false if buffer could not be allocated, true otherwise.
633 */
idpf_rx_post_buf_desc(struct idpf_buf_queue * bufq,u16 buf_id)634 static bool idpf_rx_post_buf_desc(struct idpf_buf_queue *bufq, u16 buf_id)
635 {
636 struct virtchnl2_splitq_rx_buf_desc *splitq_rx_desc = NULL;
637 struct libeth_fq_fp fq = {
638 .count = bufq->desc_count,
639 };
640 u16 nta = bufq->next_to_alloc;
641 dma_addr_t addr;
642
643 splitq_rx_desc = &bufq->split_buf[nta];
644
645 if (idpf_queue_has(HSPLIT_EN, bufq)) {
646 fq.pp = bufq->hdr_pp;
647 fq.fqes = bufq->hdr_buf;
648 fq.truesize = bufq->hdr_truesize;
649
650 addr = libeth_rx_alloc(&fq, buf_id);
651 if (addr == DMA_MAPPING_ERROR)
652 return false;
653
654 splitq_rx_desc->hdr_addr = cpu_to_le64(addr);
655 }
656
657 fq.pp = bufq->pp;
658 fq.fqes = bufq->buf;
659 fq.truesize = bufq->truesize;
660
661 addr = libeth_rx_alloc(&fq, buf_id);
662 if (addr == DMA_MAPPING_ERROR)
663 return false;
664
665 splitq_rx_desc->pkt_addr = cpu_to_le64(addr);
666 splitq_rx_desc->qword0.buf_id = cpu_to_le16(buf_id);
667
668 nta++;
669 if (unlikely(nta == bufq->desc_count))
670 nta = 0;
671 bufq->next_to_alloc = nta;
672
673 return true;
674 }
675
676 /**
677 * idpf_rx_post_init_bufs - Post initial buffers to bufq
678 * @bufq: buffer queue to post working set to
679 * @working_set: number of buffers to put in working set
680 *
681 * Returns true if @working_set bufs were posted successfully, false otherwise.
682 */
idpf_rx_post_init_bufs(struct idpf_buf_queue * bufq,u16 working_set)683 static bool idpf_rx_post_init_bufs(struct idpf_buf_queue *bufq,
684 u16 working_set)
685 {
686 int i;
687
688 for (i = 0; i < working_set; i++) {
689 if (!idpf_rx_post_buf_desc(bufq, i))
690 return false;
691 }
692
693 idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq->next_to_alloc,
694 IDPF_RX_BUF_STRIDE));
695
696 return true;
697 }
698
699 /**
700 * idpf_rx_buf_alloc_singleq - Allocate memory for all buffer resources
701 * @rxq: queue for which the buffers are allocated
702 *
703 * Return: 0 on success, -ENOMEM on failure.
704 */
idpf_rx_buf_alloc_singleq(struct idpf_rx_queue * rxq)705 static int idpf_rx_buf_alloc_singleq(struct idpf_rx_queue *rxq)
706 {
707 if (idpf_rx_singleq_buf_hw_alloc_all(rxq, rxq->desc_count - 1))
708 goto err;
709
710 return 0;
711
712 err:
713 idpf_rx_buf_rel_all(rxq);
714
715 return -ENOMEM;
716 }
717
718 /**
719 * idpf_rx_bufs_init_singleq - Initialize page pool and allocate Rx bufs
720 * @rxq: buffer queue to create page pool for
721 *
722 * Return: 0 on success, -errno on failure.
723 */
idpf_rx_bufs_init_singleq(struct idpf_rx_queue * rxq)724 static int idpf_rx_bufs_init_singleq(struct idpf_rx_queue *rxq)
725 {
726 struct libeth_fq fq = {
727 .count = rxq->desc_count,
728 .type = LIBETH_FQE_MTU,
729 .nid = idpf_q_vector_to_mem(rxq->q_vector),
730 };
731 int ret;
732
733 ret = libeth_rx_fq_create(&fq, &rxq->q_vector->napi);
734 if (ret)
735 return ret;
736
737 rxq->pp = fq.pp;
738 rxq->rx_buf = fq.fqes;
739 rxq->truesize = fq.truesize;
740 rxq->rx_buf_size = fq.buf_len;
741
742 return idpf_rx_buf_alloc_singleq(rxq);
743 }
744
745 /**
746 * idpf_rx_buf_alloc_all - Allocate memory for all buffer resources
747 * @rxbufq: queue for which the buffers are allocated
748 *
749 * Returns 0 on success, negative on failure
750 */
idpf_rx_buf_alloc_all(struct idpf_buf_queue * rxbufq)751 static int idpf_rx_buf_alloc_all(struct idpf_buf_queue *rxbufq)
752 {
753 int err = 0;
754
755 if (idpf_queue_has(HSPLIT_EN, rxbufq)) {
756 err = idpf_rx_hdr_buf_alloc_all(rxbufq);
757 if (err)
758 goto rx_buf_alloc_all_out;
759 }
760
761 /* Allocate buffers to be given to HW. */
762 if (!idpf_rx_post_init_bufs(rxbufq, IDPF_RX_BUFQ_WORKING_SET(rxbufq)))
763 err = -ENOMEM;
764
765 rx_buf_alloc_all_out:
766 if (err)
767 idpf_rx_buf_rel_bufq(rxbufq);
768
769 return err;
770 }
771
772 /**
773 * idpf_rx_bufs_init - Initialize page pool, allocate rx bufs, and post to HW
774 * @bufq: buffer queue to create page pool for
775 * @type: type of Rx buffers to allocate
776 *
777 * Returns 0 on success, negative on failure
778 */
idpf_rx_bufs_init(struct idpf_buf_queue * bufq,enum libeth_fqe_type type)779 static int idpf_rx_bufs_init(struct idpf_buf_queue *bufq,
780 enum libeth_fqe_type type)
781 {
782 struct libeth_fq fq = {
783 .truesize = bufq->truesize,
784 .count = bufq->desc_count,
785 .type = type,
786 .hsplit = idpf_queue_has(HSPLIT_EN, bufq),
787 .nid = idpf_q_vector_to_mem(bufq->q_vector),
788 };
789 int ret;
790
791 ret = libeth_rx_fq_create(&fq, &bufq->q_vector->napi);
792 if (ret)
793 return ret;
794
795 bufq->pp = fq.pp;
796 bufq->buf = fq.fqes;
797 bufq->truesize = fq.truesize;
798 bufq->rx_buf_size = fq.buf_len;
799
800 return idpf_rx_buf_alloc_all(bufq);
801 }
802
803 /**
804 * idpf_rx_bufs_init_all - Initialize all RX bufs
805 * @vport: virtual port struct
806 *
807 * Returns 0 on success, negative on failure
808 */
idpf_rx_bufs_init_all(struct idpf_vport * vport)809 int idpf_rx_bufs_init_all(struct idpf_vport *vport)
810 {
811 bool split = idpf_is_queue_model_split(vport->rxq_model);
812 int i, j, err;
813
814 for (i = 0; i < vport->num_rxq_grp; i++) {
815 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
816 u32 truesize = 0;
817
818 /* Allocate bufs for the rxq itself in singleq */
819 if (!split) {
820 int num_rxq = rx_qgrp->singleq.num_rxq;
821
822 for (j = 0; j < num_rxq; j++) {
823 struct idpf_rx_queue *q;
824
825 q = rx_qgrp->singleq.rxqs[j];
826 err = idpf_rx_bufs_init_singleq(q);
827 if (err)
828 return err;
829 }
830
831 continue;
832 }
833
834 /* Otherwise, allocate bufs for the buffer queues */
835 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
836 enum libeth_fqe_type type;
837 struct idpf_buf_queue *q;
838
839 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
840 q->truesize = truesize;
841
842 type = truesize ? LIBETH_FQE_SHORT : LIBETH_FQE_MTU;
843
844 err = idpf_rx_bufs_init(q, type);
845 if (err)
846 return err;
847
848 truesize = q->truesize >> 1;
849 }
850 }
851
852 return 0;
853 }
854
855 /**
856 * idpf_rx_desc_alloc - Allocate queue Rx resources
857 * @vport: vport to allocate resources for
858 * @rxq: Rx queue for which the resources are setup
859 *
860 * Returns 0 on success, negative on failure
861 */
idpf_rx_desc_alloc(const struct idpf_vport * vport,struct idpf_rx_queue * rxq)862 static int idpf_rx_desc_alloc(const struct idpf_vport *vport,
863 struct idpf_rx_queue *rxq)
864 {
865 struct device *dev = &vport->adapter->pdev->dev;
866
867 rxq->size = rxq->desc_count * sizeof(union virtchnl2_rx_desc);
868
869 /* Allocate descriptors and also round up to nearest 4K */
870 rxq->size = ALIGN(rxq->size, 4096);
871 rxq->desc_ring = dmam_alloc_coherent(dev, rxq->size,
872 &rxq->dma, GFP_KERNEL);
873 if (!rxq->desc_ring) {
874 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
875 rxq->size);
876 return -ENOMEM;
877 }
878
879 rxq->next_to_alloc = 0;
880 rxq->next_to_clean = 0;
881 rxq->next_to_use = 0;
882 idpf_queue_set(GEN_CHK, rxq);
883
884 return 0;
885 }
886
887 /**
888 * idpf_bufq_desc_alloc - Allocate buffer queue descriptor ring
889 * @vport: vport to allocate resources for
890 * @bufq: buffer queue for which the resources are set up
891 *
892 * Return: 0 on success, -ENOMEM on failure.
893 */
idpf_bufq_desc_alloc(const struct idpf_vport * vport,struct idpf_buf_queue * bufq)894 static int idpf_bufq_desc_alloc(const struct idpf_vport *vport,
895 struct idpf_buf_queue *bufq)
896 {
897 struct device *dev = &vport->adapter->pdev->dev;
898
899 bufq->size = array_size(bufq->desc_count, sizeof(*bufq->split_buf));
900
901 bufq->split_buf = dma_alloc_coherent(dev, bufq->size, &bufq->dma,
902 GFP_KERNEL);
903 if (!bufq->split_buf)
904 return -ENOMEM;
905
906 bufq->next_to_alloc = 0;
907 bufq->next_to_clean = 0;
908 bufq->next_to_use = 0;
909
910 idpf_queue_set(GEN_CHK, bufq);
911
912 return 0;
913 }
914
915 /**
916 * idpf_rx_desc_alloc_all - allocate all RX queues resources
917 * @vport: virtual port structure
918 *
919 * Returns 0 on success, negative on failure
920 */
idpf_rx_desc_alloc_all(struct idpf_vport * vport)921 static int idpf_rx_desc_alloc_all(struct idpf_vport *vport)
922 {
923 struct idpf_rxq_group *rx_qgrp;
924 int i, j, err;
925 u16 num_rxq;
926
927 for (i = 0; i < vport->num_rxq_grp; i++) {
928 rx_qgrp = &vport->rxq_grps[i];
929 if (idpf_is_queue_model_split(vport->rxq_model))
930 num_rxq = rx_qgrp->splitq.num_rxq_sets;
931 else
932 num_rxq = rx_qgrp->singleq.num_rxq;
933
934 for (j = 0; j < num_rxq; j++) {
935 struct idpf_rx_queue *q;
936
937 if (idpf_is_queue_model_split(vport->rxq_model))
938 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
939 else
940 q = rx_qgrp->singleq.rxqs[j];
941
942 err = idpf_rx_desc_alloc(vport, q);
943 if (err) {
944 pci_err(vport->adapter->pdev,
945 "Memory allocation for Rx Queue %u failed\n",
946 i);
947 goto err_out;
948 }
949 }
950
951 if (!idpf_is_queue_model_split(vport->rxq_model))
952 continue;
953
954 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
955 struct idpf_buf_queue *q;
956
957 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
958
959 err = idpf_bufq_desc_alloc(vport, q);
960 if (err) {
961 pci_err(vport->adapter->pdev,
962 "Memory allocation for Rx Buffer Queue %u failed\n",
963 i);
964 goto err_out;
965 }
966 }
967 }
968
969 return 0;
970
971 err_out:
972 idpf_rx_desc_rel_all(vport);
973
974 return err;
975 }
976
977 /**
978 * idpf_txq_group_rel - Release all resources for txq groups
979 * @vport: vport to release txq groups on
980 */
idpf_txq_group_rel(struct idpf_vport * vport)981 static void idpf_txq_group_rel(struct idpf_vport *vport)
982 {
983 bool split, flow_sch_en;
984 int i, j;
985
986 if (!vport->txq_grps)
987 return;
988
989 split = idpf_is_queue_model_split(vport->txq_model);
990 flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
991 VIRTCHNL2_CAP_SPLITQ_QSCHED);
992
993 for (i = 0; i < vport->num_txq_grp; i++) {
994 struct idpf_txq_group *txq_grp = &vport->txq_grps[i];
995
996 for (j = 0; j < txq_grp->num_txq; j++) {
997 kfree(txq_grp->txqs[j]);
998 txq_grp->txqs[j] = NULL;
999 }
1000
1001 if (!split)
1002 continue;
1003
1004 kfree(txq_grp->complq);
1005 txq_grp->complq = NULL;
1006
1007 if (flow_sch_en)
1008 kfree(txq_grp->stashes);
1009 }
1010 kfree(vport->txq_grps);
1011 vport->txq_grps = NULL;
1012 }
1013
1014 /**
1015 * idpf_rxq_sw_queue_rel - Release software queue resources
1016 * @rx_qgrp: rx queue group with software queues
1017 */
idpf_rxq_sw_queue_rel(struct idpf_rxq_group * rx_qgrp)1018 static void idpf_rxq_sw_queue_rel(struct idpf_rxq_group *rx_qgrp)
1019 {
1020 int i, j;
1021
1022 for (i = 0; i < rx_qgrp->vport->num_bufqs_per_qgrp; i++) {
1023 struct idpf_bufq_set *bufq_set = &rx_qgrp->splitq.bufq_sets[i];
1024
1025 for (j = 0; j < bufq_set->num_refillqs; j++) {
1026 kfree(bufq_set->refillqs[j].ring);
1027 bufq_set->refillqs[j].ring = NULL;
1028 }
1029 kfree(bufq_set->refillqs);
1030 bufq_set->refillqs = NULL;
1031 }
1032 }
1033
1034 /**
1035 * idpf_rxq_group_rel - Release all resources for rxq groups
1036 * @vport: vport to release rxq groups on
1037 */
idpf_rxq_group_rel(struct idpf_vport * vport)1038 static void idpf_rxq_group_rel(struct idpf_vport *vport)
1039 {
1040 int i;
1041
1042 if (!vport->rxq_grps)
1043 return;
1044
1045 for (i = 0; i < vport->num_rxq_grp; i++) {
1046 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1047 u16 num_rxq;
1048 int j;
1049
1050 if (idpf_is_queue_model_split(vport->rxq_model)) {
1051 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1052 for (j = 0; j < num_rxq; j++) {
1053 kfree(rx_qgrp->splitq.rxq_sets[j]);
1054 rx_qgrp->splitq.rxq_sets[j] = NULL;
1055 }
1056
1057 idpf_rxq_sw_queue_rel(rx_qgrp);
1058 kfree(rx_qgrp->splitq.bufq_sets);
1059 rx_qgrp->splitq.bufq_sets = NULL;
1060 } else {
1061 num_rxq = rx_qgrp->singleq.num_rxq;
1062 for (j = 0; j < num_rxq; j++) {
1063 kfree(rx_qgrp->singleq.rxqs[j]);
1064 rx_qgrp->singleq.rxqs[j] = NULL;
1065 }
1066 }
1067 }
1068 kfree(vport->rxq_grps);
1069 vport->rxq_grps = NULL;
1070 }
1071
1072 /**
1073 * idpf_vport_queue_grp_rel_all - Release all queue groups
1074 * @vport: vport to release queue groups for
1075 */
idpf_vport_queue_grp_rel_all(struct idpf_vport * vport)1076 static void idpf_vport_queue_grp_rel_all(struct idpf_vport *vport)
1077 {
1078 idpf_txq_group_rel(vport);
1079 idpf_rxq_group_rel(vport);
1080 }
1081
1082 /**
1083 * idpf_vport_queues_rel - Free memory for all queues
1084 * @vport: virtual port
1085 *
1086 * Free the memory allocated for queues associated to a vport
1087 */
idpf_vport_queues_rel(struct idpf_vport * vport)1088 void idpf_vport_queues_rel(struct idpf_vport *vport)
1089 {
1090 idpf_tx_desc_rel_all(vport);
1091 idpf_rx_desc_rel_all(vport);
1092 idpf_vport_queue_grp_rel_all(vport);
1093
1094 kfree(vport->txqs);
1095 vport->txqs = NULL;
1096 }
1097
1098 /**
1099 * idpf_vport_init_fast_path_txqs - Initialize fast path txq array
1100 * @vport: vport to init txqs on
1101 *
1102 * We get a queue index from skb->queue_mapping and we need a fast way to
1103 * dereference the queue from queue groups. This allows us to quickly pull a
1104 * txq based on a queue index.
1105 *
1106 * Returns 0 on success, negative on failure
1107 */
idpf_vport_init_fast_path_txqs(struct idpf_vport * vport)1108 static int idpf_vport_init_fast_path_txqs(struct idpf_vport *vport)
1109 {
1110 int i, j, k = 0;
1111
1112 vport->txqs = kcalloc(vport->num_txq, sizeof(*vport->txqs),
1113 GFP_KERNEL);
1114
1115 if (!vport->txqs)
1116 return -ENOMEM;
1117
1118 for (i = 0; i < vport->num_txq_grp; i++) {
1119 struct idpf_txq_group *tx_grp = &vport->txq_grps[i];
1120
1121 for (j = 0; j < tx_grp->num_txq; j++, k++) {
1122 vport->txqs[k] = tx_grp->txqs[j];
1123 vport->txqs[k]->idx = k;
1124 }
1125 }
1126
1127 return 0;
1128 }
1129
1130 /**
1131 * idpf_vport_init_num_qs - Initialize number of queues
1132 * @vport: vport to initialize queues
1133 * @vport_msg: data to be filled into vport
1134 */
idpf_vport_init_num_qs(struct idpf_vport * vport,struct virtchnl2_create_vport * vport_msg)1135 void idpf_vport_init_num_qs(struct idpf_vport *vport,
1136 struct virtchnl2_create_vport *vport_msg)
1137 {
1138 struct idpf_vport_user_config_data *config_data;
1139 u16 idx = vport->idx;
1140
1141 config_data = &vport->adapter->vport_config[idx]->user_config;
1142 vport->num_txq = le16_to_cpu(vport_msg->num_tx_q);
1143 vport->num_rxq = le16_to_cpu(vport_msg->num_rx_q);
1144 /* number of txqs and rxqs in config data will be zeros only in the
1145 * driver load path and we dont update them there after
1146 */
1147 if (!config_data->num_req_tx_qs && !config_data->num_req_rx_qs) {
1148 config_data->num_req_tx_qs = le16_to_cpu(vport_msg->num_tx_q);
1149 config_data->num_req_rx_qs = le16_to_cpu(vport_msg->num_rx_q);
1150 }
1151
1152 if (idpf_is_queue_model_split(vport->txq_model))
1153 vport->num_complq = le16_to_cpu(vport_msg->num_tx_complq);
1154 if (idpf_is_queue_model_split(vport->rxq_model))
1155 vport->num_bufq = le16_to_cpu(vport_msg->num_rx_bufq);
1156
1157 /* Adjust number of buffer queues per Rx queue group. */
1158 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1159 vport->num_bufqs_per_qgrp = 0;
1160
1161 return;
1162 }
1163
1164 vport->num_bufqs_per_qgrp = IDPF_MAX_BUFQS_PER_RXQ_GRP;
1165 }
1166
1167 /**
1168 * idpf_vport_calc_num_q_desc - Calculate number of queue groups
1169 * @vport: vport to calculate q groups for
1170 */
idpf_vport_calc_num_q_desc(struct idpf_vport * vport)1171 void idpf_vport_calc_num_q_desc(struct idpf_vport *vport)
1172 {
1173 struct idpf_vport_user_config_data *config_data;
1174 int num_bufqs = vport->num_bufqs_per_qgrp;
1175 u32 num_req_txq_desc, num_req_rxq_desc;
1176 u16 idx = vport->idx;
1177 int i;
1178
1179 config_data = &vport->adapter->vport_config[idx]->user_config;
1180 num_req_txq_desc = config_data->num_req_txq_desc;
1181 num_req_rxq_desc = config_data->num_req_rxq_desc;
1182
1183 vport->complq_desc_count = 0;
1184 if (num_req_txq_desc) {
1185 vport->txq_desc_count = num_req_txq_desc;
1186 if (idpf_is_queue_model_split(vport->txq_model)) {
1187 vport->complq_desc_count = num_req_txq_desc;
1188 if (vport->complq_desc_count < IDPF_MIN_TXQ_COMPLQ_DESC)
1189 vport->complq_desc_count =
1190 IDPF_MIN_TXQ_COMPLQ_DESC;
1191 }
1192 } else {
1193 vport->txq_desc_count = IDPF_DFLT_TX_Q_DESC_COUNT;
1194 if (idpf_is_queue_model_split(vport->txq_model))
1195 vport->complq_desc_count =
1196 IDPF_DFLT_TX_COMPLQ_DESC_COUNT;
1197 }
1198
1199 if (num_req_rxq_desc)
1200 vport->rxq_desc_count = num_req_rxq_desc;
1201 else
1202 vport->rxq_desc_count = IDPF_DFLT_RX_Q_DESC_COUNT;
1203
1204 for (i = 0; i < num_bufqs; i++) {
1205 if (!vport->bufq_desc_count[i])
1206 vport->bufq_desc_count[i] =
1207 IDPF_RX_BUFQ_DESC_COUNT(vport->rxq_desc_count,
1208 num_bufqs);
1209 }
1210 }
1211
1212 /**
1213 * idpf_vport_calc_total_qs - Calculate total number of queues
1214 * @adapter: private data struct
1215 * @vport_idx: vport idx to retrieve vport pointer
1216 * @vport_msg: message to fill with data
1217 * @max_q: vport max queue info
1218 *
1219 * Return 0 on success, error value on failure.
1220 */
idpf_vport_calc_total_qs(struct idpf_adapter * adapter,u16 vport_idx,struct virtchnl2_create_vport * vport_msg,struct idpf_vport_max_q * max_q)1221 int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_idx,
1222 struct virtchnl2_create_vport *vport_msg,
1223 struct idpf_vport_max_q *max_q)
1224 {
1225 int dflt_splitq_txq_grps = 0, dflt_singleq_txqs = 0;
1226 int dflt_splitq_rxq_grps = 0, dflt_singleq_rxqs = 0;
1227 u16 num_req_tx_qs = 0, num_req_rx_qs = 0;
1228 struct idpf_vport_config *vport_config;
1229 u16 num_txq_grps, num_rxq_grps;
1230 u32 num_qs;
1231
1232 vport_config = adapter->vport_config[vport_idx];
1233 if (vport_config) {
1234 num_req_tx_qs = vport_config->user_config.num_req_tx_qs;
1235 num_req_rx_qs = vport_config->user_config.num_req_rx_qs;
1236 } else {
1237 int num_cpus;
1238
1239 /* Restrict num of queues to cpus online as a default
1240 * configuration to give best performance. User can always
1241 * override to a max number of queues via ethtool.
1242 */
1243 num_cpus = num_online_cpus();
1244
1245 dflt_splitq_txq_grps = min_t(int, max_q->max_txq, num_cpus);
1246 dflt_singleq_txqs = min_t(int, max_q->max_txq, num_cpus);
1247 dflt_splitq_rxq_grps = min_t(int, max_q->max_rxq, num_cpus);
1248 dflt_singleq_rxqs = min_t(int, max_q->max_rxq, num_cpus);
1249 }
1250
1251 if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->txq_model))) {
1252 num_txq_grps = num_req_tx_qs ? num_req_tx_qs : dflt_splitq_txq_grps;
1253 vport_msg->num_tx_complq = cpu_to_le16(num_txq_grps *
1254 IDPF_COMPLQ_PER_GROUP);
1255 vport_msg->num_tx_q = cpu_to_le16(num_txq_grps *
1256 IDPF_DFLT_SPLITQ_TXQ_PER_GROUP);
1257 } else {
1258 num_txq_grps = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
1259 num_qs = num_txq_grps * (num_req_tx_qs ? num_req_tx_qs :
1260 dflt_singleq_txqs);
1261 vport_msg->num_tx_q = cpu_to_le16(num_qs);
1262 vport_msg->num_tx_complq = 0;
1263 }
1264 if (idpf_is_queue_model_split(le16_to_cpu(vport_msg->rxq_model))) {
1265 num_rxq_grps = num_req_rx_qs ? num_req_rx_qs : dflt_splitq_rxq_grps;
1266 vport_msg->num_rx_bufq = cpu_to_le16(num_rxq_grps *
1267 IDPF_MAX_BUFQS_PER_RXQ_GRP);
1268 vport_msg->num_rx_q = cpu_to_le16(num_rxq_grps *
1269 IDPF_DFLT_SPLITQ_RXQ_PER_GROUP);
1270 } else {
1271 num_rxq_grps = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
1272 num_qs = num_rxq_grps * (num_req_rx_qs ? num_req_rx_qs :
1273 dflt_singleq_rxqs);
1274 vport_msg->num_rx_q = cpu_to_le16(num_qs);
1275 vport_msg->num_rx_bufq = 0;
1276 }
1277
1278 return 0;
1279 }
1280
1281 /**
1282 * idpf_vport_calc_num_q_groups - Calculate number of queue groups
1283 * @vport: vport to calculate q groups for
1284 */
idpf_vport_calc_num_q_groups(struct idpf_vport * vport)1285 void idpf_vport_calc_num_q_groups(struct idpf_vport *vport)
1286 {
1287 if (idpf_is_queue_model_split(vport->txq_model))
1288 vport->num_txq_grp = vport->num_txq;
1289 else
1290 vport->num_txq_grp = IDPF_DFLT_SINGLEQ_TX_Q_GROUPS;
1291
1292 if (idpf_is_queue_model_split(vport->rxq_model))
1293 vport->num_rxq_grp = vport->num_rxq;
1294 else
1295 vport->num_rxq_grp = IDPF_DFLT_SINGLEQ_RX_Q_GROUPS;
1296 }
1297
1298 /**
1299 * idpf_vport_calc_numq_per_grp - Calculate number of queues per group
1300 * @vport: vport to calculate queues for
1301 * @num_txq: return parameter for number of TX queues
1302 * @num_rxq: return parameter for number of RX queues
1303 */
idpf_vport_calc_numq_per_grp(struct idpf_vport * vport,u16 * num_txq,u16 * num_rxq)1304 static void idpf_vport_calc_numq_per_grp(struct idpf_vport *vport,
1305 u16 *num_txq, u16 *num_rxq)
1306 {
1307 if (idpf_is_queue_model_split(vport->txq_model))
1308 *num_txq = IDPF_DFLT_SPLITQ_TXQ_PER_GROUP;
1309 else
1310 *num_txq = vport->num_txq;
1311
1312 if (idpf_is_queue_model_split(vport->rxq_model))
1313 *num_rxq = IDPF_DFLT_SPLITQ_RXQ_PER_GROUP;
1314 else
1315 *num_rxq = vport->num_rxq;
1316 }
1317
1318 /**
1319 * idpf_rxq_set_descids - set the descids supported by this queue
1320 * @vport: virtual port data structure
1321 * @q: rx queue for which descids are set
1322 *
1323 */
idpf_rxq_set_descids(const struct idpf_vport * vport,struct idpf_rx_queue * q)1324 static void idpf_rxq_set_descids(const struct idpf_vport *vport,
1325 struct idpf_rx_queue *q)
1326 {
1327 if (idpf_is_queue_model_split(vport->rxq_model)) {
1328 q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M;
1329 } else {
1330 if (vport->base_rxd)
1331 q->rxdids = VIRTCHNL2_RXDID_1_32B_BASE_M;
1332 else
1333 q->rxdids = VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M;
1334 }
1335 }
1336
1337 /**
1338 * idpf_txq_group_alloc - Allocate all txq group resources
1339 * @vport: vport to allocate txq groups for
1340 * @num_txq: number of txqs to allocate for each group
1341 *
1342 * Returns 0 on success, negative on failure
1343 */
idpf_txq_group_alloc(struct idpf_vport * vport,u16 num_txq)1344 static int idpf_txq_group_alloc(struct idpf_vport *vport, u16 num_txq)
1345 {
1346 bool split, flow_sch_en;
1347 int i;
1348
1349 vport->txq_grps = kcalloc(vport->num_txq_grp,
1350 sizeof(*vport->txq_grps), GFP_KERNEL);
1351 if (!vport->txq_grps)
1352 return -ENOMEM;
1353
1354 split = idpf_is_queue_model_split(vport->txq_model);
1355 flow_sch_en = !idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS,
1356 VIRTCHNL2_CAP_SPLITQ_QSCHED);
1357
1358 for (i = 0; i < vport->num_txq_grp; i++) {
1359 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1360 struct idpf_adapter *adapter = vport->adapter;
1361 struct idpf_txq_stash *stashes;
1362 int j;
1363
1364 tx_qgrp->vport = vport;
1365 tx_qgrp->num_txq = num_txq;
1366
1367 for (j = 0; j < tx_qgrp->num_txq; j++) {
1368 tx_qgrp->txqs[j] = kzalloc(sizeof(*tx_qgrp->txqs[j]),
1369 GFP_KERNEL);
1370 if (!tx_qgrp->txqs[j])
1371 goto err_alloc;
1372 }
1373
1374 if (split && flow_sch_en) {
1375 stashes = kcalloc(num_txq, sizeof(*stashes),
1376 GFP_KERNEL);
1377 if (!stashes)
1378 goto err_alloc;
1379
1380 tx_qgrp->stashes = stashes;
1381 }
1382
1383 for (j = 0; j < tx_qgrp->num_txq; j++) {
1384 struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1385
1386 q->dev = &adapter->pdev->dev;
1387 q->desc_count = vport->txq_desc_count;
1388 q->tx_max_bufs = idpf_get_max_tx_bufs(adapter);
1389 q->tx_min_pkt_len = idpf_get_min_tx_pkt_len(adapter);
1390 q->netdev = vport->netdev;
1391 q->txq_grp = tx_qgrp;
1392
1393 if (!split) {
1394 q->clean_budget = vport->compln_clean_budget;
1395 idpf_queue_assign(CRC_EN, q,
1396 vport->crc_enable);
1397 }
1398
1399 if (!flow_sch_en)
1400 continue;
1401
1402 if (split) {
1403 q->stash = &stashes[j];
1404 hash_init(q->stash->sched_buf_hash);
1405 }
1406
1407 idpf_queue_set(FLOW_SCH_EN, q);
1408 }
1409
1410 if (!split)
1411 continue;
1412
1413 tx_qgrp->complq = kcalloc(IDPF_COMPLQ_PER_GROUP,
1414 sizeof(*tx_qgrp->complq),
1415 GFP_KERNEL);
1416 if (!tx_qgrp->complq)
1417 goto err_alloc;
1418
1419 tx_qgrp->complq->desc_count = vport->complq_desc_count;
1420 tx_qgrp->complq->txq_grp = tx_qgrp;
1421 tx_qgrp->complq->netdev = vport->netdev;
1422 tx_qgrp->complq->clean_budget = vport->compln_clean_budget;
1423
1424 if (flow_sch_en)
1425 idpf_queue_set(FLOW_SCH_EN, tx_qgrp->complq);
1426 }
1427
1428 return 0;
1429
1430 err_alloc:
1431 idpf_txq_group_rel(vport);
1432
1433 return -ENOMEM;
1434 }
1435
1436 /**
1437 * idpf_rxq_group_alloc - Allocate all rxq group resources
1438 * @vport: vport to allocate rxq groups for
1439 * @num_rxq: number of rxqs to allocate for each group
1440 *
1441 * Returns 0 on success, negative on failure
1442 */
idpf_rxq_group_alloc(struct idpf_vport * vport,u16 num_rxq)1443 static int idpf_rxq_group_alloc(struct idpf_vport *vport, u16 num_rxq)
1444 {
1445 int i, k, err = 0;
1446 bool hs;
1447
1448 vport->rxq_grps = kcalloc(vport->num_rxq_grp,
1449 sizeof(struct idpf_rxq_group), GFP_KERNEL);
1450 if (!vport->rxq_grps)
1451 return -ENOMEM;
1452
1453 hs = idpf_vport_get_hsplit(vport) == ETHTOOL_TCP_DATA_SPLIT_ENABLED;
1454
1455 for (i = 0; i < vport->num_rxq_grp; i++) {
1456 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1457 int j;
1458
1459 rx_qgrp->vport = vport;
1460 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1461 rx_qgrp->singleq.num_rxq = num_rxq;
1462 for (j = 0; j < num_rxq; j++) {
1463 rx_qgrp->singleq.rxqs[j] =
1464 kzalloc(sizeof(*rx_qgrp->singleq.rxqs[j]),
1465 GFP_KERNEL);
1466 if (!rx_qgrp->singleq.rxqs[j]) {
1467 err = -ENOMEM;
1468 goto err_alloc;
1469 }
1470 }
1471 goto skip_splitq_rx_init;
1472 }
1473 rx_qgrp->splitq.num_rxq_sets = num_rxq;
1474
1475 for (j = 0; j < num_rxq; j++) {
1476 rx_qgrp->splitq.rxq_sets[j] =
1477 kzalloc(sizeof(struct idpf_rxq_set),
1478 GFP_KERNEL);
1479 if (!rx_qgrp->splitq.rxq_sets[j]) {
1480 err = -ENOMEM;
1481 goto err_alloc;
1482 }
1483 }
1484
1485 rx_qgrp->splitq.bufq_sets = kcalloc(vport->num_bufqs_per_qgrp,
1486 sizeof(struct idpf_bufq_set),
1487 GFP_KERNEL);
1488 if (!rx_qgrp->splitq.bufq_sets) {
1489 err = -ENOMEM;
1490 goto err_alloc;
1491 }
1492
1493 for (j = 0; j < vport->num_bufqs_per_qgrp; j++) {
1494 struct idpf_bufq_set *bufq_set =
1495 &rx_qgrp->splitq.bufq_sets[j];
1496 int swq_size = sizeof(struct idpf_sw_queue);
1497 struct idpf_buf_queue *q;
1498
1499 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1500 q->desc_count = vport->bufq_desc_count[j];
1501 q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
1502
1503 idpf_queue_assign(HSPLIT_EN, q, hs);
1504
1505 bufq_set->num_refillqs = num_rxq;
1506 bufq_set->refillqs = kcalloc(num_rxq, swq_size,
1507 GFP_KERNEL);
1508 if (!bufq_set->refillqs) {
1509 err = -ENOMEM;
1510 goto err_alloc;
1511 }
1512 for (k = 0; k < bufq_set->num_refillqs; k++) {
1513 struct idpf_sw_queue *refillq =
1514 &bufq_set->refillqs[k];
1515
1516 refillq->desc_count =
1517 vport->bufq_desc_count[j];
1518 idpf_queue_set(GEN_CHK, refillq);
1519 idpf_queue_set(RFL_GEN_CHK, refillq);
1520 refillq->ring = kcalloc(refillq->desc_count,
1521 sizeof(*refillq->ring),
1522 GFP_KERNEL);
1523 if (!refillq->ring) {
1524 err = -ENOMEM;
1525 goto err_alloc;
1526 }
1527 }
1528 }
1529
1530 skip_splitq_rx_init:
1531 for (j = 0; j < num_rxq; j++) {
1532 struct idpf_rx_queue *q;
1533
1534 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1535 q = rx_qgrp->singleq.rxqs[j];
1536 goto setup_rxq;
1537 }
1538 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1539 rx_qgrp->splitq.rxq_sets[j]->refillq[0] =
1540 &rx_qgrp->splitq.bufq_sets[0].refillqs[j];
1541 if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP)
1542 rx_qgrp->splitq.rxq_sets[j]->refillq[1] =
1543 &rx_qgrp->splitq.bufq_sets[1].refillqs[j];
1544
1545 idpf_queue_assign(HSPLIT_EN, q, hs);
1546
1547 setup_rxq:
1548 q->desc_count = vport->rxq_desc_count;
1549 q->rx_ptype_lkup = vport->rx_ptype_lkup;
1550 q->netdev = vport->netdev;
1551 q->bufq_sets = rx_qgrp->splitq.bufq_sets;
1552 q->idx = (i * num_rxq) + j;
1553 q->rx_buffer_low_watermark = IDPF_LOW_WATERMARK;
1554 q->rx_max_pkt_size = vport->netdev->mtu +
1555 LIBETH_RX_LL_LEN;
1556 idpf_rxq_set_descids(vport, q);
1557 }
1558 }
1559
1560 err_alloc:
1561 if (err)
1562 idpf_rxq_group_rel(vport);
1563
1564 return err;
1565 }
1566
1567 /**
1568 * idpf_vport_queue_grp_alloc_all - Allocate all queue groups/resources
1569 * @vport: vport with qgrps to allocate
1570 *
1571 * Returns 0 on success, negative on failure
1572 */
idpf_vport_queue_grp_alloc_all(struct idpf_vport * vport)1573 static int idpf_vport_queue_grp_alloc_all(struct idpf_vport *vport)
1574 {
1575 u16 num_txq, num_rxq;
1576 int err;
1577
1578 idpf_vport_calc_numq_per_grp(vport, &num_txq, &num_rxq);
1579
1580 err = idpf_txq_group_alloc(vport, num_txq);
1581 if (err)
1582 goto err_out;
1583
1584 err = idpf_rxq_group_alloc(vport, num_rxq);
1585 if (err)
1586 goto err_out;
1587
1588 return 0;
1589
1590 err_out:
1591 idpf_vport_queue_grp_rel_all(vport);
1592
1593 return err;
1594 }
1595
1596 /**
1597 * idpf_vport_queues_alloc - Allocate memory for all queues
1598 * @vport: virtual port
1599 *
1600 * Allocate memory for queues associated with a vport. Returns 0 on success,
1601 * negative on failure.
1602 */
idpf_vport_queues_alloc(struct idpf_vport * vport)1603 int idpf_vport_queues_alloc(struct idpf_vport *vport)
1604 {
1605 int err;
1606
1607 err = idpf_vport_queue_grp_alloc_all(vport);
1608 if (err)
1609 goto err_out;
1610
1611 err = idpf_tx_desc_alloc_all(vport);
1612 if (err)
1613 goto err_out;
1614
1615 err = idpf_rx_desc_alloc_all(vport);
1616 if (err)
1617 goto err_out;
1618
1619 err = idpf_vport_init_fast_path_txqs(vport);
1620 if (err)
1621 goto err_out;
1622
1623 return 0;
1624
1625 err_out:
1626 idpf_vport_queues_rel(vport);
1627
1628 return err;
1629 }
1630
1631 /**
1632 * idpf_tx_handle_sw_marker - Handle queue marker packet
1633 * @tx_q: tx queue to handle software marker
1634 */
idpf_tx_handle_sw_marker(struct idpf_tx_queue * tx_q)1635 static void idpf_tx_handle_sw_marker(struct idpf_tx_queue *tx_q)
1636 {
1637 struct idpf_netdev_priv *priv = netdev_priv(tx_q->netdev);
1638 struct idpf_vport *vport = priv->vport;
1639 int i;
1640
1641 idpf_queue_clear(SW_MARKER, tx_q);
1642 /* Hardware must write marker packets to all queues associated with
1643 * completion queues. So check if all queues received marker packets
1644 */
1645 for (i = 0; i < vport->num_txq; i++)
1646 /* If we're still waiting on any other TXQ marker completions,
1647 * just return now since we cannot wake up the marker_wq yet.
1648 */
1649 if (idpf_queue_has(SW_MARKER, vport->txqs[i]))
1650 return;
1651
1652 /* Drain complete */
1653 set_bit(IDPF_VPORT_SW_MARKER, vport->flags);
1654 wake_up(&vport->sw_marker_wq);
1655 }
1656
1657 /**
1658 * idpf_tx_clean_stashed_bufs - clean bufs that were stored for
1659 * out of order completions
1660 * @txq: queue to clean
1661 * @compl_tag: completion tag of packet to clean (from completion descriptor)
1662 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1663 * @budget: Used to determine if we are in netpoll
1664 */
idpf_tx_clean_stashed_bufs(struct idpf_tx_queue * txq,u16 compl_tag,struct libeth_sq_napi_stats * cleaned,int budget)1665 static void idpf_tx_clean_stashed_bufs(struct idpf_tx_queue *txq,
1666 u16 compl_tag,
1667 struct libeth_sq_napi_stats *cleaned,
1668 int budget)
1669 {
1670 struct idpf_tx_stash *stash;
1671 struct hlist_node *tmp_buf;
1672 struct libeth_cq_pp cp = {
1673 .dev = txq->dev,
1674 .ss = cleaned,
1675 .napi = budget,
1676 };
1677
1678 /* Buffer completion */
1679 hash_for_each_possible_safe(txq->stash->sched_buf_hash, stash, tmp_buf,
1680 hlist, compl_tag) {
1681 if (unlikely(idpf_tx_buf_compl_tag(&stash->buf) != compl_tag))
1682 continue;
1683
1684 hash_del(&stash->hlist);
1685 libeth_tx_complete(&stash->buf, &cp);
1686
1687 /* Push shadow buf back onto stack */
1688 idpf_buf_lifo_push(&txq->stash->buf_stack, stash);
1689 }
1690 }
1691
1692 /**
1693 * idpf_stash_flow_sch_buffers - store buffer parameters info to be freed at a
1694 * later time (only relevant for flow scheduling mode)
1695 * @txq: Tx queue to clean
1696 * @tx_buf: buffer to store
1697 */
idpf_stash_flow_sch_buffers(struct idpf_tx_queue * txq,struct idpf_tx_buf * tx_buf)1698 static int idpf_stash_flow_sch_buffers(struct idpf_tx_queue *txq,
1699 struct idpf_tx_buf *tx_buf)
1700 {
1701 struct idpf_tx_stash *stash;
1702
1703 if (unlikely(tx_buf->type <= LIBETH_SQE_CTX))
1704 return 0;
1705
1706 stash = idpf_buf_lifo_pop(&txq->stash->buf_stack);
1707 if (unlikely(!stash)) {
1708 net_err_ratelimited("%s: No out-of-order TX buffers left!\n",
1709 netdev_name(txq->netdev));
1710
1711 return -ENOMEM;
1712 }
1713
1714 /* Store buffer params in shadow buffer */
1715 stash->buf.skb = tx_buf->skb;
1716 stash->buf.bytes = tx_buf->bytes;
1717 stash->buf.packets = tx_buf->packets;
1718 stash->buf.type = tx_buf->type;
1719 stash->buf.nr_frags = tx_buf->nr_frags;
1720 dma_unmap_addr_set(&stash->buf, dma, dma_unmap_addr(tx_buf, dma));
1721 dma_unmap_len_set(&stash->buf, len, dma_unmap_len(tx_buf, len));
1722 idpf_tx_buf_compl_tag(&stash->buf) = idpf_tx_buf_compl_tag(tx_buf);
1723
1724 /* Add buffer to buf_hash table to be freed later */
1725 hash_add(txq->stash->sched_buf_hash, &stash->hlist,
1726 idpf_tx_buf_compl_tag(&stash->buf));
1727
1728 tx_buf->type = LIBETH_SQE_EMPTY;
1729
1730 return 0;
1731 }
1732
1733 #define idpf_tx_splitq_clean_bump_ntc(txq, ntc, desc, buf) \
1734 do { \
1735 if (unlikely(++(ntc) == (txq)->desc_count)) { \
1736 ntc = 0; \
1737 buf = (txq)->tx_buf; \
1738 desc = &(txq)->flex_tx[0]; \
1739 } else { \
1740 (buf)++; \
1741 (desc)++; \
1742 } \
1743 } while (0)
1744
1745 /**
1746 * idpf_tx_splitq_clean - Reclaim resources from buffer queue
1747 * @tx_q: Tx queue to clean
1748 * @end: queue index until which it should be cleaned
1749 * @napi_budget: Used to determine if we are in netpoll
1750 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1751 * @descs_only: true if queue is using flow-based scheduling and should
1752 * not clean buffers at this time
1753 *
1754 * Cleans the queue descriptor ring. If the queue is using queue-based
1755 * scheduling, the buffers will be cleaned as well. If the queue is using
1756 * flow-based scheduling, only the descriptors are cleaned at this time.
1757 * Separate packet completion events will be reported on the completion queue,
1758 * and the buffers will be cleaned separately. The stats are not updated from
1759 * this function when using flow-based scheduling.
1760 *
1761 * Furthermore, in flow scheduling mode, check to make sure there are enough
1762 * reserve buffers to stash the packet. If there are not, return early, which
1763 * will leave next_to_clean pointing to the packet that failed to be stashed.
1764 *
1765 * Return: false in the scenario above, true otherwise.
1766 */
idpf_tx_splitq_clean(struct idpf_tx_queue * tx_q,u16 end,int napi_budget,struct libeth_sq_napi_stats * cleaned,bool descs_only)1767 static bool idpf_tx_splitq_clean(struct idpf_tx_queue *tx_q, u16 end,
1768 int napi_budget,
1769 struct libeth_sq_napi_stats *cleaned,
1770 bool descs_only)
1771 {
1772 union idpf_tx_flex_desc *next_pending_desc = NULL;
1773 union idpf_tx_flex_desc *tx_desc;
1774 u32 ntc = tx_q->next_to_clean;
1775 struct libeth_cq_pp cp = {
1776 .dev = tx_q->dev,
1777 .ss = cleaned,
1778 .napi = napi_budget,
1779 };
1780 struct idpf_tx_buf *tx_buf;
1781 bool clean_complete = true;
1782
1783 tx_desc = &tx_q->flex_tx[ntc];
1784 next_pending_desc = &tx_q->flex_tx[end];
1785 tx_buf = &tx_q->tx_buf[ntc];
1786
1787 while (tx_desc != next_pending_desc) {
1788 u32 eop_idx;
1789
1790 /* If this entry in the ring was used as a context descriptor,
1791 * it's corresponding entry in the buffer ring is reserved. We
1792 * can skip this descriptor since there is no buffer to clean.
1793 */
1794 if (tx_buf->type <= LIBETH_SQE_CTX)
1795 goto fetch_next_txq_desc;
1796
1797 if (unlikely(tx_buf->type != LIBETH_SQE_SKB))
1798 break;
1799
1800 eop_idx = tx_buf->rs_idx;
1801
1802 if (descs_only) {
1803 if (IDPF_TX_BUF_RSV_UNUSED(tx_q) < tx_buf->nr_frags) {
1804 clean_complete = false;
1805 goto tx_splitq_clean_out;
1806 }
1807
1808 idpf_stash_flow_sch_buffers(tx_q, tx_buf);
1809
1810 while (ntc != eop_idx) {
1811 idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
1812 tx_desc, tx_buf);
1813 idpf_stash_flow_sch_buffers(tx_q, tx_buf);
1814 }
1815 } else {
1816 libeth_tx_complete(tx_buf, &cp);
1817
1818 /* unmap remaining buffers */
1819 while (ntc != eop_idx) {
1820 idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
1821 tx_desc, tx_buf);
1822
1823 /* unmap any remaining paged data */
1824 libeth_tx_complete(tx_buf, &cp);
1825 }
1826 }
1827
1828 fetch_next_txq_desc:
1829 idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf);
1830 }
1831
1832 tx_splitq_clean_out:
1833 tx_q->next_to_clean = ntc;
1834
1835 return clean_complete;
1836 }
1837
1838 #define idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, buf) \
1839 do { \
1840 (buf)++; \
1841 (ntc)++; \
1842 if (unlikely((ntc) == (txq)->desc_count)) { \
1843 buf = (txq)->tx_buf; \
1844 ntc = 0; \
1845 } \
1846 } while (0)
1847
1848 /**
1849 * idpf_tx_clean_buf_ring - clean flow scheduling TX queue buffers
1850 * @txq: queue to clean
1851 * @compl_tag: completion tag of packet to clean (from completion descriptor)
1852 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1853 * @budget: Used to determine if we are in netpoll
1854 *
1855 * Cleans all buffers associated with the input completion tag either from the
1856 * TX buffer ring or from the hash table if the buffers were previously
1857 * stashed. Returns the byte/segment count for the cleaned packet associated
1858 * this completion tag.
1859 */
idpf_tx_clean_buf_ring(struct idpf_tx_queue * txq,u16 compl_tag,struct libeth_sq_napi_stats * cleaned,int budget)1860 static bool idpf_tx_clean_buf_ring(struct idpf_tx_queue *txq, u16 compl_tag,
1861 struct libeth_sq_napi_stats *cleaned,
1862 int budget)
1863 {
1864 u16 idx = compl_tag & txq->compl_tag_bufid_m;
1865 struct idpf_tx_buf *tx_buf = NULL;
1866 struct libeth_cq_pp cp = {
1867 .dev = txq->dev,
1868 .ss = cleaned,
1869 .napi = budget,
1870 };
1871 u16 ntc, orig_idx = idx;
1872
1873 tx_buf = &txq->tx_buf[idx];
1874
1875 if (unlikely(tx_buf->type <= LIBETH_SQE_CTX ||
1876 idpf_tx_buf_compl_tag(tx_buf) != compl_tag))
1877 return false;
1878
1879 if (tx_buf->type == LIBETH_SQE_SKB)
1880 libeth_tx_complete(tx_buf, &cp);
1881
1882 idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
1883
1884 while (idpf_tx_buf_compl_tag(tx_buf) == compl_tag) {
1885 libeth_tx_complete(tx_buf, &cp);
1886 idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
1887 }
1888
1889 /*
1890 * It's possible the packet we just cleaned was an out of order
1891 * completion, which means we can stash the buffers starting from
1892 * the original next_to_clean and reuse the descriptors. We need
1893 * to compare the descriptor ring next_to_clean packet's "first" buffer
1894 * to the "first" buffer of the packet we just cleaned to determine if
1895 * this is the case. Howevever, next_to_clean can point to either a
1896 * reserved buffer that corresponds to a context descriptor used for the
1897 * next_to_clean packet (TSO packet) or the "first" buffer (single
1898 * packet). The orig_idx from the packet we just cleaned will always
1899 * point to the "first" buffer. If next_to_clean points to a reserved
1900 * buffer, let's bump ntc once and start the comparison from there.
1901 */
1902 ntc = txq->next_to_clean;
1903 tx_buf = &txq->tx_buf[ntc];
1904
1905 if (tx_buf->type == LIBETH_SQE_CTX)
1906 idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, tx_buf);
1907
1908 /*
1909 * If ntc still points to a different "first" buffer, clean the
1910 * descriptor ring and stash all of the buffers for later cleaning. If
1911 * we cannot stash all of the buffers, next_to_clean will point to the
1912 * "first" buffer of the packet that could not be stashed and cleaning
1913 * will start there next time.
1914 */
1915 if (unlikely(tx_buf != &txq->tx_buf[orig_idx] &&
1916 !idpf_tx_splitq_clean(txq, orig_idx, budget, cleaned,
1917 true)))
1918 return true;
1919
1920 /*
1921 * Otherwise, update next_to_clean to reflect the cleaning that was
1922 * done above.
1923 */
1924 txq->next_to_clean = idx;
1925
1926 return true;
1927 }
1928
1929 /**
1930 * idpf_tx_handle_rs_completion - clean a single packet and all of its buffers
1931 * whether on the buffer ring or in the hash table
1932 * @txq: Tx ring to clean
1933 * @desc: pointer to completion queue descriptor to extract completion
1934 * information from
1935 * @cleaned: pointer to stats struct to track cleaned packets/bytes
1936 * @budget: Used to determine if we are in netpoll
1937 *
1938 * Returns bytes/packets cleaned
1939 */
idpf_tx_handle_rs_completion(struct idpf_tx_queue * txq,struct idpf_splitq_tx_compl_desc * desc,struct libeth_sq_napi_stats * cleaned,int budget)1940 static void idpf_tx_handle_rs_completion(struct idpf_tx_queue *txq,
1941 struct idpf_splitq_tx_compl_desc *desc,
1942 struct libeth_sq_napi_stats *cleaned,
1943 int budget)
1944 {
1945 u16 compl_tag;
1946
1947 if (!idpf_queue_has(FLOW_SCH_EN, txq)) {
1948 u16 head = le16_to_cpu(desc->q_head_compl_tag.q_head);
1949
1950 idpf_tx_splitq_clean(txq, head, budget, cleaned, false);
1951 return;
1952 }
1953
1954 compl_tag = le16_to_cpu(desc->q_head_compl_tag.compl_tag);
1955
1956 /* If we didn't clean anything on the ring, this packet must be
1957 * in the hash table. Go clean it there.
1958 */
1959 if (!idpf_tx_clean_buf_ring(txq, compl_tag, cleaned, budget))
1960 idpf_tx_clean_stashed_bufs(txq, compl_tag, cleaned, budget);
1961 }
1962
1963 /**
1964 * idpf_tx_clean_complq - Reclaim resources on completion queue
1965 * @complq: Tx ring to clean
1966 * @budget: Used to determine if we are in netpoll
1967 * @cleaned: returns number of packets cleaned
1968 *
1969 * Returns true if there's any budget left (e.g. the clean is finished)
1970 */
idpf_tx_clean_complq(struct idpf_compl_queue * complq,int budget,int * cleaned)1971 static bool idpf_tx_clean_complq(struct idpf_compl_queue *complq, int budget,
1972 int *cleaned)
1973 {
1974 struct idpf_splitq_tx_compl_desc *tx_desc;
1975 s16 ntc = complq->next_to_clean;
1976 struct idpf_netdev_priv *np;
1977 unsigned int complq_budget;
1978 bool complq_ok = true;
1979 int i;
1980
1981 complq_budget = complq->clean_budget;
1982 tx_desc = &complq->comp[ntc];
1983 ntc -= complq->desc_count;
1984
1985 do {
1986 struct libeth_sq_napi_stats cleaned_stats = { };
1987 struct idpf_tx_queue *tx_q;
1988 int rel_tx_qid;
1989 u16 hw_head;
1990 u8 ctype; /* completion type */
1991 u16 gen;
1992
1993 /* if the descriptor isn't done, no work yet to do */
1994 gen = le16_get_bits(tx_desc->qid_comptype_gen,
1995 IDPF_TXD_COMPLQ_GEN_M);
1996 if (idpf_queue_has(GEN_CHK, complq) != gen)
1997 break;
1998
1999 /* Find necessary info of TX queue to clean buffers */
2000 rel_tx_qid = le16_get_bits(tx_desc->qid_comptype_gen,
2001 IDPF_TXD_COMPLQ_QID_M);
2002 if (rel_tx_qid >= complq->txq_grp->num_txq ||
2003 !complq->txq_grp->txqs[rel_tx_qid]) {
2004 netdev_err(complq->netdev, "TxQ not found\n");
2005 goto fetch_next_desc;
2006 }
2007 tx_q = complq->txq_grp->txqs[rel_tx_qid];
2008
2009 /* Determine completion type */
2010 ctype = le16_get_bits(tx_desc->qid_comptype_gen,
2011 IDPF_TXD_COMPLQ_COMPL_TYPE_M);
2012 switch (ctype) {
2013 case IDPF_TXD_COMPLT_RE:
2014 hw_head = le16_to_cpu(tx_desc->q_head_compl_tag.q_head);
2015
2016 idpf_tx_splitq_clean(tx_q, hw_head, budget,
2017 &cleaned_stats, true);
2018 break;
2019 case IDPF_TXD_COMPLT_RS:
2020 idpf_tx_handle_rs_completion(tx_q, tx_desc,
2021 &cleaned_stats, budget);
2022 break;
2023 case IDPF_TXD_COMPLT_SW_MARKER:
2024 idpf_tx_handle_sw_marker(tx_q);
2025 break;
2026 default:
2027 netdev_err(tx_q->netdev,
2028 "Unknown TX completion type: %d\n", ctype);
2029 goto fetch_next_desc;
2030 }
2031
2032 u64_stats_update_begin(&tx_q->stats_sync);
2033 u64_stats_add(&tx_q->q_stats.packets, cleaned_stats.packets);
2034 u64_stats_add(&tx_q->q_stats.bytes, cleaned_stats.bytes);
2035 tx_q->cleaned_pkts += cleaned_stats.packets;
2036 tx_q->cleaned_bytes += cleaned_stats.bytes;
2037 complq->num_completions++;
2038 u64_stats_update_end(&tx_q->stats_sync);
2039
2040 fetch_next_desc:
2041 tx_desc++;
2042 ntc++;
2043 if (unlikely(!ntc)) {
2044 ntc -= complq->desc_count;
2045 tx_desc = &complq->comp[0];
2046 idpf_queue_change(GEN_CHK, complq);
2047 }
2048
2049 prefetch(tx_desc);
2050
2051 /* update budget accounting */
2052 complq_budget--;
2053 } while (likely(complq_budget));
2054
2055 /* Store the state of the complq to be used later in deciding if a
2056 * TXQ can be started again
2057 */
2058 if (unlikely(IDPF_TX_COMPLQ_PENDING(complq->txq_grp) >
2059 IDPF_TX_COMPLQ_OVERFLOW_THRESH(complq)))
2060 complq_ok = false;
2061
2062 np = netdev_priv(complq->netdev);
2063 for (i = 0; i < complq->txq_grp->num_txq; ++i) {
2064 struct idpf_tx_queue *tx_q = complq->txq_grp->txqs[i];
2065 struct netdev_queue *nq;
2066 bool dont_wake;
2067
2068 /* We didn't clean anything on this queue, move along */
2069 if (!tx_q->cleaned_bytes)
2070 continue;
2071
2072 *cleaned += tx_q->cleaned_pkts;
2073
2074 /* Update BQL */
2075 nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2076
2077 dont_wake = !complq_ok || IDPF_TX_BUF_RSV_LOW(tx_q) ||
2078 np->state != __IDPF_VPORT_UP ||
2079 !netif_carrier_ok(tx_q->netdev);
2080 /* Check if the TXQ needs to and can be restarted */
2081 __netif_txq_completed_wake(nq, tx_q->cleaned_pkts, tx_q->cleaned_bytes,
2082 IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
2083 dont_wake);
2084
2085 /* Reset cleaned stats for the next time this queue is
2086 * cleaned
2087 */
2088 tx_q->cleaned_bytes = 0;
2089 tx_q->cleaned_pkts = 0;
2090 }
2091
2092 ntc += complq->desc_count;
2093 complq->next_to_clean = ntc;
2094
2095 return !!complq_budget;
2096 }
2097
2098 /**
2099 * idpf_tx_splitq_build_ctb - populate command tag and size for queue
2100 * based scheduling descriptors
2101 * @desc: descriptor to populate
2102 * @params: pointer to tx params struct
2103 * @td_cmd: command to be filled in desc
2104 * @size: size of buffer
2105 */
idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc * desc,struct idpf_tx_splitq_params * params,u16 td_cmd,u16 size)2106 void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
2107 struct idpf_tx_splitq_params *params,
2108 u16 td_cmd, u16 size)
2109 {
2110 desc->q.qw1.cmd_dtype =
2111 le16_encode_bits(params->dtype, IDPF_FLEX_TXD_QW1_DTYPE_M);
2112 desc->q.qw1.cmd_dtype |=
2113 le16_encode_bits(td_cmd, IDPF_FLEX_TXD_QW1_CMD_M);
2114 desc->q.qw1.buf_size = cpu_to_le16(size);
2115 desc->q.qw1.l2tags.l2tag1 = cpu_to_le16(params->td_tag);
2116 }
2117
2118 /**
2119 * idpf_tx_splitq_build_flow_desc - populate command tag and size for flow
2120 * scheduling descriptors
2121 * @desc: descriptor to populate
2122 * @params: pointer to tx params struct
2123 * @td_cmd: command to be filled in desc
2124 * @size: size of buffer
2125 */
idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc * desc,struct idpf_tx_splitq_params * params,u16 td_cmd,u16 size)2126 void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
2127 struct idpf_tx_splitq_params *params,
2128 u16 td_cmd, u16 size)
2129 {
2130 desc->flow.qw1.cmd_dtype = (u16)params->dtype | td_cmd;
2131 desc->flow.qw1.rxr_bufsize = cpu_to_le16((u16)size);
2132 desc->flow.qw1.compl_tag = cpu_to_le16(params->compl_tag);
2133 }
2134
2135 /**
2136 * idpf_tx_maybe_stop_splitq - 1st level check for Tx splitq stop conditions
2137 * @tx_q: the queue to be checked
2138 * @descs_needed: number of descriptors required for this packet
2139 *
2140 * Returns 0 if stop is not needed
2141 */
idpf_tx_maybe_stop_splitq(struct idpf_tx_queue * tx_q,unsigned int descs_needed)2142 static int idpf_tx_maybe_stop_splitq(struct idpf_tx_queue *tx_q,
2143 unsigned int descs_needed)
2144 {
2145 if (idpf_tx_maybe_stop_common(tx_q, descs_needed))
2146 goto out;
2147
2148 /* If there are too many outstanding completions expected on the
2149 * completion queue, stop the TX queue to give the device some time to
2150 * catch up
2151 */
2152 if (unlikely(IDPF_TX_COMPLQ_PENDING(tx_q->txq_grp) >
2153 IDPF_TX_COMPLQ_OVERFLOW_THRESH(tx_q->txq_grp->complq)))
2154 goto splitq_stop;
2155
2156 /* Also check for available book keeping buffers; if we are low, stop
2157 * the queue to wait for more completions
2158 */
2159 if (unlikely(IDPF_TX_BUF_RSV_LOW(tx_q)))
2160 goto splitq_stop;
2161
2162 return 0;
2163
2164 splitq_stop:
2165 netif_stop_subqueue(tx_q->netdev, tx_q->idx);
2166
2167 out:
2168 u64_stats_update_begin(&tx_q->stats_sync);
2169 u64_stats_inc(&tx_q->q_stats.q_busy);
2170 u64_stats_update_end(&tx_q->stats_sync);
2171
2172 return -EBUSY;
2173 }
2174
2175 /**
2176 * idpf_tx_buf_hw_update - Store the new tail value
2177 * @tx_q: queue to bump
2178 * @val: new tail index
2179 * @xmit_more: more skb's pending
2180 *
2181 * The naming here is special in that 'hw' signals that this function is about
2182 * to do a register write to update our queue status. We know this can only
2183 * mean tail here as HW should be owning head for TX.
2184 */
idpf_tx_buf_hw_update(struct idpf_tx_queue * tx_q,u32 val,bool xmit_more)2185 void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
2186 bool xmit_more)
2187 {
2188 struct netdev_queue *nq;
2189
2190 nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2191 tx_q->next_to_use = val;
2192
2193 if (idpf_tx_maybe_stop_common(tx_q, IDPF_TX_DESC_NEEDED)) {
2194 u64_stats_update_begin(&tx_q->stats_sync);
2195 u64_stats_inc(&tx_q->q_stats.q_busy);
2196 u64_stats_update_end(&tx_q->stats_sync);
2197 }
2198
2199 /* Force memory writes to complete before letting h/w
2200 * know there are new descriptors to fetch. (Only
2201 * applicable for weak-ordered memory model archs,
2202 * such as IA-64).
2203 */
2204 wmb();
2205
2206 /* notify HW of packet */
2207 if (netif_xmit_stopped(nq) || !xmit_more)
2208 writel(val, tx_q->tail);
2209 }
2210
2211 /**
2212 * idpf_tx_desc_count_required - calculate number of Tx descriptors needed
2213 * @txq: queue to send buffer on
2214 * @skb: send buffer
2215 *
2216 * Returns number of data descriptors needed for this skb.
2217 */
idpf_tx_desc_count_required(struct idpf_tx_queue * txq,struct sk_buff * skb)2218 unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
2219 struct sk_buff *skb)
2220 {
2221 const struct skb_shared_info *shinfo;
2222 unsigned int count = 0, i;
2223
2224 count += !!skb_headlen(skb);
2225
2226 if (!skb_is_nonlinear(skb))
2227 return count;
2228
2229 shinfo = skb_shinfo(skb);
2230 for (i = 0; i < shinfo->nr_frags; i++) {
2231 unsigned int size;
2232
2233 size = skb_frag_size(&shinfo->frags[i]);
2234
2235 /* We only need to use the idpf_size_to_txd_count check if the
2236 * fragment is going to span multiple descriptors,
2237 * i.e. size >= 16K.
2238 */
2239 if (size >= SZ_16K)
2240 count += idpf_size_to_txd_count(size);
2241 else
2242 count++;
2243 }
2244
2245 if (idpf_chk_linearize(skb, txq->tx_max_bufs, count)) {
2246 if (__skb_linearize(skb))
2247 return 0;
2248
2249 count = idpf_size_to_txd_count(skb->len);
2250 u64_stats_update_begin(&txq->stats_sync);
2251 u64_stats_inc(&txq->q_stats.linearize);
2252 u64_stats_update_end(&txq->stats_sync);
2253 }
2254
2255 return count;
2256 }
2257
2258 /**
2259 * idpf_tx_dma_map_error - handle TX DMA map errors
2260 * @txq: queue to send buffer on
2261 * @skb: send buffer
2262 * @first: original first buffer info buffer for packet
2263 * @idx: starting point on ring to unwind
2264 */
idpf_tx_dma_map_error(struct idpf_tx_queue * txq,struct sk_buff * skb,struct idpf_tx_buf * first,u16 idx)2265 void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
2266 struct idpf_tx_buf *first, u16 idx)
2267 {
2268 struct libeth_sq_napi_stats ss = { };
2269 struct libeth_cq_pp cp = {
2270 .dev = txq->dev,
2271 .ss = &ss,
2272 };
2273
2274 u64_stats_update_begin(&txq->stats_sync);
2275 u64_stats_inc(&txq->q_stats.dma_map_errs);
2276 u64_stats_update_end(&txq->stats_sync);
2277
2278 /* clear dma mappings for failed tx_buf map */
2279 for (;;) {
2280 struct idpf_tx_buf *tx_buf;
2281
2282 tx_buf = &txq->tx_buf[idx];
2283 libeth_tx_complete(tx_buf, &cp);
2284 if (tx_buf == first)
2285 break;
2286 if (idx == 0)
2287 idx = txq->desc_count;
2288 idx--;
2289 }
2290
2291 if (skb_is_gso(skb)) {
2292 union idpf_tx_flex_desc *tx_desc;
2293
2294 /* If we failed a DMA mapping for a TSO packet, we will have
2295 * used one additional descriptor for a context
2296 * descriptor. Reset that here.
2297 */
2298 tx_desc = &txq->flex_tx[idx];
2299 memset(tx_desc, 0, sizeof(struct idpf_flex_tx_ctx_desc));
2300 if (idx == 0)
2301 idx = txq->desc_count;
2302 idx--;
2303 }
2304
2305 /* Update tail in case netdev_xmit_more was previously true */
2306 idpf_tx_buf_hw_update(txq, idx, false);
2307 }
2308
2309 /**
2310 * idpf_tx_splitq_bump_ntu - adjust NTU and generation
2311 * @txq: the tx ring to wrap
2312 * @ntu: ring index to bump
2313 */
idpf_tx_splitq_bump_ntu(struct idpf_tx_queue * txq,u16 ntu)2314 static unsigned int idpf_tx_splitq_bump_ntu(struct idpf_tx_queue *txq, u16 ntu)
2315 {
2316 ntu++;
2317
2318 if (ntu == txq->desc_count) {
2319 ntu = 0;
2320 txq->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(txq);
2321 }
2322
2323 return ntu;
2324 }
2325
2326 /**
2327 * idpf_tx_splitq_map - Build the Tx flex descriptor
2328 * @tx_q: queue to send buffer on
2329 * @params: pointer to splitq params struct
2330 * @first: first buffer info buffer to use
2331 *
2332 * This function loops over the skb data pointed to by *first
2333 * and gets a physical address for each memory location and programs
2334 * it and the length into the transmit flex descriptor.
2335 */
idpf_tx_splitq_map(struct idpf_tx_queue * tx_q,struct idpf_tx_splitq_params * params,struct idpf_tx_buf * first)2336 static void idpf_tx_splitq_map(struct idpf_tx_queue *tx_q,
2337 struct idpf_tx_splitq_params *params,
2338 struct idpf_tx_buf *first)
2339 {
2340 union idpf_tx_flex_desc *tx_desc;
2341 unsigned int data_len, size;
2342 struct idpf_tx_buf *tx_buf;
2343 u16 i = tx_q->next_to_use;
2344 struct netdev_queue *nq;
2345 struct sk_buff *skb;
2346 skb_frag_t *frag;
2347 u16 td_cmd = 0;
2348 dma_addr_t dma;
2349
2350 skb = first->skb;
2351
2352 td_cmd = params->offload.td_cmd;
2353
2354 data_len = skb->data_len;
2355 size = skb_headlen(skb);
2356
2357 tx_desc = &tx_q->flex_tx[i];
2358
2359 dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
2360
2361 tx_buf = first;
2362 first->nr_frags = 0;
2363
2364 params->compl_tag =
2365 (tx_q->compl_tag_cur_gen << tx_q->compl_tag_gen_s) | i;
2366
2367 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2368 unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
2369
2370 if (dma_mapping_error(tx_q->dev, dma))
2371 return idpf_tx_dma_map_error(tx_q, skb, first, i);
2372
2373 first->nr_frags++;
2374 idpf_tx_buf_compl_tag(tx_buf) = params->compl_tag;
2375 tx_buf->type = LIBETH_SQE_FRAG;
2376
2377 /* record length, and DMA address */
2378 dma_unmap_len_set(tx_buf, len, size);
2379 dma_unmap_addr_set(tx_buf, dma, dma);
2380
2381 /* buf_addr is in same location for both desc types */
2382 tx_desc->q.buf_addr = cpu_to_le64(dma);
2383
2384 /* The stack can send us fragments that are too large for a
2385 * single descriptor i.e. frag size > 16K-1. We will need to
2386 * split the fragment across multiple descriptors in this case.
2387 * To adhere to HW alignment restrictions, the fragment needs
2388 * to be split such that the first chunk ends on a 4K boundary
2389 * and all subsequent chunks start on a 4K boundary. We still
2390 * want to send as much data as possible though, so our
2391 * intermediate descriptor chunk size will be 12K.
2392 *
2393 * For example, consider a 32K fragment mapped to DMA addr 2600.
2394 * ------------------------------------------------------------
2395 * | frag_size = 32K |
2396 * ------------------------------------------------------------
2397 * |2600 |16384 |28672
2398 *
2399 * 3 descriptors will be used for this fragment. The HW expects
2400 * the descriptors to contain the following:
2401 * ------------------------------------------------------------
2402 * | size = 13784 | size = 12K | size = 6696 |
2403 * | dma = 2600 | dma = 16384 | dma = 28672 |
2404 * ------------------------------------------------------------
2405 *
2406 * We need to first adjust the max_data for the first chunk so
2407 * that it ends on a 4K boundary. By negating the value of the
2408 * DMA address and taking only the low order bits, we're
2409 * effectively calculating
2410 * 4K - (DMA addr lower order bits) =
2411 * bytes to next boundary.
2412 *
2413 * Add that to our base aligned max_data (12K) and we have
2414 * our first chunk size. In the example above,
2415 * 13784 = 12K + (4096-2600)
2416 *
2417 * After guaranteeing the first chunk ends on a 4K boundary, we
2418 * will give the intermediate descriptors 12K chunks and
2419 * whatever is left to the final descriptor. This ensures that
2420 * all descriptors used for the remaining chunks of the
2421 * fragment start on a 4K boundary and we use as few
2422 * descriptors as possible.
2423 */
2424 max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
2425 while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
2426 idpf_tx_splitq_build_desc(tx_desc, params, td_cmd,
2427 max_data);
2428
2429 if (unlikely(++i == tx_q->desc_count)) {
2430 tx_buf = tx_q->tx_buf;
2431 tx_desc = &tx_q->flex_tx[0];
2432 i = 0;
2433 tx_q->compl_tag_cur_gen =
2434 IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
2435 } else {
2436 tx_buf++;
2437 tx_desc++;
2438 }
2439
2440 /* Since this packet has a buffer that is going to span
2441 * multiple descriptors, it's going to leave holes in
2442 * to the TX buffer ring. To ensure these holes do not
2443 * cause issues in the cleaning routines, we will clear
2444 * them of any stale data and assign them the same
2445 * completion tag as the current packet. Then when the
2446 * packet is being cleaned, the cleaning routines will
2447 * simply pass over these holes and finish cleaning the
2448 * rest of the packet.
2449 */
2450 tx_buf->type = LIBETH_SQE_EMPTY;
2451 idpf_tx_buf_compl_tag(tx_buf) = params->compl_tag;
2452
2453 /* Adjust the DMA offset and the remaining size of the
2454 * fragment. On the first iteration of this loop,
2455 * max_data will be >= 12K and <= 16K-1. On any
2456 * subsequent iteration of this loop, max_data will
2457 * always be 12K.
2458 */
2459 dma += max_data;
2460 size -= max_data;
2461
2462 /* Reset max_data since remaining chunks will be 12K
2463 * at most
2464 */
2465 max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
2466
2467 /* buf_addr is in same location for both desc types */
2468 tx_desc->q.buf_addr = cpu_to_le64(dma);
2469 }
2470
2471 if (!data_len)
2472 break;
2473
2474 idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
2475
2476 if (unlikely(++i == tx_q->desc_count)) {
2477 tx_buf = tx_q->tx_buf;
2478 tx_desc = &tx_q->flex_tx[0];
2479 i = 0;
2480 tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q);
2481 } else {
2482 tx_buf++;
2483 tx_desc++;
2484 }
2485
2486 size = skb_frag_size(frag);
2487 data_len -= size;
2488
2489 dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
2490 DMA_TO_DEVICE);
2491 }
2492
2493 /* record SW timestamp if HW timestamp is not available */
2494 skb_tx_timestamp(skb);
2495
2496 first->type = LIBETH_SQE_SKB;
2497
2498 /* write last descriptor with RS and EOP bits */
2499 first->rs_idx = i;
2500 td_cmd |= params->eop_cmd;
2501 idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size);
2502 i = idpf_tx_splitq_bump_ntu(tx_q, i);
2503
2504 tx_q->txq_grp->num_completions_pending++;
2505
2506 /* record bytecount for BQL */
2507 nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
2508 netdev_tx_sent_queue(nq, first->bytes);
2509
2510 idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
2511 }
2512
2513 /**
2514 * idpf_tso - computes mss and TSO length to prepare for TSO
2515 * @skb: pointer to skb
2516 * @off: pointer to struct that holds offload parameters
2517 *
2518 * Returns error (negative) if TSO was requested but cannot be applied to the
2519 * given skb, 0 if TSO does not apply to the given skb, or 1 otherwise.
2520 */
idpf_tso(struct sk_buff * skb,struct idpf_tx_offload_params * off)2521 int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off)
2522 {
2523 const struct skb_shared_info *shinfo;
2524 union {
2525 struct iphdr *v4;
2526 struct ipv6hdr *v6;
2527 unsigned char *hdr;
2528 } ip;
2529 union {
2530 struct tcphdr *tcp;
2531 struct udphdr *udp;
2532 unsigned char *hdr;
2533 } l4;
2534 u32 paylen, l4_start;
2535 int err;
2536
2537 if (!skb_is_gso(skb))
2538 return 0;
2539
2540 err = skb_cow_head(skb, 0);
2541 if (err < 0)
2542 return err;
2543
2544 shinfo = skb_shinfo(skb);
2545
2546 ip.hdr = skb_network_header(skb);
2547 l4.hdr = skb_transport_header(skb);
2548
2549 /* initialize outer IP header fields */
2550 if (ip.v4->version == 4) {
2551 ip.v4->tot_len = 0;
2552 ip.v4->check = 0;
2553 } else if (ip.v6->version == 6) {
2554 ip.v6->payload_len = 0;
2555 }
2556
2557 l4_start = skb_transport_offset(skb);
2558
2559 /* remove payload length from checksum */
2560 paylen = skb->len - l4_start;
2561
2562 switch (shinfo->gso_type & ~SKB_GSO_DODGY) {
2563 case SKB_GSO_TCPV4:
2564 case SKB_GSO_TCPV6:
2565 csum_replace_by_diff(&l4.tcp->check,
2566 (__force __wsum)htonl(paylen));
2567 off->tso_hdr_len = __tcp_hdrlen(l4.tcp) + l4_start;
2568 break;
2569 case SKB_GSO_UDP_L4:
2570 csum_replace_by_diff(&l4.udp->check,
2571 (__force __wsum)htonl(paylen));
2572 /* compute length of segmentation header */
2573 off->tso_hdr_len = sizeof(struct udphdr) + l4_start;
2574 l4.udp->len = htons(shinfo->gso_size + sizeof(struct udphdr));
2575 break;
2576 default:
2577 return -EINVAL;
2578 }
2579
2580 off->tso_len = skb->len - off->tso_hdr_len;
2581 off->mss = shinfo->gso_size;
2582 off->tso_segs = shinfo->gso_segs;
2583
2584 off->tx_flags |= IDPF_TX_FLAGS_TSO;
2585
2586 return 1;
2587 }
2588
2589 /**
2590 * __idpf_chk_linearize - Check skb is not using too many buffers
2591 * @skb: send buffer
2592 * @max_bufs: maximum number of buffers
2593 *
2594 * For TSO we need to count the TSO header and segment payload separately. As
2595 * such we need to check cases where we have max_bufs-1 fragments or more as we
2596 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1
2597 * for the segment payload in the first descriptor, and another max_buf-1 for
2598 * the fragments.
2599 */
__idpf_chk_linearize(struct sk_buff * skb,unsigned int max_bufs)2600 static bool __idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs)
2601 {
2602 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2603 const skb_frag_t *frag, *stale;
2604 int nr_frags, sum;
2605
2606 /* no need to check if number of frags is less than max_bufs - 1 */
2607 nr_frags = shinfo->nr_frags;
2608 if (nr_frags < (max_bufs - 1))
2609 return false;
2610
2611 /* We need to walk through the list and validate that each group
2612 * of max_bufs-2 fragments totals at least gso_size.
2613 */
2614 nr_frags -= max_bufs - 2;
2615 frag = &shinfo->frags[0];
2616
2617 /* Initialize size to the negative value of gso_size minus 1. We use
2618 * this as the worst case scenario in which the frag ahead of us only
2619 * provides one byte which is why we are limited to max_bufs-2
2620 * descriptors for a single transmit as the header and previous
2621 * fragment are already consuming 2 descriptors.
2622 */
2623 sum = 1 - shinfo->gso_size;
2624
2625 /* Add size of frags 0 through 4 to create our initial sum */
2626 sum += skb_frag_size(frag++);
2627 sum += skb_frag_size(frag++);
2628 sum += skb_frag_size(frag++);
2629 sum += skb_frag_size(frag++);
2630 sum += skb_frag_size(frag++);
2631
2632 /* Walk through fragments adding latest fragment, testing it, and
2633 * then removing stale fragments from the sum.
2634 */
2635 for (stale = &shinfo->frags[0];; stale++) {
2636 int stale_size = skb_frag_size(stale);
2637
2638 sum += skb_frag_size(frag++);
2639
2640 /* The stale fragment may present us with a smaller
2641 * descriptor than the actual fragment size. To account
2642 * for that we need to remove all the data on the front and
2643 * figure out what the remainder would be in the last
2644 * descriptor associated with the fragment.
2645 */
2646 if (stale_size > IDPF_TX_MAX_DESC_DATA) {
2647 int align_pad = -(skb_frag_off(stale)) &
2648 (IDPF_TX_MAX_READ_REQ_SIZE - 1);
2649
2650 sum -= align_pad;
2651 stale_size -= align_pad;
2652
2653 do {
2654 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2655 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED;
2656 } while (stale_size > IDPF_TX_MAX_DESC_DATA);
2657 }
2658
2659 /* if sum is negative we failed to make sufficient progress */
2660 if (sum < 0)
2661 return true;
2662
2663 if (!nr_frags--)
2664 break;
2665
2666 sum -= stale_size;
2667 }
2668
2669 return false;
2670 }
2671
2672 /**
2673 * idpf_chk_linearize - Check if skb exceeds max descriptors per packet
2674 * @skb: send buffer
2675 * @max_bufs: maximum scatter gather buffers for single packet
2676 * @count: number of buffers this packet needs
2677 *
2678 * Make sure we don't exceed maximum scatter gather buffers for a single
2679 * packet. We have to do some special checking around the boundary (max_bufs-1)
2680 * if TSO is on since we need count the TSO header and payload separately.
2681 * E.g.: a packet with 7 fragments can require 9 DMA transactions; 1 for TSO
2682 * header, 1 for segment payload, and then 7 for the fragments.
2683 */
idpf_chk_linearize(struct sk_buff * skb,unsigned int max_bufs,unsigned int count)2684 static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs,
2685 unsigned int count)
2686 {
2687 if (likely(count < max_bufs))
2688 return false;
2689 if (skb_is_gso(skb))
2690 return __idpf_chk_linearize(skb, max_bufs);
2691
2692 return count > max_bufs;
2693 }
2694
2695 /**
2696 * idpf_tx_splitq_get_ctx_desc - grab next desc and update buffer ring
2697 * @txq: queue to put context descriptor on
2698 *
2699 * Since the TX buffer rings mimics the descriptor ring, update the tx buffer
2700 * ring entry to reflect that this index is a context descriptor
2701 */
2702 static struct idpf_flex_tx_ctx_desc *
idpf_tx_splitq_get_ctx_desc(struct idpf_tx_queue * txq)2703 idpf_tx_splitq_get_ctx_desc(struct idpf_tx_queue *txq)
2704 {
2705 struct idpf_flex_tx_ctx_desc *desc;
2706 int i = txq->next_to_use;
2707
2708 txq->tx_buf[i].type = LIBETH_SQE_CTX;
2709
2710 /* grab the next descriptor */
2711 desc = &txq->flex_ctx[i];
2712 txq->next_to_use = idpf_tx_splitq_bump_ntu(txq, i);
2713
2714 return desc;
2715 }
2716
2717 /**
2718 * idpf_tx_drop_skb - free the SKB and bump tail if necessary
2719 * @tx_q: queue to send buffer on
2720 * @skb: pointer to skb
2721 */
idpf_tx_drop_skb(struct idpf_tx_queue * tx_q,struct sk_buff * skb)2722 netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb)
2723 {
2724 u64_stats_update_begin(&tx_q->stats_sync);
2725 u64_stats_inc(&tx_q->q_stats.skb_drops);
2726 u64_stats_update_end(&tx_q->stats_sync);
2727
2728 idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2729
2730 dev_kfree_skb(skb);
2731
2732 return NETDEV_TX_OK;
2733 }
2734
2735 /**
2736 * idpf_tx_splitq_frame - Sends buffer on Tx ring using flex descriptors
2737 * @skb: send buffer
2738 * @tx_q: queue to send buffer on
2739 *
2740 * Returns NETDEV_TX_OK if sent, else an error code
2741 */
idpf_tx_splitq_frame(struct sk_buff * skb,struct idpf_tx_queue * tx_q)2742 static netdev_tx_t idpf_tx_splitq_frame(struct sk_buff *skb,
2743 struct idpf_tx_queue *tx_q)
2744 {
2745 struct idpf_tx_splitq_params tx_params = { };
2746 struct idpf_tx_buf *first;
2747 unsigned int count;
2748 int tso;
2749
2750 count = idpf_tx_desc_count_required(tx_q, skb);
2751 if (unlikely(!count))
2752 return idpf_tx_drop_skb(tx_q, skb);
2753
2754 tso = idpf_tso(skb, &tx_params.offload);
2755 if (unlikely(tso < 0))
2756 return idpf_tx_drop_skb(tx_q, skb);
2757
2758 /* Check for splitq specific TX resources */
2759 count += (IDPF_TX_DESCS_PER_CACHE_LINE + tso);
2760 if (idpf_tx_maybe_stop_splitq(tx_q, count)) {
2761 idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2762
2763 return NETDEV_TX_BUSY;
2764 }
2765
2766 if (tso) {
2767 /* If tso is needed, set up context desc */
2768 struct idpf_flex_tx_ctx_desc *ctx_desc =
2769 idpf_tx_splitq_get_ctx_desc(tx_q);
2770
2771 ctx_desc->tso.qw1.cmd_dtype =
2772 cpu_to_le16(IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX |
2773 IDPF_TX_FLEX_CTX_DESC_CMD_TSO);
2774 ctx_desc->tso.qw0.flex_tlen =
2775 cpu_to_le32(tx_params.offload.tso_len &
2776 IDPF_TXD_FLEX_CTX_TLEN_M);
2777 ctx_desc->tso.qw0.mss_rt =
2778 cpu_to_le16(tx_params.offload.mss &
2779 IDPF_TXD_FLEX_CTX_MSS_RT_M);
2780 ctx_desc->tso.qw0.hdr_len = tx_params.offload.tso_hdr_len;
2781
2782 u64_stats_update_begin(&tx_q->stats_sync);
2783 u64_stats_inc(&tx_q->q_stats.lso_pkts);
2784 u64_stats_update_end(&tx_q->stats_sync);
2785 }
2786
2787 /* record the location of the first descriptor for this packet */
2788 first = &tx_q->tx_buf[tx_q->next_to_use];
2789 first->skb = skb;
2790
2791 if (tso) {
2792 first->packets = tx_params.offload.tso_segs;
2793 first->bytes = skb->len +
2794 ((first->packets - 1) * tx_params.offload.tso_hdr_len);
2795 } else {
2796 first->packets = 1;
2797 first->bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
2798 }
2799
2800 if (idpf_queue_has(FLOW_SCH_EN, tx_q)) {
2801 tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE;
2802 tx_params.eop_cmd = IDPF_TXD_FLEX_FLOW_CMD_EOP;
2803 /* Set the RE bit to catch any packets that may have not been
2804 * stashed during RS completion cleaning. MIN_GAP is set to
2805 * MIN_RING size to ensure it will be set at least once each
2806 * time around the ring.
2807 */
2808 if (!(tx_q->next_to_use % IDPF_TX_SPLITQ_RE_MIN_GAP)) {
2809 tx_params.eop_cmd |= IDPF_TXD_FLEX_FLOW_CMD_RE;
2810 tx_q->txq_grp->num_completions_pending++;
2811 }
2812
2813 if (skb->ip_summed == CHECKSUM_PARTIAL)
2814 tx_params.offload.td_cmd |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN;
2815
2816 } else {
2817 tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2;
2818 tx_params.eop_cmd = IDPF_TXD_LAST_DESC_CMD;
2819
2820 if (skb->ip_summed == CHECKSUM_PARTIAL)
2821 tx_params.offload.td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN;
2822 }
2823
2824 idpf_tx_splitq_map(tx_q, &tx_params, first);
2825
2826 return NETDEV_TX_OK;
2827 }
2828
2829 /**
2830 * idpf_tx_start - Selects the right Tx queue to send buffer
2831 * @skb: send buffer
2832 * @netdev: network interface device structure
2833 *
2834 * Returns NETDEV_TX_OK if sent, else an error code
2835 */
idpf_tx_start(struct sk_buff * skb,struct net_device * netdev)2836 netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev)
2837 {
2838 struct idpf_vport *vport = idpf_netdev_to_vport(netdev);
2839 struct idpf_tx_queue *tx_q;
2840
2841 if (unlikely(skb_get_queue_mapping(skb) >= vport->num_txq)) {
2842 dev_kfree_skb_any(skb);
2843
2844 return NETDEV_TX_OK;
2845 }
2846
2847 tx_q = vport->txqs[skb_get_queue_mapping(skb)];
2848
2849 /* hardware can't handle really short frames, hardware padding works
2850 * beyond this point
2851 */
2852 if (skb_put_padto(skb, tx_q->tx_min_pkt_len)) {
2853 idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
2854
2855 return NETDEV_TX_OK;
2856 }
2857
2858 if (idpf_is_queue_model_split(vport->txq_model))
2859 return idpf_tx_splitq_frame(skb, tx_q);
2860 else
2861 return idpf_tx_singleq_frame(skb, tx_q);
2862 }
2863
2864 /**
2865 * idpf_rx_hash - set the hash value in the skb
2866 * @rxq: Rx descriptor ring packet is being transacted on
2867 * @skb: pointer to current skb being populated
2868 * @rx_desc: Receive descriptor
2869 * @decoded: Decoded Rx packet type related fields
2870 */
2871 static void
idpf_rx_hash(const struct idpf_rx_queue * rxq,struct sk_buff * skb,const struct virtchnl2_rx_flex_desc_adv_nic_3 * rx_desc,struct libeth_rx_pt decoded)2872 idpf_rx_hash(const struct idpf_rx_queue *rxq, struct sk_buff *skb,
2873 const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
2874 struct libeth_rx_pt decoded)
2875 {
2876 u32 hash;
2877
2878 if (!libeth_rx_pt_has_hash(rxq->netdev, decoded))
2879 return;
2880
2881 hash = le16_to_cpu(rx_desc->hash1) |
2882 (rx_desc->ff2_mirrid_hash2.hash2 << 16) |
2883 (rx_desc->hash3 << 24);
2884
2885 libeth_rx_pt_set_hash(skb, hash, decoded);
2886 }
2887
2888 /**
2889 * idpf_rx_csum - Indicate in skb if checksum is good
2890 * @rxq: Rx descriptor ring packet is being transacted on
2891 * @skb: pointer to current skb being populated
2892 * @csum_bits: checksum fields extracted from the descriptor
2893 * @decoded: Decoded Rx packet type related fields
2894 *
2895 * skb->protocol must be set before this function is called
2896 */
idpf_rx_csum(struct idpf_rx_queue * rxq,struct sk_buff * skb,struct idpf_rx_csum_decoded csum_bits,struct libeth_rx_pt decoded)2897 static void idpf_rx_csum(struct idpf_rx_queue *rxq, struct sk_buff *skb,
2898 struct idpf_rx_csum_decoded csum_bits,
2899 struct libeth_rx_pt decoded)
2900 {
2901 bool ipv4, ipv6;
2902
2903 /* check if Rx checksum is enabled */
2904 if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
2905 return;
2906
2907 /* check if HW has decoded the packet and checksum */
2908 if (unlikely(!csum_bits.l3l4p))
2909 return;
2910
2911 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
2912 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
2913
2914 if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
2915 goto checksum_fail;
2916
2917 if (unlikely(ipv6 && csum_bits.ipv6exadd))
2918 return;
2919
2920 /* check for L4 errors and handle packets that were not able to be
2921 * checksummed
2922 */
2923 if (unlikely(csum_bits.l4e))
2924 goto checksum_fail;
2925
2926 if (csum_bits.raw_csum_inv ||
2927 decoded.inner_prot == LIBETH_RX_PT_INNER_SCTP) {
2928 skb->ip_summed = CHECKSUM_UNNECESSARY;
2929 return;
2930 }
2931
2932 skb->csum = csum_unfold((__force __sum16)~swab16(csum_bits.raw_csum));
2933 skb->ip_summed = CHECKSUM_COMPLETE;
2934
2935 return;
2936
2937 checksum_fail:
2938 u64_stats_update_begin(&rxq->stats_sync);
2939 u64_stats_inc(&rxq->q_stats.hw_csum_err);
2940 u64_stats_update_end(&rxq->stats_sync);
2941 }
2942
2943 /**
2944 * idpf_rx_splitq_extract_csum_bits - Extract checksum bits from descriptor
2945 * @rx_desc: receive descriptor
2946 *
2947 * Return: parsed checksum status.
2948 **/
2949 static struct idpf_rx_csum_decoded
idpf_rx_splitq_extract_csum_bits(const struct virtchnl2_rx_flex_desc_adv_nic_3 * rx_desc)2950 idpf_rx_splitq_extract_csum_bits(const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
2951 {
2952 struct idpf_rx_csum_decoded csum = { };
2953 u8 qword0, qword1;
2954
2955 qword0 = rx_desc->status_err0_qw0;
2956 qword1 = rx_desc->status_err0_qw1;
2957
2958 csum.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_IPE_M,
2959 qword1);
2960 csum.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_EIPE_M,
2961 qword1);
2962 csum.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_XSUM_L4E_M,
2963 qword1);
2964 csum.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_L3L4P_M,
2965 qword1);
2966 csum.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_IPV6EXADD_M,
2967 qword0);
2968 csum.raw_csum_inv =
2969 le16_get_bits(rx_desc->ptype_err_fflags0,
2970 VIRTCHNL2_RX_FLEX_DESC_ADV_RAW_CSUM_INV_M);
2971 csum.raw_csum = le16_to_cpu(rx_desc->misc.raw_cs);
2972
2973 return csum;
2974 }
2975
2976 /**
2977 * idpf_rx_rsc - Set the RSC fields in the skb
2978 * @rxq : Rx descriptor ring packet is being transacted on
2979 * @skb : pointer to current skb being populated
2980 * @rx_desc: Receive descriptor
2981 * @decoded: Decoded Rx packet type related fields
2982 *
2983 * Return 0 on success and error code on failure
2984 *
2985 * Populate the skb fields with the total number of RSC segments, RSC payload
2986 * length and packet type.
2987 */
idpf_rx_rsc(struct idpf_rx_queue * rxq,struct sk_buff * skb,const struct virtchnl2_rx_flex_desc_adv_nic_3 * rx_desc,struct libeth_rx_pt decoded)2988 static int idpf_rx_rsc(struct idpf_rx_queue *rxq, struct sk_buff *skb,
2989 const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc,
2990 struct libeth_rx_pt decoded)
2991 {
2992 u16 rsc_segments, rsc_seg_len;
2993 bool ipv4, ipv6;
2994 int len;
2995
2996 if (unlikely(libeth_rx_pt_get_ip_ver(decoded) ==
2997 LIBETH_RX_PT_OUTER_L2))
2998 return -EINVAL;
2999
3000 rsc_seg_len = le16_to_cpu(rx_desc->misc.rscseglen);
3001 if (unlikely(!rsc_seg_len))
3002 return -EINVAL;
3003
3004 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
3005 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
3006
3007 if (unlikely(!(ipv4 ^ ipv6)))
3008 return -EINVAL;
3009
3010 rsc_segments = DIV_ROUND_UP(skb->data_len, rsc_seg_len);
3011 if (unlikely(rsc_segments == 1))
3012 return 0;
3013
3014 NAPI_GRO_CB(skb)->count = rsc_segments;
3015 skb_shinfo(skb)->gso_size = rsc_seg_len;
3016
3017 skb_reset_network_header(skb);
3018 len = skb->len - skb_transport_offset(skb);
3019
3020 if (ipv4) {
3021 struct iphdr *ipv4h = ip_hdr(skb);
3022
3023 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3024
3025 /* Reset and set transport header offset in skb */
3026 skb_set_transport_header(skb, sizeof(struct iphdr));
3027
3028 /* Compute the TCP pseudo header checksum*/
3029 tcp_hdr(skb)->check =
3030 ~tcp_v4_check(len, ipv4h->saddr, ipv4h->daddr, 0);
3031 } else {
3032 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
3033
3034 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3035 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
3036 tcp_hdr(skb)->check =
3037 ~tcp_v6_check(len, &ipv6h->saddr, &ipv6h->daddr, 0);
3038 }
3039
3040 tcp_gro_complete(skb);
3041
3042 u64_stats_update_begin(&rxq->stats_sync);
3043 u64_stats_inc(&rxq->q_stats.rsc_pkts);
3044 u64_stats_update_end(&rxq->stats_sync);
3045
3046 return 0;
3047 }
3048
3049 /**
3050 * idpf_rx_process_skb_fields - Populate skb header fields from Rx descriptor
3051 * @rxq: Rx descriptor ring packet is being transacted on
3052 * @skb: pointer to current skb being populated
3053 * @rx_desc: Receive descriptor
3054 *
3055 * This function checks the ring, descriptor, and packet information in
3056 * order to populate the hash, checksum, protocol, and
3057 * other fields within the skb.
3058 */
3059 static int
idpf_rx_process_skb_fields(struct idpf_rx_queue * rxq,struct sk_buff * skb,const struct virtchnl2_rx_flex_desc_adv_nic_3 * rx_desc)3060 idpf_rx_process_skb_fields(struct idpf_rx_queue *rxq, struct sk_buff *skb,
3061 const struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
3062 {
3063 struct idpf_rx_csum_decoded csum_bits;
3064 struct libeth_rx_pt decoded;
3065 u16 rx_ptype;
3066
3067 rx_ptype = le16_get_bits(rx_desc->ptype_err_fflags0,
3068 VIRTCHNL2_RX_FLEX_DESC_ADV_PTYPE_M);
3069 decoded = rxq->rx_ptype_lkup[rx_ptype];
3070
3071 /* process RSS/hash */
3072 idpf_rx_hash(rxq, skb, rx_desc, decoded);
3073
3074 skb->protocol = eth_type_trans(skb, rxq->netdev);
3075
3076 if (le16_get_bits(rx_desc->hdrlen_flags,
3077 VIRTCHNL2_RX_FLEX_DESC_ADV_RSC_M))
3078 return idpf_rx_rsc(rxq, skb, rx_desc, decoded);
3079
3080 csum_bits = idpf_rx_splitq_extract_csum_bits(rx_desc);
3081 idpf_rx_csum(rxq, skb, csum_bits, decoded);
3082
3083 skb_record_rx_queue(skb, rxq->idx);
3084
3085 return 0;
3086 }
3087
3088 /**
3089 * idpf_rx_add_frag - Add contents of Rx buffer to sk_buff as a frag
3090 * @rx_buf: buffer containing page to add
3091 * @skb: sk_buff to place the data into
3092 * @size: packet length from rx_desc
3093 *
3094 * This function will add the data contained in rx_buf->page to the skb.
3095 * It will just attach the page as a frag to the skb.
3096 * The function will then update the page offset.
3097 */
idpf_rx_add_frag(struct idpf_rx_buf * rx_buf,struct sk_buff * skb,unsigned int size)3098 void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
3099 unsigned int size)
3100 {
3101 u32 hr = rx_buf->page->pp->p.offset;
3102
3103 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
3104 rx_buf->offset + hr, size, rx_buf->truesize);
3105 }
3106
3107 /**
3108 * idpf_rx_hsplit_wa - handle header buffer overflows and split errors
3109 * @hdr: Rx buffer for the headers
3110 * @buf: Rx buffer for the payload
3111 * @data_len: number of bytes received to the payload buffer
3112 *
3113 * When a header buffer overflow occurs or the HW was unable do parse the
3114 * packet type to perform header split, the whole frame gets placed to the
3115 * payload buffer. We can't build a valid skb around a payload buffer when
3116 * the header split is active since it doesn't reserve any head- or tailroom.
3117 * In that case, copy either the whole frame when it's short or just the
3118 * Ethernet header to the header buffer to be able to build an skb and adjust
3119 * the data offset in the payload buffer, IOW emulate the header split.
3120 *
3121 * Return: number of bytes copied to the header buffer.
3122 */
idpf_rx_hsplit_wa(const struct libeth_fqe * hdr,struct libeth_fqe * buf,u32 data_len)3123 static u32 idpf_rx_hsplit_wa(const struct libeth_fqe *hdr,
3124 struct libeth_fqe *buf, u32 data_len)
3125 {
3126 u32 copy = data_len <= L1_CACHE_BYTES ? data_len : ETH_HLEN;
3127 const void *src;
3128 void *dst;
3129
3130 if (!libeth_rx_sync_for_cpu(buf, copy))
3131 return 0;
3132
3133 dst = page_address(hdr->page) + hdr->offset + hdr->page->pp->p.offset;
3134 src = page_address(buf->page) + buf->offset + buf->page->pp->p.offset;
3135 memcpy(dst, src, LARGEST_ALIGN(copy));
3136
3137 buf->offset += copy;
3138
3139 return copy;
3140 }
3141
3142 /**
3143 * idpf_rx_build_skb - Allocate skb and populate it from header buffer
3144 * @buf: Rx buffer to pull data from
3145 * @size: the length of the packet
3146 *
3147 * This function allocates an skb. It then populates it with the page data from
3148 * the current receive descriptor, taking care to set up the skb correctly.
3149 */
idpf_rx_build_skb(const struct libeth_fqe * buf,u32 size)3150 struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size)
3151 {
3152 u32 hr = buf->page->pp->p.offset;
3153 struct sk_buff *skb;
3154 void *va;
3155
3156 va = page_address(buf->page) + buf->offset;
3157 prefetch(va + hr);
3158
3159 skb = napi_build_skb(va, buf->truesize);
3160 if (unlikely(!skb))
3161 return NULL;
3162
3163 skb_mark_for_recycle(skb);
3164
3165 skb_reserve(skb, hr);
3166 __skb_put(skb, size);
3167
3168 return skb;
3169 }
3170
3171 /**
3172 * idpf_rx_splitq_test_staterr - tests bits in Rx descriptor
3173 * status and error fields
3174 * @stat_err_field: field from descriptor to test bits in
3175 * @stat_err_bits: value to mask
3176 *
3177 */
idpf_rx_splitq_test_staterr(const u8 stat_err_field,const u8 stat_err_bits)3178 static bool idpf_rx_splitq_test_staterr(const u8 stat_err_field,
3179 const u8 stat_err_bits)
3180 {
3181 return !!(stat_err_field & stat_err_bits);
3182 }
3183
3184 /**
3185 * idpf_rx_splitq_is_eop - process handling of EOP buffers
3186 * @rx_desc: Rx descriptor for current buffer
3187 *
3188 * If the buffer is an EOP buffer, this function exits returning true,
3189 * otherwise return false indicating that this is in fact a non-EOP buffer.
3190 */
idpf_rx_splitq_is_eop(struct virtchnl2_rx_flex_desc_adv_nic_3 * rx_desc)3191 static bool idpf_rx_splitq_is_eop(struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc)
3192 {
3193 /* if we are the last buffer then there is nothing else to do */
3194 return likely(idpf_rx_splitq_test_staterr(rx_desc->status_err0_qw1,
3195 IDPF_RXD_EOF_SPLITQ));
3196 }
3197
3198 /**
3199 * idpf_rx_splitq_clean - Clean completed descriptors from Rx queue
3200 * @rxq: Rx descriptor queue to retrieve receive buffer queue
3201 * @budget: Total limit on number of packets to process
3202 *
3203 * This function provides a "bounce buffer" approach to Rx interrupt
3204 * processing. The advantage to this is that on systems that have
3205 * expensive overhead for IOMMU access this provides a means of avoiding
3206 * it by maintaining the mapping of the page to the system.
3207 *
3208 * Returns amount of work completed
3209 */
idpf_rx_splitq_clean(struct idpf_rx_queue * rxq,int budget)3210 static int idpf_rx_splitq_clean(struct idpf_rx_queue *rxq, int budget)
3211 {
3212 int total_rx_bytes = 0, total_rx_pkts = 0;
3213 struct idpf_buf_queue *rx_bufq = NULL;
3214 struct sk_buff *skb = rxq->skb;
3215 u16 ntc = rxq->next_to_clean;
3216
3217 /* Process Rx packets bounded by budget */
3218 while (likely(total_rx_pkts < budget)) {
3219 struct virtchnl2_rx_flex_desc_adv_nic_3 *rx_desc;
3220 struct libeth_fqe *hdr, *rx_buf = NULL;
3221 struct idpf_sw_queue *refillq = NULL;
3222 struct idpf_rxq_set *rxq_set = NULL;
3223 unsigned int pkt_len = 0;
3224 unsigned int hdr_len = 0;
3225 u16 gen_id, buf_id = 0;
3226 int bufq_id;
3227 u8 rxdid;
3228
3229 /* get the Rx desc from Rx queue based on 'next_to_clean' */
3230 rx_desc = &rxq->rx[ntc].flex_adv_nic_3_wb;
3231
3232 /* This memory barrier is needed to keep us from reading
3233 * any other fields out of the rx_desc
3234 */
3235 dma_rmb();
3236
3237 /* if the descriptor isn't done, no work yet to do */
3238 gen_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3239 VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M);
3240
3241 if (idpf_queue_has(GEN_CHK, rxq) != gen_id)
3242 break;
3243
3244 rxdid = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_ADV_RXDID_M,
3245 rx_desc->rxdid_ucast);
3246 if (rxdid != VIRTCHNL2_RXDID_2_FLEX_SPLITQ) {
3247 IDPF_RX_BUMP_NTC(rxq, ntc);
3248 u64_stats_update_begin(&rxq->stats_sync);
3249 u64_stats_inc(&rxq->q_stats.bad_descs);
3250 u64_stats_update_end(&rxq->stats_sync);
3251 continue;
3252 }
3253
3254 pkt_len = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3255 VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_PBUF_M);
3256
3257 bufq_id = le16_get_bits(rx_desc->pktlen_gen_bufq_id,
3258 VIRTCHNL2_RX_FLEX_DESC_ADV_BUFQ_ID_M);
3259
3260 rxq_set = container_of(rxq, struct idpf_rxq_set, rxq);
3261 refillq = rxq_set->refillq[bufq_id];
3262
3263 /* retrieve buffer from the rxq */
3264 rx_bufq = &rxq->bufq_sets[bufq_id].bufq;
3265
3266 buf_id = le16_to_cpu(rx_desc->buf_id);
3267
3268 rx_buf = &rx_bufq->buf[buf_id];
3269
3270 if (!rx_bufq->hdr_pp)
3271 goto payload;
3272
3273 #define __HBO_BIT VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_HBO_M
3274 #define __HDR_LEN_MASK VIRTCHNL2_RX_FLEX_DESC_ADV_LEN_HDR_M
3275 if (likely(!(rx_desc->status_err0_qw1 & __HBO_BIT)))
3276 /* If a header buffer overflow, occurs, i.e. header is
3277 * too large to fit in the header split buffer, HW will
3278 * put the entire packet, including headers, in the
3279 * data/payload buffer.
3280 */
3281 hdr_len = le16_get_bits(rx_desc->hdrlen_flags,
3282 __HDR_LEN_MASK);
3283 #undef __HDR_LEN_MASK
3284 #undef __HBO_BIT
3285
3286 hdr = &rx_bufq->hdr_buf[buf_id];
3287
3288 if (unlikely(!hdr_len && !skb)) {
3289 hdr_len = idpf_rx_hsplit_wa(hdr, rx_buf, pkt_len);
3290 pkt_len -= hdr_len;
3291
3292 u64_stats_update_begin(&rxq->stats_sync);
3293 u64_stats_inc(&rxq->q_stats.hsplit_buf_ovf);
3294 u64_stats_update_end(&rxq->stats_sync);
3295 }
3296
3297 if (libeth_rx_sync_for_cpu(hdr, hdr_len)) {
3298 skb = idpf_rx_build_skb(hdr, hdr_len);
3299 if (!skb)
3300 break;
3301
3302 u64_stats_update_begin(&rxq->stats_sync);
3303 u64_stats_inc(&rxq->q_stats.hsplit_pkts);
3304 u64_stats_update_end(&rxq->stats_sync);
3305 }
3306
3307 hdr->page = NULL;
3308
3309 payload:
3310 if (!libeth_rx_sync_for_cpu(rx_buf, pkt_len))
3311 goto skip_data;
3312
3313 if (skb)
3314 idpf_rx_add_frag(rx_buf, skb, pkt_len);
3315 else
3316 skb = idpf_rx_build_skb(rx_buf, pkt_len);
3317
3318 /* exit if we failed to retrieve a buffer */
3319 if (!skb)
3320 break;
3321
3322 skip_data:
3323 rx_buf->page = NULL;
3324
3325 idpf_rx_post_buf_refill(refillq, buf_id);
3326 IDPF_RX_BUMP_NTC(rxq, ntc);
3327
3328 /* skip if it is non EOP desc */
3329 if (!idpf_rx_splitq_is_eop(rx_desc) || unlikely(!skb))
3330 continue;
3331
3332 /* pad skb if needed (to make valid ethernet frame) */
3333 if (eth_skb_pad(skb)) {
3334 skb = NULL;
3335 continue;
3336 }
3337
3338 /* probably a little skewed due to removing CRC */
3339 total_rx_bytes += skb->len;
3340
3341 /* protocol */
3342 if (unlikely(idpf_rx_process_skb_fields(rxq, skb, rx_desc))) {
3343 dev_kfree_skb_any(skb);
3344 skb = NULL;
3345 continue;
3346 }
3347
3348 /* send completed skb up the stack */
3349 napi_gro_receive(rxq->napi, skb);
3350 skb = NULL;
3351
3352 /* update budget accounting */
3353 total_rx_pkts++;
3354 }
3355
3356 rxq->next_to_clean = ntc;
3357
3358 rxq->skb = skb;
3359 u64_stats_update_begin(&rxq->stats_sync);
3360 u64_stats_add(&rxq->q_stats.packets, total_rx_pkts);
3361 u64_stats_add(&rxq->q_stats.bytes, total_rx_bytes);
3362 u64_stats_update_end(&rxq->stats_sync);
3363
3364 /* guarantee a trip back through this routine if there was a failure */
3365 return total_rx_pkts;
3366 }
3367
3368 /**
3369 * idpf_rx_update_bufq_desc - Update buffer queue descriptor
3370 * @bufq: Pointer to the buffer queue
3371 * @buf_id: buffer ID
3372 * @buf_desc: Buffer queue descriptor
3373 *
3374 * Return 0 on success and negative on failure.
3375 */
idpf_rx_update_bufq_desc(struct idpf_buf_queue * bufq,u32 buf_id,struct virtchnl2_splitq_rx_buf_desc * buf_desc)3376 static int idpf_rx_update_bufq_desc(struct idpf_buf_queue *bufq, u32 buf_id,
3377 struct virtchnl2_splitq_rx_buf_desc *buf_desc)
3378 {
3379 struct libeth_fq_fp fq = {
3380 .pp = bufq->pp,
3381 .fqes = bufq->buf,
3382 .truesize = bufq->truesize,
3383 .count = bufq->desc_count,
3384 };
3385 dma_addr_t addr;
3386
3387 addr = libeth_rx_alloc(&fq, buf_id);
3388 if (addr == DMA_MAPPING_ERROR)
3389 return -ENOMEM;
3390
3391 buf_desc->pkt_addr = cpu_to_le64(addr);
3392 buf_desc->qword0.buf_id = cpu_to_le16(buf_id);
3393
3394 if (!idpf_queue_has(HSPLIT_EN, bufq))
3395 return 0;
3396
3397 fq.pp = bufq->hdr_pp;
3398 fq.fqes = bufq->hdr_buf;
3399 fq.truesize = bufq->hdr_truesize;
3400
3401 addr = libeth_rx_alloc(&fq, buf_id);
3402 if (addr == DMA_MAPPING_ERROR)
3403 return -ENOMEM;
3404
3405 buf_desc->hdr_addr = cpu_to_le64(addr);
3406
3407 return 0;
3408 }
3409
3410 /**
3411 * idpf_rx_clean_refillq - Clean refill queue buffers
3412 * @bufq: buffer queue to post buffers back to
3413 * @refillq: refill queue to clean
3414 *
3415 * This function takes care of the buffer refill management
3416 */
idpf_rx_clean_refillq(struct idpf_buf_queue * bufq,struct idpf_sw_queue * refillq)3417 static void idpf_rx_clean_refillq(struct idpf_buf_queue *bufq,
3418 struct idpf_sw_queue *refillq)
3419 {
3420 struct virtchnl2_splitq_rx_buf_desc *buf_desc;
3421 u16 bufq_nta = bufq->next_to_alloc;
3422 u16 ntc = refillq->next_to_clean;
3423 int cleaned = 0;
3424
3425 buf_desc = &bufq->split_buf[bufq_nta];
3426
3427 /* make sure we stop at ring wrap in the unlikely case ring is full */
3428 while (likely(cleaned < refillq->desc_count)) {
3429 u32 buf_id, refill_desc = refillq->ring[ntc];
3430 bool failure;
3431
3432 if (idpf_queue_has(RFL_GEN_CHK, refillq) !=
3433 !!(refill_desc & IDPF_RX_BI_GEN_M))
3434 break;
3435
3436 buf_id = FIELD_GET(IDPF_RX_BI_BUFID_M, refill_desc);
3437 failure = idpf_rx_update_bufq_desc(bufq, buf_id, buf_desc);
3438 if (failure)
3439 break;
3440
3441 if (unlikely(++ntc == refillq->desc_count)) {
3442 idpf_queue_change(RFL_GEN_CHK, refillq);
3443 ntc = 0;
3444 }
3445
3446 if (unlikely(++bufq_nta == bufq->desc_count)) {
3447 buf_desc = &bufq->split_buf[0];
3448 bufq_nta = 0;
3449 } else {
3450 buf_desc++;
3451 }
3452
3453 cleaned++;
3454 }
3455
3456 if (!cleaned)
3457 return;
3458
3459 /* We want to limit how many transactions on the bus we trigger with
3460 * tail writes so we only do it in strides. It's also important we
3461 * align the write to a multiple of 8 as required by HW.
3462 */
3463 if (((bufq->next_to_use <= bufq_nta ? 0 : bufq->desc_count) +
3464 bufq_nta - bufq->next_to_use) >= IDPF_RX_BUF_POST_STRIDE)
3465 idpf_rx_buf_hw_update(bufq, ALIGN_DOWN(bufq_nta,
3466 IDPF_RX_BUF_POST_STRIDE));
3467
3468 /* update next to alloc since we have filled the ring */
3469 refillq->next_to_clean = ntc;
3470 bufq->next_to_alloc = bufq_nta;
3471 }
3472
3473 /**
3474 * idpf_rx_clean_refillq_all - Clean all refill queues
3475 * @bufq: buffer queue with refill queues
3476 * @nid: ID of the closest NUMA node with memory
3477 *
3478 * Iterates through all refill queues assigned to the buffer queue assigned to
3479 * this vector. Returns true if clean is complete within budget, false
3480 * otherwise.
3481 */
idpf_rx_clean_refillq_all(struct idpf_buf_queue * bufq,int nid)3482 static void idpf_rx_clean_refillq_all(struct idpf_buf_queue *bufq, int nid)
3483 {
3484 struct idpf_bufq_set *bufq_set;
3485 int i;
3486
3487 page_pool_nid_changed(bufq->pp, nid);
3488 if (bufq->hdr_pp)
3489 page_pool_nid_changed(bufq->hdr_pp, nid);
3490
3491 bufq_set = container_of(bufq, struct idpf_bufq_set, bufq);
3492 for (i = 0; i < bufq_set->num_refillqs; i++)
3493 idpf_rx_clean_refillq(bufq, &bufq_set->refillqs[i]);
3494 }
3495
3496 /**
3497 * idpf_vport_intr_clean_queues - MSIX mode Interrupt Handler
3498 * @irq: interrupt number
3499 * @data: pointer to a q_vector
3500 *
3501 */
idpf_vport_intr_clean_queues(int __always_unused irq,void * data)3502 static irqreturn_t idpf_vport_intr_clean_queues(int __always_unused irq,
3503 void *data)
3504 {
3505 struct idpf_q_vector *q_vector = (struct idpf_q_vector *)data;
3506
3507 q_vector->total_events++;
3508 napi_schedule(&q_vector->napi);
3509
3510 return IRQ_HANDLED;
3511 }
3512
3513 /**
3514 * idpf_vport_intr_napi_del_all - Unregister napi for all q_vectors in vport
3515 * @vport: virtual port structure
3516 *
3517 */
idpf_vport_intr_napi_del_all(struct idpf_vport * vport)3518 static void idpf_vport_intr_napi_del_all(struct idpf_vport *vport)
3519 {
3520 u16 v_idx;
3521
3522 for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
3523 netif_napi_del(&vport->q_vectors[v_idx].napi);
3524 }
3525
3526 /**
3527 * idpf_vport_intr_napi_dis_all - Disable NAPI for all q_vectors in the vport
3528 * @vport: main vport structure
3529 */
idpf_vport_intr_napi_dis_all(struct idpf_vport * vport)3530 static void idpf_vport_intr_napi_dis_all(struct idpf_vport *vport)
3531 {
3532 int v_idx;
3533
3534 for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++)
3535 napi_disable(&vport->q_vectors[v_idx].napi);
3536 }
3537
3538 /**
3539 * idpf_vport_intr_rel - Free memory allocated for interrupt vectors
3540 * @vport: virtual port
3541 *
3542 * Free the memory allocated for interrupt vectors associated to a vport
3543 */
idpf_vport_intr_rel(struct idpf_vport * vport)3544 void idpf_vport_intr_rel(struct idpf_vport *vport)
3545 {
3546 for (u32 v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
3547 struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
3548
3549 kfree(q_vector->complq);
3550 q_vector->complq = NULL;
3551 kfree(q_vector->bufq);
3552 q_vector->bufq = NULL;
3553 kfree(q_vector->tx);
3554 q_vector->tx = NULL;
3555 kfree(q_vector->rx);
3556 q_vector->rx = NULL;
3557
3558 free_cpumask_var(q_vector->affinity_mask);
3559 }
3560
3561 kfree(vport->q_vectors);
3562 vport->q_vectors = NULL;
3563 }
3564
3565 /**
3566 * idpf_vport_intr_rel_irq - Free the IRQ association with the OS
3567 * @vport: main vport structure
3568 */
idpf_vport_intr_rel_irq(struct idpf_vport * vport)3569 static void idpf_vport_intr_rel_irq(struct idpf_vport *vport)
3570 {
3571 struct idpf_adapter *adapter = vport->adapter;
3572 int vector;
3573
3574 for (vector = 0; vector < vport->num_q_vectors; vector++) {
3575 struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
3576 int irq_num, vidx;
3577
3578 /* free only the irqs that were actually requested */
3579 if (!q_vector)
3580 continue;
3581
3582 vidx = vport->q_vector_idxs[vector];
3583 irq_num = adapter->msix_entries[vidx].vector;
3584
3585 /* clear the affinity_mask in the IRQ descriptor */
3586 irq_set_affinity_hint(irq_num, NULL);
3587 kfree(free_irq(irq_num, q_vector));
3588 }
3589 }
3590
3591 /**
3592 * idpf_vport_intr_dis_irq_all - Disable all interrupt
3593 * @vport: main vport structure
3594 */
idpf_vport_intr_dis_irq_all(struct idpf_vport * vport)3595 static void idpf_vport_intr_dis_irq_all(struct idpf_vport *vport)
3596 {
3597 struct idpf_q_vector *q_vector = vport->q_vectors;
3598 int q_idx;
3599
3600 for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++)
3601 writel(0, q_vector[q_idx].intr_reg.dyn_ctl);
3602 }
3603
3604 /**
3605 * idpf_vport_intr_buildreg_itr - Enable default interrupt generation settings
3606 * @q_vector: pointer to q_vector
3607 */
idpf_vport_intr_buildreg_itr(struct idpf_q_vector * q_vector)3608 static u32 idpf_vport_intr_buildreg_itr(struct idpf_q_vector *q_vector)
3609 {
3610 u32 itr_val = q_vector->intr_reg.dyn_ctl_intena_m;
3611 int type = IDPF_NO_ITR_UPDATE_IDX;
3612 u16 itr = 0;
3613
3614 if (q_vector->wb_on_itr) {
3615 /*
3616 * Trigger a software interrupt when exiting wb_on_itr, to make
3617 * sure we catch any pending write backs that might have been
3618 * missed due to interrupt state transition.
3619 */
3620 itr_val |= q_vector->intr_reg.dyn_ctl_swint_trig_m |
3621 q_vector->intr_reg.dyn_ctl_sw_itridx_ena_m;
3622 type = IDPF_SW_ITR_UPDATE_IDX;
3623 itr = IDPF_ITR_20K;
3624 }
3625
3626 itr &= IDPF_ITR_MASK;
3627 /* Don't clear PBA because that can cause lost interrupts that
3628 * came in while we were cleaning/polling
3629 */
3630 itr_val |= (type << q_vector->intr_reg.dyn_ctl_itridx_s) |
3631 (itr << (q_vector->intr_reg.dyn_ctl_intrvl_s - 1));
3632
3633 return itr_val;
3634 }
3635
3636 /**
3637 * idpf_update_dim_sample - Update dim sample with packets and bytes
3638 * @q_vector: the vector associated with the interrupt
3639 * @dim_sample: dim sample to update
3640 * @dim: dim instance structure
3641 * @packets: total packets
3642 * @bytes: total bytes
3643 *
3644 * Update the dim sample with the packets and bytes which are passed to this
3645 * function. Set the dim state appropriately if the dim settings gets stale.
3646 */
idpf_update_dim_sample(struct idpf_q_vector * q_vector,struct dim_sample * dim_sample,struct dim * dim,u64 packets,u64 bytes)3647 static void idpf_update_dim_sample(struct idpf_q_vector *q_vector,
3648 struct dim_sample *dim_sample,
3649 struct dim *dim, u64 packets, u64 bytes)
3650 {
3651 dim_update_sample(q_vector->total_events, packets, bytes, dim_sample);
3652 dim_sample->comp_ctr = 0;
3653
3654 /* if dim settings get stale, like when not updated for 1 second or
3655 * longer, force it to start again. This addresses the frequent case
3656 * of an idle queue being switched to by the scheduler.
3657 */
3658 if (ktime_ms_delta(dim_sample->time, dim->start_sample.time) >= HZ)
3659 dim->state = DIM_START_MEASURE;
3660 }
3661
3662 /**
3663 * idpf_net_dim - Update net DIM algorithm
3664 * @q_vector: the vector associated with the interrupt
3665 *
3666 * Create a DIM sample and notify net_dim() so that it can possibly decide
3667 * a new ITR value based on incoming packets, bytes, and interrupts.
3668 *
3669 * This function is a no-op if the queue is not configured to dynamic ITR.
3670 */
idpf_net_dim(struct idpf_q_vector * q_vector)3671 static void idpf_net_dim(struct idpf_q_vector *q_vector)
3672 {
3673 struct dim_sample dim_sample = { };
3674 u64 packets, bytes;
3675 u32 i;
3676
3677 if (!IDPF_ITR_IS_DYNAMIC(q_vector->tx_intr_mode))
3678 goto check_rx_itr;
3679
3680 for (i = 0, packets = 0, bytes = 0; i < q_vector->num_txq; i++) {
3681 struct idpf_tx_queue *txq = q_vector->tx[i];
3682 unsigned int start;
3683
3684 do {
3685 start = u64_stats_fetch_begin(&txq->stats_sync);
3686 packets += u64_stats_read(&txq->q_stats.packets);
3687 bytes += u64_stats_read(&txq->q_stats.bytes);
3688 } while (u64_stats_fetch_retry(&txq->stats_sync, start));
3689 }
3690
3691 idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->tx_dim,
3692 packets, bytes);
3693 net_dim(&q_vector->tx_dim, &dim_sample);
3694
3695 check_rx_itr:
3696 if (!IDPF_ITR_IS_DYNAMIC(q_vector->rx_intr_mode))
3697 return;
3698
3699 for (i = 0, packets = 0, bytes = 0; i < q_vector->num_rxq; i++) {
3700 struct idpf_rx_queue *rxq = q_vector->rx[i];
3701 unsigned int start;
3702
3703 do {
3704 start = u64_stats_fetch_begin(&rxq->stats_sync);
3705 packets += u64_stats_read(&rxq->q_stats.packets);
3706 bytes += u64_stats_read(&rxq->q_stats.bytes);
3707 } while (u64_stats_fetch_retry(&rxq->stats_sync, start));
3708 }
3709
3710 idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->rx_dim,
3711 packets, bytes);
3712 net_dim(&q_vector->rx_dim, &dim_sample);
3713 }
3714
3715 /**
3716 * idpf_vport_intr_update_itr_ena_irq - Update itr and re-enable MSIX interrupt
3717 * @q_vector: q_vector for which itr is being updated and interrupt enabled
3718 *
3719 * Update the net_dim() algorithm and re-enable the interrupt associated with
3720 * this vector.
3721 */
idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector * q_vector)3722 void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector)
3723 {
3724 u32 intval;
3725
3726 /* net_dim() updates ITR out-of-band using a work item */
3727 idpf_net_dim(q_vector);
3728
3729 intval = idpf_vport_intr_buildreg_itr(q_vector);
3730 q_vector->wb_on_itr = false;
3731
3732 writel(intval, q_vector->intr_reg.dyn_ctl);
3733 }
3734
3735 /**
3736 * idpf_vport_intr_req_irq - get MSI-X vectors from the OS for the vport
3737 * @vport: main vport structure
3738 */
idpf_vport_intr_req_irq(struct idpf_vport * vport)3739 static int idpf_vport_intr_req_irq(struct idpf_vport *vport)
3740 {
3741 struct idpf_adapter *adapter = vport->adapter;
3742 const char *drv_name, *if_name, *vec_name;
3743 int vector, err, irq_num, vidx;
3744
3745 drv_name = dev_driver_string(&adapter->pdev->dev);
3746 if_name = netdev_name(vport->netdev);
3747
3748 for (vector = 0; vector < vport->num_q_vectors; vector++) {
3749 struct idpf_q_vector *q_vector = &vport->q_vectors[vector];
3750 char *name;
3751
3752 vidx = vport->q_vector_idxs[vector];
3753 irq_num = adapter->msix_entries[vidx].vector;
3754
3755 if (q_vector->num_rxq && q_vector->num_txq)
3756 vec_name = "TxRx";
3757 else if (q_vector->num_rxq)
3758 vec_name = "Rx";
3759 else if (q_vector->num_txq)
3760 vec_name = "Tx";
3761 else
3762 continue;
3763
3764 name = kasprintf(GFP_KERNEL, "%s-%s-%s-%d", drv_name, if_name,
3765 vec_name, vidx);
3766
3767 err = request_irq(irq_num, idpf_vport_intr_clean_queues, 0,
3768 name, q_vector);
3769 if (err) {
3770 netdev_err(vport->netdev,
3771 "Request_irq failed, error: %d\n", err);
3772 goto free_q_irqs;
3773 }
3774 /* assign the mask for this irq */
3775 irq_set_affinity_hint(irq_num, q_vector->affinity_mask);
3776 }
3777
3778 return 0;
3779
3780 free_q_irqs:
3781 while (--vector >= 0) {
3782 vidx = vport->q_vector_idxs[vector];
3783 irq_num = adapter->msix_entries[vidx].vector;
3784 kfree(free_irq(irq_num, &vport->q_vectors[vector]));
3785 }
3786
3787 return err;
3788 }
3789
3790 /**
3791 * idpf_vport_intr_write_itr - Write ITR value to the ITR register
3792 * @q_vector: q_vector structure
3793 * @itr: Interrupt throttling rate
3794 * @tx: Tx or Rx ITR
3795 */
idpf_vport_intr_write_itr(struct idpf_q_vector * q_vector,u16 itr,bool tx)3796 void idpf_vport_intr_write_itr(struct idpf_q_vector *q_vector, u16 itr, bool tx)
3797 {
3798 struct idpf_intr_reg *intr_reg;
3799
3800 if (tx && !q_vector->tx)
3801 return;
3802 else if (!tx && !q_vector->rx)
3803 return;
3804
3805 intr_reg = &q_vector->intr_reg;
3806 writel(ITR_REG_ALIGN(itr) >> IDPF_ITR_GRAN_S,
3807 tx ? intr_reg->tx_itr : intr_reg->rx_itr);
3808 }
3809
3810 /**
3811 * idpf_vport_intr_ena_irq_all - Enable IRQ for the given vport
3812 * @vport: main vport structure
3813 */
idpf_vport_intr_ena_irq_all(struct idpf_vport * vport)3814 static void idpf_vport_intr_ena_irq_all(struct idpf_vport *vport)
3815 {
3816 bool dynamic;
3817 int q_idx;
3818 u16 itr;
3819
3820 for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
3821 struct idpf_q_vector *qv = &vport->q_vectors[q_idx];
3822
3823 /* Set the initial ITR values */
3824 if (qv->num_txq) {
3825 dynamic = IDPF_ITR_IS_DYNAMIC(qv->tx_intr_mode);
3826 itr = vport->tx_itr_profile[qv->tx_dim.profile_ix];
3827 idpf_vport_intr_write_itr(qv, dynamic ?
3828 itr : qv->tx_itr_value,
3829 true);
3830 }
3831
3832 if (qv->num_rxq) {
3833 dynamic = IDPF_ITR_IS_DYNAMIC(qv->rx_intr_mode);
3834 itr = vport->rx_itr_profile[qv->rx_dim.profile_ix];
3835 idpf_vport_intr_write_itr(qv, dynamic ?
3836 itr : qv->rx_itr_value,
3837 false);
3838 }
3839
3840 if (qv->num_txq || qv->num_rxq)
3841 idpf_vport_intr_update_itr_ena_irq(qv);
3842 }
3843 }
3844
3845 /**
3846 * idpf_vport_intr_deinit - Release all vector associations for the vport
3847 * @vport: main vport structure
3848 */
idpf_vport_intr_deinit(struct idpf_vport * vport)3849 void idpf_vport_intr_deinit(struct idpf_vport *vport)
3850 {
3851 idpf_vport_intr_dis_irq_all(vport);
3852 idpf_vport_intr_napi_dis_all(vport);
3853 idpf_vport_intr_napi_del_all(vport);
3854 idpf_vport_intr_rel_irq(vport);
3855 }
3856
3857 /**
3858 * idpf_tx_dim_work - Call back from the stack
3859 * @work: work queue structure
3860 */
idpf_tx_dim_work(struct work_struct * work)3861 static void idpf_tx_dim_work(struct work_struct *work)
3862 {
3863 struct idpf_q_vector *q_vector;
3864 struct idpf_vport *vport;
3865 struct dim *dim;
3866 u16 itr;
3867
3868 dim = container_of(work, struct dim, work);
3869 q_vector = container_of(dim, struct idpf_q_vector, tx_dim);
3870 vport = q_vector->vport;
3871
3872 if (dim->profile_ix >= ARRAY_SIZE(vport->tx_itr_profile))
3873 dim->profile_ix = ARRAY_SIZE(vport->tx_itr_profile) - 1;
3874
3875 /* look up the values in our local table */
3876 itr = vport->tx_itr_profile[dim->profile_ix];
3877
3878 idpf_vport_intr_write_itr(q_vector, itr, true);
3879
3880 dim->state = DIM_START_MEASURE;
3881 }
3882
3883 /**
3884 * idpf_rx_dim_work - Call back from the stack
3885 * @work: work queue structure
3886 */
idpf_rx_dim_work(struct work_struct * work)3887 static void idpf_rx_dim_work(struct work_struct *work)
3888 {
3889 struct idpf_q_vector *q_vector;
3890 struct idpf_vport *vport;
3891 struct dim *dim;
3892 u16 itr;
3893
3894 dim = container_of(work, struct dim, work);
3895 q_vector = container_of(dim, struct idpf_q_vector, rx_dim);
3896 vport = q_vector->vport;
3897
3898 if (dim->profile_ix >= ARRAY_SIZE(vport->rx_itr_profile))
3899 dim->profile_ix = ARRAY_SIZE(vport->rx_itr_profile) - 1;
3900
3901 /* look up the values in our local table */
3902 itr = vport->rx_itr_profile[dim->profile_ix];
3903
3904 idpf_vport_intr_write_itr(q_vector, itr, false);
3905
3906 dim->state = DIM_START_MEASURE;
3907 }
3908
3909 /**
3910 * idpf_init_dim - Set up dynamic interrupt moderation
3911 * @qv: q_vector structure
3912 */
idpf_init_dim(struct idpf_q_vector * qv)3913 static void idpf_init_dim(struct idpf_q_vector *qv)
3914 {
3915 INIT_WORK(&qv->tx_dim.work, idpf_tx_dim_work);
3916 qv->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3917 qv->tx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
3918
3919 INIT_WORK(&qv->rx_dim.work, idpf_rx_dim_work);
3920 qv->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
3921 qv->rx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
3922 }
3923
3924 /**
3925 * idpf_vport_intr_napi_ena_all - Enable NAPI for all q_vectors in the vport
3926 * @vport: main vport structure
3927 */
idpf_vport_intr_napi_ena_all(struct idpf_vport * vport)3928 static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport)
3929 {
3930 int q_idx;
3931
3932 for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
3933 struct idpf_q_vector *q_vector = &vport->q_vectors[q_idx];
3934
3935 idpf_init_dim(q_vector);
3936 napi_enable(&q_vector->napi);
3937 }
3938 }
3939
3940 /**
3941 * idpf_tx_splitq_clean_all- Clean completion queues
3942 * @q_vec: queue vector
3943 * @budget: Used to determine if we are in netpoll
3944 * @cleaned: returns number of packets cleaned
3945 *
3946 * Returns false if clean is not complete else returns true
3947 */
idpf_tx_splitq_clean_all(struct idpf_q_vector * q_vec,int budget,int * cleaned)3948 static bool idpf_tx_splitq_clean_all(struct idpf_q_vector *q_vec,
3949 int budget, int *cleaned)
3950 {
3951 u16 num_complq = q_vec->num_complq;
3952 bool clean_complete = true;
3953 int i, budget_per_q;
3954
3955 if (unlikely(!num_complq))
3956 return true;
3957
3958 budget_per_q = DIV_ROUND_UP(budget, num_complq);
3959
3960 for (i = 0; i < num_complq; i++)
3961 clean_complete &= idpf_tx_clean_complq(q_vec->complq[i],
3962 budget_per_q, cleaned);
3963
3964 return clean_complete;
3965 }
3966
3967 /**
3968 * idpf_rx_splitq_clean_all- Clean completion queues
3969 * @q_vec: queue vector
3970 * @budget: Used to determine if we are in netpoll
3971 * @cleaned: returns number of packets cleaned
3972 *
3973 * Returns false if clean is not complete else returns true
3974 */
idpf_rx_splitq_clean_all(struct idpf_q_vector * q_vec,int budget,int * cleaned)3975 static bool idpf_rx_splitq_clean_all(struct idpf_q_vector *q_vec, int budget,
3976 int *cleaned)
3977 {
3978 u16 num_rxq = q_vec->num_rxq;
3979 bool clean_complete = true;
3980 int pkts_cleaned = 0;
3981 int i, budget_per_q;
3982 int nid;
3983
3984 /* We attempt to distribute budget to each Rx queue fairly, but don't
3985 * allow the budget to go below 1 because that would exit polling early.
3986 */
3987 budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
3988 for (i = 0; i < num_rxq; i++) {
3989 struct idpf_rx_queue *rxq = q_vec->rx[i];
3990 int pkts_cleaned_per_q;
3991
3992 pkts_cleaned_per_q = idpf_rx_splitq_clean(rxq, budget_per_q);
3993 /* if we clean as many as budgeted, we must not be done */
3994 if (pkts_cleaned_per_q >= budget_per_q)
3995 clean_complete = false;
3996 pkts_cleaned += pkts_cleaned_per_q;
3997 }
3998 *cleaned = pkts_cleaned;
3999
4000 nid = numa_mem_id();
4001
4002 for (i = 0; i < q_vec->num_bufq; i++)
4003 idpf_rx_clean_refillq_all(q_vec->bufq[i], nid);
4004
4005 return clean_complete;
4006 }
4007
4008 /**
4009 * idpf_vport_splitq_napi_poll - NAPI handler
4010 * @napi: struct from which you get q_vector
4011 * @budget: budget provided by stack
4012 */
idpf_vport_splitq_napi_poll(struct napi_struct * napi,int budget)4013 static int idpf_vport_splitq_napi_poll(struct napi_struct *napi, int budget)
4014 {
4015 struct idpf_q_vector *q_vector =
4016 container_of(napi, struct idpf_q_vector, napi);
4017 bool clean_complete;
4018 int work_done = 0;
4019
4020 /* Handle case where we are called by netpoll with a budget of 0 */
4021 if (unlikely(!budget)) {
4022 idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
4023
4024 return 0;
4025 }
4026
4027 clean_complete = idpf_rx_splitq_clean_all(q_vector, budget, &work_done);
4028 clean_complete &= idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
4029
4030 /* If work not completed, return budget and polling will return */
4031 if (!clean_complete) {
4032 idpf_vport_intr_set_wb_on_itr(q_vector);
4033 return budget;
4034 }
4035
4036 work_done = min_t(int, work_done, budget - 1);
4037
4038 /* Exit the polling mode, but don't re-enable interrupts if stack might
4039 * poll us due to busy-polling
4040 */
4041 if (likely(napi_complete_done(napi, work_done)))
4042 idpf_vport_intr_update_itr_ena_irq(q_vector);
4043 else
4044 idpf_vport_intr_set_wb_on_itr(q_vector);
4045
4046 /* Switch to poll mode in the tear-down path after sending disable
4047 * queues virtchnl message, as the interrupts will be disabled after
4048 * that
4049 */
4050 if (unlikely(q_vector->num_txq && idpf_queue_has(POLL_MODE,
4051 q_vector->tx[0])))
4052 return budget;
4053 else
4054 return work_done;
4055 }
4056
4057 /**
4058 * idpf_vport_intr_map_vector_to_qs - Map vectors to queues
4059 * @vport: virtual port
4060 *
4061 * Mapping for vectors to queues
4062 */
idpf_vport_intr_map_vector_to_qs(struct idpf_vport * vport)4063 static void idpf_vport_intr_map_vector_to_qs(struct idpf_vport *vport)
4064 {
4065 bool split = idpf_is_queue_model_split(vport->rxq_model);
4066 u16 num_txq_grp = vport->num_txq_grp;
4067 struct idpf_rxq_group *rx_qgrp;
4068 struct idpf_txq_group *tx_qgrp;
4069 u32 i, qv_idx, q_index;
4070
4071 for (i = 0, qv_idx = 0; i < vport->num_rxq_grp; i++) {
4072 u16 num_rxq;
4073
4074 if (qv_idx >= vport->num_q_vectors)
4075 qv_idx = 0;
4076
4077 rx_qgrp = &vport->rxq_grps[i];
4078 if (split)
4079 num_rxq = rx_qgrp->splitq.num_rxq_sets;
4080 else
4081 num_rxq = rx_qgrp->singleq.num_rxq;
4082
4083 for (u32 j = 0; j < num_rxq; j++) {
4084 struct idpf_rx_queue *q;
4085
4086 if (split)
4087 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
4088 else
4089 q = rx_qgrp->singleq.rxqs[j];
4090 q->q_vector = &vport->q_vectors[qv_idx];
4091 q_index = q->q_vector->num_rxq;
4092 q->q_vector->rx[q_index] = q;
4093 q->q_vector->num_rxq++;
4094
4095 if (split)
4096 q->napi = &q->q_vector->napi;
4097 }
4098
4099 if (split) {
4100 for (u32 j = 0; j < vport->num_bufqs_per_qgrp; j++) {
4101 struct idpf_buf_queue *bufq;
4102
4103 bufq = &rx_qgrp->splitq.bufq_sets[j].bufq;
4104 bufq->q_vector = &vport->q_vectors[qv_idx];
4105 q_index = bufq->q_vector->num_bufq;
4106 bufq->q_vector->bufq[q_index] = bufq;
4107 bufq->q_vector->num_bufq++;
4108 }
4109 }
4110
4111 qv_idx++;
4112 }
4113
4114 split = idpf_is_queue_model_split(vport->txq_model);
4115
4116 for (i = 0, qv_idx = 0; i < num_txq_grp; i++) {
4117 u16 num_txq;
4118
4119 if (qv_idx >= vport->num_q_vectors)
4120 qv_idx = 0;
4121
4122 tx_qgrp = &vport->txq_grps[i];
4123 num_txq = tx_qgrp->num_txq;
4124
4125 for (u32 j = 0; j < num_txq; j++) {
4126 struct idpf_tx_queue *q;
4127
4128 q = tx_qgrp->txqs[j];
4129 q->q_vector = &vport->q_vectors[qv_idx];
4130 q->q_vector->tx[q->q_vector->num_txq++] = q;
4131 }
4132
4133 if (split) {
4134 struct idpf_compl_queue *q = tx_qgrp->complq;
4135
4136 q->q_vector = &vport->q_vectors[qv_idx];
4137 q->q_vector->complq[q->q_vector->num_complq++] = q;
4138 }
4139
4140 qv_idx++;
4141 }
4142 }
4143
4144 /**
4145 * idpf_vport_intr_init_vec_idx - Initialize the vector indexes
4146 * @vport: virtual port
4147 *
4148 * Initialize vector indexes with values returened over mailbox
4149 */
idpf_vport_intr_init_vec_idx(struct idpf_vport * vport)4150 static int idpf_vport_intr_init_vec_idx(struct idpf_vport *vport)
4151 {
4152 struct idpf_adapter *adapter = vport->adapter;
4153 struct virtchnl2_alloc_vectors *ac;
4154 u16 *vecids, total_vecs;
4155 int i;
4156
4157 ac = adapter->req_vec_chunks;
4158 if (!ac) {
4159 for (i = 0; i < vport->num_q_vectors; i++)
4160 vport->q_vectors[i].v_idx = vport->q_vector_idxs[i];
4161
4162 return 0;
4163 }
4164
4165 total_vecs = idpf_get_reserved_vecs(adapter);
4166 vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL);
4167 if (!vecids)
4168 return -ENOMEM;
4169
4170 idpf_get_vec_ids(adapter, vecids, total_vecs, &ac->vchunks);
4171
4172 for (i = 0; i < vport->num_q_vectors; i++)
4173 vport->q_vectors[i].v_idx = vecids[vport->q_vector_idxs[i]];
4174
4175 kfree(vecids);
4176
4177 return 0;
4178 }
4179
4180 /**
4181 * idpf_vport_intr_napi_add_all- Register napi handler for all qvectors
4182 * @vport: virtual port structure
4183 */
idpf_vport_intr_napi_add_all(struct idpf_vport * vport)4184 static void idpf_vport_intr_napi_add_all(struct idpf_vport *vport)
4185 {
4186 int (*napi_poll)(struct napi_struct *napi, int budget);
4187 u16 v_idx;
4188
4189 if (idpf_is_queue_model_split(vport->txq_model))
4190 napi_poll = idpf_vport_splitq_napi_poll;
4191 else
4192 napi_poll = idpf_vport_singleq_napi_poll;
4193
4194 for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
4195 struct idpf_q_vector *q_vector = &vport->q_vectors[v_idx];
4196
4197 netif_napi_add(vport->netdev, &q_vector->napi, napi_poll);
4198
4199 /* only set affinity_mask if the CPU is online */
4200 if (cpu_online(v_idx))
4201 cpumask_set_cpu(v_idx, q_vector->affinity_mask);
4202 }
4203 }
4204
4205 /**
4206 * idpf_vport_intr_alloc - Allocate memory for interrupt vectors
4207 * @vport: virtual port
4208 *
4209 * We allocate one q_vector per queue interrupt. If allocation fails we
4210 * return -ENOMEM.
4211 */
idpf_vport_intr_alloc(struct idpf_vport * vport)4212 int idpf_vport_intr_alloc(struct idpf_vport *vport)
4213 {
4214 u16 txqs_per_vector, rxqs_per_vector, bufqs_per_vector;
4215 struct idpf_q_vector *q_vector;
4216 u32 complqs_per_vector, v_idx;
4217
4218 vport->q_vectors = kcalloc(vport->num_q_vectors,
4219 sizeof(struct idpf_q_vector), GFP_KERNEL);
4220 if (!vport->q_vectors)
4221 return -ENOMEM;
4222
4223 txqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
4224 vport->num_q_vectors);
4225 rxqs_per_vector = DIV_ROUND_UP(vport->num_rxq_grp,
4226 vport->num_q_vectors);
4227 bufqs_per_vector = vport->num_bufqs_per_qgrp *
4228 DIV_ROUND_UP(vport->num_rxq_grp,
4229 vport->num_q_vectors);
4230 complqs_per_vector = DIV_ROUND_UP(vport->num_txq_grp,
4231 vport->num_q_vectors);
4232
4233 for (v_idx = 0; v_idx < vport->num_q_vectors; v_idx++) {
4234 q_vector = &vport->q_vectors[v_idx];
4235 q_vector->vport = vport;
4236
4237 q_vector->tx_itr_value = IDPF_ITR_TX_DEF;
4238 q_vector->tx_intr_mode = IDPF_ITR_DYNAMIC;
4239 q_vector->tx_itr_idx = VIRTCHNL2_ITR_IDX_1;
4240
4241 q_vector->rx_itr_value = IDPF_ITR_RX_DEF;
4242 q_vector->rx_intr_mode = IDPF_ITR_DYNAMIC;
4243 q_vector->rx_itr_idx = VIRTCHNL2_ITR_IDX_0;
4244
4245 if (!zalloc_cpumask_var(&q_vector->affinity_mask, GFP_KERNEL))
4246 goto error;
4247
4248 q_vector->tx = kcalloc(txqs_per_vector, sizeof(*q_vector->tx),
4249 GFP_KERNEL);
4250 if (!q_vector->tx)
4251 goto error;
4252
4253 q_vector->rx = kcalloc(rxqs_per_vector, sizeof(*q_vector->rx),
4254 GFP_KERNEL);
4255 if (!q_vector->rx)
4256 goto error;
4257
4258 if (!idpf_is_queue_model_split(vport->rxq_model))
4259 continue;
4260
4261 q_vector->bufq = kcalloc(bufqs_per_vector,
4262 sizeof(*q_vector->bufq),
4263 GFP_KERNEL);
4264 if (!q_vector->bufq)
4265 goto error;
4266
4267 q_vector->complq = kcalloc(complqs_per_vector,
4268 sizeof(*q_vector->complq),
4269 GFP_KERNEL);
4270 if (!q_vector->complq)
4271 goto error;
4272 }
4273
4274 return 0;
4275
4276 error:
4277 idpf_vport_intr_rel(vport);
4278
4279 return -ENOMEM;
4280 }
4281
4282 /**
4283 * idpf_vport_intr_init - Setup all vectors for the given vport
4284 * @vport: virtual port
4285 *
4286 * Returns 0 on success or negative on failure
4287 */
idpf_vport_intr_init(struct idpf_vport * vport)4288 int idpf_vport_intr_init(struct idpf_vport *vport)
4289 {
4290 int err;
4291
4292 err = idpf_vport_intr_init_vec_idx(vport);
4293 if (err)
4294 return err;
4295
4296 idpf_vport_intr_map_vector_to_qs(vport);
4297 idpf_vport_intr_napi_add_all(vport);
4298
4299 err = vport->adapter->dev_ops.reg_ops.intr_reg_init(vport);
4300 if (err)
4301 goto unroll_vectors_alloc;
4302
4303 err = idpf_vport_intr_req_irq(vport);
4304 if (err)
4305 goto unroll_vectors_alloc;
4306
4307 return 0;
4308
4309 unroll_vectors_alloc:
4310 idpf_vport_intr_napi_del_all(vport);
4311
4312 return err;
4313 }
4314
idpf_vport_intr_ena(struct idpf_vport * vport)4315 void idpf_vport_intr_ena(struct idpf_vport *vport)
4316 {
4317 idpf_vport_intr_napi_ena_all(vport);
4318 idpf_vport_intr_ena_irq_all(vport);
4319 }
4320
4321 /**
4322 * idpf_config_rss - Send virtchnl messages to configure RSS
4323 * @vport: virtual port
4324 *
4325 * Return 0 on success, negative on failure
4326 */
idpf_config_rss(struct idpf_vport * vport)4327 int idpf_config_rss(struct idpf_vport *vport)
4328 {
4329 int err;
4330
4331 err = idpf_send_get_set_rss_key_msg(vport, false);
4332 if (err)
4333 return err;
4334
4335 return idpf_send_get_set_rss_lut_msg(vport, false);
4336 }
4337
4338 /**
4339 * idpf_fill_dflt_rss_lut - Fill the indirection table with the default values
4340 * @vport: virtual port structure
4341 */
idpf_fill_dflt_rss_lut(struct idpf_vport * vport)4342 static void idpf_fill_dflt_rss_lut(struct idpf_vport *vport)
4343 {
4344 struct idpf_adapter *adapter = vport->adapter;
4345 u16 num_active_rxq = vport->num_rxq;
4346 struct idpf_rss_data *rss_data;
4347 int i;
4348
4349 rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4350
4351 for (i = 0; i < rss_data->rss_lut_size; i++) {
4352 rss_data->rss_lut[i] = i % num_active_rxq;
4353 rss_data->cached_lut[i] = rss_data->rss_lut[i];
4354 }
4355 }
4356
4357 /**
4358 * idpf_init_rss - Allocate and initialize RSS resources
4359 * @vport: virtual port
4360 *
4361 * Return 0 on success, negative on failure
4362 */
idpf_init_rss(struct idpf_vport * vport)4363 int idpf_init_rss(struct idpf_vport *vport)
4364 {
4365 struct idpf_adapter *adapter = vport->adapter;
4366 struct idpf_rss_data *rss_data;
4367 u32 lut_size;
4368
4369 rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4370
4371 lut_size = rss_data->rss_lut_size * sizeof(u32);
4372 rss_data->rss_lut = kzalloc(lut_size, GFP_KERNEL);
4373 if (!rss_data->rss_lut)
4374 return -ENOMEM;
4375
4376 rss_data->cached_lut = kzalloc(lut_size, GFP_KERNEL);
4377 if (!rss_data->cached_lut) {
4378 kfree(rss_data->rss_lut);
4379 rss_data->rss_lut = NULL;
4380
4381 return -ENOMEM;
4382 }
4383
4384 /* Fill the default RSS lut values */
4385 idpf_fill_dflt_rss_lut(vport);
4386
4387 return idpf_config_rss(vport);
4388 }
4389
4390 /**
4391 * idpf_deinit_rss - Release RSS resources
4392 * @vport: virtual port
4393 */
idpf_deinit_rss(struct idpf_vport * vport)4394 void idpf_deinit_rss(struct idpf_vport *vport)
4395 {
4396 struct idpf_adapter *adapter = vport->adapter;
4397 struct idpf_rss_data *rss_data;
4398
4399 rss_data = &adapter->vport_config[vport->idx]->user_config.rss_data;
4400 kfree(rss_data->cached_lut);
4401 rss_data->cached_lut = NULL;
4402 kfree(rss_data->rss_lut);
4403 rss_data->rss_lut = NULL;
4404 }
4405