xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Support/Allocator.h (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11 /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12 /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13 /// allocator.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_SUPPORT_ALLOCATOR_H
18 #define LLVM_SUPPORT_ALLOCATOR_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Alignment.h"
22 #include "llvm/Support/AllocatorBase.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/MathExtras.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <iterator>
30 #include <optional>
31 #include <utility>
32 
33 namespace llvm {
34 
35 namespace detail {
36 
37 // We call out to an external function to actually print the message as the
38 // printing code uses Allocator.h in its implementation.
39 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
40                                 size_t TotalMemory);
41 
42 } // end namespace detail
43 
44 /// Allocate memory in an ever growing pool, as if by bump-pointer.
45 ///
46 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
47 /// memory rather than relying on a boundless contiguous heap. However, it has
48 /// bump-pointer semantics in that it is a monotonically growing pool of memory
49 /// where every allocation is found by merely allocating the next N bytes in
50 /// the slab, or the next N bytes in the next slab.
51 ///
52 /// Note that this also has a threshold for forcing allocations above a certain
53 /// size into their own slab.
54 ///
55 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
56 /// object, which wraps malloc, to allocate memory, but it can be changed to
57 /// use a custom allocator.
58 ///
59 /// The GrowthDelay specifies after how many allocated slabs the allocator
60 /// increases the size of the slabs.
61 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
62           size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
63 class BumpPtrAllocatorImpl
64     : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
65                                                 SizeThreshold, GrowthDelay>>,
66       private detail::AllocatorHolder<AllocatorT> {
67   using AllocTy = detail::AllocatorHolder<AllocatorT>;
68 
69 public:
70   static_assert(SizeThreshold <= SlabSize,
71                 "The SizeThreshold must be at most the SlabSize to ensure "
72                 "that objects larger than a slab go into their own memory "
73                 "allocation.");
74   static_assert(GrowthDelay > 0,
75                 "GrowthDelay must be at least 1 which already increases the"
76                 "slab size after each allocated slab.");
77 
78   BumpPtrAllocatorImpl() = default;
79 
80   template <typename T>
BumpPtrAllocatorImpl(T && Allocator)81   BumpPtrAllocatorImpl(T &&Allocator)
82       : AllocTy(std::forward<T &&>(Allocator)) {}
83 
84   // Manually implement a move constructor as we must clear the old allocator's
85   // slabs as a matter of correctness.
BumpPtrAllocatorImpl(BumpPtrAllocatorImpl && Old)86   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
87       : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
88         End(Old.End), Slabs(std::move(Old.Slabs)),
89         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
90         BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
91     Old.CurPtr = Old.End = nullptr;
92     Old.BytesAllocated = 0;
93     Old.Slabs.clear();
94     Old.CustomSizedSlabs.clear();
95   }
96 
~BumpPtrAllocatorImpl()97   ~BumpPtrAllocatorImpl() {
98     DeallocateSlabs(Slabs.begin(), Slabs.end());
99     DeallocateCustomSizedSlabs();
100   }
101 
102   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
103     DeallocateSlabs(Slabs.begin(), Slabs.end());
104     DeallocateCustomSizedSlabs();
105 
106     CurPtr = RHS.CurPtr;
107     End = RHS.End;
108     BytesAllocated = RHS.BytesAllocated;
109     RedZoneSize = RHS.RedZoneSize;
110     Slabs = std::move(RHS.Slabs);
111     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
112     AllocTy::operator=(std::move(RHS.getAllocator()));
113 
114     RHS.CurPtr = RHS.End = nullptr;
115     RHS.BytesAllocated = 0;
116     RHS.Slabs.clear();
117     RHS.CustomSizedSlabs.clear();
118     return *this;
119   }
120 
121   /// Deallocate all but the current slab and reset the current pointer
122   /// to the beginning of it, freeing all memory allocated so far.
Reset()123   void Reset() {
124     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
125     DeallocateCustomSizedSlabs();
126     CustomSizedSlabs.clear();
127 
128     if (Slabs.empty())
129       return;
130 
131     // Reset the state.
132     BytesAllocated = 0;
133     CurPtr = (char *)Slabs.front();
134     End = CurPtr + SlabSize;
135 
136     __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
137     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
138     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
139   }
140 
141   /// Allocate space at the specified alignment.
142   // This method is *not* marked noalias, because
143   // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
144   // that loop is not based on the Allocate() return value.
145   //
146   // Allocate(0, N) is valid, it returns a non-null pointer (which should not
147   // be dereferenced).
Allocate(size_t Size,Align Alignment)148   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
149     // Keep track of how many bytes we've allocated.
150     BytesAllocated += Size;
151 
152     size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
153     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
154 
155     size_t SizeToAllocate = Size;
156 #if LLVM_ADDRESS_SANITIZER_BUILD
157     // Add trailing bytes as a "red zone" under ASan.
158     SizeToAllocate += RedZoneSize;
159 #endif
160 
161     // Check if we have enough space.
162     if (LLVM_LIKELY(Adjustment + SizeToAllocate <= size_t(End - CurPtr)
163                     // We can't return nullptr even for a zero-sized allocation!
164                     && CurPtr != nullptr)) {
165       char *AlignedPtr = CurPtr + Adjustment;
166       CurPtr = AlignedPtr + SizeToAllocate;
167       // Update the allocation point of this memory block in MemorySanitizer.
168       // Without this, MemorySanitizer messages for values originated from here
169       // will point to the allocation of the entire slab.
170       __msan_allocated_memory(AlignedPtr, Size);
171       // Similarly, tell ASan about this space.
172       __asan_unpoison_memory_region(AlignedPtr, Size);
173       return AlignedPtr;
174     }
175 
176     return AllocateSlow(Size, SizeToAllocate, Alignment);
177   }
178 
179   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_NOINLINE void *
AllocateSlow(size_t Size,size_t SizeToAllocate,Align Alignment)180   AllocateSlow(size_t Size, size_t SizeToAllocate, Align Alignment) {
181     // If Size is really big, allocate a separate slab for it.
182     size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
183     if (PaddedSize > SizeThreshold) {
184       void *NewSlab =
185           this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
186       // We own the new slab and don't want anyone reading anyting other than
187       // pieces returned from this method.  So poison the whole slab.
188       __asan_poison_memory_region(NewSlab, PaddedSize);
189       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
190 
191       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
192       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
193       char *AlignedPtr = (char*)AlignedAddr;
194       __msan_allocated_memory(AlignedPtr, Size);
195       __asan_unpoison_memory_region(AlignedPtr, Size);
196       return AlignedPtr;
197     }
198 
199     // Otherwise, start a new slab and try again.
200     StartNewSlab();
201     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
202     assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
203            "Unable to allocate memory!");
204     char *AlignedPtr = (char*)AlignedAddr;
205     CurPtr = AlignedPtr + SizeToAllocate;
206     __msan_allocated_memory(AlignedPtr, Size);
207     __asan_unpoison_memory_region(AlignedPtr, Size);
208     return AlignedPtr;
209   }
210 
211   inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
Allocate(size_t Size,size_t Alignment)212   Allocate(size_t Size, size_t Alignment) {
213     assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
214     return Allocate(Size, Align(Alignment));
215   }
216 
217   // Pull in base class overloads.
218   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
219 
220   // Bump pointer allocators are expected to never free their storage; and
221   // clients expect pointers to remain valid for non-dereferencing uses even
222   // after deallocation.
Deallocate(const void * Ptr,size_t Size,size_t)223   void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
224     __asan_poison_memory_region(Ptr, Size);
225   }
226 
227   // Pull in base class overloads.
228   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
229 
GetNumSlabs()230   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
231 
232   /// \return An index uniquely and reproducibly identifying
233   /// an input pointer \p Ptr in the given allocator.
234   /// The returned value is negative iff the object is inside a custom-size
235   /// slab.
236   /// Returns an empty optional if the pointer is not found in the allocator.
identifyObject(const void * Ptr)237   std::optional<int64_t> identifyObject(const void *Ptr) {
238     const char *P = static_cast<const char *>(Ptr);
239     int64_t InSlabIdx = 0;
240     for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
241       const char *S = static_cast<const char *>(Slabs[Idx]);
242       if (P >= S && P < S + computeSlabSize(Idx))
243         return InSlabIdx + static_cast<int64_t>(P - S);
244       InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
245     }
246 
247     // Use negative index to denote custom sized slabs.
248     int64_t InCustomSizedSlabIdx = -1;
249     for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
250       const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
251       size_t Size = CustomSizedSlabs[Idx].second;
252       if (P >= S && P < S + Size)
253         return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
254       InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
255     }
256     return std::nullopt;
257   }
258 
259   /// A wrapper around identifyObject that additionally asserts that
260   /// the object is indeed within the allocator.
261   /// \return An index uniquely and reproducibly identifying
262   /// an input pointer \p Ptr in the given allocator.
identifyKnownObject(const void * Ptr)263   int64_t identifyKnownObject(const void *Ptr) {
264     std::optional<int64_t> Out = identifyObject(Ptr);
265     assert(Out && "Wrong allocator used");
266     return *Out;
267   }
268 
269   /// A wrapper around identifyKnownObject. Accepts type information
270   /// about the object and produces a smaller identifier by relying on
271   /// the alignment information. Note that sub-classes may have different
272   /// alignment, so the most base class should be passed as template parameter
273   /// in order to obtain correct results. For that reason automatic template
274   /// parameter deduction is disabled.
275   /// \return An index uniquely and reproducibly identifying
276   /// an input pointer \p Ptr in the given allocator. This identifier is
277   /// different from the ones produced by identifyObject and
278   /// identifyAlignedObject.
279   template <typename T>
identifyKnownAlignedObject(const void * Ptr)280   int64_t identifyKnownAlignedObject(const void *Ptr) {
281     int64_t Out = identifyKnownObject(Ptr);
282     assert(Out % alignof(T) == 0 && "Wrong alignment information");
283     return Out / alignof(T);
284   }
285 
getTotalMemory()286   size_t getTotalMemory() const {
287     size_t TotalMemory = 0;
288     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
289       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
290     for (const auto &PtrAndSize : CustomSizedSlabs)
291       TotalMemory += PtrAndSize.second;
292     return TotalMemory;
293   }
294 
getBytesAllocated()295   size_t getBytesAllocated() const { return BytesAllocated; }
296 
setRedZoneSize(size_t NewSize)297   void setRedZoneSize(size_t NewSize) {
298     RedZoneSize = NewSize;
299   }
300 
PrintStats()301   void PrintStats() const {
302     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
303                                        getTotalMemory());
304   }
305 
306 private:
307   /// The current pointer into the current slab.
308   ///
309   /// This points to the next free byte in the slab.
310   char *CurPtr = nullptr;
311 
312   /// The end of the current slab.
313   char *End = nullptr;
314 
315   /// The slabs allocated so far.
316   SmallVector<void *, 4> Slabs;
317 
318   /// Custom-sized slabs allocated for too-large allocation requests.
319   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
320 
321   /// How many bytes we've allocated.
322   ///
323   /// Used so that we can compute how much space was wasted.
324   size_t BytesAllocated = 0;
325 
326   /// The number of bytes to put between allocations when running under
327   /// a sanitizer.
328   size_t RedZoneSize = 1;
329 
computeSlabSize(unsigned SlabIdx)330   static size_t computeSlabSize(unsigned SlabIdx) {
331     // Scale the actual allocated slab size based on the number of slabs
332     // allocated. Every GrowthDelay slabs allocated, we double
333     // the allocated size to reduce allocation frequency, but saturate at
334     // multiplying the slab size by 2^30.
335     return SlabSize *
336            ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
337   }
338 
339   /// Allocate a new slab and move the bump pointers over into the new
340   /// slab, modifying CurPtr and End.
StartNewSlab()341   void StartNewSlab() {
342     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
343 
344     void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
345                                                   alignof(std::max_align_t));
346     // We own the new slab and don't want anyone reading anything other than
347     // pieces returned from this method.  So poison the whole slab.
348     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
349 
350     Slabs.push_back(NewSlab);
351     CurPtr = (char *)(NewSlab);
352     End = ((char *)NewSlab) + AllocatedSlabSize;
353   }
354 
355   /// Deallocate a sequence of slabs.
DeallocateSlabs(SmallVectorImpl<void * >::iterator I,SmallVectorImpl<void * >::iterator E)356   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
357                        SmallVectorImpl<void *>::iterator E) {
358     for (; I != E; ++I) {
359       size_t AllocatedSlabSize =
360           computeSlabSize(std::distance(Slabs.begin(), I));
361       this->getAllocator().Deallocate(*I, AllocatedSlabSize,
362                                       alignof(std::max_align_t));
363     }
364   }
365 
366   /// Deallocate all memory for custom sized slabs.
DeallocateCustomSizedSlabs()367   void DeallocateCustomSizedSlabs() {
368     for (auto &PtrAndSize : CustomSizedSlabs) {
369       void *Ptr = PtrAndSize.first;
370       size_t Size = PtrAndSize.second;
371       this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
372     }
373   }
374 
375   template <typename T> friend class SpecificBumpPtrAllocator;
376 };
377 
378 /// The standard BumpPtrAllocator which just uses the default template
379 /// parameters.
380 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
381 
382 /// A BumpPtrAllocator that allows only elements of a specific type to be
383 /// allocated.
384 ///
385 /// This allows calling the destructor in DestroyAll() and when the allocator is
386 /// destroyed.
387 template <typename T> class SpecificBumpPtrAllocator {
388   BumpPtrAllocator Allocator;
389 
390 public:
SpecificBumpPtrAllocator()391   SpecificBumpPtrAllocator() {
392     // Because SpecificBumpPtrAllocator walks the memory to call destructors,
393     // it can't have red zones between allocations.
394     Allocator.setRedZoneSize(0);
395   }
SpecificBumpPtrAllocator(SpecificBumpPtrAllocator && Old)396   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
397       : Allocator(std::move(Old.Allocator)) {}
~SpecificBumpPtrAllocator()398   ~SpecificBumpPtrAllocator() { DestroyAll(); }
399 
400   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
401     Allocator = std::move(RHS.Allocator);
402     return *this;
403   }
404 
405   /// Call the destructor of each allocated object and deallocate all but the
406   /// current slab and reset the current pointer to the beginning of it, freeing
407   /// all memory allocated so far.
DestroyAll()408   void DestroyAll() {
409     auto DestroyElements = [](char *Begin, char *End) {
410       assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
411       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
412         reinterpret_cast<T *>(Ptr)->~T();
413     };
414 
415     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
416          ++I) {
417       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
418           std::distance(Allocator.Slabs.begin(), I));
419       char *Begin = (char *)alignAddr(*I, Align::Of<T>());
420       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
421                                                : (char *)*I + AllocatedSlabSize;
422 
423       DestroyElements(Begin, End);
424     }
425 
426     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
427       void *Ptr = PtrAndSize.first;
428       size_t Size = PtrAndSize.second;
429       DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
430                       (char *)Ptr + Size);
431     }
432 
433     Allocator.Reset();
434   }
435 
436   /// Allocate space for an array of objects without constructing them.
437   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
438 };
439 
440 } // end namespace llvm
441 
442 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
443           size_t GrowthDelay>
444 void *
new(size_t Size,llvm::BumpPtrAllocatorImpl<AllocatorT,SlabSize,SizeThreshold,GrowthDelay> & Allocator)445 operator new(size_t Size,
446              llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
447                                         GrowthDelay> &Allocator) {
448   return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
449                                            alignof(std::max_align_t)));
450 }
451 
452 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
453           size_t GrowthDelay>
delete(void *,llvm::BumpPtrAllocatorImpl<AllocatorT,SlabSize,SizeThreshold,GrowthDelay> &)454 void operator delete(void *,
455                      llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
456                                                 SizeThreshold, GrowthDelay> &) {
457 }
458 
459 #endif // LLVM_SUPPORT_ALLOCATOR_H
460