1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9
10 /**
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13 *
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15 */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 unsigned int offset, i;
19
20 mutex_lock(qs_cfg->qs_mutex);
21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 0, qs_cfg->q_count, 0);
23 if (offset >= qs_cfg->pf_map_size) {
24 mutex_unlock(qs_cfg->qs_mutex);
25 return -ENOMEM;
26 }
27
28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 for (i = 0; i < qs_cfg->q_count; i++)
30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 mutex_unlock(qs_cfg->qs_mutex);
32
33 return 0;
34 }
35
36 /**
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39 *
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41 */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 unsigned int i, index = 0;
45
46 mutex_lock(qs_cfg->qs_mutex);
47 for (i = 0; i < qs_cfg->q_count; i++) {
48 index = find_next_zero_bit(qs_cfg->pf_map,
49 qs_cfg->pf_map_size, index);
50 if (index >= qs_cfg->pf_map_size)
51 goto err_scatter;
52 set_bit(index, qs_cfg->pf_map);
53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 }
55 mutex_unlock(qs_cfg->qs_mutex);
56
57 return 0;
58 err_scatter:
59 for (index = 0; index < i; index++) {
60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 }
63 mutex_unlock(qs_cfg->qs_mutex);
64
65 return -ENOMEM;
66 }
67
68 /**
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
71 * @pf_q: the PF queue
72 * @ena: enable or disable state of the queue
73 *
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
78 */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 int i;
82
83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 QRX_CTRL_QENA_STAT_M))
86 return 0;
87
88 usleep_range(20, 40);
89 }
90
91 return -ETIMEDOUT;
92 }
93
94 /**
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
98 *
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
101 */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 struct ice_pf *pf = vsi->back;
105 struct ice_q_vector *q_vector;
106 int err;
107
108 /* allocate q_vector */
109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 if (!q_vector)
111 return -ENOMEM;
112
113 q_vector->vsi = vsi;
114 q_vector->v_idx = v_idx;
115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 q_vector->tx.itr_mode = ITR_DYNAMIC;
118 q_vector->rx.itr_mode = ITR_DYNAMIC;
119 q_vector->tx.type = ICE_TX_CONTAINER;
120 q_vector->rx.type = ICE_RX_CONTAINER;
121 q_vector->irq.index = -ENOENT;
122
123 if (vsi->type == ICE_VSI_VF) {
124 ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 goto out;
126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128
129 if (ctrl_vsi) {
130 if (unlikely(!ctrl_vsi->q_vectors)) {
131 err = -ENOENT;
132 goto err_free_q_vector;
133 }
134
135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 goto skip_alloc;
137 }
138 }
139
140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 if (q_vector->irq.index < 0) {
142 err = -ENOMEM;
143 goto err_free_q_vector;
144 }
145
146 skip_alloc:
147 q_vector->reg_idx = q_vector->irq.index;
148 q_vector->vf_reg_idx = q_vector->irq.index;
149
150 /* only set affinity_mask if the CPU is online */
151 if (cpu_online(v_idx))
152 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
153
154 /* This will not be called in the driver load path because the netdev
155 * will not be created yet. All other cases with register the NAPI
156 * handler here (i.e. resume, reset/rebuild, etc.)
157 */
158 if (vsi->netdev)
159 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
160
161 out:
162 /* tie q_vector and VSI together */
163 vsi->q_vectors[v_idx] = q_vector;
164
165 return 0;
166
167 err_free_q_vector:
168 kfree(q_vector);
169
170 return err;
171 }
172
173 /**
174 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
175 * @vsi: VSI having the memory freed
176 * @v_idx: index of the vector to be freed
177 */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)178 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
179 {
180 struct ice_q_vector *q_vector;
181 struct ice_pf *pf = vsi->back;
182 struct ice_tx_ring *tx_ring;
183 struct ice_rx_ring *rx_ring;
184 struct device *dev;
185
186 dev = ice_pf_to_dev(pf);
187 if (!vsi->q_vectors[v_idx]) {
188 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
189 return;
190 }
191 q_vector = vsi->q_vectors[v_idx];
192
193 ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
194 tx_ring->q_vector = NULL;
195
196 ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
197 rx_ring->q_vector = NULL;
198
199 /* only VSI with an associated netdev is set up with NAPI */
200 if (vsi->netdev)
201 netif_napi_del(&q_vector->napi);
202
203 /* release MSIX interrupt if q_vector had interrupt allocated */
204 if (q_vector->irq.index < 0)
205 goto free_q_vector;
206
207 /* only free last VF ctrl vsi interrupt */
208 if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
209 ice_get_vf_ctrl_vsi(pf, vsi))
210 goto free_q_vector;
211
212 ice_free_irq(pf, q_vector->irq);
213
214 free_q_vector:
215 kfree(q_vector);
216 vsi->q_vectors[v_idx] = NULL;
217 }
218
219 /**
220 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
221 * @hw: board specific structure
222 */
ice_cfg_itr_gran(struct ice_hw * hw)223 static void ice_cfg_itr_gran(struct ice_hw *hw)
224 {
225 u32 regval = rd32(hw, GLINT_CTL);
226
227 /* no need to update global register if ITR gran is already set */
228 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
229 (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
230 (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
231 (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
232 (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
233 return;
234
235 regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
236 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
237 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
238 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
239 wr32(hw, GLINT_CTL, regval);
240 }
241
242 /**
243 * ice_calc_txq_handle - calculate the queue handle
244 * @vsi: VSI that ring belongs to
245 * @ring: ring to get the absolute queue index
246 * @tc: traffic class number
247 */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)248 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
249 {
250 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
251
252 if (ring->ch)
253 return ring->q_index - ring->ch->base_q;
254
255 /* Idea here for calculation is that we subtract the number of queue
256 * count from TC that ring belongs to from it's absolute queue index
257 * and as a result we get the queue's index within TC.
258 */
259 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
260 }
261
262 /**
263 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
264 * @ring: The Tx ring to configure
265 *
266 * This enables/disables XPS for a given Tx descriptor ring
267 * based on the TCs enabled for the VSI that ring belongs to.
268 */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)269 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
270 {
271 if (!ring->q_vector || !ring->netdev)
272 return;
273
274 /* We only initialize XPS once, so as not to overwrite user settings */
275 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
276 return;
277
278 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
279 ring->q_index);
280 }
281
282 /**
283 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
284 * @ring: The Tx ring to configure
285 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
286 * @pf_q: queue index in the PF space
287 *
288 * Configure the Tx descriptor ring in TLAN context.
289 */
290 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)291 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
292 {
293 struct ice_vsi *vsi = ring->vsi;
294 struct ice_hw *hw = &vsi->back->hw;
295
296 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
297
298 tlan_ctx->port_num = vsi->port_info->lport;
299
300 /* Transmit Queue Length */
301 tlan_ctx->qlen = ring->count;
302
303 ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
304
305 /* PF number */
306 tlan_ctx->pf_num = hw->pf_id;
307
308 /* queue belongs to a specific VSI type
309 * VF / VM index should be programmed per vmvf_type setting:
310 * for vmvf_type = VF, it is VF number between 0-256
311 * for vmvf_type = VM, it is VM number between 0-767
312 * for PF or EMP this field should be set to zero
313 */
314 switch (vsi->type) {
315 case ICE_VSI_LB:
316 case ICE_VSI_CTRL:
317 case ICE_VSI_PF:
318 if (ring->ch)
319 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
320 else
321 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
322 break;
323 case ICE_VSI_VF:
324 /* Firmware expects vmvf_num to be absolute VF ID */
325 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
326 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
327 break;
328 case ICE_VSI_SF:
329 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
330 break;
331 default:
332 return;
333 }
334
335 /* make sure the context is associated with the right VSI */
336 if (ring->ch)
337 tlan_ctx->src_vsi = ring->ch->vsi_num;
338 else
339 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
340
341 /* Restrict Tx timestamps to the PF VSI */
342 switch (vsi->type) {
343 case ICE_VSI_PF:
344 tlan_ctx->tsyn_ena = 1;
345 break;
346 default:
347 break;
348 }
349
350 tlan_ctx->tso_ena = ICE_TX_LEGACY;
351 tlan_ctx->tso_qnum = pf_q;
352
353 /* Legacy or Advanced Host Interface:
354 * 0: Advanced Host Interface
355 * 1: Legacy Host Interface
356 */
357 tlan_ctx->legacy_int = ICE_TX_LEGACY;
358 }
359
360 /**
361 * ice_rx_offset - Return expected offset into page to access data
362 * @rx_ring: Ring we are requesting offset of
363 *
364 * Returns the offset value for ring into the data buffer.
365 */
ice_rx_offset(struct ice_rx_ring * rx_ring)366 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
367 {
368 if (ice_ring_uses_build_skb(rx_ring))
369 return ICE_SKB_PAD;
370 return 0;
371 }
372
373 /**
374 * ice_setup_rx_ctx - Configure a receive ring context
375 * @ring: The Rx ring to configure
376 *
377 * Configure the Rx descriptor ring in RLAN context.
378 */
ice_setup_rx_ctx(struct ice_rx_ring * ring)379 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
380 {
381 struct ice_vsi *vsi = ring->vsi;
382 u32 rxdid = ICE_RXDID_FLEX_NIC;
383 struct ice_rlan_ctx rlan_ctx;
384 struct ice_hw *hw;
385 u16 pf_q;
386 int err;
387
388 hw = &vsi->back->hw;
389
390 /* what is Rx queue number in global space of 2K Rx queues */
391 pf_q = vsi->rxq_map[ring->q_index];
392
393 /* clear the context structure first */
394 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
395
396 /* Receive Queue Base Address.
397 * Indicates the starting address of the descriptor queue defined in
398 * 128 Byte units.
399 */
400 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
401
402 rlan_ctx.qlen = ring->count;
403
404 /* Receive Packet Data Buffer Size.
405 * The Packet Data Buffer Size is defined in 128 byte units.
406 */
407 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
408 BIT_ULL(ICE_RLAN_CTX_DBUF_S));
409
410 /* use 32 byte descriptors */
411 rlan_ctx.dsize = 1;
412
413 /* Strip the Ethernet CRC bytes before the packet is posted to host
414 * memory.
415 */
416 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
417
418 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor
419 * and it needs to remain 1 for non-DVM capable configurations to not
420 * break backward compatibility for VF drivers. Setting this field to 0
421 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
422 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
423 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
424 * check for the tag
425 */
426 if (ice_is_dvm_ena(hw))
427 if (vsi->type == ICE_VSI_VF &&
428 ice_vf_is_port_vlan_ena(vsi->vf))
429 rlan_ctx.l2tsel = 1;
430 else
431 rlan_ctx.l2tsel = 0;
432 else
433 rlan_ctx.l2tsel = 1;
434
435 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
436 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
437 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
438
439 /* This controls whether VLAN is stripped from inner headers
440 * The VLAN in the inner L2 header is stripped to the receive
441 * descriptor if enabled by this flag.
442 */
443 rlan_ctx.showiv = 0;
444
445 /* Max packet size for this queue - must not be set to a larger value
446 * than 5 x DBUF
447 */
448 rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
449 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
450
451 /* Rx queue threshold in units of 64 */
452 rlan_ctx.lrxqthresh = 1;
453
454 /* PF acts as uplink for switchdev; set flex descriptor with src_vsi
455 * metadata and flags to allow redirecting to PR netdev
456 */
457 if (ice_is_eswitch_mode_switchdev(vsi->back)) {
458 ring->flags |= ICE_RX_FLAGS_MULTIDEV;
459 rxdid = ICE_RXDID_FLEX_NIC_2;
460 }
461
462 /* Enable Flexible Descriptors in the queue context which
463 * allows this driver to select a specific receive descriptor format
464 * increasing context priority to pick up profile ID; default is 0x01;
465 * setting to 0x03 to ensure profile is programming if prev context is
466 * of same priority
467 */
468 if (vsi->type != ICE_VSI_VF)
469 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
470 else
471 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
472 false);
473
474 /* Absolute queue number out of 2K needs to be passed */
475 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
476 if (err) {
477 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
478 pf_q, err);
479 return -EIO;
480 }
481
482 if (vsi->type == ICE_VSI_VF)
483 return 0;
484
485 /* configure Rx buffer alignment */
486 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
487 ice_clear_ring_build_skb_ena(ring);
488 else
489 ice_set_ring_build_skb_ena(ring);
490
491 ring->rx_offset = ice_rx_offset(ring);
492
493 /* init queue specific tail register */
494 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
495 writel(0, ring->tail);
496
497 return 0;
498 }
499
ice_xsk_pool_fill_cb(struct ice_rx_ring * ring)500 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
501 {
502 void *ctx_ptr = &ring->pkt_ctx;
503 struct xsk_cb_desc desc = {};
504
505 XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
506 desc.src = &ctx_ptr;
507 desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
508 sizeof(struct xdp_buff);
509 desc.bytes = sizeof(ctx_ptr);
510 xsk_pool_fill_cb(ring->xsk_pool, &desc);
511 }
512
513 /**
514 * ice_get_frame_sz - calculate xdp_buff::frame_sz
515 * @rx_ring: the ring being configured
516 *
517 * Return frame size based on underlying PAGE_SIZE
518 */
ice_get_frame_sz(struct ice_rx_ring * rx_ring)519 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
520 {
521 unsigned int frame_sz;
522
523 #if (PAGE_SIZE >= 8192)
524 frame_sz = rx_ring->rx_buf_len;
525 #else
526 frame_sz = ice_rx_pg_size(rx_ring) / 2;
527 #endif
528
529 return frame_sz;
530 }
531
532 /**
533 * ice_vsi_cfg_rxq - Configure an Rx queue
534 * @ring: the ring being configured
535 *
536 * Return 0 on success and a negative value on error.
537 */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)538 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
539 {
540 struct device *dev = ice_pf_to_dev(ring->vsi->back);
541 u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
542 int err;
543
544 ring->rx_buf_len = ring->vsi->rx_buf_len;
545
546 if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
547 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
548 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
549 ring->q_index,
550 ring->q_vector->napi.napi_id,
551 ring->rx_buf_len);
552 if (err)
553 return err;
554 }
555
556 ice_rx_xsk_pool(ring);
557 if (ring->xsk_pool) {
558 xdp_rxq_info_unreg(&ring->xdp_rxq);
559
560 ring->rx_buf_len =
561 xsk_pool_get_rx_frame_size(ring->xsk_pool);
562 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
563 ring->q_index,
564 ring->q_vector->napi.napi_id,
565 ring->rx_buf_len);
566 if (err)
567 return err;
568 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
569 MEM_TYPE_XSK_BUFF_POOL,
570 NULL);
571 if (err)
572 return err;
573 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
574 ice_xsk_pool_fill_cb(ring);
575
576 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
577 ring->q_index);
578 } else {
579 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
580 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
581 ring->q_index,
582 ring->q_vector->napi.napi_id,
583 ring->rx_buf_len);
584 if (err)
585 return err;
586 }
587
588 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
589 MEM_TYPE_PAGE_SHARED,
590 NULL);
591 if (err)
592 return err;
593 }
594 }
595
596 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
597 ring->xdp.data = NULL;
598 ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
599 err = ice_setup_rx_ctx(ring);
600 if (err) {
601 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
602 ring->q_index, err);
603 return err;
604 }
605
606 if (ring->xsk_pool) {
607 bool ok;
608
609 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
610 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
611 num_bufs, ring->q_index);
612 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
613
614 return 0;
615 }
616
617 ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
618 if (!ok) {
619 u16 pf_q = ring->vsi->rxq_map[ring->q_index];
620
621 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
622 ring->q_index, pf_q);
623 }
624
625 return 0;
626 }
627
628 ice_alloc_rx_bufs(ring, num_bufs);
629
630 return 0;
631 }
632
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)633 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
634 {
635 if (q_idx >= vsi->num_rxq)
636 return -EINVAL;
637
638 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
639 }
640
641 /**
642 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
643 * @vsi: VSI
644 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)645 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
646 {
647 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
648 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
649 vsi->rx_buf_len = ICE_RXBUF_1664;
650 #if (PAGE_SIZE < 8192)
651 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
652 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
653 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
654 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
655 #endif
656 } else {
657 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
658 vsi->rx_buf_len = ICE_RXBUF_3072;
659 }
660 }
661
662 /**
663 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
664 * @vsi: the VSI being configured
665 *
666 * Return 0 on success and a negative value on error
667 * Configure the Rx VSI for operation.
668 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)669 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
670 {
671 u16 i;
672
673 if (vsi->type == ICE_VSI_VF)
674 goto setup_rings;
675
676 ice_vsi_cfg_frame_size(vsi);
677 setup_rings:
678 /* set up individual rings */
679 ice_for_each_rxq(vsi, i) {
680 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
681
682 if (err)
683 return err;
684 }
685
686 return 0;
687 }
688
689 /**
690 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
691 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
692 *
693 * This function first tries to find contiguous space. If it is not successful,
694 * it tries with the scatter approach.
695 *
696 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
697 */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)698 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
699 {
700 int ret = 0;
701
702 ret = __ice_vsi_get_qs_contig(qs_cfg);
703 if (ret) {
704 /* contig failed, so try with scatter approach */
705 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
706 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
707 qs_cfg->scatter_count);
708 ret = __ice_vsi_get_qs_sc(qs_cfg);
709 }
710 return ret;
711 }
712
713 /**
714 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
715 * @vsi: the VSI being configured
716 * @ena: start or stop the Rx ring
717 * @rxq_idx: 0-based Rx queue index for the VSI passed in
718 * @wait: wait or don't wait for configuration to finish in hardware
719 *
720 * Return 0 on success and negative on error.
721 */
722 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)723 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
724 {
725 int pf_q = vsi->rxq_map[rxq_idx];
726 struct ice_pf *pf = vsi->back;
727 struct ice_hw *hw = &pf->hw;
728 u32 rx_reg;
729
730 rx_reg = rd32(hw, QRX_CTRL(pf_q));
731
732 /* Skip if the queue is already in the requested state */
733 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
734 return 0;
735
736 /* turn on/off the queue */
737 if (ena)
738 rx_reg |= QRX_CTRL_QENA_REQ_M;
739 else
740 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
741 wr32(hw, QRX_CTRL(pf_q), rx_reg);
742
743 if (!wait)
744 return 0;
745
746 ice_flush(hw);
747 return ice_pf_rxq_wait(pf, pf_q, ena);
748 }
749
750 /**
751 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
752 * @vsi: the VSI being configured
753 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
754 * @rxq_idx: 0-based Rx queue index for the VSI passed in
755 *
756 * This routine will wait for the given Rx queue of the VSI to reach the
757 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
758 * the requested state after multiple retries; else will return 0 in case of
759 * success.
760 */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)761 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
762 {
763 int pf_q = vsi->rxq_map[rxq_idx];
764 struct ice_pf *pf = vsi->back;
765
766 return ice_pf_rxq_wait(pf, pf_q, ena);
767 }
768
769 /**
770 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
771 * @vsi: the VSI being configured
772 *
773 * We allocate one q_vector per queue interrupt. If allocation fails we
774 * return -ENOMEM.
775 */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)776 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
777 {
778 struct device *dev = ice_pf_to_dev(vsi->back);
779 u16 v_idx;
780 int err;
781
782 if (vsi->q_vectors[0]) {
783 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
784 return -EEXIST;
785 }
786
787 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
788 err = ice_vsi_alloc_q_vector(vsi, v_idx);
789 if (err)
790 goto err_out;
791 }
792
793 return 0;
794
795 err_out:
796 while (v_idx--)
797 ice_free_q_vector(vsi, v_idx);
798
799 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
800 vsi->num_q_vectors, vsi->vsi_num, err);
801 vsi->num_q_vectors = 0;
802 return err;
803 }
804
805 /**
806 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
807 * @vsi: the VSI being configured
808 *
809 * This function maps descriptor rings to the queue-specific vectors allotted
810 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
811 * and Rx rings to the vector as "efficiently" as possible.
812 */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)813 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
814 {
815 int q_vectors = vsi->num_q_vectors;
816 u16 tx_rings_rem, rx_rings_rem;
817 int v_id;
818
819 /* initially assigning remaining rings count to VSIs num queue value */
820 tx_rings_rem = vsi->num_txq;
821 rx_rings_rem = vsi->num_rxq;
822
823 for (v_id = 0; v_id < q_vectors; v_id++) {
824 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
825 u8 tx_rings_per_v, rx_rings_per_v;
826 u16 q_id, q_base;
827
828 /* Tx rings mapping to vector */
829 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
830 q_vectors - v_id);
831 q_vector->num_ring_tx = tx_rings_per_v;
832 q_vector->tx.tx_ring = NULL;
833 q_vector->tx.itr_idx = ICE_TX_ITR;
834 q_base = vsi->num_txq - tx_rings_rem;
835
836 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
837 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
838
839 tx_ring->q_vector = q_vector;
840 tx_ring->next = q_vector->tx.tx_ring;
841 q_vector->tx.tx_ring = tx_ring;
842 }
843 tx_rings_rem -= tx_rings_per_v;
844
845 /* Rx rings mapping to vector */
846 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
847 q_vectors - v_id);
848 q_vector->num_ring_rx = rx_rings_per_v;
849 q_vector->rx.rx_ring = NULL;
850 q_vector->rx.itr_idx = ICE_RX_ITR;
851 q_base = vsi->num_rxq - rx_rings_rem;
852
853 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
854 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
855
856 rx_ring->q_vector = q_vector;
857 rx_ring->next = q_vector->rx.rx_ring;
858 q_vector->rx.rx_ring = rx_ring;
859 }
860 rx_rings_rem -= rx_rings_per_v;
861 }
862
863 if (ice_is_xdp_ena_vsi(vsi))
864 ice_map_xdp_rings(vsi);
865 }
866
867 /**
868 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
869 * @vsi: the VSI having memory freed
870 */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)871 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
872 {
873 int v_idx;
874
875 ice_for_each_q_vector(vsi, v_idx)
876 ice_free_q_vector(vsi, v_idx);
877
878 vsi->num_q_vectors = 0;
879 }
880
881 /**
882 * ice_vsi_cfg_txq - Configure single Tx queue
883 * @vsi: the VSI that queue belongs to
884 * @ring: Tx ring to be configured
885 * @qg_buf: queue group buffer
886 */
887 static int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)888 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
889 struct ice_aqc_add_tx_qgrp *qg_buf)
890 {
891 u8 buf_len = struct_size(qg_buf, txqs, 1);
892 struct ice_tlan_ctx tlan_ctx = { 0 };
893 struct ice_aqc_add_txqs_perq *txq;
894 struct ice_channel *ch = ring->ch;
895 struct ice_pf *pf = vsi->back;
896 struct ice_hw *hw = &pf->hw;
897 int status;
898 u16 pf_q;
899 u8 tc;
900
901 /* Configure XPS */
902 ice_cfg_xps_tx_ring(ring);
903
904 pf_q = ring->reg_idx;
905 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
906 /* copy context contents into the qg_buf */
907 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
908 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
909 ice_tlan_ctx_info);
910
911 /* init queue specific tail reg. It is referred as
912 * transmit comm scheduler queue doorbell.
913 */
914 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
915
916 if (IS_ENABLED(CONFIG_DCB))
917 tc = ring->dcb_tc;
918 else
919 tc = 0;
920
921 /* Add unique software queue handle of the Tx queue per
922 * TC into the VSI Tx ring
923 */
924 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
925
926 if (ch)
927 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
928 ring->q_handle, 1, qg_buf, buf_len,
929 NULL);
930 else
931 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
932 ring->q_handle, 1, qg_buf, buf_len,
933 NULL);
934 if (status) {
935 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
936 status);
937 return status;
938 }
939
940 /* Add Tx Queue TEID into the VSI Tx ring from the
941 * response. This will complete configuring and
942 * enabling the queue.
943 */
944 txq = &qg_buf->txqs[0];
945 if (pf_q == le16_to_cpu(txq->txq_id))
946 ring->txq_teid = le32_to_cpu(txq->q_teid);
947
948 return 0;
949 }
950
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)951 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
952 u16 q_idx)
953 {
954 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
955
956 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
957 return -EINVAL;
958
959 qg_buf->num_txqs = 1;
960
961 return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
962 }
963
964 /**
965 * ice_vsi_cfg_txqs - Configure the VSI for Tx
966 * @vsi: the VSI being configured
967 * @rings: Tx ring array to be configured
968 * @count: number of Tx ring array elements
969 *
970 * Return 0 on success and a negative value on error
971 * Configure the Tx VSI for operation.
972 */
973 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)974 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
975 {
976 DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
977 int err = 0;
978 u16 q_idx;
979
980 qg_buf->num_txqs = 1;
981
982 for (q_idx = 0; q_idx < count; q_idx++) {
983 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
984 if (err)
985 break;
986 }
987
988 return err;
989 }
990
991 /**
992 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
993 * @vsi: the VSI being configured
994 *
995 * Return 0 on success and a negative value on error
996 * Configure the Tx VSI for operation.
997 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)998 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
999 {
1000 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1001 }
1002
1003 /**
1004 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1005 * @vsi: the VSI being configured
1006 *
1007 * Return 0 on success and a negative value on error
1008 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1009 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1010 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1011 {
1012 int ret;
1013 int i;
1014
1015 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1016 if (ret)
1017 return ret;
1018
1019 ice_for_each_rxq(vsi, i)
1020 ice_tx_xsk_pool(vsi, i);
1021
1022 return 0;
1023 }
1024
1025 /**
1026 * ice_cfg_itr - configure the initial interrupt throttle values
1027 * @hw: pointer to the HW structure
1028 * @q_vector: interrupt vector that's being configured
1029 *
1030 * Configure interrupt throttling values for the ring containers that are
1031 * associated with the interrupt vector passed in.
1032 */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)1033 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1034 {
1035 ice_cfg_itr_gran(hw);
1036
1037 if (q_vector->num_ring_rx)
1038 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1039
1040 if (q_vector->num_ring_tx)
1041 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1042
1043 ice_write_intrl(q_vector, q_vector->intrl);
1044 }
1045
1046 /**
1047 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1048 * @vsi: the VSI being configured
1049 * @txq: Tx queue being mapped to MSI-X vector
1050 * @msix_idx: MSI-X vector index within the function
1051 * @itr_idx: ITR index of the interrupt cause
1052 *
1053 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1054 * within the function space.
1055 */
1056 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)1057 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1058 {
1059 struct ice_pf *pf = vsi->back;
1060 struct ice_hw *hw = &pf->hw;
1061 u32 val;
1062
1063 itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1064
1065 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1066 FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1067
1068 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1069 if (ice_is_xdp_ena_vsi(vsi)) {
1070 u32 xdp_txq = txq + vsi->num_xdp_txq;
1071
1072 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1073 val);
1074 }
1075 ice_flush(hw);
1076 }
1077
1078 /**
1079 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1080 * @vsi: the VSI being configured
1081 * @rxq: Rx queue being mapped to MSI-X vector
1082 * @msix_idx: MSI-X vector index within the function
1083 * @itr_idx: ITR index of the interrupt cause
1084 *
1085 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1086 * within the function space.
1087 */
1088 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)1089 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1090 {
1091 struct ice_pf *pf = vsi->back;
1092 struct ice_hw *hw = &pf->hw;
1093 u32 val;
1094
1095 itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1096
1097 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1098 FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1099
1100 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1101
1102 ice_flush(hw);
1103 }
1104
1105 /**
1106 * ice_trigger_sw_intr - trigger a software interrupt
1107 * @hw: pointer to the HW structure
1108 * @q_vector: interrupt vector to trigger the software interrupt for
1109 */
ice_trigger_sw_intr(struct ice_hw * hw,const struct ice_q_vector * q_vector)1110 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1111 {
1112 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1113 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1114 GLINT_DYN_CTL_SWINT_TRIG_M |
1115 GLINT_DYN_CTL_INTENA_M);
1116 }
1117
1118 /**
1119 * ice_vsi_stop_tx_ring - Disable single Tx ring
1120 * @vsi: the VSI being configured
1121 * @rst_src: reset source
1122 * @rel_vmvf_num: Relative ID of VF/VM
1123 * @ring: Tx ring to be stopped
1124 * @txq_meta: Meta data of Tx ring to be stopped
1125 */
1126 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1127 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1128 u16 rel_vmvf_num, struct ice_tx_ring *ring,
1129 struct ice_txq_meta *txq_meta)
1130 {
1131 struct ice_pf *pf = vsi->back;
1132 struct ice_q_vector *q_vector;
1133 struct ice_hw *hw = &pf->hw;
1134 int status;
1135 u32 val;
1136
1137 /* clear cause_ena bit for disabled queues */
1138 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1139 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1140 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1141
1142 /* software is expected to wait for 100 ns */
1143 ndelay(100);
1144
1145 /* trigger a software interrupt for the vector
1146 * associated to the queue to schedule NAPI handler
1147 */
1148 q_vector = ring->q_vector;
1149 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1150 ice_trigger_sw_intr(hw, q_vector);
1151
1152 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1153 txq_meta->tc, 1, &txq_meta->q_handle,
1154 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1155 rel_vmvf_num, NULL);
1156
1157 /* if the disable queue command was exercised during an
1158 * active reset flow, -EBUSY is returned.
1159 * This is not an error as the reset operation disables
1160 * queues at the hardware level anyway.
1161 */
1162 if (status == -EBUSY) {
1163 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1164 } else if (status == -ENOENT) {
1165 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1166 } else if (status) {
1167 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1168 status);
1169 return status;
1170 }
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1177 * @vsi: VSI that ring belongs to
1178 * @ring: ring that txq_meta will be based on
1179 * @txq_meta: a helper struct that wraps Tx queue's information
1180 *
1181 * Set up a helper struct that will contain all the necessary fields that
1182 * are needed for stopping Tx queue
1183 */
1184 void
ice_fill_txq_meta(const struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1185 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1186 struct ice_txq_meta *txq_meta)
1187 {
1188 struct ice_channel *ch = ring->ch;
1189 u8 tc;
1190
1191 if (IS_ENABLED(CONFIG_DCB))
1192 tc = ring->dcb_tc;
1193 else
1194 tc = 0;
1195
1196 txq_meta->q_id = ring->reg_idx;
1197 txq_meta->q_teid = ring->txq_teid;
1198 txq_meta->q_handle = ring->q_handle;
1199 if (ch) {
1200 txq_meta->vsi_idx = ch->ch_vsi->idx;
1201 txq_meta->tc = 0;
1202 } else {
1203 txq_meta->vsi_idx = vsi->idx;
1204 txq_meta->tc = tc;
1205 }
1206 }
1207