xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 	q_vector->vf_reg_idx = q_vector->irq.index;
149 
150 	/* This will not be called in the driver load path because the netdev
151 	 * will not be created yet. All other cases with register the NAPI
152 	 * handler here (i.e. resume, reset/rebuild, etc.)
153 	 */
154 	if (vsi->netdev)
155 		netif_napi_add_config(vsi->netdev, &q_vector->napi,
156 				      ice_napi_poll, v_idx);
157 
158 out:
159 	/* tie q_vector and VSI together */
160 	vsi->q_vectors[v_idx] = q_vector;
161 
162 	return 0;
163 
164 err_free_q_vector:
165 	kfree(q_vector);
166 
167 	return err;
168 }
169 
170 /**
171  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
172  * @vsi: VSI having the memory freed
173  * @v_idx: index of the vector to be freed
174  */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)175 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
176 {
177 	struct ice_q_vector *q_vector;
178 	struct ice_pf *pf = vsi->back;
179 	struct ice_tx_ring *tx_ring;
180 	struct ice_rx_ring *rx_ring;
181 	struct device *dev;
182 
183 	dev = ice_pf_to_dev(pf);
184 	if (!vsi->q_vectors[v_idx]) {
185 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
186 		return;
187 	}
188 	q_vector = vsi->q_vectors[v_idx];
189 
190 	ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
191 		tx_ring->q_vector = NULL;
192 
193 	ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
194 		rx_ring->q_vector = NULL;
195 
196 	/* only VSI with an associated netdev is set up with NAPI */
197 	if (vsi->netdev)
198 		netif_napi_del(&q_vector->napi);
199 
200 	/* release MSIX interrupt if q_vector had interrupt allocated */
201 	if (q_vector->irq.index < 0)
202 		goto free_q_vector;
203 
204 	/* only free last VF ctrl vsi interrupt */
205 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
206 	    ice_get_vf_ctrl_vsi(pf, vsi))
207 		goto free_q_vector;
208 
209 	ice_free_irq(pf, q_vector->irq);
210 
211 free_q_vector:
212 	kfree(q_vector);
213 	vsi->q_vectors[v_idx] = NULL;
214 }
215 
216 /**
217  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
218  * @hw: board specific structure
219  */
ice_cfg_itr_gran(struct ice_hw * hw)220 static void ice_cfg_itr_gran(struct ice_hw *hw)
221 {
222 	u32 regval = rd32(hw, GLINT_CTL);
223 
224 	/* no need to update global register if ITR gran is already set */
225 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
226 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
227 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
228 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
229 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
230 		return;
231 
232 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
233 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
234 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
235 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
236 	wr32(hw, GLINT_CTL, regval);
237 }
238 
239 /**
240  * ice_calc_txq_handle - calculate the queue handle
241  * @vsi: VSI that ring belongs to
242  * @ring: ring to get the absolute queue index
243  * @tc: traffic class number
244  */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)245 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
246 {
247 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
248 
249 	if (ring->ch)
250 		return ring->q_index - ring->ch->base_q;
251 
252 	/* Idea here for calculation is that we subtract the number of queue
253 	 * count from TC that ring belongs to from it's absolute queue index
254 	 * and as a result we get the queue's index within TC.
255 	 */
256 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
257 }
258 
259 /**
260  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
261  * @ring: The Tx ring to configure
262  *
263  * This enables/disables XPS for a given Tx descriptor ring
264  * based on the TCs enabled for the VSI that ring belongs to.
265  */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)266 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
267 {
268 	if (!ring->q_vector || !ring->netdev)
269 		return;
270 
271 	/* We only initialize XPS once, so as not to overwrite user settings */
272 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
273 		return;
274 
275 	netif_set_xps_queue(ring->netdev,
276 			    &ring->q_vector->napi.config->affinity_mask,
277 			    ring->q_index);
278 }
279 
280 /**
281  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
282  * @ring: The Tx ring to configure
283  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
284  * @pf_q: queue index in the PF space
285  *
286  * Configure the Tx descriptor ring in TLAN context.
287  */
288 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)289 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
290 {
291 	struct ice_vsi *vsi = ring->vsi;
292 	struct ice_hw *hw = &vsi->back->hw;
293 
294 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
295 
296 	tlan_ctx->port_num = vsi->port_info->lport;
297 
298 	/* Transmit Queue Length */
299 	tlan_ctx->qlen = ring->count;
300 
301 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
302 
303 	/* PF number */
304 	tlan_ctx->pf_num = hw->pf_id;
305 
306 	/* queue belongs to a specific VSI type
307 	 * VF / VM index should be programmed per vmvf_type setting:
308 	 * for vmvf_type = VF, it is VF number between 0-256
309 	 * for vmvf_type = VM, it is VM number between 0-767
310 	 * for PF or EMP this field should be set to zero
311 	 */
312 	switch (vsi->type) {
313 	case ICE_VSI_LB:
314 	case ICE_VSI_CTRL:
315 	case ICE_VSI_PF:
316 		if (ring->ch)
317 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
318 		else
319 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
320 		break;
321 	case ICE_VSI_VF:
322 		/* Firmware expects vmvf_num to be absolute VF ID */
323 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
324 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
325 		break;
326 	case ICE_VSI_SF:
327 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
328 		break;
329 	default:
330 		return;
331 	}
332 
333 	/* make sure the context is associated with the right VSI */
334 	if (ring->ch)
335 		tlan_ctx->src_vsi = ring->ch->vsi_num;
336 	else
337 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
338 
339 	/* Restrict Tx timestamps to the PF VSI */
340 	switch (vsi->type) {
341 	case ICE_VSI_PF:
342 		tlan_ctx->tsyn_ena = 1;
343 		break;
344 	default:
345 		break;
346 	}
347 
348 	tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
349 
350 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
351 	tlan_ctx->tso_qnum = pf_q;
352 
353 	/* Legacy or Advanced Host Interface:
354 	 * 0: Advanced Host Interface
355 	 * 1: Legacy Host Interface
356 	 */
357 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
358 }
359 
360 /**
361  * ice_rx_offset - Return expected offset into page to access data
362  * @rx_ring: Ring we are requesting offset of
363  *
364  * Returns the offset value for ring into the data buffer.
365  */
ice_rx_offset(struct ice_rx_ring * rx_ring)366 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
367 {
368 	if (ice_ring_uses_build_skb(rx_ring))
369 		return ICE_SKB_PAD;
370 	return 0;
371 }
372 
373 /**
374  * ice_setup_rx_ctx - Configure a receive ring context
375  * @ring: The Rx ring to configure
376  *
377  * Configure the Rx descriptor ring in RLAN context.
378  */
ice_setup_rx_ctx(struct ice_rx_ring * ring)379 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
380 {
381 	struct ice_vsi *vsi = ring->vsi;
382 	u32 rxdid = ICE_RXDID_FLEX_NIC;
383 	struct ice_rlan_ctx rlan_ctx;
384 	struct ice_hw *hw;
385 	u16 pf_q;
386 	int err;
387 
388 	hw = &vsi->back->hw;
389 
390 	/* what is Rx queue number in global space of 2K Rx queues */
391 	pf_q = vsi->rxq_map[ring->q_index];
392 
393 	/* clear the context structure first */
394 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
395 
396 	/* Receive Queue Base Address.
397 	 * Indicates the starting address of the descriptor queue defined in
398 	 * 128 Byte units.
399 	 */
400 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
401 
402 	rlan_ctx.qlen = ring->count;
403 
404 	/* Receive Packet Data Buffer Size.
405 	 * The Packet Data Buffer Size is defined in 128 byte units.
406 	 */
407 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
408 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
409 
410 	/* use 32 byte descriptors */
411 	rlan_ctx.dsize = 1;
412 
413 	/* Strip the Ethernet CRC bytes before the packet is posted to host
414 	 * memory.
415 	 */
416 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
417 
418 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
419 	 * and it needs to remain 1 for non-DVM capable configurations to not
420 	 * break backward compatibility for VF drivers. Setting this field to 0
421 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
422 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
423 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
424 	 * check for the tag
425 	 */
426 	if (ice_is_dvm_ena(hw))
427 		if (vsi->type == ICE_VSI_VF &&
428 		    ice_vf_is_port_vlan_ena(vsi->vf))
429 			rlan_ctx.l2tsel = 1;
430 		else
431 			rlan_ctx.l2tsel = 0;
432 	else
433 		rlan_ctx.l2tsel = 1;
434 
435 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
436 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
437 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
438 
439 	/* This controls whether VLAN is stripped from inner headers
440 	 * The VLAN in the inner L2 header is stripped to the receive
441 	 * descriptor if enabled by this flag.
442 	 */
443 	rlan_ctx.showiv = 0;
444 
445 	/* Max packet size for this queue - must not be set to a larger value
446 	 * than 5 x DBUF
447 	 */
448 	rlan_ctx.rxmax = min_t(u32, ring->max_frame,
449 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
450 
451 	/* Rx queue threshold in units of 64 */
452 	rlan_ctx.lrxqthresh = 1;
453 
454 	/* Enable descriptor prefetch */
455 	rlan_ctx.prefena = 1;
456 
457 	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
458 	 * metadata and flags to allow redirecting to PR netdev
459 	 */
460 	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
461 		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
462 		rxdid = ICE_RXDID_FLEX_NIC_2;
463 	}
464 
465 	/* Enable Flexible Descriptors in the queue context which
466 	 * allows this driver to select a specific receive descriptor format
467 	 * increasing context priority to pick up profile ID; default is 0x01;
468 	 * setting to 0x03 to ensure profile is programming if prev context is
469 	 * of same priority
470 	 */
471 	if (vsi->type != ICE_VSI_VF)
472 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
473 
474 	/* Absolute queue number out of 2K needs to be passed */
475 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
476 	if (err) {
477 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
478 			pf_q, err);
479 		return -EIO;
480 	}
481 
482 	if (vsi->type == ICE_VSI_VF)
483 		return 0;
484 
485 	/* configure Rx buffer alignment */
486 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
487 		ice_clear_ring_build_skb_ena(ring);
488 	else
489 		ice_set_ring_build_skb_ena(ring);
490 
491 	ring->rx_offset = ice_rx_offset(ring);
492 
493 	/* init queue specific tail register */
494 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
495 	writel(0, ring->tail);
496 
497 	return 0;
498 }
499 
ice_xsk_pool_fill_cb(struct ice_rx_ring * ring)500 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
501 {
502 	void *ctx_ptr = &ring->pkt_ctx;
503 	struct xsk_cb_desc desc = {};
504 
505 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
506 	desc.src = &ctx_ptr;
507 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
508 		   sizeof(struct xdp_buff);
509 	desc.bytes = sizeof(ctx_ptr);
510 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
511 }
512 
513 /**
514  * ice_get_frame_sz - calculate xdp_buff::frame_sz
515  * @rx_ring: the ring being configured
516  *
517  * Return frame size based on underlying PAGE_SIZE
518  */
ice_get_frame_sz(struct ice_rx_ring * rx_ring)519 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
520 {
521 	unsigned int frame_sz;
522 
523 #if (PAGE_SIZE >= 8192)
524 	frame_sz = rx_ring->rx_buf_len;
525 #else
526 	frame_sz = ice_rx_pg_size(rx_ring) / 2;
527 #endif
528 
529 	return frame_sz;
530 }
531 
532 /**
533  * ice_vsi_cfg_rxq - Configure an Rx queue
534  * @ring: the ring being configured
535  *
536  * Return 0 on success and a negative value on error.
537  */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)538 static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
539 {
540 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
541 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
542 	int err;
543 
544 	if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
545 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
546 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
547 						 ring->q_index,
548 						 ring->q_vector->napi.napi_id,
549 						 ring->rx_buf_len);
550 			if (err)
551 				return err;
552 		}
553 
554 		ice_rx_xsk_pool(ring);
555 		if (ring->xsk_pool) {
556 			xdp_rxq_info_unreg(&ring->xdp_rxq);
557 
558 			ring->rx_buf_len =
559 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
560 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
561 						 ring->q_index,
562 						 ring->q_vector->napi.napi_id,
563 						 ring->rx_buf_len);
564 			if (err)
565 				return err;
566 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
567 							 MEM_TYPE_XSK_BUFF_POOL,
568 							 NULL);
569 			if (err)
570 				return err;
571 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
572 			ice_xsk_pool_fill_cb(ring);
573 
574 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
575 				 ring->q_index);
576 		} else {
577 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
578 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
579 							 ring->q_index,
580 							 ring->q_vector->napi.napi_id,
581 							 ring->rx_buf_len);
582 				if (err)
583 					return err;
584 			}
585 
586 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
587 							 MEM_TYPE_PAGE_SHARED,
588 							 NULL);
589 			if (err)
590 				return err;
591 		}
592 	}
593 
594 	xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
595 	ring->xdp.data = NULL;
596 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
597 	err = ice_setup_rx_ctx(ring);
598 	if (err) {
599 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
600 			ring->q_index, err);
601 		return err;
602 	}
603 
604 	if (ring->xsk_pool) {
605 		bool ok;
606 
607 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
608 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
609 				 num_bufs, ring->q_index);
610 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
611 
612 			return 0;
613 		}
614 
615 		ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
616 		if (!ok) {
617 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
618 
619 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
620 				 ring->q_index, pf_q);
621 		}
622 
623 		return 0;
624 	}
625 
626 	ice_alloc_rx_bufs(ring, num_bufs);
627 
628 	return 0;
629 }
630 
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)631 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
632 {
633 	if (q_idx >= vsi->num_rxq)
634 		return -EINVAL;
635 
636 	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
637 }
638 
639 /**
640  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
641  * @vsi: VSI
642  * @ring: Rx ring to configure
643  *
644  * Determine the maximum frame size and Rx buffer length to use for a PF VSI.
645  * Set these in the associated Rx ring structure.
646  */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi,struct ice_rx_ring * ring)647 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
648 {
649 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
650 		ring->max_frame = ICE_MAX_FRAME_LEGACY_RX;
651 		ring->rx_buf_len = ICE_RXBUF_1664;
652 #if (PAGE_SIZE < 8192)
653 	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
654 		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
655 		ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
656 		ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
657 #endif
658 	} else {
659 		ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
660 		ring->rx_buf_len = ICE_RXBUF_3072;
661 	}
662 }
663 
664 /**
665  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
666  * @vsi: the VSI being configured
667  *
668  * Return 0 on success and a negative value on error
669  * Configure the Rx VSI for operation.
670  */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)671 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
672 {
673 	u16 i;
674 
675 	/* set up individual rings */
676 	ice_for_each_rxq(vsi, i) {
677 		struct ice_rx_ring *ring = vsi->rx_rings[i];
678 		int err;
679 
680 		if (vsi->type != ICE_VSI_VF)
681 			ice_vsi_cfg_frame_size(vsi, ring);
682 
683 		err = ice_vsi_cfg_rxq(ring);
684 		if (err)
685 			return err;
686 	}
687 
688 	return 0;
689 }
690 
691 /**
692  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
693  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
694  *
695  * This function first tries to find contiguous space. If it is not successful,
696  * it tries with the scatter approach.
697  *
698  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
699  */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)700 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
701 {
702 	int ret = 0;
703 
704 	ret = __ice_vsi_get_qs_contig(qs_cfg);
705 	if (ret) {
706 		/* contig failed, so try with scatter approach */
707 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
708 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
709 					qs_cfg->scatter_count);
710 		ret = __ice_vsi_get_qs_sc(qs_cfg);
711 	}
712 	return ret;
713 }
714 
715 /**
716  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
717  * @vsi: the VSI being configured
718  * @ena: start or stop the Rx ring
719  * @rxq_idx: 0-based Rx queue index for the VSI passed in
720  * @wait: wait or don't wait for configuration to finish in hardware
721  *
722  * Return 0 on success and negative on error.
723  */
724 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)725 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
726 {
727 	int pf_q = vsi->rxq_map[rxq_idx];
728 	struct ice_pf *pf = vsi->back;
729 	struct ice_hw *hw = &pf->hw;
730 	u32 rx_reg;
731 
732 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
733 
734 	/* Skip if the queue is already in the requested state */
735 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
736 		return 0;
737 
738 	/* turn on/off the queue */
739 	if (ena)
740 		rx_reg |= QRX_CTRL_QENA_REQ_M;
741 	else
742 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
743 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
744 
745 	if (!wait)
746 		return 0;
747 
748 	ice_flush(hw);
749 	return ice_pf_rxq_wait(pf, pf_q, ena);
750 }
751 
752 /**
753  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
754  * @vsi: the VSI being configured
755  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
756  * @rxq_idx: 0-based Rx queue index for the VSI passed in
757  *
758  * This routine will wait for the given Rx queue of the VSI to reach the
759  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
760  * the requested state after multiple retries; else will return 0 in case of
761  * success.
762  */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)763 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
764 {
765 	int pf_q = vsi->rxq_map[rxq_idx];
766 	struct ice_pf *pf = vsi->back;
767 
768 	return ice_pf_rxq_wait(pf, pf_q, ena);
769 }
770 
771 /**
772  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
773  * @vsi: the VSI being configured
774  *
775  * We allocate one q_vector per queue interrupt. If allocation fails we
776  * return -ENOMEM.
777  */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)778 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
779 {
780 	struct device *dev = ice_pf_to_dev(vsi->back);
781 	u16 v_idx;
782 	int err;
783 
784 	if (vsi->q_vectors[0]) {
785 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
786 		return -EEXIST;
787 	}
788 
789 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
790 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
791 		if (err)
792 			goto err_out;
793 	}
794 
795 	return 0;
796 
797 err_out:
798 
799 	dev_info(dev, "Failed to allocate %d q_vectors for VSI %d, new value %d",
800 		 vsi->num_q_vectors, vsi->vsi_num, v_idx);
801 	vsi->num_q_vectors = v_idx;
802 	return v_idx ? 0 : err;
803 }
804 
805 /**
806  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
807  * @vsi: the VSI being configured
808  *
809  * This function maps descriptor rings to the queue-specific vectors allotted
810  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
811  * and Rx rings to the vector as "efficiently" as possible.
812  */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)813 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
814 {
815 	int q_vectors = vsi->num_q_vectors;
816 	u16 tx_rings_rem, rx_rings_rem;
817 	int v_id;
818 
819 	/* initially assigning remaining rings count to VSIs num queue value */
820 	tx_rings_rem = vsi->num_txq;
821 	rx_rings_rem = vsi->num_rxq;
822 
823 	for (v_id = 0; v_id < q_vectors; v_id++) {
824 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
825 		u8 tx_rings_per_v, rx_rings_per_v;
826 		u16 q_id, q_base;
827 
828 		/* Tx rings mapping to vector */
829 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
830 						  q_vectors - v_id);
831 		q_vector->num_ring_tx = tx_rings_per_v;
832 		q_vector->tx.tx_ring = NULL;
833 		q_vector->tx.itr_idx = ICE_TX_ITR;
834 		q_base = vsi->num_txq - tx_rings_rem;
835 
836 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
837 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
838 
839 			tx_ring->q_vector = q_vector;
840 			tx_ring->next = q_vector->tx.tx_ring;
841 			q_vector->tx.tx_ring = tx_ring;
842 		}
843 		tx_rings_rem -= tx_rings_per_v;
844 
845 		/* Rx rings mapping to vector */
846 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
847 						  q_vectors - v_id);
848 		q_vector->num_ring_rx = rx_rings_per_v;
849 		q_vector->rx.rx_ring = NULL;
850 		q_vector->rx.itr_idx = ICE_RX_ITR;
851 		q_base = vsi->num_rxq - rx_rings_rem;
852 
853 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
854 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
855 
856 			rx_ring->q_vector = q_vector;
857 			rx_ring->next = q_vector->rx.rx_ring;
858 			q_vector->rx.rx_ring = rx_ring;
859 		}
860 		rx_rings_rem -= rx_rings_per_v;
861 	}
862 
863 	if (ice_is_xdp_ena_vsi(vsi))
864 		ice_map_xdp_rings(vsi);
865 }
866 
867 /**
868  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
869  * @vsi: the VSI having memory freed
870  */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)871 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
872 {
873 	int v_idx;
874 
875 	ice_for_each_q_vector(vsi, v_idx)
876 		ice_free_q_vector(vsi, v_idx);
877 
878 	vsi->num_q_vectors = 0;
879 }
880 
881 /**
882  * ice_vsi_cfg_txq - Configure single Tx queue
883  * @vsi: the VSI that queue belongs to
884  * @ring: Tx ring to be configured
885  * @qg_buf: queue group buffer
886  */
887 static int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)888 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
889 		struct ice_aqc_add_tx_qgrp *qg_buf)
890 {
891 	u8 buf_len = struct_size(qg_buf, txqs, 1);
892 	struct ice_tlan_ctx tlan_ctx = { 0 };
893 	struct ice_aqc_add_txqs_perq *txq;
894 	struct ice_channel *ch = ring->ch;
895 	struct ice_pf *pf = vsi->back;
896 	struct ice_hw *hw = &pf->hw;
897 	int status;
898 	u16 pf_q;
899 	u8 tc;
900 
901 	/* Configure XPS */
902 	ice_cfg_xps_tx_ring(ring);
903 
904 	pf_q = ring->reg_idx;
905 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
906 	/* copy context contents into the qg_buf */
907 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
908 	ice_pack_txq_ctx(&tlan_ctx, &qg_buf->txqs[0].txq_ctx);
909 
910 	/* init queue specific tail reg. It is referred as
911 	 * transmit comm scheduler queue doorbell.
912 	 */
913 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
914 
915 	if (IS_ENABLED(CONFIG_DCB))
916 		tc = ring->dcb_tc;
917 	else
918 		tc = 0;
919 
920 	/* Add unique software queue handle of the Tx queue per
921 	 * TC into the VSI Tx ring
922 	 */
923 	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
924 
925 	if (ch)
926 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
927 					 ring->q_handle, 1, qg_buf, buf_len,
928 					 NULL);
929 	else
930 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
931 					 ring->q_handle, 1, qg_buf, buf_len,
932 					 NULL);
933 	if (status) {
934 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
935 			status);
936 		return status;
937 	}
938 
939 	/* Add Tx Queue TEID into the VSI Tx ring from the
940 	 * response. This will complete configuring and
941 	 * enabling the queue.
942 	 */
943 	txq = &qg_buf->txqs[0];
944 	if (pf_q == le16_to_cpu(txq->txq_id))
945 		ring->txq_teid = le32_to_cpu(txq->q_teid);
946 
947 	return 0;
948 }
949 
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)950 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
951 			   u16 q_idx)
952 {
953 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
954 
955 	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
956 		return -EINVAL;
957 
958 	qg_buf->num_txqs = 1;
959 
960 	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
961 }
962 
963 /**
964  * ice_vsi_cfg_txqs - Configure the VSI for Tx
965  * @vsi: the VSI being configured
966  * @rings: Tx ring array to be configured
967  * @count: number of Tx ring array elements
968  *
969  * Return 0 on success and a negative value on error
970  * Configure the Tx VSI for operation.
971  */
972 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)973 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
974 {
975 	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
976 	int err = 0;
977 	u16 q_idx;
978 
979 	qg_buf->num_txqs = 1;
980 
981 	for (q_idx = 0; q_idx < count; q_idx++) {
982 		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
983 		if (err)
984 			break;
985 	}
986 
987 	return err;
988 }
989 
990 /**
991  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
992  * @vsi: the VSI being configured
993  *
994  * Return 0 on success and a negative value on error
995  * Configure the Tx VSI for operation.
996  */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)997 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
998 {
999 	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1000 }
1001 
1002 /**
1003  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1004  * @vsi: the VSI being configured
1005  *
1006  * Return 0 on success and a negative value on error
1007  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1008  */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1009 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1010 {
1011 	int ret;
1012 	int i;
1013 
1014 	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1015 	if (ret)
1016 		return ret;
1017 
1018 	ice_for_each_rxq(vsi, i)
1019 		ice_tx_xsk_pool(vsi, i);
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * ice_cfg_itr - configure the initial interrupt throttle values
1026  * @hw: pointer to the HW structure
1027  * @q_vector: interrupt vector that's being configured
1028  *
1029  * Configure interrupt throttling values for the ring containers that are
1030  * associated with the interrupt vector passed in.
1031  */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)1032 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1033 {
1034 	ice_cfg_itr_gran(hw);
1035 
1036 	if (q_vector->num_ring_rx)
1037 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1038 
1039 	if (q_vector->num_ring_tx)
1040 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1041 
1042 	ice_write_intrl(q_vector, q_vector->intrl);
1043 }
1044 
1045 /**
1046  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1047  * @vsi: the VSI being configured
1048  * @txq: Tx queue being mapped to MSI-X vector
1049  * @msix_idx: MSI-X vector index within the function
1050  * @itr_idx: ITR index of the interrupt cause
1051  *
1052  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1053  * within the function space.
1054  */
1055 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)1056 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1057 {
1058 	struct ice_pf *pf = vsi->back;
1059 	struct ice_hw *hw = &pf->hw;
1060 	u32 val;
1061 
1062 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1063 
1064 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1065 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1066 
1067 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1068 	if (ice_is_xdp_ena_vsi(vsi)) {
1069 		u32 xdp_txq = txq + vsi->num_xdp_txq;
1070 
1071 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1072 		     val);
1073 	}
1074 	ice_flush(hw);
1075 }
1076 
1077 /**
1078  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1079  * @vsi: the VSI being configured
1080  * @rxq: Rx queue being mapped to MSI-X vector
1081  * @msix_idx: MSI-X vector index within the function
1082  * @itr_idx: ITR index of the interrupt cause
1083  *
1084  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1085  * within the function space.
1086  */
1087 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)1088 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1089 {
1090 	struct ice_pf *pf = vsi->back;
1091 	struct ice_hw *hw = &pf->hw;
1092 	u32 val;
1093 
1094 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1095 
1096 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1097 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1098 
1099 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1100 
1101 	ice_flush(hw);
1102 }
1103 
1104 /**
1105  * ice_trigger_sw_intr - trigger a software interrupt
1106  * @hw: pointer to the HW structure
1107  * @q_vector: interrupt vector to trigger the software interrupt for
1108  */
ice_trigger_sw_intr(struct ice_hw * hw,const struct ice_q_vector * q_vector)1109 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1110 {
1111 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1112 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1113 	     GLINT_DYN_CTL_SWINT_TRIG_M |
1114 	     GLINT_DYN_CTL_INTENA_M);
1115 }
1116 
1117 /**
1118  * ice_vsi_stop_tx_ring - Disable single Tx ring
1119  * @vsi: the VSI being configured
1120  * @rst_src: reset source
1121  * @rel_vmvf_num: Relative ID of VF/VM
1122  * @ring: Tx ring to be stopped
1123  * @txq_meta: Meta data of Tx ring to be stopped
1124  */
1125 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1126 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1127 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1128 		     struct ice_txq_meta *txq_meta)
1129 {
1130 	struct ice_pf *pf = vsi->back;
1131 	struct ice_q_vector *q_vector;
1132 	struct ice_hw *hw = &pf->hw;
1133 	int status;
1134 	u32 val;
1135 
1136 	/* clear cause_ena bit for disabled queues */
1137 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1138 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1139 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1140 
1141 	/* software is expected to wait for 100 ns */
1142 	ndelay(100);
1143 
1144 	/* trigger a software interrupt for the vector
1145 	 * associated to the queue to schedule NAPI handler
1146 	 */
1147 	q_vector = ring->q_vector;
1148 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1149 		ice_trigger_sw_intr(hw, q_vector);
1150 
1151 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1152 				 txq_meta->tc, 1, &txq_meta->q_handle,
1153 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1154 				 rel_vmvf_num, NULL);
1155 
1156 	/* if the disable queue command was exercised during an
1157 	 * active reset flow, -EBUSY is returned.
1158 	 * This is not an error as the reset operation disables
1159 	 * queues at the hardware level anyway.
1160 	 */
1161 	if (status == -EBUSY) {
1162 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1163 	} else if (status == -ENOENT) {
1164 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1165 	} else if (status) {
1166 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1167 			status);
1168 		return status;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1176  * @vsi: VSI that ring belongs to
1177  * @ring: ring that txq_meta will be based on
1178  * @txq_meta: a helper struct that wraps Tx queue's information
1179  *
1180  * Set up a helper struct that will contain all the necessary fields that
1181  * are needed for stopping Tx queue
1182  */
1183 void
ice_fill_txq_meta(const struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1184 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1185 		  struct ice_txq_meta *txq_meta)
1186 {
1187 	struct ice_channel *ch = ring->ch;
1188 	u8 tc;
1189 
1190 	if (IS_ENABLED(CONFIG_DCB))
1191 		tc = ring->dcb_tc;
1192 	else
1193 		tc = 0;
1194 
1195 	txq_meta->q_id = ring->reg_idx;
1196 	txq_meta->q_teid = ring->txq_teid;
1197 	txq_meta->q_handle = ring->q_handle;
1198 	if (ch) {
1199 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1200 		txq_meta->tc = 0;
1201 	} else {
1202 		txq_meta->vsi_idx = vsi->idx;
1203 		txq_meta->tc = tc;
1204 	}
1205 }
1206