1 /* SPDX-License-Identifier: BSD-3-Clause */ 2 /* Copyright (c) 2024, Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * 3. Neither the name of the Intel Corporation nor the names of its 16 * contributors may be used to endorse or promote products derived from 17 * this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /** 33 * @file if_ice_iflib.c 34 * @brief iflib driver implementation 35 * 36 * Contains the main entry point for the iflib driver implementation. It 37 * implements the various ifdi driver methods, and sets up the module and 38 * driver values to load an iflib driver. 39 */ 40 41 #include "ice_iflib.h" 42 #include "ice_drv_info.h" 43 #include "ice_switch.h" 44 #include "ice_sched.h" 45 #ifdef PCI_IOV 46 #include "ice_iov.h" 47 #endif 48 49 #include <sys/module.h> 50 #include <sys/sockio.h> 51 #include <sys/smp.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pcireg.h> 54 55 /* 56 * Device method prototypes 57 */ 58 59 static void *ice_register(device_t); 60 static int ice_if_attach_pre(if_ctx_t); 61 static int ice_attach_pre_recovery_mode(struct ice_softc *sc); 62 static int ice_if_attach_post(if_ctx_t); 63 static void ice_attach_post_recovery_mode(struct ice_softc *sc); 64 static int ice_if_detach(if_ctx_t); 65 static int ice_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); 66 static int ice_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nqs, int nqsets); 67 static int ice_if_msix_intr_assign(if_ctx_t ctx, int msix); 68 static void ice_if_queues_free(if_ctx_t ctx); 69 static int ice_if_mtu_set(if_ctx_t ctx, uint32_t mtu); 70 static void ice_if_intr_enable(if_ctx_t ctx); 71 static void ice_if_intr_disable(if_ctx_t ctx); 72 static int ice_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 73 static int ice_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 74 static int ice_if_promisc_set(if_ctx_t ctx, int flags); 75 static void ice_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr); 76 static int ice_if_media_change(if_ctx_t ctx); 77 static void ice_if_init(if_ctx_t ctx); 78 static void ice_if_timer(if_ctx_t ctx, uint16_t qid); 79 static void ice_if_update_admin_status(if_ctx_t ctx); 80 static void ice_if_multi_set(if_ctx_t ctx); 81 static void ice_if_vlan_register(if_ctx_t ctx, u16 vtag); 82 static void ice_if_vlan_unregister(if_ctx_t ctx, u16 vtag); 83 static void ice_if_stop(if_ctx_t ctx); 84 static uint64_t ice_if_get_counter(if_ctx_t ctx, ift_counter counter); 85 static int ice_if_priv_ioctl(if_ctx_t ctx, u_long command, caddr_t data); 86 static int ice_if_i2c_req(if_ctx_t ctx, struct ifi2creq *req); 87 static int ice_if_suspend(if_ctx_t ctx); 88 static int ice_if_resume(if_ctx_t ctx); 89 static bool ice_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event); 90 static void ice_init_link(struct ice_softc *sc); 91 #ifdef PCI_IOV 92 static int ice_if_iov_init(if_ctx_t ctx, uint16_t num_vfs, const nvlist_t *params); 93 static void ice_if_iov_uninit(if_ctx_t ctx); 94 static int ice_if_iov_vf_add(if_ctx_t ctx, uint16_t vfnum, const nvlist_t *params); 95 static void ice_if_vflr_handle(if_ctx_t ctx); 96 #endif 97 static int ice_setup_mirror_vsi(struct ice_mirr_if *mif); 98 static int ice_wire_mirror_intrs(struct ice_mirr_if *mif); 99 static void ice_free_irqvs_subif(struct ice_mirr_if *mif); 100 static void *ice_subif_register(device_t); 101 static void ice_subif_setup_scctx(struct ice_mirr_if *mif); 102 static int ice_subif_rebuild(struct ice_softc *sc); 103 static int ice_subif_rebuild_vsi_qmap(struct ice_softc *sc); 104 105 /* Iflib API */ 106 static int ice_subif_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, 107 uint64_t *paddrs, int ntxqs, int ntxqsets); 108 static int ice_subif_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, 109 uint64_t *paddrs, int nrxqs, int nrxqsets); 110 static int ice_subif_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); 111 static int ice_subif_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); 112 static void ice_subif_if_intr_enable(if_ctx_t ctx); 113 static int ice_subif_if_msix_intr_assign(if_ctx_t ctx, int msix); 114 static void ice_subif_if_init(if_ctx_t ctx); 115 static void ice_subif_if_stop(if_ctx_t ctx); 116 static void ice_subif_if_queues_free(if_ctx_t ctx); 117 static int ice_subif_if_attach_pre(if_ctx_t); 118 static int ice_subif_if_attach_post(if_ctx_t); 119 static void ice_subif_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr); 120 static int ice_subif_if_promisc_set(if_ctx_t ctx, int flags); 121 122 static int ice_msix_que(void *arg); 123 static int ice_msix_admin(void *arg); 124 125 /* 126 * Helper function prototypes 127 */ 128 static int ice_pci_mapping(struct ice_softc *sc); 129 static void ice_free_pci_mapping(struct ice_softc *sc); 130 static void ice_update_link_status(struct ice_softc *sc, bool update_media); 131 static void ice_init_device_features(struct ice_softc *sc); 132 static void ice_init_tx_tracking(struct ice_vsi *vsi); 133 static void ice_handle_reset_event(struct ice_softc *sc); 134 static void ice_handle_pf_reset_request(struct ice_softc *sc); 135 static void ice_prepare_for_reset(struct ice_softc *sc); 136 static int ice_rebuild_pf_vsi_qmap(struct ice_softc *sc); 137 static void ice_rebuild(struct ice_softc *sc); 138 static void ice_rebuild_recovery_mode(struct ice_softc *sc); 139 static void ice_free_irqvs(struct ice_softc *sc); 140 static void ice_update_rx_mbuf_sz(struct ice_softc *sc); 141 static void ice_poll_for_media_avail(struct ice_softc *sc); 142 static void ice_setup_scctx(struct ice_softc *sc); 143 static int ice_allocate_msix(struct ice_softc *sc); 144 static void ice_admin_timer(void *arg); 145 static void ice_transition_recovery_mode(struct ice_softc *sc); 146 static void ice_transition_safe_mode(struct ice_softc *sc); 147 static void ice_set_default_promisc_mask(ice_bitmap_t *promisc_mask); 148 149 /* 150 * Device Interface Declaration 151 */ 152 153 /** 154 * @var ice_methods 155 * @brief ice driver method entry points 156 * 157 * List of device methods implementing the generic device interface used by 158 * the device stack to interact with the ice driver. Since this is an iflib 159 * driver, most of the methods point to the generic iflib implementation. 160 */ 161 static device_method_t ice_methods[] = { 162 /* Device interface */ 163 DEVMETHOD(device_register, ice_register), 164 DEVMETHOD(device_probe, iflib_device_probe_vendor), 165 DEVMETHOD(device_attach, iflib_device_attach), 166 DEVMETHOD(device_detach, iflib_device_detach), 167 DEVMETHOD(device_shutdown, iflib_device_shutdown), 168 DEVMETHOD(device_suspend, iflib_device_suspend), 169 DEVMETHOD(device_resume, iflib_device_resume), 170 #ifdef PCI_IOV 171 DEVMETHOD(pci_iov_init, iflib_device_iov_init), 172 DEVMETHOD(pci_iov_uninit, iflib_device_iov_uninit), 173 DEVMETHOD(pci_iov_add_vf, iflib_device_iov_add_vf), 174 #endif 175 DEVMETHOD_END 176 }; 177 178 /** 179 * @var ice_iflib_methods 180 * @brief iflib method entry points 181 * 182 * List of device methods used by the iflib stack to interact with this 183 * driver. These are the real main entry points used to interact with this 184 * driver. 185 */ 186 static device_method_t ice_iflib_methods[] = { 187 DEVMETHOD(ifdi_attach_pre, ice_if_attach_pre), 188 DEVMETHOD(ifdi_attach_post, ice_if_attach_post), 189 DEVMETHOD(ifdi_detach, ice_if_detach), 190 DEVMETHOD(ifdi_tx_queues_alloc, ice_if_tx_queues_alloc), 191 DEVMETHOD(ifdi_rx_queues_alloc, ice_if_rx_queues_alloc), 192 DEVMETHOD(ifdi_msix_intr_assign, ice_if_msix_intr_assign), 193 DEVMETHOD(ifdi_queues_free, ice_if_queues_free), 194 DEVMETHOD(ifdi_mtu_set, ice_if_mtu_set), 195 DEVMETHOD(ifdi_intr_enable, ice_if_intr_enable), 196 DEVMETHOD(ifdi_intr_disable, ice_if_intr_disable), 197 DEVMETHOD(ifdi_rx_queue_intr_enable, ice_if_rx_queue_intr_enable), 198 DEVMETHOD(ifdi_tx_queue_intr_enable, ice_if_tx_queue_intr_enable), 199 DEVMETHOD(ifdi_promisc_set, ice_if_promisc_set), 200 DEVMETHOD(ifdi_media_status, ice_if_media_status), 201 DEVMETHOD(ifdi_media_change, ice_if_media_change), 202 DEVMETHOD(ifdi_init, ice_if_init), 203 DEVMETHOD(ifdi_stop, ice_if_stop), 204 DEVMETHOD(ifdi_timer, ice_if_timer), 205 DEVMETHOD(ifdi_update_admin_status, ice_if_update_admin_status), 206 DEVMETHOD(ifdi_multi_set, ice_if_multi_set), 207 DEVMETHOD(ifdi_vlan_register, ice_if_vlan_register), 208 DEVMETHOD(ifdi_vlan_unregister, ice_if_vlan_unregister), 209 DEVMETHOD(ifdi_get_counter, ice_if_get_counter), 210 DEVMETHOD(ifdi_priv_ioctl, ice_if_priv_ioctl), 211 DEVMETHOD(ifdi_i2c_req, ice_if_i2c_req), 212 DEVMETHOD(ifdi_suspend, ice_if_suspend), 213 DEVMETHOD(ifdi_resume, ice_if_resume), 214 DEVMETHOD(ifdi_needs_restart, ice_if_needs_restart), 215 #ifdef PCI_IOV 216 DEVMETHOD(ifdi_iov_vf_add, ice_if_iov_vf_add), 217 DEVMETHOD(ifdi_iov_init, ice_if_iov_init), 218 DEVMETHOD(ifdi_iov_uninit, ice_if_iov_uninit), 219 DEVMETHOD(ifdi_vflr_handle, ice_if_vflr_handle), 220 #endif 221 DEVMETHOD_END 222 }; 223 224 /** 225 * @var ice_driver 226 * @brief driver structure for the generic device stack 227 * 228 * driver_t definition used to setup the generic device methods. 229 */ 230 static driver_t ice_driver = { 231 .name = "ice", 232 .methods = ice_methods, 233 .size = sizeof(struct ice_softc), 234 }; 235 236 /** 237 * @var ice_iflib_driver 238 * @brief driver structure for the iflib stack 239 * 240 * driver_t definition used to setup the iflib device methods. 241 */ 242 static driver_t ice_iflib_driver = { 243 .name = "ice", 244 .methods = ice_iflib_methods, 245 .size = sizeof(struct ice_softc), 246 }; 247 248 extern struct if_txrx ice_txrx; 249 extern struct if_txrx ice_recovery_txrx; 250 251 /** 252 * @var ice_sctx 253 * @brief ice driver shared context 254 * 255 * Structure defining shared values (context) that is used by all instances of 256 * the device. Primarily used to setup details about how the iflib stack 257 * should treat this driver. Also defines the default, minimum, and maximum 258 * number of descriptors in each ring. 259 */ 260 static struct if_shared_ctx ice_sctx = { 261 .isc_magic = IFLIB_MAGIC, 262 .isc_q_align = PAGE_SIZE, 263 264 .isc_tx_maxsize = ICE_MAX_FRAME_SIZE, 265 /* We could technically set this as high as ICE_MAX_DMA_SEG_SIZE, but 266 * that doesn't make sense since that would be larger than the maximum 267 * size of a single packet. 268 */ 269 .isc_tx_maxsegsize = ICE_MAX_FRAME_SIZE, 270 271 /* XXX: This is only used by iflib to ensure that 272 * scctx->isc_tx_tso_size_max + the VLAN header is a valid size. 273 */ 274 .isc_tso_maxsize = ICE_TSO_SIZE + sizeof(struct ether_vlan_header), 275 /* XXX: This is used by iflib to set the number of segments in the TSO 276 * DMA tag. However, scctx->isc_tx_tso_segsize_max is used to set the 277 * related ifnet parameter. 278 */ 279 .isc_tso_maxsegsize = ICE_MAX_DMA_SEG_SIZE, 280 281 .isc_rx_maxsize = ICE_MAX_FRAME_SIZE, 282 .isc_rx_nsegments = ICE_MAX_RX_SEGS, 283 .isc_rx_maxsegsize = ICE_MAX_FRAME_SIZE, 284 285 .isc_nfl = 1, 286 .isc_ntxqs = 1, 287 .isc_nrxqs = 1, 288 289 .isc_admin_intrcnt = 1, 290 .isc_vendor_info = ice_vendor_info_array, 291 .isc_driver_version = __DECONST(char *, ice_driver_version), 292 .isc_driver = &ice_iflib_driver, 293 294 /* 295 * IFLIB_NEED_SCRATCH ensures that mbufs have scratch space available 296 * for hardware checksum offload 297 * 298 * IFLIB_TSO_INIT_IP ensures that the TSO packets have zeroed out the 299 * IP sum field, required by our hardware to calculate valid TSO 300 * checksums. 301 * 302 * IFLIB_ADMIN_ALWAYS_RUN ensures that the administrative task runs 303 * even when the interface is down. 304 * 305 * IFLIB_SKIP_MSIX allows the driver to handle allocating MSI-X 306 * vectors manually instead of relying on iflib code to do this. 307 */ 308 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | 309 IFLIB_ADMIN_ALWAYS_RUN | IFLIB_SKIP_MSIX, 310 311 .isc_nrxd_min = {ICE_MIN_DESC_COUNT}, 312 .isc_ntxd_min = {ICE_MIN_DESC_COUNT}, 313 .isc_nrxd_max = {ICE_IFLIB_MAX_DESC_COUNT}, 314 .isc_ntxd_max = {ICE_IFLIB_MAX_DESC_COUNT}, 315 .isc_nrxd_default = {ICE_DEFAULT_DESC_COUNT}, 316 .isc_ntxd_default = {ICE_DEFAULT_DESC_COUNT}, 317 }; 318 319 DRIVER_MODULE(ice, pci, ice_driver, ice_module_event_handler, NULL); 320 321 MODULE_VERSION(ice, 1); 322 MODULE_DEPEND(ice, pci, 1, 1, 1); 323 MODULE_DEPEND(ice, ether, 1, 1, 1); 324 MODULE_DEPEND(ice, iflib, 1, 1, 1); 325 326 IFLIB_PNP_INFO(pci, ice, ice_vendor_info_array); 327 328 /* Static driver-wide sysctls */ 329 #include "ice_iflib_sysctls.h" 330 331 /** 332 * ice_pci_mapping - Map PCI BAR memory 333 * @sc: device private softc 334 * 335 * Map PCI BAR 0 for device operation. 336 */ 337 static int 338 ice_pci_mapping(struct ice_softc *sc) 339 { 340 int rc; 341 342 /* Map BAR0 */ 343 rc = ice_map_bar(sc->dev, &sc->bar0, 0); 344 if (rc) 345 return rc; 346 347 return 0; 348 } 349 350 /** 351 * ice_free_pci_mapping - Release PCI BAR memory 352 * @sc: device private softc 353 * 354 * Release PCI BARs which were previously mapped by ice_pci_mapping(). 355 */ 356 static void 357 ice_free_pci_mapping(struct ice_softc *sc) 358 { 359 /* Free BAR0 */ 360 ice_free_bar(sc->dev, &sc->bar0); 361 } 362 363 /* 364 * Device methods 365 */ 366 367 /** 368 * ice_register - register device method callback 369 * @dev: the device being registered 370 * 371 * Returns a pointer to the shared context structure, which is used by iflib. 372 */ 373 static void * 374 ice_register(device_t dev __unused) 375 { 376 return &ice_sctx; 377 } /* ice_register */ 378 379 /** 380 * ice_setup_scctx - Setup the iflib softc context structure 381 * @sc: the device private structure 382 * 383 * Setup the parameters in if_softc_ctx_t structure used by the iflib stack 384 * when loading. 385 */ 386 static void 387 ice_setup_scctx(struct ice_softc *sc) 388 { 389 if_softc_ctx_t scctx = sc->scctx; 390 struct ice_hw *hw = &sc->hw; 391 device_t dev = sc->dev; 392 bool safe_mode, recovery_mode; 393 394 safe_mode = ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE); 395 recovery_mode = ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE); 396 397 /* 398 * If the driver loads in Safe mode or Recovery mode, limit iflib to 399 * a single queue pair. 400 */ 401 if (safe_mode || recovery_mode) { 402 scctx->isc_ntxqsets = scctx->isc_nrxqsets = 1; 403 scctx->isc_ntxqsets_max = 1; 404 scctx->isc_nrxqsets_max = 1; 405 } else { 406 /* 407 * iflib initially sets the isc_ntxqsets and isc_nrxqsets to 408 * the values of the override sysctls. Cache these initial 409 * values so that the driver can be aware of what the iflib 410 * sysctl value is when setting up MSI-X vectors. 411 */ 412 sc->ifc_sysctl_ntxqs = scctx->isc_ntxqsets; 413 sc->ifc_sysctl_nrxqs = scctx->isc_nrxqsets; 414 415 if (scctx->isc_ntxqsets == 0) 416 scctx->isc_ntxqsets = hw->func_caps.common_cap.rss_table_size; 417 if (scctx->isc_nrxqsets == 0) 418 scctx->isc_nrxqsets = hw->func_caps.common_cap.rss_table_size; 419 420 scctx->isc_ntxqsets_max = hw->func_caps.common_cap.num_txq; 421 scctx->isc_nrxqsets_max = hw->func_caps.common_cap.num_rxq; 422 423 /* 424 * Sanity check that the iflib sysctl values are within the 425 * maximum supported range. 426 */ 427 if (sc->ifc_sysctl_ntxqs > scctx->isc_ntxqsets_max) 428 sc->ifc_sysctl_ntxqs = scctx->isc_ntxqsets_max; 429 if (sc->ifc_sysctl_nrxqs > scctx->isc_nrxqsets_max) 430 sc->ifc_sysctl_nrxqs = scctx->isc_nrxqsets_max; 431 } 432 433 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] 434 * sizeof(struct ice_tx_desc), DBA_ALIGN); 435 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] 436 * sizeof(union ice_32b_rx_flex_desc), DBA_ALIGN); 437 438 scctx->isc_tx_nsegments = ICE_MAX_TX_SEGS; 439 scctx->isc_tx_tso_segments_max = ICE_MAX_TSO_SEGS; 440 scctx->isc_tx_tso_size_max = ICE_TSO_SIZE; 441 scctx->isc_tx_tso_segsize_max = ICE_MAX_DMA_SEG_SIZE; 442 443 scctx->isc_msix_bar = pci_msix_table_bar(dev); 444 scctx->isc_rss_table_size = hw->func_caps.common_cap.rss_table_size; 445 446 /* 447 * If the driver loads in recovery mode, disable Tx/Rx functionality 448 */ 449 if (recovery_mode) 450 scctx->isc_txrx = &ice_recovery_txrx; 451 else 452 scctx->isc_txrx = &ice_txrx; 453 454 /* 455 * If the driver loads in Safe mode or Recovery mode, disable 456 * advanced features including hardware offloads. 457 */ 458 if (safe_mode || recovery_mode) { 459 scctx->isc_capenable = ICE_SAFE_CAPS; 460 scctx->isc_tx_csum_flags = 0; 461 } else { 462 scctx->isc_capenable = ICE_FULL_CAPS; 463 scctx->isc_tx_csum_flags = ICE_CSUM_OFFLOAD; 464 } 465 466 scctx->isc_capabilities = scctx->isc_capenable; 467 } /* ice_setup_scctx */ 468 469 /** 470 * ice_if_attach_pre - Early device attach logic 471 * @ctx: the iflib context structure 472 * 473 * Called by iflib during the attach process. Earliest main driver entry 474 * point which performs necessary hardware and driver initialization. Called 475 * before the Tx and Rx queues are allocated. 476 */ 477 static int 478 ice_if_attach_pre(if_ctx_t ctx) 479 { 480 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 481 enum ice_fw_modes fw_mode; 482 int status; 483 if_softc_ctx_t scctx; 484 struct ice_hw *hw; 485 device_t dev; 486 int err; 487 488 device_printf(iflib_get_dev(ctx), "Loading the iflib ice driver\n"); 489 490 ice_set_state(&sc->state, ICE_STATE_ATTACHING); 491 492 sc->ctx = ctx; 493 sc->media = iflib_get_media(ctx); 494 sc->sctx = iflib_get_sctx(ctx); 495 sc->iflib_ctx_lock = iflib_ctx_lock_get(ctx); 496 sc->ifp = iflib_get_ifp(ctx); 497 498 dev = sc->dev = iflib_get_dev(ctx); 499 scctx = sc->scctx = iflib_get_softc_ctx(ctx); 500 501 hw = &sc->hw; 502 hw->back = sc; 503 504 snprintf(sc->admin_mtx_name, sizeof(sc->admin_mtx_name), 505 "%s:admin", device_get_nameunit(dev)); 506 mtx_init(&sc->admin_mtx, sc->admin_mtx_name, NULL, MTX_DEF); 507 callout_init_mtx(&sc->admin_timer, &sc->admin_mtx, 0); 508 509 ASSERT_CTX_LOCKED(sc); 510 511 if (ice_pci_mapping(sc)) { 512 err = (ENXIO); 513 goto destroy_admin_timer; 514 } 515 516 /* Save off the PCI information */ 517 ice_save_pci_info(hw, dev); 518 519 /* create tunables as early as possible */ 520 ice_add_device_tunables(sc); 521 522 /* Setup ControlQ lengths */ 523 ice_set_ctrlq_len(hw); 524 525 reinit_hw: 526 527 fw_mode = ice_get_fw_mode(hw); 528 if (fw_mode == ICE_FW_MODE_REC) { 529 device_printf(dev, "Firmware recovery mode detected. Limiting functionality. Refer to Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 530 531 err = ice_attach_pre_recovery_mode(sc); 532 if (err) 533 goto free_pci_mapping; 534 535 return (0); 536 } 537 538 /* Initialize the hw data structure */ 539 status = ice_init_hw(hw); 540 if (status) { 541 if (status == ICE_ERR_FW_API_VER) { 542 /* Enter recovery mode, so that the driver remains 543 * loaded. This way, if the system administrator 544 * cannot update the driver, they may still attempt to 545 * downgrade the NVM. 546 */ 547 err = ice_attach_pre_recovery_mode(sc); 548 if (err) 549 goto free_pci_mapping; 550 551 return (0); 552 } else { 553 err = EIO; 554 device_printf(dev, "Unable to initialize hw, err %s aq_err %s\n", 555 ice_status_str(status), 556 ice_aq_str(hw->adminq.sq_last_status)); 557 } 558 goto free_pci_mapping; 559 } 560 561 ice_init_device_features(sc); 562 563 /* Keep flag set by default */ 564 ice_set_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN); 565 566 /* Notify firmware of the device driver version */ 567 err = ice_send_version(sc); 568 if (err) 569 goto deinit_hw; 570 571 /* 572 * Success indicates a change was made that requires a reinitialization 573 * of the hardware 574 */ 575 err = ice_load_pkg_file(sc); 576 if (!err) { 577 ice_deinit_hw(hw); 578 goto reinit_hw; 579 } 580 581 err = ice_init_link_events(sc); 582 if (err) { 583 device_printf(dev, "ice_init_link_events failed: %s\n", 584 ice_err_str(err)); 585 goto deinit_hw; 586 } 587 588 /* Initialize VLAN mode in FW; if dual VLAN mode is supported by the package 589 * and firmware, this will force them to use single VLAN mode. 590 */ 591 status = ice_set_vlan_mode(hw); 592 if (status) { 593 err = EIO; 594 device_printf(dev, "Unable to initialize VLAN mode, err %s aq_err %s\n", 595 ice_status_str(status), 596 ice_aq_str(hw->adminq.sq_last_status)); 597 goto deinit_hw; 598 } 599 600 ice_print_nvm_version(sc); 601 602 /* Setup the MAC address */ 603 iflib_set_mac(ctx, hw->port_info->mac.lan_addr); 604 605 /* Setup the iflib softc context structure */ 606 ice_setup_scctx(sc); 607 608 /* Initialize the Tx queue manager */ 609 err = ice_resmgr_init(&sc->tx_qmgr, hw->func_caps.common_cap.num_txq); 610 if (err) { 611 device_printf(dev, "Unable to initialize Tx queue manager: %s\n", 612 ice_err_str(err)); 613 goto deinit_hw; 614 } 615 616 /* Initialize the Rx queue manager */ 617 err = ice_resmgr_init(&sc->rx_qmgr, hw->func_caps.common_cap.num_rxq); 618 if (err) { 619 device_printf(dev, "Unable to initialize Rx queue manager: %s\n", 620 ice_err_str(err)); 621 goto free_tx_qmgr; 622 } 623 624 /* Initialize the PF device interrupt resource manager */ 625 err = ice_alloc_intr_tracking(sc); 626 if (err) 627 /* Errors are already printed */ 628 goto free_rx_qmgr; 629 630 /* Determine maximum number of VSIs we'll prepare for */ 631 sc->num_available_vsi = min(ICE_MAX_VSI_AVAILABLE, 632 hw->func_caps.guar_num_vsi); 633 634 if (!sc->num_available_vsi) { 635 err = EIO; 636 device_printf(dev, "No VSIs allocated to host\n"); 637 goto free_intr_tracking; 638 } 639 640 /* Allocate storage for the VSI pointers */ 641 sc->all_vsi = (struct ice_vsi **) 642 malloc(sizeof(struct ice_vsi *) * sc->num_available_vsi, 643 M_ICE, M_WAITOK | M_ZERO); 644 if (!sc->all_vsi) { 645 err = ENOMEM; 646 device_printf(dev, "Unable to allocate VSI array\n"); 647 goto free_intr_tracking; 648 } 649 650 /* 651 * Prepare the statically allocated primary PF VSI in the softc 652 * structure. Other VSIs will be dynamically allocated as needed. 653 */ 654 ice_setup_pf_vsi(sc); 655 656 ice_alloc_vsi_qmap(&sc->pf_vsi, scctx->isc_ntxqsets_max, 657 scctx->isc_nrxqsets_max); 658 659 /* Allocate MSI-X vectors (due to isc_flags IFLIB_SKIP_MSIX) */ 660 err = ice_allocate_msix(sc); 661 if (err) 662 goto free_main_vsi; 663 664 return 0; 665 666 free_main_vsi: 667 /* ice_release_vsi will free the queue maps if they were allocated */ 668 ice_release_vsi(&sc->pf_vsi); 669 free(sc->all_vsi, M_ICE); 670 sc->all_vsi = NULL; 671 free_intr_tracking: 672 ice_free_intr_tracking(sc); 673 free_rx_qmgr: 674 ice_resmgr_destroy(&sc->rx_qmgr); 675 free_tx_qmgr: 676 ice_resmgr_destroy(&sc->tx_qmgr); 677 deinit_hw: 678 ice_deinit_hw(hw); 679 free_pci_mapping: 680 ice_free_pci_mapping(sc); 681 destroy_admin_timer: 682 mtx_lock(&sc->admin_mtx); 683 callout_stop(&sc->admin_timer); 684 mtx_unlock(&sc->admin_mtx); 685 mtx_destroy(&sc->admin_mtx); 686 return err; 687 } /* ice_if_attach_pre */ 688 689 /** 690 * ice_attach_pre_recovery_mode - Limited driver attach_pre for FW recovery 691 * @sc: the device private softc 692 * 693 * Loads the device driver in limited Firmware Recovery mode, intended to 694 * allow users to update the firmware to attempt to recover the device. 695 * 696 * @remark We may enter recovery mode in case either (a) the firmware is 697 * detected to be in an invalid state and must be re-programmed, or (b) the 698 * driver detects that the loaded firmware has a non-compatible API version 699 * that the driver cannot operate with. 700 */ 701 static int 702 ice_attach_pre_recovery_mode(struct ice_softc *sc) 703 { 704 ice_set_state(&sc->state, ICE_STATE_RECOVERY_MODE); 705 706 /* Setup the iflib softc context */ 707 ice_setup_scctx(sc); 708 709 /* Setup the PF VSI back pointer */ 710 sc->pf_vsi.sc = sc; 711 712 /* 713 * We still need to allocate MSI-X vectors since we need one vector to 714 * run the administrative admin interrupt 715 */ 716 return ice_allocate_msix(sc); 717 } 718 719 /** 720 * ice_update_link_status - notify OS of link state change 721 * @sc: device private softc structure 722 * @update_media: true if we should update media even if link didn't change 723 * 724 * Called to notify iflib core of link status changes. Should be called once 725 * during attach_post, and whenever link status changes during runtime. 726 * 727 * This call only updates the currently supported media types if the link 728 * status changed, or if update_media is set to true. 729 */ 730 static void 731 ice_update_link_status(struct ice_softc *sc, bool update_media) 732 { 733 struct ice_hw *hw = &sc->hw; 734 int status; 735 736 /* Never report link up when in recovery mode */ 737 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 738 return; 739 740 /* Report link status to iflib only once each time it changes */ 741 if (!ice_testandset_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED)) { 742 if (sc->link_up) { /* link is up */ 743 uint64_t baudrate = ice_aq_speed_to_rate(sc->hw.port_info); 744 745 if (!(hw->port_info->phy.link_info_old.link_info & ICE_AQ_LINK_UP)) 746 ice_set_default_local_lldp_mib(sc); 747 748 iflib_link_state_change(sc->ctx, LINK_STATE_UP, baudrate); 749 ice_rdma_link_change(sc, LINK_STATE_UP, baudrate); 750 751 ice_link_up_msg(sc); 752 } else { /* link is down */ 753 iflib_link_state_change(sc->ctx, LINK_STATE_DOWN, 0); 754 ice_rdma_link_change(sc, LINK_STATE_DOWN, 0); 755 } 756 #ifdef PCI_IOV 757 ice_vc_notify_all_vfs_link_state(sc); 758 #endif 759 update_media = true; 760 } 761 762 /* Update the supported media types */ 763 if (update_media && !ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) { 764 status = ice_add_media_types(sc, sc->media); 765 if (status) 766 device_printf(sc->dev, "Error adding device media types: %s aq_err %s\n", 767 ice_status_str(status), 768 ice_aq_str(hw->adminq.sq_last_status)); 769 } 770 } 771 772 /** 773 * ice_if_attach_post - Late device attach logic 774 * @ctx: the iflib context structure 775 * 776 * Called by iflib to finish up attaching the device. Performs any attach 777 * logic which must wait until after the Tx and Rx queues have been 778 * allocated. 779 */ 780 static int 781 ice_if_attach_post(if_ctx_t ctx) 782 { 783 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 784 if_t ifp = iflib_get_ifp(ctx); 785 int status; 786 int err; 787 788 ASSERT_CTX_LOCKED(sc); 789 790 /* We don't yet support loading if MSI-X is not supported */ 791 if (sc->scctx->isc_intr != IFLIB_INTR_MSIX) { 792 device_printf(sc->dev, "The ice driver does not support loading without MSI-X\n"); 793 return (ENOTSUP); 794 } 795 796 /* The ifnet structure hasn't yet been initialized when the attach_pre 797 * handler is called, so wait until attach_post to setup the 798 * isc_max_frame_size. 799 */ 800 sc->scctx->isc_max_frame_size = if_getmtu(ifp) + 801 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 802 803 /* 804 * If we are in recovery mode, only perform a limited subset of 805 * initialization to support NVM recovery. 806 */ 807 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) { 808 ice_attach_post_recovery_mode(sc); 809 return (0); 810 } 811 812 sc->pf_vsi.max_frame_size = sc->scctx->isc_max_frame_size; 813 814 err = ice_initialize_vsi(&sc->pf_vsi); 815 if (err) { 816 device_printf(sc->dev, "Unable to initialize Main VSI: %s\n", 817 ice_err_str(err)); 818 return err; 819 } 820 821 /* Enable FW health event reporting */ 822 ice_init_health_events(sc); 823 824 /* Configure the main PF VSI for RSS */ 825 err = ice_config_rss(&sc->pf_vsi); 826 if (err) { 827 device_printf(sc->dev, 828 "Unable to configure RSS for the main VSI, err %s\n", 829 ice_err_str(err)); 830 return err; 831 } 832 833 /* Configure switch to drop transmitted LLDP and PAUSE frames */ 834 err = ice_cfg_pf_ethertype_filters(sc); 835 if (err) 836 return err; 837 838 ice_get_and_print_bus_info(sc); 839 840 ice_set_link_management_mode(sc); 841 842 ice_init_saved_phy_cfg(sc); 843 844 ice_cfg_pba_num(sc); 845 846 /* Set a default value for PFC mode on attach since the FW state is unknown 847 * before sysctl tunables are executed and it can't be queried. This fixes an 848 * issue when loading the driver with the FW LLDP agent enabled but the FW 849 * was previously in DSCP PFC mode. 850 */ 851 status = ice_aq_set_pfc_mode(&sc->hw, ICE_AQC_PFC_VLAN_BASED_PFC, NULL); 852 if (status) 853 device_printf(sc->dev, "Setting pfc mode failed, status %s\n", ice_status_str(status)); 854 855 ice_add_device_sysctls(sc); 856 857 #ifdef PCI_IOV 858 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_SRIOV)) { 859 err = ice_iov_attach(sc); 860 if (err == ENOMEM) 861 return (err); 862 } 863 #endif /* PCI_IOV */ 864 865 /* Get DCBX/LLDP state and start DCBX agent */ 866 ice_init_dcb_setup(sc); 867 868 /* Setup link, if PHY FW is ready */ 869 ice_init_link(sc); 870 871 /* Configure interrupt causes for the administrative interrupt */ 872 ice_configure_misc_interrupts(sc); 873 874 /* Enable ITR 0 right away, so that we can handle admin interrupts */ 875 ice_enable_intr(&sc->hw, sc->irqvs[0].me); 876 877 err = ice_rdma_pf_attach(sc); 878 if (err) 879 return (err); 880 881 /* Start the admin timer */ 882 mtx_lock(&sc->admin_mtx); 883 callout_reset(&sc->admin_timer, hz/2, ice_admin_timer, sc); 884 mtx_unlock(&sc->admin_mtx); 885 886 if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) && 887 !ice_test_state(&sc->state, ICE_STATE_NO_MEDIA)) 888 ice_set_state(&sc->state, ICE_STATE_FIRST_INIT_LINK); 889 890 ice_clear_state(&sc->state, ICE_STATE_ATTACHING); 891 892 return 0; 893 } /* ice_if_attach_post */ 894 895 /** 896 * ice_attach_post_recovery_mode - Limited driver attach_post for FW recovery 897 * @sc: the device private softc 898 * 899 * Performs minimal work to prepare the driver to recover an NVM in case the 900 * firmware is in recovery mode. 901 */ 902 static void 903 ice_attach_post_recovery_mode(struct ice_softc *sc) 904 { 905 /* Configure interrupt causes for the administrative interrupt */ 906 ice_configure_misc_interrupts(sc); 907 908 /* Enable ITR 0 right away, so that we can handle admin interrupts */ 909 ice_enable_intr(&sc->hw, sc->irqvs[0].me); 910 911 /* Start the admin timer */ 912 mtx_lock(&sc->admin_mtx); 913 callout_reset(&sc->admin_timer, hz/2, ice_admin_timer, sc); 914 mtx_unlock(&sc->admin_mtx); 915 916 ice_clear_state(&sc->state, ICE_STATE_ATTACHING); 917 } 918 919 /** 920 * ice_free_irqvs - Free IRQ vector memory 921 * @sc: the device private softc structure 922 * 923 * Free IRQ vector memory allocated during ice_if_msix_intr_assign. 924 */ 925 static void 926 ice_free_irqvs(struct ice_softc *sc) 927 { 928 struct ice_vsi *vsi = &sc->pf_vsi; 929 if_ctx_t ctx = sc->ctx; 930 int i; 931 932 /* If the irqvs array is NULL, then there are no vectors to free */ 933 if (sc->irqvs == NULL) 934 return; 935 936 /* Free the IRQ vectors */ 937 for (i = 0; i < sc->num_irq_vectors; i++) 938 iflib_irq_free(ctx, &sc->irqvs[i].irq); 939 940 /* Clear the irqv pointers */ 941 for (i = 0; i < vsi->num_rx_queues; i++) 942 vsi->rx_queues[i].irqv = NULL; 943 944 for (i = 0; i < vsi->num_tx_queues; i++) 945 vsi->tx_queues[i].irqv = NULL; 946 947 /* Release the vector array memory */ 948 free(sc->irqvs, M_ICE); 949 sc->irqvs = NULL; 950 sc->num_irq_vectors = 0; 951 } 952 953 /** 954 * ice_if_detach - Device driver detach logic 955 * @ctx: iflib context structure 956 * 957 * Perform device shutdown logic to detach the device driver. 958 * 959 * Note that there is no guarantee of the ordering of ice_if_queues_free() and 960 * ice_if_detach(). It is possible for the functions to be called in either 961 * order, and they must not assume to have a strict ordering. 962 */ 963 static int 964 ice_if_detach(if_ctx_t ctx) 965 { 966 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 967 struct ice_vsi *vsi = &sc->pf_vsi; 968 int status; 969 int i; 970 971 ASSERT_CTX_LOCKED(sc); 972 973 /* Indicate that we're detaching */ 974 ice_set_state(&sc->state, ICE_STATE_DETACHING); 975 976 /* Stop the admin timer */ 977 mtx_lock(&sc->admin_mtx); 978 callout_stop(&sc->admin_timer); 979 mtx_unlock(&sc->admin_mtx); 980 mtx_destroy(&sc->admin_mtx); 981 982 /* Remove additional interfaces if they exist */ 983 if (sc->mirr_if) 984 ice_destroy_mirror_interface(sc); 985 ice_rdma_pf_detach(sc); 986 987 #ifdef PCI_IOV 988 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_SRIOV)) 989 ice_iov_detach(sc); 990 #endif /* PCI_IOV */ 991 992 /* Free allocated media types */ 993 ifmedia_removeall(sc->media); 994 995 /* Free the Tx and Rx sysctl contexts, and assign NULL to the node 996 * pointers. Note, the calls here and those in ice_if_queues_free() 997 * are *BOTH* necessary, as we cannot guarantee which path will be 998 * run first 999 */ 1000 ice_vsi_del_txqs_ctx(vsi); 1001 ice_vsi_del_rxqs_ctx(vsi); 1002 1003 /* Release MSI-X resources */ 1004 ice_free_irqvs(sc); 1005 1006 for (i = 0; i < sc->num_available_vsi; i++) { 1007 if (sc->all_vsi[i]) 1008 ice_release_vsi(sc->all_vsi[i]); 1009 } 1010 1011 if (sc->all_vsi) { 1012 free(sc->all_vsi, M_ICE); 1013 sc->all_vsi = NULL; 1014 } 1015 1016 /* Release MSI-X memory */ 1017 pci_release_msi(sc->dev); 1018 1019 if (sc->msix_table != NULL) { 1020 bus_release_resource(sc->dev, SYS_RES_MEMORY, 1021 rman_get_rid(sc->msix_table), 1022 sc->msix_table); 1023 sc->msix_table = NULL; 1024 } 1025 1026 ice_free_intr_tracking(sc); 1027 1028 /* Destroy the queue managers */ 1029 ice_resmgr_destroy(&sc->tx_qmgr); 1030 ice_resmgr_destroy(&sc->rx_qmgr); 1031 1032 if (!ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1033 ice_deinit_hw(&sc->hw); 1034 1035 IFLIB_CTX_UNLOCK(sc); 1036 status = ice_reset(&sc->hw, ICE_RESET_PFR); 1037 IFLIB_CTX_LOCK(sc); 1038 if (status) { 1039 device_printf(sc->dev, "device PF reset failed, err %s\n", 1040 ice_status_str(status)); 1041 } 1042 1043 ice_free_pci_mapping(sc); 1044 1045 return 0; 1046 } /* ice_if_detach */ 1047 1048 /** 1049 * ice_if_tx_queues_alloc - Allocate Tx queue memory 1050 * @ctx: iflib context structure 1051 * @vaddrs: virtual addresses for the queue memory 1052 * @paddrs: physical addresses for the queue memory 1053 * @ntxqs: the number of Tx queues per set (should always be 1) 1054 * @ntxqsets: the number of Tx queue sets to allocate 1055 * 1056 * Called by iflib to allocate Tx queues for the device. Allocates driver 1057 * memory to track each queue, the status arrays used for descriptor 1058 * status reporting, and Tx queue sysctls. 1059 */ 1060 static int 1061 ice_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 1062 int __invariant_only ntxqs, int ntxqsets) 1063 { 1064 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1065 struct ice_vsi *vsi = &sc->pf_vsi; 1066 struct ice_tx_queue *txq; 1067 int err, i, j; 1068 1069 MPASS(ntxqs == 1); 1070 MPASS(sc->scctx->isc_ntxd[0] <= ICE_MAX_DESC_COUNT); 1071 ASSERT_CTX_LOCKED(sc); 1072 1073 /* Do not bother allocating queues if we're in recovery mode */ 1074 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1075 return (0); 1076 1077 /* Allocate queue structure memory */ 1078 if (!(vsi->tx_queues = 1079 (struct ice_tx_queue *) malloc(sizeof(struct ice_tx_queue) * ntxqsets, M_ICE, M_NOWAIT | M_ZERO))) { 1080 device_printf(sc->dev, "Unable to allocate Tx queue memory\n"); 1081 return (ENOMEM); 1082 } 1083 1084 /* Allocate report status arrays */ 1085 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 1086 if (!(txq->tx_rsq = 1087 (uint16_t *) malloc(sizeof(uint16_t) * sc->scctx->isc_ntxd[0], M_ICE, M_NOWAIT))) { 1088 device_printf(sc->dev, "Unable to allocate tx_rsq memory\n"); 1089 err = ENOMEM; 1090 goto free_tx_queues; 1091 } 1092 /* Initialize report status array */ 1093 for (j = 0; j < sc->scctx->isc_ntxd[0]; j++) 1094 txq->tx_rsq[j] = QIDX_INVALID; 1095 } 1096 1097 /* Assign queues from PF space to the main VSI */ 1098 err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap, ntxqsets); 1099 if (err) { 1100 device_printf(sc->dev, "Unable to assign PF queues: %s\n", 1101 ice_err_str(err)); 1102 goto free_tx_queues; 1103 } 1104 vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS; 1105 1106 /* Add Tx queue sysctls context */ 1107 ice_vsi_add_txqs_ctx(vsi); 1108 1109 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 1110 /* q_handle == me when only one TC */ 1111 txq->me = txq->q_handle = i; 1112 txq->vsi = vsi; 1113 1114 /* store the queue size for easier access */ 1115 txq->desc_count = sc->scctx->isc_ntxd[0]; 1116 1117 /* get the virtual and physical address of the hardware queues */ 1118 txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]); 1119 txq->tx_base = (struct ice_tx_desc *)vaddrs[i]; 1120 txq->tx_paddr = paddrs[i]; 1121 1122 ice_add_txq_sysctls(txq); 1123 } 1124 1125 vsi->num_tx_queues = ntxqsets; 1126 1127 return (0); 1128 1129 free_tx_queues: 1130 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 1131 if (txq->tx_rsq != NULL) { 1132 free(txq->tx_rsq, M_ICE); 1133 txq->tx_rsq = NULL; 1134 } 1135 } 1136 free(vsi->tx_queues, M_ICE); 1137 vsi->tx_queues = NULL; 1138 return err; 1139 } 1140 1141 /** 1142 * ice_if_rx_queues_alloc - Allocate Rx queue memory 1143 * @ctx: iflib context structure 1144 * @vaddrs: virtual addresses for the queue memory 1145 * @paddrs: physical addresses for the queue memory 1146 * @nrxqs: number of Rx queues per set (should always be 1) 1147 * @nrxqsets: number of Rx queue sets to allocate 1148 * 1149 * Called by iflib to allocate Rx queues for the device. Allocates driver 1150 * memory to track each queue, as well as sets up the Rx queue sysctls. 1151 */ 1152 static int 1153 ice_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 1154 int __invariant_only nrxqs, int nrxqsets) 1155 { 1156 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1157 struct ice_vsi *vsi = &sc->pf_vsi; 1158 struct ice_rx_queue *rxq; 1159 int err, i; 1160 1161 MPASS(nrxqs == 1); 1162 MPASS(sc->scctx->isc_nrxd[0] <= ICE_MAX_DESC_COUNT); 1163 ASSERT_CTX_LOCKED(sc); 1164 1165 /* Do not bother allocating queues if we're in recovery mode */ 1166 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1167 return (0); 1168 1169 /* Allocate queue structure memory */ 1170 if (!(vsi->rx_queues = 1171 (struct ice_rx_queue *) malloc(sizeof(struct ice_rx_queue) * nrxqsets, M_ICE, M_NOWAIT | M_ZERO))) { 1172 device_printf(sc->dev, "Unable to allocate Rx queue memory\n"); 1173 return (ENOMEM); 1174 } 1175 1176 /* Assign queues from PF space to the main VSI */ 1177 err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap, nrxqsets); 1178 if (err) { 1179 device_printf(sc->dev, "Unable to assign PF queues: %s\n", 1180 ice_err_str(err)); 1181 goto free_rx_queues; 1182 } 1183 vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS; 1184 1185 /* Add Rx queue sysctls context */ 1186 ice_vsi_add_rxqs_ctx(vsi); 1187 1188 for (i = 0, rxq = vsi->rx_queues; i < nrxqsets; i++, rxq++) { 1189 rxq->me = i; 1190 rxq->vsi = vsi; 1191 1192 /* store the queue size for easier access */ 1193 rxq->desc_count = sc->scctx->isc_nrxd[0]; 1194 1195 /* get the virtual and physical address of the hardware queues */ 1196 rxq->tail = QRX_TAIL(vsi->rx_qmap[i]); 1197 rxq->rx_base = (union ice_32b_rx_flex_desc *)vaddrs[i]; 1198 rxq->rx_paddr = paddrs[i]; 1199 1200 ice_add_rxq_sysctls(rxq); 1201 } 1202 1203 vsi->num_rx_queues = nrxqsets; 1204 1205 return (0); 1206 1207 free_rx_queues: 1208 free(vsi->rx_queues, M_ICE); 1209 vsi->rx_queues = NULL; 1210 return err; 1211 } 1212 1213 /** 1214 * ice_if_queues_free - Free queue memory 1215 * @ctx: the iflib context structure 1216 * 1217 * Free queue memory allocated by ice_if_tx_queues_alloc() and 1218 * ice_if_rx_queues_alloc(). 1219 * 1220 * There is no guarantee that ice_if_queues_free() and ice_if_detach() will be 1221 * called in the same order. It's possible for ice_if_queues_free() to be 1222 * called prior to ice_if_detach(), and vice versa. 1223 * 1224 * For this reason, the main VSI is a static member of the ice_softc, which is 1225 * not free'd until after iflib finishes calling both of these functions. 1226 * 1227 * Thus, care must be taken in how we manage the memory being freed by this 1228 * function, and in what tasks it can and must perform. 1229 */ 1230 static void 1231 ice_if_queues_free(if_ctx_t ctx) 1232 { 1233 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1234 struct ice_vsi *vsi = &sc->pf_vsi; 1235 struct ice_tx_queue *txq; 1236 int i; 1237 1238 /* Free the Tx and Rx sysctl contexts, and assign NULL to the node 1239 * pointers. Note, the calls here and those in ice_if_detach() 1240 * are *BOTH* necessary, as we cannot guarantee which path will be 1241 * run first 1242 */ 1243 ice_vsi_del_txqs_ctx(vsi); 1244 ice_vsi_del_rxqs_ctx(vsi); 1245 1246 /* Release MSI-X IRQ vectors, if not yet released in ice_if_detach */ 1247 ice_free_irqvs(sc); 1248 1249 if (vsi->tx_queues != NULL) { 1250 /* free the tx_rsq arrays */ 1251 for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) { 1252 if (txq->tx_rsq != NULL) { 1253 free(txq->tx_rsq, M_ICE); 1254 txq->tx_rsq = NULL; 1255 } 1256 } 1257 free(vsi->tx_queues, M_ICE); 1258 vsi->tx_queues = NULL; 1259 vsi->num_tx_queues = 0; 1260 } 1261 if (vsi->rx_queues != NULL) { 1262 free(vsi->rx_queues, M_ICE); 1263 vsi->rx_queues = NULL; 1264 vsi->num_rx_queues = 0; 1265 } 1266 } 1267 1268 /** 1269 * ice_msix_que - Fast interrupt handler for MSI-X receive queues 1270 * @arg: The Rx queue memory 1271 * 1272 * Interrupt filter function for iflib MSI-X interrupts. Called by iflib when 1273 * an MSI-X interrupt for a given queue is triggered. Currently this just asks 1274 * iflib to schedule the main Rx thread. 1275 */ 1276 static int 1277 ice_msix_que(void *arg) 1278 { 1279 struct ice_rx_queue __unused *rxq = (struct ice_rx_queue *)arg; 1280 1281 /* TODO: dynamic ITR algorithm?? */ 1282 1283 return (FILTER_SCHEDULE_THREAD); 1284 } 1285 1286 /** 1287 * ice_msix_admin - Fast interrupt handler for MSI-X admin interrupt 1288 * @arg: pointer to device softc memory 1289 * 1290 * Called by iflib when an administrative interrupt occurs. Should perform any 1291 * fast logic for handling the interrupt cause, and then indicate whether the 1292 * admin task needs to be queued. 1293 */ 1294 static int 1295 ice_msix_admin(void *arg) 1296 { 1297 struct ice_softc *sc = (struct ice_softc *)arg; 1298 struct ice_hw *hw = &sc->hw; 1299 device_t dev = sc->dev; 1300 u32 oicr; 1301 1302 /* There is no safe way to modify the enabled miscellaneous causes of 1303 * the OICR vector at runtime, as doing so would be prone to race 1304 * conditions. Reading PFINT_OICR will unmask the associated interrupt 1305 * causes and allow future interrupts to occur. The admin interrupt 1306 * vector will not be re-enabled until after we exit this function, 1307 * but any delayed tasks must be resilient against possible "late 1308 * arrival" interrupts that occur while we're already handling the 1309 * task. This is done by using state bits and serializing these 1310 * delayed tasks via the admin status task function. 1311 */ 1312 oicr = rd32(hw, PFINT_OICR); 1313 1314 /* Processing multiple controlq interrupts on a single vector does not 1315 * provide an indication of which controlq triggered the interrupt. 1316 * We might try reading the INTEVENT bit of the respective PFINT_*_CTL 1317 * registers. However, the INTEVENT bit is not guaranteed to be set as 1318 * it gets automatically cleared when the hardware acknowledges the 1319 * interrupt. 1320 * 1321 * This means we don't really have a good indication of whether or 1322 * which controlq triggered this interrupt. We'll just notify the 1323 * admin task that it should check all the controlqs. 1324 */ 1325 ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING); 1326 1327 if (oicr & PFINT_OICR_VFLR_M) { 1328 ice_set_state(&sc->state, ICE_STATE_VFLR_PENDING); 1329 } 1330 1331 if (oicr & PFINT_OICR_MAL_DETECT_M) { 1332 ice_set_state(&sc->state, ICE_STATE_MDD_PENDING); 1333 } 1334 1335 if (oicr & PFINT_OICR_GRST_M) { 1336 u32 reset; 1337 1338 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 1339 GLGEN_RSTAT_RESET_TYPE_S; 1340 1341 if (reset == ICE_RESET_CORER) 1342 sc->soft_stats.corer_count++; 1343 else if (reset == ICE_RESET_GLOBR) 1344 sc->soft_stats.globr_count++; 1345 else 1346 sc->soft_stats.empr_count++; 1347 1348 /* There are a couple of bits at play for handling resets. 1349 * First, the ICE_STATE_RESET_OICR_RECV bit is used to 1350 * indicate that the driver has received an OICR with a reset 1351 * bit active, indicating that a CORER/GLOBR/EMPR is about to 1352 * happen. Second, we set hw->reset_ongoing to indicate that 1353 * the hardware is in reset. We will set this back to false as 1354 * soon as the driver has determined that the hardware is out 1355 * of reset. 1356 * 1357 * If the driver wishes to trigger a request, it can set one of 1358 * the ICE_STATE_RESET_*_REQ bits, which will trigger the 1359 * correct type of reset. 1360 */ 1361 if (!ice_testandset_state(&sc->state, ICE_STATE_RESET_OICR_RECV)) { 1362 hw->reset_ongoing = true; 1363 /* 1364 * During the NVM update process, there is a driver reset and link 1365 * goes down and then up. The below if-statement prevents a second 1366 * link flap from occurring in ice_if_init(). 1367 */ 1368 if (if_getflags(sc->ifp) & IFF_UP) 1369 ice_set_state(&sc->state, ICE_STATE_FIRST_INIT_LINK); 1370 } 1371 } 1372 1373 if (oicr & PFINT_OICR_ECC_ERR_M) { 1374 device_printf(dev, "ECC Error detected!\n"); 1375 ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ); 1376 } 1377 1378 if (oicr & (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M)) { 1379 if (oicr & PFINT_OICR_HMC_ERR_M) 1380 /* Log the HMC errors */ 1381 ice_log_hmc_error(hw, dev); 1382 ice_rdma_notify_pe_intr(sc, oicr); 1383 } 1384 1385 if (oicr & PFINT_OICR_PCI_EXCEPTION_M) { 1386 device_printf(dev, "PCI Exception detected!\n"); 1387 ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ); 1388 } 1389 1390 return (FILTER_SCHEDULE_THREAD); 1391 } 1392 1393 /** 1394 * ice_allocate_msix - Allocate MSI-X vectors for the interface 1395 * @sc: the device private softc 1396 * 1397 * Map the MSI-X bar, and then request MSI-X vectors in a two-stage process. 1398 * 1399 * First, determine a suitable total number of vectors based on the number 1400 * of CPUs, RSS buckets, the administrative vector, and other demands such as 1401 * RDMA. 1402 * 1403 * Request the desired amount of vectors, and see how many we obtain. If we 1404 * don't obtain as many as desired, reduce the demands by lowering the number 1405 * of requested queues or reducing the demand from other features such as 1406 * RDMA. 1407 * 1408 * @remark This function is required because the driver sets the 1409 * IFLIB_SKIP_MSIX flag indicating that the driver will manage MSI-X vectors 1410 * manually. 1411 * 1412 * @remark This driver will only use MSI-X vectors. If this is not possible, 1413 * neither MSI or legacy interrupts will be tried. 1414 * 1415 * @remark if it exists, os_imgr is initialized here for keeping track of 1416 * the assignments of extra MSIX vectors. 1417 * 1418 * @post on success this function must set the following scctx parameters: 1419 * isc_vectors, isc_nrxqsets, isc_ntxqsets, and isc_intr. 1420 * 1421 * @returns zero on success or an error code on failure. 1422 */ 1423 static int 1424 ice_allocate_msix(struct ice_softc *sc) 1425 { 1426 bool iflib_override_queue_count = false; 1427 if_softc_ctx_t scctx = sc->scctx; 1428 device_t dev = sc->dev; 1429 cpuset_t cpus; 1430 int bar, queues, vectors, requested; 1431 int err = 0; 1432 int rdma; 1433 1434 /* Allocate the MSI-X bar */ 1435 bar = scctx->isc_msix_bar; 1436 sc->msix_table = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar, RF_ACTIVE); 1437 if (!sc->msix_table) { 1438 device_printf(dev, "Unable to map MSI-X table\n"); 1439 return (ENOMEM); 1440 } 1441 1442 /* Check if the iflib queue count sysctls have been set */ 1443 if (sc->ifc_sysctl_ntxqs || sc->ifc_sysctl_nrxqs) 1444 iflib_override_queue_count = true; 1445 1446 err = bus_get_cpus(dev, INTR_CPUS, sizeof(cpus), &cpus); 1447 if (err) { 1448 device_printf(dev, "%s: Unable to fetch the CPU list: %s\n", 1449 __func__, ice_err_str(err)); 1450 CPU_COPY(&all_cpus, &cpus); 1451 } 1452 1453 /* Attempt to mimic behavior of iflib_msix_init */ 1454 if (iflib_override_queue_count) { 1455 /* 1456 * If the override sysctls have been set, limit the queues to 1457 * the number of logical CPUs. 1458 */ 1459 queues = mp_ncpus; 1460 } else { 1461 /* 1462 * Otherwise, limit the queue count to the CPUs associated 1463 * with the NUMA node the device is associated with. 1464 */ 1465 queues = CPU_COUNT(&cpus); 1466 } 1467 1468 /* Clamp to the number of RSS buckets */ 1469 queues = imin(queues, rss_getnumbuckets()); 1470 1471 /* 1472 * Clamp the number of queue pairs to the minimum of the requested Tx 1473 * and Rx queues. 1474 */ 1475 queues = imin(queues, sc->ifc_sysctl_ntxqs ?: scctx->isc_ntxqsets); 1476 queues = imin(queues, sc->ifc_sysctl_nrxqs ?: scctx->isc_nrxqsets); 1477 1478 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_RDMA)) { 1479 /* 1480 * Choose a number of RDMA vectors based on the number of CPUs 1481 * up to a maximum 1482 */ 1483 rdma = min(CPU_COUNT(&cpus), ICE_RDMA_MAX_MSIX); 1484 1485 /* Further limit by the user configurable tunable */ 1486 rdma = min(rdma, ice_rdma_max_msix); 1487 } else { 1488 rdma = 0; 1489 } 1490 1491 /* 1492 * Determine the number of vectors to request. Note that we also need 1493 * to allocate one vector for administrative tasks. 1494 */ 1495 requested = rdma + queues + 1; 1496 /* Add extra vectors requested by the user for later subinterface 1497 * creation. 1498 */ 1499 if_ctx_t ctx = sc->ctx; 1500 u32 extra_vectors = iflib_get_extra_msix_vectors_sysctl(ctx); 1501 requested += extra_vectors; 1502 1503 vectors = requested; 1504 err = pci_alloc_msix(dev, &vectors); 1505 if (err) { 1506 device_printf(dev, "Failed to allocate %d MSI-X vectors, err %s\n", 1507 vectors, ice_err_str(err)); 1508 goto err_free_msix_table; 1509 } 1510 1511 /* If we don't receive enough vectors, reduce demands */ 1512 if (vectors < requested) { 1513 int diff = requested - vectors; 1514 1515 device_printf(dev, "Requested %d MSI-X vectors, but got only %d\n", 1516 requested, vectors); 1517 1518 diff += extra_vectors; 1519 extra_vectors = 0; 1520 /* 1521 * The OS didn't grant us the requested number of vectors. 1522 * Check to see if we can reduce demands by limiting the 1523 * number of vectors allocated to certain features. 1524 */ 1525 1526 if (rdma >= diff) { 1527 /* Reduce the number of RDMA vectors we reserve */ 1528 rdma -= diff; 1529 diff = 0; 1530 } else { 1531 /* Disable RDMA and reduce the difference */ 1532 ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap); 1533 diff -= rdma; 1534 rdma = 0; 1535 } 1536 1537 /* 1538 * If we still have a difference, we need to reduce the number 1539 * of queue pairs. 1540 * 1541 * However, we still need at least one vector for the admin 1542 * interrupt and one queue pair. 1543 */ 1544 if (queues <= diff) { 1545 device_printf(dev, "Unable to allocate sufficient MSI-X vectors\n"); 1546 err = (ERANGE); 1547 goto err_pci_release_msi; 1548 } 1549 1550 queues -= diff; 1551 } 1552 1553 device_printf(dev, "Using %d Tx and Rx queues\n", queues); 1554 if (rdma) 1555 device_printf(dev, "Reserving %d MSI-X interrupts for iRDMA\n", 1556 rdma); 1557 device_printf(dev, "Using MSI-X interrupts with %d vectors\n", 1558 vectors); 1559 1560 /* Split resulting vectors back into requested splits */ 1561 scctx->isc_vectors = vectors; 1562 scctx->isc_nrxqsets = queues; 1563 scctx->isc_ntxqsets = queues; 1564 scctx->isc_intr = IFLIB_INTR_MSIX; 1565 1566 sc->irdma_vectors = rdma; 1567 1568 /* Interrupt allocation tracking isn't required in recovery mode, 1569 * since neither RDMA nor VFs are enabled. 1570 */ 1571 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1572 return (0); 1573 1574 /* Keep track of which interrupt indices are being used for what */ 1575 sc->lan_vectors = vectors - rdma; 1576 sc->lan_vectors -= extra_vectors; 1577 err = ice_resmgr_assign_contiguous(&sc->dev_imgr, sc->pf_imap, sc->lan_vectors); 1578 if (err) { 1579 device_printf(dev, "Unable to assign PF interrupt mapping: %s\n", 1580 ice_err_str(err)); 1581 goto err_pci_release_msi; 1582 } 1583 err = ice_resmgr_assign_contiguous(&sc->dev_imgr, sc->rdma_imap, rdma); 1584 if (err) { 1585 device_printf(dev, "Unable to assign PF RDMA interrupt mapping: %s\n", 1586 ice_err_str(err)); 1587 goto err_release_pf_imap; 1588 } 1589 sc->extra_vectors = extra_vectors; 1590 /* Setup another resource manager to track the assignments of extra OS 1591 * vectors. These OS interrupt allocations don't need to be contiguous, 1592 * unlike the ones that come from the device. 1593 */ 1594 err = ice_resmgr_init(&sc->os_imgr, sc->extra_vectors); 1595 if (err) { 1596 device_printf(dev, "Unable to initialize OS extra interrupt manager: %s\n", 1597 ice_err_str(err)); 1598 ice_resmgr_release_map(&sc->dev_imgr, sc->rdma_imap, 1599 rdma); 1600 goto err_release_pf_imap; 1601 } 1602 return (0); 1603 1604 err_release_pf_imap: 1605 ice_resmgr_release_map(&sc->dev_imgr, sc->pf_imap, 1606 sc->lan_vectors); 1607 err_pci_release_msi: 1608 pci_release_msi(dev); 1609 err_free_msix_table: 1610 if (sc->msix_table != NULL) { 1611 bus_release_resource(sc->dev, SYS_RES_MEMORY, 1612 rman_get_rid(sc->msix_table), 1613 sc->msix_table); 1614 sc->msix_table = NULL; 1615 } 1616 1617 return (err); 1618 } 1619 1620 /** 1621 * ice_if_msix_intr_assign - Assign MSI-X interrupt vectors to queues 1622 * @ctx: the iflib context structure 1623 * @msix: the number of vectors we were assigned 1624 * 1625 * Called by iflib to assign MSI-X vectors to queues. Currently requires that 1626 * we get at least the same number of vectors as we have queues, and that we 1627 * always have the same number of Tx and Rx queues. 1628 * 1629 * Tx queues use a softirq instead of using their own hardware interrupt. 1630 */ 1631 static int 1632 ice_if_msix_intr_assign(if_ctx_t ctx, int msix) 1633 { 1634 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1635 struct ice_vsi *vsi = &sc->pf_vsi; 1636 int err, i, vector; 1637 1638 ASSERT_CTX_LOCKED(sc); 1639 1640 if (vsi->num_rx_queues != vsi->num_tx_queues) { 1641 device_printf(sc->dev, 1642 "iflib requested %d Tx queues, and %d Rx queues, but the driver isn't able to support a differing number of Tx and Rx queues\n", 1643 vsi->num_tx_queues, vsi->num_rx_queues); 1644 return (EOPNOTSUPP); 1645 } 1646 1647 if (msix < (vsi->num_rx_queues + 1)) { 1648 device_printf(sc->dev, 1649 "Not enough MSI-X vectors to assign one vector to each queue pair\n"); 1650 return (EOPNOTSUPP); 1651 } 1652 1653 /* Save the number of vectors for future use */ 1654 sc->num_irq_vectors = vsi->num_rx_queues + 1; 1655 1656 /* Allocate space to store the IRQ vector data */ 1657 if (!(sc->irqvs = 1658 (struct ice_irq_vector *) malloc(sizeof(struct ice_irq_vector) * (sc->num_irq_vectors), 1659 M_ICE, M_NOWAIT))) { 1660 device_printf(sc->dev, 1661 "Unable to allocate irqv memory\n"); 1662 return (ENOMEM); 1663 } 1664 1665 /* Administrative interrupt events will use vector 0 */ 1666 err = iflib_irq_alloc_generic(ctx, &sc->irqvs[0].irq, 1, IFLIB_INTR_ADMIN, 1667 ice_msix_admin, sc, 0, "admin"); 1668 if (err) { 1669 device_printf(sc->dev, 1670 "Failed to register Admin queue handler: %s\n", 1671 ice_err_str(err)); 1672 goto free_irqvs; 1673 } 1674 sc->irqvs[0].me = 0; 1675 1676 /* Do not allocate queue interrupts when in recovery mode */ 1677 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1678 return (0); 1679 1680 int rid; 1681 for (i = 0, vector = 1; i < vsi->num_rx_queues; i++, vector++) { 1682 struct ice_rx_queue *rxq = &vsi->rx_queues[i]; 1683 struct ice_tx_queue *txq = &vsi->tx_queues[i]; 1684 char irq_name[16]; 1685 1686 rid = vector + 1; 1687 1688 snprintf(irq_name, sizeof(irq_name), "rxq%d", i); 1689 err = iflib_irq_alloc_generic(ctx, &sc->irqvs[vector].irq, rid, 1690 IFLIB_INTR_RXTX, ice_msix_que, 1691 rxq, rxq->me, irq_name); 1692 if (err) { 1693 device_printf(sc->dev, 1694 "Failed to allocate q int %d err: %s\n", 1695 i, ice_err_str(err)); 1696 vector--; 1697 i--; 1698 goto fail; 1699 } 1700 sc->irqvs[vector].me = vector; 1701 rxq->irqv = &sc->irqvs[vector]; 1702 1703 bzero(irq_name, sizeof(irq_name)); 1704 1705 snprintf(irq_name, sizeof(irq_name), "txq%d", i); 1706 iflib_softirq_alloc_generic(ctx, &sc->irqvs[vector].irq, 1707 IFLIB_INTR_TX, txq, 1708 txq->me, irq_name); 1709 txq->irqv = &sc->irqvs[vector]; 1710 } 1711 1712 /* For future interrupt assignments */ 1713 sc->last_rid = rid + sc->irdma_vectors; 1714 1715 #ifdef PCI_IOV 1716 /* Create soft IRQ for handling VF resets */ 1717 iflib_softirq_alloc_generic(ctx, NULL, IFLIB_INTR_IOV, sc, 0, "iov"); 1718 #endif 1719 1720 return (0); 1721 fail: 1722 for (; i >= 0; i--, vector--) 1723 iflib_irq_free(ctx, &sc->irqvs[vector].irq); 1724 iflib_irq_free(ctx, &sc->irqvs[0].irq); 1725 free_irqvs: 1726 free(sc->irqvs, M_ICE); 1727 sc->irqvs = NULL; 1728 return err; 1729 } 1730 1731 /** 1732 * ice_if_mtu_set - Set the device MTU 1733 * @ctx: iflib context structure 1734 * @mtu: the MTU requested 1735 * 1736 * Called by iflib to configure the device's Maximum Transmission Unit (MTU). 1737 * 1738 * @pre assumes the caller holds the iflib CTX lock 1739 */ 1740 static int 1741 ice_if_mtu_set(if_ctx_t ctx, uint32_t mtu) 1742 { 1743 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1744 1745 ASSERT_CTX_LOCKED(sc); 1746 1747 /* Do not support configuration when in recovery mode */ 1748 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1749 return (ENOSYS); 1750 1751 if (mtu < ICE_MIN_MTU || mtu > ICE_MAX_MTU) 1752 return (EINVAL); 1753 1754 sc->scctx->isc_max_frame_size = mtu + 1755 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN; 1756 1757 sc->pf_vsi.max_frame_size = sc->scctx->isc_max_frame_size; 1758 1759 return (0); 1760 } 1761 1762 /** 1763 * ice_if_intr_enable - Enable device interrupts 1764 * @ctx: iflib context structure 1765 * 1766 * Called by iflib to request enabling device interrupts. 1767 */ 1768 static void 1769 ice_if_intr_enable(if_ctx_t ctx) 1770 { 1771 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1772 struct ice_vsi *vsi = &sc->pf_vsi; 1773 struct ice_hw *hw = &sc->hw; 1774 1775 ASSERT_CTX_LOCKED(sc); 1776 1777 /* Enable ITR 0 */ 1778 ice_enable_intr(hw, sc->irqvs[0].me); 1779 1780 /* Do not enable queue interrupts in recovery mode */ 1781 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1782 return; 1783 1784 /* Enable all queue interrupts */ 1785 for (int i = 0; i < vsi->num_rx_queues; i++) 1786 ice_enable_intr(hw, vsi->rx_queues[i].irqv->me); 1787 } 1788 1789 /** 1790 * ice_if_intr_disable - Disable device interrupts 1791 * @ctx: iflib context structure 1792 * 1793 * Called by iflib to request disabling device interrupts. 1794 */ 1795 static void 1796 ice_if_intr_disable(if_ctx_t ctx) 1797 { 1798 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1799 struct ice_hw *hw = &sc->hw; 1800 unsigned int i; 1801 1802 ASSERT_CTX_LOCKED(sc); 1803 1804 /* IFDI_INTR_DISABLE may be called prior to interrupts actually being 1805 * assigned to queues. Instead of assuming that the interrupt 1806 * assignment in the rx_queues structure is valid, just disable all 1807 * possible interrupts 1808 * 1809 * Note that we choose not to disable ITR 0 because this handles the 1810 * AdminQ interrupts, and we want to keep processing these even when 1811 * the interface is offline. 1812 */ 1813 for (i = 1; i < hw->func_caps.common_cap.num_msix_vectors; i++) 1814 ice_disable_intr(hw, i); 1815 } 1816 1817 /** 1818 * ice_if_rx_queue_intr_enable - Enable a specific Rx queue interrupt 1819 * @ctx: iflib context structure 1820 * @rxqid: the Rx queue to enable 1821 * 1822 * Enable a specific Rx queue interrupt. 1823 * 1824 * This function is not protected by the iflib CTX lock. 1825 */ 1826 static int 1827 ice_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 1828 { 1829 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1830 struct ice_vsi *vsi = &sc->pf_vsi; 1831 struct ice_hw *hw = &sc->hw; 1832 1833 /* Do not enable queue interrupts in recovery mode */ 1834 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1835 return (ENOSYS); 1836 1837 ice_enable_intr(hw, vsi->rx_queues[rxqid].irqv->me); 1838 return (0); 1839 } 1840 1841 /** 1842 * ice_if_tx_queue_intr_enable - Enable a specific Tx queue interrupt 1843 * @ctx: iflib context structure 1844 * @txqid: the Tx queue to enable 1845 * 1846 * Enable a specific Tx queue interrupt. 1847 * 1848 * This function is not protected by the iflib CTX lock. 1849 */ 1850 static int 1851 ice_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 1852 { 1853 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1854 struct ice_vsi *vsi = &sc->pf_vsi; 1855 struct ice_hw *hw = &sc->hw; 1856 1857 /* Do not enable queue interrupts in recovery mode */ 1858 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1859 return (ENOSYS); 1860 1861 ice_enable_intr(hw, vsi->tx_queues[txqid].irqv->me); 1862 return (0); 1863 } 1864 1865 /** 1866 * ice_set_default_promisc_mask - Set default config for promisc settings 1867 * @promisc_mask: bitmask to setup 1868 * 1869 * The ice_(set|clear)_vsi_promisc() function expects a mask of promiscuous 1870 * modes to operate on. The mask used in here is the default one for the 1871 * driver, where promiscuous is enabled/disabled for all types of 1872 * non-VLAN-tagged/VLAN 0 traffic. 1873 */ 1874 static void 1875 ice_set_default_promisc_mask(ice_bitmap_t *promisc_mask) 1876 { 1877 ice_zero_bitmap(promisc_mask, ICE_PROMISC_MAX); 1878 ice_set_bit(ICE_PROMISC_UCAST_TX, promisc_mask); 1879 ice_set_bit(ICE_PROMISC_UCAST_RX, promisc_mask); 1880 ice_set_bit(ICE_PROMISC_MCAST_TX, promisc_mask); 1881 ice_set_bit(ICE_PROMISC_MCAST_RX, promisc_mask); 1882 } 1883 1884 /** 1885 * ice_if_promisc_set - Set device promiscuous mode 1886 * @ctx: iflib context structure 1887 * @flags: promiscuous flags to configure 1888 * 1889 * Called by iflib to configure device promiscuous mode. 1890 * 1891 * @remark Calls to this function will always overwrite the previous setting 1892 */ 1893 static int 1894 ice_if_promisc_set(if_ctx_t ctx, int flags) 1895 { 1896 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1897 struct ice_hw *hw = &sc->hw; 1898 device_t dev = sc->dev; 1899 int status; 1900 bool promisc_enable = flags & IFF_PROMISC; 1901 bool multi_enable = flags & IFF_ALLMULTI; 1902 ice_declare_bitmap(promisc_mask, ICE_PROMISC_MAX); 1903 1904 /* Do not support configuration when in recovery mode */ 1905 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1906 return (ENOSYS); 1907 1908 ice_set_default_promisc_mask(promisc_mask); 1909 1910 if (multi_enable) 1911 return (EOPNOTSUPP); 1912 1913 if (promisc_enable) { 1914 status = ice_set_vsi_promisc(hw, sc->pf_vsi.idx, 1915 promisc_mask, 0); 1916 if (status && status != ICE_ERR_ALREADY_EXISTS) { 1917 device_printf(dev, 1918 "Failed to enable promiscuous mode for PF VSI, err %s aq_err %s\n", 1919 ice_status_str(status), 1920 ice_aq_str(hw->adminq.sq_last_status)); 1921 return (EIO); 1922 } 1923 } else { 1924 status = ice_clear_vsi_promisc(hw, sc->pf_vsi.idx, 1925 promisc_mask, 0); 1926 if (status) { 1927 device_printf(dev, 1928 "Failed to disable promiscuous mode for PF VSI, err %s aq_err %s\n", 1929 ice_status_str(status), 1930 ice_aq_str(hw->adminq.sq_last_status)); 1931 return (EIO); 1932 } 1933 } 1934 1935 return (0); 1936 } 1937 1938 /** 1939 * ice_if_media_change - Change device media 1940 * @ctx: device ctx structure 1941 * 1942 * Called by iflib when a media change is requested. This operation is not 1943 * supported by the hardware, so we just return an error code. 1944 */ 1945 static int 1946 ice_if_media_change(if_ctx_t ctx) 1947 { 1948 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1949 1950 device_printf(sc->dev, "Media change is not supported.\n"); 1951 return (ENODEV); 1952 } 1953 1954 /** 1955 * ice_if_media_status - Report current device media 1956 * @ctx: iflib context structure 1957 * @ifmr: ifmedia request structure to update 1958 * 1959 * Updates the provided ifmr with current device media status, including link 1960 * status and media type. 1961 */ 1962 static void 1963 ice_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) 1964 { 1965 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 1966 struct ice_link_status *li = &sc->hw.port_info->phy.link_info; 1967 1968 ifmr->ifm_status = IFM_AVALID; 1969 ifmr->ifm_active = IFM_ETHER; 1970 1971 /* Never report link up or media types when in recovery mode */ 1972 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 1973 return; 1974 1975 if (!sc->link_up) 1976 return; 1977 1978 ifmr->ifm_status |= IFM_ACTIVE; 1979 ifmr->ifm_active |= IFM_FDX; 1980 1981 if (li->phy_type_low) 1982 ifmr->ifm_active |= ice_get_phy_type_low(li->phy_type_low); 1983 else if (li->phy_type_high) 1984 ifmr->ifm_active |= ice_get_phy_type_high(li->phy_type_high); 1985 else 1986 ifmr->ifm_active |= IFM_UNKNOWN; 1987 1988 /* Report flow control status as well */ 1989 if (li->an_info & ICE_AQ_LINK_PAUSE_TX) 1990 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 1991 if (li->an_info & ICE_AQ_LINK_PAUSE_RX) 1992 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 1993 } 1994 1995 /** 1996 * ice_init_tx_tracking - Initialize Tx queue software tracking values 1997 * @vsi: the VSI to initialize 1998 * 1999 * Initialize Tx queue software tracking values, including the Report Status 2000 * queue, and related software tracking values. 2001 */ 2002 static void 2003 ice_init_tx_tracking(struct ice_vsi *vsi) 2004 { 2005 struct ice_tx_queue *txq; 2006 size_t j; 2007 int i; 2008 2009 for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) { 2010 2011 txq->tx_rs_cidx = txq->tx_rs_pidx = 0; 2012 2013 /* Initialize the last processed descriptor to be the end of 2014 * the ring, rather than the start, so that we avoid an 2015 * off-by-one error in ice_ift_txd_credits_update for the 2016 * first packet. 2017 */ 2018 txq->tx_cidx_processed = txq->desc_count - 1; 2019 2020 for (j = 0; j < txq->desc_count; j++) 2021 txq->tx_rsq[j] = QIDX_INVALID; 2022 } 2023 } 2024 2025 /** 2026 * ice_update_rx_mbuf_sz - Update the Rx buffer size for all queues 2027 * @sc: the device softc 2028 * 2029 * Called to update the Rx queue mbuf_sz parameter for configuring the receive 2030 * buffer sizes when programming hardware. 2031 */ 2032 static void 2033 ice_update_rx_mbuf_sz(struct ice_softc *sc) 2034 { 2035 uint32_t mbuf_sz = iflib_get_rx_mbuf_sz(sc->ctx); 2036 struct ice_vsi *vsi = &sc->pf_vsi; 2037 2038 MPASS(mbuf_sz <= UINT16_MAX); 2039 vsi->mbuf_sz = mbuf_sz; 2040 } 2041 2042 /** 2043 * ice_if_init - Initialize the device 2044 * @ctx: iflib ctx structure 2045 * 2046 * Called by iflib to bring the device up, i.e. ifconfig ice0 up. Initializes 2047 * device filters and prepares the Tx and Rx engines. 2048 * 2049 * @pre assumes the caller holds the iflib CTX lock 2050 */ 2051 static void 2052 ice_if_init(if_ctx_t ctx) 2053 { 2054 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 2055 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 2056 device_t dev = sc->dev; 2057 int err; 2058 2059 ASSERT_CTX_LOCKED(sc); 2060 2061 /* 2062 * We've seen an issue with 11.3/12.1 where sideband routines are 2063 * called after detach is called. This would call routines after 2064 * if_stop, causing issues with the teardown process. This has 2065 * seemingly been fixed in STABLE snapshots, but it seems like a 2066 * good idea to have this guard here regardless. 2067 */ 2068 if (ice_driver_is_detaching(sc)) 2069 return; 2070 2071 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 2072 return; 2073 2074 if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) { 2075 device_printf(sc->dev, "request to start interface cannot be completed as the device failed to reset\n"); 2076 return; 2077 } 2078 2079 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) { 2080 device_printf(sc->dev, "request to start interface while device is prepared for impending reset\n"); 2081 return; 2082 } 2083 2084 ice_update_rx_mbuf_sz(sc); 2085 2086 /* Update the MAC address... User might use a LAA */ 2087 err = ice_update_laa_mac(sc); 2088 if (err) { 2089 device_printf(dev, 2090 "LAA address change failed, err %s\n", 2091 ice_err_str(err)); 2092 return; 2093 } 2094 2095 /* Initialize software Tx tracking values */ 2096 ice_init_tx_tracking(&sc->pf_vsi); 2097 2098 err = ice_cfg_vsi_for_tx(&sc->pf_vsi); 2099 if (err) { 2100 device_printf(dev, 2101 "Unable to configure the main VSI for Tx: %s\n", 2102 ice_err_str(err)); 2103 return; 2104 } 2105 2106 err = ice_cfg_vsi_for_rx(&sc->pf_vsi); 2107 if (err) { 2108 device_printf(dev, 2109 "Unable to configure the main VSI for Rx: %s\n", 2110 ice_err_str(err)); 2111 goto err_cleanup_tx; 2112 } 2113 2114 err = ice_control_all_rx_queues(&sc->pf_vsi, true); 2115 if (err) { 2116 device_printf(dev, 2117 "Unable to enable Rx rings for transmit: %s\n", 2118 ice_err_str(err)); 2119 goto err_cleanup_tx; 2120 } 2121 2122 err = ice_cfg_pf_default_mac_filters(sc); 2123 if (err) { 2124 device_printf(dev, 2125 "Unable to configure default MAC filters: %s\n", 2126 ice_err_str(err)); 2127 goto err_stop_rx; 2128 } 2129 2130 /* We use software interrupts for Tx, so we only program the hardware 2131 * interrupts for Rx. 2132 */ 2133 ice_configure_all_rxq_interrupts(&sc->pf_vsi); 2134 ice_configure_rx_itr(&sc->pf_vsi); 2135 2136 /* Configure promiscuous mode */ 2137 ice_if_promisc_set(ctx, if_getflags(sc->ifp)); 2138 2139 if (!ice_testandclear_state(&sc->state, ICE_STATE_FIRST_INIT_LINK)) 2140 if (!sc->link_up && ((if_getflags(sc->ifp) & IFF_UP) || 2141 ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN))) 2142 ice_set_link(sc, true); 2143 2144 ice_rdma_pf_init(sc); 2145 2146 ice_set_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED); 2147 2148 if (sc->mirr_if && ice_testandclear_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT)) { 2149 ice_clear_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED); 2150 iflib_request_reset(sc->mirr_if->subctx); 2151 iflib_admin_intr_deferred(sc->mirr_if->subctx); 2152 } 2153 2154 return; 2155 2156 err_stop_rx: 2157 ice_control_all_rx_queues(&sc->pf_vsi, false); 2158 err_cleanup_tx: 2159 ice_vsi_disable_tx(&sc->pf_vsi); 2160 } 2161 2162 /** 2163 * ice_poll_for_media_avail - Re-enable link if media is detected 2164 * @sc: device private structure 2165 * 2166 * Intended to be called from the driver's timer function, this function 2167 * sends the Get Link Status AQ command and re-enables HW link if the 2168 * command says that media is available. 2169 * 2170 * If the driver doesn't have the "NO_MEDIA" state set, then this does nothing, 2171 * since media removal events are supposed to be sent to the driver through 2172 * a link status event. 2173 */ 2174 static void 2175 ice_poll_for_media_avail(struct ice_softc *sc) 2176 { 2177 struct ice_hw *hw = &sc->hw; 2178 struct ice_port_info *pi = hw->port_info; 2179 2180 /* E830 only: There's no interrupt for when the PHY FW has finished loading, 2181 * so poll for the status in the media task here if it's previously 2182 * been detected that it's still loading. 2183 */ 2184 if (ice_is_e830(hw) && 2185 ice_test_state(&sc->state, ICE_STATE_PHY_FW_INIT_PENDING)) { 2186 if (rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M) 2187 ice_clear_state(&sc->state, ICE_STATE_PHY_FW_INIT_PENDING); 2188 else 2189 return; 2190 } 2191 2192 if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA)) { 2193 pi->phy.get_link_info = true; 2194 ice_get_link_status(pi, &sc->link_up); 2195 2196 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2197 int status; 2198 2199 /* Re-enable link and re-apply user link settings */ 2200 if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) || 2201 (if_getflags(sc->ifp) & IFF_UP)) { 2202 ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC); 2203 2204 /* Update the OS about changes in media capability */ 2205 status = ice_add_media_types(sc, sc->media); 2206 if (status) 2207 device_printf(sc->dev, 2208 "Error adding device media types: %s aq_err %s\n", 2209 ice_status_str(status), 2210 ice_aq_str(hw->adminq.sq_last_status)); 2211 } 2212 2213 ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA); 2214 } 2215 } 2216 } 2217 2218 /** 2219 * ice_if_timer - called by iflib periodically 2220 * @ctx: iflib ctx structure 2221 * @qid: the queue this timer was called for 2222 * 2223 * This callback is triggered by iflib periodically. We use it to update the 2224 * hw statistics. 2225 * 2226 * @remark this function is not protected by the iflib CTX lock. 2227 */ 2228 static void 2229 ice_if_timer(if_ctx_t ctx, uint16_t qid) 2230 { 2231 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 2232 uint64_t prev_link_xoff_rx = sc->stats.cur.link_xoff_rx; 2233 2234 if (qid != 0) 2235 return; 2236 2237 /* Do not attempt to update stats when in recovery mode */ 2238 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 2239 return; 2240 2241 /* Update device statistics */ 2242 ice_update_pf_stats(sc); 2243 2244 /* 2245 * For proper watchdog management, the iflib stack needs to know if 2246 * we've been paused during the last interval. Check if the 2247 * link_xoff_rx stat changed, and set the isc_pause_frames, if so. 2248 */ 2249 if (sc->stats.cur.link_xoff_rx != prev_link_xoff_rx) 2250 sc->scctx->isc_pause_frames = 1; 2251 2252 /* Update the primary VSI stats */ 2253 ice_update_vsi_hw_stats(&sc->pf_vsi); 2254 2255 /* Update mirror VSI stats */ 2256 if (sc->mirr_if && sc->mirr_if->if_attached) 2257 ice_update_vsi_hw_stats(sc->mirr_if->vsi); 2258 } 2259 2260 /** 2261 * ice_admin_timer - called periodically to trigger the admin task 2262 * @arg: callout(9) argument pointing to the device private softc structure 2263 * 2264 * Timer function used as part of a callout(9) timer that will periodically 2265 * trigger the admin task, even when the interface is down. 2266 * 2267 * @remark this function is not called by iflib and is not protected by the 2268 * iflib CTX lock. 2269 * 2270 * @remark because this is a callout function, it cannot sleep and should not 2271 * attempt taking the iflib CTX lock. 2272 */ 2273 static void 2274 ice_admin_timer(void *arg) 2275 { 2276 struct ice_softc *sc = (struct ice_softc *)arg; 2277 2278 /* 2279 * There is a point where callout routines are no longer 2280 * cancelable. So there exists a window of time where the 2281 * driver enters detach() and tries to cancel the callout, but the 2282 * callout routine has passed the cancellation point. The detach() 2283 * routine is unaware of this and tries to free resources that the 2284 * callout routine needs. So we check for the detach state flag to 2285 * at least shrink the window of opportunity. 2286 */ 2287 if (ice_driver_is_detaching(sc)) 2288 return; 2289 2290 /* Fire off the admin task */ 2291 iflib_admin_intr_deferred(sc->ctx); 2292 2293 /* Reschedule the admin timer */ 2294 callout_schedule(&sc->admin_timer, hz/2); 2295 } 2296 2297 /** 2298 * ice_transition_recovery_mode - Transition to recovery mode 2299 * @sc: the device private softc 2300 * 2301 * Called when the driver detects that the firmware has entered recovery mode 2302 * at run time. 2303 */ 2304 static void 2305 ice_transition_recovery_mode(struct ice_softc *sc) 2306 { 2307 struct ice_vsi *vsi = &sc->pf_vsi; 2308 int i; 2309 2310 device_printf(sc->dev, "Firmware recovery mode detected. Limiting functionality. Refer to Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n"); 2311 2312 /* Tell the stack that the link has gone down */ 2313 iflib_link_state_change(sc->ctx, LINK_STATE_DOWN, 0); 2314 2315 /* Request that the device be re-initialized */ 2316 ice_request_stack_reinit(sc); 2317 2318 ice_rdma_pf_detach(sc); 2319 ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap); 2320 2321 #ifdef PCI_IOV 2322 if (ice_test_and_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en)) 2323 ice_iov_detach(sc); 2324 #else 2325 ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en); 2326 #endif /* PCI_IOV */ 2327 ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_cap); 2328 2329 ice_vsi_del_txqs_ctx(vsi); 2330 ice_vsi_del_rxqs_ctx(vsi); 2331 2332 for (i = 0; i < sc->num_available_vsi; i++) { 2333 if (sc->all_vsi[i]) 2334 ice_release_vsi(sc->all_vsi[i]); 2335 } 2336 sc->num_available_vsi = 0; 2337 2338 if (sc->all_vsi) { 2339 free(sc->all_vsi, M_ICE); 2340 sc->all_vsi = NULL; 2341 } 2342 2343 /* Destroy the interrupt manager */ 2344 ice_resmgr_destroy(&sc->dev_imgr); 2345 /* Destroy the queue managers */ 2346 ice_resmgr_destroy(&sc->tx_qmgr); 2347 ice_resmgr_destroy(&sc->rx_qmgr); 2348 2349 ice_deinit_hw(&sc->hw); 2350 } 2351 2352 /** 2353 * ice_transition_safe_mode - Transition to safe mode 2354 * @sc: the device private softc 2355 * 2356 * Called when the driver attempts to reload the DDP package during a device 2357 * reset, and the new download fails. If so, we must transition to safe mode 2358 * at run time. 2359 * 2360 * @remark although safe mode normally allocates only a single queue, we can't 2361 * change the number of queues dynamically when using iflib. Due to this, we 2362 * do not attempt to reduce the number of queues. 2363 */ 2364 static void 2365 ice_transition_safe_mode(struct ice_softc *sc) 2366 { 2367 /* Indicate that we are in Safe mode */ 2368 ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap); 2369 ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en); 2370 2371 ice_rdma_pf_detach(sc); 2372 ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap); 2373 2374 #ifdef PCI_IOV 2375 if (ice_test_and_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en)) 2376 ice_iov_detach(sc); 2377 #else 2378 ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_en); 2379 #endif /* PCI_IOV */ 2380 ice_clear_bit(ICE_FEATURE_SRIOV, sc->feat_cap); 2381 2382 ice_clear_bit(ICE_FEATURE_RSS, sc->feat_cap); 2383 ice_clear_bit(ICE_FEATURE_RSS, sc->feat_en); 2384 } 2385 2386 /** 2387 * ice_if_update_admin_status - update admin status 2388 * @ctx: iflib ctx structure 2389 * 2390 * Called by iflib to update the admin status. For our purposes, this means 2391 * check the adminq, and update the link status. It's ultimately triggered by 2392 * our admin interrupt, or by the ice_if_timer periodically. 2393 * 2394 * @pre assumes the caller holds the iflib CTX lock 2395 */ 2396 static void 2397 ice_if_update_admin_status(if_ctx_t ctx) 2398 { 2399 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 2400 enum ice_fw_modes fw_mode; 2401 bool reschedule = false; 2402 u16 pending = 0; 2403 2404 ASSERT_CTX_LOCKED(sc); 2405 2406 /* Check if the firmware entered recovery mode at run time */ 2407 fw_mode = ice_get_fw_mode(&sc->hw); 2408 if (fw_mode == ICE_FW_MODE_REC) { 2409 if (!ice_testandset_state(&sc->state, ICE_STATE_RECOVERY_MODE)) { 2410 /* If we just entered recovery mode, log a warning to 2411 * the system administrator and deinit driver state 2412 * that is no longer functional. 2413 */ 2414 ice_transition_recovery_mode(sc); 2415 } 2416 } else if (fw_mode == ICE_FW_MODE_ROLLBACK) { 2417 if (!ice_testandset_state(&sc->state, ICE_STATE_ROLLBACK_MODE)) { 2418 /* Rollback mode isn't fatal, but we don't want to 2419 * repeatedly post a message about it. 2420 */ 2421 ice_print_rollback_msg(&sc->hw); 2422 } 2423 } 2424 2425 /* Handle global reset events */ 2426 ice_handle_reset_event(sc); 2427 2428 /* Handle PF reset requests */ 2429 ice_handle_pf_reset_request(sc); 2430 2431 /* Handle MDD events */ 2432 ice_handle_mdd_event(sc); 2433 2434 if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED) || 2435 ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET) || 2436 ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) { 2437 /* 2438 * If we know the control queues are disabled, skip processing 2439 * the control queues entirely. 2440 */ 2441 ; 2442 } else if (ice_testandclear_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING)) { 2443 ice_process_ctrlq(sc, ICE_CTL_Q_ADMIN, &pending); 2444 if (pending > 0) 2445 reschedule = true; 2446 2447 if (ice_is_generic_mac(&sc->hw)) { 2448 ice_process_ctrlq(sc, ICE_CTL_Q_SB, &pending); 2449 if (pending > 0) 2450 reschedule = true; 2451 } 2452 2453 ice_process_ctrlq(sc, ICE_CTL_Q_MAILBOX, &pending); 2454 if (pending > 0) 2455 reschedule = true; 2456 } 2457 2458 /* Poll for link up */ 2459 ice_poll_for_media_avail(sc); 2460 2461 /* Check and update link status */ 2462 ice_update_link_status(sc, false); 2463 2464 #ifdef PCI_IOV 2465 /* 2466 * Schedule VFs' reset handler after global resets 2467 * and other events were processed. 2468 */ 2469 if (ice_testandclear_state(&sc->state, ICE_STATE_VFLR_PENDING)) 2470 iflib_iov_intr_deferred(ctx); 2471 #endif 2472 2473 /* 2474 * If there are still messages to process, we need to reschedule 2475 * ourselves. Otherwise, we can just re-enable the interrupt. We'll be 2476 * woken up at the next interrupt or timer event. 2477 */ 2478 if (reschedule) { 2479 ice_set_state(&sc->state, ICE_STATE_CONTROLQ_EVENT_PENDING); 2480 iflib_admin_intr_deferred(ctx); 2481 } else { 2482 ice_enable_intr(&sc->hw, sc->irqvs[0].me); 2483 } 2484 } 2485 2486 /** 2487 * ice_prepare_for_reset - Prepare device for an impending reset 2488 * @sc: The device private softc 2489 * 2490 * Prepare the driver for an impending reset, shutting down VSIs, clearing the 2491 * scheduler setup, and shutting down controlqs. Uses the 2492 * ICE_STATE_PREPARED_FOR_RESET to indicate whether we've already prepared the 2493 * driver for reset or not. 2494 */ 2495 static void 2496 ice_prepare_for_reset(struct ice_softc *sc) 2497 { 2498 struct ice_hw *hw = &sc->hw; 2499 2500 /* If we're already prepared, there's nothing to do */ 2501 if (ice_testandset_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) 2502 return; 2503 2504 log(LOG_INFO, "%s: preparing to reset device logic\n", if_name(sc->ifp)); 2505 2506 /* In recovery mode, hardware is not initialized */ 2507 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 2508 return; 2509 2510 /* inform the RDMA client */ 2511 ice_rdma_notify_reset(sc); 2512 /* stop the RDMA client */ 2513 ice_rdma_pf_stop(sc); 2514 2515 /* Release the main PF VSI queue mappings */ 2516 ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap, 2517 sc->pf_vsi.num_tx_queues); 2518 ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap, 2519 sc->pf_vsi.num_rx_queues); 2520 if (sc->mirr_if) { 2521 ice_resmgr_release_map(&sc->tx_qmgr, sc->mirr_if->vsi->tx_qmap, 2522 sc->mirr_if->num_irq_vectors); 2523 ice_resmgr_release_map(&sc->rx_qmgr, sc->mirr_if->vsi->rx_qmap, 2524 sc->mirr_if->num_irq_vectors); 2525 } 2526 2527 ice_clear_hw_tbls(hw); 2528 2529 if (hw->port_info) 2530 ice_sched_cleanup_all(hw); 2531 2532 ice_shutdown_all_ctrlq(hw, false); 2533 } 2534 2535 /** 2536 * ice_rebuild_pf_vsi_qmap - Rebuild the main PF VSI queue mapping 2537 * @sc: the device softc pointer 2538 * 2539 * Loops over the Tx and Rx queues for the main PF VSI and reassigns the queue 2540 * mapping after a reset occurred. 2541 */ 2542 static int 2543 ice_rebuild_pf_vsi_qmap(struct ice_softc *sc) 2544 { 2545 struct ice_vsi *vsi = &sc->pf_vsi; 2546 struct ice_tx_queue *txq; 2547 struct ice_rx_queue *rxq; 2548 int err, i; 2549 2550 /* Re-assign Tx queues from PF space to the main VSI */ 2551 err = ice_resmgr_assign_contiguous(&sc->tx_qmgr, vsi->tx_qmap, 2552 vsi->num_tx_queues); 2553 if (err) { 2554 device_printf(sc->dev, "Unable to re-assign PF Tx queues: %s\n", 2555 ice_err_str(err)); 2556 return (err); 2557 } 2558 2559 /* Re-assign Rx queues from PF space to this VSI */ 2560 err = ice_resmgr_assign_contiguous(&sc->rx_qmgr, vsi->rx_qmap, 2561 vsi->num_rx_queues); 2562 if (err) { 2563 device_printf(sc->dev, "Unable to re-assign PF Rx queues: %s\n", 2564 ice_err_str(err)); 2565 goto err_release_tx_queues; 2566 } 2567 2568 vsi->qmap_type = ICE_RESMGR_ALLOC_CONTIGUOUS; 2569 2570 /* Re-assign Tx queue tail pointers */ 2571 for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) 2572 txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]); 2573 2574 /* Re-assign Rx queue tail pointers */ 2575 for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++) 2576 rxq->tail = QRX_TAIL(vsi->rx_qmap[i]); 2577 2578 return (0); 2579 2580 err_release_tx_queues: 2581 ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap, 2582 sc->pf_vsi.num_tx_queues); 2583 2584 return (err); 2585 } 2586 2587 /* determine if the iflib context is active */ 2588 #define CTX_ACTIVE(ctx) ((if_getdrvflags(iflib_get_ifp(ctx)) & IFF_DRV_RUNNING)) 2589 2590 /** 2591 * ice_rebuild_recovery_mode - Rebuild driver state while in recovery mode 2592 * @sc: The device private softc 2593 * 2594 * Handle a driver rebuild while in recovery mode. This will only rebuild the 2595 * limited functionality supported while in recovery mode. 2596 */ 2597 static void 2598 ice_rebuild_recovery_mode(struct ice_softc *sc) 2599 { 2600 device_t dev = sc->dev; 2601 2602 /* enable PCIe bus master */ 2603 pci_enable_busmaster(dev); 2604 2605 /* Configure interrupt causes for the administrative interrupt */ 2606 ice_configure_misc_interrupts(sc); 2607 2608 /* Enable ITR 0 right away, so that we can handle admin interrupts */ 2609 ice_enable_intr(&sc->hw, sc->irqvs[0].me); 2610 2611 /* Now that the rebuild is finished, we're no longer prepared to reset */ 2612 ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET); 2613 2614 log(LOG_INFO, "%s: device rebuild successful\n", if_name(sc->ifp)); 2615 2616 /* In order to completely restore device functionality, the iflib core 2617 * needs to be reset. We need to request an iflib reset. Additionally, 2618 * because the state of IFC_DO_RESET is cached within task_fn_admin in 2619 * the iflib core, we also want re-run the admin task so that iflib 2620 * resets immediately instead of waiting for the next interrupt. 2621 */ 2622 ice_request_stack_reinit(sc); 2623 2624 return; 2625 } 2626 2627 /** 2628 * ice_rebuild - Rebuild driver state post reset 2629 * @sc: The device private softc 2630 * 2631 * Restore driver state after a reset occurred. Restart the controlqs, setup 2632 * the hardware port, and re-enable the VSIs. 2633 */ 2634 static void 2635 ice_rebuild(struct ice_softc *sc) 2636 { 2637 struct ice_hw *hw = &sc->hw; 2638 device_t dev = sc->dev; 2639 enum ice_ddp_state pkg_state; 2640 int status; 2641 int err; 2642 2643 sc->rebuild_ticks = ticks; 2644 2645 /* If we're rebuilding, then a reset has succeeded. */ 2646 ice_clear_state(&sc->state, ICE_STATE_RESET_FAILED); 2647 2648 /* 2649 * If the firmware is in recovery mode, only restore the limited 2650 * functionality supported by recovery mode. 2651 */ 2652 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) { 2653 ice_rebuild_recovery_mode(sc); 2654 return; 2655 } 2656 2657 /* enable PCIe bus master */ 2658 pci_enable_busmaster(dev); 2659 2660 status = ice_init_all_ctrlq(hw); 2661 if (status) { 2662 device_printf(dev, "failed to re-init controlqs, err %s\n", 2663 ice_status_str(status)); 2664 goto err_shutdown_ctrlq; 2665 } 2666 2667 /* Query the allocated resources for Tx scheduler */ 2668 status = ice_sched_query_res_alloc(hw); 2669 if (status) { 2670 device_printf(dev, 2671 "Failed to query scheduler resources, err %s aq_err %s\n", 2672 ice_status_str(status), 2673 ice_aq_str(hw->adminq.sq_last_status)); 2674 goto err_shutdown_ctrlq; 2675 } 2676 2677 /* Re-enable FW logging. Keep going even if this fails */ 2678 status = ICE_SUCCESS; 2679 if (hw->pf_id == 0) 2680 status = ice_fwlog_set(hw, &hw->fwlog_cfg); 2681 if (!status) { 2682 /* 2683 * We should have the most updated cached copy of the 2684 * configuration, regardless of whether we're rebuilding 2685 * or not. So we'll simply check to see if logging was 2686 * enabled pre-rebuild. 2687 */ 2688 if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) { 2689 status = ice_fwlog_register(hw); 2690 if (status) 2691 device_printf(dev, "failed to re-register fw logging, err %s aq_err %s\n", 2692 ice_status_str(status), 2693 ice_aq_str(hw->adminq.sq_last_status)); 2694 } 2695 } else 2696 device_printf(dev, "failed to rebuild fw logging configuration, err %s aq_err %s\n", 2697 ice_status_str(status), 2698 ice_aq_str(hw->adminq.sq_last_status)); 2699 2700 err = ice_send_version(sc); 2701 if (err) 2702 goto err_shutdown_ctrlq; 2703 2704 err = ice_init_link_events(sc); 2705 if (err) { 2706 device_printf(dev, "ice_init_link_events failed: %s\n", 2707 ice_err_str(err)); 2708 goto err_shutdown_ctrlq; 2709 } 2710 2711 status = ice_clear_pf_cfg(hw); 2712 if (status) { 2713 device_printf(dev, "failed to clear PF configuration, err %s\n", 2714 ice_status_str(status)); 2715 goto err_shutdown_ctrlq; 2716 } 2717 2718 ice_clean_all_vsi_rss_cfg(sc); 2719 2720 ice_clear_pxe_mode(hw); 2721 2722 status = ice_get_caps(hw); 2723 if (status) { 2724 device_printf(dev, "failed to get capabilities, err %s\n", 2725 ice_status_str(status)); 2726 goto err_shutdown_ctrlq; 2727 } 2728 2729 status = ice_sched_init_port(hw->port_info); 2730 if (status) { 2731 device_printf(dev, "failed to initialize port, err %s\n", 2732 ice_status_str(status)); 2733 goto err_sched_cleanup; 2734 } 2735 2736 /* If we previously loaded the package, it needs to be reloaded now */ 2737 if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_SAFE_MODE)) { 2738 pkg_state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 2739 if (!ice_is_init_pkg_successful(pkg_state)) { 2740 ice_log_pkg_init(sc, pkg_state); 2741 ice_transition_safe_mode(sc); 2742 } 2743 } 2744 2745 ice_reset_pf_stats(sc); 2746 2747 err = ice_rebuild_pf_vsi_qmap(sc); 2748 if (err) { 2749 device_printf(sc->dev, "Unable to re-assign main VSI queues, err %s\n", 2750 ice_err_str(err)); 2751 goto err_sched_cleanup; 2752 } 2753 err = ice_initialize_vsi(&sc->pf_vsi); 2754 if (err) { 2755 device_printf(sc->dev, "Unable to re-initialize Main VSI, err %s\n", 2756 ice_err_str(err)); 2757 goto err_release_queue_allocations; 2758 } 2759 2760 /* Replay all VSI configuration */ 2761 err = ice_replay_all_vsi_cfg(sc); 2762 if (err) 2763 goto err_deinit_pf_vsi; 2764 2765 /* Re-enable FW health event reporting */ 2766 ice_init_health_events(sc); 2767 2768 /* Reconfigure the main PF VSI for RSS */ 2769 err = ice_config_rss(&sc->pf_vsi); 2770 if (err) { 2771 device_printf(sc->dev, 2772 "Unable to reconfigure RSS for the main VSI, err %s\n", 2773 ice_err_str(err)); 2774 goto err_deinit_pf_vsi; 2775 } 2776 2777 if (hw->port_info->qos_cfg.is_sw_lldp) 2778 ice_add_rx_lldp_filter(sc); 2779 2780 /* Apply previous link settings and refresh link status, if PHY 2781 * FW is ready. 2782 */ 2783 ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED); 2784 ice_init_link(sc); 2785 2786 /* RDMA interface will be restarted by the stack re-init */ 2787 2788 /* Configure interrupt causes for the administrative interrupt */ 2789 ice_configure_misc_interrupts(sc); 2790 2791 /* Enable ITR 0 right away, so that we can handle admin interrupts */ 2792 ice_enable_intr(&sc->hw, sc->irqvs[0].me); 2793 2794 /* Now that the rebuild is finished, we're no longer prepared to reset */ 2795 ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET); 2796 2797 /* Reconfigure the subinterface */ 2798 if (sc->mirr_if) { 2799 err = ice_subif_rebuild(sc); 2800 if (err) 2801 goto err_deinit_pf_vsi; 2802 } 2803 2804 log(LOG_INFO, "%s: device rebuild successful\n", if_name(sc->ifp)); 2805 2806 /* In order to completely restore device functionality, the iflib core 2807 * needs to be reset. We need to request an iflib reset. Additionally, 2808 * because the state of IFC_DO_RESET is cached within task_fn_admin in 2809 * the iflib core, we also want re-run the admin task so that iflib 2810 * resets immediately instead of waiting for the next interrupt. 2811 * If LLDP is enabled we need to reconfig DCB to properly reinit all TC 2812 * queues, not only 0. It contains ice_request_stack_reinit as well. 2813 */ 2814 if (hw->port_info->qos_cfg.is_sw_lldp) 2815 ice_request_stack_reinit(sc); 2816 else 2817 ice_do_dcb_reconfig(sc, false); 2818 2819 return; 2820 2821 err_deinit_pf_vsi: 2822 ice_deinit_vsi(&sc->pf_vsi); 2823 err_release_queue_allocations: 2824 ice_resmgr_release_map(&sc->tx_qmgr, sc->pf_vsi.tx_qmap, 2825 sc->pf_vsi.num_tx_queues); 2826 ice_resmgr_release_map(&sc->rx_qmgr, sc->pf_vsi.rx_qmap, 2827 sc->pf_vsi.num_rx_queues); 2828 err_sched_cleanup: 2829 ice_sched_cleanup_all(hw); 2830 err_shutdown_ctrlq: 2831 ice_shutdown_all_ctrlq(hw, false); 2832 ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET); 2833 ice_set_state(&sc->state, ICE_STATE_RESET_FAILED); 2834 device_printf(dev, "Driver rebuild failed, please reload the device driver\n"); 2835 } 2836 2837 /** 2838 * ice_handle_reset_event - Handle reset events triggered by OICR 2839 * @sc: The device private softc 2840 * 2841 * Handle reset events triggered by an OICR notification. This includes CORER, 2842 * GLOBR, and EMPR resets triggered by software on this or any other PF or by 2843 * firmware. 2844 * 2845 * @pre assumes the iflib context lock is held, and will unlock it while 2846 * waiting for the hardware to finish reset. 2847 */ 2848 static void 2849 ice_handle_reset_event(struct ice_softc *sc) 2850 { 2851 struct ice_hw *hw = &sc->hw; 2852 int status; 2853 device_t dev = sc->dev; 2854 2855 /* When a CORER, GLOBR, or EMPR is about to happen, the hardware will 2856 * trigger an OICR interrupt. Our OICR handler will determine when 2857 * this occurs and set the ICE_STATE_RESET_OICR_RECV bit as 2858 * appropriate. 2859 */ 2860 if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_OICR_RECV)) 2861 return; 2862 2863 ice_prepare_for_reset(sc); 2864 2865 /* 2866 * Release the iflib context lock and wait for the device to finish 2867 * resetting. 2868 */ 2869 IFLIB_CTX_UNLOCK(sc); 2870 2871 #define ICE_EMPR_ADDL_WAIT_MSEC_SLOW 20000 2872 if ((ice_is_e830(hw) || ice_is_e825c(hw)) && 2873 (((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2874 GLGEN_RSTAT_RESET_TYPE_S) == ICE_RESET_EMPR)) 2875 ice_msec_pause(ICE_EMPR_ADDL_WAIT_MSEC_SLOW); 2876 2877 status = ice_check_reset(hw); 2878 IFLIB_CTX_LOCK(sc); 2879 if (status) { 2880 device_printf(dev, "Device never came out of reset, err %s\n", 2881 ice_status_str(status)); 2882 2883 ice_set_state(&sc->state, ICE_STATE_RESET_FAILED); 2884 ice_clear_state(&sc->state, ICE_STATE_RESET_PFR_REQ); 2885 ice_clear_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET); 2886 device_printf(dev, "Reset failed; please reload the device driver\n"); 2887 return; 2888 } 2889 2890 /* We're done with the reset, so we can rebuild driver state */ 2891 sc->hw.reset_ongoing = false; 2892 ice_rebuild(sc); 2893 2894 /* In the unlikely event that a PF reset request occurs at the same 2895 * time as a global reset, clear the request now. This avoids 2896 * resetting a second time right after we reset due to a global event. 2897 */ 2898 if (ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ)) 2899 device_printf(dev, "Ignoring PFR request that occurred while a reset was ongoing\n"); 2900 } 2901 2902 /** 2903 * ice_handle_pf_reset_request - Initiate PF reset requested by software 2904 * @sc: The device private softc 2905 * 2906 * Initiate a PF reset requested by software. We handle this in the admin task 2907 * so that only one thread actually handles driver preparation and cleanup, 2908 * rather than having multiple threads possibly attempt to run this code 2909 * simultaneously. 2910 * 2911 * @pre assumes the iflib context lock is held and will unlock it while 2912 * waiting for the PF reset to complete. 2913 */ 2914 static void 2915 ice_handle_pf_reset_request(struct ice_softc *sc) 2916 { 2917 struct ice_hw *hw = &sc->hw; 2918 int status; 2919 2920 /* Check for PF reset requests */ 2921 if (!ice_testandclear_state(&sc->state, ICE_STATE_RESET_PFR_REQ)) 2922 return; 2923 2924 /* Make sure we're prepared for reset */ 2925 ice_prepare_for_reset(sc); 2926 2927 /* 2928 * Release the iflib context lock and wait for the device to finish 2929 * resetting. 2930 */ 2931 IFLIB_CTX_UNLOCK(sc); 2932 status = ice_reset(hw, ICE_RESET_PFR); 2933 IFLIB_CTX_LOCK(sc); 2934 if (status) { 2935 device_printf(sc->dev, "device PF reset failed, err %s\n", 2936 ice_status_str(status)); 2937 ice_set_state(&sc->state, ICE_STATE_RESET_FAILED); 2938 return; 2939 } 2940 2941 sc->soft_stats.pfr_count++; 2942 ice_rebuild(sc); 2943 } 2944 2945 /** 2946 * ice_init_device_features - Init device driver features 2947 * @sc: driver softc structure 2948 * 2949 * @pre assumes that the function capabilities bits have been set up by 2950 * ice_init_hw(). 2951 */ 2952 static void 2953 ice_init_device_features(struct ice_softc *sc) 2954 { 2955 struct ice_hw *hw = &sc->hw; 2956 2957 /* Set capabilities that all devices support */ 2958 ice_set_bit(ICE_FEATURE_SRIOV, sc->feat_cap); 2959 ice_set_bit(ICE_FEATURE_RSS, sc->feat_cap); 2960 ice_set_bit(ICE_FEATURE_RDMA, sc->feat_cap); 2961 ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_cap); 2962 ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_1, sc->feat_cap); 2963 ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_2, sc->feat_cap); 2964 ice_set_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap); 2965 ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap); 2966 ice_set_bit(ICE_FEATURE_HAS_PBA, sc->feat_cap); 2967 ice_set_bit(ICE_FEATURE_DCB, sc->feat_cap); 2968 ice_set_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap); 2969 ice_set_bit(ICE_FEATURE_PHY_STATISTICS, sc->feat_cap); 2970 2971 if (ice_is_e810(hw)) 2972 ice_set_bit(ICE_FEATURE_PHY_STATISTICS, sc->feat_en); 2973 2974 if (ice_is_e825c(hw)) 2975 ice_set_bit(ICE_FEATURE_DUAL_NAC, sc->feat_cap); 2976 /* Disable features due to hardware limitations... */ 2977 if (!hw->func_caps.common_cap.rss_table_size) 2978 ice_clear_bit(ICE_FEATURE_RSS, sc->feat_cap); 2979 if (!hw->func_caps.common_cap.iwarp || !ice_enable_irdma) 2980 ice_clear_bit(ICE_FEATURE_RDMA, sc->feat_cap); 2981 if (!hw->func_caps.common_cap.dcb) 2982 ice_clear_bit(ICE_FEATURE_DCB, sc->feat_cap); 2983 /* Disable features due to firmware limitations... */ 2984 if (!ice_is_fw_health_report_supported(hw)) 2985 ice_clear_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_cap); 2986 if (!ice_fwlog_supported(hw)) 2987 ice_clear_bit(ICE_FEATURE_FW_LOGGING, sc->feat_cap); 2988 if (hw->fwlog_cfg.options & ICE_FWLOG_OPTION_IS_REGISTERED) { 2989 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_FW_LOGGING)) 2990 ice_set_bit(ICE_FEATURE_FW_LOGGING, sc->feat_en); 2991 else 2992 ice_fwlog_unregister(hw); 2993 } 2994 2995 /* Disable capabilities not supported by the OS */ 2996 ice_disable_unsupported_features(sc->feat_cap); 2997 2998 /* RSS is always enabled for iflib */ 2999 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_RSS)) 3000 ice_set_bit(ICE_FEATURE_RSS, sc->feat_en); 3001 3002 /* Disable features based on sysctl settings */ 3003 if (!ice_tx_balance_en) 3004 ice_clear_bit(ICE_FEATURE_TX_BALANCE, sc->feat_cap); 3005 3006 if (hw->dev_caps.supported_sensors & ICE_SENSOR_SUPPORT_E810_INT_TEMP) { 3007 ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_cap); 3008 ice_set_bit(ICE_FEATURE_TEMP_SENSOR, sc->feat_en); 3009 } 3010 3011 if (hw->func_caps.common_cap.next_cluster_id_support || 3012 hw->dev_caps.common_cap.next_cluster_id_support) { 3013 ice_set_bit(ICE_FEATURE_NEXT_CLUSTER_ID, sc->feat_cap); 3014 ice_set_bit(ICE_FEATURE_NEXT_CLUSTER_ID, sc->feat_en); 3015 } 3016 } 3017 3018 /** 3019 * ice_if_multi_set - Callback to update Multicast filters in HW 3020 * @ctx: iflib ctx structure 3021 * 3022 * Called by iflib in response to SIOCDELMULTI and SIOCADDMULTI. Must search 3023 * the if_multiaddrs list and determine which filters have been added or 3024 * removed from the list, and update HW programming to reflect the new list. 3025 * 3026 * @pre assumes the caller holds the iflib CTX lock 3027 */ 3028 static void 3029 ice_if_multi_set(if_ctx_t ctx) 3030 { 3031 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3032 int err; 3033 3034 ASSERT_CTX_LOCKED(sc); 3035 3036 /* Do not handle multicast configuration in recovery mode */ 3037 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 3038 return; 3039 3040 err = ice_sync_multicast_filters(sc); 3041 if (err) { 3042 device_printf(sc->dev, 3043 "Failed to synchronize multicast filter list: %s\n", 3044 ice_err_str(err)); 3045 return; 3046 } 3047 } 3048 3049 /** 3050 * ice_if_vlan_register - Register a VLAN with the hardware 3051 * @ctx: iflib ctx pointer 3052 * @vtag: VLAN to add 3053 * 3054 * Programs the main PF VSI with a hardware filter for the given VLAN. 3055 * 3056 * @pre assumes the caller holds the iflib CTX lock 3057 */ 3058 static void 3059 ice_if_vlan_register(if_ctx_t ctx, u16 vtag) 3060 { 3061 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3062 int status; 3063 3064 ASSERT_CTX_LOCKED(sc); 3065 3066 /* Do not handle VLAN configuration in recovery mode */ 3067 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 3068 return; 3069 3070 status = ice_add_vlan_hw_filter(&sc->pf_vsi, vtag); 3071 if (status) { 3072 device_printf(sc->dev, 3073 "Failure adding VLAN %d to main VSI, err %s aq_err %s\n", 3074 vtag, ice_status_str(status), 3075 ice_aq_str(sc->hw.adminq.sq_last_status)); 3076 } 3077 } 3078 3079 /** 3080 * ice_if_vlan_unregister - Remove a VLAN filter from the hardware 3081 * @ctx: iflib ctx pointer 3082 * @vtag: VLAN to add 3083 * 3084 * Removes the previously programmed VLAN filter from the main PF VSI. 3085 * 3086 * @pre assumes the caller holds the iflib CTX lock 3087 */ 3088 static void 3089 ice_if_vlan_unregister(if_ctx_t ctx, u16 vtag) 3090 { 3091 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3092 int status; 3093 3094 ASSERT_CTX_LOCKED(sc); 3095 3096 /* Do not handle VLAN configuration in recovery mode */ 3097 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 3098 return; 3099 3100 status = ice_remove_vlan_hw_filter(&sc->pf_vsi, vtag); 3101 if (status) { 3102 device_printf(sc->dev, 3103 "Failure removing VLAN %d from main VSI, err %s aq_err %s\n", 3104 vtag, ice_status_str(status), 3105 ice_aq_str(sc->hw.adminq.sq_last_status)); 3106 } 3107 } 3108 3109 /** 3110 * ice_if_stop - Stop the device 3111 * @ctx: iflib context structure 3112 * 3113 * Called by iflib to stop the device and bring it down. (i.e. ifconfig ice0 3114 * down) 3115 * 3116 * @pre assumes the caller holds the iflib CTX lock 3117 */ 3118 static void 3119 ice_if_stop(if_ctx_t ctx) 3120 { 3121 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 3122 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3123 3124 ASSERT_CTX_LOCKED(sc); 3125 3126 /* 3127 * The iflib core may call IFDI_STOP prior to the first call to 3128 * IFDI_INIT. This will cause us to attempt to remove MAC filters we 3129 * don't have, and disable Tx queues which aren't yet configured. 3130 * Although it is likely these extra operations are harmless, they do 3131 * cause spurious warning messages to be displayed, which may confuse 3132 * users. 3133 * 3134 * To avoid these messages, we use a state bit indicating if we've 3135 * been initialized. It will be set when ice_if_init is called, and 3136 * cleared here in ice_if_stop. 3137 */ 3138 if (!ice_testandclear_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED)) 3139 return; 3140 3141 if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) { 3142 device_printf(sc->dev, "request to stop interface cannot be completed as the device failed to reset\n"); 3143 return; 3144 } 3145 3146 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) { 3147 device_printf(sc->dev, "request to stop interface while device is prepared for impending reset\n"); 3148 return; 3149 } 3150 3151 ice_rdma_pf_stop(sc); 3152 3153 /* Remove the MAC filters, stop Tx, and stop Rx. We don't check the 3154 * return of these functions because there's nothing we can really do 3155 * if they fail, and the functions already print error messages. 3156 * Just try to shut down as much as we can. 3157 */ 3158 ice_rm_pf_default_mac_filters(sc); 3159 3160 /* Dissociate the Tx and Rx queues from the interrupts */ 3161 ice_flush_txq_interrupts(&sc->pf_vsi); 3162 ice_flush_rxq_interrupts(&sc->pf_vsi); 3163 3164 /* Disable the Tx and Rx queues */ 3165 ice_vsi_disable_tx(&sc->pf_vsi); 3166 ice_control_all_rx_queues(&sc->pf_vsi, false); 3167 3168 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) && 3169 !(if_getflags(sc->ifp) & IFF_UP) && sc->link_up) 3170 ice_set_link(sc, false); 3171 3172 if (sc->mirr_if && ice_test_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT)) { 3173 ice_subif_if_stop(sc->mirr_if->subctx); 3174 device_printf(sc->dev, "The subinterface also comes down and up after reset\n"); 3175 } 3176 } 3177 3178 /** 3179 * ice_if_get_counter - Get current value of an ifnet statistic 3180 * @ctx: iflib context pointer 3181 * @counter: ifnet counter to read 3182 * 3183 * Reads the current value of an ifnet counter for the device. 3184 * 3185 * This function is not protected by the iflib CTX lock. 3186 */ 3187 static uint64_t 3188 ice_if_get_counter(if_ctx_t ctx, ift_counter counter) 3189 { 3190 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3191 3192 /* Return the counter for the main PF VSI */ 3193 return ice_get_ifnet_counter(&sc->pf_vsi, counter); 3194 } 3195 3196 /** 3197 * ice_request_stack_reinit - Request that iflib re-initialize 3198 * @sc: the device private softc 3199 * 3200 * Request that the device be brought down and up, to re-initialize. For 3201 * example, this may be called when a device reset occurs, or when Tx and Rx 3202 * queues need to be re-initialized. 3203 * 3204 * This is required because the iflib state is outside the driver, and must be 3205 * re-initialized if we need to resart Tx and Rx queues. 3206 */ 3207 void 3208 ice_request_stack_reinit(struct ice_softc *sc) 3209 { 3210 if (CTX_ACTIVE(sc->ctx)) { 3211 iflib_request_reset(sc->ctx); 3212 iflib_admin_intr_deferred(sc->ctx); 3213 } 3214 } 3215 3216 /** 3217 * ice_driver_is_detaching - Check if the driver is detaching/unloading 3218 * @sc: device private softc 3219 * 3220 * Returns true if the driver is detaching, false otherwise. 3221 * 3222 * @remark on newer kernels, take advantage of iflib_in_detach in order to 3223 * report detachment correctly as early as possible. 3224 * 3225 * @remark this function is used by various code paths that want to avoid 3226 * running if the driver is about to be removed. This includes sysctls and 3227 * other driver access points. Note that it does not fully resolve 3228 * detach-based race conditions as it is possible for a thread to race with 3229 * iflib_in_detach. 3230 */ 3231 bool 3232 ice_driver_is_detaching(struct ice_softc *sc) 3233 { 3234 return (ice_test_state(&sc->state, ICE_STATE_DETACHING) || 3235 iflib_in_detach(sc->ctx)); 3236 } 3237 3238 /** 3239 * ice_if_priv_ioctl - Device private ioctl handler 3240 * @ctx: iflib context pointer 3241 * @command: The ioctl command issued 3242 * @data: ioctl specific data 3243 * 3244 * iflib callback for handling custom driver specific ioctls. 3245 * 3246 * @pre Assumes that the iflib context lock is held. 3247 */ 3248 static int 3249 ice_if_priv_ioctl(if_ctx_t ctx, u_long command, caddr_t data) 3250 { 3251 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3252 struct ifdrv *ifd; 3253 device_t dev = sc->dev; 3254 3255 if (data == NULL) 3256 return (EINVAL); 3257 3258 ASSERT_CTX_LOCKED(sc); 3259 3260 /* Make sure the command type is valid */ 3261 switch (command) { 3262 case SIOCSDRVSPEC: 3263 case SIOCGDRVSPEC: 3264 /* Accepted commands */ 3265 break; 3266 case SIOCGPRIVATE_0: 3267 /* 3268 * Although we do not support this ioctl command, it's 3269 * expected that iflib will forward it to the IFDI_PRIV_IOCTL 3270 * handler. Do not print a message in this case 3271 */ 3272 return (ENOTSUP); 3273 default: 3274 /* 3275 * If we get a different command for this function, it's 3276 * definitely unexpected, so log a message indicating what 3277 * command we got for debugging purposes. 3278 */ 3279 device_printf(dev, "%s: unexpected ioctl command %08lx\n", 3280 __func__, command); 3281 return (EINVAL); 3282 } 3283 3284 ifd = (struct ifdrv *)data; 3285 3286 switch (ifd->ifd_cmd) { 3287 case ICE_NVM_ACCESS: 3288 return ice_handle_nvm_access_ioctl(sc, ifd); 3289 case ICE_DEBUG_DUMP: 3290 return ice_handle_debug_dump_ioctl(sc, ifd); 3291 default: 3292 return EINVAL; 3293 } 3294 } 3295 3296 /** 3297 * ice_if_i2c_req - I2C request handler for iflib 3298 * @ctx: iflib context pointer 3299 * @req: The I2C parameters to use 3300 * 3301 * Read from the port's I2C eeprom using the parameters from the ioctl. 3302 * 3303 * @remark The iflib-only part is pretty simple. 3304 */ 3305 static int 3306 ice_if_i2c_req(if_ctx_t ctx, struct ifi2creq *req) 3307 { 3308 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3309 3310 return ice_handle_i2c_req(sc, req); 3311 } 3312 3313 /** 3314 * ice_if_suspend - PCI device suspend handler for iflib 3315 * @ctx: iflib context pointer 3316 * 3317 * Deinitializes the driver and clears HW resources in preparation for 3318 * suspend or an FLR. 3319 * 3320 * @returns 0; this return value is ignored 3321 */ 3322 static int 3323 ice_if_suspend(if_ctx_t ctx) 3324 { 3325 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3326 3327 /* At least a PFR is always going to happen after this; 3328 * either via FLR or during the D3->D0 transition. 3329 */ 3330 ice_clear_state(&sc->state, ICE_STATE_RESET_PFR_REQ); 3331 3332 ice_prepare_for_reset(sc); 3333 3334 return (0); 3335 } 3336 3337 /** 3338 * ice_if_resume - PCI device resume handler for iflib 3339 * @ctx: iflib context pointer 3340 * 3341 * Reinitializes the driver and the HW after PCI resume or after 3342 * an FLR. An init is performed by iflib after this function is finished. 3343 * 3344 * @returns 0; this return value is ignored 3345 */ 3346 static int 3347 ice_if_resume(if_ctx_t ctx) 3348 { 3349 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3350 3351 ice_rebuild(sc); 3352 3353 return (0); 3354 } 3355 3356 /** 3357 * ice_if_needs_restart - Tell iflib when the driver needs to be reinitialized 3358 * @ctx: iflib context pointer 3359 * @event: event code to check 3360 * 3361 * Defaults to returning true for unknown events. 3362 * 3363 * @returns true if iflib needs to reinit the interface 3364 */ 3365 static bool 3366 ice_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event) 3367 { 3368 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3369 3370 switch (event) { 3371 case IFLIB_RESTART_VLAN_CONFIG: 3372 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) && 3373 !(if_getflags(sc->ifp) & IFF_UP)) 3374 return false; 3375 default: 3376 return true; 3377 } 3378 } 3379 3380 /** 3381 * ice_init_link - Do link configuration and link status reporting 3382 * @sc: driver private structure 3383 * 3384 * Contains an extra check that skips link config when an E830 device 3385 * does not have the "FW_LOADING"/"PHYBUSY" bit set in GL_MNG_FWSM set. 3386 */ 3387 static void 3388 ice_init_link(struct ice_softc *sc) 3389 { 3390 struct ice_hw *hw = &sc->hw; 3391 device_t dev = sc->dev; 3392 3393 /* Check if FW is ready before setting up link; defer setup to the 3394 * admin task if it isn't. 3395 */ 3396 if (ice_is_e830(hw) && 3397 (rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M)) { 3398 ice_set_state(&sc->state, ICE_STATE_PHY_FW_INIT_PENDING); 3399 device_printf(dev, 3400 "Link initialization is blocked by PHY FW initialization.\n"); 3401 device_printf(dev, 3402 "Link initialization will continue after PHY FW initialization completes.\n"); 3403 /* Do not access PHY config while PHY FW is busy initializing */ 3404 } else { 3405 ice_clear_state(&sc->state, ICE_STATE_PHY_FW_INIT_PENDING); 3406 ice_init_link_configuration(sc); 3407 ice_update_link_status(sc, true); 3408 } 3409 3410 } 3411 3412 #ifdef PCI_IOV 3413 /** 3414 * ice_if_iov_init - iov init handler for iflib 3415 * @ctx: iflib context pointer 3416 * @num_vfs: number of VFs to create 3417 * @params: configuration parameters for the PF 3418 * 3419 * Configure the driver for SR-IOV mode. Used to setup things like memory 3420 * before any VFs are created. 3421 * 3422 * @remark This is a wrapper for ice_iov_init 3423 */ 3424 static int 3425 ice_if_iov_init(if_ctx_t ctx, uint16_t num_vfs, const nvlist_t *params) 3426 { 3427 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3428 3429 return ice_iov_init(sc, num_vfs, params); 3430 } 3431 3432 /** 3433 * ice_if_iov_uninit - iov uninit handler for iflib 3434 * @ctx: iflib context pointer 3435 * 3436 * Destroys VFs and frees their memory and resources. 3437 * 3438 * @remark This is a wrapper for ice_iov_uninit 3439 */ 3440 static void 3441 ice_if_iov_uninit(if_ctx_t ctx) 3442 { 3443 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3444 3445 ice_iov_uninit(sc); 3446 } 3447 3448 /** 3449 * ice_if_iov_vf_add - iov add vf handler for iflib 3450 * @ctx: iflib context pointer 3451 * @vfnum: index of VF to configure 3452 * @params: configuration parameters for the VF 3453 * 3454 * Sets up the VF given by the vfnum index. This is called by the OS 3455 * for each VF created by the PF driver after it is spawned. 3456 * 3457 * @remark This is a wrapper for ice_iov_vf_add 3458 */ 3459 static int 3460 ice_if_iov_vf_add(if_ctx_t ctx, uint16_t vfnum, const nvlist_t *params) 3461 { 3462 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3463 3464 return ice_iov_add_vf(sc, vfnum, params); 3465 } 3466 3467 /** 3468 * ice_if_vflr_handle - iov VFLR handler 3469 * @ctx: iflib context pointer 3470 * 3471 * Performs the necessar teardown or setup required for a VF after 3472 * a VFLR is initiated. 3473 * 3474 * @remark This is a wrapper for ice_iov_handle_vflr 3475 */ 3476 static void 3477 ice_if_vflr_handle(if_ctx_t ctx) 3478 { 3479 struct ice_softc *sc = (struct ice_softc *)iflib_get_softc(ctx); 3480 ice_iov_handle_vflr(sc); 3481 } 3482 #endif /* PCI_IOV */ 3483 3484 extern struct if_txrx ice_subif_txrx; 3485 3486 /** 3487 * @var ice_subif_methods 3488 * @brief ice driver method entry points 3489 */ 3490 static device_method_t ice_subif_methods[] = { 3491 /* Device interface */ 3492 DEVMETHOD(device_register, ice_subif_register), 3493 DEVMETHOD_END 3494 }; 3495 3496 /** 3497 * @var ice_subif_driver 3498 * @brief driver structure for the device API 3499 */ 3500 static driver_t ice_subif_driver = { 3501 .name = "ice_subif", 3502 .methods = ice_subif_methods, 3503 .size = sizeof(struct ice_mirr_if), 3504 }; 3505 3506 static device_method_t ice_iflib_subif_methods[] = { 3507 DEVMETHOD(ifdi_attach_pre, ice_subif_if_attach_pre), 3508 DEVMETHOD(ifdi_attach_post, ice_subif_if_attach_post), 3509 DEVMETHOD(ifdi_tx_queues_alloc, ice_subif_if_tx_queues_alloc), 3510 DEVMETHOD(ifdi_rx_queues_alloc, ice_subif_if_rx_queues_alloc), 3511 DEVMETHOD(ifdi_msix_intr_assign, ice_subif_if_msix_intr_assign), 3512 DEVMETHOD(ifdi_intr_enable, ice_subif_if_intr_enable), 3513 DEVMETHOD(ifdi_rx_queue_intr_enable, ice_subif_if_rx_queue_intr_enable), 3514 DEVMETHOD(ifdi_tx_queue_intr_enable, ice_subif_if_tx_queue_intr_enable), 3515 DEVMETHOD(ifdi_init, ice_subif_if_init), 3516 DEVMETHOD(ifdi_stop, ice_subif_if_stop), 3517 DEVMETHOD(ifdi_queues_free, ice_subif_if_queues_free), 3518 DEVMETHOD(ifdi_media_status, ice_subif_if_media_status), 3519 DEVMETHOD(ifdi_promisc_set, ice_subif_if_promisc_set), 3520 }; 3521 3522 /** 3523 * @var ice_iflib_subif_driver 3524 * @brief driver structure for the iflib stack 3525 * 3526 * driver_t definition used to setup the iflib device methods. 3527 */ 3528 static driver_t ice_iflib_subif_driver = { 3529 .name = "ice_subif", 3530 .methods = ice_iflib_subif_methods, 3531 .size = sizeof(struct ice_mirr_if), 3532 }; 3533 3534 /** 3535 * @var ice_subif_sctx 3536 * @brief ice driver shared context 3537 * 3538 * Similar to the existing ice_sctx, this structure has these differences: 3539 * - isc_admin_intrcnt is set to 0 3540 * - Uses subif iflib driver methods 3541 * - Flagged as a VF for iflib 3542 */ 3543 static struct if_shared_ctx ice_subif_sctx = { 3544 .isc_magic = IFLIB_MAGIC, 3545 .isc_q_align = PAGE_SIZE, 3546 3547 .isc_tx_maxsize = ICE_MAX_FRAME_SIZE, 3548 .isc_tx_maxsegsize = ICE_MAX_FRAME_SIZE, 3549 .isc_tso_maxsize = ICE_TSO_SIZE + sizeof(struct ether_vlan_header), 3550 .isc_tso_maxsegsize = ICE_MAX_DMA_SEG_SIZE, 3551 3552 .isc_rx_maxsize = ICE_MAX_FRAME_SIZE, 3553 .isc_rx_nsegments = ICE_MAX_RX_SEGS, 3554 .isc_rx_maxsegsize = ICE_MAX_FRAME_SIZE, 3555 3556 .isc_nfl = 1, 3557 .isc_ntxqs = 1, 3558 .isc_nrxqs = 1, 3559 3560 .isc_admin_intrcnt = 0, 3561 .isc_vendor_info = ice_vendor_info_array, 3562 .isc_driver_version = __DECONST(char *, ice_driver_version), 3563 .isc_driver = &ice_iflib_subif_driver, 3564 3565 .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | 3566 IFLIB_ADMIN_ALWAYS_RUN | IFLIB_SKIP_MSIX | 3567 IFLIB_IS_VF, 3568 3569 .isc_nrxd_min = {ICE_MIN_DESC_COUNT}, 3570 .isc_ntxd_min = {ICE_MIN_DESC_COUNT}, 3571 .isc_nrxd_max = {ICE_IFLIB_MAX_DESC_COUNT}, 3572 .isc_ntxd_max = {ICE_IFLIB_MAX_DESC_COUNT}, 3573 .isc_nrxd_default = {ICE_DEFAULT_DESC_COUNT}, 3574 .isc_ntxd_default = {ICE_DEFAULT_DESC_COUNT}, 3575 }; 3576 3577 static void * 3578 ice_subif_register(device_t dev __unused) 3579 { 3580 return (&ice_subif_sctx); 3581 } 3582 3583 static void 3584 ice_subif_setup_scctx(struct ice_mirr_if *mif) 3585 { 3586 if_softc_ctx_t scctx = mif->subscctx; 3587 3588 scctx->isc_txrx = &ice_subif_txrx; 3589 3590 scctx->isc_capenable = ICE_FULL_CAPS; 3591 scctx->isc_tx_csum_flags = ICE_CSUM_OFFLOAD; 3592 3593 scctx->isc_ntxqsets = 4; 3594 scctx->isc_nrxqsets = 4; 3595 scctx->isc_vectors = scctx->isc_nrxqsets; 3596 3597 scctx->isc_ntxqsets_max = 256; 3598 scctx->isc_nrxqsets_max = 256; 3599 3600 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] 3601 * sizeof(struct ice_tx_desc), DBA_ALIGN); 3602 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] 3603 * sizeof(union ice_32b_rx_flex_desc), DBA_ALIGN); 3604 3605 scctx->isc_tx_nsegments = ICE_MAX_TX_SEGS; 3606 scctx->isc_tx_tso_segments_max = ICE_MAX_TSO_SEGS; 3607 scctx->isc_tx_tso_size_max = ICE_TSO_SIZE; 3608 scctx->isc_tx_tso_segsize_max = ICE_MAX_DMA_SEG_SIZE; 3609 } 3610 3611 static int 3612 ice_subif_if_attach_pre(if_ctx_t ctx) 3613 { 3614 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 3615 device_t dev = iflib_get_dev(ctx); 3616 3617 mif->subctx = ctx; 3618 mif->subdev = dev; 3619 mif->subscctx = iflib_get_softc_ctx(ctx); 3620 3621 /* Setup the iflib softc context structure */ 3622 ice_subif_setup_scctx(mif); 3623 3624 return (0); 3625 } 3626 3627 static int 3628 ice_subif_if_attach_post(if_ctx_t ctx __unused) 3629 { 3630 return (0); 3631 } 3632 3633 /** 3634 * ice_destroy_mirror_interface - destroy mirror interface 3635 * @sc: driver private data 3636 * 3637 * Destroys all resources associated with the mirroring interface. 3638 * Will not exit early on failure. 3639 * 3640 * @pre: Mirror interface already exists and is initialized. 3641 */ 3642 void 3643 ice_destroy_mirror_interface(struct ice_softc *sc) 3644 { 3645 struct ice_mirr_if *mif = sc->mirr_if; 3646 struct ice_vsi *vsi = mif->vsi; 3647 bool is_locked = false; 3648 int ret; 3649 3650 is_locked = sx_xlocked(sc->iflib_ctx_lock); 3651 if (is_locked) 3652 IFLIB_CTX_UNLOCK(sc); 3653 3654 if (mif->ifp) { 3655 ret = iflib_device_deregister(mif->subctx); 3656 if (ret) { 3657 device_printf(sc->dev, 3658 "iflib_device_deregister for mirror interface failed: %d\n", 3659 ret); 3660 } 3661 } 3662 3663 bus_topo_lock(); 3664 ret = device_delete_child(sc->dev, mif->subdev); 3665 bus_topo_unlock(); 3666 if (ret) { 3667 device_printf(sc->dev, 3668 "device_delete_child for mirror interface failed: %d\n", 3669 ret); 3670 } 3671 3672 if (is_locked) 3673 IFLIB_CTX_LOCK(sc); 3674 3675 if (mif->if_imap) { 3676 free(mif->if_imap, M_ICE); 3677 mif->if_imap = NULL; 3678 } 3679 if (mif->os_imap) { 3680 free(mif->os_imap, M_ICE); 3681 mif->os_imap = NULL; 3682 } 3683 3684 /* These are freed via ice_subif_queues_free_subif 3685 * vsi: 3686 * - rx_irqvs 3687 * - tx_queues 3688 * - rx_queues 3689 */ 3690 ice_release_vsi(vsi); 3691 3692 free(mif, M_ICE); 3693 sc->mirr_if = NULL; 3694 3695 } 3696 3697 /** 3698 * ice_setup_mirror_vsi - Initialize mirror VSI 3699 * @mif: driver private data for mirror interface 3700 * 3701 * Allocates a VSI for a mirror interface, and sets that VSI up for use as a 3702 * mirror for the main PF VSI. 3703 * 3704 * Returns 0 on success, or a standard error code on failure. 3705 */ 3706 static int 3707 ice_setup_mirror_vsi(struct ice_mirr_if *mif) 3708 { 3709 struct ice_softc *sc = mif->back; 3710 device_t dev = sc->dev; 3711 struct ice_vsi *vsi; 3712 int ret = 0; 3713 3714 /* vsi is for the new mirror vsi, not the PF's main VSI */ 3715 vsi = ice_alloc_vsi(sc, ICE_VSI_VMDQ2); 3716 if (!vsi) { 3717 /* Already prints an error message */ 3718 return (ENOMEM); 3719 } 3720 mif->vsi = vsi; 3721 3722 /* Reserve VSI queue allocation from PF queues */ 3723 ice_alloc_vsi_qmap(vsi, ICE_DEFAULT_VF_QUEUES, ICE_DEFAULT_VF_QUEUES); 3724 vsi->num_tx_queues = vsi->num_rx_queues = ICE_DEFAULT_VF_QUEUES; 3725 3726 /* Assign Tx queues from PF space */ 3727 ret = ice_resmgr_assign_scattered(&sc->tx_qmgr, vsi->tx_qmap, 3728 vsi->num_tx_queues); 3729 if (ret) { 3730 device_printf(dev, "Unable to assign mirror VSI Tx queues: %s\n", 3731 ice_err_str(ret)); 3732 goto release_vsi; 3733 } 3734 /* Assign Rx queues from PF space */ 3735 ret = ice_resmgr_assign_scattered(&sc->rx_qmgr, vsi->rx_qmap, 3736 vsi->num_rx_queues); 3737 if (ret) { 3738 device_printf(dev, "Unable to assign mirror VSI Rx queues: %s\n", 3739 ice_err_str(ret)); 3740 goto release_vsi; 3741 } 3742 vsi->qmap_type = ICE_RESMGR_ALLOC_SCATTERED; 3743 vsi->max_frame_size = ICE_MAX_FRAME_SIZE; 3744 3745 ret = ice_initialize_vsi(vsi); 3746 if (ret) { 3747 device_printf(dev, "%s: Error in ice_initialize_vsi for mirror VSI: %s\n", 3748 __func__, ice_err_str(ret)); 3749 goto release_vsi; 3750 } 3751 3752 /* Setup this VSI for receiving traffic */ 3753 ret = ice_config_rss(vsi); 3754 if (ret) { 3755 device_printf(dev, 3756 "Unable to configure RSS for mirror VSI: %s\n", 3757 ice_err_str(ret)); 3758 goto release_vsi; 3759 } 3760 3761 /* Set HW rules for mirroring traffic */ 3762 vsi->mirror_src_vsi = sc->pf_vsi.idx; 3763 3764 ice_debug(&sc->hw, ICE_DBG_INIT, 3765 "Configuring mirroring from VSI %d to %d\n", 3766 vsi->mirror_src_vsi, vsi->idx); 3767 ice_debug(&sc->hw, ICE_DBG_INIT, "(HW num: VSI %d to %d)\n", 3768 ice_get_hw_vsi_num(&sc->hw, vsi->mirror_src_vsi), 3769 ice_get_hw_vsi_num(&sc->hw, vsi->idx)); 3770 3771 ret = ice_setup_vsi_mirroring(vsi); 3772 if (ret) { 3773 device_printf(dev, 3774 "Unable to configure mirroring for VSI: %s\n", 3775 ice_err_str(ret)); 3776 goto release_vsi; 3777 } 3778 3779 return (0); 3780 3781 release_vsi: 3782 ice_release_vsi(vsi); 3783 mif->vsi = NULL; 3784 return (ret); 3785 } 3786 3787 /** 3788 * ice_create_mirror_interface - Initialize mirror interface 3789 * @sc: driver private data 3790 * 3791 * Creates and sets up a mirror interface that will mirror traffic from 3792 * the main PF interface. Includes a call to iflib_device_register() in order 3793 * to setup necessary iflib structures for this new interface as well. 3794 * 3795 * If it returns successfully, a new interface will be created and will show 3796 * up in the ifconfig interface list. 3797 * 3798 * Returns 0 on success, or a standard error code on failure. 3799 */ 3800 int 3801 ice_create_mirror_interface(struct ice_softc *sc) 3802 { 3803 device_t dev = sc->dev; 3804 struct ice_mirr_if *mif; 3805 struct ifmedia *media; 3806 struct sbuf *sb; 3807 int ret = 0; 3808 3809 mif = (struct ice_mirr_if *)malloc(sizeof(*mif), M_ICE, M_ZERO | M_NOWAIT); 3810 if (!mif) { 3811 device_printf(dev, "malloc() error allocating mirror interface\n"); 3812 return (ENOMEM); 3813 } 3814 3815 /* Set pointers */ 3816 sc->mirr_if = mif; 3817 mif->back = sc; 3818 3819 /* Do early setup because these will be called during iflib_device_register(): 3820 * - ice_subif_if_tx_queues_alloc 3821 * - ice_subif_if_rx_queues_alloc 3822 */ 3823 ret = ice_setup_mirror_vsi(mif); 3824 if (ret) 3825 goto out; 3826 3827 /* Determine name for new interface: 3828 * (base interface name)(modifier name)(modifier unit number) 3829 * e.g. for ice0 with a new mirror interface (modifier m) 3830 * of index 0, this equals "ice0m0" 3831 */ 3832 sb = sbuf_new_auto(); 3833 MPASS(sb != NULL); 3834 sbuf_printf(sb, "%sm", device_get_nameunit(dev)); 3835 sbuf_finish(sb); 3836 3837 bus_topo_lock(); 3838 mif->subdev = device_add_child(dev, sbuf_data(sb), 0); 3839 bus_topo_unlock(); 3840 3841 if (!mif->subdev) { 3842 device_printf(dev, "device_add_child failed for %s0\n", sbuf_data(sb)); 3843 sbuf_delete(sb); 3844 free(mif, M_ICE); 3845 sc->mirr_if = NULL; 3846 return (ENOMEM); 3847 } 3848 sbuf_delete(sb); 3849 3850 device_set_driver(mif->subdev, &ice_subif_driver); 3851 3852 /* Use iflib_device_register() directly because the driver already 3853 * has an initialized softc to pass to iflib 3854 */ 3855 ret = iflib_device_register(mif->subdev, mif, &ice_subif_sctx, &mif->subctx); 3856 if (ret) 3857 goto out; 3858 3859 /* Indicate that created interface will be just for monitoring */ 3860 mif->ifp = iflib_get_ifp(mif->subctx); 3861 if_setflagbits(mif->ifp, IFF_MONITOR, 0); 3862 3863 /* Use autoselect media by default */ 3864 media = iflib_get_media(mif->subctx); 3865 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL); 3866 ifmedia_set(media, IFM_ETHER | IFM_AUTO); 3867 3868 device_printf(dev, "Created dev %s and ifnet %s for mirroring\n", 3869 device_get_nameunit(mif->subdev), if_name(mif->ifp)); 3870 3871 ice_add_vsi_sysctls(mif->vsi); 3872 3873 ret = ice_wire_mirror_intrs(mif); 3874 if (ret) 3875 goto out; 3876 3877 mif->if_attached = true; 3878 return (0); 3879 3880 out: 3881 ice_destroy_mirror_interface(sc); 3882 return (ret); 3883 } 3884 3885 /** 3886 * ice_wire_mirror_intrs 3887 * @mif: driver private subinterface structure 3888 * 3889 * Helper function that sets up driver interrupt data and calls 3890 * into iflib in order to setup interrupts in its data structures as well. 3891 * 3892 * Like ice_if_msix_intr_assign, currently requires that we get at least the same 3893 * number of vectors as we have queues, and that we always have the same number 3894 * of Tx and Rx queues. Unlike that function, this calls a special 3895 * iflib_irq_alloc_generic_subif() function for RX interrupts because the 3896 * driver needs to get MSI-X resources from the parent device. 3897 * 3898 * Tx queues use a softirq instead of using their own hardware interrupt so that 3899 * remains unchanged. 3900 * 3901 * Returns 0 on success or an error code from iflib_irq_alloc_generic_subctx() 3902 * on failure. 3903 */ 3904 static int 3905 ice_wire_mirror_intrs(struct ice_mirr_if *mif) 3906 { 3907 struct ice_softc *sc = mif->back; 3908 struct ice_hw *hw = &sc->hw; 3909 struct ice_vsi *vsi = mif->vsi; 3910 device_t dev = mif->subdev; 3911 int err, i, rid; 3912 3913 if_ctx_t ctx = mif->subctx; 3914 3915 ice_debug(hw, ICE_DBG_INIT, "%s: Last rid: %d\n", __func__, sc->last_rid); 3916 3917 rid = sc->last_rid + 1; 3918 for (i = 0; i < vsi->num_rx_queues; i++, rid++) { 3919 struct ice_rx_queue *rxq = &vsi->rx_queues[i]; 3920 struct ice_tx_queue *txq = &vsi->tx_queues[i]; 3921 char irq_name[16]; 3922 3923 // TODO: Change to use dynamic interface number 3924 snprintf(irq_name, sizeof(irq_name), "m0rxq%d", i); 3925 /* First arg is parent device (physical port's) iflib ctx */ 3926 err = iflib_irq_alloc_generic_subctx(sc->ctx, ctx, 3927 &mif->rx_irqvs[i].irq, rid, IFLIB_INTR_RXTX, ice_msix_que, 3928 rxq, rxq->me, irq_name); 3929 if (err) { 3930 device_printf(dev, 3931 "Failed to allocate q int %d err: %s\n", 3932 i, ice_err_str(err)); 3933 i--; 3934 goto fail; 3935 } 3936 MPASS(rid - 1 > 0); 3937 /* Set vector number used in interrupt enable/disable functions */ 3938 mif->rx_irqvs[i].me = rid - 1; 3939 rxq->irqv = &mif->rx_irqvs[i]; 3940 3941 bzero(irq_name, sizeof(irq_name)); 3942 snprintf(irq_name, sizeof(irq_name), "m0txq%d", i); 3943 iflib_softirq_alloc_generic(ctx, &mif->rx_irqvs[i].irq, 3944 IFLIB_INTR_TX, txq, txq->me, irq_name); 3945 txq->irqv = &mif->rx_irqvs[i]; 3946 } 3947 3948 sc->last_rid = rid - 1; 3949 3950 ice_debug(hw, ICE_DBG_INIT, "%s: New last rid: %d\n", __func__, 3951 sc->last_rid); 3952 3953 return (0); 3954 3955 fail: 3956 for (; i >= 0; i--) 3957 iflib_irq_free(ctx, &mif->rx_irqvs[i].irq); 3958 return (err); 3959 } 3960 3961 /** 3962 * ice_subif_rebuild - Rebuild subinterface post reset 3963 * @sc: The device private softc 3964 * 3965 * Restore subinterface state after a reset occurred. 3966 * Restart the VSI and enable the mirroring. 3967 */ 3968 static int 3969 ice_subif_rebuild(struct ice_softc *sc) 3970 { 3971 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(sc->ctx); 3972 struct ice_vsi *vsi = sc->mirr_if->vsi; 3973 int err; 3974 3975 err = ice_subif_rebuild_vsi_qmap(sc); 3976 if (err) { 3977 device_printf(sc->dev, "Unable to re-assign mirror VSI queues, err %s\n", 3978 ice_err_str(err)); 3979 return (err); 3980 } 3981 3982 err = ice_initialize_vsi(vsi); 3983 if (err) { 3984 device_printf(sc->dev, "Unable to re-initialize mirror VSI, err %s\n", 3985 ice_err_str(err)); 3986 goto err_release_queue_allocations_subif; 3987 } 3988 3989 err = ice_config_rss(vsi); 3990 if (err) { 3991 device_printf(sc->dev, 3992 "Unable to reconfigure RSS for the mirror VSI, err %s\n", 3993 ice_err_str(err)); 3994 goto err_deinit_subif_vsi; 3995 } 3996 3997 vsi->mirror_src_vsi = sc->pf_vsi.idx; 3998 3999 err = ice_setup_vsi_mirroring(vsi); 4000 if (err) { 4001 device_printf(sc->dev, 4002 "Unable to configure mirroring for VSI: %s\n", 4003 ice_err_str(err)); 4004 goto err_deinit_subif_vsi; 4005 } 4006 4007 ice_set_state(&mif->state, ICE_STATE_SUBIF_NEEDS_REINIT); 4008 4009 return (0); 4010 4011 err_deinit_subif_vsi: 4012 ice_deinit_vsi(vsi); 4013 err_release_queue_allocations_subif: 4014 ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap, 4015 sc->mirr_if->num_irq_vectors); 4016 ice_resmgr_release_map(&sc->rx_qmgr, vsi->rx_qmap, 4017 sc->mirr_if->num_irq_vectors); 4018 4019 return (err); 4020 } 4021 4022 /** 4023 * ice_subif_rebuild_vsi_qmap - Rebuild the mirror VSI queue mapping 4024 * @sc: the device softc pointer 4025 * 4026 * Loops over the Tx and Rx queues for the mirror VSI and reassigns the queue 4027 * mapping after a reset occurred. 4028 */ 4029 static int 4030 ice_subif_rebuild_vsi_qmap(struct ice_softc *sc) 4031 { 4032 struct ice_vsi *vsi = sc->mirr_if->vsi; 4033 struct ice_tx_queue *txq; 4034 struct ice_rx_queue *rxq; 4035 int err, i; 4036 4037 err = ice_resmgr_assign_scattered(&sc->tx_qmgr, vsi->tx_qmap, sc->mirr_if->num_irq_vectors); 4038 if (err) { 4039 device_printf(sc->dev, "Unable to assign mirror VSI Tx queues: %s\n", 4040 ice_err_str(err)); 4041 return (err); 4042 } 4043 4044 err = ice_resmgr_assign_scattered(&sc->rx_qmgr, vsi->rx_qmap, sc->mirr_if->num_irq_vectors); 4045 if (err) { 4046 device_printf(sc->dev, "Unable to assign mirror VSI Rx queues: %s\n", 4047 ice_err_str(err)); 4048 goto err_release_tx_queues; 4049 } 4050 4051 vsi->qmap_type = ICE_RESMGR_ALLOC_SCATTERED; 4052 4053 /* Re-assign Tx queue tail pointers */ 4054 for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) 4055 txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]); 4056 4057 /* Re-assign Rx queue tail pointers */ 4058 for (i = 0, rxq = vsi->rx_queues; i < vsi->num_rx_queues; i++, rxq++) 4059 rxq->tail = QRX_TAIL(vsi->rx_qmap[i]); 4060 4061 return (0); 4062 4063 err_release_tx_queues: 4064 ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap, vsi->num_tx_queues); 4065 4066 return (err); 4067 } 4068 4069 /** 4070 * ice_subif_if_tx_queues_alloc - Allocate Tx queue memory for subinterfaces 4071 * @ctx: iflib context structure 4072 * @vaddrs: virtual addresses for the queue memory 4073 * @paddrs: physical addresses for the queue memory 4074 * @ntxqs: the number of Tx queues per set (should always be 1) 4075 * @ntxqsets: the number of Tx queue sets to allocate 4076 * 4077 * See ice_if_tx_queues_alloc() description. Similar to that function, but 4078 * for subinterfaces instead. 4079 */ 4080 static int 4081 ice_subif_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 4082 int __invariant_only ntxqs, int ntxqsets) 4083 { 4084 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4085 struct ice_tx_queue *txq; 4086 device_t dev = mif->subdev; 4087 struct ice_vsi *vsi; 4088 int err, i, j; 4089 4090 MPASS(mif != NULL); 4091 MPASS(ntxqs == 1); 4092 MPASS(mif->subscctx->isc_ntxd[0] <= ICE_MAX_DESC_COUNT); 4093 4094 vsi = mif->vsi; 4095 4096 MPASS(vsi->num_tx_queues == ntxqsets); 4097 4098 /* Allocate queue structure memory */ 4099 if (!(vsi->tx_queues = 4100 (struct ice_tx_queue *)malloc(sizeof(struct ice_tx_queue) * ntxqsets, M_ICE, M_NOWAIT | M_ZERO))) { 4101 device_printf(dev, "%s: Unable to allocate Tx queue memory for subfunction\n", 4102 __func__); 4103 return (ENOMEM); 4104 } 4105 4106 /* Allocate report status arrays */ 4107 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 4108 if (!(txq->tx_rsq = 4109 (uint16_t *)malloc(sizeof(uint16_t) * mif->subscctx->isc_ntxd[0], M_ICE, M_NOWAIT))) { 4110 device_printf(dev, 4111 "%s: Unable to allocate tx_rsq memory for subfunction\n", __func__); 4112 err = ENOMEM; 4113 goto free_tx_queues; 4114 } 4115 /* Initialize report status array */ 4116 for (j = 0; j < mif->subscctx->isc_ntxd[0]; j++) 4117 txq->tx_rsq[j] = QIDX_INVALID; 4118 } 4119 4120 /* Add Tx queue sysctls context */ 4121 ice_vsi_add_txqs_ctx(vsi); 4122 4123 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 4124 /* q_handle == me when only one TC */ 4125 txq->me = txq->q_handle = i; 4126 txq->vsi = vsi; 4127 4128 /* store the queue size for easier access */ 4129 txq->desc_count = mif->subscctx->isc_ntxd[0]; 4130 4131 /* get the virtual and physical address of the hardware queues */ 4132 txq->tail = QTX_COMM_DBELL(vsi->tx_qmap[i]); 4133 txq->tx_base = (struct ice_tx_desc *)vaddrs[i]; 4134 txq->tx_paddr = paddrs[i]; 4135 4136 ice_add_txq_sysctls(txq); 4137 } 4138 4139 return (0); 4140 4141 free_tx_queues: 4142 for (i = 0, txq = vsi->tx_queues; i < ntxqsets; i++, txq++) { 4143 if (txq->tx_rsq != NULL) { 4144 free(txq->tx_rsq, M_ICE); 4145 txq->tx_rsq = NULL; 4146 } 4147 } 4148 free(vsi->tx_queues, M_ICE); 4149 vsi->tx_queues = NULL; 4150 return (err); 4151 } 4152 4153 /** 4154 * ice_subif_if_rx_queues_alloc - Allocate Rx queue memory for subinterfaces 4155 * @ctx: iflib context structure 4156 * @vaddrs: virtual addresses for the queue memory 4157 * @paddrs: physical addresses for the queue memory 4158 * @nrxqs: number of Rx queues per set (should always be 1) 4159 * @nrxqsets: number of Rx queue sets to allocate 4160 * 4161 * See ice_if_rx_queues_alloc() for general summary; this is similar to that 4162 * but implemented for subinterfaces. 4163 */ 4164 static int 4165 ice_subif_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, 4166 int __invariant_only nrxqs, int nrxqsets) 4167 { 4168 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4169 struct ice_rx_queue *rxq; 4170 device_t dev = mif->subdev; 4171 struct ice_vsi *vsi; 4172 int i; 4173 4174 MPASS(mif != NULL); 4175 MPASS(nrxqs == 1); 4176 MPASS(mif->subscctx->isc_nrxd[0] <= ICE_MAX_DESC_COUNT); 4177 4178 vsi = mif->vsi; 4179 4180 MPASS(vsi->num_rx_queues == nrxqsets); 4181 4182 /* Allocate queue structure memory */ 4183 if (!(vsi->rx_queues = 4184 (struct ice_rx_queue *) malloc(sizeof(struct ice_rx_queue) * nrxqsets, M_ICE, M_NOWAIT | M_ZERO))) { 4185 device_printf(dev, "%s: Unable to allocate Rx queue memory for subfunction\n", 4186 __func__); 4187 return (ENOMEM); 4188 } 4189 4190 /* Add Rx queue sysctls context */ 4191 ice_vsi_add_rxqs_ctx(vsi); 4192 4193 for (i = 0, rxq = vsi->rx_queues; i < nrxqsets; i++, rxq++) { 4194 rxq->me = i; 4195 rxq->vsi = vsi; 4196 4197 /* store the queue size for easier access */ 4198 rxq->desc_count = mif->subscctx->isc_nrxd[0]; 4199 4200 /* get the virtual and physical address of the hardware queues */ 4201 rxq->tail = QRX_TAIL(vsi->rx_qmap[i]); 4202 rxq->rx_base = (union ice_32b_rx_flex_desc *)vaddrs[i]; 4203 rxq->rx_paddr = paddrs[i]; 4204 4205 ice_add_rxq_sysctls(rxq); 4206 } 4207 4208 return (0); 4209 } 4210 4211 /** 4212 * ice_subif_if_msix_intr_assign - Assign MSI-X interrupts to new sub interface 4213 * @ctx: the iflib context structure 4214 * @msix: the number of vectors we were assigned 4215 * 4216 * Allocates and assigns driver private resources for MSI-X interrupt tracking. 4217 * 4218 * @pre OS MSI-X resources have been pre-allocated by parent interface. 4219 */ 4220 static int 4221 ice_subif_if_msix_intr_assign(if_ctx_t ctx, int msix) 4222 { 4223 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4224 struct ice_softc *sc = mif->back; 4225 struct ice_vsi *vsi = mif->vsi; 4226 4227 device_t dev = mif->subdev; 4228 int ret; 4229 4230 if (vsi->num_rx_queues != vsi->num_tx_queues) { 4231 device_printf(dev, 4232 "iflib requested %d Tx queues, and %d Rx queues, but the driver isn't able to support a differing number of Tx and Rx queues\n", 4233 vsi->num_tx_queues, vsi->num_rx_queues); 4234 return (EOPNOTSUPP); 4235 } 4236 4237 if (msix > sc->extra_vectors) { 4238 device_printf(dev, 4239 "%s: Not enough spare (%d) msix vectors for new sub-interface requested (%d)\n", 4240 __func__, sc->extra_vectors, msix); 4241 return (ENOSPC); 4242 } 4243 device_printf(dev, "%s: Using %d vectors for sub-interface\n", __func__, 4244 msix); 4245 4246 /* Allocate space to store the IRQ vector data */ 4247 mif->num_irq_vectors = vsi->num_rx_queues; 4248 mif->rx_irqvs = (struct ice_irq_vector *) 4249 malloc(sizeof(struct ice_irq_vector) * (mif->num_irq_vectors), 4250 M_ICE, M_NOWAIT); 4251 if (!mif->rx_irqvs) { 4252 device_printf(dev, 4253 "Unable to allocate RX irqv memory for mirror's %d vectors\n", 4254 mif->num_irq_vectors); 4255 return (ENOMEM); 4256 } 4257 4258 /* Assign mirror interface interrupts from PF device space */ 4259 if (!(mif->if_imap = 4260 (u16 *)malloc(sizeof(u16) * mif->num_irq_vectors, 4261 M_ICE, M_NOWAIT))) { 4262 device_printf(dev, "Unable to allocate mirror intfc if_imap memory\n"); 4263 ret = ENOMEM; 4264 goto free_irqvs; 4265 } 4266 ret = ice_resmgr_assign_contiguous(&sc->dev_imgr, mif->if_imap, mif->num_irq_vectors); 4267 if (ret) { 4268 device_printf(dev, "Unable to assign mirror intfc PF device interrupt mapping: %s\n", 4269 ice_err_str(ret)); 4270 goto free_if_imap; 4271 } 4272 /* Assign mirror interface interrupts from OS interrupt allocation space */ 4273 if (!(mif->os_imap = 4274 (u16 *)malloc(sizeof(u16) * mif->num_irq_vectors, 4275 M_ICE, M_NOWAIT))) { 4276 device_printf(dev, "Unable to allocate mirror intfc os_imap memory\n"); 4277 ret = ENOMEM; 4278 goto free_if_imap; 4279 } 4280 ret = ice_resmgr_assign_contiguous(&sc->os_imgr, mif->os_imap, mif->num_irq_vectors); 4281 if (ret) { 4282 device_printf(dev, "Unable to assign mirror intfc OS interrupt mapping: %s\n", 4283 ice_err_str(ret)); 4284 goto free_if_imap; 4285 } 4286 4287 return (0); 4288 4289 free_if_imap: 4290 free(mif->if_imap, M_ICE); 4291 mif->if_imap = NULL; 4292 free_irqvs: 4293 free(mif->rx_irqvs, M_ICE); 4294 mif->rx_irqvs = NULL; 4295 return (ret); 4296 } 4297 4298 /** 4299 * ice_subif_if_intr_enable - Enable device interrupts for a subinterface 4300 * @ctx: iflib context structure 4301 * 4302 * Called by iflib to request enabling all interrupts that belong to a 4303 * subinterface. 4304 */ 4305 static void 4306 ice_subif_if_intr_enable(if_ctx_t ctx) 4307 { 4308 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4309 struct ice_softc *sc = mif->back; 4310 struct ice_vsi *vsi = mif->vsi; 4311 struct ice_hw *hw = &sc->hw; 4312 4313 /* Do not enable queue interrupts in recovery mode */ 4314 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 4315 return; 4316 4317 /* Enable all queue interrupts */ 4318 for (int i = 0; i < vsi->num_rx_queues; i++) 4319 ice_enable_intr(hw, vsi->rx_queues[i].irqv->me); 4320 } 4321 4322 /** 4323 * ice_subif_if_rx_queue_intr_enable - Enable a specific Rx queue interrupt 4324 * @ctx: iflib context structure 4325 * @rxqid: the Rx queue to enable 4326 * 4327 * Enable a specific Rx queue interrupt. 4328 * 4329 * This function is not protected by the iflib CTX lock. 4330 */ 4331 static int 4332 ice_subif_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) 4333 { 4334 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4335 struct ice_softc *sc = mif->back; 4336 struct ice_vsi *vsi = mif->vsi; 4337 struct ice_hw *hw = &sc->hw; 4338 4339 /* Do not enable queue interrupts in recovery mode */ 4340 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 4341 return (ENOSYS); 4342 4343 ice_enable_intr(hw, vsi->rx_queues[rxqid].irqv->me); 4344 return (0); 4345 } 4346 4347 /** 4348 * ice_subif_if_tx_queue_intr_enable - Enable a specific Tx queue interrupt 4349 * @ctx: iflib context structure 4350 * @txqid: the Tx queue to enable 4351 * 4352 * Enable a specific Tx queue interrupt. 4353 * 4354 * This function is not protected by the iflib CTX lock. 4355 */ 4356 static int 4357 ice_subif_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) 4358 { 4359 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4360 struct ice_softc *sc = mif->back; 4361 struct ice_vsi *vsi = mif->vsi; 4362 struct ice_hw *hw = &sc->hw; 4363 4364 /* Do not enable queue interrupts in recovery mode */ 4365 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 4366 return (ENOSYS); 4367 4368 ice_enable_intr(hw, vsi->tx_queues[txqid].irqv->me); 4369 return (0); 4370 } 4371 4372 /** 4373 * ice_subif_if_init - Initialize the subinterface 4374 * @ctx: iflib ctx structure 4375 * 4376 * Called by iflib to bring the device up, i.e. ifconfig ice0m0 up. 4377 * Prepares the Tx and Rx engines and enables interrupts. 4378 * 4379 * @pre assumes the caller holds the iflib CTX lock 4380 */ 4381 static void 4382 ice_subif_if_init(if_ctx_t ctx) 4383 { 4384 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4385 struct ice_softc *sc = mif->back; 4386 struct ice_vsi *vsi = mif->vsi; 4387 device_t dev = mif->subdev; 4388 int err; 4389 4390 if (ice_driver_is_detaching(sc)) 4391 return; 4392 4393 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE)) 4394 return; 4395 4396 if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) { 4397 device_printf(dev, 4398 "request to start interface cannot be completed as the parent device %s failed to reset\n", 4399 device_get_nameunit(sc->dev)); 4400 return; 4401 } 4402 4403 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) { 4404 device_printf(dev, 4405 "request to start interface cannot be completed while parent device %s is prepared for impending reset\n", 4406 device_get_nameunit(sc->dev)); 4407 return; 4408 } 4409 4410 /* XXX: Equiv to ice_update_rx_mbuf_sz */ 4411 vsi->mbuf_sz = iflib_get_rx_mbuf_sz(ctx); 4412 4413 /* Initialize software Tx tracking values */ 4414 ice_init_tx_tracking(vsi); 4415 4416 err = ice_cfg_vsi_for_tx(vsi); 4417 if (err) { 4418 device_printf(dev, 4419 "Unable to configure subif VSI for Tx: %s\n", 4420 ice_err_str(err)); 4421 return; 4422 } 4423 4424 err = ice_cfg_vsi_for_rx(vsi); 4425 if (err) { 4426 device_printf(dev, 4427 "Unable to configure subif VSI for Rx: %s\n", 4428 ice_err_str(err)); 4429 goto err_cleanup_tx; 4430 } 4431 4432 err = ice_control_all_rx_queues(vsi, true); 4433 if (err) { 4434 device_printf(dev, 4435 "Unable to enable subif Rx rings for receive: %s\n", 4436 ice_err_str(err)); 4437 goto err_cleanup_tx; 4438 } 4439 4440 ice_configure_all_rxq_interrupts(vsi); 4441 ice_configure_rx_itr(vsi); 4442 4443 ice_set_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED); 4444 return; 4445 4446 err_cleanup_tx: 4447 ice_vsi_disable_tx(vsi); 4448 } 4449 4450 /** 4451 * ice_if_stop_subif - Stop the subinterface 4452 * @ctx: iflib context structure 4453 * @ifs: subinterface context structure 4454 * 4455 * Called by iflib to stop the subinterface and bring it down. 4456 * (e.g. ifconfig ice0m0 down) 4457 * 4458 * @pre assumes the caller holds the iflib CTX lock 4459 */ 4460 static void 4461 ice_subif_if_stop(if_ctx_t ctx) 4462 { 4463 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4464 struct ice_softc *sc = mif->back; 4465 struct ice_vsi *vsi = mif->vsi; 4466 device_t dev = mif->subdev; 4467 4468 if (!ice_testandclear_state(&mif->state, ICE_STATE_DRIVER_INITIALIZED)) 4469 return; 4470 4471 if (ice_test_state(&sc->state, ICE_STATE_RESET_FAILED)) { 4472 device_printf(dev, 4473 "request to stop interface cannot be completed as the parent device %s failed to reset\n", 4474 device_get_nameunit(sc->dev)); 4475 return; 4476 } 4477 4478 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) { 4479 device_printf(dev, 4480 "request to stop interface cannot be completed while parent device %s is prepared for impending reset\n", 4481 device_get_nameunit(sc->dev)); 4482 return; 4483 } 4484 4485 /* Dissociate the Tx and Rx queues from the interrupts */ 4486 ice_flush_txq_interrupts(vsi); 4487 ice_flush_rxq_interrupts(vsi); 4488 4489 /* Disable the Tx and Rx queues */ 4490 ice_vsi_disable_tx(vsi); 4491 ice_control_all_rx_queues(vsi, false); 4492 } 4493 4494 /** 4495 * ice_free_irqvs_subif - Free IRQ vector memory for subinterfaces 4496 * @mif: Mirror interface private structure 4497 * 4498 * Free IRQ vector memory allocated during ice_subif_if_msix_intr_assign. 4499 */ 4500 static void 4501 ice_free_irqvs_subif(struct ice_mirr_if *mif) 4502 { 4503 struct ice_softc *sc = mif->back; 4504 struct ice_vsi *vsi = mif->vsi; 4505 if_ctx_t ctx = sc->ctx; 4506 int i; 4507 4508 /* If the irqvs array is NULL, then there are no vectors to free */ 4509 if (mif->rx_irqvs == NULL) 4510 return; 4511 4512 /* Free the IRQ vectors -- currently subinterfaces have number 4513 * of vectors equal to number of RX queues 4514 * 4515 * XXX: ctx is parent device's ctx, not the subinterface ctx 4516 */ 4517 for (i = 0; i < vsi->num_rx_queues; i++) 4518 iflib_irq_free(ctx, &mif->rx_irqvs[i].irq); 4519 4520 ice_resmgr_release_map(&sc->os_imgr, mif->os_imap, 4521 mif->num_irq_vectors); 4522 ice_resmgr_release_map(&sc->dev_imgr, mif->if_imap, 4523 mif->num_irq_vectors); 4524 4525 sc->last_rid -= vsi->num_rx_queues; 4526 4527 /* Clear the irqv pointers */ 4528 for (i = 0; i < vsi->num_rx_queues; i++) 4529 vsi->rx_queues[i].irqv = NULL; 4530 4531 for (i = 0; i < vsi->num_tx_queues; i++) 4532 vsi->tx_queues[i].irqv = NULL; 4533 4534 /* Release the vector array memory */ 4535 free(mif->rx_irqvs, M_ICE); 4536 mif->rx_irqvs = NULL; 4537 } 4538 4539 /** 4540 * ice_subif_if_queues_free - Free queue memory for subinterfaces 4541 * @ctx: the iflib context structure 4542 * 4543 * Free queue memory allocated by ice_subif_tx_queues_alloc() and 4544 * ice_subif_if_rx_queues_alloc(). 4545 */ 4546 static void 4547 ice_subif_if_queues_free(if_ctx_t ctx) 4548 { 4549 struct ice_mirr_if *mif = (struct ice_mirr_if *)iflib_get_softc(ctx); 4550 struct ice_vsi *vsi = mif->vsi; 4551 struct ice_tx_queue *txq; 4552 int i; 4553 4554 /* Free the Tx and Rx sysctl contexts, and assign NULL to the node 4555 * pointers. 4556 */ 4557 ice_vsi_del_txqs_ctx(vsi); 4558 ice_vsi_del_rxqs_ctx(vsi); 4559 4560 /* Release MSI-X IRQ vectors */ 4561 ice_free_irqvs_subif(mif); 4562 4563 if (vsi->tx_queues != NULL) { 4564 /* free the tx_rsq arrays */ 4565 for (i = 0, txq = vsi->tx_queues; i < vsi->num_tx_queues; i++, txq++) { 4566 if (txq->tx_rsq != NULL) { 4567 free(txq->tx_rsq, M_ICE); 4568 txq->tx_rsq = NULL; 4569 } 4570 } 4571 free(vsi->tx_queues, M_ICE); 4572 vsi->tx_queues = NULL; 4573 } 4574 if (vsi->rx_queues != NULL) { 4575 free(vsi->rx_queues, M_ICE); 4576 vsi->rx_queues = NULL; 4577 } 4578 } 4579 4580 /** 4581 * ice_subif_if_media_status - Report subinterface media 4582 * @ctx: iflib context structure 4583 * @ifmr: ifmedia request structure to update 4584 * 4585 * Updates the provided ifmr with something, in order to prevent a 4586 * "no media types?" message from ifconfig. 4587 * 4588 * Mirror interfaces are always up. 4589 */ 4590 static void 4591 ice_subif_if_media_status(if_ctx_t ctx __unused, struct ifmediareq *ifmr) 4592 { 4593 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE; 4594 ifmr->ifm_active = IFM_ETHER | IFM_AUTO; 4595 } 4596 4597 /** 4598 * ice_subif_if_promisc_set - Set subinterface promiscuous mode 4599 * @ctx: iflib context structure 4600 * @flags: promiscuous flags to configure 4601 * 4602 * Called by iflib to configure device promiscuous mode. 4603 * 4604 * @remark This does not need to be implemented for now. 4605 */ 4606 static int 4607 ice_subif_if_promisc_set(if_ctx_t ctx __unused, int flags __unused) 4608 { 4609 return (0); 4610 } 4611 4612