1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/filter.h> 5 #include <linux/net/intel/libie/rx.h> 6 #include <net/libeth/xdp.h> 7 8 #include "ice_txrx_lib.h" 9 #include "ice_eswitch.h" 10 #include "ice_lib.h" 11 12 /** 13 * ice_release_rx_desc - Store the new tail and head values 14 * @rx_ring: ring to bump 15 * @val: new head index 16 */ 17 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) 18 { 19 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 20 21 rx_ring->next_to_use = val; 22 23 /* update next to alloc since we have filled the ring */ 24 rx_ring->next_to_alloc = val; 25 26 /* QRX_TAIL will be updated with any tail value, but hardware ignores 27 * the lower 3 bits. This makes it so we only bump tail on meaningful 28 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 29 * the budget depending on the current traffic load. 30 */ 31 val &= ~0x7; 32 if (prev_ntu != val) { 33 /* Force memory writes to complete before letting h/w 34 * know there are new descriptors to fetch. (Only 35 * applicable for weak-ordered memory model archs, 36 * such as IA-64). 37 */ 38 wmb(); 39 writel(val, rx_ring->tail); 40 } 41 } 42 43 /** 44 * ice_get_rx_hash - get RX hash value from descriptor 45 * @rx_desc: specific descriptor 46 * 47 * Returns hash, if present, 0 otherwise. 48 */ 49 static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc) 50 { 51 const struct ice_32b_rx_flex_desc_nic *nic_mdid; 52 53 if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)) 54 return 0; 55 56 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 57 return le32_to_cpu(nic_mdid->rss_hash); 58 } 59 60 /** 61 * ice_rx_hash_to_skb - set the hash value in the skb 62 * @rx_ring: descriptor ring 63 * @rx_desc: specific descriptor 64 * @skb: pointer to current skb 65 * @rx_ptype: the ptype value from the descriptor 66 */ 67 static void 68 ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring, 69 const union ice_32b_rx_flex_desc *rx_desc, 70 struct sk_buff *skb, u16 rx_ptype) 71 { 72 struct libeth_rx_pt decoded; 73 u32 hash; 74 75 decoded = libie_rx_pt_parse(rx_ptype); 76 if (!libeth_rx_pt_has_hash(rx_ring->netdev, decoded)) 77 return; 78 79 hash = ice_get_rx_hash(rx_desc); 80 if (likely(hash)) 81 libeth_rx_pt_set_hash(skb, hash, decoded); 82 } 83 84 /** 85 * ice_rx_gcs - Set generic checksum in skb 86 * @skb: skb currently being received and modified 87 * @rx_desc: receive descriptor 88 */ 89 static void ice_rx_gcs(struct sk_buff *skb, 90 const union ice_32b_rx_flex_desc *rx_desc) 91 { 92 const struct ice_32b_rx_flex_desc_nic *desc; 93 u16 csum; 94 95 desc = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 96 skb->ip_summed = CHECKSUM_COMPLETE; 97 csum = (__force u16)desc->raw_csum; 98 skb->csum = csum_unfold((__force __sum16)swab16(csum)); 99 } 100 101 /** 102 * ice_rx_csum - Indicate in skb if checksum is good 103 * @ring: the ring we care about 104 * @skb: skb currently being received and modified 105 * @rx_desc: the receive descriptor 106 * @ptype: the packet type decoded by hardware 107 * 108 * skb->protocol must be set before this function is called 109 */ 110 static void 111 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, 112 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 113 { 114 struct libeth_rx_pt decoded; 115 u16 rx_status0, rx_status1; 116 bool ipv4, ipv6; 117 118 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 119 skb->ip_summed = CHECKSUM_NONE; 120 121 decoded = libie_rx_pt_parse(ptype); 122 if (!libeth_rx_pt_has_checksum(ring->netdev, decoded)) 123 return; 124 125 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 126 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 127 128 if ((ring->flags & ICE_RX_FLAGS_RING_GCS) && 129 rx_desc->wb.rxdid == ICE_RXDID_FLEX_NIC && 130 (decoded.inner_prot == LIBETH_RX_PT_INNER_TCP || 131 decoded.inner_prot == LIBETH_RX_PT_INNER_UDP || 132 decoded.inner_prot == LIBETH_RX_PT_INNER_ICMP)) { 133 ice_rx_gcs(skb, rx_desc); 134 return; 135 } 136 137 /* check if HW has decoded the packet and checksum */ 138 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 139 return; 140 141 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4; 142 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6; 143 144 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) { 145 ring->vsi->back->hw_rx_eipe_error++; 146 return; 147 } 148 149 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))) 150 goto checksum_fail; 151 152 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 153 goto checksum_fail; 154 155 /* check for L4 errors and handle packets that were not able to be 156 * checksummed due to arrival speed 157 */ 158 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 159 goto checksum_fail; 160 161 /* check for outer UDP checksum error in tunneled packets */ 162 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 163 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 164 goto checksum_fail; 165 166 /* If there is an outer header present that might contain a checksum 167 * we need to bump the checksum level by 1 to reflect the fact that 168 * we are indicating we validated the inner checksum. 169 */ 170 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT) 171 skb->csum_level = 1; 172 173 skb->ip_summed = CHECKSUM_UNNECESSARY; 174 return; 175 176 checksum_fail: 177 ring->vsi->back->hw_csum_rx_error++; 178 } 179 180 /** 181 * ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb 182 * @rx_ring: Ring to get the VSI info 183 * @rx_desc: Receive descriptor 184 * @skb: Particular skb to send timestamp with 185 * 186 * The timestamp is in ns, so we must convert the result first. 187 */ 188 static void 189 ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring, 190 const union ice_32b_rx_flex_desc *rx_desc, 191 struct sk_buff *skb) 192 { 193 u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx); 194 195 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns); 196 } 197 198 /** 199 * ice_get_ptype - Read HW packet type from the descriptor 200 * @rx_desc: RX descriptor 201 */ 202 static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc) 203 { 204 return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 205 ICE_RX_FLEX_DESC_PTYPE_M; 206 } 207 208 /** 209 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 210 * @rx_ring: Rx descriptor ring packet is being transacted on 211 * @rx_desc: pointer to the EOP Rx descriptor 212 * @skb: pointer to current skb being populated 213 * 214 * This function checks the ring, descriptor, and packet information in 215 * order to populate the hash, checksum, VLAN, protocol, and 216 * other fields within the skb. 217 */ 218 void 219 ice_process_skb_fields(struct ice_rx_ring *rx_ring, 220 union ice_32b_rx_flex_desc *rx_desc, 221 struct sk_buff *skb) 222 { 223 u16 ptype = ice_get_ptype(rx_desc); 224 225 ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype); 226 227 /* modifies the skb - consumes the enet header */ 228 if (unlikely(rx_ring->flags & ICE_RX_FLAGS_MULTIDEV)) { 229 struct net_device *netdev = ice_eswitch_get_target(rx_ring, 230 rx_desc); 231 232 if (ice_is_port_repr_netdev(netdev)) 233 ice_repr_inc_rx_stats(netdev, skb->len); 234 235 /* __skb_push() is needed because xdp_build_skb_from_buff() 236 * calls eth_type_trans() 237 */ 238 __skb_push(skb, ETH_HLEN); 239 skb->protocol = eth_type_trans(skb, netdev); 240 } 241 242 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 243 244 if (rx_ring->ptp_rx) 245 ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb); 246 } 247 248 /** 249 * ice_receive_skb - Send a completed packet up the stack 250 * @rx_ring: Rx ring in play 251 * @skb: packet to send up 252 * @vlan_tci: VLAN TCI for packet 253 * 254 * This function sends the completed packet (via. skb) up the stack using 255 * gro receive functions (with/without VLAN tag) 256 */ 257 void 258 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci) 259 { 260 if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto) 261 __vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto, 262 vlan_tci); 263 264 napi_gro_receive(&rx_ring->q_vector->napi, skb); 265 } 266 267 /** 268 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 269 * @dev: device for DMA mapping 270 * @tx_buf: Tx buffer to clean 271 * @bq: XDP bulk flush struct 272 */ 273 static void 274 ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf, 275 struct xdp_frame_bulk *bq) 276 { 277 switch (tx_buf->type) { 278 case ICE_TX_BUF_XDP_TX: 279 libeth_xdp_return_va(tx_buf->raw_buf, true); 280 break; 281 case ICE_TX_BUF_XDP_XMIT: 282 dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma), 283 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 284 xdp_return_frame_bulk(tx_buf->xdpf, bq); 285 break; 286 } 287 288 dma_unmap_len_set(tx_buf, len, 0); 289 tx_buf->type = ICE_TX_BUF_EMPTY; 290 } 291 292 /** 293 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring 294 * @xdp_ring: XDP ring to clean 295 */ 296 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) 297 { 298 int total_bytes = 0, total_pkts = 0; 299 struct device *dev = xdp_ring->dev; 300 u32 ntc = xdp_ring->next_to_clean; 301 struct ice_tx_desc *tx_desc; 302 u32 cnt = xdp_ring->count; 303 struct xdp_frame_bulk bq; 304 u32 frags, xdp_tx = 0; 305 u32 ready_frames = 0; 306 u32 idx; 307 u32 ret; 308 309 idx = xdp_ring->tx_buf[ntc].rs_idx; 310 tx_desc = ICE_TX_DESC(xdp_ring, idx); 311 if (tx_desc->cmd_type_offset_bsz & 312 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 313 if (idx >= ntc) 314 ready_frames = idx - ntc + 1; 315 else 316 ready_frames = idx + cnt - ntc + 1; 317 } 318 319 if (unlikely(!ready_frames)) 320 return 0; 321 ret = ready_frames; 322 323 xdp_frame_bulk_init(&bq); 324 rcu_read_lock(); /* xdp_return_frame_bulk() */ 325 326 while (ready_frames) { 327 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 328 struct ice_tx_buf *head = tx_buf; 329 330 /* bytecount holds size of head + frags */ 331 total_bytes += tx_buf->bytecount; 332 frags = tx_buf->nr_frags; 333 total_pkts++; 334 /* count head + frags */ 335 ready_frames -= frags + 1; 336 xdp_tx++; 337 338 ntc++; 339 if (ntc == cnt) 340 ntc = 0; 341 342 for (int i = 0; i < frags; i++) { 343 tx_buf = &xdp_ring->tx_buf[ntc]; 344 345 ice_clean_xdp_tx_buf(dev, tx_buf, &bq); 346 ntc++; 347 if (ntc == cnt) 348 ntc = 0; 349 } 350 351 ice_clean_xdp_tx_buf(dev, head, &bq); 352 } 353 354 xdp_flush_frame_bulk(&bq); 355 rcu_read_unlock(); 356 357 tx_desc->cmd_type_offset_bsz = 0; 358 xdp_ring->next_to_clean = ntc; 359 xdp_ring->xdp_tx_active -= xdp_tx; 360 ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); 361 362 return ret; 363 } 364 365 /** 366 * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission 367 * @xdp: XDP buffer to be placed onto Tx descriptors 368 * @xdp_ring: XDP ring for transmission 369 * @frame: whether this comes from .ndo_xdp_xmit() 370 */ 371 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring, 372 bool frame) 373 { 374 struct skb_shared_info *sinfo = NULL; 375 u32 size = xdp->data_end - xdp->data; 376 struct device *dev = xdp_ring->dev; 377 u32 ntu = xdp_ring->next_to_use; 378 struct ice_tx_desc *tx_desc; 379 struct ice_tx_buf *tx_head; 380 struct ice_tx_buf *tx_buf; 381 u32 cnt = xdp_ring->count; 382 void *data = xdp->data; 383 struct page *page; 384 u32 nr_frags = 0; 385 u32 free_space; 386 u32 frag = 0; 387 u32 offset; 388 389 free_space = ICE_DESC_UNUSED(xdp_ring); 390 if (free_space < ICE_RING_QUARTER(xdp_ring)) 391 free_space += ice_clean_xdp_irq(xdp_ring); 392 393 if (unlikely(!free_space)) 394 goto busy; 395 396 if (unlikely(xdp_buff_has_frags(xdp))) { 397 sinfo = xdp_get_shared_info_from_buff(xdp); 398 nr_frags = sinfo->nr_frags; 399 if (free_space < nr_frags + 1) 400 goto busy; 401 } 402 403 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 404 tx_head = &xdp_ring->tx_buf[ntu]; 405 tx_buf = tx_head; 406 407 page = virt_to_page(data); 408 offset = offset_in_page(xdp->data); 409 410 for (;;) { 411 dma_addr_t dma; 412 413 if (frame) { 414 dma = dma_map_single(dev, data, size, DMA_TO_DEVICE); 415 if (dma_mapping_error(dev, dma)) 416 goto dma_unmap; 417 tx_buf->type = ICE_TX_BUF_FRAG; 418 } else { 419 dma = page_pool_get_dma_addr(page) + offset; 420 dma_sync_single_for_device(dev, dma, size, DMA_BIDIRECTIONAL); 421 tx_buf->type = ICE_TX_BUF_XDP_TX; 422 tx_buf->raw_buf = data; 423 } 424 425 /* record length, and DMA address */ 426 dma_unmap_len_set(tx_buf, len, size); 427 dma_unmap_addr_set(tx_buf, dma, dma); 428 429 tx_desc->buf_addr = cpu_to_le64(dma); 430 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 431 432 ntu++; 433 if (ntu == cnt) 434 ntu = 0; 435 436 if (frag == nr_frags) 437 break; 438 439 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 440 tx_buf = &xdp_ring->tx_buf[ntu]; 441 442 page = skb_frag_page(&sinfo->frags[frag]); 443 offset = skb_frag_off(&sinfo->frags[frag]); 444 data = skb_frag_address(&sinfo->frags[frag]); 445 size = skb_frag_size(&sinfo->frags[frag]); 446 frag++; 447 } 448 449 /* store info about bytecount and frag count in first desc */ 450 tx_head->bytecount = xdp_get_buff_len(xdp); 451 tx_head->nr_frags = nr_frags; 452 453 if (frame) { 454 tx_head->type = ICE_TX_BUF_XDP_XMIT; 455 tx_head->xdpf = xdp->data_hard_start; 456 } 457 458 /* update last descriptor from a frame with EOP */ 459 tx_desc->cmd_type_offset_bsz |= 460 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 461 462 xdp_ring->xdp_tx_active++; 463 xdp_ring->next_to_use = ntu; 464 465 return ICE_XDP_TX; 466 467 dma_unmap: 468 for (;;) { 469 tx_buf = &xdp_ring->tx_buf[ntu]; 470 dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma), 471 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 472 dma_unmap_len_set(tx_buf, len, 0); 473 if (tx_buf == tx_head) 474 break; 475 476 if (!ntu) 477 ntu += cnt; 478 ntu--; 479 } 480 return ICE_XDP_CONSUMED; 481 482 busy: 483 xdp_ring->ring_stats->tx_stats.tx_busy++; 484 485 return ICE_XDP_CONSUMED; 486 } 487 488 /** 489 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 490 * @xdp_ring: XDP ring 491 * @xdp_res: Result of the receive batch 492 * @first_idx: index to write from caller 493 * 494 * This function bumps XDP Tx tail and/or flush redirect map, and 495 * should be called when a batch of packets has been processed in the 496 * napi loop. 497 */ 498 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res, 499 u32 first_idx) 500 { 501 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx]; 502 503 if (xdp_res & ICE_XDP_REDIR) 504 xdp_do_flush(); 505 506 if (xdp_res & ICE_XDP_TX) { 507 if (static_branch_unlikely(&ice_xdp_locking_key)) 508 spin_lock(&xdp_ring->tx_lock); 509 /* store index of descriptor with RS bit set in the first 510 * ice_tx_buf of given NAPI batch 511 */ 512 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring); 513 ice_xdp_ring_update_tail(xdp_ring); 514 if (static_branch_unlikely(&ice_xdp_locking_key)) 515 spin_unlock(&xdp_ring->tx_lock); 516 } 517 } 518 519 /** 520 * ice_xdp_rx_hw_ts - HW timestamp XDP hint handler 521 * @ctx: XDP buff pointer 522 * @ts_ns: destination address 523 * 524 * Copy HW timestamp (if available) to the destination address. 525 */ 526 static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns) 527 { 528 const struct libeth_xdp_buff *xdp_ext = (void *)ctx; 529 struct ice_rx_ring *rx_ring; 530 531 rx_ring = libeth_xdp_buff_to_rq(xdp_ext, typeof(*rx_ring), xdp_rxq); 532 533 *ts_ns = ice_ptp_get_rx_hwts(xdp_ext->desc, 534 &rx_ring->pkt_ctx); 535 if (!*ts_ns) 536 return -ENODATA; 537 538 return 0; 539 } 540 541 /** 542 * ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor 543 * @eop_desc: End of Packet descriptor 544 */ 545 static enum xdp_rss_hash_type 546 ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc) 547 { 548 return libie_rx_pt_parse(ice_get_ptype(eop_desc)).hash_type; 549 } 550 551 /** 552 * ice_xdp_rx_hash - RX hash XDP hint handler 553 * @ctx: XDP buff pointer 554 * @hash: hash destination address 555 * @rss_type: XDP hash type destination address 556 * 557 * Copy RX hash (if available) and its type to the destination address. 558 */ 559 static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash, 560 enum xdp_rss_hash_type *rss_type) 561 { 562 const struct libeth_xdp_buff *xdp_ext = (void *)ctx; 563 564 *hash = ice_get_rx_hash(xdp_ext->desc); 565 *rss_type = ice_xdp_rx_hash_type(xdp_ext->desc); 566 if (!likely(*hash)) 567 return -ENODATA; 568 569 return 0; 570 } 571 572 /** 573 * ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler 574 * @ctx: XDP buff pointer 575 * @vlan_proto: destination address for VLAN protocol 576 * @vlan_tci: destination address for VLAN TCI 577 * 578 * Copy VLAN tag (if was stripped) and corresponding protocol 579 * to the destination address. 580 */ 581 static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto, 582 u16 *vlan_tci) 583 { 584 const struct libeth_xdp_buff *xdp_ext = (void *)ctx; 585 struct ice_rx_ring *rx_ring; 586 587 rx_ring = libeth_xdp_buff_to_rq(xdp_ext, typeof(*rx_ring), xdp_rxq); 588 589 *vlan_proto = rx_ring->pkt_ctx.vlan_proto; 590 if (!*vlan_proto) 591 return -ENODATA; 592 593 *vlan_tci = ice_get_vlan_tci(xdp_ext->desc); 594 if (!*vlan_tci) 595 return -ENODATA; 596 597 return 0; 598 } 599 600 const struct xdp_metadata_ops ice_xdp_md_ops = { 601 .xmo_rx_timestamp = ice_xdp_rx_hw_ts, 602 .xmo_rx_hash = ice_xdp_rx_hash, 603 .xmo_rx_vlan_tag = ice_xdp_rx_vlan_tag, 604 }; 605