1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* ethtool support for ice */
5
6 #include "ice.h"
7 #include "ice_ethtool.h"
8 #include "ice_flow.h"
9 #include "ice_fltr.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include <net/dcbnl.h>
13
14 struct ice_stats {
15 char stat_string[ETH_GSTRING_LEN];
16 int sizeof_stat;
17 int stat_offset;
18 };
19
20 #define ICE_STAT(_type, _name, _stat) { \
21 .stat_string = _name, \
22 .sizeof_stat = sizeof_field(_type, _stat), \
23 .stat_offset = offsetof(_type, _stat) \
24 }
25
26 #define ICE_VSI_STAT(_name, _stat) \
27 ICE_STAT(struct ice_vsi, _name, _stat)
28 #define ICE_PF_STAT(_name, _stat) \
29 ICE_STAT(struct ice_pf, _name, _stat)
30
ice_q_stats_len(struct net_device * netdev)31 static int ice_q_stats_len(struct net_device *netdev)
32 {
33 struct ice_netdev_priv *np = netdev_priv(netdev);
34
35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) *
36 (sizeof(struct ice_q_stats) / sizeof(u64)));
37 }
38
39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats)
40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats)
41
42 #define ICE_PFC_STATS_LEN ( \
43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \
44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \
45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \
46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \
47 / sizeof(u64))
48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \
49 ICE_VSI_STATS_LEN + ice_q_stats_len(n))
50
51 static const struct ice_stats ice_gstrings_vsi_stats[] = {
52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast),
53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast),
54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast),
55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast),
56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast),
57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast),
58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes),
59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes),
60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards),
61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol),
62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed),
63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed),
64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors),
65 ICE_VSI_STAT("tx_linearize", tx_linearize),
66 ICE_VSI_STAT("tx_busy", tx_busy),
67 ICE_VSI_STAT("tx_restart", tx_restart),
68 };
69
70 enum ice_ethtool_test_id {
71 ICE_ETH_TEST_REG = 0,
72 ICE_ETH_TEST_EEPROM,
73 ICE_ETH_TEST_INTR,
74 ICE_ETH_TEST_LOOP,
75 ICE_ETH_TEST_LINK,
76 };
77
78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = {
79 "Register test (offline)",
80 "EEPROM test (offline)",
81 "Interrupt test (offline)",
82 "Loopback test (offline)",
83 "Link test (on/offline)",
84 };
85
86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN)
87
88 /* These PF_STATs might look like duplicates of some NETDEV_STATs,
89 * but they aren't. This device is capable of supporting multiple
90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual
91 * netdevs whereas the PF_STATs are for the physical function that's
92 * hosting these netdevs.
93 *
94 * The PF_STATs are appended to the netdev stats only when ethtool -S
95 * is queried on the base PF netdev.
96 */
97 static const struct ice_stats ice_gstrings_pf_stats[] = {
98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes),
99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes),
100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast),
101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast),
102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast),
103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast),
104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast),
105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast),
106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors),
107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count),
108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64),
109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64),
110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127),
111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127),
112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255),
113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255),
114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511),
115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511),
116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023),
117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023),
118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522),
119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522),
120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big),
121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big),
122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx),
123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx),
124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx),
125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx),
126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down),
127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize),
128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments),
129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize),
130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber),
131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error),
132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error),
133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards),
134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors),
135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes),
136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults),
137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults),
138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match),
139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status),
140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped),
141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts),
142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed),
143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded),
144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates),
145 };
146
147 static const u32 ice_regs_dump_list[] = {
148 PFGEN_STATE,
149 PRTGEN_STATUS,
150 QRX_CTRL(0),
151 QINT_TQCTL(0),
152 QINT_RQCTL(0),
153 PFINT_OICR_ENA,
154 QRX_ITR(0),
155 #define GLDCB_TLPM_PCI_DM 0x000A0180
156 GLDCB_TLPM_PCI_DM,
157 #define GLDCB_TLPM_TC2PFC 0x000A0194
158 GLDCB_TLPM_TC2PFC,
159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4))
160 TCDCB_TLPM_WAIT_DM(0),
161 TCDCB_TLPM_WAIT_DM(1),
162 TCDCB_TLPM_WAIT_DM(2),
163 TCDCB_TLPM_WAIT_DM(3),
164 TCDCB_TLPM_WAIT_DM(4),
165 TCDCB_TLPM_WAIT_DM(5),
166 TCDCB_TLPM_WAIT_DM(6),
167 TCDCB_TLPM_WAIT_DM(7),
168 TCDCB_TLPM_WAIT_DM(8),
169 TCDCB_TLPM_WAIT_DM(9),
170 TCDCB_TLPM_WAIT_DM(10),
171 TCDCB_TLPM_WAIT_DM(11),
172 TCDCB_TLPM_WAIT_DM(12),
173 TCDCB_TLPM_WAIT_DM(13),
174 TCDCB_TLPM_WAIT_DM(14),
175 TCDCB_TLPM_WAIT_DM(15),
176 TCDCB_TLPM_WAIT_DM(16),
177 TCDCB_TLPM_WAIT_DM(17),
178 TCDCB_TLPM_WAIT_DM(18),
179 TCDCB_TLPM_WAIT_DM(19),
180 TCDCB_TLPM_WAIT_DM(20),
181 TCDCB_TLPM_WAIT_DM(21),
182 TCDCB_TLPM_WAIT_DM(22),
183 TCDCB_TLPM_WAIT_DM(23),
184 TCDCB_TLPM_WAIT_DM(24),
185 TCDCB_TLPM_WAIT_DM(25),
186 TCDCB_TLPM_WAIT_DM(26),
187 TCDCB_TLPM_WAIT_DM(27),
188 TCDCB_TLPM_WAIT_DM(28),
189 TCDCB_TLPM_WAIT_DM(29),
190 TCDCB_TLPM_WAIT_DM(30),
191 TCDCB_TLPM_WAIT_DM(31),
192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90
193 GLPCI_WATMK_CLNT_PIPEMON,
194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84
195 GLPCI_CUR_CLNT_COMMON,
196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88
197 GLPCI_CUR_CLNT_PIPEMON,
198 #define GLPCI_PCIERR 0x0009DEB0
199 GLPCI_PCIERR,
200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600
201 GLPSM_DEBUG_CTL_STATUS,
202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680
203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT,
204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684
205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT,
206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688
207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW,
208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C
209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT,
210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0
211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT,
212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80
213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT,
214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84
215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT,
216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88
217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT,
218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C
219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT,
220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90
221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT,
222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680
223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT,
224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684
225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT,
226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688
227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT,
228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4))
229 GLTDPU_TCLAN_COMP_BOB(1),
230 GLTDPU_TCLAN_COMP_BOB(2),
231 GLTDPU_TCLAN_COMP_BOB(3),
232 GLTDPU_TCLAN_COMP_BOB(4),
233 GLTDPU_TCLAN_COMP_BOB(5),
234 GLTDPU_TCLAN_COMP_BOB(6),
235 GLTDPU_TCLAN_COMP_BOB(7),
236 GLTDPU_TCLAN_COMP_BOB(8),
237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4))
238 GLTDPU_TCB_CMD_BOB(1),
239 GLTDPU_TCB_CMD_BOB(2),
240 GLTDPU_TCB_CMD_BOB(3),
241 GLTDPU_TCB_CMD_BOB(4),
242 GLTDPU_TCB_CMD_BOB(5),
243 GLTDPU_TCB_CMD_BOB(6),
244 GLTDPU_TCB_CMD_BOB(7),
245 GLTDPU_TCB_CMD_BOB(8),
246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4))
247 GLTDPU_PSM_UPDATE_BOB(1),
248 GLTDPU_PSM_UPDATE_BOB(2),
249 GLTDPU_PSM_UPDATE_BOB(3),
250 GLTDPU_PSM_UPDATE_BOB(4),
251 GLTDPU_PSM_UPDATE_BOB(5),
252 GLTDPU_PSM_UPDATE_BOB(6),
253 GLTDPU_PSM_UPDATE_BOB(7),
254 GLTDPU_PSM_UPDATE_BOB(8),
255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4))
256 GLTCB_CMD_IN_BOB(1),
257 GLTCB_CMD_IN_BOB(2),
258 GLTCB_CMD_IN_BOB(3),
259 GLTCB_CMD_IN_BOB(4),
260 GLTCB_CMD_IN_BOB(5),
261 GLTCB_CMD_IN_BOB(6),
262 GLTCB_CMD_IN_BOB(7),
263 GLTCB_CMD_IN_BOB(8),
264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4))
265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1),
266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2),
267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3),
268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4),
269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5),
270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6),
271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7),
272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8),
273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4))
274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1),
275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2),
276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3),
277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4),
278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5),
279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6),
280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7),
281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8),
282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4))
283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1),
284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2),
285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3),
286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4),
287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5),
288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6),
289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7),
290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8),
291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4))
292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1),
293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2),
294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3),
295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4),
296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5),
297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6),
298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7),
299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8),
300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4))
301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1),
302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2),
303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3),
304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4),
305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5),
306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6),
307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7),
308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8),
309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4))
310 PRTDCB_TCUPM_REG_CM(0),
311 PRTDCB_TCUPM_REG_CM(1),
312 PRTDCB_TCUPM_REG_CM(2),
313 PRTDCB_TCUPM_REG_CM(3),
314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4))
315 PRTDCB_TCUPM_REG_DM(0),
316 PRTDCB_TCUPM_REG_DM(1),
317 PRTDCB_TCUPM_REG_DM(2),
318 PRTDCB_TCUPM_REG_DM(3),
319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4))
320 PRTDCB_TLPM_REG_DM(0),
321 PRTDCB_TLPM_REG_DM(1),
322 PRTDCB_TLPM_REG_DM(2),
323 PRTDCB_TLPM_REG_DM(3),
324 };
325
326 struct ice_priv_flag {
327 char name[ETH_GSTRING_LEN];
328 u32 bitno; /* bit position in pf->flags */
329 };
330
331 #define ICE_PRIV_FLAG(_name, _bitno) { \
332 .name = _name, \
333 .bitno = _bitno, \
334 }
335
336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = {
337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA),
338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT),
339 ICE_PRIV_FLAG("vf-true-promisc-support",
340 ICE_FLAG_VF_TRUE_PROMISC_ENA),
341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF),
342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING),
343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX),
344 };
345
346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags)
347
348 static const u32 ice_adv_lnk_speed_100[] __initconst = {
349 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
350 };
351
352 static const u32 ice_adv_lnk_speed_1000[] __initconst = {
353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
356 };
357
358 static const u32 ice_adv_lnk_speed_2500[] __initconst = {
359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
361 };
362
363 static const u32 ice_adv_lnk_speed_5000[] __initconst = {
364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
365 };
366
367 static const u32 ice_adv_lnk_speed_10000[] __initconst = {
368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
372 };
373
374 static const u32 ice_adv_lnk_speed_25000[] __initconst = {
375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
378 };
379
380 static const u32 ice_adv_lnk_speed_40000[] __initconst = {
381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
385 };
386
387 static const u32 ice_adv_lnk_speed_50000[] __initconst = {
388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
391 };
392
393 static const u32 ice_adv_lnk_speed_100000[] __initconst = {
394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
401 };
402
403 static const u32 ice_adv_lnk_speed_200000[] __initconst = {
404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
409 };
410
411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = {
412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100),
413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000),
414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500),
415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000),
416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000),
417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000),
418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000),
419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000),
420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000),
421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000),
422 };
423
ice_adv_lnk_speed_maps_init(void)424 void __init ice_adv_lnk_speed_maps_init(void)
425 {
426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps,
427 ARRAY_SIZE(ice_adv_lnk_speed_maps));
428 }
429
430 static void
__ice_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo,struct ice_vsi * vsi)431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo,
432 struct ice_vsi *vsi)
433 {
434 struct ice_pf *pf = vsi->back;
435 struct ice_hw *hw = &pf->hw;
436 struct ice_orom_info *orom;
437 struct ice_nvm_info *nvm;
438
439 nvm = &hw->flash.nvm;
440 orom = &hw->flash.orom;
441
442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
443
444 /* Display NVM version (from which the firmware version can be
445 * determined) which contains more pertinent information.
446 */
447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor,
449 nvm->eetrack, orom->major, orom->build, orom->patch);
450
451 strscpy(drvinfo->bus_info, pci_name(pf->pdev),
452 sizeof(drvinfo->bus_info));
453 }
454
455 static void
ice_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
457 {
458 struct ice_netdev_priv *np = netdev_priv(netdev);
459
460 __ice_get_drvinfo(netdev, drvinfo, np->vsi);
461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE;
462 }
463
ice_get_regs_len(struct net_device __always_unused * netdev)464 static int ice_get_regs_len(struct net_device __always_unused *netdev)
465 {
466 return (sizeof(ice_regs_dump_list) +
467 sizeof(struct ice_regdump_to_ethtool));
468 }
469
470 /**
471 * ice_ethtool_get_maxspeed - Get the max speed for given lport
472 * @hw: pointer to the HW struct
473 * @lport: logical port for which max speed is requested
474 * @max_speed: return max speed for input lport
475 *
476 * Return: 0 on success, negative on failure.
477 */
ice_ethtool_get_maxspeed(struct ice_hw * hw,u8 lport,u8 * max_speed)478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed)
479 {
480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {};
481 bool active_valid = false, pending_valid = true;
482 u8 option_count = ICE_AQC_PORT_OPT_MAX;
483 u8 active_idx = 0, pending_idx = 0;
484 int status;
485
486 status = ice_aq_get_port_options(hw, options, &option_count, lport,
487 true, &active_idx, &active_valid,
488 &pending_idx, &pending_valid);
489 if (status)
490 return -EIO;
491 if (!active_valid)
492 return -EINVAL;
493
494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M;
495 return 0;
496 }
497
498 /**
499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware
500 * @hw: pointer to the HW struct
501 *
502 * Return: true when serdes is muxed, false when serdes is not muxed.
503 */
ice_is_serdes_muxed(struct ice_hw * hw)504 static bool ice_is_serdes_muxed(struct ice_hw *hw)
505 {
506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
507
508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value);
509 }
510
ice_map_port_topology_for_sfp(struct ice_port_topology * port_topology,u8 lport,bool is_muxed)511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology,
512 u8 lport, bool is_muxed)
513 {
514 switch (lport) {
515 case 0:
516 port_topology->pcs_quad_select = 0;
517 port_topology->pcs_port = 0;
518 port_topology->primary_serdes_lane = 0;
519 break;
520 case 1:
521 port_topology->pcs_quad_select = 1;
522 port_topology->pcs_port = 0;
523 if (is_muxed)
524 port_topology->primary_serdes_lane = 2;
525 else
526 port_topology->primary_serdes_lane = 4;
527 break;
528 case 2:
529 port_topology->pcs_quad_select = 0;
530 port_topology->pcs_port = 1;
531 port_topology->primary_serdes_lane = 1;
532 break;
533 case 3:
534 port_topology->pcs_quad_select = 1;
535 port_topology->pcs_port = 1;
536 if (is_muxed)
537 port_topology->primary_serdes_lane = 3;
538 else
539 port_topology->primary_serdes_lane = 5;
540 break;
541 case 4:
542 port_topology->pcs_quad_select = 0;
543 port_topology->pcs_port = 2;
544 port_topology->primary_serdes_lane = 2;
545 break;
546 case 5:
547 port_topology->pcs_quad_select = 1;
548 port_topology->pcs_port = 2;
549 port_topology->primary_serdes_lane = 6;
550 break;
551 case 6:
552 port_topology->pcs_quad_select = 0;
553 port_topology->pcs_port = 3;
554 port_topology->primary_serdes_lane = 3;
555 break;
556 case 7:
557 port_topology->pcs_quad_select = 1;
558 port_topology->pcs_port = 3;
559 port_topology->primary_serdes_lane = 7;
560 break;
561 default:
562 return -EINVAL;
563 }
564
565 return 0;
566 }
567
ice_map_port_topology_for_qsfp(struct ice_port_topology * port_topology,u8 lport,bool is_muxed)568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology,
569 u8 lport, bool is_muxed)
570 {
571 switch (lport) {
572 case 0:
573 port_topology->pcs_quad_select = 0;
574 port_topology->pcs_port = 0;
575 port_topology->primary_serdes_lane = 0;
576 break;
577 case 1:
578 port_topology->pcs_quad_select = 1;
579 port_topology->pcs_port = 0;
580 if (is_muxed)
581 port_topology->primary_serdes_lane = 2;
582 else
583 port_topology->primary_serdes_lane = 4;
584 break;
585 case 2:
586 port_topology->pcs_quad_select = 0;
587 port_topology->pcs_port = 1;
588 port_topology->primary_serdes_lane = 1;
589 break;
590 case 3:
591 port_topology->pcs_quad_select = 1;
592 port_topology->pcs_port = 1;
593 if (is_muxed)
594 port_topology->primary_serdes_lane = 3;
595 else
596 port_topology->primary_serdes_lane = 5;
597 break;
598 case 4:
599 port_topology->pcs_quad_select = 0;
600 port_topology->pcs_port = 2;
601 port_topology->primary_serdes_lane = 2;
602 break;
603 case 5:
604 port_topology->pcs_quad_select = 1;
605 port_topology->pcs_port = 2;
606 port_topology->primary_serdes_lane = 6;
607 break;
608 case 6:
609 port_topology->pcs_quad_select = 0;
610 port_topology->pcs_port = 3;
611 port_topology->primary_serdes_lane = 3;
612 break;
613 case 7:
614 port_topology->pcs_quad_select = 1;
615 port_topology->pcs_port = 3;
616 port_topology->primary_serdes_lane = 7;
617 break;
618 default:
619 return -EINVAL;
620 }
621
622 return 0;
623 }
624
625 /**
626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport,
627 * serdes number
628 * @hw: pointer to the HW struct
629 * @lport: logical port for which physical info requested
630 * @port_topology: buffer to hold port topology
631 *
632 * Return: 0 on success, negative on failure.
633 */
ice_get_port_topology(struct ice_hw * hw,u8 lport,struct ice_port_topology * port_topology)634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport,
635 struct ice_port_topology *port_topology)
636 {
637 struct ice_aqc_get_link_topo cmd = {};
638 u16 node_handle = 0;
639 u8 cage_type = 0;
640 bool is_muxed;
641 int err;
642 u8 ctx;
643
644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
646 cmd.addr.topo_params.node_type_ctx = ctx;
647
648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle);
649 if (err)
650 return -EINVAL;
651
652 is_muxed = ice_is_serdes_muxed(hw);
653
654 if (cage_type == 0x11 || /* SFP+ */
655 cage_type == 0x12) { /* SFP28 */
656 port_topology->serdes_lane_count = 1;
657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed);
658 if (err)
659 return err;
660 } else if (cage_type == 0x13 || /* QSFP */
661 cage_type == 0x14) { /* QSFP28 */
662 u8 max_speed = 0;
663
664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed);
665 if (err)
666 return err;
667
668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G)
669 port_topology->serdes_lane_count = 4;
670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G)
671 port_topology->serdes_lane_count = 2;
672 else
673 port_topology->serdes_lane_count = 1;
674
675 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed);
676 if (err)
677 return err;
678 } else {
679 return -EINVAL;
680 }
681
682 return 0;
683 }
684
685 /**
686 * ice_get_tx_rx_equa - read serdes tx rx equaliser param
687 * @hw: pointer to the HW struct
688 * @serdes_num: represents the serdes number
689 * @ptr: structure to read all serdes parameter for given serdes
690 *
691 * Return: all serdes equalization parameter supported per serdes number
692 */
ice_get_tx_rx_equa(struct ice_hw * hw,u8 serdes_num,struct ice_serdes_equalization_to_ethtool * ptr)693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num,
694 struct ice_serdes_equalization_to_ethtool *ptr)
695 {
696 static const int tx = ICE_AQC_OP_CODE_TX_EQU;
697 static const int rx = ICE_AQC_OP_CODE_RX_EQU;
698 struct {
699 int data_in;
700 int opcode;
701 int *out;
702 } aq_params[] = {
703 { ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 },
704 { ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 },
705 { ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten },
706 { ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 },
707 { ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 },
708 { ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 },
709 { ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 },
710 { ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 },
711 { ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf },
712 { ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf },
713 { ICE_AQC_RX_EQU_DRATE, rx, &ptr->rx_equ_drate },
714 { ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf },
715 { ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf },
716 { ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc },
717 { ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw },
718 { ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain },
719 { ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 },
720 { ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 },
721 { ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 },
722 { ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 },
723 { ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 },
724 { ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 },
725 { ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 },
726 { ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 },
727 { ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 },
728 { ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 },
729 { ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 },
730 { ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 },
731 };
732 int err;
733
734 for (int i = 0; i < ARRAY_SIZE(aq_params); i++) {
735 err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in,
736 aq_params[i].opcode,
737 serdes_num, aq_params[i].out);
738 if (err)
739 break;
740 }
741
742 return err;
743 }
744
745 /**
746 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per
747 * pcsquad, pcsport
748 * @netdev: pointer to net device structure
749 * @p: output buffer to fill requested register dump
750 *
751 * Return: 0 on success, negative on failure.
752 */
ice_get_extended_regs(struct net_device * netdev,void * p)753 static int ice_get_extended_regs(struct net_device *netdev, void *p)
754 {
755 struct ice_netdev_priv *np = netdev_priv(netdev);
756 struct ice_regdump_to_ethtool *ice_prv_regs_buf;
757 struct ice_port_topology port_topology = {};
758 struct ice_port_info *pi;
759 struct ice_pf *pf;
760 struct ice_hw *hw;
761 unsigned int i;
762 int err;
763
764 pf = np->vsi->back;
765 hw = &pf->hw;
766 pi = np->vsi->port_info;
767
768 /* Serdes parameters are not supported if not the PF VSI */
769 if (np->vsi->type != ICE_VSI_PF || !pi)
770 return -EINVAL;
771
772 err = ice_get_port_topology(hw, pi->lport, &port_topology);
773 if (err)
774 return -EINVAL;
775 if (port_topology.serdes_lane_count > 4)
776 return -EINVAL;
777
778 ice_prv_regs_buf = p;
779
780 /* Get serdes equalization parameter for available serdes */
781 for (i = 0; i < port_topology.serdes_lane_count; i++) {
782 u8 serdes_num = 0;
783
784 serdes_num = port_topology.primary_serdes_lane + i;
785 err = ice_get_tx_rx_equa(hw, serdes_num,
786 &ice_prv_regs_buf->equalization[i]);
787 if (err)
788 return -EINVAL;
789 }
790
791 return 0;
792 }
793
794 static void
ice_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)795 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
796 {
797 struct ice_netdev_priv *np = netdev_priv(netdev);
798 struct ice_pf *pf = np->vsi->back;
799 struct ice_hw *hw = &pf->hw;
800 u32 *regs_buf = (u32 *)p;
801 unsigned int i;
802
803 regs->version = 2;
804
805 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i)
806 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]);
807
808 ice_get_extended_regs(netdev, (void *)®s_buf[i]);
809 }
810
ice_get_msglevel(struct net_device * netdev)811 static u32 ice_get_msglevel(struct net_device *netdev)
812 {
813 struct ice_netdev_priv *np = netdev_priv(netdev);
814 struct ice_pf *pf = np->vsi->back;
815
816 #ifndef CONFIG_DYNAMIC_DEBUG
817 if (pf->hw.debug_mask)
818 netdev_info(netdev, "hw debug_mask: 0x%llX\n",
819 pf->hw.debug_mask);
820 #endif /* !CONFIG_DYNAMIC_DEBUG */
821
822 return pf->msg_enable;
823 }
824
ice_set_msglevel(struct net_device * netdev,u32 data)825 static void ice_set_msglevel(struct net_device *netdev, u32 data)
826 {
827 struct ice_netdev_priv *np = netdev_priv(netdev);
828 struct ice_pf *pf = np->vsi->back;
829
830 #ifndef CONFIG_DYNAMIC_DEBUG
831 if (ICE_DBG_USER & data)
832 pf->hw.debug_mask = data;
833 else
834 pf->msg_enable = data;
835 #else
836 pf->msg_enable = data;
837 #endif /* !CONFIG_DYNAMIC_DEBUG */
838 }
839
ice_get_eeprom_len(struct net_device * netdev)840 static int ice_get_eeprom_len(struct net_device *netdev)
841 {
842 struct ice_netdev_priv *np = netdev_priv(netdev);
843 struct ice_pf *pf = np->vsi->back;
844
845 return (int)pf->hw.flash.flash_size;
846 }
847
848 static int
ice_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)849 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom,
850 u8 *bytes)
851 {
852 struct ice_netdev_priv *np = netdev_priv(netdev);
853 struct ice_vsi *vsi = np->vsi;
854 struct ice_pf *pf = vsi->back;
855 struct ice_hw *hw = &pf->hw;
856 struct device *dev;
857 int ret;
858 u8 *buf;
859
860 dev = ice_pf_to_dev(pf);
861
862 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
863 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n",
864 eeprom->cmd, eeprom->offset, eeprom->len);
865
866 buf = kzalloc(eeprom->len, GFP_KERNEL);
867 if (!buf)
868 return -ENOMEM;
869
870 ret = ice_acquire_nvm(hw, ICE_RES_READ);
871 if (ret) {
872 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n",
873 ret, ice_aq_str(hw->adminq.sq_last_status));
874 goto out;
875 }
876
877 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf,
878 false);
879 if (ret) {
880 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n",
881 ret, ice_aq_str(hw->adminq.sq_last_status));
882 goto release;
883 }
884
885 memcpy(bytes, buf, eeprom->len);
886 release:
887 ice_release_nvm(hw);
888 out:
889 kfree(buf);
890 return ret;
891 }
892
893 /**
894 * ice_active_vfs - check if there are any active VFs
895 * @pf: board private structure
896 *
897 * Returns true if an active VF is found, otherwise returns false
898 */
ice_active_vfs(struct ice_pf * pf)899 static bool ice_active_vfs(struct ice_pf *pf)
900 {
901 bool active = false;
902 struct ice_vf *vf;
903 unsigned int bkt;
904
905 rcu_read_lock();
906 ice_for_each_vf_rcu(pf, bkt, vf) {
907 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
908 active = true;
909 break;
910 }
911 }
912 rcu_read_unlock();
913
914 return active;
915 }
916
917 /**
918 * ice_link_test - perform a link test on a given net_device
919 * @netdev: network interface device structure
920 *
921 * This function performs one of the self-tests required by ethtool.
922 * Returns 0 on success, non-zero on failure.
923 */
ice_link_test(struct net_device * netdev)924 static u64 ice_link_test(struct net_device *netdev)
925 {
926 struct ice_netdev_priv *np = netdev_priv(netdev);
927 bool link_up = false;
928 int status;
929
930 netdev_info(netdev, "link test\n");
931 status = ice_get_link_status(np->vsi->port_info, &link_up);
932 if (status) {
933 netdev_err(netdev, "link query error, status = %d\n",
934 status);
935 return 1;
936 }
937
938 if (!link_up)
939 return 2;
940
941 return 0;
942 }
943
944 /**
945 * ice_eeprom_test - perform an EEPROM test on a given net_device
946 * @netdev: network interface device structure
947 *
948 * This function performs one of the self-tests required by ethtool.
949 * Returns 0 on success, non-zero on failure.
950 */
ice_eeprom_test(struct net_device * netdev)951 static u64 ice_eeprom_test(struct net_device *netdev)
952 {
953 struct ice_netdev_priv *np = netdev_priv(netdev);
954 struct ice_pf *pf = np->vsi->back;
955
956 netdev_info(netdev, "EEPROM test\n");
957 return !!(ice_nvm_validate_checksum(&pf->hw));
958 }
959
960 /**
961 * ice_reg_pattern_test
962 * @hw: pointer to the HW struct
963 * @reg: reg to be tested
964 * @mask: bits to be touched
965 */
ice_reg_pattern_test(struct ice_hw * hw,u32 reg,u32 mask)966 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask)
967 {
968 struct ice_pf *pf = (struct ice_pf *)hw->back;
969 struct device *dev = ice_pf_to_dev(pf);
970 static const u32 patterns[] = {
971 0x5A5A5A5A, 0xA5A5A5A5,
972 0x00000000, 0xFFFFFFFF
973 };
974 u32 val, orig_val;
975 unsigned int i;
976
977 orig_val = rd32(hw, reg);
978 for (i = 0; i < ARRAY_SIZE(patterns); ++i) {
979 u32 pattern = patterns[i] & mask;
980
981 wr32(hw, reg, pattern);
982 val = rd32(hw, reg);
983 if (val == pattern)
984 continue;
985 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n"
986 , __func__, reg, pattern, val);
987 return 1;
988 }
989
990 wr32(hw, reg, orig_val);
991 val = rd32(hw, reg);
992 if (val != orig_val) {
993 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n"
994 , __func__, reg, orig_val, val);
995 return 1;
996 }
997
998 return 0;
999 }
1000
1001 /**
1002 * ice_reg_test - perform a register test on a given net_device
1003 * @netdev: network interface device structure
1004 *
1005 * This function performs one of the self-tests required by ethtool.
1006 * Returns 0 on success, non-zero on failure.
1007 */
ice_reg_test(struct net_device * netdev)1008 static u64 ice_reg_test(struct net_device *netdev)
1009 {
1010 struct ice_netdev_priv *np = netdev_priv(netdev);
1011 struct ice_hw *hw = np->vsi->port_info->hw;
1012 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ?
1013 hw->func_caps.common_cap.num_msix_vectors - 1 : 1;
1014 struct ice_diag_reg_test_info {
1015 u32 address;
1016 u32 mask;
1017 u32 elem_num;
1018 u32 elem_size;
1019 } ice_reg_list[] = {
1020 {GLINT_ITR(0, 0), 0x00000fff, int_elements,
1021 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)},
1022 {GLINT_ITR(1, 0), 0x00000fff, int_elements,
1023 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)},
1024 {GLINT_ITR(0, 0), 0x00000fff, int_elements,
1025 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)},
1026 {GLINT_CTL, 0xffff0001, 1, 0}
1027 };
1028 unsigned int i;
1029
1030 netdev_dbg(netdev, "Register test\n");
1031 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) {
1032 u32 j;
1033
1034 for (j = 0; j < ice_reg_list[i].elem_num; ++j) {
1035 u32 mask = ice_reg_list[i].mask;
1036 u32 reg = ice_reg_list[i].address +
1037 (j * ice_reg_list[i].elem_size);
1038
1039 /* bail on failure (non-zero return) */
1040 if (ice_reg_pattern_test(hw, reg, mask))
1041 return 1;
1042 }
1043 }
1044
1045 return 0;
1046 }
1047
1048 /**
1049 * ice_lbtest_prepare_rings - configure Tx/Rx test rings
1050 * @vsi: pointer to the VSI structure
1051 *
1052 * Function configures rings of a VSI for loopback test without
1053 * enabling interrupts or informing the kernel about new queues.
1054 *
1055 * Returns 0 on success, negative on failure.
1056 */
ice_lbtest_prepare_rings(struct ice_vsi * vsi)1057 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi)
1058 {
1059 int status;
1060
1061 status = ice_vsi_setup_tx_rings(vsi);
1062 if (status)
1063 goto err_setup_tx_ring;
1064
1065 status = ice_vsi_setup_rx_rings(vsi);
1066 if (status)
1067 goto err_setup_rx_ring;
1068
1069 status = ice_vsi_cfg_lan(vsi);
1070 if (status)
1071 goto err_setup_rx_ring;
1072
1073 status = ice_vsi_start_all_rx_rings(vsi);
1074 if (status)
1075 goto err_start_rx_ring;
1076
1077 return 0;
1078
1079 err_start_rx_ring:
1080 ice_vsi_free_rx_rings(vsi);
1081 err_setup_rx_ring:
1082 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1083 err_setup_tx_ring:
1084 ice_vsi_free_tx_rings(vsi);
1085
1086 return status;
1087 }
1088
1089 /**
1090 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test
1091 * @vsi: pointer to the VSI structure
1092 *
1093 * Function stops and frees VSI rings after a loopback test.
1094 * Returns 0 on success, negative on failure.
1095 */
ice_lbtest_disable_rings(struct ice_vsi * vsi)1096 static int ice_lbtest_disable_rings(struct ice_vsi *vsi)
1097 {
1098 int status;
1099
1100 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1101 if (status)
1102 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n",
1103 vsi->vsi_num, status);
1104
1105 status = ice_vsi_stop_all_rx_rings(vsi);
1106 if (status)
1107 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n",
1108 vsi->vsi_num, status);
1109
1110 ice_vsi_free_tx_rings(vsi);
1111 ice_vsi_free_rx_rings(vsi);
1112
1113 return status;
1114 }
1115
1116 /**
1117 * ice_lbtest_create_frame - create test packet
1118 * @pf: pointer to the PF structure
1119 * @ret_data: allocated frame buffer
1120 * @size: size of the packet data
1121 *
1122 * Function allocates a frame with a test pattern on specific offsets.
1123 * Returns 0 on success, non-zero on failure.
1124 */
ice_lbtest_create_frame(struct ice_pf * pf,u8 ** ret_data,u16 size)1125 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size)
1126 {
1127 u8 *data;
1128
1129 if (!pf)
1130 return -EINVAL;
1131
1132 data = kzalloc(size, GFP_KERNEL);
1133 if (!data)
1134 return -ENOMEM;
1135
1136 /* Since the ethernet test frame should always be at least
1137 * 64 bytes long, fill some octets in the payload with test data.
1138 */
1139 memset(data, 0xFF, size);
1140 data[32] = 0xDE;
1141 data[42] = 0xAD;
1142 data[44] = 0xBE;
1143 data[46] = 0xEF;
1144
1145 *ret_data = data;
1146
1147 return 0;
1148 }
1149
1150 /**
1151 * ice_lbtest_check_frame - verify received loopback frame
1152 * @frame: pointer to the raw packet data
1153 *
1154 * Function verifies received test frame with a pattern.
1155 * Returns true if frame matches the pattern, false otherwise.
1156 */
ice_lbtest_check_frame(u8 * frame)1157 static bool ice_lbtest_check_frame(u8 *frame)
1158 {
1159 /* Validate bytes of a frame under offsets chosen earlier */
1160 if (frame[32] == 0xDE &&
1161 frame[42] == 0xAD &&
1162 frame[44] == 0xBE &&
1163 frame[46] == 0xEF &&
1164 frame[48] == 0xFF)
1165 return true;
1166
1167 return false;
1168 }
1169
1170 /**
1171 * ice_diag_send - send test frames to the test ring
1172 * @tx_ring: pointer to the transmit ring
1173 * @data: pointer to the raw packet data
1174 * @size: size of the packet to send
1175 *
1176 * Function sends loopback packets on a test Tx ring.
1177 */
ice_diag_send(struct ice_tx_ring * tx_ring,u8 * data,u16 size)1178 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size)
1179 {
1180 struct ice_tx_desc *tx_desc;
1181 struct ice_tx_buf *tx_buf;
1182 dma_addr_t dma;
1183 u64 td_cmd;
1184
1185 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use);
1186 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use];
1187
1188 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1189 if (dma_mapping_error(tx_ring->dev, dma))
1190 return -EINVAL;
1191
1192 tx_desc->buf_addr = cpu_to_le64(dma);
1193
1194 /* These flags are required for a descriptor to be pushed out */
1195 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1196 tx_desc->cmd_type_offset_bsz =
1197 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1198 (td_cmd << ICE_TXD_QW1_CMD_S) |
1199 ((u64)0 << ICE_TXD_QW1_OFFSET_S) |
1200 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1201 ((u64)0 << ICE_TXD_QW1_L2TAG1_S));
1202
1203 tx_buf->next_to_watch = tx_desc;
1204
1205 /* Force memory write to complete before letting h/w know
1206 * there are new descriptors to fetch.
1207 */
1208 wmb();
1209
1210 tx_ring->next_to_use++;
1211 if (tx_ring->next_to_use >= tx_ring->count)
1212 tx_ring->next_to_use = 0;
1213
1214 writel_relaxed(tx_ring->next_to_use, tx_ring->tail);
1215
1216 /* Wait until the packets get transmitted to the receive queue. */
1217 usleep_range(1000, 2000);
1218 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE);
1219
1220 return 0;
1221 }
1222
1223 #define ICE_LB_FRAME_SIZE 64
1224 /**
1225 * ice_lbtest_receive_frames - receive and verify test frames
1226 * @rx_ring: pointer to the receive ring
1227 *
1228 * Function receives loopback packets and verify their correctness.
1229 * Returns number of received valid frames.
1230 */
ice_lbtest_receive_frames(struct ice_rx_ring * rx_ring)1231 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring)
1232 {
1233 struct ice_rx_buf *rx_buf;
1234 int valid_frames, i;
1235 u8 *received_buf;
1236
1237 valid_frames = 0;
1238
1239 for (i = 0; i < rx_ring->count; i++) {
1240 union ice_32b_rx_flex_desc *rx_desc;
1241
1242 rx_desc = ICE_RX_DESC(rx_ring, i);
1243
1244 if (!(rx_desc->wb.status_error0 &
1245 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) |
1246 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)))))
1247 continue;
1248
1249 rx_buf = &rx_ring->rx_buf[i];
1250 received_buf = page_address(rx_buf->page) + rx_buf->page_offset;
1251
1252 if (ice_lbtest_check_frame(received_buf))
1253 valid_frames++;
1254 }
1255
1256 return valid_frames;
1257 }
1258
1259 /**
1260 * ice_loopback_test - perform a loopback test on a given net_device
1261 * @netdev: network interface device structure
1262 *
1263 * This function performs one of the self-tests required by ethtool.
1264 * Returns 0 on success, non-zero on failure.
1265 */
ice_loopback_test(struct net_device * netdev)1266 static u64 ice_loopback_test(struct net_device *netdev)
1267 {
1268 struct ice_netdev_priv *np = netdev_priv(netdev);
1269 struct ice_vsi *orig_vsi = np->vsi, *test_vsi;
1270 struct ice_pf *pf = orig_vsi->back;
1271 u8 *tx_frame __free(kfree) = NULL;
1272 u8 broadcast[ETH_ALEN], ret = 0;
1273 int num_frames, valid_frames;
1274 struct ice_tx_ring *tx_ring;
1275 struct ice_rx_ring *rx_ring;
1276 int i;
1277
1278 netdev_info(netdev, "loopback test\n");
1279
1280 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info);
1281 if (!test_vsi) {
1282 netdev_err(netdev, "Failed to create a VSI for the loopback test\n");
1283 return 1;
1284 }
1285
1286 test_vsi->netdev = netdev;
1287 tx_ring = test_vsi->tx_rings[0];
1288 rx_ring = test_vsi->rx_rings[0];
1289
1290 if (ice_lbtest_prepare_rings(test_vsi)) {
1291 ret = 2;
1292 goto lbtest_vsi_close;
1293 }
1294
1295 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) {
1296 ret = 3;
1297 goto lbtest_rings_dis;
1298 }
1299
1300 /* Enable MAC loopback in firmware */
1301 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) {
1302 ret = 4;
1303 goto lbtest_mac_dis;
1304 }
1305
1306 /* Test VSI needs to receive broadcast packets */
1307 eth_broadcast_addr(broadcast);
1308 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) {
1309 ret = 5;
1310 goto lbtest_mac_dis;
1311 }
1312
1313 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) {
1314 ret = 7;
1315 goto remove_mac_filters;
1316 }
1317
1318 num_frames = min_t(int, tx_ring->count, 32);
1319 for (i = 0; i < num_frames; i++) {
1320 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) {
1321 ret = 8;
1322 goto remove_mac_filters;
1323 }
1324 }
1325
1326 valid_frames = ice_lbtest_receive_frames(rx_ring);
1327 if (!valid_frames)
1328 ret = 9;
1329 else if (valid_frames != num_frames)
1330 ret = 10;
1331
1332 remove_mac_filters:
1333 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI))
1334 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n");
1335 lbtest_mac_dis:
1336 /* Disable MAC loopback after the test is completed. */
1337 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL))
1338 netdev_err(netdev, "Could not disable MAC loopback\n");
1339 lbtest_rings_dis:
1340 if (ice_lbtest_disable_rings(test_vsi))
1341 netdev_err(netdev, "Could not disable test rings\n");
1342 lbtest_vsi_close:
1343 test_vsi->netdev = NULL;
1344 if (ice_vsi_release(test_vsi))
1345 netdev_err(netdev, "Failed to remove the test VSI\n");
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * ice_intr_test - perform an interrupt test on a given net_device
1352 * @netdev: network interface device structure
1353 *
1354 * This function performs one of the self-tests required by ethtool.
1355 * Returns 0 on success, non-zero on failure.
1356 */
ice_intr_test(struct net_device * netdev)1357 static u64 ice_intr_test(struct net_device *netdev)
1358 {
1359 struct ice_netdev_priv *np = netdev_priv(netdev);
1360 struct ice_pf *pf = np->vsi->back;
1361 u16 swic_old = pf->sw_int_count;
1362
1363 netdev_info(netdev, "interrupt test\n");
1364
1365 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index),
1366 GLINT_DYN_CTL_SW_ITR_INDX_M |
1367 GLINT_DYN_CTL_INTENA_MSK_M |
1368 GLINT_DYN_CTL_SWINT_TRIG_M);
1369
1370 usleep_range(1000, 2000);
1371 return (swic_old == pf->sw_int_count);
1372 }
1373
1374 /**
1375 * ice_self_test - handler function for performing a self-test by ethtool
1376 * @netdev: network interface device structure
1377 * @eth_test: ethtool_test structure
1378 * @data: required by ethtool.self_test
1379 *
1380 * This function is called after invoking 'ethtool -t devname' command where
1381 * devname is the name of the network device on which ethtool should operate.
1382 * It performs a set of self-tests to check if a device works properly.
1383 */
1384 static void
ice_self_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1385 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test,
1386 u64 *data)
1387 {
1388 struct ice_netdev_priv *np = netdev_priv(netdev);
1389 bool if_running = netif_running(netdev);
1390 struct ice_pf *pf = np->vsi->back;
1391 struct device *dev;
1392
1393 dev = ice_pf_to_dev(pf);
1394
1395 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1396 netdev_info(netdev, "offline testing starting\n");
1397
1398 set_bit(ICE_TESTING, pf->state);
1399
1400 if (ice_active_vfs(pf)) {
1401 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n");
1402 data[ICE_ETH_TEST_REG] = 1;
1403 data[ICE_ETH_TEST_EEPROM] = 1;
1404 data[ICE_ETH_TEST_INTR] = 1;
1405 data[ICE_ETH_TEST_LOOP] = 1;
1406 data[ICE_ETH_TEST_LINK] = 1;
1407 eth_test->flags |= ETH_TEST_FL_FAILED;
1408 clear_bit(ICE_TESTING, pf->state);
1409 goto skip_ol_tests;
1410 }
1411 /* If the device is online then take it offline */
1412 if (if_running)
1413 /* indicate we're in test mode */
1414 ice_stop(netdev);
1415
1416 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1417 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev);
1418 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev);
1419 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev);
1420 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev);
1421
1422 if (data[ICE_ETH_TEST_LINK] ||
1423 data[ICE_ETH_TEST_EEPROM] ||
1424 data[ICE_ETH_TEST_LOOP] ||
1425 data[ICE_ETH_TEST_INTR] ||
1426 data[ICE_ETH_TEST_REG])
1427 eth_test->flags |= ETH_TEST_FL_FAILED;
1428
1429 clear_bit(ICE_TESTING, pf->state);
1430
1431 if (if_running) {
1432 int status = ice_open(netdev);
1433
1434 if (status) {
1435 dev_err(dev, "Could not open device %s, err %d\n",
1436 pf->int_name, status);
1437 }
1438 }
1439 } else {
1440 /* Online tests */
1441 netdev_info(netdev, "online testing starting\n");
1442
1443 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1444 if (data[ICE_ETH_TEST_LINK])
1445 eth_test->flags |= ETH_TEST_FL_FAILED;
1446
1447 /* Offline only tests, not run in online; pass by default */
1448 data[ICE_ETH_TEST_REG] = 0;
1449 data[ICE_ETH_TEST_EEPROM] = 0;
1450 data[ICE_ETH_TEST_INTR] = 0;
1451 data[ICE_ETH_TEST_LOOP] = 0;
1452 }
1453
1454 skip_ol_tests:
1455 netdev_info(netdev, "testing finished\n");
1456 }
1457
1458 static void
__ice_get_strings(struct net_device * netdev,u32 stringset,u8 * data,struct ice_vsi * vsi)1459 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data,
1460 struct ice_vsi *vsi)
1461 {
1462 unsigned int i;
1463 u8 *p = data;
1464
1465 switch (stringset) {
1466 case ETH_SS_STATS:
1467 for (i = 0; i < ICE_VSI_STATS_LEN; i++)
1468 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string);
1469
1470 if (ice_is_port_repr_netdev(netdev))
1471 return;
1472
1473 ice_for_each_alloc_txq(vsi, i) {
1474 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1475 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1476 }
1477
1478 ice_for_each_alloc_rxq(vsi, i) {
1479 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1480 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1481 }
1482
1483 if (vsi->type != ICE_VSI_PF)
1484 return;
1485
1486 for (i = 0; i < ICE_PF_STATS_LEN; i++)
1487 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string);
1488
1489 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1490 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i);
1491 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i);
1492 }
1493 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1494 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i);
1495 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i);
1496 }
1497 break;
1498 case ETH_SS_TEST:
1499 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN);
1500 break;
1501 case ETH_SS_PRIV_FLAGS:
1502 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++)
1503 ethtool_puts(&p, ice_gstrings_priv_flags[i].name);
1504 break;
1505 default:
1506 break;
1507 }
1508 }
1509
ice_get_strings(struct net_device * netdev,u32 stringset,u8 * data)1510 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1511 {
1512 struct ice_netdev_priv *np = netdev_priv(netdev);
1513
1514 __ice_get_strings(netdev, stringset, data, np->vsi);
1515 }
1516
1517 static int
ice_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1518 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)
1519 {
1520 struct ice_netdev_priv *np = netdev_priv(netdev);
1521 bool led_active;
1522
1523 switch (state) {
1524 case ETHTOOL_ID_ACTIVE:
1525 led_active = true;
1526 break;
1527 case ETHTOOL_ID_INACTIVE:
1528 led_active = false;
1529 break;
1530 default:
1531 return -EINVAL;
1532 }
1533
1534 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL))
1535 return -EIO;
1536
1537 return 0;
1538 }
1539
1540 /**
1541 * ice_set_fec_cfg - Set link FEC options
1542 * @netdev: network interface device structure
1543 * @req_fec: FEC mode to configure
1544 */
ice_set_fec_cfg(struct net_device * netdev,enum ice_fec_mode req_fec)1545 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec)
1546 {
1547 struct ice_netdev_priv *np = netdev_priv(netdev);
1548 struct ice_aqc_set_phy_cfg_data config = { 0 };
1549 struct ice_vsi *vsi = np->vsi;
1550 struct ice_port_info *pi;
1551
1552 pi = vsi->port_info;
1553 if (!pi)
1554 return -EOPNOTSUPP;
1555
1556 /* Changing the FEC parameters is not supported if not the PF VSI */
1557 if (vsi->type != ICE_VSI_PF) {
1558 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n");
1559 return -EOPNOTSUPP;
1560 }
1561
1562 /* Proceed only if requesting different FEC mode */
1563 if (pi->phy.curr_user_fec_req == req_fec)
1564 return 0;
1565
1566 /* Copy the current user PHY configuration. The current user PHY
1567 * configuration is initialized during probe from PHY capabilities
1568 * software mode, and updated on set PHY configuration.
1569 */
1570 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config));
1571
1572 ice_cfg_phy_fec(pi, &config, req_fec);
1573 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1574
1575 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL))
1576 return -EAGAIN;
1577
1578 /* Save requested FEC config */
1579 pi->phy.curr_user_fec_req = req_fec;
1580
1581 return 0;
1582 }
1583
1584 /**
1585 * ice_set_fecparam - Set FEC link options
1586 * @netdev: network interface device structure
1587 * @fecparam: Ethtool structure to retrieve FEC parameters
1588 */
1589 static int
ice_set_fecparam(struct net_device * netdev,struct ethtool_fecparam * fecparam)1590 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1591 {
1592 struct ice_netdev_priv *np = netdev_priv(netdev);
1593 struct ice_vsi *vsi = np->vsi;
1594 enum ice_fec_mode fec;
1595
1596 switch (fecparam->fec) {
1597 case ETHTOOL_FEC_AUTO:
1598 fec = ICE_FEC_AUTO;
1599 break;
1600 case ETHTOOL_FEC_RS:
1601 fec = ICE_FEC_RS;
1602 break;
1603 case ETHTOOL_FEC_BASER:
1604 fec = ICE_FEC_BASER;
1605 break;
1606 case ETHTOOL_FEC_OFF:
1607 case ETHTOOL_FEC_NONE:
1608 fec = ICE_FEC_NONE;
1609 break;
1610 default:
1611 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n",
1612 fecparam->fec);
1613 return -EINVAL;
1614 }
1615
1616 return ice_set_fec_cfg(netdev, fec);
1617 }
1618
1619 /**
1620 * ice_get_fecparam - Get link FEC options
1621 * @netdev: network interface device structure
1622 * @fecparam: Ethtool structure to retrieve FEC parameters
1623 */
1624 static int
ice_get_fecparam(struct net_device * netdev,struct ethtool_fecparam * fecparam)1625 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1626 {
1627 struct ice_netdev_priv *np = netdev_priv(netdev);
1628 struct ice_aqc_get_phy_caps_data *caps;
1629 struct ice_link_status *link_info;
1630 struct ice_vsi *vsi = np->vsi;
1631 struct ice_port_info *pi;
1632 int err;
1633
1634 pi = vsi->port_info;
1635
1636 if (!pi)
1637 return -EOPNOTSUPP;
1638 link_info = &pi->phy.link_info;
1639
1640 /* Set FEC mode based on negotiated link info */
1641 switch (link_info->fec_info) {
1642 case ICE_AQ_LINK_25G_KR_FEC_EN:
1643 fecparam->active_fec = ETHTOOL_FEC_BASER;
1644 break;
1645 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
1646 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
1647 fecparam->active_fec = ETHTOOL_FEC_RS;
1648 break;
1649 default:
1650 fecparam->active_fec = ETHTOOL_FEC_OFF;
1651 break;
1652 }
1653
1654 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
1655 if (!caps)
1656 return -ENOMEM;
1657
1658 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1659 caps, NULL);
1660 if (err)
1661 goto done;
1662
1663 /* Set supported/configured FEC modes based on PHY capability */
1664 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC)
1665 fecparam->fec |= ETHTOOL_FEC_AUTO;
1666 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
1667 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
1668 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN ||
1669 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
1670 fecparam->fec |= ETHTOOL_FEC_BASER;
1671 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
1672 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ ||
1673 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
1674 fecparam->fec |= ETHTOOL_FEC_RS;
1675 if (caps->link_fec_options == 0)
1676 fecparam->fec |= ETHTOOL_FEC_OFF;
1677
1678 done:
1679 kfree(caps);
1680 return err;
1681 }
1682
1683 /**
1684 * ice_nway_reset - restart autonegotiation
1685 * @netdev: network interface device structure
1686 */
ice_nway_reset(struct net_device * netdev)1687 static int ice_nway_reset(struct net_device *netdev)
1688 {
1689 struct ice_netdev_priv *np = netdev_priv(netdev);
1690 struct ice_vsi *vsi = np->vsi;
1691 int err;
1692
1693 /* If VSI state is up, then restart autoneg with link up */
1694 if (!test_bit(ICE_DOWN, vsi->back->state))
1695 err = ice_set_link(vsi, true);
1696 else
1697 err = ice_set_link(vsi, false);
1698
1699 return err;
1700 }
1701
1702 /**
1703 * ice_get_priv_flags - report device private flags
1704 * @netdev: network interface device structure
1705 *
1706 * The get string set count and the string set should be matched for each
1707 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags
1708 * array.
1709 *
1710 * Returns a u32 bitmap of flags.
1711 */
ice_get_priv_flags(struct net_device * netdev)1712 static u32 ice_get_priv_flags(struct net_device *netdev)
1713 {
1714 struct ice_netdev_priv *np = netdev_priv(netdev);
1715 struct ice_vsi *vsi = np->vsi;
1716 struct ice_pf *pf = vsi->back;
1717 u32 i, ret_flags = 0;
1718
1719 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1720 const struct ice_priv_flag *priv_flag;
1721
1722 priv_flag = &ice_gstrings_priv_flags[i];
1723
1724 if (test_bit(priv_flag->bitno, pf->flags))
1725 ret_flags |= BIT(i);
1726 }
1727
1728 return ret_flags;
1729 }
1730
1731 /**
1732 * ice_set_priv_flags - set private flags
1733 * @netdev: network interface device structure
1734 * @flags: bit flags to be set
1735 */
ice_set_priv_flags(struct net_device * netdev,u32 flags)1736 static int ice_set_priv_flags(struct net_device *netdev, u32 flags)
1737 {
1738 struct ice_netdev_priv *np = netdev_priv(netdev);
1739 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS);
1740 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS);
1741 struct ice_vsi *vsi = np->vsi;
1742 struct ice_pf *pf = vsi->back;
1743 struct device *dev;
1744 int ret = 0;
1745 u32 i;
1746
1747 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE))
1748 return -EINVAL;
1749
1750 dev = ice_pf_to_dev(pf);
1751 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1752
1753 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS);
1754 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1755 const struct ice_priv_flag *priv_flag;
1756
1757 priv_flag = &ice_gstrings_priv_flags[i];
1758
1759 if (flags & BIT(i))
1760 set_bit(priv_flag->bitno, pf->flags);
1761 else
1762 clear_bit(priv_flag->bitno, pf->flags);
1763 }
1764
1765 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS);
1766
1767 /* Do not allow change to link-down-on-close when Total Port Shutdown
1768 * is enabled.
1769 */
1770 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) &&
1771 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
1772 dev_err(dev, "Setting link-down-on-close not supported on this port\n");
1773 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1774 ret = -EINVAL;
1775 goto ethtool_exit;
1776 }
1777
1778 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) {
1779 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) {
1780 int status;
1781
1782 /* Disable FW LLDP engine */
1783 status = ice_cfg_lldp_mib_change(&pf->hw, false);
1784
1785 /* If unregistering for LLDP events fails, this is
1786 * not an error state, as there shouldn't be any
1787 * events to respond to.
1788 */
1789 if (status)
1790 dev_info(dev, "Failed to unreg for LLDP events\n");
1791
1792 /* The AQ call to stop the FW LLDP agent will generate
1793 * an error if the agent is already stopped.
1794 */
1795 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL);
1796 if (status)
1797 dev_warn(dev, "Fail to stop LLDP agent\n");
1798 /* Use case for having the FW LLDP agent stopped
1799 * will likely not need DCB, so failure to init is
1800 * not a concern of ethtool
1801 */
1802 status = ice_init_pf_dcb(pf, true);
1803 if (status)
1804 dev_warn(dev, "Fail to init DCB\n");
1805
1806 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED;
1807 pf->dcbx_cap |= DCB_CAP_DCBX_HOST;
1808 } else {
1809 bool dcbx_agent_status;
1810 int status;
1811
1812 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) {
1813 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags);
1814 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n");
1815 ret = -EOPNOTSUPP;
1816 goto ethtool_exit;
1817 }
1818
1819 /* Remove rule to direct LLDP packets to default VSI.
1820 * The FW LLDP engine will now be consuming them.
1821 */
1822 ice_cfg_sw_lldp(vsi, false, false);
1823
1824 /* AQ command to start FW LLDP agent will return an
1825 * error if the agent is already started
1826 */
1827 status = ice_aq_start_lldp(&pf->hw, true, NULL);
1828 if (status)
1829 dev_warn(dev, "Fail to start LLDP Agent\n");
1830
1831 /* AQ command to start FW DCBX agent will fail if
1832 * the agent is already started
1833 */
1834 status = ice_aq_start_stop_dcbx(&pf->hw, true,
1835 &dcbx_agent_status,
1836 NULL);
1837 if (status)
1838 dev_dbg(dev, "Failed to start FW DCBX\n");
1839
1840 dev_info(dev, "FW DCBX agent is %s\n",
1841 dcbx_agent_status ? "ACTIVE" : "DISABLED");
1842
1843 /* Failure to configure MIB change or init DCB is not
1844 * relevant to ethtool. Print notification that
1845 * registration/init failed but do not return error
1846 * state to ethtool
1847 */
1848 status = ice_init_pf_dcb(pf, true);
1849 if (status)
1850 dev_dbg(dev, "Fail to init DCB\n");
1851
1852 /* Register for MIB change events */
1853 status = ice_cfg_lldp_mib_change(&pf->hw, true);
1854 if (status)
1855 dev_dbg(dev, "Fail to enable MIB change events\n");
1856
1857 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST;
1858 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED;
1859
1860 ice_nway_reset(netdev);
1861 }
1862 }
1863 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) {
1864 /* down and up VSI so that changes of Rx cfg are reflected. */
1865 ice_down_up(vsi);
1866 }
1867 /* don't allow modification of this flag when a single VF is in
1868 * promiscuous mode because it's not supported
1869 */
1870 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) &&
1871 ice_is_any_vf_in_unicast_promisc(pf)) {
1872 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n");
1873 /* toggle bit back to previous state */
1874 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags);
1875 ret = -EAGAIN;
1876 }
1877
1878 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) &&
1879 ice_has_vfs(pf)) {
1880 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n");
1881 /* toggle bit back to previous state */
1882 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags);
1883 ret = -EOPNOTSUPP;
1884 }
1885 ethtool_exit:
1886 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1887 return ret;
1888 }
1889
ice_get_sset_count(struct net_device * netdev,int sset)1890 static int ice_get_sset_count(struct net_device *netdev, int sset)
1891 {
1892 switch (sset) {
1893 case ETH_SS_STATS:
1894 /* The number (and order) of strings reported *must* remain
1895 * constant for a given netdevice. This function must not
1896 * report a different number based on run time parameters
1897 * (such as the number of queues in use, or the setting of
1898 * a private ethtool flag). This is due to the nature of the
1899 * ethtool stats API.
1900 *
1901 * Userspace programs such as ethtool must make 3 separate
1902 * ioctl requests, one for size, one for the strings, and
1903 * finally one for the stats. Since these cross into
1904 * userspace, changes to the number or size could result in
1905 * undefined memory access or incorrect string<->value
1906 * correlations for statistics.
1907 *
1908 * Even if it appears to be safe, changes to the size or
1909 * order of strings will suffer from race conditions and are
1910 * not safe.
1911 */
1912 return ICE_ALL_STATS_LEN(netdev);
1913 case ETH_SS_TEST:
1914 return ICE_TEST_LEN;
1915 case ETH_SS_PRIV_FLAGS:
1916 return ICE_PRIV_FLAG_ARRAY_SIZE;
1917 default:
1918 return -EOPNOTSUPP;
1919 }
1920 }
1921
1922 static void
__ice_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data,struct ice_vsi * vsi)1923 __ice_get_ethtool_stats(struct net_device *netdev,
1924 struct ethtool_stats __always_unused *stats, u64 *data,
1925 struct ice_vsi *vsi)
1926 {
1927 struct ice_pf *pf = vsi->back;
1928 struct ice_tx_ring *tx_ring;
1929 struct ice_rx_ring *rx_ring;
1930 unsigned int j;
1931 int i = 0;
1932 char *p;
1933
1934 ice_update_pf_stats(pf);
1935 ice_update_vsi_stats(vsi);
1936
1937 for (j = 0; j < ICE_VSI_STATS_LEN; j++) {
1938 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset;
1939 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat ==
1940 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1941 }
1942
1943 if (ice_is_port_repr_netdev(netdev))
1944 return;
1945
1946 /* populate per queue stats */
1947 rcu_read_lock();
1948
1949 ice_for_each_alloc_txq(vsi, j) {
1950 tx_ring = READ_ONCE(vsi->tx_rings[j]);
1951 if (tx_ring && tx_ring->ring_stats) {
1952 data[i++] = tx_ring->ring_stats->stats.pkts;
1953 data[i++] = tx_ring->ring_stats->stats.bytes;
1954 } else {
1955 data[i++] = 0;
1956 data[i++] = 0;
1957 }
1958 }
1959
1960 ice_for_each_alloc_rxq(vsi, j) {
1961 rx_ring = READ_ONCE(vsi->rx_rings[j]);
1962 if (rx_ring && rx_ring->ring_stats) {
1963 data[i++] = rx_ring->ring_stats->stats.pkts;
1964 data[i++] = rx_ring->ring_stats->stats.bytes;
1965 } else {
1966 data[i++] = 0;
1967 data[i++] = 0;
1968 }
1969 }
1970
1971 rcu_read_unlock();
1972
1973 if (vsi->type != ICE_VSI_PF)
1974 return;
1975
1976 for (j = 0; j < ICE_PF_STATS_LEN; j++) {
1977 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset;
1978 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat ==
1979 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1980 }
1981
1982 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1983 data[i++] = pf->stats.priority_xon_tx[j];
1984 data[i++] = pf->stats.priority_xoff_tx[j];
1985 }
1986
1987 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1988 data[i++] = pf->stats.priority_xon_rx[j];
1989 data[i++] = pf->stats.priority_xoff_rx[j];
1990 }
1991 }
1992
1993 static void
ice_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)1994 ice_get_ethtool_stats(struct net_device *netdev,
1995 struct ethtool_stats __always_unused *stats, u64 *data)
1996 {
1997 struct ice_netdev_priv *np = netdev_priv(netdev);
1998
1999 __ice_get_ethtool_stats(netdev, stats, data, np->vsi);
2000 }
2001
2002 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \
2003 ICE_PHY_TYPE_LOW_100M_SGMII)
2004
2005 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \
2006 ICE_PHY_TYPE_LOW_1000BASE_T | \
2007 ICE_PHY_TYPE_LOW_1000BASE_SX | \
2008 ICE_PHY_TYPE_LOW_1000BASE_LX | \
2009 ICE_PHY_TYPE_LOW_1000BASE_KX | \
2010 ICE_PHY_TYPE_LOW_1G_SGMII | \
2011 ICE_PHY_TYPE_LOW_2500BASE_T | \
2012 ICE_PHY_TYPE_LOW_2500BASE_X | \
2013 ICE_PHY_TYPE_LOW_2500BASE_KX | \
2014 ICE_PHY_TYPE_LOW_5GBASE_T | \
2015 ICE_PHY_TYPE_LOW_5GBASE_KR | \
2016 ICE_PHY_TYPE_LOW_10GBASE_T | \
2017 ICE_PHY_TYPE_LOW_10G_SFI_DA | \
2018 ICE_PHY_TYPE_LOW_10GBASE_SR | \
2019 ICE_PHY_TYPE_LOW_10GBASE_LR | \
2020 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
2021 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
2022 ICE_PHY_TYPE_LOW_10G_SFI_C2C)
2023
2024 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
2025 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
2026 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
2027 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
2028 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
2029 ICE_PHY_TYPE_LOW_100G_CAUI4 | \
2030 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
2031 ICE_PHY_TYPE_LOW_100G_AUI4 | \
2032 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
2033 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
2034 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
2035 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
2036 ICE_PHY_TYPE_LOW_100GBASE_DR)
2037
2038 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
2039 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\
2040 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
2041 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
2042 ICE_PHY_TYPE_HIGH_100G_AUI2)
2043
2044 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \
2045 ICE_PHY_TYPE_HIGH_200G_SR4 | \
2046 ICE_PHY_TYPE_HIGH_200G_FR4 | \
2047 ICE_PHY_TYPE_HIGH_200G_LR4 | \
2048 ICE_PHY_TYPE_HIGH_200G_DR4 | \
2049 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \
2050 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \
2051 ICE_PHY_TYPE_HIGH_200G_AUI4)
2052
2053 /**
2054 * ice_mask_min_supported_speeds
2055 * @hw: pointer to the HW structure
2056 * @phy_types_high: PHY type high
2057 * @phy_types_low: PHY type low to apply minimum supported speeds mask
2058 *
2059 * Apply minimum supported speeds mask to PHY type low. These are the speeds
2060 * for ethtool supported link mode.
2061 */
2062 static void
ice_mask_min_supported_speeds(struct ice_hw * hw,u64 phy_types_high,u64 * phy_types_low)2063 ice_mask_min_supported_speeds(struct ice_hw *hw,
2064 u64 phy_types_high, u64 *phy_types_low)
2065 {
2066 /* if QSFP connection with 100G speed, minimum supported speed is 25G */
2067 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) ||
2068 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) ||
2069 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G))
2070 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G;
2071 else if (!ice_is_100m_speed_supported(hw))
2072 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G;
2073 }
2074
2075 /**
2076 * ice_linkmode_set_bit - set link mode bit
2077 * @phy_to_ethtool: PHY type to ethtool link mode struct to set
2078 * @ks: ethtool link ksettings struct to fill out
2079 * @req_speeds: speed requested by user
2080 * @advert_phy_type: advertised PHY type
2081 * @phy_type: PHY type
2082 */
2083 static void
ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool * phy_to_ethtool,struct ethtool_link_ksettings * ks,u32 req_speeds,u64 advert_phy_type,u32 phy_type)2084 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool,
2085 struct ethtool_link_ksettings *ks, u32 req_speeds,
2086 u64 advert_phy_type, u32 phy_type)
2087 {
2088 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported);
2089
2090 if (req_speeds & phy_to_ethtool->aq_link_speed ||
2091 (!req_speeds && advert_phy_type & BIT(phy_type)))
2092 linkmode_set_bit(phy_to_ethtool->link_mode,
2093 ks->link_modes.advertising);
2094 }
2095
2096 /**
2097 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes
2098 * @netdev: network interface device structure
2099 * @ks: ethtool link ksettings struct to fill out
2100 */
2101 static void
ice_phy_type_to_ethtool(struct net_device * netdev,struct ethtool_link_ksettings * ks)2102 ice_phy_type_to_ethtool(struct net_device *netdev,
2103 struct ethtool_link_ksettings *ks)
2104 {
2105 struct ice_netdev_priv *np = netdev_priv(netdev);
2106 struct ice_vsi *vsi = np->vsi;
2107 struct ice_pf *pf = vsi->back;
2108 u64 advert_phy_type_lo = 0;
2109 u64 advert_phy_type_hi = 0;
2110 u64 phy_types_high = 0;
2111 u64 phy_types_low = 0;
2112 u32 req_speeds;
2113 u32 i;
2114
2115 req_speeds = vsi->port_info->phy.link_info.req_speeds;
2116
2117 /* Check if lenient mode is supported and enabled, or in strict mode.
2118 *
2119 * In lenient mode the Supported link modes are the PHY types without
2120 * media. The Advertising link mode is either 1. the user requested
2121 * speed, 2. the override PHY mask, or 3. the PHY types with media.
2122 *
2123 * In strict mode Supported link mode are the PHY type with media,
2124 * and Advertising link modes are the media PHY type or the speed
2125 * requested by user.
2126 */
2127 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2128 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo);
2129 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi);
2130
2131 ice_mask_min_supported_speeds(&pf->hw, phy_types_high,
2132 &phy_types_low);
2133 /* determine advertised modes based on link override only
2134 * if it's supported and if the FW doesn't abstract the
2135 * driver from having to account for link overrides
2136 */
2137 if (ice_fw_supports_link_override(&pf->hw) &&
2138 !ice_fw_supports_report_dflt_cfg(&pf->hw)) {
2139 struct ice_link_default_override_tlv *ldo;
2140
2141 ldo = &pf->link_dflt_override;
2142 /* If override enabled and PHY mask set, then
2143 * Advertising link mode is the intersection of the PHY
2144 * types without media and the override PHY mask.
2145 */
2146 if (ldo->options & ICE_LINK_OVERRIDE_EN &&
2147 (ldo->phy_type_low || ldo->phy_type_high)) {
2148 advert_phy_type_lo =
2149 le64_to_cpu(pf->nvm_phy_type_lo) &
2150 ldo->phy_type_low;
2151 advert_phy_type_hi =
2152 le64_to_cpu(pf->nvm_phy_type_hi) &
2153 ldo->phy_type_high;
2154 }
2155 }
2156 } else {
2157 /* strict mode */
2158 phy_types_low = vsi->port_info->phy.phy_type_low;
2159 phy_types_high = vsi->port_info->phy.phy_type_high;
2160 }
2161
2162 /* If Advertising link mode PHY type is not using override PHY type,
2163 * then use PHY type with media.
2164 */
2165 if (!advert_phy_type_lo && !advert_phy_type_hi) {
2166 advert_phy_type_lo = vsi->port_info->phy.phy_type_low;
2167 advert_phy_type_hi = vsi->port_info->phy.phy_type_high;
2168 }
2169
2170 linkmode_zero(ks->link_modes.supported);
2171 linkmode_zero(ks->link_modes.advertising);
2172
2173 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) {
2174 if (phy_types_low & BIT_ULL(i))
2175 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks,
2176 req_speeds, advert_phy_type_lo,
2177 i);
2178 }
2179
2180 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) {
2181 if (phy_types_high & BIT_ULL(i))
2182 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks,
2183 req_speeds, advert_phy_type_hi,
2184 i);
2185 }
2186 }
2187
2188 #define TEST_SET_BITS_TIMEOUT 50
2189 #define TEST_SET_BITS_SLEEP_MAX 2000
2190 #define TEST_SET_BITS_SLEEP_MIN 1000
2191
2192 /**
2193 * ice_get_settings_link_up - Get Link settings for when link is up
2194 * @ks: ethtool ksettings to fill in
2195 * @netdev: network interface device structure
2196 */
2197 static void
ice_get_settings_link_up(struct ethtool_link_ksettings * ks,struct net_device * netdev)2198 ice_get_settings_link_up(struct ethtool_link_ksettings *ks,
2199 struct net_device *netdev)
2200 {
2201 struct ice_netdev_priv *np = netdev_priv(netdev);
2202 struct ice_port_info *pi = np->vsi->port_info;
2203 struct ice_link_status *link_info;
2204 struct ice_vsi *vsi = np->vsi;
2205
2206 link_info = &vsi->port_info->phy.link_info;
2207
2208 /* Get supported and advertised settings from PHY ability with media */
2209 ice_phy_type_to_ethtool(netdev, ks);
2210
2211 switch (link_info->link_speed) {
2212 case ICE_AQ_LINK_SPEED_200GB:
2213 ks->base.speed = SPEED_200000;
2214 break;
2215 case ICE_AQ_LINK_SPEED_100GB:
2216 ks->base.speed = SPEED_100000;
2217 break;
2218 case ICE_AQ_LINK_SPEED_50GB:
2219 ks->base.speed = SPEED_50000;
2220 break;
2221 case ICE_AQ_LINK_SPEED_40GB:
2222 ks->base.speed = SPEED_40000;
2223 break;
2224 case ICE_AQ_LINK_SPEED_25GB:
2225 ks->base.speed = SPEED_25000;
2226 break;
2227 case ICE_AQ_LINK_SPEED_20GB:
2228 ks->base.speed = SPEED_20000;
2229 break;
2230 case ICE_AQ_LINK_SPEED_10GB:
2231 ks->base.speed = SPEED_10000;
2232 break;
2233 case ICE_AQ_LINK_SPEED_5GB:
2234 ks->base.speed = SPEED_5000;
2235 break;
2236 case ICE_AQ_LINK_SPEED_2500MB:
2237 ks->base.speed = SPEED_2500;
2238 break;
2239 case ICE_AQ_LINK_SPEED_1000MB:
2240 ks->base.speed = SPEED_1000;
2241 break;
2242 case ICE_AQ_LINK_SPEED_100MB:
2243 ks->base.speed = SPEED_100;
2244 break;
2245 default:
2246 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n",
2247 link_info->link_speed);
2248 break;
2249 }
2250 ks->base.duplex = DUPLEX_FULL;
2251
2252 if (link_info->an_info & ICE_AQ_AN_COMPLETED)
2253 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2254 Autoneg);
2255
2256 /* Set flow control negotiated Rx/Tx pause */
2257 switch (pi->fc.current_mode) {
2258 case ICE_FC_FULL:
2259 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2260 break;
2261 case ICE_FC_TX_PAUSE:
2262 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2263 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2264 Asym_Pause);
2265 break;
2266 case ICE_FC_RX_PAUSE:
2267 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2268 Asym_Pause);
2269 break;
2270 case ICE_FC_PFC:
2271 default:
2272 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause);
2273 ethtool_link_ksettings_del_link_mode(ks, lp_advertising,
2274 Asym_Pause);
2275 break;
2276 }
2277 }
2278
2279 /**
2280 * ice_get_settings_link_down - Get the Link settings when link is down
2281 * @ks: ethtool ksettings to fill in
2282 * @netdev: network interface device structure
2283 *
2284 * Reports link settings that can be determined when link is down
2285 */
2286 static void
ice_get_settings_link_down(struct ethtool_link_ksettings * ks,struct net_device * netdev)2287 ice_get_settings_link_down(struct ethtool_link_ksettings *ks,
2288 struct net_device *netdev)
2289 {
2290 /* link is down and the driver needs to fall back on
2291 * supported PHY types to figure out what info to display
2292 */
2293 ice_phy_type_to_ethtool(netdev, ks);
2294
2295 /* With no link, speed and duplex are unknown */
2296 ks->base.speed = SPEED_UNKNOWN;
2297 ks->base.duplex = DUPLEX_UNKNOWN;
2298 }
2299
2300 /**
2301 * ice_get_link_ksettings - Get Link Speed and Duplex settings
2302 * @netdev: network interface device structure
2303 * @ks: ethtool ksettings
2304 *
2305 * Reports speed/duplex settings based on media_type
2306 */
2307 static int
ice_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * ks)2308 ice_get_link_ksettings(struct net_device *netdev,
2309 struct ethtool_link_ksettings *ks)
2310 {
2311 struct ice_netdev_priv *np = netdev_priv(netdev);
2312 struct ice_aqc_get_phy_caps_data *caps;
2313 struct ice_link_status *hw_link_info;
2314 struct ice_vsi *vsi = np->vsi;
2315 int err;
2316
2317 ethtool_link_ksettings_zero_link_mode(ks, supported);
2318 ethtool_link_ksettings_zero_link_mode(ks, advertising);
2319 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising);
2320 hw_link_info = &vsi->port_info->phy.link_info;
2321
2322 /* set speed and duplex */
2323 if (hw_link_info->link_info & ICE_AQ_LINK_UP)
2324 ice_get_settings_link_up(ks, netdev);
2325 else
2326 ice_get_settings_link_down(ks, netdev);
2327
2328 /* set autoneg settings */
2329 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ?
2330 AUTONEG_ENABLE : AUTONEG_DISABLE;
2331
2332 /* set media type settings */
2333 switch (vsi->port_info->phy.media_type) {
2334 case ICE_MEDIA_FIBER:
2335 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2336 ks->base.port = PORT_FIBRE;
2337 break;
2338 case ICE_MEDIA_BASET:
2339 ethtool_link_ksettings_add_link_mode(ks, supported, TP);
2340 ethtool_link_ksettings_add_link_mode(ks, advertising, TP);
2341 ks->base.port = PORT_TP;
2342 break;
2343 case ICE_MEDIA_BACKPLANE:
2344 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane);
2345 ethtool_link_ksettings_add_link_mode(ks, advertising,
2346 Backplane);
2347 ks->base.port = PORT_NONE;
2348 break;
2349 case ICE_MEDIA_DA:
2350 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2351 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE);
2352 ks->base.port = PORT_DA;
2353 break;
2354 default:
2355 ks->base.port = PORT_OTHER;
2356 break;
2357 }
2358
2359 /* flow control is symmetric and always supported */
2360 ethtool_link_ksettings_add_link_mode(ks, supported, Pause);
2361
2362 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2363 if (!caps)
2364 return -ENOMEM;
2365
2366 err = ice_aq_get_phy_caps(vsi->port_info, false,
2367 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
2368 if (err)
2369 goto done;
2370
2371 /* Set the advertised flow control based on the PHY capability */
2372 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
2373 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) {
2374 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2375 ethtool_link_ksettings_add_link_mode(ks, advertising,
2376 Asym_Pause);
2377 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) {
2378 ethtool_link_ksettings_add_link_mode(ks, advertising,
2379 Asym_Pause);
2380 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) {
2381 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2382 ethtool_link_ksettings_add_link_mode(ks, advertising,
2383 Asym_Pause);
2384 } else {
2385 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause);
2386 ethtool_link_ksettings_del_link_mode(ks, advertising,
2387 Asym_Pause);
2388 }
2389
2390 /* Set advertised FEC modes based on PHY capability */
2391 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE);
2392
2393 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
2394 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
2395 ethtool_link_ksettings_add_link_mode(ks, advertising,
2396 FEC_BASER);
2397 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
2398 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
2399 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS);
2400
2401 err = ice_aq_get_phy_caps(vsi->port_info, false,
2402 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL);
2403 if (err)
2404 goto done;
2405
2406 /* Set supported FEC modes based on PHY capability */
2407 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE);
2408
2409 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
2410 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN)
2411 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER);
2412 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
2413 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS);
2414
2415 /* Set supported and advertised autoneg */
2416 if (ice_is_phy_caps_an_enabled(caps)) {
2417 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg);
2418 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg);
2419 }
2420
2421 done:
2422 kfree(caps);
2423 return err;
2424 }
2425
2426 /**
2427 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed
2428 * @speed: ethtool forced speed
2429 */
ice_speed_to_aq_link(int speed)2430 static u16 ice_speed_to_aq_link(int speed)
2431 {
2432 int aq_speed;
2433
2434 switch (speed) {
2435 case SPEED_10:
2436 aq_speed = ICE_AQ_LINK_SPEED_10MB;
2437 break;
2438 case SPEED_100:
2439 aq_speed = ICE_AQ_LINK_SPEED_100MB;
2440 break;
2441 case SPEED_1000:
2442 aq_speed = ICE_AQ_LINK_SPEED_1000MB;
2443 break;
2444 case SPEED_2500:
2445 aq_speed = ICE_AQ_LINK_SPEED_2500MB;
2446 break;
2447 case SPEED_5000:
2448 aq_speed = ICE_AQ_LINK_SPEED_5GB;
2449 break;
2450 case SPEED_10000:
2451 aq_speed = ICE_AQ_LINK_SPEED_10GB;
2452 break;
2453 case SPEED_20000:
2454 aq_speed = ICE_AQ_LINK_SPEED_20GB;
2455 break;
2456 case SPEED_25000:
2457 aq_speed = ICE_AQ_LINK_SPEED_25GB;
2458 break;
2459 case SPEED_40000:
2460 aq_speed = ICE_AQ_LINK_SPEED_40GB;
2461 break;
2462 case SPEED_50000:
2463 aq_speed = ICE_AQ_LINK_SPEED_50GB;
2464 break;
2465 case SPEED_100000:
2466 aq_speed = ICE_AQ_LINK_SPEED_100GB;
2467 break;
2468 default:
2469 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
2470 break;
2471 }
2472 return aq_speed;
2473 }
2474
2475 /**
2476 * ice_ksettings_find_adv_link_speed - Find advertising link speed
2477 * @ks: ethtool ksettings
2478 */
2479 static u16
ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings * ks)2480 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks)
2481 {
2482 const struct ethtool_forced_speed_map *map;
2483 u16 adv_link_speed = 0;
2484
2485 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) {
2486 map = ice_adv_lnk_speed_maps + i;
2487 if (linkmode_intersects(ks->link_modes.advertising, map->caps))
2488 adv_link_speed |= ice_speed_to_aq_link(map->speed);
2489 }
2490
2491 return adv_link_speed;
2492 }
2493
2494 /**
2495 * ice_setup_autoneg
2496 * @p: port info
2497 * @ks: ethtool_link_ksettings
2498 * @config: configuration that will be sent down to FW
2499 * @autoneg_enabled: autonegotiation is enabled or not
2500 * @autoneg_changed: will there a change in autonegotiation
2501 * @netdev: network interface device structure
2502 *
2503 * Setup PHY autonegotiation feature
2504 */
2505 static int
ice_setup_autoneg(struct ice_port_info * p,struct ethtool_link_ksettings * ks,struct ice_aqc_set_phy_cfg_data * config,u8 autoneg_enabled,u8 * autoneg_changed,struct net_device * netdev)2506 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks,
2507 struct ice_aqc_set_phy_cfg_data *config,
2508 u8 autoneg_enabled, u8 *autoneg_changed,
2509 struct net_device *netdev)
2510 {
2511 int err = 0;
2512
2513 *autoneg_changed = 0;
2514
2515 /* Check autoneg */
2516 if (autoneg_enabled == AUTONEG_ENABLE) {
2517 /* If autoneg was not already enabled */
2518 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) {
2519 /* If autoneg is not supported, return error */
2520 if (!ethtool_link_ksettings_test_link_mode(ks,
2521 supported,
2522 Autoneg)) {
2523 netdev_info(netdev, "Autoneg not supported on this phy.\n");
2524 err = -EINVAL;
2525 } else {
2526 /* Autoneg is allowed to change */
2527 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2528 *autoneg_changed = 1;
2529 }
2530 }
2531 } else {
2532 /* If autoneg is currently enabled */
2533 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) {
2534 /* If autoneg is supported 10GBASE_T is the only PHY
2535 * that can disable it, so otherwise return error
2536 */
2537 if (ethtool_link_ksettings_test_link_mode(ks,
2538 supported,
2539 Autoneg)) {
2540 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n");
2541 err = -EINVAL;
2542 } else {
2543 /* Autoneg is allowed to change */
2544 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2545 *autoneg_changed = 1;
2546 }
2547 }
2548 }
2549
2550 return err;
2551 }
2552
2553 /**
2554 * ice_set_phy_type_from_speed - set phy_types based on speeds
2555 * and advertised modes
2556 * @ks: ethtool link ksettings struct
2557 * @phy_type_low: pointer to the lower part of phy_type
2558 * @phy_type_high: pointer to the higher part of phy_type
2559 * @adv_link_speed: targeted link speeds bitmap
2560 */
2561 static void
ice_set_phy_type_from_speed(const struct ethtool_link_ksettings * ks,u64 * phy_type_low,u64 * phy_type_high,u16 adv_link_speed)2562 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks,
2563 u64 *phy_type_low, u64 *phy_type_high,
2564 u16 adv_link_speed)
2565 {
2566 /* Handle 1000M speed in a special way because ice_update_phy_type
2567 * enables all link modes, but having mixed copper and optical
2568 * standards is not supported.
2569 */
2570 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB;
2571
2572 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2573 1000baseT_Full))
2574 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T |
2575 ICE_PHY_TYPE_LOW_1G_SGMII;
2576
2577 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2578 1000baseKX_Full))
2579 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX;
2580
2581 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2582 1000baseX_Full))
2583 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX |
2584 ICE_PHY_TYPE_LOW_1000BASE_LX;
2585
2586 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed);
2587 }
2588
2589 /**
2590 * ice_set_link_ksettings - Set Speed and Duplex
2591 * @netdev: network interface device structure
2592 * @ks: ethtool ksettings
2593 *
2594 * Set speed/duplex per media_types advertised/forced
2595 */
2596 static int
ice_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * ks)2597 ice_set_link_ksettings(struct net_device *netdev,
2598 const struct ethtool_link_ksettings *ks)
2599 {
2600 struct ice_netdev_priv *np = netdev_priv(netdev);
2601 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT;
2602 struct ethtool_link_ksettings copy_ks = *ks;
2603 struct ethtool_link_ksettings safe_ks = {};
2604 struct ice_aqc_get_phy_caps_data *phy_caps;
2605 struct ice_aqc_set_phy_cfg_data config;
2606 u16 adv_link_speed, curr_link_speed;
2607 struct ice_pf *pf = np->vsi->back;
2608 struct ice_port_info *pi;
2609 u8 autoneg_changed = 0;
2610 u64 phy_type_high = 0;
2611 u64 phy_type_low = 0;
2612 bool linkup;
2613 int err;
2614
2615 pi = np->vsi->port_info;
2616
2617 if (!pi)
2618 return -EIO;
2619
2620 if (pi->phy.media_type != ICE_MEDIA_BASET &&
2621 pi->phy.media_type != ICE_MEDIA_FIBER &&
2622 pi->phy.media_type != ICE_MEDIA_BACKPLANE &&
2623 pi->phy.media_type != ICE_MEDIA_DA &&
2624 pi->phy.link_info.link_info & ICE_AQ_LINK_UP)
2625 return -EOPNOTSUPP;
2626
2627 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL);
2628 if (!phy_caps)
2629 return -ENOMEM;
2630
2631 /* Get the PHY capabilities based on media */
2632 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2633 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2634 phy_caps, NULL);
2635 else
2636 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2637 phy_caps, NULL);
2638 if (err)
2639 goto done;
2640
2641 /* save autoneg out of ksettings */
2642 autoneg = copy_ks.base.autoneg;
2643
2644 /* Get link modes supported by hardware.*/
2645 ice_phy_type_to_ethtool(netdev, &safe_ks);
2646
2647 /* and check against modes requested by user.
2648 * Return an error if unsupported mode was set.
2649 */
2650 if (!bitmap_subset(copy_ks.link_modes.advertising,
2651 safe_ks.link_modes.supported,
2652 __ETHTOOL_LINK_MODE_MASK_NBITS)) {
2653 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags))
2654 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2655 err = -EOPNOTSUPP;
2656 goto done;
2657 }
2658
2659 /* get our own copy of the bits to check against */
2660 memset(&safe_ks, 0, sizeof(safe_ks));
2661 safe_ks.base.cmd = copy_ks.base.cmd;
2662 safe_ks.base.link_mode_masks_nwords =
2663 copy_ks.base.link_mode_masks_nwords;
2664 ice_get_link_ksettings(netdev, &safe_ks);
2665
2666 /* set autoneg back to what it currently is */
2667 copy_ks.base.autoneg = safe_ks.base.autoneg;
2668 /* we don't compare the speed */
2669 copy_ks.base.speed = safe_ks.base.speed;
2670
2671 /* If copy_ks.base and safe_ks.base are not the same now, then they are
2672 * trying to set something that we do not support.
2673 */
2674 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) {
2675 err = -EOPNOTSUPP;
2676 goto done;
2677 }
2678
2679 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
2680 timeout--;
2681 if (!timeout) {
2682 err = -EBUSY;
2683 goto done;
2684 }
2685 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX);
2686 }
2687
2688 /* Copy the current user PHY configuration. The current user PHY
2689 * configuration is initialized during probe from PHY capabilities
2690 * software mode, and updated on set PHY configuration.
2691 */
2692 config = pi->phy.curr_user_phy_cfg;
2693
2694 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2695
2696 /* Check autoneg */
2697 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed,
2698 netdev);
2699
2700 if (err)
2701 goto done;
2702
2703 /* Call to get the current link speed */
2704 pi->phy.get_link_info = true;
2705 err = ice_get_link_status(pi, &linkup);
2706 if (err)
2707 goto done;
2708
2709 curr_link_speed = pi->phy.curr_user_speed_req;
2710 adv_link_speed = ice_ksettings_find_adv_link_speed(ks);
2711
2712 /* If speed didn't get set, set it to what it currently is.
2713 * This is needed because if advertise is 0 (as it is when autoneg
2714 * is disabled) then speed won't get set.
2715 */
2716 if (!adv_link_speed)
2717 adv_link_speed = curr_link_speed;
2718
2719 /* Convert the advertise link speeds to their corresponded PHY_TYPE */
2720 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high,
2721 adv_link_speed);
2722
2723 if (!autoneg_changed && adv_link_speed == curr_link_speed) {
2724 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n");
2725 goto done;
2726 }
2727
2728 /* save the requested speeds */
2729 pi->phy.link_info.req_speeds = adv_link_speed;
2730
2731 /* set link and auto negotiation so changes take effect */
2732 config.caps |= ICE_AQ_PHY_ENA_LINK;
2733
2734 /* check if there is a PHY type for the requested advertised speed */
2735 if (!(phy_type_low || phy_type_high)) {
2736 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2737 err = -EOPNOTSUPP;
2738 goto done;
2739 }
2740
2741 /* intersect requested advertised speed PHY types with media PHY types
2742 * for set PHY configuration
2743 */
2744 config.phy_type_high = cpu_to_le64(phy_type_high) &
2745 phy_caps->phy_type_high;
2746 config.phy_type_low = cpu_to_le64(phy_type_low) &
2747 phy_caps->phy_type_low;
2748
2749 if (!(config.phy_type_high || config.phy_type_low)) {
2750 /* If there is no intersection and lenient mode is enabled, then
2751 * intersect the requested advertised speed with NVM media type
2752 * PHY types.
2753 */
2754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2755 config.phy_type_high = cpu_to_le64(phy_type_high) &
2756 pf->nvm_phy_type_hi;
2757 config.phy_type_low = cpu_to_le64(phy_type_low) &
2758 pf->nvm_phy_type_lo;
2759 } else {
2760 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2761 err = -EOPNOTSUPP;
2762 goto done;
2763 }
2764 }
2765
2766 /* If link is up put link down */
2767 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) {
2768 /* Tell the OS link is going down, the link will go
2769 * back up when fw says it is ready asynchronously
2770 */
2771 ice_print_link_msg(np->vsi, false);
2772 netif_carrier_off(netdev);
2773 netif_tx_stop_all_queues(netdev);
2774 }
2775
2776 /* make the aq call */
2777 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL);
2778 if (err) {
2779 netdev_info(netdev, "Set phy config failed,\n");
2780 goto done;
2781 }
2782
2783 /* Save speed request */
2784 pi->phy.curr_user_speed_req = adv_link_speed;
2785 done:
2786 kfree(phy_caps);
2787 clear_bit(ICE_CFG_BUSY, pf->state);
2788
2789 return err;
2790 }
2791
2792 /**
2793 * ice_parse_hdrs - parses headers from RSS hash input
2794 * @nfc: ethtool rxnfc command
2795 *
2796 * This function parses the rxnfc command and returns intended
2797 * header types for RSS configuration
2798 */
ice_parse_hdrs(struct ethtool_rxnfc * nfc)2799 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc)
2800 {
2801 u32 hdrs = ICE_FLOW_SEG_HDR_NONE;
2802
2803 switch (nfc->flow_type) {
2804 case TCP_V4_FLOW:
2805 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4;
2806 break;
2807 case UDP_V4_FLOW:
2808 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4;
2809 break;
2810 case SCTP_V4_FLOW:
2811 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4;
2812 break;
2813 case GTPU_V4_FLOW:
2814 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4;
2815 break;
2816 case GTPC_V4_FLOW:
2817 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4;
2818 break;
2819 case GTPC_TEID_V4_FLOW:
2820 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4;
2821 break;
2822 case GTPU_EH_V4_FLOW:
2823 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4;
2824 break;
2825 case GTPU_UL_V4_FLOW:
2826 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4;
2827 break;
2828 case GTPU_DL_V4_FLOW:
2829 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4;
2830 break;
2831 case TCP_V6_FLOW:
2832 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6;
2833 break;
2834 case UDP_V6_FLOW:
2835 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6;
2836 break;
2837 case SCTP_V6_FLOW:
2838 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6;
2839 break;
2840 case GTPU_V6_FLOW:
2841 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6;
2842 break;
2843 case GTPC_V6_FLOW:
2844 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6;
2845 break;
2846 case GTPC_TEID_V6_FLOW:
2847 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6;
2848 break;
2849 case GTPU_EH_V6_FLOW:
2850 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6;
2851 break;
2852 case GTPU_UL_V6_FLOW:
2853 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6;
2854 break;
2855 case GTPU_DL_V6_FLOW:
2856 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6;
2857 break;
2858 default:
2859 break;
2860 }
2861 return hdrs;
2862 }
2863
2864 /**
2865 * ice_parse_hash_flds - parses hash fields from RSS hash input
2866 * @nfc: ethtool rxnfc command
2867 * @symm: true if Symmetric Topelitz is set
2868 *
2869 * This function parses the rxnfc command and returns intended
2870 * hash fields for RSS configuration
2871 */
ice_parse_hash_flds(struct ethtool_rxnfc * nfc,bool symm)2872 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm)
2873 {
2874 u64 hfld = ICE_HASH_INVALID;
2875
2876 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) {
2877 switch (nfc->flow_type) {
2878 case TCP_V4_FLOW:
2879 case UDP_V4_FLOW:
2880 case SCTP_V4_FLOW:
2881 case GTPU_V4_FLOW:
2882 case GTPC_V4_FLOW:
2883 case GTPC_TEID_V4_FLOW:
2884 case GTPU_EH_V4_FLOW:
2885 case GTPU_UL_V4_FLOW:
2886 case GTPU_DL_V4_FLOW:
2887 if (nfc->data & RXH_IP_SRC)
2888 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA;
2889 if (nfc->data & RXH_IP_DST)
2890 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA;
2891 break;
2892 case TCP_V6_FLOW:
2893 case UDP_V6_FLOW:
2894 case SCTP_V6_FLOW:
2895 case GTPU_V6_FLOW:
2896 case GTPC_V6_FLOW:
2897 case GTPC_TEID_V6_FLOW:
2898 case GTPU_EH_V6_FLOW:
2899 case GTPU_UL_V6_FLOW:
2900 case GTPU_DL_V6_FLOW:
2901 if (nfc->data & RXH_IP_SRC)
2902 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA;
2903 if (nfc->data & RXH_IP_DST)
2904 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA;
2905 break;
2906 default:
2907 break;
2908 }
2909 }
2910
2911 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) {
2912 switch (nfc->flow_type) {
2913 case TCP_V4_FLOW:
2914 case TCP_V6_FLOW:
2915 if (nfc->data & RXH_L4_B_0_1)
2916 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT;
2917 if (nfc->data & RXH_L4_B_2_3)
2918 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT;
2919 break;
2920 case UDP_V4_FLOW:
2921 case UDP_V6_FLOW:
2922 if (nfc->data & RXH_L4_B_0_1)
2923 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT;
2924 if (nfc->data & RXH_L4_B_2_3)
2925 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT;
2926 break;
2927 case SCTP_V4_FLOW:
2928 case SCTP_V6_FLOW:
2929 if (nfc->data & RXH_L4_B_0_1)
2930 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT;
2931 if (nfc->data & RXH_L4_B_2_3)
2932 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT;
2933 break;
2934 default:
2935 break;
2936 }
2937 }
2938
2939 if (nfc->data & RXH_GTP_TEID) {
2940 switch (nfc->flow_type) {
2941 case GTPC_TEID_V4_FLOW:
2942 case GTPC_TEID_V6_FLOW:
2943 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID;
2944 break;
2945 case GTPU_V4_FLOW:
2946 case GTPU_V6_FLOW:
2947 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID;
2948 break;
2949 case GTPU_EH_V4_FLOW:
2950 case GTPU_EH_V6_FLOW:
2951 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID;
2952 break;
2953 case GTPU_UL_V4_FLOW:
2954 case GTPU_UL_V6_FLOW:
2955 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID;
2956 break;
2957 case GTPU_DL_V4_FLOW:
2958 case GTPU_DL_V6_FLOW:
2959 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID;
2960 break;
2961 default:
2962 break;
2963 }
2964 }
2965
2966 return hfld;
2967 }
2968
2969 /**
2970 * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash
2971 * @vsi: the VSI being configured
2972 * @nfc: ethtool rxnfc command
2973 *
2974 * Returns Success if the flow input set is supported.
2975 */
2976 static int
ice_set_rss_hash_opt(struct ice_vsi * vsi,struct ethtool_rxnfc * nfc)2977 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
2978 {
2979 struct ice_pf *pf = vsi->back;
2980 struct ice_rss_hash_cfg cfg;
2981 struct device *dev;
2982 u64 hashed_flds;
2983 int status;
2984 bool symm;
2985 u32 hdrs;
2986
2987 dev = ice_pf_to_dev(pf);
2988 if (ice_is_safe_mode(pf)) {
2989 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
2990 vsi->vsi_num);
2991 return -EINVAL;
2992 }
2993
2994 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
2995 hashed_flds = ice_parse_hash_flds(nfc, symm);
2996 if (hashed_flds == ICE_HASH_INVALID) {
2997 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n",
2998 vsi->vsi_num);
2999 return -EINVAL;
3000 }
3001
3002 hdrs = ice_parse_hdrs(nfc);
3003 if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3004 dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3005 vsi->vsi_num);
3006 return -EINVAL;
3007 }
3008
3009 cfg.hash_flds = hashed_flds;
3010 cfg.addl_hdrs = hdrs;
3011 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
3012 cfg.symm = symm;
3013
3014 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg);
3015 if (status) {
3016 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n",
3017 vsi->vsi_num, status);
3018 return status;
3019 }
3020
3021 return 0;
3022 }
3023
3024 /**
3025 * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type
3026 * @vsi: the VSI being configured
3027 * @nfc: ethtool rxnfc command
3028 */
3029 static void
ice_get_rss_hash_opt(struct ice_vsi * vsi,struct ethtool_rxnfc * nfc)3030 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
3031 {
3032 struct ice_pf *pf = vsi->back;
3033 struct device *dev;
3034 u64 hash_flds;
3035 bool symm;
3036 u32 hdrs;
3037
3038 dev = ice_pf_to_dev(pf);
3039
3040 nfc->data = 0;
3041 if (ice_is_safe_mode(pf)) {
3042 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
3043 vsi->vsi_num);
3044 return;
3045 }
3046
3047 hdrs = ice_parse_hdrs(nfc);
3048 if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3049 dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3050 vsi->vsi_num);
3051 return;
3052 }
3053
3054 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm);
3055 if (hash_flds == ICE_HASH_INVALID) {
3056 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n",
3057 vsi->vsi_num);
3058 return;
3059 }
3060
3061 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA ||
3062 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA)
3063 nfc->data |= (u64)RXH_IP_SRC;
3064
3065 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA ||
3066 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA)
3067 nfc->data |= (u64)RXH_IP_DST;
3068
3069 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT ||
3070 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT ||
3071 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT)
3072 nfc->data |= (u64)RXH_L4_B_0_1;
3073
3074 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT ||
3075 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT ||
3076 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)
3077 nfc->data |= (u64)RXH_L4_B_2_3;
3078
3079 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID ||
3080 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID ||
3081 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID ||
3082 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID ||
3083 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID)
3084 nfc->data |= (u64)RXH_GTP_TEID;
3085 }
3086
3087 /**
3088 * ice_set_rxnfc - command to set Rx flow rules.
3089 * @netdev: network interface device structure
3090 * @cmd: ethtool rxnfc command
3091 *
3092 * Returns 0 for success and negative values for errors
3093 */
ice_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)3094 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3095 {
3096 struct ice_netdev_priv *np = netdev_priv(netdev);
3097 struct ice_vsi *vsi = np->vsi;
3098
3099 switch (cmd->cmd) {
3100 case ETHTOOL_SRXCLSRLINS:
3101 return ice_add_fdir_ethtool(vsi, cmd);
3102 case ETHTOOL_SRXCLSRLDEL:
3103 return ice_del_fdir_ethtool(vsi, cmd);
3104 case ETHTOOL_SRXFH:
3105 return ice_set_rss_hash_opt(vsi, cmd);
3106 default:
3107 break;
3108 }
3109 return -EOPNOTSUPP;
3110 }
3111
3112 /**
3113 * ice_get_rxnfc - command to get Rx flow classification rules
3114 * @netdev: network interface device structure
3115 * @cmd: ethtool rxnfc command
3116 * @rule_locs: buffer to rturn Rx flow classification rules
3117 *
3118 * Returns Success if the command is supported.
3119 */
3120 static int
ice_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 __always_unused * rule_locs)3121 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3122 u32 __always_unused *rule_locs)
3123 {
3124 struct ice_netdev_priv *np = netdev_priv(netdev);
3125 struct ice_vsi *vsi = np->vsi;
3126 int ret = -EOPNOTSUPP;
3127 struct ice_hw *hw;
3128
3129 hw = &vsi->back->hw;
3130
3131 switch (cmd->cmd) {
3132 case ETHTOOL_GRXRINGS:
3133 cmd->data = vsi->rss_size;
3134 ret = 0;
3135 break;
3136 case ETHTOOL_GRXCLSRLCNT:
3137 cmd->rule_cnt = hw->fdir_active_fltr;
3138 /* report total rule count */
3139 cmd->data = ice_get_fdir_cnt_all(hw);
3140 ret = 0;
3141 break;
3142 case ETHTOOL_GRXCLSRULE:
3143 ret = ice_get_ethtool_fdir_entry(hw, cmd);
3144 break;
3145 case ETHTOOL_GRXCLSRLALL:
3146 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs);
3147 break;
3148 case ETHTOOL_GRXFH:
3149 ice_get_rss_hash_opt(vsi, cmd);
3150 ret = 0;
3151 break;
3152 default:
3153 break;
3154 }
3155
3156 return ret;
3157 }
3158
3159 static void
ice_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3160 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3161 struct kernel_ethtool_ringparam *kernel_ring,
3162 struct netlink_ext_ack *extack)
3163 {
3164 struct ice_netdev_priv *np = netdev_priv(netdev);
3165 struct ice_vsi *vsi = np->vsi;
3166
3167 ring->rx_max_pending = ICE_MAX_NUM_DESC;
3168 ring->tx_max_pending = ICE_MAX_NUM_DESC;
3169 if (vsi->tx_rings && vsi->rx_rings) {
3170 ring->rx_pending = vsi->rx_rings[0]->count;
3171 ring->tx_pending = vsi->tx_rings[0]->count;
3172 } else {
3173 ring->rx_pending = 0;
3174 ring->tx_pending = 0;
3175 }
3176
3177 /* Rx mini and jumbo rings are not supported */
3178 ring->rx_mini_max_pending = 0;
3179 ring->rx_jumbo_max_pending = 0;
3180 ring->rx_mini_pending = 0;
3181 ring->rx_jumbo_pending = 0;
3182 }
3183
3184 static int
ice_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3185 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3186 struct kernel_ethtool_ringparam *kernel_ring,
3187 struct netlink_ext_ack *extack)
3188 {
3189 struct ice_netdev_priv *np = netdev_priv(netdev);
3190 struct ice_tx_ring *xdp_rings = NULL;
3191 struct ice_tx_ring *tx_rings = NULL;
3192 struct ice_rx_ring *rx_rings = NULL;
3193 struct ice_vsi *vsi = np->vsi;
3194 struct ice_pf *pf = vsi->back;
3195 int i, timeout = 50, err = 0;
3196 u16 new_rx_cnt, new_tx_cnt;
3197
3198 if (ring->tx_pending > ICE_MAX_NUM_DESC ||
3199 ring->tx_pending < ICE_MIN_NUM_DESC ||
3200 ring->rx_pending > ICE_MAX_NUM_DESC ||
3201 ring->rx_pending < ICE_MIN_NUM_DESC) {
3202 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
3203 ring->tx_pending, ring->rx_pending,
3204 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC,
3205 ICE_REQ_DESC_MULTIPLE);
3206 return -EINVAL;
3207 }
3208
3209 /* Return if there is no rings (device is reloading) */
3210 if (!vsi->tx_rings || !vsi->rx_rings)
3211 return -EBUSY;
3212
3213 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE);
3214 if (new_tx_cnt != ring->tx_pending)
3215 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
3216 new_tx_cnt);
3217 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE);
3218 if (new_rx_cnt != ring->rx_pending)
3219 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
3220 new_rx_cnt);
3221
3222 /* if nothing to do return success */
3223 if (new_tx_cnt == vsi->tx_rings[0]->count &&
3224 new_rx_cnt == vsi->rx_rings[0]->count) {
3225 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
3226 return 0;
3227 }
3228
3229 /* If there is a AF_XDP UMEM attached to any of Rx rings,
3230 * disallow changing the number of descriptors -- regardless
3231 * if the netdev is running or not.
3232 */
3233 if (ice_xsk_any_rx_ring_ena(vsi))
3234 return -EBUSY;
3235
3236 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3237 timeout--;
3238 if (!timeout)
3239 return -EBUSY;
3240 usleep_range(1000, 2000);
3241 }
3242
3243 /* set for the next time the netdev is started */
3244 if (!netif_running(vsi->netdev)) {
3245 ice_for_each_alloc_txq(vsi, i)
3246 vsi->tx_rings[i]->count = new_tx_cnt;
3247 ice_for_each_alloc_rxq(vsi, i)
3248 vsi->rx_rings[i]->count = new_rx_cnt;
3249 if (ice_is_xdp_ena_vsi(vsi))
3250 ice_for_each_xdp_txq(vsi, i)
3251 vsi->xdp_rings[i]->count = new_tx_cnt;
3252 vsi->num_tx_desc = (u16)new_tx_cnt;
3253 vsi->num_rx_desc = (u16)new_rx_cnt;
3254 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n");
3255 goto done;
3256 }
3257
3258 if (new_tx_cnt == vsi->tx_rings[0]->count)
3259 goto process_rx;
3260
3261 /* alloc updated Tx resources */
3262 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n",
3263 vsi->tx_rings[0]->count, new_tx_cnt);
3264
3265 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL);
3266 if (!tx_rings) {
3267 err = -ENOMEM;
3268 goto done;
3269 }
3270
3271 ice_for_each_txq(vsi, i) {
3272 /* clone ring and setup updated count */
3273 tx_rings[i] = *vsi->tx_rings[i];
3274 tx_rings[i].count = new_tx_cnt;
3275 tx_rings[i].desc = NULL;
3276 tx_rings[i].tx_buf = NULL;
3277 tx_rings[i].tx_tstamps = &pf->ptp.port.tx;
3278 err = ice_setup_tx_ring(&tx_rings[i]);
3279 if (err) {
3280 while (i--)
3281 ice_clean_tx_ring(&tx_rings[i]);
3282 kfree(tx_rings);
3283 goto done;
3284 }
3285 }
3286
3287 if (!ice_is_xdp_ena_vsi(vsi))
3288 goto process_rx;
3289
3290 /* alloc updated XDP resources */
3291 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n",
3292 vsi->xdp_rings[0]->count, new_tx_cnt);
3293
3294 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL);
3295 if (!xdp_rings) {
3296 err = -ENOMEM;
3297 goto free_tx;
3298 }
3299
3300 ice_for_each_xdp_txq(vsi, i) {
3301 /* clone ring and setup updated count */
3302 xdp_rings[i] = *vsi->xdp_rings[i];
3303 xdp_rings[i].count = new_tx_cnt;
3304 xdp_rings[i].desc = NULL;
3305 xdp_rings[i].tx_buf = NULL;
3306 err = ice_setup_tx_ring(&xdp_rings[i]);
3307 if (err) {
3308 while (i--)
3309 ice_clean_tx_ring(&xdp_rings[i]);
3310 kfree(xdp_rings);
3311 goto free_tx;
3312 }
3313 ice_set_ring_xdp(&xdp_rings[i]);
3314 }
3315
3316 process_rx:
3317 if (new_rx_cnt == vsi->rx_rings[0]->count)
3318 goto process_link;
3319
3320 /* alloc updated Rx resources */
3321 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n",
3322 vsi->rx_rings[0]->count, new_rx_cnt);
3323
3324 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL);
3325 if (!rx_rings) {
3326 err = -ENOMEM;
3327 goto done;
3328 }
3329
3330 ice_for_each_rxq(vsi, i) {
3331 /* clone ring and setup updated count */
3332 rx_rings[i] = *vsi->rx_rings[i];
3333 rx_rings[i].count = new_rx_cnt;
3334 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time;
3335 rx_rings[i].desc = NULL;
3336 rx_rings[i].rx_buf = NULL;
3337 /* this is to allow wr32 to have something to write to
3338 * during early allocation of Rx buffers
3339 */
3340 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS;
3341
3342 err = ice_setup_rx_ring(&rx_rings[i]);
3343 if (err)
3344 goto rx_unwind;
3345
3346 /* allocate Rx buffers */
3347 err = ice_alloc_rx_bufs(&rx_rings[i],
3348 ICE_RX_DESC_UNUSED(&rx_rings[i]));
3349 rx_unwind:
3350 if (err) {
3351 while (i) {
3352 i--;
3353 ice_free_rx_ring(&rx_rings[i]);
3354 }
3355 kfree(rx_rings);
3356 err = -ENOMEM;
3357 goto free_tx;
3358 }
3359 }
3360
3361 process_link:
3362 /* Bring interface down, copy in the new ring info, then restore the
3363 * interface. if VSI is up, bring it down and then back up
3364 */
3365 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
3366 ice_down(vsi);
3367
3368 if (tx_rings) {
3369 ice_for_each_txq(vsi, i) {
3370 ice_free_tx_ring(vsi->tx_rings[i]);
3371 *vsi->tx_rings[i] = tx_rings[i];
3372 }
3373 kfree(tx_rings);
3374 }
3375
3376 if (rx_rings) {
3377 ice_for_each_rxq(vsi, i) {
3378 ice_free_rx_ring(vsi->rx_rings[i]);
3379 /* copy the real tail offset */
3380 rx_rings[i].tail = vsi->rx_rings[i]->tail;
3381 /* this is to fake out the allocation routine
3382 * into thinking it has to realloc everything
3383 * but the recycling logic will let us re-use
3384 * the buffers allocated above
3385 */
3386 rx_rings[i].next_to_use = 0;
3387 rx_rings[i].next_to_clean = 0;
3388 rx_rings[i].next_to_alloc = 0;
3389 *vsi->rx_rings[i] = rx_rings[i];
3390 }
3391 kfree(rx_rings);
3392 }
3393
3394 if (xdp_rings) {
3395 ice_for_each_xdp_txq(vsi, i) {
3396 ice_free_tx_ring(vsi->xdp_rings[i]);
3397 *vsi->xdp_rings[i] = xdp_rings[i];
3398 }
3399 kfree(xdp_rings);
3400 }
3401
3402 vsi->num_tx_desc = new_tx_cnt;
3403 vsi->num_rx_desc = new_rx_cnt;
3404 ice_up(vsi);
3405 }
3406 goto done;
3407
3408 free_tx:
3409 /* error cleanup if the Rx allocations failed after getting Tx */
3410 if (tx_rings) {
3411 ice_for_each_txq(vsi, i)
3412 ice_free_tx_ring(&tx_rings[i]);
3413 kfree(tx_rings);
3414 }
3415
3416 done:
3417 clear_bit(ICE_CFG_BUSY, pf->state);
3418 return err;
3419 }
3420
3421 /**
3422 * ice_get_pauseparam - Get Flow Control status
3423 * @netdev: network interface device structure
3424 * @pause: ethernet pause (flow control) parameters
3425 *
3426 * Get requested flow control status from PHY capability.
3427 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which
3428 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report
3429 * the negotiated Rx/Tx pause via lp_advertising.
3430 */
3431 static void
ice_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)3432 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3433 {
3434 struct ice_netdev_priv *np = netdev_priv(netdev);
3435 struct ice_port_info *pi = np->vsi->port_info;
3436 struct ice_aqc_get_phy_caps_data *pcaps;
3437 struct ice_dcbx_cfg *dcbx_cfg;
3438 int status;
3439
3440 /* Initialize pause params */
3441 pause->rx_pause = 0;
3442 pause->tx_pause = 0;
3443
3444 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3445
3446 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3447 if (!pcaps)
3448 return;
3449
3450 /* Get current PHY config */
3451 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3452 NULL);
3453 if (status)
3454 goto out;
3455
3456 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3457 AUTONEG_DISABLE;
3458
3459 if (dcbx_cfg->pfc.pfcena)
3460 /* PFC enabled so report LFC as off */
3461 goto out;
3462
3463 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3464 pause->tx_pause = 1;
3465 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3466 pause->rx_pause = 1;
3467
3468 out:
3469 kfree(pcaps);
3470 }
3471
3472 /**
3473 * ice_set_pauseparam - Set Flow Control parameter
3474 * @netdev: network interface device structure
3475 * @pause: return Tx/Rx flow control status
3476 */
3477 static int
ice_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)3478 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3479 {
3480 struct ice_netdev_priv *np = netdev_priv(netdev);
3481 struct ice_aqc_get_phy_caps_data *pcaps;
3482 struct ice_link_status *hw_link_info;
3483 struct ice_pf *pf = np->vsi->back;
3484 struct ice_dcbx_cfg *dcbx_cfg;
3485 struct ice_vsi *vsi = np->vsi;
3486 struct ice_hw *hw = &pf->hw;
3487 struct ice_port_info *pi;
3488 u8 aq_failures;
3489 bool link_up;
3490 u32 is_an;
3491 int err;
3492
3493 pi = vsi->port_info;
3494 hw_link_info = &pi->phy.link_info;
3495 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3496 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP;
3497
3498 /* Changing the port's flow control is not supported if this isn't the
3499 * PF VSI
3500 */
3501 if (vsi->type != ICE_VSI_PF) {
3502 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n");
3503 return -EOPNOTSUPP;
3504 }
3505
3506 /* Get pause param reports configured and negotiated flow control pause
3507 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is
3508 * defined get pause param pause->autoneg reports SW configured setting,
3509 * so compare pause->autoneg with SW configured to prevent the user from
3510 * using set pause param to chance autoneg.
3511 */
3512 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3513 if (!pcaps)
3514 return -ENOMEM;
3515
3516 /* Get current PHY config */
3517 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3518 NULL);
3519 if (err) {
3520 kfree(pcaps);
3521 return err;
3522 }
3523
3524 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3525 AUTONEG_DISABLE;
3526
3527 kfree(pcaps);
3528
3529 if (pause->autoneg != is_an) {
3530 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
3531 return -EOPNOTSUPP;
3532 }
3533
3534 /* If we have link and don't have autoneg */
3535 if (!test_bit(ICE_DOWN, pf->state) &&
3536 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) {
3537 /* Send message that it might not necessarily work*/
3538 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n");
3539 }
3540
3541 if (dcbx_cfg->pfc.pfcena) {
3542 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n");
3543 return -EOPNOTSUPP;
3544 }
3545 if (pause->rx_pause && pause->tx_pause)
3546 pi->fc.req_mode = ICE_FC_FULL;
3547 else if (pause->rx_pause && !pause->tx_pause)
3548 pi->fc.req_mode = ICE_FC_RX_PAUSE;
3549 else if (!pause->rx_pause && pause->tx_pause)
3550 pi->fc.req_mode = ICE_FC_TX_PAUSE;
3551 else if (!pause->rx_pause && !pause->tx_pause)
3552 pi->fc.req_mode = ICE_FC_NONE;
3553 else
3554 return -EINVAL;
3555
3556 /* Set the FC mode and only restart AN if link is up */
3557 err = ice_set_fc(pi, &aq_failures, link_up);
3558
3559 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) {
3560 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n",
3561 err, ice_aq_str(hw->adminq.sq_last_status));
3562 err = -EAGAIN;
3563 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) {
3564 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n",
3565 err, ice_aq_str(hw->adminq.sq_last_status));
3566 err = -EAGAIN;
3567 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) {
3568 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n",
3569 err, ice_aq_str(hw->adminq.sq_last_status));
3570 err = -EAGAIN;
3571 }
3572
3573 return err;
3574 }
3575
3576 /**
3577 * ice_get_rxfh_key_size - get the RSS hash key size
3578 * @netdev: network interface device structure
3579 *
3580 * Returns the table size.
3581 */
ice_get_rxfh_key_size(struct net_device __always_unused * netdev)3582 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev)
3583 {
3584 return ICE_VSIQF_HKEY_ARRAY_SIZE;
3585 }
3586
3587 /**
3588 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size
3589 * @netdev: network interface device structure
3590 *
3591 * Returns the table size.
3592 */
ice_get_rxfh_indir_size(struct net_device * netdev)3593 static u32 ice_get_rxfh_indir_size(struct net_device *netdev)
3594 {
3595 struct ice_netdev_priv *np = netdev_priv(netdev);
3596
3597 return np->vsi->rss_table_size;
3598 }
3599
3600 /**
3601 * ice_get_rxfh - get the Rx flow hash indirection table
3602 * @netdev: network interface device structure
3603 * @rxfh: pointer to param struct (indir, key, hfunc)
3604 *
3605 * Reads the indirection table directly from the hardware.
3606 */
3607 static int
ice_get_rxfh(struct net_device * netdev,struct ethtool_rxfh_param * rxfh)3608 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh)
3609 {
3610 struct ice_netdev_priv *np = netdev_priv(netdev);
3611 u32 rss_context = rxfh->rss_context;
3612 struct ice_vsi *vsi = np->vsi;
3613 struct ice_pf *pf = vsi->back;
3614 u16 qcount, offset;
3615 int err, num_tc, i;
3616 u8 *lut;
3617
3618 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3619 netdev_warn(netdev, "RSS is not supported on this VSI!\n");
3620 return -EOPNOTSUPP;
3621 }
3622
3623 if (rss_context && !ice_is_adq_active(pf)) {
3624 netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n");
3625 return -EINVAL;
3626 }
3627
3628 qcount = vsi->mqprio_qopt.qopt.count[rss_context];
3629 offset = vsi->mqprio_qopt.qopt.offset[rss_context];
3630
3631 if (rss_context && ice_is_adq_active(pf)) {
3632 num_tc = vsi->mqprio_qopt.qopt.num_tc;
3633 if (rss_context >= num_tc) {
3634 netdev_err(netdev, "RSS context:%d > num_tc:%d\n",
3635 rss_context, num_tc);
3636 return -EINVAL;
3637 }
3638 /* Use channel VSI of given TC */
3639 vsi = vsi->tc_map_vsi[rss_context];
3640 }
3641
3642 rxfh->hfunc = ETH_RSS_HASH_TOP;
3643 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
3644 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR;
3645
3646 if (!rxfh->indir)
3647 return 0;
3648
3649 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3650 if (!lut)
3651 return -ENOMEM;
3652
3653 err = ice_get_rss_key(vsi, rxfh->key);
3654 if (err)
3655 goto out;
3656
3657 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size);
3658 if (err)
3659 goto out;
3660
3661 if (ice_is_adq_active(pf)) {
3662 for (i = 0; i < vsi->rss_table_size; i++)
3663 rxfh->indir[i] = offset + lut[i] % qcount;
3664 goto out;
3665 }
3666
3667 for (i = 0; i < vsi->rss_table_size; i++)
3668 rxfh->indir[i] = lut[i];
3669
3670 out:
3671 kfree(lut);
3672 return err;
3673 }
3674
3675 /**
3676 * ice_set_rxfh - set the Rx flow hash indirection table
3677 * @netdev: network interface device structure
3678 * @rxfh: pointer to param struct (indir, key, hfunc)
3679 * @extack: extended ACK from the Netlink message
3680 *
3681 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise
3682 * returns 0 after programming the table.
3683 */
3684 static int
ice_set_rxfh(struct net_device * netdev,struct ethtool_rxfh_param * rxfh,struct netlink_ext_ack * extack)3685 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh,
3686 struct netlink_ext_ack *extack)
3687 {
3688 struct ice_netdev_priv *np = netdev_priv(netdev);
3689 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
3690 struct ice_vsi *vsi = np->vsi;
3691 struct ice_pf *pf = vsi->back;
3692 struct device *dev;
3693 int err;
3694
3695 dev = ice_pf_to_dev(pf);
3696 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3697 rxfh->hfunc != ETH_RSS_HASH_TOP)
3698 return -EOPNOTSUPP;
3699
3700 if (rxfh->rss_context)
3701 return -EOPNOTSUPP;
3702
3703 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3704 /* RSS not supported return error here */
3705 netdev_warn(netdev, "RSS is not configured on this VSI!\n");
3706 return -EIO;
3707 }
3708
3709 if (ice_is_adq_active(pf)) {
3710 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n");
3711 return -EOPNOTSUPP;
3712 }
3713
3714 /* Update the VSI's hash function */
3715 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR)
3716 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
3717
3718 err = ice_set_rss_hfunc(vsi, hfunc);
3719 if (err)
3720 return err;
3721
3722 if (rxfh->key) {
3723 if (!vsi->rss_hkey_user) {
3724 vsi->rss_hkey_user =
3725 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE,
3726 GFP_KERNEL);
3727 if (!vsi->rss_hkey_user)
3728 return -ENOMEM;
3729 }
3730 memcpy(vsi->rss_hkey_user, rxfh->key,
3731 ICE_VSIQF_HKEY_ARRAY_SIZE);
3732
3733 err = ice_set_rss_key(vsi, vsi->rss_hkey_user);
3734 if (err)
3735 return err;
3736 }
3737
3738 if (!vsi->rss_lut_user) {
3739 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size,
3740 GFP_KERNEL);
3741 if (!vsi->rss_lut_user)
3742 return -ENOMEM;
3743 }
3744
3745 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
3746 if (rxfh->indir) {
3747 int i;
3748
3749 for (i = 0; i < vsi->rss_table_size; i++)
3750 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]);
3751 } else {
3752 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size,
3753 vsi->rss_size);
3754 }
3755
3756 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size);
3757 if (err)
3758 return err;
3759
3760 return 0;
3761 }
3762
3763 static int
ice_get_ts_info(struct net_device * dev,struct kernel_ethtool_ts_info * info)3764 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info)
3765 {
3766 struct ice_pf *pf = ice_netdev_to_pf(dev);
3767
3768 /* only report timestamping if PTP is enabled */
3769 if (pf->ptp.state != ICE_PTP_READY)
3770 return ethtool_op_get_ts_info(dev, info);
3771
3772 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
3773 SOF_TIMESTAMPING_TX_HARDWARE |
3774 SOF_TIMESTAMPING_RX_HARDWARE |
3775 SOF_TIMESTAMPING_RAW_HARDWARE;
3776
3777 info->phc_index = ice_ptp_clock_index(pf);
3778
3779 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
3780
3781 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL);
3782
3783 return 0;
3784 }
3785
3786 /**
3787 * ice_get_max_txq - return the maximum number of Tx queues for in a PF
3788 * @pf: PF structure
3789 */
ice_get_max_txq(struct ice_pf * pf)3790 static int ice_get_max_txq(struct ice_pf *pf)
3791 {
3792 return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3793 (u16)pf->hw.func_caps.common_cap.num_txq);
3794 }
3795
3796 /**
3797 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF
3798 * @pf: PF structure
3799 */
ice_get_max_rxq(struct ice_pf * pf)3800 static int ice_get_max_rxq(struct ice_pf *pf)
3801 {
3802 return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3803 (u16)pf->hw.func_caps.common_cap.num_rxq);
3804 }
3805
3806 /**
3807 * ice_get_combined_cnt - return the current number of combined channels
3808 * @vsi: PF VSI pointer
3809 *
3810 * Go through all queue vectors and count ones that have both Rx and Tx ring
3811 * attached
3812 */
ice_get_combined_cnt(struct ice_vsi * vsi)3813 static u32 ice_get_combined_cnt(struct ice_vsi *vsi)
3814 {
3815 u32 combined = 0;
3816 int q_idx;
3817
3818 ice_for_each_q_vector(vsi, q_idx) {
3819 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3820
3821 if (q_vector->rx.rx_ring && q_vector->tx.tx_ring)
3822 combined++;
3823 }
3824
3825 return combined;
3826 }
3827
3828 /**
3829 * ice_get_channels - get the current and max supported channels
3830 * @dev: network interface device structure
3831 * @ch: ethtool channel data structure
3832 */
3833 static void
ice_get_channels(struct net_device * dev,struct ethtool_channels * ch)3834 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch)
3835 {
3836 struct ice_netdev_priv *np = netdev_priv(dev);
3837 struct ice_vsi *vsi = np->vsi;
3838 struct ice_pf *pf = vsi->back;
3839
3840 /* report maximum channels */
3841 ch->max_rx = ice_get_max_rxq(pf);
3842 ch->max_tx = ice_get_max_txq(pf);
3843 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx);
3844
3845 /* report current channels */
3846 ch->combined_count = ice_get_combined_cnt(vsi);
3847 ch->rx_count = vsi->num_rxq - ch->combined_count;
3848 ch->tx_count = vsi->num_txq - ch->combined_count;
3849
3850 /* report other queues */
3851 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
3852 ch->max_other = ch->other_count;
3853 }
3854
3855 /**
3856 * ice_get_valid_rss_size - return valid number of RSS queues
3857 * @hw: pointer to the HW structure
3858 * @new_size: requested RSS queues
3859 */
ice_get_valid_rss_size(struct ice_hw * hw,int new_size)3860 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size)
3861 {
3862 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap;
3863
3864 return min_t(int, new_size, BIT(caps->rss_table_entry_width));
3865 }
3866
3867 /**
3868 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size
3869 * @vsi: VSI to reconfigure RSS LUT on
3870 * @req_rss_size: requested range of queue numbers for hashing
3871 *
3872 * Set the VSI's RSS parameters, configure the RSS LUT based on these.
3873 */
ice_vsi_set_dflt_rss_lut(struct ice_vsi * vsi,int req_rss_size)3874 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size)
3875 {
3876 struct ice_pf *pf = vsi->back;
3877 struct device *dev;
3878 struct ice_hw *hw;
3879 int err;
3880 u8 *lut;
3881
3882 dev = ice_pf_to_dev(pf);
3883 hw = &pf->hw;
3884
3885 if (!req_rss_size)
3886 return -EINVAL;
3887
3888 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3889 if (!lut)
3890 return -ENOMEM;
3891
3892 /* set RSS LUT parameters */
3893 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3894 vsi->rss_size = 1;
3895 else
3896 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size);
3897
3898 /* create/set RSS LUT */
3899 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
3900 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
3901 if (err)
3902 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err,
3903 ice_aq_str(hw->adminq.sq_last_status));
3904
3905 kfree(lut);
3906 return err;
3907 }
3908
3909 /**
3910 * ice_set_channels - set the number channels
3911 * @dev: network interface device structure
3912 * @ch: ethtool channel data structure
3913 */
ice_set_channels(struct net_device * dev,struct ethtool_channels * ch)3914 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch)
3915 {
3916 struct ice_netdev_priv *np = netdev_priv(dev);
3917 struct ice_vsi *vsi = np->vsi;
3918 struct ice_pf *pf = vsi->back;
3919 int new_rx = 0, new_tx = 0;
3920 bool locked = false;
3921 int ret = 0;
3922
3923 /* do not support changing channels in Safe Mode */
3924 if (ice_is_safe_mode(pf)) {
3925 netdev_err(dev, "Changing channel in Safe Mode is not supported\n");
3926 return -EOPNOTSUPP;
3927 }
3928 /* do not support changing other_count */
3929 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U))
3930 return -EINVAL;
3931
3932 if (ice_is_adq_active(pf)) {
3933 netdev_err(dev, "Cannot set channels with ADQ configured.\n");
3934 return -EOPNOTSUPP;
3935 }
3936
3937 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) {
3938 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n");
3939 return -EOPNOTSUPP;
3940 }
3941
3942 if (ch->rx_count && ch->tx_count) {
3943 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n");
3944 return -EINVAL;
3945 }
3946
3947 new_rx = ch->combined_count + ch->rx_count;
3948 new_tx = ch->combined_count + ch->tx_count;
3949
3950 if (new_rx < vsi->tc_cfg.numtc) {
3951 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n",
3952 vsi->tc_cfg.numtc);
3953 return -EINVAL;
3954 }
3955 if (new_tx < vsi->tc_cfg.numtc) {
3956 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n",
3957 vsi->tc_cfg.numtc);
3958 return -EINVAL;
3959 }
3960 if (new_rx > ice_get_max_rxq(pf)) {
3961 netdev_err(dev, "Maximum allowed Rx channels is %d\n",
3962 ice_get_max_rxq(pf));
3963 return -EINVAL;
3964 }
3965 if (new_tx > ice_get_max_txq(pf)) {
3966 netdev_err(dev, "Maximum allowed Tx channels is %d\n",
3967 ice_get_max_txq(pf));
3968 return -EINVAL;
3969 }
3970
3971 if (pf->adev) {
3972 mutex_lock(&pf->adev_mutex);
3973 device_lock(&pf->adev->dev);
3974 locked = true;
3975 if (pf->adev->dev.driver) {
3976 netdev_err(dev, "Cannot change channels when RDMA is active\n");
3977 ret = -EBUSY;
3978 goto adev_unlock;
3979 }
3980 }
3981
3982 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked);
3983
3984 if (!netif_is_rxfh_configured(dev)) {
3985 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx);
3986 goto adev_unlock;
3987 }
3988
3989 /* Update rss_size due to change in Rx queues */
3990 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx);
3991
3992 adev_unlock:
3993 if (locked) {
3994 device_unlock(&pf->adev->dev);
3995 mutex_unlock(&pf->adev_mutex);
3996 }
3997 return ret;
3998 }
3999
4000 /**
4001 * ice_get_wol - get current Wake on LAN configuration
4002 * @netdev: network interface device structure
4003 * @wol: Ethtool structure to retrieve WoL settings
4004 */
ice_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)4005 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4006 {
4007 struct ice_netdev_priv *np = netdev_priv(netdev);
4008 struct ice_pf *pf = np->vsi->back;
4009
4010 if (np->vsi->type != ICE_VSI_PF)
4011 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n");
4012
4013 /* Get WoL settings based on the HW capability */
4014 if (ice_is_wol_supported(&pf->hw)) {
4015 wol->supported = WAKE_MAGIC;
4016 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0;
4017 } else {
4018 wol->supported = 0;
4019 wol->wolopts = 0;
4020 }
4021 }
4022
4023 /**
4024 * ice_set_wol - set Wake on LAN on supported device
4025 * @netdev: network interface device structure
4026 * @wol: Ethtool structure to set WoL
4027 */
ice_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)4028 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4029 {
4030 struct ice_netdev_priv *np = netdev_priv(netdev);
4031 struct ice_vsi *vsi = np->vsi;
4032 struct ice_pf *pf = vsi->back;
4033
4034 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw))
4035 return -EOPNOTSUPP;
4036
4037 /* only magic packet is supported */
4038 if (wol->wolopts && wol->wolopts != WAKE_MAGIC)
4039 return -EOPNOTSUPP;
4040
4041 /* Set WoL only if there is a new value */
4042 if (pf->wol_ena != !!wol->wolopts) {
4043 pf->wol_ena = !!wol->wolopts;
4044 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena);
4045 netdev_dbg(netdev, "WoL magic packet %sabled\n",
4046 pf->wol_ena ? "en" : "dis");
4047 }
4048
4049 return 0;
4050 }
4051
4052 /**
4053 * ice_get_rc_coalesce - get ITR values for specific ring container
4054 * @ec: ethtool structure to fill with driver's coalesce settings
4055 * @rc: ring container that the ITR values will come from
4056 *
4057 * Query the device for ice_ring_container specific ITR values. This is
4058 * done per ice_ring_container because each q_vector can have 1 or more rings
4059 * and all of said ring(s) will have the same ITR values.
4060 *
4061 * Returns 0 on success, negative otherwise.
4062 */
4063 static int
ice_get_rc_coalesce(struct ethtool_coalesce * ec,struct ice_ring_container * rc)4064 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc)
4065 {
4066 if (!rc->rx_ring)
4067 return -EINVAL;
4068
4069 switch (rc->type) {
4070 case ICE_RX_CONTAINER:
4071 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc);
4072 ec->rx_coalesce_usecs = rc->itr_setting;
4073 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl;
4074 break;
4075 case ICE_TX_CONTAINER:
4076 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc);
4077 ec->tx_coalesce_usecs = rc->itr_setting;
4078 break;
4079 default:
4080 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type);
4081 return -EINVAL;
4082 }
4083
4084 return 0;
4085 }
4086
4087 /**
4088 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings
4089 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings
4090 * @ec: coalesce settings to program the device with
4091 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4092 *
4093 * Return 0 on success, and negative under the following conditions:
4094 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed.
4095 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4096 */
4097 static int
ice_get_q_coalesce(struct ice_vsi * vsi,struct ethtool_coalesce * ec,int q_num)4098 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4099 {
4100 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4101 if (ice_get_rc_coalesce(ec,
4102 &vsi->rx_rings[q_num]->q_vector->rx))
4103 return -EINVAL;
4104 if (ice_get_rc_coalesce(ec,
4105 &vsi->tx_rings[q_num]->q_vector->tx))
4106 return -EINVAL;
4107 } else if (q_num < vsi->num_rxq) {
4108 if (ice_get_rc_coalesce(ec,
4109 &vsi->rx_rings[q_num]->q_vector->rx))
4110 return -EINVAL;
4111 } else if (q_num < vsi->num_txq) {
4112 if (ice_get_rc_coalesce(ec,
4113 &vsi->tx_rings[q_num]->q_vector->tx))
4114 return -EINVAL;
4115 } else {
4116 return -EINVAL;
4117 }
4118
4119 return 0;
4120 }
4121
4122 /**
4123 * __ice_get_coalesce - get ITR/INTRL values for the device
4124 * @netdev: pointer to the netdev associated with this query
4125 * @ec: ethtool structure to fill with driver's coalesce settings
4126 * @q_num: queue number to get the coalesce settings for
4127 *
4128 * If the caller passes in a negative q_num then we return coalesce settings
4129 * based on queue number 0, else use the actual q_num passed in.
4130 */
4131 static int
__ice_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int q_num)4132 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4133 int q_num)
4134 {
4135 struct ice_netdev_priv *np = netdev_priv(netdev);
4136 struct ice_vsi *vsi = np->vsi;
4137
4138 if (q_num < 0)
4139 q_num = 0;
4140
4141 if (ice_get_q_coalesce(vsi, ec, q_num))
4142 return -EINVAL;
4143
4144 return 0;
4145 }
4146
ice_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4147 static int ice_get_coalesce(struct net_device *netdev,
4148 struct ethtool_coalesce *ec,
4149 struct kernel_ethtool_coalesce *kernel_coal,
4150 struct netlink_ext_ack *extack)
4151 {
4152 return __ice_get_coalesce(netdev, ec, -1);
4153 }
4154
4155 static int
ice_get_per_q_coalesce(struct net_device * netdev,u32 q_num,struct ethtool_coalesce * ec)4156 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num,
4157 struct ethtool_coalesce *ec)
4158 {
4159 return __ice_get_coalesce(netdev, ec, q_num);
4160 }
4161
4162 /**
4163 * ice_set_rc_coalesce - set ITR values for specific ring container
4164 * @ec: ethtool structure from user to update ITR settings
4165 * @rc: ring container that the ITR values will come from
4166 * @vsi: VSI associated to the ring container
4167 *
4168 * Set specific ITR values. This is done per ice_ring_container because each
4169 * q_vector can have 1 or more rings and all of said ring(s) will have the same
4170 * ITR values.
4171 *
4172 * Returns 0 on success, negative otherwise.
4173 */
4174 static int
ice_set_rc_coalesce(struct ethtool_coalesce * ec,struct ice_ring_container * rc,struct ice_vsi * vsi)4175 ice_set_rc_coalesce(struct ethtool_coalesce *ec,
4176 struct ice_ring_container *rc, struct ice_vsi *vsi)
4177 {
4178 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx";
4179 u32 use_adaptive_coalesce, coalesce_usecs;
4180 struct ice_pf *pf = vsi->back;
4181 u16 itr_setting;
4182
4183 if (!rc->rx_ring)
4184 return -EINVAL;
4185
4186 switch (rc->type) {
4187 case ICE_RX_CONTAINER:
4188 {
4189 struct ice_q_vector *q_vector = rc->rx_ring->q_vector;
4190
4191 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL ||
4192 (ec->rx_coalesce_usecs_high &&
4193 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) {
4194 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n",
4195 c_type_str, pf->hw.intrl_gran,
4196 ICE_MAX_INTRL);
4197 return -EINVAL;
4198 }
4199 if (ec->rx_coalesce_usecs_high != q_vector->intrl &&
4200 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) {
4201 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n",
4202 c_type_str);
4203 return -EINVAL;
4204 }
4205 if (ec->rx_coalesce_usecs_high != q_vector->intrl)
4206 q_vector->intrl = ec->rx_coalesce_usecs_high;
4207
4208 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce;
4209 coalesce_usecs = ec->rx_coalesce_usecs;
4210
4211 break;
4212 }
4213 case ICE_TX_CONTAINER:
4214 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce;
4215 coalesce_usecs = ec->tx_coalesce_usecs;
4216
4217 break;
4218 default:
4219 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n",
4220 rc->type);
4221 return -EINVAL;
4222 }
4223
4224 itr_setting = rc->itr_setting;
4225 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) {
4226 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n",
4227 c_type_str, c_type_str);
4228 return -EINVAL;
4229 }
4230
4231 if (coalesce_usecs > ICE_ITR_MAX) {
4232 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n",
4233 c_type_str, ICE_ITR_MAX);
4234 return -EINVAL;
4235 }
4236
4237 if (use_adaptive_coalesce) {
4238 rc->itr_mode = ITR_DYNAMIC;
4239 } else {
4240 rc->itr_mode = ITR_STATIC;
4241 /* store user facing value how it was set */
4242 rc->itr_setting = coalesce_usecs;
4243 /* write the change to the register */
4244 ice_write_itr(rc, coalesce_usecs);
4245 /* force writes to take effect immediately, the flush shouldn't
4246 * be done in the functions above because the intent is for
4247 * them to do lazy writes.
4248 */
4249 ice_flush(&pf->hw);
4250 }
4251
4252 return 0;
4253 }
4254
4255 /**
4256 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings
4257 * @vsi: VSI associated to the queue that need updating
4258 * @ec: coalesce settings to program the device with
4259 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4260 *
4261 * Return 0 on success, and negative under the following conditions:
4262 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed.
4263 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4264 */
4265 static int
ice_set_q_coalesce(struct ice_vsi * vsi,struct ethtool_coalesce * ec,int q_num)4266 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4267 {
4268 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4269 if (ice_set_rc_coalesce(ec,
4270 &vsi->rx_rings[q_num]->q_vector->rx,
4271 vsi))
4272 return -EINVAL;
4273
4274 if (ice_set_rc_coalesce(ec,
4275 &vsi->tx_rings[q_num]->q_vector->tx,
4276 vsi))
4277 return -EINVAL;
4278 } else if (q_num < vsi->num_rxq) {
4279 if (ice_set_rc_coalesce(ec,
4280 &vsi->rx_rings[q_num]->q_vector->rx,
4281 vsi))
4282 return -EINVAL;
4283 } else if (q_num < vsi->num_txq) {
4284 if (ice_set_rc_coalesce(ec,
4285 &vsi->tx_rings[q_num]->q_vector->tx,
4286 vsi))
4287 return -EINVAL;
4288 } else {
4289 return -EINVAL;
4290 }
4291
4292 return 0;
4293 }
4294
4295 /**
4296 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs
4297 * @netdev: netdev used for print
4298 * @itr_setting: previous user setting
4299 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled
4300 * @coalesce_usecs: requested value of [tx|rx]-usecs
4301 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs
4302 */
4303 static void
ice_print_if_odd_usecs(struct net_device * netdev,u16 itr_setting,u32 use_adaptive_coalesce,u32 coalesce_usecs,const char * c_type_str)4304 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting,
4305 u32 use_adaptive_coalesce, u32 coalesce_usecs,
4306 const char *c_type_str)
4307 {
4308 if (use_adaptive_coalesce)
4309 return;
4310
4311 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2))
4312 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n",
4313 c_type_str, coalesce_usecs, c_type_str,
4314 ITR_REG_ALIGN(coalesce_usecs));
4315 }
4316
4317 /**
4318 * __ice_set_coalesce - set ITR/INTRL values for the device
4319 * @netdev: pointer to the netdev associated with this query
4320 * @ec: ethtool structure to fill with driver's coalesce settings
4321 * @q_num: queue number to get the coalesce settings for
4322 *
4323 * If the caller passes in a negative q_num then we set the coalesce settings
4324 * for all Tx/Rx queues, else use the actual q_num passed in.
4325 */
4326 static int
__ice_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int q_num)4327 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4328 int q_num)
4329 {
4330 struct ice_netdev_priv *np = netdev_priv(netdev);
4331 struct ice_vsi *vsi = np->vsi;
4332
4333 if (q_num < 0) {
4334 struct ice_q_vector *q_vector = vsi->q_vectors[0];
4335 int v_idx;
4336
4337 if (q_vector) {
4338 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting,
4339 ec->use_adaptive_rx_coalesce,
4340 ec->rx_coalesce_usecs, "rx");
4341
4342 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting,
4343 ec->use_adaptive_tx_coalesce,
4344 ec->tx_coalesce_usecs, "tx");
4345 }
4346
4347 ice_for_each_q_vector(vsi, v_idx) {
4348 /* In some cases if DCB is configured the num_[rx|tx]q
4349 * can be less than vsi->num_q_vectors. This check
4350 * accounts for that so we don't report a false failure
4351 */
4352 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq)
4353 goto set_complete;
4354
4355 if (ice_set_q_coalesce(vsi, ec, v_idx))
4356 return -EINVAL;
4357
4358 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]);
4359 }
4360 goto set_complete;
4361 }
4362
4363 if (ice_set_q_coalesce(vsi, ec, q_num))
4364 return -EINVAL;
4365
4366 ice_set_q_vector_intrl(vsi->q_vectors[q_num]);
4367
4368 set_complete:
4369 return 0;
4370 }
4371
ice_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4372 static int ice_set_coalesce(struct net_device *netdev,
4373 struct ethtool_coalesce *ec,
4374 struct kernel_ethtool_coalesce *kernel_coal,
4375 struct netlink_ext_ack *extack)
4376 {
4377 return __ice_set_coalesce(netdev, ec, -1);
4378 }
4379
4380 static int
ice_set_per_q_coalesce(struct net_device * netdev,u32 q_num,struct ethtool_coalesce * ec)4381 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num,
4382 struct ethtool_coalesce *ec)
4383 {
4384 return __ice_set_coalesce(netdev, ec, q_num);
4385 }
4386
4387 static void
ice_repr_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)4388 ice_repr_get_drvinfo(struct net_device *netdev,
4389 struct ethtool_drvinfo *drvinfo)
4390 {
4391 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4392
4393 if (repr->ops.ready(repr))
4394 return;
4395
4396 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi);
4397 }
4398
4399 static void
ice_repr_get_strings(struct net_device * netdev,u32 stringset,u8 * data)4400 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
4401 {
4402 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4403
4404 /* for port representors only ETH_SS_STATS is supported */
4405 if (repr->ops.ready(repr) || stringset != ETH_SS_STATS)
4406 return;
4407
4408 __ice_get_strings(netdev, stringset, data, repr->src_vsi);
4409 }
4410
4411 static void
ice_repr_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)4412 ice_repr_get_ethtool_stats(struct net_device *netdev,
4413 struct ethtool_stats __always_unused *stats,
4414 u64 *data)
4415 {
4416 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4417
4418 if (repr->ops.ready(repr))
4419 return;
4420
4421 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi);
4422 }
4423
ice_repr_get_sset_count(struct net_device * netdev,int sset)4424 static int ice_repr_get_sset_count(struct net_device *netdev, int sset)
4425 {
4426 switch (sset) {
4427 case ETH_SS_STATS:
4428 return ICE_VSI_STATS_LEN;
4429 default:
4430 return -EOPNOTSUPP;
4431 }
4432 }
4433
4434 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0
4435 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2
4436 #define ICE_MODULE_TYPE_SFP 0x03
4437 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D
4438 #define ICE_MODULE_TYPE_QSFP28 0x11
4439 #define ICE_MODULE_SFF_ADDR_MODE 0x04
4440 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40
4441 #define ICE_MODULE_REVISION_ADDR 0x01
4442 #define ICE_MODULE_SFF_8472_COMP 0x5E
4443 #define ICE_MODULE_SFF_8472_SWAP 0x5C
4444 #define ICE_MODULE_QSFP_MAX_LEN 640
4445
4446 /**
4447 * ice_get_module_info - get SFF module type and revision information
4448 * @netdev: network interface device structure
4449 * @modinfo: module EEPROM size and layout information structure
4450 */
4451 static int
ice_get_module_info(struct net_device * netdev,struct ethtool_modinfo * modinfo)4452 ice_get_module_info(struct net_device *netdev,
4453 struct ethtool_modinfo *modinfo)
4454 {
4455 struct ice_netdev_priv *np = netdev_priv(netdev);
4456 struct ice_vsi *vsi = np->vsi;
4457 struct ice_pf *pf = vsi->back;
4458 struct ice_hw *hw = &pf->hw;
4459 u8 sff8472_comp = 0;
4460 u8 sff8472_swap = 0;
4461 u8 sff8636_rev = 0;
4462 u8 value = 0;
4463 int status;
4464
4465 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00,
4466 0, &value, 1, 0, NULL);
4467 if (status)
4468 return status;
4469
4470 switch (value) {
4471 case ICE_MODULE_TYPE_SFP:
4472 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4473 ICE_MODULE_SFF_8472_COMP, 0x00, 0,
4474 &sff8472_comp, 1, 0, NULL);
4475 if (status)
4476 return status;
4477 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4478 ICE_MODULE_SFF_8472_SWAP, 0x00, 0,
4479 &sff8472_swap, 1, 0, NULL);
4480 if (status)
4481 return status;
4482
4483 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) {
4484 modinfo->type = ETH_MODULE_SFF_8079;
4485 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4486 } else if (sff8472_comp &&
4487 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) {
4488 modinfo->type = ETH_MODULE_SFF_8472;
4489 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
4490 } else {
4491 modinfo->type = ETH_MODULE_SFF_8079;
4492 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4493 }
4494 break;
4495 case ICE_MODULE_TYPE_QSFP_PLUS:
4496 case ICE_MODULE_TYPE_QSFP28:
4497 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4498 ICE_MODULE_REVISION_ADDR, 0x00, 0,
4499 &sff8636_rev, 1, 0, NULL);
4500 if (status)
4501 return status;
4502 /* Check revision compliance */
4503 if (sff8636_rev > 0x02) {
4504 /* Module is SFF-8636 compliant */
4505 modinfo->type = ETH_MODULE_SFF_8636;
4506 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4507 } else {
4508 modinfo->type = ETH_MODULE_SFF_8436;
4509 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4510 }
4511 break;
4512 default:
4513 netdev_warn(netdev, "SFF Module Type not recognized.\n");
4514 return -EINVAL;
4515 }
4516 return 0;
4517 }
4518
4519 /**
4520 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents
4521 * @netdev: network interface device structure
4522 * @ee: EEPROM dump request structure
4523 * @data: buffer to be filled with EEPROM contents
4524 */
4525 static int
ice_get_module_eeprom(struct net_device * netdev,struct ethtool_eeprom * ee,u8 * data)4526 ice_get_module_eeprom(struct net_device *netdev,
4527 struct ethtool_eeprom *ee, u8 *data)
4528 {
4529 struct ice_netdev_priv *np = netdev_priv(netdev);
4530 #define SFF_READ_BLOCK_SIZE 8
4531 u8 value[SFF_READ_BLOCK_SIZE] = { 0 };
4532 u8 addr = ICE_I2C_EEPROM_DEV_ADDR;
4533 struct ice_vsi *vsi = np->vsi;
4534 struct ice_pf *pf = vsi->back;
4535 struct ice_hw *hw = &pf->hw;
4536 bool is_sfp = false;
4537 unsigned int i, j;
4538 u16 offset = 0;
4539 u8 page = 0;
4540 int status;
4541
4542 if (!ee || !ee->len || !data)
4543 return -EINVAL;
4544
4545 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0,
4546 NULL);
4547 if (status)
4548 return status;
4549
4550 if (value[0] == ICE_MODULE_TYPE_SFP)
4551 is_sfp = true;
4552
4553 memset(data, 0, ee->len);
4554 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) {
4555 offset = i + ee->offset;
4556 page = 0;
4557
4558 /* Check if we need to access the other memory page */
4559 if (is_sfp) {
4560 if (offset >= ETH_MODULE_SFF_8079_LEN) {
4561 offset -= ETH_MODULE_SFF_8079_LEN;
4562 addr = ICE_I2C_EEPROM_DEV_ADDR2;
4563 }
4564 } else {
4565 while (offset >= ETH_MODULE_SFF_8436_LEN) {
4566 /* Compute memory page number and offset. */
4567 offset -= ETH_MODULE_SFF_8436_LEN / 2;
4568 page++;
4569 }
4570 }
4571
4572 /* Bit 2 of EEPROM address 0x02 declares upper
4573 * pages are disabled on QSFP modules.
4574 * SFP modules only ever use page 0.
4575 */
4576 if (page == 0 || !(data[0x2] & 0x4)) {
4577 u32 copy_len;
4578
4579 /* If i2c bus is busy due to slow page change or
4580 * link management access, call can fail. This is normal.
4581 * So we retry this a few times.
4582 */
4583 for (j = 0; j < 4; j++) {
4584 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page,
4585 !is_sfp, value,
4586 SFF_READ_BLOCK_SIZE,
4587 0, NULL);
4588 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n",
4589 addr, offset, page, is_sfp,
4590 value[0], value[1], value[2], value[3],
4591 value[4], value[5], value[6], value[7],
4592 status);
4593 if (status) {
4594 usleep_range(1500, 2500);
4595 memset(value, 0, SFF_READ_BLOCK_SIZE);
4596 continue;
4597 }
4598 break;
4599 }
4600
4601 /* Make sure we have enough room for the new block */
4602 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i);
4603 memcpy(data + i, value, copy_len);
4604 }
4605 }
4606 return 0;
4607 }
4608
4609 /**
4610 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per
4611 * pcsquad, pcsport
4612 * @hw: pointer to the HW struct
4613 * @pcs_quad: pcsquad for input port
4614 * @pcs_port: pcsport for input port
4615 * @fec_stats: buffer to hold FEC statistics for given port
4616 *
4617 * Return: 0 on success, negative on failure.
4618 */
ice_get_port_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,struct ethtool_fec_stats * fec_stats)4619 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
4620 struct ethtool_fec_stats *fec_stats)
4621 {
4622 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0;
4623 u32 fec_corr_low_val = 0, fec_corr_high_val = 0;
4624 int err;
4625
4626 if (pcs_quad > 1 || pcs_port > 3)
4627 return -EINVAL;
4628
4629 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW,
4630 &fec_corr_low_val);
4631 if (err)
4632 return err;
4633
4634 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH,
4635 &fec_corr_high_val);
4636 if (err)
4637 return err;
4638
4639 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4640 ICE_FEC_UNCORR_LOW,
4641 &fec_uncorr_low_val);
4642 if (err)
4643 return err;
4644
4645 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4646 ICE_FEC_UNCORR_HIGH,
4647 &fec_uncorr_high_val);
4648 if (err)
4649 return err;
4650
4651 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) +
4652 fec_corr_low_val;
4653 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) +
4654 fec_uncorr_low_val;
4655 return 0;
4656 }
4657
4658 /**
4659 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev
4660 * @netdev: network interface device structure
4661 * @fec_stats: buffer to hold FEC statistics for given port
4662 *
4663 */
ice_get_fec_stats(struct net_device * netdev,struct ethtool_fec_stats * fec_stats)4664 static void ice_get_fec_stats(struct net_device *netdev,
4665 struct ethtool_fec_stats *fec_stats)
4666 {
4667 struct ice_netdev_priv *np = netdev_priv(netdev);
4668 struct ice_port_topology port_topology;
4669 struct ice_port_info *pi;
4670 struct ice_pf *pf;
4671 struct ice_hw *hw;
4672 int err;
4673
4674 pf = np->vsi->back;
4675 hw = &pf->hw;
4676 pi = np->vsi->port_info;
4677
4678 /* Serdes parameters are not supported if not the PF VSI */
4679 if (np->vsi->type != ICE_VSI_PF || !pi)
4680 return;
4681
4682 err = ice_get_port_topology(hw, pi->lport, &port_topology);
4683 if (err) {
4684 netdev_info(netdev, "Extended register dump failed Lport %d\n",
4685 pi->lport);
4686 return;
4687 }
4688
4689 /* Get FEC correctable, uncorrectable counter */
4690 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select,
4691 port_topology.pcs_port, fec_stats);
4692 if (err)
4693 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n",
4694 pi->lport, err);
4695 }
4696
4697 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \
4698 ETH_RESET_FILTER | ETH_RESET_OFFLOAD)
4699
4700 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \
4701 ETH_RESET_SHARED_SHIFT)
4702
4703 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \
4704 (ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \
4705 (ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT))
4706
4707 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR
4708
4709 /**
4710 * ice_ethtool_reset - triggers a given type of reset
4711 * @dev: network interface device structure
4712 * @flags: set of reset flags
4713 *
4714 * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags.
4715 */
ice_ethtool_reset(struct net_device * dev,u32 * flags)4716 static int ice_ethtool_reset(struct net_device *dev, u32 *flags)
4717 {
4718 struct ice_netdev_priv *np = netdev_priv(dev);
4719 struct ice_pf *pf = np->vsi->back;
4720 enum ice_reset_req reset;
4721
4722 switch (*flags) {
4723 case ICE_ETHTOOL_CORER:
4724 reset = ICE_RESET_CORER;
4725 break;
4726 case ICE_ETHTOOL_GLOBR:
4727 reset = ICE_RESET_GLOBR;
4728 break;
4729 case ICE_ETHTOOL_PFR:
4730 reset = ICE_RESET_PFR;
4731 break;
4732 default:
4733 netdev_info(dev, "Unsupported set of ethtool flags");
4734 return -EOPNOTSUPP;
4735 }
4736
4737 ice_schedule_reset(pf, reset);
4738
4739 *flags = 0;
4740
4741 return 0;
4742 }
4743
4744 /**
4745 * ice_repr_ethtool_reset - triggers a VF reset
4746 * @dev: network interface device structure
4747 * @flags: set of reset flags
4748 *
4749 * Return: 0 on success,
4750 * -EOPNOTSUPP when using unsupported set of flags
4751 * -EBUSY when VF is not ready for reset.
4752 */
ice_repr_ethtool_reset(struct net_device * dev,u32 * flags)4753 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags)
4754 {
4755 struct ice_repr *repr = ice_netdev_to_repr(dev);
4756 struct ice_vf *vf;
4757
4758 if (repr->type != ICE_REPR_TYPE_VF ||
4759 *flags != ICE_ETHTOOL_VFR)
4760 return -EOPNOTSUPP;
4761
4762 vf = repr->vf;
4763
4764 if (ice_check_vf_ready_for_cfg(vf))
4765 return -EBUSY;
4766
4767 *flags = 0;
4768
4769 return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
4770 }
4771
4772 static const struct ethtool_ops ice_ethtool_ops = {
4773 .cap_rss_ctx_supported = true,
4774 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
4775 ETHTOOL_COALESCE_USE_ADAPTIVE |
4776 ETHTOOL_COALESCE_RX_USECS_HIGH,
4777 .cap_rss_sym_xor_supported = true,
4778 .rxfh_per_ctx_key = true,
4779 .get_link_ksettings = ice_get_link_ksettings,
4780 .set_link_ksettings = ice_set_link_ksettings,
4781 .get_fec_stats = ice_get_fec_stats,
4782 .get_drvinfo = ice_get_drvinfo,
4783 .get_regs_len = ice_get_regs_len,
4784 .get_regs = ice_get_regs,
4785 .get_wol = ice_get_wol,
4786 .set_wol = ice_set_wol,
4787 .get_msglevel = ice_get_msglevel,
4788 .set_msglevel = ice_set_msglevel,
4789 .self_test = ice_self_test,
4790 .get_link = ethtool_op_get_link,
4791 .get_eeprom_len = ice_get_eeprom_len,
4792 .get_eeprom = ice_get_eeprom,
4793 .get_coalesce = ice_get_coalesce,
4794 .set_coalesce = ice_set_coalesce,
4795 .get_strings = ice_get_strings,
4796 .set_phys_id = ice_set_phys_id,
4797 .get_ethtool_stats = ice_get_ethtool_stats,
4798 .get_priv_flags = ice_get_priv_flags,
4799 .set_priv_flags = ice_set_priv_flags,
4800 .get_sset_count = ice_get_sset_count,
4801 .get_rxnfc = ice_get_rxnfc,
4802 .set_rxnfc = ice_set_rxnfc,
4803 .get_ringparam = ice_get_ringparam,
4804 .set_ringparam = ice_set_ringparam,
4805 .nway_reset = ice_nway_reset,
4806 .get_pauseparam = ice_get_pauseparam,
4807 .set_pauseparam = ice_set_pauseparam,
4808 .reset = ice_ethtool_reset,
4809 .get_rxfh_key_size = ice_get_rxfh_key_size,
4810 .get_rxfh_indir_size = ice_get_rxfh_indir_size,
4811 .get_rxfh = ice_get_rxfh,
4812 .set_rxfh = ice_set_rxfh,
4813 .get_channels = ice_get_channels,
4814 .set_channels = ice_set_channels,
4815 .get_ts_info = ice_get_ts_info,
4816 .get_per_queue_coalesce = ice_get_per_q_coalesce,
4817 .set_per_queue_coalesce = ice_set_per_q_coalesce,
4818 .get_fecparam = ice_get_fecparam,
4819 .set_fecparam = ice_set_fecparam,
4820 .get_module_info = ice_get_module_info,
4821 .get_module_eeprom = ice_get_module_eeprom,
4822 };
4823
4824 static const struct ethtool_ops ice_ethtool_safe_mode_ops = {
4825 .get_link_ksettings = ice_get_link_ksettings,
4826 .set_link_ksettings = ice_set_link_ksettings,
4827 .get_drvinfo = ice_get_drvinfo,
4828 .get_regs_len = ice_get_regs_len,
4829 .get_regs = ice_get_regs,
4830 .get_wol = ice_get_wol,
4831 .set_wol = ice_set_wol,
4832 .get_msglevel = ice_get_msglevel,
4833 .set_msglevel = ice_set_msglevel,
4834 .get_link = ethtool_op_get_link,
4835 .get_eeprom_len = ice_get_eeprom_len,
4836 .get_eeprom = ice_get_eeprom,
4837 .get_strings = ice_get_strings,
4838 .get_ethtool_stats = ice_get_ethtool_stats,
4839 .get_sset_count = ice_get_sset_count,
4840 .get_ringparam = ice_get_ringparam,
4841 .set_ringparam = ice_set_ringparam,
4842 .nway_reset = ice_nway_reset,
4843 .get_channels = ice_get_channels,
4844 };
4845
4846 /**
4847 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops
4848 * @netdev: network interface device structure
4849 */
ice_set_ethtool_safe_mode_ops(struct net_device * netdev)4850 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev)
4851 {
4852 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops;
4853 }
4854
4855 static const struct ethtool_ops ice_ethtool_repr_ops = {
4856 .get_drvinfo = ice_repr_get_drvinfo,
4857 .get_link = ethtool_op_get_link,
4858 .get_strings = ice_repr_get_strings,
4859 .get_ethtool_stats = ice_repr_get_ethtool_stats,
4860 .get_sset_count = ice_repr_get_sset_count,
4861 .reset = ice_repr_ethtool_reset,
4862 };
4863
4864 /**
4865 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops
4866 * @netdev: network interface device structure
4867 */
ice_set_ethtool_repr_ops(struct net_device * netdev)4868 void ice_set_ethtool_repr_ops(struct net_device *netdev)
4869 {
4870 netdev->ethtool_ops = &ice_ethtool_repr_ops;
4871 }
4872
4873 /**
4874 * ice_set_ethtool_ops - setup netdev ethtool ops
4875 * @netdev: network interface device structure
4876 *
4877 * setup netdev ethtool ops with ice specific ops
4878 */
ice_set_ethtool_ops(struct net_device * netdev)4879 void ice_set_ethtool_ops(struct net_device *netdev)
4880 {
4881 netdev->ethtool_ops = &ice_ethtool_ops;
4882 }
4883