1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
ice_free_vf_entries(struct ice_pf * pf)24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_deinitialize_vf_entry(vf);
40 ice_put_vf(vf);
41 }
42 }
43
44 /**
45 * ice_free_vf_res - Free a VF's resources
46 * @vf: pointer to the VF info
47 */
ice_free_vf_res(struct ice_vf * vf)48 static void ice_free_vf_res(struct ice_vf *vf)
49 {
50 struct ice_pf *pf = vf->pf;
51 int i, last_vector_idx;
52
53 /* First, disable VF's configuration API to prevent OS from
54 * accessing the VF's VSI after it's freed or invalidated.
55 */
56 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 ice_vf_fdir_exit(vf);
58 /* free VF control VSI */
59 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60 ice_vf_ctrl_vsi_release(vf);
61
62 /* free VSI and disconnect it from the parent uplink */
63 if (vf->lan_vsi_idx != ICE_NO_VSI) {
64 ice_vf_vsi_release(vf);
65 vf->num_mac = 0;
66 }
67
68 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
69
70 /* clear VF MDD event information */
71 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
72 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
73
74 /* Disable interrupts so that VF starts in a known state */
75 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
76 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
77 ice_flush(&pf->hw);
78 }
79 /* reset some of the state variables keeping track of the resources */
80 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
81 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
82 }
83
84 /**
85 * ice_dis_vf_mappings
86 * @vf: pointer to the VF structure
87 */
ice_dis_vf_mappings(struct ice_vf * vf)88 static void ice_dis_vf_mappings(struct ice_vf *vf)
89 {
90 struct ice_pf *pf = vf->pf;
91 struct ice_vsi *vsi;
92 struct device *dev;
93 int first, last, v;
94 struct ice_hw *hw;
95
96 hw = &pf->hw;
97 vsi = ice_get_vf_vsi(vf);
98 if (WARN_ON(!vsi))
99 return;
100
101 dev = ice_pf_to_dev(pf);
102 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
103 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
104
105 first = vf->first_vector_idx;
106 last = first + vf->num_msix - 1;
107 for (v = first; v <= last; v++) {
108 u32 reg;
109
110 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
111 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
112 wr32(hw, GLINT_VECT2FUNC(v), reg);
113 }
114
115 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
116 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
117 else
118 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
119
120 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
121 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
122 else
123 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
124 }
125
126 /**
127 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
128 * @pf: pointer to the PF structure
129 *
130 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
131 * the pf->sriov_base_vector.
132 *
133 * Returns 0 on success, and -EINVAL on error.
134 */
ice_sriov_free_msix_res(struct ice_pf * pf)135 static int ice_sriov_free_msix_res(struct ice_pf *pf)
136 {
137 if (!pf)
138 return -EINVAL;
139
140 bitmap_free(pf->sriov_irq_bm);
141 pf->sriov_irq_size = 0;
142 pf->sriov_base_vector = 0;
143
144 return 0;
145 }
146
147 /**
148 * ice_free_vfs - Free all VFs
149 * @pf: pointer to the PF structure
150 */
ice_free_vfs(struct ice_pf * pf)151 void ice_free_vfs(struct ice_pf *pf)
152 {
153 struct device *dev = ice_pf_to_dev(pf);
154 struct ice_vfs *vfs = &pf->vfs;
155 struct ice_hw *hw = &pf->hw;
156 struct ice_vf *vf;
157 unsigned int bkt;
158
159 if (!ice_has_vfs(pf))
160 return;
161
162 while (test_and_set_bit(ICE_VF_DIS, pf->state))
163 usleep_range(1000, 2000);
164
165 /* Disable IOV before freeing resources. This lets any VF drivers
166 * running in the host get themselves cleaned up before we yank
167 * the carpet out from underneath their feet.
168 */
169 if (!pci_vfs_assigned(pf->pdev))
170 pci_disable_sriov(pf->pdev);
171 else
172 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
173
174 mutex_lock(&vfs->table_lock);
175
176 ice_for_each_vf(pf, bkt, vf) {
177 mutex_lock(&vf->cfg_lock);
178
179 ice_eswitch_detach_vf(pf, vf);
180 ice_dis_vf_qs(vf);
181
182 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
183 /* disable VF qp mappings and set VF disable state */
184 ice_dis_vf_mappings(vf);
185 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
186 ice_free_vf_res(vf);
187 }
188
189 if (!pci_vfs_assigned(pf->pdev)) {
190 u32 reg_idx, bit_idx;
191
192 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
193 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
194 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
195 }
196
197 mutex_unlock(&vf->cfg_lock);
198 }
199
200 if (ice_sriov_free_msix_res(pf))
201 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
202
203 vfs->num_qps_per = 0;
204 ice_free_vf_entries(pf);
205
206 mutex_unlock(&vfs->table_lock);
207
208 clear_bit(ICE_VF_DIS, pf->state);
209 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
210 }
211
212 /**
213 * ice_vf_vsi_setup - Set up a VF VSI
214 * @vf: VF to setup VSI for
215 *
216 * Returns pointer to the successfully allocated VSI struct on success,
217 * otherwise returns NULL on failure.
218 */
ice_vf_vsi_setup(struct ice_vf * vf)219 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
220 {
221 struct ice_vsi_cfg_params params = {};
222 struct ice_pf *pf = vf->pf;
223 struct ice_vsi *vsi;
224
225 params.type = ICE_VSI_VF;
226 params.port_info = ice_vf_get_port_info(vf);
227 params.vf = vf;
228 params.flags = ICE_VSI_FLAG_INIT;
229
230 vsi = ice_vsi_setup(pf, ¶ms);
231
232 if (!vsi) {
233 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
234 ice_vf_invalidate_vsi(vf);
235 return NULL;
236 }
237
238 vf->lan_vsi_idx = vsi->idx;
239
240 return vsi;
241 }
242
243
244 /**
245 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
246 * @vf: VF to enable MSIX mappings for
247 *
248 * Some of the registers need to be indexed/configured using hardware global
249 * device values and other registers need 0-based values, which represent PF
250 * based values.
251 */
ice_ena_vf_msix_mappings(struct ice_vf * vf)252 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
253 {
254 int device_based_first_msix, device_based_last_msix;
255 int pf_based_first_msix, pf_based_last_msix, v;
256 struct ice_pf *pf = vf->pf;
257 int device_based_vf_id;
258 struct ice_hw *hw;
259 u32 reg;
260
261 hw = &pf->hw;
262 pf_based_first_msix = vf->first_vector_idx;
263 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
264
265 device_based_first_msix = pf_based_first_msix +
266 pf->hw.func_caps.common_cap.msix_vector_first_id;
267 device_based_last_msix =
268 (device_based_first_msix + vf->num_msix) - 1;
269 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
270
271 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
272 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
273 VPINT_ALLOC_VALID_M;
274 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
275
276 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
277 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
278 VPINT_ALLOC_PCI_VALID_M;
279 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
280
281 /* map the interrupts to its functions */
282 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
283 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
284 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
285 wr32(hw, GLINT_VECT2FUNC(v), reg);
286 }
287
288 /* Map mailbox interrupt to VF MSI-X vector 0 */
289 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
290 }
291
292 /**
293 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
294 * @vf: VF to enable the mappings for
295 * @max_txq: max Tx queues allowed on the VF's VSI
296 * @max_rxq: max Rx queues allowed on the VF's VSI
297 */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)298 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
299 {
300 struct device *dev = ice_pf_to_dev(vf->pf);
301 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
302 struct ice_hw *hw = &vf->pf->hw;
303 u32 reg;
304
305 if (WARN_ON(!vsi))
306 return;
307
308 /* set regardless of mapping mode */
309 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
310
311 /* VF Tx queues allocation */
312 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
313 /* set the VF PF Tx queue range
314 * VFNUMQ value should be set to (number of queues - 1). A value
315 * of 0 means 1 queue and a value of 255 means 256 queues
316 */
317 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
318 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
319 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
320 } else {
321 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
322 }
323
324 /* set regardless of mapping mode */
325 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
326
327 /* VF Rx queues allocation */
328 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
329 /* set the VF PF Rx queue range
330 * VFNUMQ value should be set to (number of queues - 1). A value
331 * of 0 means 1 queue and a value of 255 means 256 queues
332 */
333 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
334 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
335 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
336 } else {
337 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
338 }
339 }
340
341 /**
342 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
343 * @vf: pointer to the VF structure
344 */
ice_ena_vf_mappings(struct ice_vf * vf)345 static void ice_ena_vf_mappings(struct ice_vf *vf)
346 {
347 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
348
349 if (WARN_ON(!vsi))
350 return;
351
352 ice_ena_vf_msix_mappings(vf);
353 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
354 }
355
356 /**
357 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
358 * @vf: VF to calculate the register index for
359 * @q_vector: a q_vector associated to the VF
360 */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)361 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
362 {
363 if (!vf || !q_vector)
364 return;
365
366 /* always add one to account for the OICR being the first MSIX */
367 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
368 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
369 }
370
371 /**
372 * ice_sriov_set_msix_res - Set any used MSIX resources
373 * @pf: pointer to PF structure
374 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
375 *
376 * This function allows SR-IOV resources to be taken from the end of the PF's
377 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
378 * just set the pf->sriov_base_vector and return success.
379 *
380 * If there are not enough resources available, return an error. This should
381 * always be caught by ice_set_per_vf_res().
382 *
383 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
384 * in the PF's space available for SR-IOV.
385 */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)386 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
387 {
388 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
389 int vectors_used = ice_get_max_used_msix_vector(pf);
390 int sriov_base_vector;
391
392 sriov_base_vector = total_vectors - num_msix_needed;
393
394 /* make sure we only grab irq_tracker entries from the list end and
395 * that we have enough available MSIX vectors
396 */
397 if (sriov_base_vector < vectors_used)
398 return -EINVAL;
399
400 pf->sriov_base_vector = sriov_base_vector;
401
402 return 0;
403 }
404
405 /**
406 * ice_set_per_vf_res - check if vectors and queues are available
407 * @pf: pointer to the PF structure
408 * @num_vfs: the number of SR-IOV VFs being configured
409 *
410 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
411 * get more vectors and can enable more queues per VF. Note that this does not
412 * grab any vectors from the SW pool already allocated. Also note, that all
413 * vector counts include one for each VF's miscellaneous interrupt vector
414 * (i.e. OICR).
415 *
416 * Minimum VFs - 2 vectors, 1 queue pair
417 * Small VFs - 5 vectors, 4 queue pairs
418 * Medium VFs - 17 vectors, 16 queue pairs
419 *
420 * Second, determine number of queue pairs per VF by starting with a pre-defined
421 * maximum each VF supports. If this is not possible, then we adjust based on
422 * queue pairs available on the device.
423 *
424 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
425 * by each VF during VF initialization and reset.
426 */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)427 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
428 {
429 int vectors_used = ice_get_max_used_msix_vector(pf);
430 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
431 int msix_avail_per_vf, msix_avail_for_sriov;
432 struct device *dev = ice_pf_to_dev(pf);
433 int err;
434
435 lockdep_assert_held(&pf->vfs.table_lock);
436
437 if (!num_vfs)
438 return -EINVAL;
439
440 /* determine MSI-X resources per VF */
441 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
442 vectors_used;
443 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
444 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
445 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
446 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
447 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
448 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
449 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
450 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
451 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
452 } else {
453 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
454 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
455 num_vfs);
456 return -ENOSPC;
457 }
458
459 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
460 ICE_MAX_RSS_QS_PER_VF);
461 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
462 if (!avail_qs)
463 num_txq = 0;
464 else if (num_txq > avail_qs)
465 num_txq = rounddown_pow_of_two(avail_qs);
466
467 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
468 ICE_MAX_RSS_QS_PER_VF);
469 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
470 if (!avail_qs)
471 num_rxq = 0;
472 else if (num_rxq > avail_qs)
473 num_rxq = rounddown_pow_of_two(avail_qs);
474
475 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
476 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
477 ICE_MIN_QS_PER_VF, num_vfs);
478 return -ENOSPC;
479 }
480
481 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
482 if (err) {
483 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
484 num_vfs, err);
485 return err;
486 }
487
488 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
489 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
490 pf->vfs.num_msix_per = num_msix_per_vf;
491 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
492 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
493
494 return 0;
495 }
496
497 /**
498 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
499 * @pf: pointer to PF structure
500 * @needed: number of irqs to get
501 *
502 * This returns the first MSI-X vector index in PF space that is used by this
503 * VF. This index is used when accessing PF relative registers such as
504 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
505 * This will always be the OICR index in the AVF driver so any functionality
506 * using vf->first_vector_idx for queue configuration_id: id of VF which will
507 * use this irqs
508 *
509 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
510 * allocated from the end of global irq index. First bit in sriov_irq_bm means
511 * last irq index etc. It simplifies extension of SRIOV vectors.
512 * They will be always located from sriov_base_vector to the last irq
513 * index. While increasing/decreasing sriov_base_vector can be moved.
514 */
ice_sriov_get_irqs(struct ice_pf * pf,u16 needed)515 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
516 {
517 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
518 pf->sriov_irq_size, 0, needed, 0);
519 /* conversion from number in bitmap to global irq index */
520 int index = pf->sriov_irq_size - res - needed;
521
522 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
523 return -ENOENT;
524
525 bitmap_set(pf->sriov_irq_bm, res, needed);
526 return index;
527 }
528
529 /**
530 * ice_sriov_free_irqs - free irqs used by the VF
531 * @pf: pointer to PF structure
532 * @vf: pointer to VF structure
533 */
ice_sriov_free_irqs(struct ice_pf * pf,struct ice_vf * vf)534 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
535 {
536 /* Move back from first vector index to first index in bitmap */
537 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
538
539 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
540 vf->first_vector_idx = 0;
541 }
542
543 /**
544 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
545 * @vf: VF to initialize/setup the VSI for
546 *
547 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
548 * VF VSI's broadcast filter and is only used during initial VF creation.
549 */
ice_init_vf_vsi_res(struct ice_vf * vf)550 static int ice_init_vf_vsi_res(struct ice_vf *vf)
551 {
552 struct ice_pf *pf = vf->pf;
553 struct ice_vsi *vsi;
554 int err;
555
556 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
557 if (vf->first_vector_idx < 0)
558 return -ENOMEM;
559
560 vsi = ice_vf_vsi_setup(vf);
561 if (!vsi)
562 return -ENOMEM;
563
564 err = ice_vf_init_host_cfg(vf, vsi);
565 if (err)
566 goto release_vsi;
567
568 return 0;
569
570 release_vsi:
571 ice_vf_vsi_release(vf);
572 return err;
573 }
574
575 /**
576 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
577 * @pf: PF the VFs are associated with
578 */
ice_start_vfs(struct ice_pf * pf)579 static int ice_start_vfs(struct ice_pf *pf)
580 {
581 struct ice_hw *hw = &pf->hw;
582 unsigned int bkt, it_cnt;
583 struct ice_vf *vf;
584 int retval;
585
586 lockdep_assert_held(&pf->vfs.table_lock);
587
588 it_cnt = 0;
589 ice_for_each_vf(pf, bkt, vf) {
590 vf->vf_ops->clear_reset_trigger(vf);
591
592 retval = ice_init_vf_vsi_res(vf);
593 if (retval) {
594 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
595 vf->vf_id, retval);
596 goto teardown;
597 }
598
599 retval = ice_eswitch_attach_vf(pf, vf);
600 if (retval) {
601 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
602 vf->vf_id, retval);
603 ice_vf_vsi_release(vf);
604 goto teardown;
605 }
606
607 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
608 ice_ena_vf_mappings(vf);
609 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
610 it_cnt++;
611 }
612
613 ice_flush(hw);
614 return 0;
615
616 teardown:
617 ice_for_each_vf(pf, bkt, vf) {
618 if (it_cnt == 0)
619 break;
620
621 ice_dis_vf_mappings(vf);
622 ice_vf_vsi_release(vf);
623 it_cnt--;
624 }
625
626 return retval;
627 }
628
629 /**
630 * ice_sriov_free_vf - Free VF memory after all references are dropped
631 * @vf: pointer to VF to free
632 *
633 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
634 * structure has been dropped.
635 */
ice_sriov_free_vf(struct ice_vf * vf)636 static void ice_sriov_free_vf(struct ice_vf *vf)
637 {
638 mutex_destroy(&vf->cfg_lock);
639
640 kfree_rcu(vf, rcu);
641 }
642
643 /**
644 * ice_sriov_clear_reset_state - clears VF Reset status register
645 * @vf: the vf to configure
646 */
ice_sriov_clear_reset_state(struct ice_vf * vf)647 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
648 {
649 struct ice_hw *hw = &vf->pf->hw;
650
651 /* Clear the reset status register so that VF immediately sees that
652 * the device is resetting, even if hardware hasn't yet gotten around
653 * to clearing VFGEN_RSTAT for us.
654 */
655 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
656 }
657
658 /**
659 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
660 * @vf: the vf to configure
661 */
ice_sriov_clear_mbx_register(struct ice_vf * vf)662 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
663 {
664 struct ice_pf *pf = vf->pf;
665
666 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
667 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
668 }
669
670 /**
671 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
672 * @vf: pointer to VF structure
673 * @is_vflr: true if reset occurred due to VFLR
674 *
675 * Trigger and cleanup after a VF reset for a SR-IOV VF.
676 */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)677 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
678 {
679 struct ice_pf *pf = vf->pf;
680 u32 reg, reg_idx, bit_idx;
681 unsigned int vf_abs_id, i;
682 struct device *dev;
683 struct ice_hw *hw;
684
685 dev = ice_pf_to_dev(pf);
686 hw = &pf->hw;
687 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
688
689 /* In the case of a VFLR, HW has already reset the VF and we just need
690 * to clean up. Otherwise we must first trigger the reset using the
691 * VFRTRIG register.
692 */
693 if (!is_vflr) {
694 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
695 reg |= VPGEN_VFRTRIG_VFSWR_M;
696 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
697 }
698
699 /* clear the VFLR bit in GLGEN_VFLRSTAT */
700 reg_idx = (vf_abs_id) / 32;
701 bit_idx = (vf_abs_id) % 32;
702 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
703 ice_flush(hw);
704
705 wr32(hw, PF_PCI_CIAA,
706 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
707 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
708 reg = rd32(hw, PF_PCI_CIAD);
709 /* no transactions pending so stop polling */
710 if ((reg & VF_TRANS_PENDING_M) == 0)
711 break;
712
713 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
714 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
715 }
716 }
717
718 /**
719 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
720 * @vf: pointer to VF structure
721 *
722 * Returns true when reset is successful, else returns false
723 */
ice_sriov_poll_reset_status(struct ice_vf * vf)724 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
725 {
726 struct ice_pf *pf = vf->pf;
727 unsigned int i;
728 u32 reg;
729
730 for (i = 0; i < 10; i++) {
731 /* VF reset requires driver to first reset the VF and then
732 * poll the status register to make sure that the reset
733 * completed successfully.
734 */
735 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
736 if (reg & VPGEN_VFRSTAT_VFRD_M)
737 return true;
738
739 /* only sleep if the reset is not done */
740 usleep_range(10, 20);
741 }
742 return false;
743 }
744
745 /**
746 * ice_sriov_clear_reset_trigger - enable VF to access hardware
747 * @vf: VF to enabled hardware access for
748 */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)749 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
750 {
751 struct ice_hw *hw = &vf->pf->hw;
752 u32 reg;
753
754 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
755 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
756 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
757 ice_flush(hw);
758 }
759
760 /**
761 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
762 * @vf: VF to perform tasks on
763 */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)764 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
765 {
766 ice_ena_vf_mappings(vf);
767 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
768 }
769
770 static const struct ice_vf_ops ice_sriov_vf_ops = {
771 .reset_type = ICE_VF_RESET,
772 .free = ice_sriov_free_vf,
773 .clear_reset_state = ice_sriov_clear_reset_state,
774 .clear_mbx_register = ice_sriov_clear_mbx_register,
775 .trigger_reset_register = ice_sriov_trigger_reset_register,
776 .poll_reset_status = ice_sriov_poll_reset_status,
777 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
778 .irq_close = NULL,
779 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
780 };
781
782 /**
783 * ice_create_vf_entries - Allocate and insert VF entries
784 * @pf: pointer to the PF structure
785 * @num_vfs: the number of VFs to allocate
786 *
787 * Allocate new VF entries and insert them into the hash table. Set some
788 * basic default fields for initializing the new VFs.
789 *
790 * After this function exits, the hash table will have num_vfs entries
791 * inserted.
792 *
793 * Returns 0 on success or an integer error code on failure.
794 */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)795 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
796 {
797 struct pci_dev *pdev = pf->pdev;
798 struct ice_vfs *vfs = &pf->vfs;
799 struct pci_dev *vfdev = NULL;
800 struct ice_vf *vf;
801 u16 vf_pdev_id;
802 int err, pos;
803
804 lockdep_assert_held(&vfs->table_lock);
805
806 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
807 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
808
809 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
810 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
811 if (!vf) {
812 err = -ENOMEM;
813 goto err_free_entries;
814 }
815 kref_init(&vf->refcnt);
816
817 vf->pf = pf;
818 vf->vf_id = vf_id;
819
820 /* set sriov vf ops for VFs created during SRIOV flow */
821 vf->vf_ops = &ice_sriov_vf_ops;
822
823 ice_initialize_vf_entry(vf);
824
825 do {
826 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
827 } while (vfdev && vfdev->physfn != pdev);
828 vf->vfdev = vfdev;
829 vf->vf_sw_id = pf->first_sw;
830
831 pci_dev_get(vfdev);
832
833 hash_add_rcu(vfs->table, &vf->entry, vf_id);
834 }
835
836 /* Decrement of refcount done by pci_get_device() inside the loop does
837 * not touch the last iteration's vfdev, so it has to be done manually
838 * to balance pci_dev_get() added within the loop.
839 */
840 pci_dev_put(vfdev);
841
842 return 0;
843
844 err_free_entries:
845 ice_free_vf_entries(pf);
846 return err;
847 }
848
849 /**
850 * ice_ena_vfs - enable VFs so they are ready to be used
851 * @pf: pointer to the PF structure
852 * @num_vfs: number of VFs to enable
853 */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)854 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
855 {
856 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
857 struct device *dev = ice_pf_to_dev(pf);
858 struct ice_hw *hw = &pf->hw;
859 int ret;
860
861 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
862 if (!pf->sriov_irq_bm)
863 return -ENOMEM;
864 pf->sriov_irq_size = total_vectors;
865
866 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
867 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
868 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
869 set_bit(ICE_OICR_INTR_DIS, pf->state);
870 ice_flush(hw);
871
872 ret = pci_enable_sriov(pf->pdev, num_vfs);
873 if (ret)
874 goto err_unroll_intr;
875
876 mutex_lock(&pf->vfs.table_lock);
877
878 ret = ice_set_per_vf_res(pf, num_vfs);
879 if (ret) {
880 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
881 num_vfs, ret);
882 goto err_unroll_sriov;
883 }
884
885 ret = ice_create_vf_entries(pf, num_vfs);
886 if (ret) {
887 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
888 num_vfs);
889 goto err_unroll_sriov;
890 }
891
892 ret = ice_start_vfs(pf);
893 if (ret) {
894 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
895 ret = -EAGAIN;
896 goto err_unroll_vf_entries;
897 }
898
899 clear_bit(ICE_VF_DIS, pf->state);
900
901 /* rearm global interrupts */
902 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
903 ice_irq_dynamic_ena(hw, NULL, NULL);
904
905 mutex_unlock(&pf->vfs.table_lock);
906
907 return 0;
908
909 err_unroll_vf_entries:
910 ice_free_vf_entries(pf);
911 err_unroll_sriov:
912 mutex_unlock(&pf->vfs.table_lock);
913 pci_disable_sriov(pf->pdev);
914 err_unroll_intr:
915 /* rearm interrupts here */
916 ice_irq_dynamic_ena(hw, NULL, NULL);
917 clear_bit(ICE_OICR_INTR_DIS, pf->state);
918 bitmap_free(pf->sriov_irq_bm);
919 return ret;
920 }
921
922 /**
923 * ice_pci_sriov_ena - Enable or change number of VFs
924 * @pf: pointer to the PF structure
925 * @num_vfs: number of VFs to allocate
926 *
927 * Returns 0 on success and negative on failure
928 */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)929 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
930 {
931 struct device *dev = ice_pf_to_dev(pf);
932 int err;
933
934 if (!num_vfs) {
935 ice_free_vfs(pf);
936 return 0;
937 }
938
939 if (num_vfs > pf->vfs.num_supported) {
940 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
941 num_vfs, pf->vfs.num_supported);
942 return -EOPNOTSUPP;
943 }
944
945 dev_info(dev, "Enabling %d VFs\n", num_vfs);
946 err = ice_ena_vfs(pf, num_vfs);
947 if (err) {
948 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
949 return err;
950 }
951
952 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
953 return 0;
954 }
955
956 /**
957 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
958 * @pf: PF to enabled SR-IOV on
959 */
ice_check_sriov_allowed(struct ice_pf * pf)960 static int ice_check_sriov_allowed(struct ice_pf *pf)
961 {
962 struct device *dev = ice_pf_to_dev(pf);
963
964 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
965 dev_err(dev, "This device is not capable of SR-IOV\n");
966 return -EOPNOTSUPP;
967 }
968
969 if (ice_is_safe_mode(pf)) {
970 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
971 return -EOPNOTSUPP;
972 }
973
974 if (!ice_pf_state_is_nominal(pf)) {
975 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
976 return -EBUSY;
977 }
978
979 return 0;
980 }
981
982 /**
983 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
984 * @pdev: pointer to pci_dev struct
985 *
986 * The function is called via sysfs ops
987 */
ice_sriov_get_vf_total_msix(struct pci_dev * pdev)988 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
989 {
990 struct ice_pf *pf = pci_get_drvdata(pdev);
991
992 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
993 }
994
ice_sriov_move_base_vector(struct ice_pf * pf,int move)995 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
996 {
997 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
998 return -ENOMEM;
999
1000 pf->sriov_base_vector -= move;
1001 return 0;
1002 }
1003
ice_sriov_remap_vectors(struct ice_pf * pf,u16 restricted_id)1004 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1005 {
1006 u16 vf_ids[ICE_MAX_SRIOV_VFS];
1007 struct ice_vf *tmp_vf;
1008 int to_remap = 0, bkt;
1009
1010 /* For better irqs usage try to remap irqs of VFs
1011 * that aren't running yet
1012 */
1013 ice_for_each_vf(pf, bkt, tmp_vf) {
1014 /* skip VF which is changing the number of MSI-X */
1015 if (restricted_id == tmp_vf->vf_id ||
1016 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1017 continue;
1018
1019 ice_dis_vf_mappings(tmp_vf);
1020 ice_sriov_free_irqs(pf, tmp_vf);
1021
1022 vf_ids[to_remap] = tmp_vf->vf_id;
1023 to_remap += 1;
1024 }
1025
1026 for (int i = 0; i < to_remap; i++) {
1027 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1028 if (!tmp_vf)
1029 continue;
1030
1031 tmp_vf->first_vector_idx =
1032 ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1033 /* there is no need to rebuild VSI as we are only changing the
1034 * vector indexes not amount of MSI-X or queues
1035 */
1036 ice_ena_vf_mappings(tmp_vf);
1037 ice_put_vf(tmp_vf);
1038 }
1039 }
1040
1041 /**
1042 * ice_sriov_set_msix_vec_count
1043 * @vf_dev: pointer to pci_dev struct of VF device
1044 * @msix_vec_count: new value for MSI-X amount on this VF
1045 *
1046 * Set requested MSI-X, queues and registers for @vf_dev.
1047 *
1048 * First do some sanity checks like if there are any VFs, if the new value
1049 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1050 * MSI-X and queues, rebuild VSI and enable new mapping.
1051 *
1052 * If it is possible (driver not binded to VF) try to remap also other VFs to
1053 * linearize irqs register usage.
1054 */
ice_sriov_set_msix_vec_count(struct pci_dev * vf_dev,int msix_vec_count)1055 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1056 {
1057 struct pci_dev *pdev = pci_physfn(vf_dev);
1058 struct ice_pf *pf = pci_get_drvdata(pdev);
1059 u16 prev_msix, prev_queues, queues;
1060 bool needs_rebuild = false;
1061 struct ice_vsi *vsi;
1062 struct ice_vf *vf;
1063 int id;
1064
1065 if (!ice_get_num_vfs(pf))
1066 return -ENOENT;
1067
1068 if (!msix_vec_count)
1069 return 0;
1070
1071 queues = msix_vec_count;
1072 /* add 1 MSI-X for OICR */
1073 msix_vec_count += 1;
1074
1075 if (queues > min(ice_get_avail_txq_count(pf),
1076 ice_get_avail_rxq_count(pf)))
1077 return -EINVAL;
1078
1079 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1080 return -EINVAL;
1081
1082 /* Transition of PCI VF function number to function_id */
1083 for (id = 0; id < pci_num_vf(pdev); id++) {
1084 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1085 break;
1086 }
1087
1088 if (id == pci_num_vf(pdev))
1089 return -ENOENT;
1090
1091 vf = ice_get_vf_by_id(pf, id);
1092
1093 if (!vf)
1094 return -ENOENT;
1095
1096 vsi = ice_get_vf_vsi(vf);
1097 if (!vsi) {
1098 ice_put_vf(vf);
1099 return -ENOENT;
1100 }
1101
1102 prev_msix = vf->num_msix;
1103 prev_queues = vf->num_vf_qs;
1104
1105 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1106 ice_put_vf(vf);
1107 return -ENOSPC;
1108 }
1109
1110 ice_dis_vf_mappings(vf);
1111 ice_sriov_free_irqs(pf, vf);
1112
1113 /* Remap all VFs beside the one is now configured */
1114 ice_sriov_remap_vectors(pf, vf->vf_id);
1115
1116 vf->num_msix = msix_vec_count;
1117 vf->num_vf_qs = queues;
1118 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1119 if (vf->first_vector_idx < 0)
1120 goto unroll;
1121
1122 vsi->req_txq = queues;
1123 vsi->req_rxq = queues;
1124
1125 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
1126 /* Try to rebuild with previous values */
1127 needs_rebuild = true;
1128 goto unroll;
1129 }
1130
1131 dev_info(ice_pf_to_dev(pf),
1132 "Changing VF %d resources to %d vectors and %d queues\n",
1133 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1134
1135 ice_ena_vf_mappings(vf);
1136 ice_put_vf(vf);
1137
1138 return 0;
1139
1140 unroll:
1141 dev_info(ice_pf_to_dev(pf),
1142 "Can't set %d vectors on VF %d, falling back to %d\n",
1143 vf->num_msix, vf->vf_id, prev_msix);
1144
1145 vf->num_msix = prev_msix;
1146 vf->num_vf_qs = prev_queues;
1147 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1148 if (vf->first_vector_idx < 0) {
1149 ice_put_vf(vf);
1150 return -EINVAL;
1151 }
1152
1153 if (needs_rebuild) {
1154 vsi->req_txq = prev_queues;
1155 vsi->req_rxq = prev_queues;
1156
1157 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1158 }
1159
1160 ice_ena_vf_mappings(vf);
1161 ice_put_vf(vf);
1162
1163 return -EINVAL;
1164 }
1165
1166 /**
1167 * ice_sriov_configure - Enable or change number of VFs via sysfs
1168 * @pdev: pointer to a pci_dev structure
1169 * @num_vfs: number of VFs to allocate or 0 to free VFs
1170 *
1171 * This function is called when the user updates the number of VFs in sysfs. On
1172 * success return whatever num_vfs was set to by the caller. Return negative on
1173 * failure.
1174 */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)1175 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1176 {
1177 struct ice_pf *pf = pci_get_drvdata(pdev);
1178 struct device *dev = ice_pf_to_dev(pf);
1179 int err;
1180
1181 err = ice_check_sriov_allowed(pf);
1182 if (err)
1183 return err;
1184
1185 if (!num_vfs) {
1186 if (!pci_vfs_assigned(pdev)) {
1187 ice_free_vfs(pf);
1188 return 0;
1189 }
1190
1191 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1192 return -EBUSY;
1193 }
1194
1195 err = ice_pci_sriov_ena(pf, num_vfs);
1196 if (err)
1197 return err;
1198
1199 return num_vfs;
1200 }
1201
1202 /**
1203 * ice_process_vflr_event - Free VF resources via IRQ calls
1204 * @pf: pointer to the PF structure
1205 *
1206 * called from the VFLR IRQ handler to
1207 * free up VF resources and state variables
1208 */
ice_process_vflr_event(struct ice_pf * pf)1209 void ice_process_vflr_event(struct ice_pf *pf)
1210 {
1211 struct ice_hw *hw = &pf->hw;
1212 struct ice_vf *vf;
1213 unsigned int bkt;
1214 u32 reg;
1215
1216 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1217 !ice_has_vfs(pf))
1218 return;
1219
1220 mutex_lock(&pf->vfs.table_lock);
1221 ice_for_each_vf(pf, bkt, vf) {
1222 u32 reg_idx, bit_idx;
1223
1224 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1225 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1226 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1227 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1228 if (reg & BIT(bit_idx))
1229 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1230 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1231 }
1232 mutex_unlock(&pf->vfs.table_lock);
1233 }
1234
1235 /**
1236 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1237 * @pf: PF used to index all VFs
1238 * @pfq: queue index relative to the PF's function space
1239 *
1240 * If no VF is found who owns the pfq then return NULL, otherwise return a
1241 * pointer to the VF who owns the pfq
1242 *
1243 * If this function returns non-NULL, it acquires a reference count of the VF
1244 * structure. The caller is responsible for calling ice_put_vf() to drop this
1245 * reference.
1246 */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1247 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1248 {
1249 struct ice_vf *vf;
1250 unsigned int bkt;
1251
1252 rcu_read_lock();
1253 ice_for_each_vf_rcu(pf, bkt, vf) {
1254 struct ice_vsi *vsi;
1255 u16 rxq_idx;
1256
1257 vsi = ice_get_vf_vsi(vf);
1258 if (!vsi)
1259 continue;
1260
1261 ice_for_each_rxq(vsi, rxq_idx)
1262 if (vsi->rxq_map[rxq_idx] == pfq) {
1263 struct ice_vf *found;
1264
1265 if (kref_get_unless_zero(&vf->refcnt))
1266 found = vf;
1267 else
1268 found = NULL;
1269 rcu_read_unlock();
1270 return found;
1271 }
1272 }
1273 rcu_read_unlock();
1274
1275 return NULL;
1276 }
1277
1278 /**
1279 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1280 * @pf: PF used for conversion
1281 * @globalq: global queue index used to convert to PF space queue index
1282 */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1283 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1284 {
1285 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1286 }
1287
1288 /**
1289 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1290 * @pf: PF that the LAN overflow event happened on
1291 * @event: structure holding the event information for the LAN overflow event
1292 *
1293 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1294 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1295 * reset on the offending VF.
1296 */
1297 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1298 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1299 {
1300 u32 gldcb_rtctq, queue;
1301 struct ice_vf *vf;
1302
1303 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1304 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1305
1306 /* event returns device global Rx queue number */
1307 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1308
1309 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1310 if (!vf)
1311 return;
1312
1313 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1314 ice_put_vf(vf);
1315 }
1316
1317 /**
1318 * ice_set_vf_spoofchk
1319 * @netdev: network interface device structure
1320 * @vf_id: VF identifier
1321 * @ena: flag to enable or disable feature
1322 *
1323 * Enable or disable VF spoof checking
1324 */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1325 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1326 {
1327 struct ice_netdev_priv *np = netdev_priv(netdev);
1328 struct ice_pf *pf = np->vsi->back;
1329 struct ice_vsi *vf_vsi;
1330 struct device *dev;
1331 struct ice_vf *vf;
1332 int ret;
1333
1334 dev = ice_pf_to_dev(pf);
1335
1336 vf = ice_get_vf_by_id(pf, vf_id);
1337 if (!vf)
1338 return -EINVAL;
1339
1340 ret = ice_check_vf_ready_for_cfg(vf);
1341 if (ret)
1342 goto out_put_vf;
1343
1344 vf_vsi = ice_get_vf_vsi(vf);
1345 if (!vf_vsi) {
1346 netdev_err(netdev, "VSI %d for VF %d is null\n",
1347 vf->lan_vsi_idx, vf->vf_id);
1348 ret = -EINVAL;
1349 goto out_put_vf;
1350 }
1351
1352 if (vf_vsi->type != ICE_VSI_VF) {
1353 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1354 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1355 ret = -ENODEV;
1356 goto out_put_vf;
1357 }
1358
1359 if (ena == vf->spoofchk) {
1360 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1361 ret = 0;
1362 goto out_put_vf;
1363 }
1364
1365 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1366 if (ret)
1367 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1368 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1369 else
1370 vf->spoofchk = ena;
1371
1372 out_put_vf:
1373 ice_put_vf(vf);
1374 return ret;
1375 }
1376
1377 /**
1378 * ice_get_vf_cfg
1379 * @netdev: network interface device structure
1380 * @vf_id: VF identifier
1381 * @ivi: VF configuration structure
1382 *
1383 * return VF configuration
1384 */
1385 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1386 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1387 {
1388 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1389 struct ice_vf *vf;
1390 int ret;
1391
1392 vf = ice_get_vf_by_id(pf, vf_id);
1393 if (!vf)
1394 return -EINVAL;
1395
1396 ret = ice_check_vf_ready_for_cfg(vf);
1397 if (ret)
1398 goto out_put_vf;
1399
1400 ivi->vf = vf_id;
1401 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1402
1403 /* VF configuration for VLAN and applicable QoS */
1404 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1405 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1406 if (ice_vf_is_port_vlan_ena(vf))
1407 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1408
1409 ivi->trusted = vf->trusted;
1410 ivi->spoofchk = vf->spoofchk;
1411 if (!vf->link_forced)
1412 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1413 else if (vf->link_up)
1414 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1415 else
1416 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1417 ivi->max_tx_rate = vf->max_tx_rate;
1418 ivi->min_tx_rate = vf->min_tx_rate;
1419
1420 out_put_vf:
1421 ice_put_vf(vf);
1422 return ret;
1423 }
1424
1425 /**
1426 * __ice_set_vf_mac - program VF MAC address
1427 * @pf: PF to be configure
1428 * @vf_id: VF identifier
1429 * @mac: MAC address
1430 *
1431 * program VF MAC address
1432 * Return: zero on success or an error code on failure
1433 */
__ice_set_vf_mac(struct ice_pf * pf,u16 vf_id,const u8 * mac)1434 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1435 {
1436 struct device *dev;
1437 struct ice_vf *vf;
1438 int ret;
1439
1440 dev = ice_pf_to_dev(pf);
1441 if (is_multicast_ether_addr(mac)) {
1442 dev_err(dev, "%pM not a valid unicast address\n", mac);
1443 return -EINVAL;
1444 }
1445
1446 vf = ice_get_vf_by_id(pf, vf_id);
1447 if (!vf)
1448 return -EINVAL;
1449
1450 /* nothing left to do, unicast MAC already set */
1451 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1452 ether_addr_equal(vf->hw_lan_addr, mac)) {
1453 ret = 0;
1454 goto out_put_vf;
1455 }
1456
1457 ret = ice_check_vf_ready_for_cfg(vf);
1458 if (ret)
1459 goto out_put_vf;
1460
1461 mutex_lock(&vf->cfg_lock);
1462
1463 /* VF is notified of its new MAC via the PF's response to the
1464 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1465 */
1466 ether_addr_copy(vf->dev_lan_addr, mac);
1467 ether_addr_copy(vf->hw_lan_addr, mac);
1468 if (is_zero_ether_addr(mac)) {
1469 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1470 vf->pf_set_mac = false;
1471 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1472 vf->vf_id);
1473 } else {
1474 /* PF will add MAC rule for the VF */
1475 vf->pf_set_mac = true;
1476 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1477 mac, vf_id);
1478 }
1479
1480 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1481 mutex_unlock(&vf->cfg_lock);
1482
1483 out_put_vf:
1484 ice_put_vf(vf);
1485 return ret;
1486 }
1487
1488 /**
1489 * ice_set_vf_mac - .ndo_set_vf_mac handler
1490 * @netdev: network interface device structure
1491 * @vf_id: VF identifier
1492 * @mac: MAC address
1493 *
1494 * program VF MAC address
1495 * Return: zero on success or an error code on failure
1496 */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1497 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1498 {
1499 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1500 }
1501
1502 /**
1503 * ice_set_vf_trust
1504 * @netdev: network interface device structure
1505 * @vf_id: VF identifier
1506 * @trusted: Boolean value to enable/disable trusted VF
1507 *
1508 * Enable or disable a given VF as trusted
1509 */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1510 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1511 {
1512 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1513 struct ice_vf *vf;
1514 int ret;
1515
1516 vf = ice_get_vf_by_id(pf, vf_id);
1517 if (!vf)
1518 return -EINVAL;
1519
1520 if (ice_is_eswitch_mode_switchdev(pf)) {
1521 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1522 return -EOPNOTSUPP;
1523 }
1524
1525 ret = ice_check_vf_ready_for_cfg(vf);
1526 if (ret)
1527 goto out_put_vf;
1528
1529 /* Check if already trusted */
1530 if (trusted == vf->trusted) {
1531 ret = 0;
1532 goto out_put_vf;
1533 }
1534
1535 mutex_lock(&vf->cfg_lock);
1536
1537 vf->trusted = trusted;
1538 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1539 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1540 vf_id, trusted ? "" : "un");
1541
1542 mutex_unlock(&vf->cfg_lock);
1543
1544 out_put_vf:
1545 ice_put_vf(vf);
1546 return ret;
1547 }
1548
1549 /**
1550 * ice_set_vf_link_state
1551 * @netdev: network interface device structure
1552 * @vf_id: VF identifier
1553 * @link_state: required link state
1554 *
1555 * Set VF's link state, irrespective of physical link state status
1556 */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1557 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1558 {
1559 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1560 struct ice_vf *vf;
1561 int ret;
1562
1563 vf = ice_get_vf_by_id(pf, vf_id);
1564 if (!vf)
1565 return -EINVAL;
1566
1567 ret = ice_check_vf_ready_for_cfg(vf);
1568 if (ret)
1569 goto out_put_vf;
1570
1571 switch (link_state) {
1572 case IFLA_VF_LINK_STATE_AUTO:
1573 vf->link_forced = false;
1574 break;
1575 case IFLA_VF_LINK_STATE_ENABLE:
1576 vf->link_forced = true;
1577 vf->link_up = true;
1578 break;
1579 case IFLA_VF_LINK_STATE_DISABLE:
1580 vf->link_forced = true;
1581 vf->link_up = false;
1582 break;
1583 default:
1584 ret = -EINVAL;
1585 goto out_put_vf;
1586 }
1587
1588 ice_vc_notify_vf_link_state(vf);
1589
1590 out_put_vf:
1591 ice_put_vf(vf);
1592 return ret;
1593 }
1594
1595 /**
1596 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1597 * @pf: PF associated with VFs
1598 */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1599 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1600 {
1601 struct ice_vf *vf;
1602 unsigned int bkt;
1603 int rate = 0;
1604
1605 rcu_read_lock();
1606 ice_for_each_vf_rcu(pf, bkt, vf)
1607 rate += vf->min_tx_rate;
1608 rcu_read_unlock();
1609
1610 return rate;
1611 }
1612
1613 /**
1614 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1615 * @vf: VF trying to configure min_tx_rate
1616 * @min_tx_rate: min Tx rate in Mbps
1617 *
1618 * Check if the min_tx_rate being passed in will cause oversubscription of total
1619 * min_tx_rate based on the current link speed and all other VFs configured
1620 * min_tx_rate
1621 *
1622 * Return true if the passed min_tx_rate would cause oversubscription, else
1623 * return false
1624 */
1625 static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1626 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1627 {
1628 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1629 int all_vfs_min_tx_rate;
1630 int link_speed_mbps;
1631
1632 if (WARN_ON(!vsi))
1633 return false;
1634
1635 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1636 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1637
1638 /* this VF's previous rate is being overwritten */
1639 all_vfs_min_tx_rate -= vf->min_tx_rate;
1640
1641 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1642 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1643 min_tx_rate, vf->vf_id,
1644 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1645 link_speed_mbps);
1646 return true;
1647 }
1648
1649 return false;
1650 }
1651
1652 /**
1653 * ice_set_vf_bw - set min/max VF bandwidth
1654 * @netdev: network interface device structure
1655 * @vf_id: VF identifier
1656 * @min_tx_rate: Minimum Tx rate in Mbps
1657 * @max_tx_rate: Maximum Tx rate in Mbps
1658 */
1659 int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1660 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1661 int max_tx_rate)
1662 {
1663 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1664 struct ice_vsi *vsi;
1665 struct device *dev;
1666 struct ice_vf *vf;
1667 int ret;
1668
1669 dev = ice_pf_to_dev(pf);
1670
1671 vf = ice_get_vf_by_id(pf, vf_id);
1672 if (!vf)
1673 return -EINVAL;
1674
1675 ret = ice_check_vf_ready_for_cfg(vf);
1676 if (ret)
1677 goto out_put_vf;
1678
1679 vsi = ice_get_vf_vsi(vf);
1680 if (!vsi) {
1681 ret = -EINVAL;
1682 goto out_put_vf;
1683 }
1684
1685 if (min_tx_rate && ice_is_dcb_active(pf)) {
1686 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1687 ret = -EOPNOTSUPP;
1688 goto out_put_vf;
1689 }
1690
1691 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1692 ret = -EINVAL;
1693 goto out_put_vf;
1694 }
1695
1696 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1697 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1698 if (ret) {
1699 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1700 vf->vf_id);
1701 goto out_put_vf;
1702 }
1703
1704 vf->min_tx_rate = min_tx_rate;
1705 }
1706
1707 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1708 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1709 if (ret) {
1710 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1711 vf->vf_id);
1712 goto out_put_vf;
1713 }
1714
1715 vf->max_tx_rate = max_tx_rate;
1716 }
1717
1718 out_put_vf:
1719 ice_put_vf(vf);
1720 return ret;
1721 }
1722
1723 /**
1724 * ice_get_vf_stats - populate some stats for the VF
1725 * @netdev: the netdev of the PF
1726 * @vf_id: the host OS identifier (0-255)
1727 * @vf_stats: pointer to the OS memory to be initialized
1728 */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1729 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1730 struct ifla_vf_stats *vf_stats)
1731 {
1732 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1733 struct ice_eth_stats *stats;
1734 struct ice_vsi *vsi;
1735 struct ice_vf *vf;
1736 int ret;
1737
1738 vf = ice_get_vf_by_id(pf, vf_id);
1739 if (!vf)
1740 return -EINVAL;
1741
1742 ret = ice_check_vf_ready_for_cfg(vf);
1743 if (ret)
1744 goto out_put_vf;
1745
1746 vsi = ice_get_vf_vsi(vf);
1747 if (!vsi) {
1748 ret = -EINVAL;
1749 goto out_put_vf;
1750 }
1751
1752 ice_update_eth_stats(vsi);
1753 stats = &vsi->eth_stats;
1754
1755 memset(vf_stats, 0, sizeof(*vf_stats));
1756
1757 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1758 stats->rx_multicast;
1759 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1760 stats->tx_multicast;
1761 vf_stats->rx_bytes = stats->rx_bytes;
1762 vf_stats->tx_bytes = stats->tx_bytes;
1763 vf_stats->broadcast = stats->rx_broadcast;
1764 vf_stats->multicast = stats->rx_multicast;
1765 vf_stats->rx_dropped = stats->rx_discards;
1766 vf_stats->tx_dropped = stats->tx_discards;
1767
1768 out_put_vf:
1769 ice_put_vf(vf);
1770 return ret;
1771 }
1772
1773 /**
1774 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1775 * @hw: hardware structure used to check the VLAN mode
1776 * @vlan_proto: VLAN TPID being checked
1777 *
1778 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1779 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1780 * Mode (SVM), then only ETH_P_8021Q is supported.
1781 */
1782 static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1783 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1784 {
1785 bool is_supported = false;
1786
1787 switch (vlan_proto) {
1788 case ETH_P_8021Q:
1789 is_supported = true;
1790 break;
1791 case ETH_P_8021AD:
1792 if (ice_is_dvm_ena(hw))
1793 is_supported = true;
1794 break;
1795 }
1796
1797 return is_supported;
1798 }
1799
1800 /**
1801 * ice_set_vf_port_vlan
1802 * @netdev: network interface device structure
1803 * @vf_id: VF identifier
1804 * @vlan_id: VLAN ID being set
1805 * @qos: priority setting
1806 * @vlan_proto: VLAN protocol
1807 *
1808 * program VF Port VLAN ID and/or QoS
1809 */
1810 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1811 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1812 __be16 vlan_proto)
1813 {
1814 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1815 u16 local_vlan_proto = ntohs(vlan_proto);
1816 struct device *dev;
1817 struct ice_vf *vf;
1818 int ret;
1819
1820 dev = ice_pf_to_dev(pf);
1821
1822 if (vlan_id >= VLAN_N_VID || qos > 7) {
1823 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1824 vf_id, vlan_id, qos);
1825 return -EINVAL;
1826 }
1827
1828 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1829 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1830 local_vlan_proto);
1831 return -EPROTONOSUPPORT;
1832 }
1833
1834 vf = ice_get_vf_by_id(pf, vf_id);
1835 if (!vf)
1836 return -EINVAL;
1837
1838 ret = ice_check_vf_ready_for_cfg(vf);
1839 if (ret)
1840 goto out_put_vf;
1841
1842 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1843 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1844 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1845 /* duplicate request, so just return success */
1846 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1847 vlan_id, qos, local_vlan_proto);
1848 ret = 0;
1849 goto out_put_vf;
1850 }
1851
1852 mutex_lock(&vf->cfg_lock);
1853
1854 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1855 if (ice_vf_is_port_vlan_ena(vf))
1856 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1857 vlan_id, qos, local_vlan_proto, vf_id);
1858 else
1859 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1860
1861 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1862 mutex_unlock(&vf->cfg_lock);
1863
1864 out_put_vf:
1865 ice_put_vf(vf);
1866 return ret;
1867 }
1868
1869 /**
1870 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1871 * @vf: pointer to the VF structure
1872 */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1873 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1874 {
1875 struct ice_pf *pf = vf->pf;
1876 struct device *dev;
1877
1878 dev = ice_pf_to_dev(pf);
1879
1880 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1881 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1882 vf->dev_lan_addr,
1883 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1884 ? "on" : "off");
1885 }
1886
1887 /**
1888 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1889 * @vf: pointer to the VF structure
1890 */
ice_print_vf_tx_mdd_event(struct ice_vf * vf)1891 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1892 {
1893 struct ice_pf *pf = vf->pf;
1894 struct device *dev;
1895
1896 dev = ice_pf_to_dev(pf);
1897
1898 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1899 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1900 vf->dev_lan_addr,
1901 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1902 ? "on" : "off");
1903 }
1904
1905 /**
1906 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1907 * @pf: pointer to the PF structure
1908 *
1909 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1910 */
ice_print_vfs_mdd_events(struct ice_pf * pf)1911 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1912 {
1913 struct ice_vf *vf;
1914 unsigned int bkt;
1915
1916 /* check that there are pending MDD events to print */
1917 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1918 return;
1919
1920 /* VF MDD event logs are rate limited to one second intervals */
1921 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1922 return;
1923
1924 pf->vfs.last_printed_mdd_jiffies = jiffies;
1925
1926 mutex_lock(&pf->vfs.table_lock);
1927 ice_for_each_vf(pf, bkt, vf) {
1928 /* only print Rx MDD event message if there are new events */
1929 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1930 vf->mdd_rx_events.last_printed =
1931 vf->mdd_rx_events.count;
1932 ice_print_vf_rx_mdd_event(vf);
1933 }
1934
1935 /* only print Tx MDD event message if there are new events */
1936 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1937 vf->mdd_tx_events.last_printed =
1938 vf->mdd_tx_events.count;
1939 ice_print_vf_tx_mdd_event(vf);
1940 }
1941 }
1942 mutex_unlock(&pf->vfs.table_lock);
1943 }
1944
1945 /**
1946 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1947 * @pf: pointer to the PF structure
1948 *
1949 * Called when recovering from a PF FLR to restore interrupt capability to
1950 * the VFs.
1951 */
ice_restore_all_vfs_msi_state(struct ice_pf * pf)1952 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1953 {
1954 struct ice_vf *vf;
1955 u32 bkt;
1956
1957 ice_for_each_vf(pf, bkt, vf)
1958 pci_restore_msi_state(vf->vfdev);
1959 }
1960