1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3
4 #include <linux/vmalloc.h>
5
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "devlink.h"
9 #include "devlink_port.h"
10 #include "ice_eswitch.h"
11 #include "ice_fw_update.h"
12 #include "ice_dcb_lib.h"
13 #include "ice_sf_eth.h"
14
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 char buf[128];
18 struct ice_orom_info pending_orom;
19 struct ice_nvm_info pending_nvm;
20 struct ice_netlist_info pending_netlist;
21 struct ice_hw_dev_caps dev_caps;
22 };
23
24 /* The following functions are used to format specific strings for various
25 * devlink info versions. The ctx parameter is used to provide the storage
26 * buffer, as well as any ancillary information calculated when the info
27 * request was made.
28 *
29 * If a version does not exist, for example when attempting to get the
30 * inactive version of flash when there is no pending update, the function
31 * should leave the buffer in the ctx structure empty.
32 */
33
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 u8 dsn[8];
37
38 /* Copy the DSN into an array in Big Endian format */
39 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40
41 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 struct ice_hw *hw = &pf->hw;
47 int status;
48
49 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 if (status)
51 /* We failed to locate the PBA, so just skip this entry */
52 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 status);
54 }
55
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 struct ice_hw *hw = &pf->hw;
59
60 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 struct ice_hw *hw = &pf->hw;
67
68 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 hw->api_min_ver, hw->api_patch);
70 }
71
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 struct ice_hw *hw = &pf->hw;
75
76 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 struct ice_orom_info *orom = &pf->hw.flash.orom;
82
83 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 orom->major, orom->build, orom->patch);
85 }
86
87 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 struct ice_info_ctx *ctx)
90 {
91 struct ice_orom_info *orom = &ctx->pending_orom;
92
93 if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 orom->major, orom->build, orom->patch);
96 }
97
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101
102 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104
105 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 struct ice_info_ctx *ctx)
108 {
109 struct ice_nvm_info *nvm = &ctx->pending_nvm;
110
111 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 nvm->major, nvm->minor);
114 }
115
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119
120 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122
123 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 struct ice_nvm_info *nvm = &ctx->pending_nvm;
127
128 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 struct ice_hw *hw = &pf->hw;
135
136 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138
139 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143
144 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147
148 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157
158 /* The netlist version fields are BCD formatted */
159 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 netlist->major, netlist->minor,
161 netlist->type >> 16, netlist->type & 0xFFFF,
162 netlist->rev, netlist->cust_ver);
163 }
164
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168
169 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171
172 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 struct ice_info_ctx *ctx)
175 {
176 struct ice_netlist_info *netlist = &ctx->pending_netlist;
177
178 /* The netlist version fields are BCD formatted */
179 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 netlist->major, netlist->minor,
182 netlist->type >> 16, netlist->type & 0xFFFF,
183 netlist->rev, netlist->cust_ver);
184 }
185
186 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 struct ice_info_ctx *ctx)
189 {
190 struct ice_netlist_info *netlist = &ctx->pending_netlist;
191
192 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198 u32 id, cfg_ver, fw_ver;
199
200 if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 return;
202 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 return;
204 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209 if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 return;
211 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217
218 /* The combined() macro inserts both the running entry as well as a stored
219 * entry. The running entry will always report the version from the active
220 * handler. The stored entry will first try the pending handler, and fallback
221 * to the active handler if the pending function does not report a version.
222 * The pending handler should check the status of a pending update for the
223 * relevant flash component. It should only fill in the buffer in the case
224 * where a valid pending version is available. This ensures that the related
225 * stored and running versions remain in sync, and that stored versions are
226 * correctly reported as expected.
227 */
228 #define combined(key, active, pending) \
229 running(key, active), \
230 stored(key, pending, active)
231
232 enum ice_version_type {
233 ICE_VERSION_FIXED,
234 ICE_VERSION_RUNNING,
235 ICE_VERSION_STORED,
236 };
237
238 static const struct ice_devlink_version {
239 enum ice_version_type type;
240 const char *key;
241 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 running("fw.mgmt.api", ice_info_fw_api),
247 running("fw.mgmt.build", ice_info_fw_build),
248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 running("fw.app.name", ice_info_ddp_pkg_name),
252 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 fixed("cgu.id", ice_info_cgu_id),
257 running("fw.cgu", ice_info_cgu_fw_build),
258 };
259
260 /**
261 * ice_devlink_info_get - .info_get devlink handler
262 * @devlink: devlink instance structure
263 * @req: the devlink info request
264 * @extack: extended netdev ack structure
265 *
266 * Callback for the devlink .info_get operation. Reports information about the
267 * device.
268 *
269 * Return: zero on success or an error code on failure.
270 */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271 static int ice_devlink_info_get(struct devlink *devlink,
272 struct devlink_info_req *req,
273 struct netlink_ext_ack *extack)
274 {
275 struct ice_pf *pf = devlink_priv(devlink);
276 struct device *dev = ice_pf_to_dev(pf);
277 struct ice_hw *hw = &pf->hw;
278 struct ice_info_ctx *ctx;
279 size_t i;
280 int err;
281
282 err = ice_wait_for_reset(pf, 10 * HZ);
283 if (err) {
284 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 return err;
286 }
287
288 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 if (!ctx)
290 return -ENOMEM;
291
292 /* discover capabilities first */
293 err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 if (err) {
295 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 err, ice_aq_str(hw->adminq.sq_last_status));
297 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 goto out_free_ctx;
299 }
300
301 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 if (err) {
304 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 err, ice_aq_str(hw->adminq.sq_last_status));
306
307 /* disable display of pending Option ROM */
308 ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 }
310 }
311
312 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 if (err) {
315 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 err, ice_aq_str(hw->adminq.sq_last_status));
317
318 /* disable display of pending Option ROM */
319 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 }
321 }
322
323 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 if (err) {
326 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 err, ice_aq_str(hw->adminq.sq_last_status));
328
329 /* disable display of pending Option ROM */
330 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 }
332 }
333
334 ice_info_get_dsn(pf, ctx);
335
336 err = devlink_info_serial_number_put(req, ctx->buf);
337 if (err) {
338 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 goto out_free_ctx;
340 }
341
342 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 enum ice_version_type type = ice_devlink_versions[i].type;
344 const char *key = ice_devlink_versions[i].key;
345
346 memset(ctx->buf, 0, sizeof(ctx->buf));
347
348 ice_devlink_versions[i].getter(pf, ctx);
349
350 /* If the default getter doesn't report a version, use the
351 * fallback function. This is primarily useful in the case of
352 * "stored" versions that want to report the same value as the
353 * running version in the normal case of no pending update.
354 */
355 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 ice_devlink_versions[i].fallback(pf, ctx);
357
358 /* Do not report missing versions */
359 if (ctx->buf[0] == '\0')
360 continue;
361
362 switch (type) {
363 case ICE_VERSION_FIXED:
364 err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 if (err) {
366 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 goto out_free_ctx;
368 }
369 break;
370 case ICE_VERSION_RUNNING:
371 err = devlink_info_version_running_put(req, key, ctx->buf);
372 if (err) {
373 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
374 goto out_free_ctx;
375 }
376 break;
377 case ICE_VERSION_STORED:
378 err = devlink_info_version_stored_put(req, key, ctx->buf);
379 if (err) {
380 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
381 goto out_free_ctx;
382 }
383 break;
384 }
385 }
386
387 out_free_ctx:
388 kfree(ctx);
389 return err;
390 }
391
392 /**
393 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
394 * @pf: pointer to the pf instance
395 * @extack: netlink extended ACK structure
396 *
397 * Allow user to activate new Embedded Management Processor firmware by
398 * issuing device specific EMP reset. Called in response to
399 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
400 *
401 * Note that teardown and rebuild of the driver state happens automatically as
402 * part of an interrupt and watchdog task. This is because all physical
403 * functions on the device must be able to reset when an EMP reset occurs from
404 * any source.
405 */
406 static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)407 ice_devlink_reload_empr_start(struct ice_pf *pf,
408 struct netlink_ext_ack *extack)
409 {
410 struct device *dev = ice_pf_to_dev(pf);
411 struct ice_hw *hw = &pf->hw;
412 u8 pending;
413 int err;
414
415 err = ice_get_pending_updates(pf, &pending, extack);
416 if (err)
417 return err;
418
419 /* pending is a bitmask of which flash banks have a pending update,
420 * including the main NVM bank, the Option ROM bank, and the netlist
421 * bank. If any of these bits are set, then there is a pending update
422 * waiting to be activated.
423 */
424 if (!pending) {
425 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
426 return -ECANCELED;
427 }
428
429 if (pf->fw_emp_reset_disabled) {
430 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
431 return -ECANCELED;
432 }
433
434 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
435
436 err = ice_aq_nvm_update_empr(hw);
437 if (err) {
438 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
439 err, ice_aq_str(hw->adminq.sq_last_status));
440 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
441 return err;
442 }
443
444 return 0;
445 }
446
447 /**
448 * ice_devlink_reinit_down - unload given PF
449 * @pf: pointer to the PF struct
450 */
ice_devlink_reinit_down(struct ice_pf * pf)451 static void ice_devlink_reinit_down(struct ice_pf *pf)
452 {
453 /* No need to take devl_lock, it's already taken by devlink API */
454 ice_unload(pf);
455 rtnl_lock();
456 ice_vsi_decfg(ice_get_main_vsi(pf));
457 rtnl_unlock();
458 ice_deinit_dev(pf);
459 }
460
461 /**
462 * ice_devlink_reload_down - prepare for reload
463 * @devlink: pointer to the devlink instance to reload
464 * @netns_change: if true, the network namespace is changing
465 * @action: the action to perform
466 * @limit: limits on what reload should do, such as not resetting
467 * @extack: netlink extended ACK structure
468 */
469 static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)470 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
471 enum devlink_reload_action action,
472 enum devlink_reload_limit limit,
473 struct netlink_ext_ack *extack)
474 {
475 struct ice_pf *pf = devlink_priv(devlink);
476
477 switch (action) {
478 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
479 if (ice_is_eswitch_mode_switchdev(pf)) {
480 NL_SET_ERR_MSG_MOD(extack,
481 "Go to legacy mode before doing reinit");
482 return -EOPNOTSUPP;
483 }
484 if (ice_is_adq_active(pf)) {
485 NL_SET_ERR_MSG_MOD(extack,
486 "Turn off ADQ before doing reinit");
487 return -EOPNOTSUPP;
488 }
489 if (ice_has_vfs(pf)) {
490 NL_SET_ERR_MSG_MOD(extack,
491 "Remove all VFs before doing reinit");
492 return -EOPNOTSUPP;
493 }
494 ice_devlink_reinit_down(pf);
495 return 0;
496 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
497 return ice_devlink_reload_empr_start(pf, extack);
498 default:
499 WARN_ON(1);
500 return -EOPNOTSUPP;
501 }
502 }
503
504 /**
505 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
506 * @pf: pointer to the pf instance
507 * @extack: netlink extended ACK structure
508 *
509 * Wait for driver to finish rebuilding after EMP reset is completed. This
510 * includes time to wait for both the actual device reset as well as the time
511 * for the driver's rebuild to complete.
512 */
513 static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)514 ice_devlink_reload_empr_finish(struct ice_pf *pf,
515 struct netlink_ext_ack *extack)
516 {
517 int err;
518
519 err = ice_wait_for_reset(pf, 60 * HZ);
520 if (err) {
521 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
522 return err;
523 }
524
525 return 0;
526 }
527
528 /**
529 * ice_get_tx_topo_user_sel - Read user's choice from flash
530 * @pf: pointer to pf structure
531 * @layers: value read from flash will be saved here
532 *
533 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
534 *
535 * Return: zero when read was successful, negative values otherwise.
536 */
ice_get_tx_topo_user_sel(struct ice_pf * pf,uint8_t * layers)537 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
538 {
539 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
540 struct ice_hw *hw = &pf->hw;
541 int err;
542
543 err = ice_acquire_nvm(hw, ICE_RES_READ);
544 if (err)
545 return err;
546
547 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
548 sizeof(usr_sel), &usr_sel, true, true, NULL);
549 if (err)
550 goto exit_release_res;
551
552 if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
553 *layers = ICE_SCHED_5_LAYERS;
554 else
555 *layers = ICE_SCHED_9_LAYERS;
556
557 exit_release_res:
558 ice_release_nvm(hw);
559
560 return err;
561 }
562
563 /**
564 * ice_update_tx_topo_user_sel - Save user's preference in flash
565 * @pf: pointer to pf structure
566 * @layers: value to be saved in flash
567 *
568 * Variable "layers" defines user's preference about number of layers in Tx
569 * Scheduler Topology Tree. This choice should be stored in PFA TLV field
570 * and be picked up by driver, next time during init.
571 *
572 * Return: zero when save was successful, negative values otherwise.
573 */
ice_update_tx_topo_user_sel(struct ice_pf * pf,int layers)574 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
575 {
576 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
577 struct ice_hw *hw = &pf->hw;
578 int err;
579
580 err = ice_acquire_nvm(hw, ICE_RES_WRITE);
581 if (err)
582 return err;
583
584 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
585 sizeof(usr_sel), &usr_sel, true, true, NULL);
586 if (err)
587 goto exit_release_res;
588
589 if (layers == ICE_SCHED_5_LAYERS)
590 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
591 else
592 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
593
594 err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
595 sizeof(usr_sel.data), &usr_sel.data,
596 true, NULL, NULL);
597 exit_release_res:
598 ice_release_nvm(hw);
599
600 return err;
601 }
602
603 /**
604 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
605 * @devlink: pointer to the devlink instance
606 * @id: the parameter ID to set
607 * @ctx: context to store the parameter value
608 *
609 * Return: zero on success and negative value on failure.
610 */
ice_devlink_tx_sched_layers_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)611 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
612 struct devlink_param_gset_ctx *ctx)
613 {
614 struct ice_pf *pf = devlink_priv(devlink);
615 int err;
616
617 err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
618 if (err)
619 return err;
620
621 return 0;
622 }
623
624 /**
625 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
626 * @devlink: pointer to the devlink instance
627 * @id: the parameter ID to set
628 * @ctx: context to get the parameter value
629 * @extack: netlink extended ACK structure
630 *
631 * Return: zero on success and negative value on failure.
632 */
ice_devlink_tx_sched_layers_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)633 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
634 struct devlink_param_gset_ctx *ctx,
635 struct netlink_ext_ack *extack)
636 {
637 struct ice_pf *pf = devlink_priv(devlink);
638 int err;
639
640 err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
641 if (err)
642 return err;
643
644 NL_SET_ERR_MSG_MOD(extack,
645 "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
646
647 return 0;
648 }
649
650 /**
651 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
652 * parameter value
653 * @devlink: unused pointer to devlink instance
654 * @id: the parameter ID to validate
655 * @val: value to validate
656 * @extack: netlink extended ACK structure
657 *
658 * Supported values are:
659 * - 5 - five layers Tx Scheduler Topology Tree
660 * - 9 - nine layers Tx Scheduler Topology Tree
661 *
662 * Return: zero when passed parameter value is supported. Negative value on
663 * error.
664 */
ice_devlink_tx_sched_layers_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)665 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
666 union devlink_param_value val,
667 struct netlink_ext_ack *extack)
668 {
669 if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
670 NL_SET_ERR_MSG_MOD(extack,
671 "Wrong number of tx scheduler layers provided.");
672 return -EINVAL;
673 }
674
675 return 0;
676 }
677
678 /**
679 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
680 * @pf: pf struct
681 *
682 * This function tears down tree exported during VF's creation.
683 */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)684 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
685 {
686 struct devlink *devlink;
687 struct ice_vf *vf;
688 unsigned int bkt;
689
690 devlink = priv_to_devlink(pf);
691
692 devl_lock(devlink);
693 mutex_lock(&pf->vfs.table_lock);
694 ice_for_each_vf(pf, bkt, vf) {
695 if (vf->devlink_port.devlink_rate)
696 devl_rate_leaf_destroy(&vf->devlink_port);
697 }
698 mutex_unlock(&pf->vfs.table_lock);
699
700 devl_rate_nodes_destroy(devlink);
701 devl_unlock(devlink);
702 }
703
704 /**
705 * ice_enable_custom_tx - try to enable custom Tx feature
706 * @pf: pf struct
707 *
708 * This function tries to enable custom Tx feature,
709 * it's not possible to enable it, if DCB or ADQ is active.
710 */
ice_enable_custom_tx(struct ice_pf * pf)711 static bool ice_enable_custom_tx(struct ice_pf *pf)
712 {
713 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
714 struct device *dev = ice_pf_to_dev(pf);
715
716 if (pi->is_custom_tx_enabled)
717 /* already enabled, return true */
718 return true;
719
720 if (ice_is_adq_active(pf)) {
721 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
722 return false;
723 }
724
725 if (ice_is_dcb_active(pf)) {
726 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
727 return false;
728 }
729
730 pi->is_custom_tx_enabled = true;
731
732 return true;
733 }
734
735 /**
736 * ice_traverse_tx_tree - traverse Tx scheduler tree
737 * @devlink: devlink struct
738 * @node: current node, used for recursion
739 * @tc_node: tc_node struct, that is treated as a root
740 * @pf: pf struct
741 *
742 * This function traverses Tx scheduler tree and exports
743 * entire structure to the devlink-rate.
744 */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)745 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
746 struct ice_sched_node *tc_node, struct ice_pf *pf)
747 {
748 struct devlink_rate *rate_node = NULL;
749 struct ice_dynamic_port *sf;
750 struct ice_vf *vf;
751 int i;
752
753 if (node->rate_node)
754 /* already added, skip to the next */
755 goto traverse_children;
756
757 if (node->parent == tc_node) {
758 /* create root node */
759 rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
760 } else if (node->vsi_handle &&
761 pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
762 pf->vsi[node->vsi_handle]->vf) {
763 vf = pf->vsi[node->vsi_handle]->vf;
764 if (!vf->devlink_port.devlink_rate)
765 /* leaf nodes doesn't have children
766 * so we don't set rate_node
767 */
768 devl_rate_leaf_create(&vf->devlink_port, node,
769 node->parent->rate_node);
770 } else if (node->vsi_handle &&
771 pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
772 pf->vsi[node->vsi_handle]->sf) {
773 sf = pf->vsi[node->vsi_handle]->sf;
774 if (!sf->devlink_port.devlink_rate)
775 /* leaf nodes doesn't have children
776 * so we don't set rate_node
777 */
778 devl_rate_leaf_create(&sf->devlink_port, node,
779 node->parent->rate_node);
780 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
781 node->parent->rate_node) {
782 rate_node = devl_rate_node_create(devlink, node, node->name,
783 node->parent->rate_node);
784 }
785
786 if (rate_node && !IS_ERR(rate_node))
787 node->rate_node = rate_node;
788
789 traverse_children:
790 for (i = 0; i < node->num_children; i++)
791 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
792 }
793
794 /**
795 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
796 * @devlink: devlink struct
797 * @vsi: main vsi struct
798 *
799 * This function finds a root node, then calls ice_traverse_tx tree, which
800 * traverses the tree and exports it's contents to devlink rate.
801 */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)802 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
803 {
804 struct ice_port_info *pi = vsi->port_info;
805 struct ice_sched_node *tc_node;
806 struct ice_pf *pf = vsi->back;
807 int i;
808
809 tc_node = pi->root->children[0];
810 mutex_lock(&pi->sched_lock);
811 for (i = 0; i < tc_node->num_children; i++)
812 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
813 mutex_unlock(&pi->sched_lock);
814
815 return 0;
816 }
817
ice_clear_rate_nodes(struct ice_sched_node * node)818 static void ice_clear_rate_nodes(struct ice_sched_node *node)
819 {
820 node->rate_node = NULL;
821
822 for (int i = 0; i < node->num_children; i++)
823 ice_clear_rate_nodes(node->children[i]);
824 }
825
826 /**
827 * ice_devlink_rate_clear_tx_topology - clear node->rate_node
828 * @vsi: main vsi struct
829 *
830 * Clear rate_node to cleanup creation of Tx topology.
831 *
832 */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)833 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
834 {
835 struct ice_port_info *pi = vsi->port_info;
836
837 mutex_lock(&pi->sched_lock);
838 ice_clear_rate_nodes(pi->root->children[0]);
839 mutex_unlock(&pi->sched_lock);
840 }
841
842 /**
843 * ice_set_object_tx_share - sets node scheduling parameter
844 * @pi: devlink struct instance
845 * @node: node struct instance
846 * @bw: bandwidth in bytes per second
847 * @extack: extended netdev ack structure
848 *
849 * This function sets ICE_MIN_BW scheduling BW limit.
850 */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)851 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
852 u64 bw, struct netlink_ext_ack *extack)
853 {
854 int status;
855
856 mutex_lock(&pi->sched_lock);
857 /* converts bytes per second to kilo bits per second */
858 node->tx_share = div_u64(bw, 125);
859 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
860 mutex_unlock(&pi->sched_lock);
861
862 if (status)
863 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
864
865 return status;
866 }
867
868 /**
869 * ice_set_object_tx_max - sets node scheduling parameter
870 * @pi: devlink struct instance
871 * @node: node struct instance
872 * @bw: bandwidth in bytes per second
873 * @extack: extended netdev ack structure
874 *
875 * This function sets ICE_MAX_BW scheduling BW limit.
876 */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)877 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
878 u64 bw, struct netlink_ext_ack *extack)
879 {
880 int status;
881
882 mutex_lock(&pi->sched_lock);
883 /* converts bytes per second value to kilo bits per second */
884 node->tx_max = div_u64(bw, 125);
885 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
886 mutex_unlock(&pi->sched_lock);
887
888 if (status)
889 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
890
891 return status;
892 }
893
894 /**
895 * ice_set_object_tx_priority - sets node scheduling parameter
896 * @pi: devlink struct instance
897 * @node: node struct instance
898 * @priority: value representing priority for strict priority arbitration
899 * @extack: extended netdev ack structure
900 *
901 * This function sets priority of node among siblings.
902 */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)903 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
904 u32 priority, struct netlink_ext_ack *extack)
905 {
906 int status;
907
908 if (priority >= 8) {
909 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
910 return -EINVAL;
911 }
912
913 mutex_lock(&pi->sched_lock);
914 node->tx_priority = priority;
915 status = ice_sched_set_node_priority(pi, node, node->tx_priority);
916 mutex_unlock(&pi->sched_lock);
917
918 if (status)
919 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
920
921 return status;
922 }
923
924 /**
925 * ice_set_object_tx_weight - sets node scheduling parameter
926 * @pi: devlink struct instance
927 * @node: node struct instance
928 * @weight: value represeting relative weight for WFQ arbitration
929 * @extack: extended netdev ack structure
930 *
931 * This function sets node weight for WFQ algorithm.
932 */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)933 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
934 u32 weight, struct netlink_ext_ack *extack)
935 {
936 int status;
937
938 if (weight > 200 || weight < 1) {
939 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
940 return -EINVAL;
941 }
942
943 mutex_lock(&pi->sched_lock);
944 node->tx_weight = weight;
945 status = ice_sched_set_node_weight(pi, node, node->tx_weight);
946 mutex_unlock(&pi->sched_lock);
947
948 if (status)
949 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
950
951 return status;
952 }
953
954 /**
955 * ice_get_pi_from_dev_rate - get port info from devlink_rate
956 * @rate_node: devlink struct instance
957 *
958 * This function returns corresponding port_info struct of devlink_rate
959 */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)960 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
961 {
962 struct ice_pf *pf = devlink_priv(rate_node->devlink);
963
964 return ice_get_main_vsi(pf)->port_info;
965 }
966
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)967 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
968 struct netlink_ext_ack *extack)
969 {
970 struct ice_sched_node *node;
971 struct ice_port_info *pi;
972
973 pi = ice_get_pi_from_dev_rate(rate_node);
974
975 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
976 return -EBUSY;
977
978 /* preallocate memory for ice_sched_node */
979 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
980 *priv = node;
981
982 return 0;
983 }
984
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)985 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
986 struct netlink_ext_ack *extack)
987 {
988 struct ice_sched_node *node, *tc_node;
989 struct ice_port_info *pi;
990
991 pi = ice_get_pi_from_dev_rate(rate_node);
992 tc_node = pi->root->children[0];
993 node = priv;
994
995 if (!rate_node->parent || !node || tc_node == node || !extack)
996 return 0;
997
998 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
999 return -EBUSY;
1000
1001 /* can't allow to delete a node with children */
1002 if (node->num_children)
1003 return -EINVAL;
1004
1005 mutex_lock(&pi->sched_lock);
1006 ice_free_sched_node(pi, node);
1007 mutex_unlock(&pi->sched_lock);
1008
1009 return 0;
1010 }
1011
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1012 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1013 u64 tx_max, struct netlink_ext_ack *extack)
1014 {
1015 struct ice_sched_node *node = priv;
1016
1017 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1018 return -EBUSY;
1019
1020 if (!node)
1021 return 0;
1022
1023 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1024 node, tx_max, extack);
1025 }
1026
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1027 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1028 u64 tx_share, struct netlink_ext_ack *extack)
1029 {
1030 struct ice_sched_node *node = priv;
1031
1032 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1033 return -EBUSY;
1034
1035 if (!node)
1036 return 0;
1037
1038 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1039 tx_share, extack);
1040 }
1041
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1042 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1043 u32 tx_priority, struct netlink_ext_ack *extack)
1044 {
1045 struct ice_sched_node *node = priv;
1046
1047 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1048 return -EBUSY;
1049
1050 if (!node)
1051 return 0;
1052
1053 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1054 tx_priority, extack);
1055 }
1056
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1057 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1058 u32 tx_weight, struct netlink_ext_ack *extack)
1059 {
1060 struct ice_sched_node *node = priv;
1061
1062 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1063 return -EBUSY;
1064
1065 if (!node)
1066 return 0;
1067
1068 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1069 tx_weight, extack);
1070 }
1071
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1072 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1073 u64 tx_max, struct netlink_ext_ack *extack)
1074 {
1075 struct ice_sched_node *node = priv;
1076
1077 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1078 return -EBUSY;
1079
1080 if (!node)
1081 return 0;
1082
1083 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1084 node, tx_max, extack);
1085 }
1086
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1087 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1088 u64 tx_share, struct netlink_ext_ack *extack)
1089 {
1090 struct ice_sched_node *node = priv;
1091
1092 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1093 return -EBUSY;
1094
1095 if (!node)
1096 return 0;
1097
1098 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1099 node, tx_share, extack);
1100 }
1101
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1102 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1103 u32 tx_priority, struct netlink_ext_ack *extack)
1104 {
1105 struct ice_sched_node *node = priv;
1106
1107 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1108 return -EBUSY;
1109
1110 if (!node)
1111 return 0;
1112
1113 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1114 node, tx_priority, extack);
1115 }
1116
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1117 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1118 u32 tx_weight, struct netlink_ext_ack *extack)
1119 {
1120 struct ice_sched_node *node = priv;
1121
1122 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1123 return -EBUSY;
1124
1125 if (!node)
1126 return 0;
1127
1128 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1129 node, tx_weight, extack);
1130 }
1131
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1132 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1133 struct devlink_rate *parent,
1134 void *priv, void *parent_priv,
1135 struct netlink_ext_ack *extack)
1136 {
1137 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1138 struct ice_sched_node *tc_node, *node, *parent_node;
1139 u16 num_nodes_added;
1140 u32 first_node_teid;
1141 u32 node_teid;
1142 int status;
1143
1144 tc_node = pi->root->children[0];
1145 node = priv;
1146
1147 if (!extack)
1148 return 0;
1149
1150 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1151 return -EBUSY;
1152
1153 if (!parent) {
1154 if (!node || tc_node == node || node->num_children)
1155 return -EINVAL;
1156
1157 mutex_lock(&pi->sched_lock);
1158 ice_free_sched_node(pi, node);
1159 mutex_unlock(&pi->sched_lock);
1160
1161 return 0;
1162 }
1163
1164 parent_node = parent_priv;
1165
1166 /* if the node doesn't exist, create it */
1167 if (!node->parent) {
1168 mutex_lock(&pi->sched_lock);
1169 status = ice_sched_add_elems(pi, tc_node, parent_node,
1170 parent_node->tx_sched_layer + 1,
1171 1, &num_nodes_added, &first_node_teid,
1172 &node);
1173 mutex_unlock(&pi->sched_lock);
1174
1175 if (status) {
1176 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1177 return status;
1178 }
1179
1180 if (devlink_rate->tx_share)
1181 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1182 if (devlink_rate->tx_max)
1183 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1184 if (devlink_rate->tx_priority)
1185 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1186 if (devlink_rate->tx_weight)
1187 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1188 } else {
1189 node_teid = le32_to_cpu(node->info.node_teid);
1190 mutex_lock(&pi->sched_lock);
1191 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1192 mutex_unlock(&pi->sched_lock);
1193
1194 if (status)
1195 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1196 }
1197
1198 return status;
1199 }
1200
1201 /**
1202 * ice_devlink_reinit_up - do reinit of the given PF
1203 * @pf: pointer to the PF struct
1204 */
ice_devlink_reinit_up(struct ice_pf * pf)1205 static int ice_devlink_reinit_up(struct ice_pf *pf)
1206 {
1207 struct ice_vsi *vsi = ice_get_main_vsi(pf);
1208 int err;
1209
1210 err = ice_init_dev(pf);
1211 if (err)
1212 return err;
1213
1214 vsi->flags = ICE_VSI_FLAG_INIT;
1215
1216 rtnl_lock();
1217 err = ice_vsi_cfg(vsi);
1218 rtnl_unlock();
1219 if (err)
1220 goto err_vsi_cfg;
1221
1222 /* No need to take devl_lock, it's already taken by devlink API */
1223 err = ice_load(pf);
1224 if (err)
1225 goto err_load;
1226
1227 return 0;
1228
1229 err_load:
1230 rtnl_lock();
1231 ice_vsi_decfg(vsi);
1232 rtnl_unlock();
1233 err_vsi_cfg:
1234 ice_deinit_dev(pf);
1235 return err;
1236 }
1237
1238 /**
1239 * ice_devlink_reload_up - do reload up after reinit
1240 * @devlink: pointer to the devlink instance reloading
1241 * @action: the action requested
1242 * @limit: limits imposed by userspace, such as not resetting
1243 * @actions_performed: on return, indicate what actions actually performed
1244 * @extack: netlink extended ACK structure
1245 */
1246 static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1247 ice_devlink_reload_up(struct devlink *devlink,
1248 enum devlink_reload_action action,
1249 enum devlink_reload_limit limit,
1250 u32 *actions_performed,
1251 struct netlink_ext_ack *extack)
1252 {
1253 struct ice_pf *pf = devlink_priv(devlink);
1254
1255 switch (action) {
1256 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1257 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1258 return ice_devlink_reinit_up(pf);
1259 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1260 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1261 return ice_devlink_reload_empr_finish(pf, extack);
1262 default:
1263 WARN_ON(1);
1264 return -EOPNOTSUPP;
1265 }
1266 }
1267
1268 static const struct devlink_ops ice_devlink_ops = {
1269 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1270 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1271 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1272 .reload_down = ice_devlink_reload_down,
1273 .reload_up = ice_devlink_reload_up,
1274 .eswitch_mode_get = ice_eswitch_mode_get,
1275 .eswitch_mode_set = ice_eswitch_mode_set,
1276 .info_get = ice_devlink_info_get,
1277 .flash_update = ice_devlink_flash_update,
1278
1279 .rate_node_new = ice_devlink_rate_node_new,
1280 .rate_node_del = ice_devlink_rate_node_del,
1281
1282 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1283 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1284 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1285 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1286
1287 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1288 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1289 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1290 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1291
1292 .rate_leaf_parent_set = ice_devlink_set_parent,
1293 .rate_node_parent_set = ice_devlink_set_parent,
1294
1295 .port_new = ice_devlink_port_new,
1296 };
1297
1298 static const struct devlink_ops ice_sf_devlink_ops;
1299
1300 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1301 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1302 struct devlink_param_gset_ctx *ctx)
1303 {
1304 struct ice_pf *pf = devlink_priv(devlink);
1305
1306 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1307
1308 return 0;
1309 }
1310
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1311 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1312 struct devlink_param_gset_ctx *ctx,
1313 struct netlink_ext_ack *extack)
1314 {
1315 struct ice_pf *pf = devlink_priv(devlink);
1316 bool roce_ena = ctx->val.vbool;
1317 int ret;
1318
1319 if (!roce_ena) {
1320 ice_unplug_aux_dev(pf);
1321 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1322 return 0;
1323 }
1324
1325 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1326 ret = ice_plug_aux_dev(pf);
1327 if (ret)
1328 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1329
1330 return ret;
1331 }
1332
1333 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1334 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1335 union devlink_param_value val,
1336 struct netlink_ext_ack *extack)
1337 {
1338 struct ice_pf *pf = devlink_priv(devlink);
1339
1340 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1341 return -EOPNOTSUPP;
1342
1343 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1344 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1345 return -EOPNOTSUPP;
1346 }
1347
1348 return 0;
1349 }
1350
1351 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1352 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1353 struct devlink_param_gset_ctx *ctx)
1354 {
1355 struct ice_pf *pf = devlink_priv(devlink);
1356
1357 ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1358
1359 return 0;
1360 }
1361
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1362 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1363 struct devlink_param_gset_ctx *ctx,
1364 struct netlink_ext_ack *extack)
1365 {
1366 struct ice_pf *pf = devlink_priv(devlink);
1367 bool iw_ena = ctx->val.vbool;
1368 int ret;
1369
1370 if (!iw_ena) {
1371 ice_unplug_aux_dev(pf);
1372 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1373 return 0;
1374 }
1375
1376 pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1377 ret = ice_plug_aux_dev(pf);
1378 if (ret)
1379 pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1380
1381 return ret;
1382 }
1383
1384 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1385 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1386 union devlink_param_value val,
1387 struct netlink_ext_ack *extack)
1388 {
1389 struct ice_pf *pf = devlink_priv(devlink);
1390
1391 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1392 return -EOPNOTSUPP;
1393
1394 if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1395 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1396 return -EOPNOTSUPP;
1397 }
1398
1399 return 0;
1400 }
1401
1402 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1403 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1404 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1405
1406 /**
1407 * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1408 * @mode: local forwarding for mode used in port_info struct.
1409 *
1410 * Return: Mode respective string or "Invalid".
1411 */
1412 static const char *
ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)1413 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1414 {
1415 switch (mode) {
1416 case ICE_LOCAL_FWD_MODE_ENABLED:
1417 return DEVLINK_LOCAL_FWD_ENABLED_STR;
1418 case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1419 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1420 case ICE_LOCAL_FWD_MODE_DISABLED:
1421 return DEVLINK_LOCAL_FWD_DISABLED_STR;
1422 }
1423
1424 return "Invalid";
1425 }
1426
1427 /**
1428 * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1429 * @mode_str: local forwarding mode string.
1430 *
1431 * Return: Mode value or negative number if invalid.
1432 */
ice_devlink_local_fwd_str_to_mode(const char * mode_str)1433 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1434 {
1435 if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1436 return ICE_LOCAL_FWD_MODE_ENABLED;
1437 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1438 return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1439 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1440 return ICE_LOCAL_FWD_MODE_DISABLED;
1441
1442 return -EINVAL;
1443 }
1444
1445 /**
1446 * ice_devlink_local_fwd_get - Get local_fwd parameter.
1447 * @devlink: Pointer to the devlink instance.
1448 * @id: The parameter ID to set.
1449 * @ctx: Context to store the parameter value.
1450 *
1451 * Return: Zero.
1452 */
ice_devlink_local_fwd_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1453 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1454 struct devlink_param_gset_ctx *ctx)
1455 {
1456 struct ice_pf *pf = devlink_priv(devlink);
1457 struct ice_port_info *pi;
1458 const char *mode_str;
1459
1460 pi = pf->hw.port_info;
1461 mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1462 snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * ice_devlink_local_fwd_set - Set local_fwd parameter.
1469 * @devlink: Pointer to the devlink instance.
1470 * @id: The parameter ID to set.
1471 * @ctx: Context to get the parameter value.
1472 * @extack: Netlink extended ACK structure.
1473 *
1474 * Return: Zero.
1475 */
ice_devlink_local_fwd_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1476 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1477 struct devlink_param_gset_ctx *ctx,
1478 struct netlink_ext_ack *extack)
1479 {
1480 int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1481 struct ice_pf *pf = devlink_priv(devlink);
1482 struct device *dev = ice_pf_to_dev(pf);
1483 struct ice_port_info *pi;
1484
1485 pi = pf->hw.port_info;
1486 if (pi->local_fwd_mode != new_local_fwd_mode) {
1487 pi->local_fwd_mode = new_local_fwd_mode;
1488 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1489 ice_schedule_reset(pf, ICE_RESET_CORER);
1490 }
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1497 * @devlink: Unused pointer to devlink instance.
1498 * @id: The parameter ID to validate.
1499 * @val: Value to validate.
1500 * @extack: Netlink extended ACK structure.
1501 *
1502 * Supported values are:
1503 * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1504 * "prioritized" - local_fwd traffic is prioritized in scheduling.
1505 *
1506 * Return: Zero when passed parameter value is supported. Negative value on
1507 * error.
1508 */
ice_devlink_local_fwd_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1509 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1510 union devlink_param_value val,
1511 struct netlink_ext_ack *extack)
1512 {
1513 if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1514 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1515 return -EINVAL;
1516 }
1517
1518 return 0;
1519 }
1520
1521 enum ice_param_id {
1522 ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1523 ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1524 ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1525 };
1526
1527 static const struct devlink_param ice_dvl_rdma_params[] = {
1528 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1529 ice_devlink_enable_roce_get,
1530 ice_devlink_enable_roce_set,
1531 ice_devlink_enable_roce_validate),
1532 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1533 ice_devlink_enable_iw_get,
1534 ice_devlink_enable_iw_set,
1535 ice_devlink_enable_iw_validate),
1536 };
1537
1538 static const struct devlink_param ice_dvl_sched_params[] = {
1539 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1540 "tx_scheduling_layers",
1541 DEVLINK_PARAM_TYPE_U8,
1542 BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1543 ice_devlink_tx_sched_layers_get,
1544 ice_devlink_tx_sched_layers_set,
1545 ice_devlink_tx_sched_layers_validate),
1546 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1547 "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1548 BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1549 ice_devlink_local_fwd_get,
1550 ice_devlink_local_fwd_set,
1551 ice_devlink_local_fwd_validate),
1552 };
1553
ice_devlink_free(void * devlink_ptr)1554 static void ice_devlink_free(void *devlink_ptr)
1555 {
1556 devlink_free((struct devlink *)devlink_ptr);
1557 }
1558
1559 /**
1560 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1561 * @dev: the device to allocate for
1562 *
1563 * Allocate a devlink instance for this device and return the private area as
1564 * the PF structure. The devlink memory is kept track of through devres by
1565 * adding an action to remove it when unwinding.
1566 */
ice_allocate_pf(struct device * dev)1567 struct ice_pf *ice_allocate_pf(struct device *dev)
1568 {
1569 struct devlink *devlink;
1570
1571 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1572 if (!devlink)
1573 return NULL;
1574
1575 /* Add an action to teardown the devlink when unwinding the driver */
1576 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1577 return NULL;
1578
1579 return devlink_priv(devlink);
1580 }
1581
1582 /**
1583 * ice_allocate_sf - Allocate devlink and return SF structure pointer
1584 * @dev: the device to allocate for
1585 * @pf: pointer to the PF structure
1586 *
1587 * Allocate a devlink instance for SF.
1588 *
1589 * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1590 */
ice_allocate_sf(struct device * dev,struct ice_pf * pf)1591 struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1592 {
1593 struct devlink *devlink;
1594 int err;
1595
1596 devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1597 dev);
1598 if (!devlink)
1599 return ERR_PTR(-ENOMEM);
1600
1601 err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1602 if (err) {
1603 devlink_free(devlink);
1604 return ERR_PTR(err);
1605 }
1606
1607 return devlink_priv(devlink);
1608 }
1609
1610 /**
1611 * ice_devlink_register - Register devlink interface for this PF
1612 * @pf: the PF to register the devlink for.
1613 *
1614 * Register the devlink instance associated with this physical function.
1615 *
1616 * Return: zero on success or an error code on failure.
1617 */
ice_devlink_register(struct ice_pf * pf)1618 void ice_devlink_register(struct ice_pf *pf)
1619 {
1620 struct devlink *devlink = priv_to_devlink(pf);
1621
1622 devl_register(devlink);
1623 }
1624
1625 /**
1626 * ice_devlink_unregister - Unregister devlink resources for this PF.
1627 * @pf: the PF structure to cleanup
1628 *
1629 * Releases resources used by devlink and cleans up associated memory.
1630 */
ice_devlink_unregister(struct ice_pf * pf)1631 void ice_devlink_unregister(struct ice_pf *pf)
1632 {
1633 devl_unregister(priv_to_devlink(pf));
1634 }
1635
ice_devlink_register_params(struct ice_pf * pf)1636 int ice_devlink_register_params(struct ice_pf *pf)
1637 {
1638 struct devlink *devlink = priv_to_devlink(pf);
1639 struct ice_hw *hw = &pf->hw;
1640 int status;
1641
1642 status = devl_params_register(devlink, ice_dvl_rdma_params,
1643 ARRAY_SIZE(ice_dvl_rdma_params));
1644 if (status)
1645 return status;
1646
1647 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1648 status = devl_params_register(devlink, ice_dvl_sched_params,
1649 ARRAY_SIZE(ice_dvl_sched_params));
1650
1651 return status;
1652 }
1653
ice_devlink_unregister_params(struct ice_pf * pf)1654 void ice_devlink_unregister_params(struct ice_pf *pf)
1655 {
1656 struct devlink *devlink = priv_to_devlink(pf);
1657 struct ice_hw *hw = &pf->hw;
1658
1659 devl_params_unregister(devlink, ice_dvl_rdma_params,
1660 ARRAY_SIZE(ice_dvl_rdma_params));
1661
1662 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1663 devl_params_unregister(devlink, ice_dvl_sched_params,
1664 ARRAY_SIZE(ice_dvl_sched_params));
1665 }
1666
1667 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1668
1669 static const struct devlink_region_ops ice_nvm_region_ops;
1670 static const struct devlink_region_ops ice_sram_region_ops;
1671
1672 /**
1673 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1674 * @devlink: the devlink instance
1675 * @ops: the devlink region to snapshot
1676 * @extack: extended ACK response structure
1677 * @data: on exit points to snapshot data buffer
1678 *
1679 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1680 * the nvm-flash or shadow-ram region.
1681 *
1682 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1683 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1684 * interface.
1685 *
1686 * @returns zero on success, and updates the data pointer. Returns a non-zero
1687 * error code on failure.
1688 */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1689 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1690 const struct devlink_region_ops *ops,
1691 struct netlink_ext_ack *extack, u8 **data)
1692 {
1693 struct ice_pf *pf = devlink_priv(devlink);
1694 struct device *dev = ice_pf_to_dev(pf);
1695 struct ice_hw *hw = &pf->hw;
1696 bool read_shadow_ram;
1697 u8 *nvm_data, *tmp, i;
1698 u32 nvm_size, left;
1699 s8 num_blks;
1700 int status;
1701
1702 if (ops == &ice_nvm_region_ops) {
1703 read_shadow_ram = false;
1704 nvm_size = hw->flash.flash_size;
1705 } else if (ops == &ice_sram_region_ops) {
1706 read_shadow_ram = true;
1707 nvm_size = hw->flash.sr_words * 2u;
1708 } else {
1709 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1710 return -EOPNOTSUPP;
1711 }
1712
1713 nvm_data = vzalloc(nvm_size);
1714 if (!nvm_data)
1715 return -ENOMEM;
1716
1717 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1718 tmp = nvm_data;
1719 left = nvm_size;
1720
1721 /* Some systems take longer to read the NVM than others which causes the
1722 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1723 * this by breaking the reads of the NVM into smaller chunks that will
1724 * probably not take as long. This has some overhead since we are
1725 * increasing the number of AQ commands, but it should always work
1726 */
1727 for (i = 0; i < num_blks; i++) {
1728 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1729
1730 status = ice_acquire_nvm(hw, ICE_RES_READ);
1731 if (status) {
1732 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1733 status, hw->adminq.sq_last_status);
1734 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1735 vfree(nvm_data);
1736 return -EIO;
1737 }
1738
1739 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1740 &read_sz, tmp, read_shadow_ram);
1741 if (status) {
1742 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1743 read_sz, status, hw->adminq.sq_last_status);
1744 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1745 ice_release_nvm(hw);
1746 vfree(nvm_data);
1747 return -EIO;
1748 }
1749 ice_release_nvm(hw);
1750
1751 tmp += read_sz;
1752 left -= read_sz;
1753 }
1754
1755 *data = nvm_data;
1756
1757 return 0;
1758 }
1759
1760 /**
1761 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1762 * @devlink: the devlink instance
1763 * @ops: the devlink region to snapshot
1764 * @extack: extended ACK response structure
1765 * @offset: the offset to start at
1766 * @size: the amount to read
1767 * @data: the data buffer to read into
1768 *
1769 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1770 * read a section of the NVM contents.
1771 *
1772 * It reads from either the nvm-flash or shadow-ram region contents.
1773 *
1774 * @returns zero on success, and updates the data pointer. Returns a non-zero
1775 * error code on failure.
1776 */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1777 static int ice_devlink_nvm_read(struct devlink *devlink,
1778 const struct devlink_region_ops *ops,
1779 struct netlink_ext_ack *extack,
1780 u64 offset, u32 size, u8 *data)
1781 {
1782 struct ice_pf *pf = devlink_priv(devlink);
1783 struct device *dev = ice_pf_to_dev(pf);
1784 struct ice_hw *hw = &pf->hw;
1785 bool read_shadow_ram;
1786 u64 nvm_size;
1787 int status;
1788
1789 if (ops == &ice_nvm_region_ops) {
1790 read_shadow_ram = false;
1791 nvm_size = hw->flash.flash_size;
1792 } else if (ops == &ice_sram_region_ops) {
1793 read_shadow_ram = true;
1794 nvm_size = hw->flash.sr_words * 2u;
1795 } else {
1796 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1797 return -EOPNOTSUPP;
1798 }
1799
1800 if (offset + size >= nvm_size) {
1801 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1802 return -ERANGE;
1803 }
1804
1805 status = ice_acquire_nvm(hw, ICE_RES_READ);
1806 if (status) {
1807 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1808 status, hw->adminq.sq_last_status);
1809 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1810 return -EIO;
1811 }
1812
1813 status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1814 read_shadow_ram);
1815 if (status) {
1816 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1817 size, status, hw->adminq.sq_last_status);
1818 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1819 ice_release_nvm(hw);
1820 return -EIO;
1821 }
1822 ice_release_nvm(hw);
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1829 * @devlink: the devlink instance
1830 * @ops: the devlink region being snapshotted
1831 * @extack: extended ACK response structure
1832 * @data: on exit points to snapshot data buffer
1833 *
1834 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1835 * the device-caps devlink region. It captures a snapshot of the device
1836 * capabilities reported by firmware.
1837 *
1838 * @returns zero on success, and updates the data pointer. Returns a non-zero
1839 * error code on failure.
1840 */
1841 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1842 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1843 const struct devlink_region_ops *ops,
1844 struct netlink_ext_ack *extack, u8 **data)
1845 {
1846 struct ice_pf *pf = devlink_priv(devlink);
1847 struct device *dev = ice_pf_to_dev(pf);
1848 struct ice_hw *hw = &pf->hw;
1849 void *devcaps;
1850 int status;
1851
1852 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1853 if (!devcaps)
1854 return -ENOMEM;
1855
1856 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1857 ice_aqc_opc_list_dev_caps, NULL);
1858 if (status) {
1859 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1860 status, hw->adminq.sq_last_status);
1861 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1862 vfree(devcaps);
1863 return status;
1864 }
1865
1866 *data = (u8 *)devcaps;
1867
1868 return 0;
1869 }
1870
1871 static const struct devlink_region_ops ice_nvm_region_ops = {
1872 .name = "nvm-flash",
1873 .destructor = vfree,
1874 .snapshot = ice_devlink_nvm_snapshot,
1875 .read = ice_devlink_nvm_read,
1876 };
1877
1878 static const struct devlink_region_ops ice_sram_region_ops = {
1879 .name = "shadow-ram",
1880 .destructor = vfree,
1881 .snapshot = ice_devlink_nvm_snapshot,
1882 .read = ice_devlink_nvm_read,
1883 };
1884
1885 static const struct devlink_region_ops ice_devcaps_region_ops = {
1886 .name = "device-caps",
1887 .destructor = vfree,
1888 .snapshot = ice_devlink_devcaps_snapshot,
1889 };
1890
1891 /**
1892 * ice_devlink_init_regions - Initialize devlink regions
1893 * @pf: the PF device structure
1894 *
1895 * Create devlink regions used to enable access to dump the contents of the
1896 * flash memory on the device.
1897 */
ice_devlink_init_regions(struct ice_pf * pf)1898 void ice_devlink_init_regions(struct ice_pf *pf)
1899 {
1900 struct devlink *devlink = priv_to_devlink(pf);
1901 struct device *dev = ice_pf_to_dev(pf);
1902 u64 nvm_size, sram_size;
1903
1904 nvm_size = pf->hw.flash.flash_size;
1905 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
1906 nvm_size);
1907 if (IS_ERR(pf->nvm_region)) {
1908 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1909 PTR_ERR(pf->nvm_region));
1910 pf->nvm_region = NULL;
1911 }
1912
1913 sram_size = pf->hw.flash.sr_words * 2u;
1914 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
1915 1, sram_size);
1916 if (IS_ERR(pf->sram_region)) {
1917 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1918 PTR_ERR(pf->sram_region));
1919 pf->sram_region = NULL;
1920 }
1921
1922 pf->devcaps_region = devl_region_create(devlink,
1923 &ice_devcaps_region_ops, 10,
1924 ICE_AQ_MAX_BUF_LEN);
1925 if (IS_ERR(pf->devcaps_region)) {
1926 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1927 PTR_ERR(pf->devcaps_region));
1928 pf->devcaps_region = NULL;
1929 }
1930 }
1931
1932 /**
1933 * ice_devlink_destroy_regions - Destroy devlink regions
1934 * @pf: the PF device structure
1935 *
1936 * Remove previously created regions for this PF.
1937 */
ice_devlink_destroy_regions(struct ice_pf * pf)1938 void ice_devlink_destroy_regions(struct ice_pf *pf)
1939 {
1940 if (pf->nvm_region)
1941 devl_region_destroy(pf->nvm_region);
1942
1943 if (pf->sram_region)
1944 devl_region_destroy(pf->sram_region);
1945
1946 if (pf->devcaps_region)
1947 devl_region_destroy(pf->devcaps_region);
1948 }
1949