1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
6 * Copyright (c) 2004 Intel Corporation. All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses. You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 * Redistribution and use in source and binary forms, with or
19 * without modification, are permitted provided that the following
20 * conditions are met:
21 *
22 * - Redistributions of source code must retain the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer.
25 *
26 * - Redistributions in binary form must reproduce the above
27 * copyright notice, this list of conditions and the following
28 * disclaimer in the documentation and/or other materials
29 * provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 */
40
41 #include <sys/cdefs.h>
42 #include <linux/errno.h>
43 #include <linux/err.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/in.h>
47 #include <linux/in6.h>
48 #include <linux/wait.h>
49
50 #include <rdma/ib_verbs.h>
51 #include <rdma/ib_cache.h>
52 #include <rdma/ib_addr.h>
53
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56
57 #include <machine/in_cksum.h>
58
59 #include "core_priv.h"
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory management operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)214 rdma_node_get_transport(enum rdma_node_type node_type)
215 {
216 switch (node_type) {
217 case RDMA_NODE_IB_CA:
218 case RDMA_NODE_IB_SWITCH:
219 case RDMA_NODE_IB_ROUTER:
220 return RDMA_TRANSPORT_IB;
221 case RDMA_NODE_RNIC:
222 return RDMA_TRANSPORT_IWARP;
223 case RDMA_NODE_USNIC:
224 return RDMA_TRANSPORT_USNIC;
225 case RDMA_NODE_USNIC_UDP:
226 return RDMA_TRANSPORT_USNIC_UDP;
227 default:
228 BUG();
229 return 0;
230 }
231 }
232 EXPORT_SYMBOL(rdma_node_get_transport);
233
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)234 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
235 {
236 if (device->get_link_layer)
237 return device->get_link_layer(device, port_num);
238
239 switch (rdma_node_get_transport(device->node_type)) {
240 case RDMA_TRANSPORT_IB:
241 return IB_LINK_LAYER_INFINIBAND;
242 case RDMA_TRANSPORT_IWARP:
243 case RDMA_TRANSPORT_USNIC:
244 case RDMA_TRANSPORT_USNIC_UDP:
245 return IB_LINK_LAYER_ETHERNET;
246 default:
247 return IB_LINK_LAYER_UNSPECIFIED;
248 }
249 }
250 EXPORT_SYMBOL(rdma_port_get_link_layer);
251
252 /* Protection domains */
253
254 /**
255 * ib_alloc_pd - Allocates an unused protection domain.
256 * @device: The device on which to allocate the protection domain.
257 *
258 * A protection domain object provides an association between QPs, shared
259 * receive queues, address handles, memory regions, and memory windows.
260 *
261 * Every PD has a local_dma_lkey which can be used as the lkey value for local
262 * memory operations.
263 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)264 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
265 const char *caller)
266 {
267 struct ib_pd *pd;
268 int mr_access_flags = 0;
269 int ret;
270
271 pd = rdma_zalloc_drv_obj(device, ib_pd);
272 if (!pd)
273 return ERR_PTR(-ENOMEM);
274
275 pd->device = device;
276 pd->uobject = NULL;
277 pd->__internal_mr = NULL;
278 atomic_set(&pd->usecnt, 0);
279 pd->flags = flags;
280
281 ret = device->alloc_pd(pd, NULL);
282 if (ret) {
283 kfree(pd);
284 return ERR_PTR(ret);
285 }
286
287 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324
325 /**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)334 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 /* uverbs manipulates usecnt with proper locking, while the kabi
345 requires the caller to guarantee we can't race here. */
346 WARN_ON(atomic_read(&pd->usecnt));
347
348 pd->device->dealloc_pd(pd, udata);
349 kfree(pd);
350 }
351 EXPORT_SYMBOL(ib_dealloc_pd_user);
352
353 /* Address handles */
354
_ib_create_ah(struct ib_pd * pd,struct ib_ah_attr * ah_attr,u32 flags,struct ib_udata * udata)355 static struct ib_ah *_ib_create_ah(struct ib_pd *pd,
356 struct ib_ah_attr *ah_attr,
357 u32 flags,
358 struct ib_udata *udata)
359 {
360 struct ib_device *device = pd->device;
361 struct ib_ah *ah;
362 int ret;
363
364 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
365
366 if (!device->create_ah)
367 return ERR_PTR(-EOPNOTSUPP);
368
369 ah = rdma_zalloc_drv_obj_gfp(
370 device, ib_ah,
371 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
372 if (!ah)
373 return ERR_PTR(-ENOMEM);
374
375 ah->device = device;
376 ah->pd = pd;
377
378 ret = device->create_ah(ah, ah_attr, flags, udata);
379 if (ret) {
380 kfree(ah);
381 return ERR_PTR(ret);
382 }
383
384 atomic_inc(&pd->usecnt);
385 return ah;
386 }
387
388 /**
389 * rdma_create_ah - Creates an address handle for the
390 * given address vector.
391 * @pd: The protection domain associated with the address handle.
392 * @ah_attr: The attributes of the address vector.
393 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
394 *
395 * It returns 0 on success and returns appropriate error code on error.
396 * The address handle is used to reference a local or global destination
397 * in all UD QP post sends.
398 */
ib_create_ah(struct ib_pd * pd,struct ib_ah_attr * ah_attr,u32 flags)399 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
400 u32 flags)
401 {
402 struct ib_ah *ah;
403
404 ah = _ib_create_ah(pd, ah_attr, flags, NULL);
405
406 return ah;
407 }
408 EXPORT_SYMBOL(ib_create_ah);
409
410 /**
411 * ib_create_user_ah - Creates an address handle for the
412 * given address vector.
413 * It resolves destination mac address for ah attribute of RoCE type.
414 * @pd: The protection domain associated with the address handle.
415 * @ah_attr: The attributes of the address vector.
416 * @udata: pointer to user's input output buffer information need by
417 * provider driver.
418 *
419 * It returns a valid address handle pointer on success and
420 * returns appropriate error code on error.
421 * The address handle is used to reference a local or global destination
422 * in all UD QP post sends.
423 */
ib_create_user_ah(struct ib_pd * pd,struct ib_ah_attr * ah_attr,struct ib_udata * udata)424 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
425 struct ib_ah_attr *ah_attr,
426 struct ib_udata *udata)
427 {
428 int err;
429
430 if (rdma_protocol_roce(pd->device, ah_attr->port_num)) {
431 err = ib_resolve_eth_dmac(pd->device, ah_attr);
432 if (err)
433 return ERR_PTR(err);
434 }
435
436 return _ib_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
437 }
438 EXPORT_SYMBOL(ib_create_user_ah);
439
ib_get_header_version(const union rdma_network_hdr * hdr)440 static int ib_get_header_version(const union rdma_network_hdr *hdr)
441 {
442 const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
443 struct ip ip4h_checked;
444 const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
445
446 /* If it's IPv6, the version must be 6, otherwise, the first
447 * 20 bytes (before the IPv4 header) are garbled.
448 */
449 if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
450 return (ip4h->ip_v == 4) ? 4 : 0;
451 /* version may be 6 or 4 because the first 20 bytes could be garbled */
452
453 /* RoCE v2 requires no options, thus header length
454 * must be 5 words
455 */
456 if (ip4h->ip_hl != 5)
457 return 6;
458
459 /* Verify checksum.
460 * We can't write on scattered buffers so we need to copy to
461 * temp buffer.
462 */
463 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
464 ip4h_checked.ip_sum = 0;
465 #if defined(INET) || defined(INET6)
466 ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
467 #endif
468 /* if IPv4 header checksum is OK, believe it */
469 if (ip4h->ip_sum == ip4h_checked.ip_sum)
470 return 4;
471 return 6;
472 }
473
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)474 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
475 u8 port_num,
476 const struct ib_grh *grh)
477 {
478 int grh_version;
479
480 if (rdma_protocol_ib(device, port_num))
481 return RDMA_NETWORK_IB;
482
483 grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
484
485 if (grh_version == 4)
486 return RDMA_NETWORK_IPV4;
487
488 if (grh->next_hdr == IPPROTO_UDP)
489 return RDMA_NETWORK_IPV6;
490
491 return RDMA_NETWORK_ROCE_V1;
492 }
493
494 struct find_gid_index_context {
495 u16 vlan_id;
496 enum ib_gid_type gid_type;
497 };
498
499
500 /*
501 * This function will return true only if a inspected GID index
502 * matches the request based on the GID type and VLAN configuration
503 */
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)504 static bool find_gid_index(const union ib_gid *gid,
505 const struct ib_gid_attr *gid_attr,
506 void *context)
507 {
508 u16 vlan_diff;
509 struct find_gid_index_context *ctx =
510 (struct find_gid_index_context *)context;
511
512 if (ctx->gid_type != gid_attr->gid_type)
513 return false;
514
515 /*
516 * The following will verify:
517 * 1. VLAN ID matching for VLAN tagged requests.
518 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
519 *
520 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
521 */
522 vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
523
524 return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
525 }
526
get_sgid_index_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type,u16 * gid_index)527 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
528 u16 vlan_id, const union ib_gid *sgid,
529 enum ib_gid_type gid_type,
530 u16 *gid_index)
531 {
532 struct find_gid_index_context context = {.vlan_id = vlan_id,
533 .gid_type = gid_type};
534
535 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
536 &context, gid_index);
537 }
538
get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)539 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
540 enum rdma_network_type net_type,
541 union ib_gid *sgid, union ib_gid *dgid)
542 {
543 struct sockaddr_in src_in;
544 struct sockaddr_in dst_in;
545 __be32 src_saddr, dst_saddr;
546
547 if (!sgid || !dgid)
548 return -EINVAL;
549
550 if (net_type == RDMA_NETWORK_IPV4) {
551 memcpy(&src_in.sin_addr.s_addr,
552 &hdr->roce4grh.ip_src, 4);
553 memcpy(&dst_in.sin_addr.s_addr,
554 &hdr->roce4grh.ip_dst, 4);
555 src_saddr = src_in.sin_addr.s_addr;
556 dst_saddr = dst_in.sin_addr.s_addr;
557 ipv6_addr_set_v4mapped(src_saddr,
558 (struct in6_addr *)sgid);
559 ipv6_addr_set_v4mapped(dst_saddr,
560 (struct in6_addr *)dgid);
561 return 0;
562 } else if (net_type == RDMA_NETWORK_IPV6 ||
563 net_type == RDMA_NETWORK_IB) {
564 *dgid = hdr->ibgrh.dgid;
565 *sgid = hdr->ibgrh.sgid;
566 return 0;
567 } else {
568 return -EINVAL;
569 }
570 }
571
ib_init_ah_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct ib_ah_attr * ah_attr)572 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
573 const struct ib_wc *wc, const struct ib_grh *grh,
574 struct ib_ah_attr *ah_attr)
575 {
576 u32 flow_class;
577 u16 gid_index = 0;
578 int ret;
579 enum rdma_network_type net_type = RDMA_NETWORK_IB;
580 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
581 int hoplimit = 0xff;
582 union ib_gid dgid;
583 union ib_gid sgid;
584
585 memset(ah_attr, 0, sizeof *ah_attr);
586 if (rdma_cap_eth_ah(device, port_num)) {
587 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
588 net_type = wc->network_hdr_type;
589 else
590 net_type = ib_get_net_type_by_grh(device, port_num, grh);
591 gid_type = ib_network_to_gid_type(net_type);
592 }
593 ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
594 &sgid, &dgid);
595 if (ret)
596 return ret;
597
598 if (rdma_protocol_roce(device, port_num)) {
599 struct ib_gid_attr dgid_attr;
600 const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
601 wc->vlan_id : 0xffff;
602
603 if (!(wc->wc_flags & IB_WC_GRH))
604 return -EPROTOTYPE;
605
606 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
607 &dgid, gid_type, &gid_index);
608 if (ret)
609 return ret;
610
611 ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
612 if (ret)
613 return ret;
614
615 if (dgid_attr.ndev == NULL)
616 return -ENODEV;
617
618 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
619 dgid_attr.ndev, &hoplimit);
620
621 dev_put(dgid_attr.ndev);
622 if (ret)
623 return ret;
624 }
625
626 ah_attr->dlid = wc->slid;
627 ah_attr->sl = wc->sl;
628 ah_attr->src_path_bits = wc->dlid_path_bits;
629 ah_attr->port_num = port_num;
630
631 if (wc->wc_flags & IB_WC_GRH) {
632 ah_attr->ah_flags = IB_AH_GRH;
633 ah_attr->grh.dgid = sgid;
634
635 if (!rdma_cap_eth_ah(device, port_num)) {
636 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
637 ret = ib_find_cached_gid_by_port(device, &dgid,
638 IB_GID_TYPE_IB,
639 port_num, NULL,
640 &gid_index);
641 if (ret)
642 return ret;
643 }
644 }
645
646 ah_attr->grh.sgid_index = (u8) gid_index;
647 flow_class = be32_to_cpu(grh->version_tclass_flow);
648 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
649 ah_attr->grh.hop_limit = hoplimit;
650 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
651 }
652 return 0;
653 }
654 EXPORT_SYMBOL(ib_init_ah_from_wc);
655
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)656 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
657 const struct ib_grh *grh, u8 port_num)
658 {
659 struct ib_ah_attr ah_attr;
660 int ret;
661
662 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
663 if (ret)
664 return ERR_PTR(ret);
665
666 return ib_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
667 }
668 EXPORT_SYMBOL(ib_create_ah_from_wc);
669
ib_modify_ah(struct ib_ah * ah,struct ib_ah_attr * ah_attr)670 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
671 {
672 return ah->device->modify_ah ?
673 ah->device->modify_ah(ah, ah_attr) :
674 -ENOSYS;
675 }
676 EXPORT_SYMBOL(ib_modify_ah);
677
ib_query_ah(struct ib_ah * ah,struct ib_ah_attr * ah_attr)678 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
679 {
680 return ah->device->query_ah ?
681 ah->device->query_ah(ah, ah_attr) :
682 -ENOSYS;
683 }
684 EXPORT_SYMBOL(ib_query_ah);
685
ib_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)686 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
687 {
688 struct ib_pd *pd;
689
690 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
691
692 pd = ah->pd;
693 ah->device->destroy_ah(ah, flags);
694 atomic_dec(&pd->usecnt);
695
696 kfree(ah);
697 return 0;
698 }
699 EXPORT_SYMBOL(ib_destroy_ah_user);
700
701 /* Shared receive queues */
702
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)703 struct ib_srq *ib_create_srq(struct ib_pd *pd,
704 struct ib_srq_init_attr *srq_init_attr)
705 {
706 struct ib_srq *srq;
707 int ret;
708
709 if (!pd->device->create_srq)
710 return ERR_PTR(-EOPNOTSUPP);
711
712 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
713 if (!srq)
714 return ERR_PTR(-ENOMEM);
715
716 srq->device = pd->device;
717 srq->pd = pd;
718 srq->event_handler = srq_init_attr->event_handler;
719 srq->srq_context = srq_init_attr->srq_context;
720 srq->srq_type = srq_init_attr->srq_type;
721
722 if (ib_srq_has_cq(srq->srq_type)) {
723 srq->ext.cq = srq_init_attr->ext.cq;
724 atomic_inc(&srq->ext.cq->usecnt);
725 }
726 if (srq->srq_type == IB_SRQT_XRC) {
727 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
728 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
729 }
730 atomic_inc(&pd->usecnt);
731
732 ret = pd->device->create_srq(srq, srq_init_attr, NULL);
733 if (ret) {
734 atomic_dec(&srq->pd->usecnt);
735 if (srq->srq_type == IB_SRQT_XRC)
736 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
737 if (ib_srq_has_cq(srq->srq_type))
738 atomic_dec(&srq->ext.cq->usecnt);
739 kfree(srq);
740 return ERR_PTR(ret);
741 }
742
743 return srq;
744 }
745 EXPORT_SYMBOL(ib_create_srq);
746
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)747 int ib_modify_srq(struct ib_srq *srq,
748 struct ib_srq_attr *srq_attr,
749 enum ib_srq_attr_mask srq_attr_mask)
750 {
751 return srq->device->modify_srq ?
752 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
753 -ENOSYS;
754 }
755 EXPORT_SYMBOL(ib_modify_srq);
756
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)757 int ib_query_srq(struct ib_srq *srq,
758 struct ib_srq_attr *srq_attr)
759 {
760 return srq->device->query_srq ?
761 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
762 }
763 EXPORT_SYMBOL(ib_query_srq);
764
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)765 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
766 {
767 if (atomic_read(&srq->usecnt))
768 return -EBUSY;
769
770 srq->device->destroy_srq(srq, udata);
771
772 atomic_dec(&srq->pd->usecnt);
773 if (srq->srq_type == IB_SRQT_XRC)
774 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
775 if (ib_srq_has_cq(srq->srq_type))
776 atomic_dec(&srq->ext.cq->usecnt);
777 kfree(srq);
778
779 return 0;
780 }
781 EXPORT_SYMBOL(ib_destroy_srq_user);
782
783 /* Queue pairs */
784
__ib_shared_qp_event_handler(struct ib_event * event,void * context)785 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
786 {
787 struct ib_qp *qp = context;
788 unsigned long flags;
789
790 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
791 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
792 if (event->element.qp->event_handler)
793 event->element.qp->event_handler(event, event->element.qp->qp_context);
794 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
795 }
796
__ib_insert_xrcd_qp(struct ib_xrcd * xrcd,struct ib_qp * qp)797 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
798 {
799 mutex_lock(&xrcd->tgt_qp_mutex);
800 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
801 mutex_unlock(&xrcd->tgt_qp_mutex);
802 }
803
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)804 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
805 void (*event_handler)(struct ib_event *, void *),
806 void *qp_context)
807 {
808 struct ib_qp *qp;
809 unsigned long flags;
810
811 qp = kzalloc(sizeof *qp, GFP_KERNEL);
812 if (!qp)
813 return ERR_PTR(-ENOMEM);
814
815 qp->real_qp = real_qp;
816 atomic_inc(&real_qp->usecnt);
817 qp->device = real_qp->device;
818 qp->event_handler = event_handler;
819 qp->qp_context = qp_context;
820 qp->qp_num = real_qp->qp_num;
821 qp->qp_type = real_qp->qp_type;
822
823 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
824 list_add(&qp->open_list, &real_qp->open_list);
825 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
826
827 return qp;
828 }
829
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)830 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
831 struct ib_qp_open_attr *qp_open_attr)
832 {
833 struct ib_qp *qp, *real_qp;
834
835 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
836 return ERR_PTR(-EINVAL);
837
838 qp = ERR_PTR(-EINVAL);
839 mutex_lock(&xrcd->tgt_qp_mutex);
840 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
841 if (real_qp->qp_num == qp_open_attr->qp_num) {
842 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
843 qp_open_attr->qp_context);
844 break;
845 }
846 }
847 mutex_unlock(&xrcd->tgt_qp_mutex);
848 return qp;
849 }
850 EXPORT_SYMBOL(ib_open_qp);
851
ib_create_xrc_qp(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)852 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
853 struct ib_qp_init_attr *qp_init_attr)
854 {
855 struct ib_qp *real_qp = qp;
856
857 qp->event_handler = __ib_shared_qp_event_handler;
858 qp->qp_context = qp;
859 qp->pd = NULL;
860 qp->send_cq = qp->recv_cq = NULL;
861 qp->srq = NULL;
862 qp->xrcd = qp_init_attr->xrcd;
863 atomic_inc(&qp_init_attr->xrcd->usecnt);
864 INIT_LIST_HEAD(&qp->open_list);
865
866 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
867 qp_init_attr->qp_context);
868 if (!IS_ERR(qp))
869 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
870 else
871 real_qp->device->destroy_qp(real_qp, NULL);
872 return qp;
873 }
874
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)875 struct ib_qp *ib_create_qp(struct ib_pd *pd,
876 struct ib_qp_init_attr *qp_init_attr)
877 {
878 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
879 struct ib_qp *qp;
880
881 if (qp_init_attr->rwq_ind_tbl &&
882 (qp_init_attr->recv_cq ||
883 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
884 qp_init_attr->cap.max_recv_sge))
885 return ERR_PTR(-EINVAL);
886
887 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
888 if (IS_ERR(qp))
889 return qp;
890
891 qp->device = device;
892 qp->real_qp = qp;
893 qp->uobject = NULL;
894 qp->qp_type = qp_init_attr->qp_type;
895 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
896
897 atomic_set(&qp->usecnt, 0);
898 spin_lock_init(&qp->mr_lock);
899
900 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
901 return ib_create_xrc_qp(qp, qp_init_attr);
902
903 qp->event_handler = qp_init_attr->event_handler;
904 qp->qp_context = qp_init_attr->qp_context;
905 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
906 qp->recv_cq = NULL;
907 qp->srq = NULL;
908 } else {
909 qp->recv_cq = qp_init_attr->recv_cq;
910 if (qp_init_attr->recv_cq)
911 atomic_inc(&qp_init_attr->recv_cq->usecnt);
912 qp->srq = qp_init_attr->srq;
913 if (qp->srq)
914 atomic_inc(&qp_init_attr->srq->usecnt);
915 }
916
917 qp->pd = pd;
918 qp->send_cq = qp_init_attr->send_cq;
919 qp->xrcd = NULL;
920
921 atomic_inc(&pd->usecnt);
922 if (qp_init_attr->send_cq)
923 atomic_inc(&qp_init_attr->send_cq->usecnt);
924 if (qp_init_attr->rwq_ind_tbl)
925 atomic_inc(&qp->rwq_ind_tbl->usecnt);
926
927 /*
928 * Note: all hw drivers guarantee that max_send_sge is lower than
929 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
930 * max_send_sge <= max_sge_rd.
931 */
932 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
933 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
934 device->attrs.max_sge_rd);
935
936 return qp;
937 }
938 EXPORT_SYMBOL(ib_create_qp);
939
940 static const struct {
941 int valid;
942 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
943 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
944 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
945 [IB_QPS_RESET] = {
946 [IB_QPS_RESET] = { .valid = 1 },
947 [IB_QPS_INIT] = {
948 .valid = 1,
949 .req_param = {
950 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
951 IB_QP_PORT |
952 IB_QP_QKEY),
953 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
954 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
955 IB_QP_PORT |
956 IB_QP_ACCESS_FLAGS),
957 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
958 IB_QP_PORT |
959 IB_QP_ACCESS_FLAGS),
960 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
961 IB_QP_PORT |
962 IB_QP_ACCESS_FLAGS),
963 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
964 IB_QP_PORT |
965 IB_QP_ACCESS_FLAGS),
966 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
967 IB_QP_QKEY),
968 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
969 IB_QP_QKEY),
970 }
971 },
972 },
973 [IB_QPS_INIT] = {
974 [IB_QPS_RESET] = { .valid = 1 },
975 [IB_QPS_ERR] = { .valid = 1 },
976 [IB_QPS_INIT] = {
977 .valid = 1,
978 .opt_param = {
979 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
980 IB_QP_PORT |
981 IB_QP_QKEY),
982 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
983 IB_QP_PORT |
984 IB_QP_ACCESS_FLAGS),
985 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
986 IB_QP_PORT |
987 IB_QP_ACCESS_FLAGS),
988 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
989 IB_QP_PORT |
990 IB_QP_ACCESS_FLAGS),
991 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
992 IB_QP_PORT |
993 IB_QP_ACCESS_FLAGS),
994 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
995 IB_QP_QKEY),
996 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
997 IB_QP_QKEY),
998 }
999 },
1000 [IB_QPS_RTR] = {
1001 .valid = 1,
1002 .req_param = {
1003 [IB_QPT_UC] = (IB_QP_AV |
1004 IB_QP_PATH_MTU |
1005 IB_QP_DEST_QPN |
1006 IB_QP_RQ_PSN),
1007 [IB_QPT_RC] = (IB_QP_AV |
1008 IB_QP_PATH_MTU |
1009 IB_QP_DEST_QPN |
1010 IB_QP_RQ_PSN |
1011 IB_QP_MAX_DEST_RD_ATOMIC |
1012 IB_QP_MIN_RNR_TIMER),
1013 [IB_QPT_XRC_INI] = (IB_QP_AV |
1014 IB_QP_PATH_MTU |
1015 IB_QP_DEST_QPN |
1016 IB_QP_RQ_PSN),
1017 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1018 IB_QP_PATH_MTU |
1019 IB_QP_DEST_QPN |
1020 IB_QP_RQ_PSN |
1021 IB_QP_MAX_DEST_RD_ATOMIC |
1022 IB_QP_MIN_RNR_TIMER),
1023 },
1024 .opt_param = {
1025 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1026 IB_QP_QKEY),
1027 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1028 IB_QP_ACCESS_FLAGS |
1029 IB_QP_PKEY_INDEX),
1030 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1031 IB_QP_ACCESS_FLAGS |
1032 IB_QP_PKEY_INDEX),
1033 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1034 IB_QP_ACCESS_FLAGS |
1035 IB_QP_PKEY_INDEX),
1036 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1037 IB_QP_ACCESS_FLAGS |
1038 IB_QP_PKEY_INDEX),
1039 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1040 IB_QP_QKEY),
1041 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1042 IB_QP_QKEY),
1043 },
1044 },
1045 },
1046 [IB_QPS_RTR] = {
1047 [IB_QPS_RESET] = { .valid = 1 },
1048 [IB_QPS_ERR] = { .valid = 1 },
1049 [IB_QPS_RTS] = {
1050 .valid = 1,
1051 .req_param = {
1052 [IB_QPT_UD] = IB_QP_SQ_PSN,
1053 [IB_QPT_UC] = IB_QP_SQ_PSN,
1054 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1055 IB_QP_RETRY_CNT |
1056 IB_QP_RNR_RETRY |
1057 IB_QP_SQ_PSN |
1058 IB_QP_MAX_QP_RD_ATOMIC),
1059 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1060 IB_QP_RETRY_CNT |
1061 IB_QP_RNR_RETRY |
1062 IB_QP_SQ_PSN |
1063 IB_QP_MAX_QP_RD_ATOMIC),
1064 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1065 IB_QP_SQ_PSN),
1066 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1067 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1068 },
1069 .opt_param = {
1070 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1071 IB_QP_QKEY),
1072 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1073 IB_QP_ALT_PATH |
1074 IB_QP_ACCESS_FLAGS |
1075 IB_QP_PATH_MIG_STATE),
1076 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1077 IB_QP_ALT_PATH |
1078 IB_QP_ACCESS_FLAGS |
1079 IB_QP_MIN_RNR_TIMER |
1080 IB_QP_PATH_MIG_STATE),
1081 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1082 IB_QP_ALT_PATH |
1083 IB_QP_ACCESS_FLAGS |
1084 IB_QP_PATH_MIG_STATE),
1085 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1086 IB_QP_ALT_PATH |
1087 IB_QP_ACCESS_FLAGS |
1088 IB_QP_MIN_RNR_TIMER |
1089 IB_QP_PATH_MIG_STATE),
1090 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1091 IB_QP_QKEY),
1092 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1093 IB_QP_QKEY),
1094 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1095 }
1096 }
1097 },
1098 [IB_QPS_RTS] = {
1099 [IB_QPS_RESET] = { .valid = 1 },
1100 [IB_QPS_ERR] = { .valid = 1 },
1101 [IB_QPS_RTS] = {
1102 .valid = 1,
1103 .opt_param = {
1104 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1105 IB_QP_QKEY),
1106 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1107 IB_QP_ACCESS_FLAGS |
1108 IB_QP_ALT_PATH |
1109 IB_QP_PATH_MIG_STATE),
1110 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1111 IB_QP_ACCESS_FLAGS |
1112 IB_QP_ALT_PATH |
1113 IB_QP_PATH_MIG_STATE |
1114 IB_QP_MIN_RNR_TIMER),
1115 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1116 IB_QP_ACCESS_FLAGS |
1117 IB_QP_ALT_PATH |
1118 IB_QP_PATH_MIG_STATE),
1119 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1120 IB_QP_ACCESS_FLAGS |
1121 IB_QP_ALT_PATH |
1122 IB_QP_PATH_MIG_STATE |
1123 IB_QP_MIN_RNR_TIMER),
1124 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1125 IB_QP_QKEY),
1126 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1127 IB_QP_QKEY),
1128 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1129 }
1130 },
1131 [IB_QPS_SQD] = {
1132 .valid = 1,
1133 .opt_param = {
1134 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1135 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1136 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1137 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1138 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1139 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1140 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1141 }
1142 },
1143 },
1144 [IB_QPS_SQD] = {
1145 [IB_QPS_RESET] = { .valid = 1 },
1146 [IB_QPS_ERR] = { .valid = 1 },
1147 [IB_QPS_RTS] = {
1148 .valid = 1,
1149 .opt_param = {
1150 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1151 IB_QP_QKEY),
1152 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1153 IB_QP_ALT_PATH |
1154 IB_QP_ACCESS_FLAGS |
1155 IB_QP_PATH_MIG_STATE),
1156 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1157 IB_QP_ALT_PATH |
1158 IB_QP_ACCESS_FLAGS |
1159 IB_QP_MIN_RNR_TIMER |
1160 IB_QP_PATH_MIG_STATE),
1161 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1162 IB_QP_ALT_PATH |
1163 IB_QP_ACCESS_FLAGS |
1164 IB_QP_PATH_MIG_STATE),
1165 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1166 IB_QP_ALT_PATH |
1167 IB_QP_ACCESS_FLAGS |
1168 IB_QP_MIN_RNR_TIMER |
1169 IB_QP_PATH_MIG_STATE),
1170 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1171 IB_QP_QKEY),
1172 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1173 IB_QP_QKEY),
1174 }
1175 },
1176 [IB_QPS_SQD] = {
1177 .valid = 1,
1178 .opt_param = {
1179 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1180 IB_QP_QKEY),
1181 [IB_QPT_UC] = (IB_QP_AV |
1182 IB_QP_ALT_PATH |
1183 IB_QP_ACCESS_FLAGS |
1184 IB_QP_PKEY_INDEX |
1185 IB_QP_PATH_MIG_STATE),
1186 [IB_QPT_RC] = (IB_QP_PORT |
1187 IB_QP_AV |
1188 IB_QP_TIMEOUT |
1189 IB_QP_RETRY_CNT |
1190 IB_QP_RNR_RETRY |
1191 IB_QP_MAX_QP_RD_ATOMIC |
1192 IB_QP_MAX_DEST_RD_ATOMIC |
1193 IB_QP_ALT_PATH |
1194 IB_QP_ACCESS_FLAGS |
1195 IB_QP_PKEY_INDEX |
1196 IB_QP_MIN_RNR_TIMER |
1197 IB_QP_PATH_MIG_STATE),
1198 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1199 IB_QP_AV |
1200 IB_QP_TIMEOUT |
1201 IB_QP_RETRY_CNT |
1202 IB_QP_RNR_RETRY |
1203 IB_QP_MAX_QP_RD_ATOMIC |
1204 IB_QP_ALT_PATH |
1205 IB_QP_ACCESS_FLAGS |
1206 IB_QP_PKEY_INDEX |
1207 IB_QP_PATH_MIG_STATE),
1208 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1209 IB_QP_AV |
1210 IB_QP_TIMEOUT |
1211 IB_QP_MAX_DEST_RD_ATOMIC |
1212 IB_QP_ALT_PATH |
1213 IB_QP_ACCESS_FLAGS |
1214 IB_QP_PKEY_INDEX |
1215 IB_QP_MIN_RNR_TIMER |
1216 IB_QP_PATH_MIG_STATE),
1217 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1218 IB_QP_QKEY),
1219 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1220 IB_QP_QKEY),
1221 }
1222 }
1223 },
1224 [IB_QPS_SQE] = {
1225 [IB_QPS_RESET] = { .valid = 1 },
1226 [IB_QPS_ERR] = { .valid = 1 },
1227 [IB_QPS_RTS] = {
1228 .valid = 1,
1229 .opt_param = {
1230 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1231 IB_QP_QKEY),
1232 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1233 IB_QP_ACCESS_FLAGS),
1234 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1235 IB_QP_QKEY),
1236 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1237 IB_QP_QKEY),
1238 }
1239 }
1240 },
1241 [IB_QPS_ERR] = {
1242 [IB_QPS_RESET] = { .valid = 1 },
1243 [IB_QPS_ERR] = { .valid = 1 }
1244 }
1245 };
1246
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1247 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1248 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1249 {
1250 enum ib_qp_attr_mask req_param, opt_param;
1251
1252 if (mask & IB_QP_CUR_STATE &&
1253 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1254 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1255 return false;
1256
1257 if (!qp_state_table[cur_state][next_state].valid)
1258 return false;
1259
1260 req_param = qp_state_table[cur_state][next_state].req_param[type];
1261 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1262
1263 if ((mask & req_param) != req_param)
1264 return false;
1265
1266 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1267 return false;
1268
1269 return true;
1270 }
1271 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1272
ib_resolve_eth_dmac(struct ib_device * device,struct ib_ah_attr * ah_attr)1273 int ib_resolve_eth_dmac(struct ib_device *device,
1274 struct ib_ah_attr *ah_attr)
1275 {
1276 struct ib_gid_attr sgid_attr;
1277 union ib_gid sgid;
1278 int hop_limit;
1279 int ret;
1280
1281 if (ah_attr->port_num < rdma_start_port(device) ||
1282 ah_attr->port_num > rdma_end_port(device))
1283 return -EINVAL;
1284
1285 if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1286 return 0;
1287
1288 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1289 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1290 __be32 addr = 0;
1291
1292 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1293 ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1294 } else {
1295 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1296 (char *)ah_attr->dmac);
1297 }
1298 return 0;
1299 }
1300
1301 ret = ib_query_gid(device,
1302 ah_attr->port_num,
1303 ah_attr->grh.sgid_index,
1304 &sgid, &sgid_attr);
1305 if (ret != 0)
1306 return (ret);
1307 if (!sgid_attr.ndev)
1308 return -ENXIO;
1309
1310 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1311 &ah_attr->grh.dgid,
1312 ah_attr->dmac,
1313 sgid_attr.ndev, &hop_limit);
1314 dev_put(sgid_attr.ndev);
1315
1316 ah_attr->grh.hop_limit = hop_limit;
1317 return ret;
1318 }
1319 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1320
is_qp_type_connected(const struct ib_qp * qp)1321 static bool is_qp_type_connected(const struct ib_qp *qp)
1322 {
1323 return (qp->qp_type == IB_QPT_UC ||
1324 qp->qp_type == IB_QPT_RC ||
1325 qp->qp_type == IB_QPT_XRC_INI ||
1326 qp->qp_type == IB_QPT_XRC_TGT);
1327 }
1328
1329 /**
1330 * IB core internal function to perform QP attributes modification.
1331 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1332 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1333 int attr_mask, struct ib_udata *udata)
1334 {
1335 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1336 int ret;
1337
1338 if (port < rdma_start_port(qp->device) ||
1339 port > rdma_end_port(qp->device))
1340 return -EINVAL;
1341
1342 if (attr_mask & IB_QP_ALT_PATH) {
1343 /*
1344 * Today the core code can only handle alternate paths and APM
1345 * for IB. Ban them in roce mode.
1346 */
1347 if (!(rdma_protocol_ib(qp->device,
1348 attr->alt_ah_attr.port_num) &&
1349 rdma_protocol_ib(qp->device, port))) {
1350 ret = EINVAL;
1351 goto out;
1352 }
1353 }
1354
1355 /*
1356 * If the user provided the qp_attr then we have to resolve it. Kernel
1357 * users have to provide already resolved rdma_ah_attr's
1358 */
1359 if (udata && (attr_mask & IB_QP_AV) &&
1360 rdma_protocol_roce(qp->device, port) &&
1361 is_qp_type_connected(qp)) {
1362 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1363 if (ret)
1364 goto out;
1365 }
1366
1367 if (rdma_ib_or_roce(qp->device, port)) {
1368 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1369 dev_warn(&qp->device->dev,
1370 "%s rq_psn overflow, masking to 24 bits\n",
1371 __func__);
1372 attr->rq_psn &= 0xffffff;
1373 }
1374
1375 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1376 dev_warn(&qp->device->dev,
1377 " %s sq_psn overflow, masking to 24 bits\n",
1378 __func__);
1379 attr->sq_psn &= 0xffffff;
1380 }
1381 }
1382
1383 ret = qp->device->modify_qp(qp, attr, attr_mask, udata);
1384 if (ret)
1385 goto out;
1386
1387 if (attr_mask & IB_QP_PORT)
1388 qp->port = attr->port_num;
1389 out:
1390 return ret;
1391 }
1392
1393 /**
1394 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1395 * @ib_qp: The QP to modify.
1396 * @attr: On input, specifies the QP attributes to modify. On output,
1397 * the current values of selected QP attributes are returned.
1398 * @attr_mask: A bit-mask used to specify which attributes of the QP
1399 * are being modified.
1400 * @udata: pointer to user's input output buffer information
1401 * are being modified.
1402 * It returns 0 on success and returns appropriate error code on error.
1403 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1404 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1405 int attr_mask, struct ib_udata *udata)
1406 {
1407 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1408 }
1409 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1410
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1411 int ib_modify_qp(struct ib_qp *qp,
1412 struct ib_qp_attr *qp_attr,
1413 int qp_attr_mask)
1414 {
1415 if (qp_attr_mask & IB_QP_AV) {
1416 int ret;
1417
1418 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1419 if (ret)
1420 return ret;
1421 }
1422
1423 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1424 }
1425 EXPORT_SYMBOL(ib_modify_qp);
1426
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1427 int ib_query_qp(struct ib_qp *qp,
1428 struct ib_qp_attr *qp_attr,
1429 int qp_attr_mask,
1430 struct ib_qp_init_attr *qp_init_attr)
1431 {
1432 return qp->device->query_qp ?
1433 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1434 -ENOSYS;
1435 }
1436 EXPORT_SYMBOL(ib_query_qp);
1437
ib_close_qp(struct ib_qp * qp)1438 int ib_close_qp(struct ib_qp *qp)
1439 {
1440 struct ib_qp *real_qp;
1441 unsigned long flags;
1442
1443 real_qp = qp->real_qp;
1444 if (real_qp == qp)
1445 return -EINVAL;
1446
1447 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1448 list_del(&qp->open_list);
1449 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1450
1451 atomic_dec(&real_qp->usecnt);
1452 kfree(qp);
1453
1454 return 0;
1455 }
1456 EXPORT_SYMBOL(ib_close_qp);
1457
__ib_destroy_shared_qp(struct ib_qp * qp)1458 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1459 {
1460 struct ib_xrcd *xrcd;
1461 struct ib_qp *real_qp;
1462 int ret;
1463
1464 real_qp = qp->real_qp;
1465 xrcd = real_qp->xrcd;
1466
1467 mutex_lock(&xrcd->tgt_qp_mutex);
1468 ib_close_qp(qp);
1469 if (atomic_read(&real_qp->usecnt) == 0)
1470 list_del(&real_qp->xrcd_list);
1471 else
1472 real_qp = NULL;
1473 mutex_unlock(&xrcd->tgt_qp_mutex);
1474
1475 if (real_qp) {
1476 ret = ib_destroy_qp(real_qp);
1477 if (!ret)
1478 atomic_dec(&xrcd->usecnt);
1479 else
1480 __ib_insert_xrcd_qp(xrcd, real_qp);
1481 }
1482
1483 return 0;
1484 }
1485
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)1486 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1487 {
1488 struct ib_pd *pd;
1489 struct ib_cq *scq, *rcq;
1490 struct ib_srq *srq;
1491 struct ib_rwq_ind_table *ind_tbl;
1492 int ret;
1493
1494 if (atomic_read(&qp->usecnt))
1495 return -EBUSY;
1496
1497 if (qp->real_qp != qp)
1498 return __ib_destroy_shared_qp(qp);
1499
1500 pd = qp->pd;
1501 scq = qp->send_cq;
1502 rcq = qp->recv_cq;
1503 srq = qp->srq;
1504 ind_tbl = qp->rwq_ind_tbl;
1505
1506 ret = qp->device->destroy_qp(qp, udata);
1507 if (!ret) {
1508 if (pd)
1509 atomic_dec(&pd->usecnt);
1510 if (scq)
1511 atomic_dec(&scq->usecnt);
1512 if (rcq)
1513 atomic_dec(&rcq->usecnt);
1514 if (srq)
1515 atomic_dec(&srq->usecnt);
1516 if (ind_tbl)
1517 atomic_dec(&ind_tbl->usecnt);
1518 }
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL(ib_destroy_qp_user);
1523
1524 /* Completion queues */
1525
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)1526 struct ib_cq *__ib_create_cq(struct ib_device *device,
1527 ib_comp_handler comp_handler,
1528 void (*event_handler)(struct ib_event *, void *),
1529 void *cq_context,
1530 const struct ib_cq_init_attr *cq_attr,
1531 const char *caller)
1532 {
1533 struct ib_cq *cq;
1534 int ret;
1535
1536 cq = rdma_zalloc_drv_obj(device, ib_cq);
1537 if (!cq)
1538 return ERR_PTR(-ENOMEM);
1539
1540 cq->device = device;
1541 cq->uobject = NULL;
1542 cq->comp_handler = comp_handler;
1543 cq->event_handler = event_handler;
1544 cq->cq_context = cq_context;
1545 atomic_set(&cq->usecnt, 0);
1546
1547 ret = device->create_cq(cq, cq_attr, NULL);
1548 if (ret) {
1549 kfree(cq);
1550 return ERR_PTR(ret);
1551 }
1552
1553 return cq;
1554 }
1555 EXPORT_SYMBOL(__ib_create_cq);
1556
ib_modify_cq(struct ib_cq * cq,u16 cq_count,u16 cq_period)1557 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1558 {
1559 return cq->device->modify_cq ?
1560 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1561 }
1562 EXPORT_SYMBOL(ib_modify_cq);
1563
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)1564 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1565 {
1566 if (atomic_read(&cq->usecnt))
1567 return -EBUSY;
1568
1569 cq->device->destroy_cq(cq, udata);
1570 kfree(cq);
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(ib_destroy_cq_user);
1574
ib_resize_cq(struct ib_cq * cq,int cqe)1575 int ib_resize_cq(struct ib_cq *cq, int cqe)
1576 {
1577 return cq->device->resize_cq ?
1578 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1579 }
1580 EXPORT_SYMBOL(ib_resize_cq);
1581
1582 /* Memory regions */
1583
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)1584 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1585 {
1586 struct ib_pd *pd = mr->pd;
1587 struct ib_dm *dm = mr->dm;
1588 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1589 int ret;
1590
1591 ret = mr->device->dereg_mr(mr, udata);
1592 if (!ret) {
1593 atomic_dec(&pd->usecnt);
1594 if (dm)
1595 atomic_dec(&dm->usecnt);
1596 kfree(sig_attrs);
1597 }
1598
1599 return ret;
1600 }
1601 EXPORT_SYMBOL(ib_dereg_mr_user);
1602
1603 /**
1604 * ib_alloc_mr_user() - Allocates a memory region
1605 * @pd: protection domain associated with the region
1606 * @mr_type: memory region type
1607 * @max_num_sg: maximum sg entries available for registration.
1608 * @udata: user data or null for kernel objects
1609 *
1610 * Notes:
1611 * Memory registeration page/sg lists must not exceed max_num_sg.
1612 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1613 * max_num_sg * used_page_size.
1614 *
1615 */
ib_alloc_mr_user(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,struct ib_udata * udata)1616 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
1617 u32 max_num_sg, struct ib_udata *udata)
1618 {
1619 struct ib_mr *mr;
1620
1621 if (!pd->device->alloc_mr) {
1622 mr = ERR_PTR(-EOPNOTSUPP);
1623 goto out;
1624 }
1625
1626 if (mr_type == IB_MR_TYPE_INTEGRITY) {
1627 WARN_ON_ONCE(1);
1628 mr = ERR_PTR(-EINVAL);
1629 goto out;
1630 }
1631
1632 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg, udata);
1633 if (!IS_ERR(mr)) {
1634 mr->device = pd->device;
1635 mr->pd = pd;
1636 mr->dm = NULL;
1637 mr->uobject = NULL;
1638 atomic_inc(&pd->usecnt);
1639 mr->need_inval = false;
1640 mr->type = mr_type;
1641 mr->sig_attrs = NULL;
1642 }
1643
1644 out:
1645 return mr;
1646 }
1647 EXPORT_SYMBOL(ib_alloc_mr_user);
1648
1649 /* "Fast" memory regions */
1650
ib_alloc_fmr(struct ib_pd * pd,int mr_access_flags,struct ib_fmr_attr * fmr_attr)1651 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1652 int mr_access_flags,
1653 struct ib_fmr_attr *fmr_attr)
1654 {
1655 struct ib_fmr *fmr;
1656
1657 if (!pd->device->alloc_fmr)
1658 return ERR_PTR(-ENOSYS);
1659
1660 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1661 if (!IS_ERR(fmr)) {
1662 fmr->device = pd->device;
1663 fmr->pd = pd;
1664 atomic_inc(&pd->usecnt);
1665 }
1666
1667 return fmr;
1668 }
1669 EXPORT_SYMBOL(ib_alloc_fmr);
1670
ib_unmap_fmr(struct list_head * fmr_list)1671 int ib_unmap_fmr(struct list_head *fmr_list)
1672 {
1673 struct ib_fmr *fmr;
1674
1675 if (list_empty(fmr_list))
1676 return 0;
1677
1678 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1679 return fmr->device->unmap_fmr(fmr_list);
1680 }
1681 EXPORT_SYMBOL(ib_unmap_fmr);
1682
ib_dealloc_fmr(struct ib_fmr * fmr)1683 int ib_dealloc_fmr(struct ib_fmr *fmr)
1684 {
1685 struct ib_pd *pd;
1686 int ret;
1687
1688 pd = fmr->pd;
1689 ret = fmr->device->dealloc_fmr(fmr);
1690 if (!ret)
1691 atomic_dec(&pd->usecnt);
1692
1693 return ret;
1694 }
1695 EXPORT_SYMBOL(ib_dealloc_fmr);
1696
1697 /* Multicast groups */
1698
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)1699 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1700 {
1701 struct ib_qp_init_attr init_attr = {};
1702 struct ib_qp_attr attr = {};
1703 int num_eth_ports = 0;
1704 int port;
1705
1706 /* If QP state >= init, it is assigned to a port and we can check this
1707 * port only.
1708 */
1709 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1710 if (attr.qp_state >= IB_QPS_INIT) {
1711 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1712 IB_LINK_LAYER_INFINIBAND)
1713 return true;
1714 goto lid_check;
1715 }
1716 }
1717
1718 /* Can't get a quick answer, iterate over all ports */
1719 for (port = 0; port < qp->device->phys_port_cnt; port++)
1720 if (rdma_port_get_link_layer(qp->device, port) !=
1721 IB_LINK_LAYER_INFINIBAND)
1722 num_eth_ports++;
1723
1724 /* If we have at lease one Ethernet port, RoCE annex declares that
1725 * multicast LID should be ignored. We can't tell at this step if the
1726 * QP belongs to an IB or Ethernet port.
1727 */
1728 if (num_eth_ports)
1729 return true;
1730
1731 /* If all the ports are IB, we can check according to IB spec. */
1732 lid_check:
1733 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1734 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1735 }
1736
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1737 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1738 {
1739 int ret;
1740
1741 if (!qp->device->attach_mcast)
1742 return -ENOSYS;
1743
1744 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1745 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1746 return -EINVAL;
1747
1748 ret = qp->device->attach_mcast(qp, gid, lid);
1749 if (!ret)
1750 atomic_inc(&qp->usecnt);
1751 return ret;
1752 }
1753 EXPORT_SYMBOL(ib_attach_mcast);
1754
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)1755 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1756 {
1757 int ret;
1758
1759 if (!qp->device->detach_mcast)
1760 return -ENOSYS;
1761
1762 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1763 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1764 return -EINVAL;
1765
1766 ret = qp->device->detach_mcast(qp, gid, lid);
1767 if (!ret)
1768 atomic_dec(&qp->usecnt);
1769 return ret;
1770 }
1771 EXPORT_SYMBOL(ib_detach_mcast);
1772
__ib_alloc_xrcd(struct ib_device * device,const char * caller)1773 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1774 {
1775 struct ib_xrcd *xrcd;
1776
1777 if (!device->alloc_xrcd)
1778 return ERR_PTR(-EOPNOTSUPP);
1779
1780 xrcd = device->alloc_xrcd(device, NULL);
1781 if (!IS_ERR(xrcd)) {
1782 xrcd->device = device;
1783 xrcd->inode = NULL;
1784 atomic_set(&xrcd->usecnt, 0);
1785 mutex_init(&xrcd->tgt_qp_mutex);
1786 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1787 }
1788
1789 return xrcd;
1790 }
1791 EXPORT_SYMBOL(__ib_alloc_xrcd);
1792
ib_dealloc_xrcd(struct ib_xrcd * xrcd,struct ib_udata * udata)1793 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
1794 {
1795 struct ib_qp *qp;
1796 int ret;
1797
1798 if (atomic_read(&xrcd->usecnt))
1799 return -EBUSY;
1800
1801 while (!list_empty(&xrcd->tgt_qp_list)) {
1802 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1803 ret = ib_destroy_qp(qp);
1804 if (ret)
1805 return ret;
1806 }
1807 mutex_destroy(&xrcd->tgt_qp_mutex);
1808
1809 return xrcd->device->dealloc_xrcd(xrcd, udata);
1810 }
1811 EXPORT_SYMBOL(ib_dealloc_xrcd);
1812
1813 /**
1814 * ib_create_wq - Creates a WQ associated with the specified protection
1815 * domain.
1816 * @pd: The protection domain associated with the WQ.
1817 * @wq_init_attr: A list of initial attributes required to create the
1818 * WQ. If WQ creation succeeds, then the attributes are updated to
1819 * the actual capabilities of the created WQ.
1820 *
1821 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1822 * the requested size of the WQ, and set to the actual values allocated
1823 * on return.
1824 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1825 * at least as large as the requested values.
1826 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)1827 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1828 struct ib_wq_init_attr *wq_attr)
1829 {
1830 struct ib_wq *wq;
1831
1832 if (!pd->device->create_wq)
1833 return ERR_PTR(-ENOSYS);
1834
1835 wq = pd->device->create_wq(pd, wq_attr, NULL);
1836 if (!IS_ERR(wq)) {
1837 wq->event_handler = wq_attr->event_handler;
1838 wq->wq_context = wq_attr->wq_context;
1839 wq->wq_type = wq_attr->wq_type;
1840 wq->cq = wq_attr->cq;
1841 wq->device = pd->device;
1842 wq->pd = pd;
1843 wq->uobject = NULL;
1844 atomic_inc(&pd->usecnt);
1845 atomic_inc(&wq_attr->cq->usecnt);
1846 atomic_set(&wq->usecnt, 0);
1847 }
1848 return wq;
1849 }
1850 EXPORT_SYMBOL(ib_create_wq);
1851
1852 /**
1853 * ib_destroy_wq - Destroys the specified user WQ.
1854 * @wq: The WQ to destroy.
1855 * @udata: Valid user data
1856 */
ib_destroy_wq(struct ib_wq * wq,struct ib_udata * udata)1857 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
1858 {
1859 struct ib_cq *cq = wq->cq;
1860 struct ib_pd *pd = wq->pd;
1861
1862 if (atomic_read(&wq->usecnt))
1863 return -EBUSY;
1864
1865 wq->device->destroy_wq(wq, udata);
1866 atomic_dec(&pd->usecnt);
1867 atomic_dec(&cq->usecnt);
1868
1869 return 0;
1870 }
1871 EXPORT_SYMBOL(ib_destroy_wq);
1872
1873 /**
1874 * ib_modify_wq - Modifies the specified WQ.
1875 * @wq: The WQ to modify.
1876 * @wq_attr: On input, specifies the WQ attributes to modify.
1877 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1878 * are being modified.
1879 * On output, the current values of selected WQ attributes are returned.
1880 */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)1881 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1882 u32 wq_attr_mask)
1883 {
1884 int err;
1885
1886 if (!wq->device->modify_wq)
1887 return -ENOSYS;
1888
1889 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1890 return err;
1891 }
1892 EXPORT_SYMBOL(ib_modify_wq);
1893
1894 /*
1895 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1896 * @device: The device on which to create the rwq indirection table.
1897 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1898 * create the Indirection Table.
1899 *
1900 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1901 * than the created ib_rwq_ind_table object and the caller is responsible
1902 * for its memory allocation/free.
1903 */
ib_create_rwq_ind_table(struct ib_device * device,struct ib_rwq_ind_table_init_attr * init_attr)1904 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1905 struct ib_rwq_ind_table_init_attr *init_attr)
1906 {
1907 struct ib_rwq_ind_table *rwq_ind_table;
1908 int i;
1909 u32 table_size;
1910
1911 if (!device->create_rwq_ind_table)
1912 return ERR_PTR(-ENOSYS);
1913
1914 table_size = (1 << init_attr->log_ind_tbl_size);
1915 rwq_ind_table = device->create_rwq_ind_table(device,
1916 init_attr, NULL);
1917 if (IS_ERR(rwq_ind_table))
1918 return rwq_ind_table;
1919
1920 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1921 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1922 rwq_ind_table->device = device;
1923 rwq_ind_table->uobject = NULL;
1924 atomic_set(&rwq_ind_table->usecnt, 0);
1925
1926 for (i = 0; i < table_size; i++)
1927 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1928
1929 return rwq_ind_table;
1930 }
1931 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1932
1933 /*
1934 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1935 * @wq_ind_table: The Indirection Table to destroy.
1936 */
ib_destroy_rwq_ind_table(struct ib_rwq_ind_table * rwq_ind_table)1937 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1938 {
1939 int err, i;
1940 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1941 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1942
1943 if (atomic_read(&rwq_ind_table->usecnt))
1944 return -EBUSY;
1945
1946 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1947 if (!err) {
1948 for (i = 0; i < table_size; i++)
1949 atomic_dec(&ind_tbl[i]->usecnt);
1950 }
1951
1952 return err;
1953 }
1954 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1955
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)1956 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1957 struct ib_mr_status *mr_status)
1958 {
1959 return mr->device->check_mr_status ?
1960 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1961 }
1962 EXPORT_SYMBOL(ib_check_mr_status);
1963
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)1964 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1965 int state)
1966 {
1967 if (!device->set_vf_link_state)
1968 return -ENOSYS;
1969
1970 return device->set_vf_link_state(device, vf, port, state);
1971 }
1972 EXPORT_SYMBOL(ib_set_vf_link_state);
1973
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)1974 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1975 struct ifla_vf_info *info)
1976 {
1977 if (!device->get_vf_config)
1978 return -ENOSYS;
1979
1980 return device->get_vf_config(device, vf, port, info);
1981 }
1982 EXPORT_SYMBOL(ib_get_vf_config);
1983
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)1984 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1985 struct ifla_vf_stats *stats)
1986 {
1987 if (!device->get_vf_stats)
1988 return -ENOSYS;
1989
1990 return device->get_vf_stats(device, vf, port, stats);
1991 }
1992 EXPORT_SYMBOL(ib_get_vf_stats);
1993
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)1994 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1995 int type)
1996 {
1997 if (!device->set_vf_guid)
1998 return -ENOSYS;
1999
2000 return device->set_vf_guid(device, vf, port, guid, type);
2001 }
2002 EXPORT_SYMBOL(ib_set_vf_guid);
2003
2004 /**
2005 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2006 * and set it the memory region.
2007 * @mr: memory region
2008 * @sg: dma mapped scatterlist
2009 * @sg_nents: number of entries in sg
2010 * @sg_offset: offset in bytes into sg
2011 * @page_size: page vector desired page size
2012 *
2013 * Constraints:
2014 * - The first sg element is allowed to have an offset.
2015 * - Each sg element must either be aligned to page_size or virtually
2016 * contiguous to the previous element. In case an sg element has a
2017 * non-contiguous offset, the mapping prefix will not include it.
2018 * - The last sg element is allowed to have length less than page_size.
2019 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2020 * then only max_num_sg entries will be mapped.
2021 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2022 * constraints holds and the page_size argument is ignored.
2023 *
2024 * Returns the number of sg elements that were mapped to the memory region.
2025 *
2026 * After this completes successfully, the memory region
2027 * is ready for registration.
2028 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2029 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2030 unsigned int *sg_offset, unsigned int page_size)
2031 {
2032 if (unlikely(!mr->device->map_mr_sg))
2033 return -ENOSYS;
2034
2035 mr->page_size = page_size;
2036
2037 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2038 }
2039 EXPORT_SYMBOL(ib_map_mr_sg);
2040
2041 /**
2042 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2043 * to a page vector
2044 * @mr: memory region
2045 * @sgl: dma mapped scatterlist
2046 * @sg_nents: number of entries in sg
2047 * @sg_offset_p: IN: start offset in bytes into sg
2048 * OUT: offset in bytes for element n of the sg of the first
2049 * byte that has not been processed where n is the return
2050 * value of this function.
2051 * @set_page: driver page assignment function pointer
2052 *
2053 * Core service helper for drivers to convert the largest
2054 * prefix of given sg list to a page vector. The sg list
2055 * prefix converted is the prefix that meet the requirements
2056 * of ib_map_mr_sg.
2057 *
2058 * Returns the number of sg elements that were assigned to
2059 * a page vector.
2060 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2061 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2062 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2063 {
2064 struct scatterlist *sg;
2065 u64 last_end_dma_addr = 0;
2066 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2067 unsigned int last_page_off = 0;
2068 u64 page_mask = ~((u64)mr->page_size - 1);
2069 int i, ret;
2070
2071 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2072 return -EINVAL;
2073
2074 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2075 mr->length = 0;
2076
2077 for_each_sg(sgl, sg, sg_nents, i) {
2078 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2079 u64 prev_addr = dma_addr;
2080 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2081 u64 end_dma_addr = dma_addr + dma_len;
2082 u64 page_addr = dma_addr & page_mask;
2083
2084 /*
2085 * For the second and later elements, check whether either the
2086 * end of element i-1 or the start of element i is not aligned
2087 * on a page boundary.
2088 */
2089 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2090 /* Stop mapping if there is a gap. */
2091 if (last_end_dma_addr != dma_addr)
2092 break;
2093
2094 /*
2095 * Coalesce this element with the last. If it is small
2096 * enough just update mr->length. Otherwise start
2097 * mapping from the next page.
2098 */
2099 goto next_page;
2100 }
2101
2102 do {
2103 ret = set_page(mr, page_addr);
2104 if (unlikely(ret < 0)) {
2105 sg_offset = prev_addr - sg_dma_address(sg);
2106 mr->length += prev_addr - dma_addr;
2107 if (sg_offset_p)
2108 *sg_offset_p = sg_offset;
2109 return i || sg_offset ? i : ret;
2110 }
2111 prev_addr = page_addr;
2112 next_page:
2113 page_addr += mr->page_size;
2114 } while (page_addr < end_dma_addr);
2115
2116 mr->length += dma_len;
2117 last_end_dma_addr = end_dma_addr;
2118 last_page_off = end_dma_addr & ~page_mask;
2119
2120 sg_offset = 0;
2121 }
2122
2123 if (sg_offset_p)
2124 *sg_offset_p = 0;
2125 return i;
2126 }
2127 EXPORT_SYMBOL(ib_sg_to_pages);
2128
2129 struct ib_drain_cqe {
2130 struct ib_cqe cqe;
2131 struct completion done;
2132 };
2133
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2134 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2135 {
2136 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2137 cqe);
2138
2139 complete(&cqe->done);
2140 }
2141
2142 /*
2143 * Post a WR and block until its completion is reaped for the SQ.
2144 */
__ib_drain_sq(struct ib_qp * qp)2145 static void __ib_drain_sq(struct ib_qp *qp)
2146 {
2147 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2148 struct ib_drain_cqe sdrain;
2149 const struct ib_send_wr *bad_swr;
2150 struct ib_rdma_wr swr = {
2151 .wr = {
2152 .opcode = IB_WR_RDMA_WRITE,
2153 .wr_cqe = &sdrain.cqe,
2154 },
2155 };
2156 int ret;
2157
2158 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
2159 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
2160 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2161 return;
2162 }
2163
2164 sdrain.cqe.done = ib_drain_qp_done;
2165 init_completion(&sdrain.done);
2166
2167 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2168 if (ret) {
2169 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2170 return;
2171 }
2172
2173 ret = ib_post_send(qp, &swr.wr, &bad_swr);
2174 if (ret) {
2175 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2176 return;
2177 }
2178
2179 wait_for_completion(&sdrain.done);
2180 }
2181
2182 /*
2183 * Post a WR and block until its completion is reaped for the RQ.
2184 */
__ib_drain_rq(struct ib_qp * qp)2185 static void __ib_drain_rq(struct ib_qp *qp)
2186 {
2187 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2188 struct ib_drain_cqe rdrain;
2189 struct ib_recv_wr rwr = {};
2190 const struct ib_recv_wr *bad_rwr;
2191 int ret;
2192
2193 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2194 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2195 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2196 return;
2197 }
2198
2199 rwr.wr_cqe = &rdrain.cqe;
2200 rdrain.cqe.done = ib_drain_qp_done;
2201 init_completion(&rdrain.done);
2202
2203 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2204 if (ret) {
2205 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2206 return;
2207 }
2208
2209 ret = ib_post_recv(qp, &rwr, &bad_rwr);
2210 if (ret) {
2211 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2212 return;
2213 }
2214
2215 wait_for_completion(&rdrain.done);
2216 }
2217
2218 /**
2219 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2220 * application.
2221 * @qp: queue pair to drain
2222 *
2223 * If the device has a provider-specific drain function, then
2224 * call that. Otherwise call the generic drain function
2225 * __ib_drain_sq().
2226 *
2227 * The caller must:
2228 *
2229 * ensure there is room in the CQ and SQ for the drain work request and
2230 * completion.
2231 *
2232 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2233 * IB_POLL_DIRECT.
2234 *
2235 * ensure that there are no other contexts that are posting WRs concurrently.
2236 * Otherwise the drain is not guaranteed.
2237 */
ib_drain_sq(struct ib_qp * qp)2238 void ib_drain_sq(struct ib_qp *qp)
2239 {
2240 if (qp->device->drain_sq)
2241 qp->device->drain_sq(qp);
2242 else
2243 __ib_drain_sq(qp);
2244 }
2245 EXPORT_SYMBOL(ib_drain_sq);
2246
2247 /**
2248 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2249 * application.
2250 * @qp: queue pair to drain
2251 *
2252 * If the device has a provider-specific drain function, then
2253 * call that. Otherwise call the generic drain function
2254 * __ib_drain_rq().
2255 *
2256 * The caller must:
2257 *
2258 * ensure there is room in the CQ and RQ for the drain work request and
2259 * completion.
2260 *
2261 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2262 * IB_POLL_DIRECT.
2263 *
2264 * ensure that there are no other contexts that are posting WRs concurrently.
2265 * Otherwise the drain is not guaranteed.
2266 */
ib_drain_rq(struct ib_qp * qp)2267 void ib_drain_rq(struct ib_qp *qp)
2268 {
2269 if (qp->device->drain_rq)
2270 qp->device->drain_rq(qp);
2271 else
2272 __ib_drain_rq(qp);
2273 }
2274 EXPORT_SYMBOL(ib_drain_rq);
2275
2276 /**
2277 * ib_drain_qp() - Block until all CQEs have been consumed by the
2278 * application on both the RQ and SQ.
2279 * @qp: queue pair to drain
2280 *
2281 * The caller must:
2282 *
2283 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2284 * and completions.
2285 *
2286 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2287 * IB_POLL_DIRECT.
2288 *
2289 * ensure that there are no other contexts that are posting WRs concurrently.
2290 * Otherwise the drain is not guaranteed.
2291 */
ib_drain_qp(struct ib_qp * qp)2292 void ib_drain_qp(struct ib_qp *qp)
2293 {
2294 ib_drain_sq(qp);
2295 if (!qp->srq)
2296 ib_drain_rq(qp);
2297 }
2298 EXPORT_SYMBOL(ib_drain_qp);
2299