1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62
63 /*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86 /*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 if (refcount_dec_and_test(&client->uses))
105 complete(&client->uses_zero);
106 }
107
108 /*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113
114 unsigned int rdma_dev_net_id;
115
116 /*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131 /**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 return (ib_devices_shared_netns ||
144 net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147
148 /*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157 {
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(&xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196 {
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level[1] - '0',
199 ibdev->dev.parent,
200 "%s %s %s: %pV",
201 dev_driver_string(ibdev->dev.parent),
202 dev_name(ibdev->dev.parent),
203 dev_name(&ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211
212 #define define_ibdev_printk_level(func, level) \
213 void func(const struct ib_device *ibdev, const char *fmt, ...) \
214 { \
215 struct va_format vaf; \
216 va_list args; \
217 \
218 va_start(args, fmt); \
219 \
220 vaf.fmt = fmt; \
221 vaf.va = &args; \
222 \
223 __ibdev_printk(level, ibdev, &vaf); \
224 \
225 va_end(args); \
226 } \
227 EXPORT_SYMBOL(func);
228
229 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
230 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
231 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
232 define_ibdev_printk_level(ibdev_err, KERN_ERR);
233 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
234 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
235 define_ibdev_printk_level(ibdev_info, KERN_INFO);
236
237 static struct notifier_block ibdev_lsm_nb = {
238 .notifier_call = ib_security_change,
239 };
240
241 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
242 struct net *net);
243
244 /* Pointer to the RCU head at the start of the ib_port_data array */
245 struct ib_port_data_rcu {
246 struct rcu_head rcu_head;
247 struct ib_port_data pdata[];
248 };
249
ib_device_check_mandatory(struct ib_device * device)250 static void ib_device_check_mandatory(struct ib_device *device)
251 {
252 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
253 static const struct {
254 size_t offset;
255 char *name;
256 } mandatory_table[] = {
257 IB_MANDATORY_FUNC(query_device),
258 IB_MANDATORY_FUNC(query_port),
259 IB_MANDATORY_FUNC(alloc_pd),
260 IB_MANDATORY_FUNC(dealloc_pd),
261 IB_MANDATORY_FUNC(create_qp),
262 IB_MANDATORY_FUNC(modify_qp),
263 IB_MANDATORY_FUNC(destroy_qp),
264 IB_MANDATORY_FUNC(post_send),
265 IB_MANDATORY_FUNC(post_recv),
266 IB_MANDATORY_FUNC(create_cq),
267 IB_MANDATORY_FUNC(destroy_cq),
268 IB_MANDATORY_FUNC(poll_cq),
269 IB_MANDATORY_FUNC(req_notify_cq),
270 IB_MANDATORY_FUNC(get_dma_mr),
271 IB_MANDATORY_FUNC(reg_user_mr),
272 IB_MANDATORY_FUNC(dereg_mr),
273 IB_MANDATORY_FUNC(get_port_immutable)
274 };
275 int i;
276
277 device->kverbs_provider = true;
278 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
279 if (!*(void **) ((void *) &device->ops +
280 mandatory_table[i].offset)) {
281 device->kverbs_provider = false;
282 break;
283 }
284 }
285 }
286
287 /*
288 * Caller must perform ib_device_put() to return the device reference count
289 * when ib_device_get_by_index() returns valid device pointer.
290 */
ib_device_get_by_index(const struct net * net,u32 index)291 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
292 {
293 struct ib_device *device;
294
295 down_read(&devices_rwsem);
296 device = xa_load(&devices, index);
297 if (device) {
298 if (!rdma_dev_access_netns(device, net)) {
299 device = NULL;
300 goto out;
301 }
302
303 if (!ib_device_try_get(device))
304 device = NULL;
305 }
306 out:
307 up_read(&devices_rwsem);
308 return device;
309 }
310
311 /**
312 * ib_device_put - Release IB device reference
313 * @device: device whose reference to be released
314 *
315 * ib_device_put() releases reference to the IB device to allow it to be
316 * unregistered and eventually free.
317 */
ib_device_put(struct ib_device * device)318 void ib_device_put(struct ib_device *device)
319 {
320 if (refcount_dec_and_test(&device->refcount))
321 complete(&device->unreg_completion);
322 }
323 EXPORT_SYMBOL(ib_device_put);
324
__ib_device_get_by_name(const char * name)325 static struct ib_device *__ib_device_get_by_name(const char *name)
326 {
327 struct ib_device *device;
328 unsigned long index;
329
330 xa_for_each (&devices, index, device)
331 if (!strcmp(name, dev_name(&device->dev)))
332 return device;
333
334 return NULL;
335 }
336
337 /**
338 * ib_device_get_by_name - Find an IB device by name
339 * @name: The name to look for
340 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
341 *
342 * Find and hold an ib_device by its name. The caller must call
343 * ib_device_put() on the returned pointer.
344 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)345 struct ib_device *ib_device_get_by_name(const char *name,
346 enum rdma_driver_id driver_id)
347 {
348 struct ib_device *device;
349
350 down_read(&devices_rwsem);
351 device = __ib_device_get_by_name(name);
352 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
353 device->ops.driver_id != driver_id)
354 device = NULL;
355
356 if (device) {
357 if (!ib_device_try_get(device))
358 device = NULL;
359 }
360 up_read(&devices_rwsem);
361 return device;
362 }
363 EXPORT_SYMBOL(ib_device_get_by_name);
364
rename_compat_devs(struct ib_device * device)365 static int rename_compat_devs(struct ib_device *device)
366 {
367 struct ib_core_device *cdev;
368 unsigned long index;
369 int ret = 0;
370
371 mutex_lock(&device->compat_devs_mutex);
372 xa_for_each (&device->compat_devs, index, cdev) {
373 ret = device_rename(&cdev->dev, dev_name(&device->dev));
374 if (ret) {
375 dev_warn(&cdev->dev,
376 "Fail to rename compatdev to new name %s\n",
377 dev_name(&device->dev));
378 break;
379 }
380 }
381 mutex_unlock(&device->compat_devs_mutex);
382 return ret;
383 }
384
ib_device_rename(struct ib_device * ibdev,const char * name)385 int ib_device_rename(struct ib_device *ibdev, const char *name)
386 {
387 unsigned long index;
388 void *client_data;
389 int ret;
390
391 down_write(&devices_rwsem);
392 if (!strcmp(name, dev_name(&ibdev->dev))) {
393 up_write(&devices_rwsem);
394 return 0;
395 }
396
397 if (__ib_device_get_by_name(name)) {
398 up_write(&devices_rwsem);
399 return -EEXIST;
400 }
401
402 ret = device_rename(&ibdev->dev, name);
403 if (ret) {
404 up_write(&devices_rwsem);
405 return ret;
406 }
407
408 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
409 ret = rename_compat_devs(ibdev);
410
411 downgrade_write(&devices_rwsem);
412 down_read(&ibdev->client_data_rwsem);
413 xan_for_each_marked(&ibdev->client_data, index, client_data,
414 CLIENT_DATA_REGISTERED) {
415 struct ib_client *client = xa_load(&clients, index);
416
417 if (!client || !client->rename)
418 continue;
419
420 client->rename(ibdev, client_data);
421 }
422 up_read(&ibdev->client_data_rwsem);
423 rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
424 up_read(&devices_rwsem);
425 return 0;
426 }
427
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)428 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
429 {
430 if (use_dim > 1)
431 return -EINVAL;
432 ibdev->use_cq_dim = use_dim;
433
434 return 0;
435 }
436
alloc_name(struct ib_device * ibdev,const char * name)437 static int alloc_name(struct ib_device *ibdev, const char *name)
438 {
439 struct ib_device *device;
440 unsigned long index;
441 struct ida inuse;
442 int rc;
443 int i;
444
445 lockdep_assert_held_write(&devices_rwsem);
446 ida_init(&inuse);
447 xa_for_each (&devices, index, device) {
448 char buf[IB_DEVICE_NAME_MAX];
449
450 if (sscanf(dev_name(&device->dev), name, &i) != 1)
451 continue;
452 if (i < 0 || i >= INT_MAX)
453 continue;
454 snprintf(buf, sizeof buf, name, i);
455 if (strcmp(buf, dev_name(&device->dev)) != 0)
456 continue;
457
458 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
459 if (rc < 0)
460 goto out;
461 }
462
463 rc = ida_alloc(&inuse, GFP_KERNEL);
464 if (rc < 0)
465 goto out;
466
467 rc = dev_set_name(&ibdev->dev, name, rc);
468 out:
469 ida_destroy(&inuse);
470 return rc;
471 }
472
ib_device_release(struct device * device)473 static void ib_device_release(struct device *device)
474 {
475 struct ib_device *dev = container_of(device, struct ib_device, dev);
476
477 free_netdevs(dev);
478 WARN_ON(refcount_read(&dev->refcount));
479 if (dev->hw_stats_data)
480 ib_device_release_hw_stats(dev->hw_stats_data);
481 if (dev->port_data) {
482 ib_cache_release_one(dev);
483 ib_security_release_port_pkey_list(dev);
484 rdma_counter_release(dev);
485 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
486 pdata[0]),
487 rcu_head);
488 }
489
490 mutex_destroy(&dev->subdev_lock);
491 mutex_destroy(&dev->unregistration_lock);
492 mutex_destroy(&dev->compat_devs_mutex);
493
494 xa_destroy(&dev->compat_devs);
495 xa_destroy(&dev->client_data);
496 kfree_rcu(dev, rcu_head);
497 }
498
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)499 static int ib_device_uevent(const struct device *device,
500 struct kobj_uevent_env *env)
501 {
502 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
503 return -ENOMEM;
504
505 /*
506 * It would be nice to pass the node GUID with the event...
507 */
508
509 return 0;
510 }
511
net_namespace(const struct device * d)512 static const void *net_namespace(const struct device *d)
513 {
514 const struct ib_core_device *coredev =
515 container_of(d, struct ib_core_device, dev);
516
517 return read_pnet(&coredev->rdma_net);
518 }
519
520 static struct class ib_class = {
521 .name = "infiniband",
522 .dev_release = ib_device_release,
523 .dev_uevent = ib_device_uevent,
524 .ns_type = &net_ns_type_operations,
525 .namespace = net_namespace,
526 };
527
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)528 static void rdma_init_coredev(struct ib_core_device *coredev,
529 struct ib_device *dev, struct net *net)
530 {
531 bool is_full_dev = &dev->coredev == coredev;
532
533 /* This BUILD_BUG_ON is intended to catch layout change
534 * of union of ib_core_device and device.
535 * dev must be the first element as ib_core and providers
536 * driver uses it. Adding anything in ib_core_device before
537 * device will break this assumption.
538 */
539 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
540 offsetof(struct ib_device, dev));
541
542 coredev->dev.class = &ib_class;
543 coredev->dev.groups = dev->groups;
544
545 /*
546 * Don't expose hw counters outside of the init namespace.
547 */
548 if (!is_full_dev && dev->hw_stats_attr_index)
549 coredev->dev.groups[dev->hw_stats_attr_index] = NULL;
550
551 device_initialize(&coredev->dev);
552 coredev->owner = dev;
553 INIT_LIST_HEAD(&coredev->port_list);
554 write_pnet(&coredev->rdma_net, net);
555 }
556
557 /**
558 * _ib_alloc_device - allocate an IB device struct
559 * @size:size of structure to allocate
560 *
561 * Low-level drivers should use ib_alloc_device() to allocate &struct
562 * ib_device. @size is the size of the structure to be allocated,
563 * including any private data used by the low-level driver.
564 * ib_dealloc_device() must be used to free structures allocated with
565 * ib_alloc_device().
566 */
_ib_alloc_device(size_t size)567 struct ib_device *_ib_alloc_device(size_t size)
568 {
569 struct ib_device *device;
570 unsigned int i;
571
572 if (WARN_ON(size < sizeof(struct ib_device)))
573 return NULL;
574
575 device = kzalloc(size, GFP_KERNEL);
576 if (!device)
577 return NULL;
578
579 if (rdma_restrack_init(device)) {
580 kfree(device);
581 return NULL;
582 }
583
584 rdma_init_coredev(&device->coredev, device, &init_net);
585
586 INIT_LIST_HEAD(&device->event_handler_list);
587 spin_lock_init(&device->qp_open_list_lock);
588 init_rwsem(&device->event_handler_rwsem);
589 mutex_init(&device->unregistration_lock);
590 /*
591 * client_data needs to be alloc because we don't want our mark to be
592 * destroyed if the user stores NULL in the client data.
593 */
594 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
595 init_rwsem(&device->client_data_rwsem);
596 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
597 mutex_init(&device->compat_devs_mutex);
598 init_completion(&device->unreg_completion);
599 INIT_WORK(&device->unregistration_work, ib_unregister_work);
600
601 spin_lock_init(&device->cq_pools_lock);
602 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
603 INIT_LIST_HEAD(&device->cq_pools[i]);
604
605 rwlock_init(&device->cache_lock);
606
607 device->uverbs_cmd_mask =
608 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
609 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
610 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
611 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
612 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
613 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
614 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
618 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
619 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
620 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
621 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
622 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
623 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
625 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
626 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
627 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
628 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
629 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
630 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
631 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
632 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
633 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
635 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
636 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
637 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
638
639 mutex_init(&device->subdev_lock);
640 INIT_LIST_HEAD(&device->subdev_list_head);
641 INIT_LIST_HEAD(&device->subdev_list);
642
643 return device;
644 }
645 EXPORT_SYMBOL(_ib_alloc_device);
646
647 /**
648 * ib_dealloc_device - free an IB device struct
649 * @device:structure to free
650 *
651 * Free a structure allocated with ib_alloc_device().
652 */
ib_dealloc_device(struct ib_device * device)653 void ib_dealloc_device(struct ib_device *device)
654 {
655 if (device->ops.dealloc_driver)
656 device->ops.dealloc_driver(device);
657
658 /*
659 * ib_unregister_driver() requires all devices to remain in the xarray
660 * while their ops are callable. The last op we call is dealloc_driver
661 * above. This is needed to create a fence on op callbacks prior to
662 * allowing the driver module to unload.
663 */
664 down_write(&devices_rwsem);
665 if (xa_load(&devices, device->index) == device)
666 xa_erase(&devices, device->index);
667 up_write(&devices_rwsem);
668
669 /* Expedite releasing netdev references */
670 free_netdevs(device);
671
672 WARN_ON(!xa_empty(&device->compat_devs));
673 WARN_ON(!xa_empty(&device->client_data));
674 WARN_ON(refcount_read(&device->refcount));
675 rdma_restrack_clean(device);
676 /* Balances with device_initialize */
677 put_device(&device->dev);
678 }
679 EXPORT_SYMBOL(ib_dealloc_device);
680
681 /*
682 * add_client_context() and remove_client_context() must be safe against
683 * parallel calls on the same device - registration/unregistration of both the
684 * device and client can be occurring in parallel.
685 *
686 * The routines need to be a fence, any caller must not return until the add
687 * or remove is fully completed.
688 */
add_client_context(struct ib_device * device,struct ib_client * client)689 static int add_client_context(struct ib_device *device,
690 struct ib_client *client)
691 {
692 int ret = 0;
693
694 if (!device->kverbs_provider && !client->no_kverbs_req)
695 return 0;
696
697 down_write(&device->client_data_rwsem);
698 /*
699 * So long as the client is registered hold both the client and device
700 * unregistration locks.
701 */
702 if (!refcount_inc_not_zero(&client->uses))
703 goto out_unlock;
704 refcount_inc(&device->refcount);
705
706 /*
707 * Another caller to add_client_context got here first and has already
708 * completely initialized context.
709 */
710 if (xa_get_mark(&device->client_data, client->client_id,
711 CLIENT_DATA_REGISTERED))
712 goto out;
713
714 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
715 GFP_KERNEL));
716 if (ret)
717 goto out;
718 downgrade_write(&device->client_data_rwsem);
719 if (client->add) {
720 if (client->add(device)) {
721 /*
722 * If a client fails to add then the error code is
723 * ignored, but we won't call any more ops on this
724 * client.
725 */
726 xa_erase(&device->client_data, client->client_id);
727 up_read(&device->client_data_rwsem);
728 ib_device_put(device);
729 ib_client_put(client);
730 return 0;
731 }
732 }
733
734 /* Readers shall not see a client until add has been completed */
735 xa_set_mark(&device->client_data, client->client_id,
736 CLIENT_DATA_REGISTERED);
737 up_read(&device->client_data_rwsem);
738 return 0;
739
740 out:
741 ib_device_put(device);
742 ib_client_put(client);
743 out_unlock:
744 up_write(&device->client_data_rwsem);
745 return ret;
746 }
747
remove_client_context(struct ib_device * device,unsigned int client_id)748 static void remove_client_context(struct ib_device *device,
749 unsigned int client_id)
750 {
751 struct ib_client *client;
752 void *client_data;
753
754 down_write(&device->client_data_rwsem);
755 if (!xa_get_mark(&device->client_data, client_id,
756 CLIENT_DATA_REGISTERED)) {
757 up_write(&device->client_data_rwsem);
758 return;
759 }
760 client_data = xa_load(&device->client_data, client_id);
761 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
762 client = xa_load(&clients, client_id);
763 up_write(&device->client_data_rwsem);
764
765 /*
766 * Notice we cannot be holding any exclusive locks when calling the
767 * remove callback as the remove callback can recurse back into any
768 * public functions in this module and thus try for any locks those
769 * functions take.
770 *
771 * For this reason clients and drivers should not call the
772 * unregistration functions will holdling any locks.
773 */
774 if (client->remove)
775 client->remove(device, client_data);
776
777 xa_erase(&device->client_data, client_id);
778 ib_device_put(device);
779 ib_client_put(client);
780 }
781
alloc_port_data(struct ib_device * device)782 static int alloc_port_data(struct ib_device *device)
783 {
784 struct ib_port_data_rcu *pdata_rcu;
785 u32 port;
786
787 if (device->port_data)
788 return 0;
789
790 /* This can only be called once the physical port range is defined */
791 if (WARN_ON(!device->phys_port_cnt))
792 return -EINVAL;
793
794 /* Reserve U32_MAX so the logic to go over all the ports is sane */
795 if (WARN_ON(device->phys_port_cnt == U32_MAX))
796 return -EINVAL;
797
798 /*
799 * device->port_data is indexed directly by the port number to make
800 * access to this data as efficient as possible.
801 *
802 * Therefore port_data is declared as a 1 based array with potential
803 * empty slots at the beginning.
804 */
805 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
806 size_add(rdma_end_port(device), 1)),
807 GFP_KERNEL);
808 if (!pdata_rcu)
809 return -ENOMEM;
810 /*
811 * The rcu_head is put in front of the port data array and the stored
812 * pointer is adjusted since we never need to see that member until
813 * kfree_rcu.
814 */
815 device->port_data = pdata_rcu->pdata;
816
817 rdma_for_each_port (device, port) {
818 struct ib_port_data *pdata = &device->port_data[port];
819
820 pdata->ib_dev = device;
821 spin_lock_init(&pdata->pkey_list_lock);
822 INIT_LIST_HEAD(&pdata->pkey_list);
823 spin_lock_init(&pdata->netdev_lock);
824 INIT_HLIST_NODE(&pdata->ndev_hash_link);
825 }
826 return 0;
827 }
828
verify_immutable(const struct ib_device * dev,u32 port)829 static int verify_immutable(const struct ib_device *dev, u32 port)
830 {
831 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
832 rdma_max_mad_size(dev, port) != 0);
833 }
834
setup_port_data(struct ib_device * device)835 static int setup_port_data(struct ib_device *device)
836 {
837 u32 port;
838 int ret;
839
840 ret = alloc_port_data(device);
841 if (ret)
842 return ret;
843
844 rdma_for_each_port (device, port) {
845 struct ib_port_data *pdata = &device->port_data[port];
846
847 ret = device->ops.get_port_immutable(device, port,
848 &pdata->immutable);
849 if (ret)
850 return ret;
851
852 if (verify_immutable(device, port))
853 return -EINVAL;
854 }
855 return 0;
856 }
857
858 /**
859 * ib_port_immutable_read() - Read rdma port's immutable data
860 * @dev: IB device
861 * @port: port number whose immutable data to read. It starts with index 1 and
862 * valid upto including rdma_end_port().
863 */
864 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)865 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
866 {
867 WARN_ON(!rdma_is_port_valid(dev, port));
868 return &dev->port_data[port].immutable;
869 }
870 EXPORT_SYMBOL(ib_port_immutable_read);
871
ib_get_device_fw_str(struct ib_device * dev,char * str)872 void ib_get_device_fw_str(struct ib_device *dev, char *str)
873 {
874 if (dev->ops.get_dev_fw_str)
875 dev->ops.get_dev_fw_str(dev, str);
876 else
877 str[0] = '\0';
878 }
879 EXPORT_SYMBOL(ib_get_device_fw_str);
880
ib_policy_change_task(struct work_struct * work)881 static void ib_policy_change_task(struct work_struct *work)
882 {
883 struct ib_device *dev;
884 unsigned long index;
885
886 down_read(&devices_rwsem);
887 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
888 unsigned int i;
889
890 rdma_for_each_port (dev, i) {
891 u64 sp;
892 ib_get_cached_subnet_prefix(dev, i, &sp);
893 ib_security_cache_change(dev, i, sp);
894 }
895 }
896 up_read(&devices_rwsem);
897 }
898
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)899 static int ib_security_change(struct notifier_block *nb, unsigned long event,
900 void *lsm_data)
901 {
902 if (event != LSM_POLICY_CHANGE)
903 return NOTIFY_DONE;
904
905 schedule_work(&ib_policy_change_work);
906 ib_mad_agent_security_change();
907
908 return NOTIFY_OK;
909 }
910
compatdev_release(struct device * dev)911 static void compatdev_release(struct device *dev)
912 {
913 struct ib_core_device *cdev =
914 container_of(dev, struct ib_core_device, dev);
915
916 kfree(cdev);
917 }
918
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)919 static int add_one_compat_dev(struct ib_device *device,
920 struct rdma_dev_net *rnet)
921 {
922 struct ib_core_device *cdev;
923 int ret;
924
925 lockdep_assert_held(&rdma_nets_rwsem);
926 if (!ib_devices_shared_netns)
927 return 0;
928
929 /*
930 * Create and add compat device in all namespaces other than where it
931 * is currently bound to.
932 */
933 if (net_eq(read_pnet(&rnet->net),
934 read_pnet(&device->coredev.rdma_net)))
935 return 0;
936
937 /*
938 * The first of init_net() or ib_register_device() to take the
939 * compat_devs_mutex wins and gets to add the device. Others will wait
940 * for completion here.
941 */
942 mutex_lock(&device->compat_devs_mutex);
943 cdev = xa_load(&device->compat_devs, rnet->id);
944 if (cdev) {
945 ret = 0;
946 goto done;
947 }
948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
949 if (ret)
950 goto done;
951
952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
953 if (!cdev) {
954 ret = -ENOMEM;
955 goto cdev_err;
956 }
957
958 cdev->dev.parent = device->dev.parent;
959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
960 cdev->dev.release = compatdev_release;
961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
962 if (ret)
963 goto add_err;
964
965 ret = device_add(&cdev->dev);
966 if (ret)
967 goto add_err;
968 ret = ib_setup_port_attrs(cdev);
969 if (ret)
970 goto port_err;
971
972 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
973 cdev, GFP_KERNEL));
974 if (ret)
975 goto insert_err;
976
977 mutex_unlock(&device->compat_devs_mutex);
978 return 0;
979
980 insert_err:
981 ib_free_port_attrs(cdev);
982 port_err:
983 device_del(&cdev->dev);
984 add_err:
985 put_device(&cdev->dev);
986 cdev_err:
987 xa_release(&device->compat_devs, rnet->id);
988 done:
989 mutex_unlock(&device->compat_devs_mutex);
990 return ret;
991 }
992
remove_one_compat_dev(struct ib_device * device,u32 id)993 static void remove_one_compat_dev(struct ib_device *device, u32 id)
994 {
995 struct ib_core_device *cdev;
996
997 mutex_lock(&device->compat_devs_mutex);
998 cdev = xa_erase(&device->compat_devs, id);
999 mutex_unlock(&device->compat_devs_mutex);
1000 if (cdev) {
1001 ib_free_port_attrs(cdev);
1002 device_del(&cdev->dev);
1003 put_device(&cdev->dev);
1004 }
1005 }
1006
remove_compat_devs(struct ib_device * device)1007 static void remove_compat_devs(struct ib_device *device)
1008 {
1009 struct ib_core_device *cdev;
1010 unsigned long index;
1011
1012 xa_for_each (&device->compat_devs, index, cdev)
1013 remove_one_compat_dev(device, index);
1014 }
1015
add_compat_devs(struct ib_device * device)1016 static int add_compat_devs(struct ib_device *device)
1017 {
1018 struct rdma_dev_net *rnet;
1019 unsigned long index;
1020 int ret = 0;
1021
1022 lockdep_assert_held(&devices_rwsem);
1023
1024 down_read(&rdma_nets_rwsem);
1025 xa_for_each (&rdma_nets, index, rnet) {
1026 ret = add_one_compat_dev(device, rnet);
1027 if (ret)
1028 break;
1029 }
1030 up_read(&rdma_nets_rwsem);
1031 return ret;
1032 }
1033
remove_all_compat_devs(void)1034 static void remove_all_compat_devs(void)
1035 {
1036 struct ib_compat_device *cdev;
1037 struct ib_device *dev;
1038 unsigned long index;
1039
1040 down_read(&devices_rwsem);
1041 xa_for_each (&devices, index, dev) {
1042 unsigned long c_index = 0;
1043
1044 /* Hold nets_rwsem so that any other thread modifying this
1045 * system param can sync with this thread.
1046 */
1047 down_read(&rdma_nets_rwsem);
1048 xa_for_each (&dev->compat_devs, c_index, cdev)
1049 remove_one_compat_dev(dev, c_index);
1050 up_read(&rdma_nets_rwsem);
1051 }
1052 up_read(&devices_rwsem);
1053 }
1054
add_all_compat_devs(void)1055 static int add_all_compat_devs(void)
1056 {
1057 struct rdma_dev_net *rnet;
1058 struct ib_device *dev;
1059 unsigned long index;
1060 int ret = 0;
1061
1062 down_read(&devices_rwsem);
1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064 unsigned long net_index = 0;
1065
1066 /* Hold nets_rwsem so that any other thread modifying this
1067 * system param can sync with this thread.
1068 */
1069 down_read(&rdma_nets_rwsem);
1070 xa_for_each (&rdma_nets, net_index, rnet) {
1071 ret = add_one_compat_dev(dev, rnet);
1072 if (ret)
1073 break;
1074 }
1075 up_read(&rdma_nets_rwsem);
1076 }
1077 up_read(&devices_rwsem);
1078 if (ret)
1079 remove_all_compat_devs();
1080 return ret;
1081 }
1082
rdma_compatdev_set(u8 enable)1083 int rdma_compatdev_set(u8 enable)
1084 {
1085 struct rdma_dev_net *rnet;
1086 unsigned long index;
1087 int ret = 0;
1088
1089 down_write(&rdma_nets_rwsem);
1090 if (ib_devices_shared_netns == enable) {
1091 up_write(&rdma_nets_rwsem);
1092 return 0;
1093 }
1094
1095 /* enable/disable of compat devices is not supported
1096 * when more than default init_net exists.
1097 */
1098 xa_for_each (&rdma_nets, index, rnet) {
1099 ret++;
1100 break;
1101 }
1102 if (!ret)
1103 ib_devices_shared_netns = enable;
1104 up_write(&rdma_nets_rwsem);
1105 if (ret)
1106 return -EBUSY;
1107
1108 if (enable)
1109 ret = add_all_compat_devs();
1110 else
1111 remove_all_compat_devs();
1112 return ret;
1113 }
1114
rdma_dev_exit_net(struct net * net)1115 static void rdma_dev_exit_net(struct net *net)
1116 {
1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118 struct ib_device *dev;
1119 unsigned long index;
1120 int ret;
1121
1122 down_write(&rdma_nets_rwsem);
1123 /*
1124 * Prevent the ID from being re-used and hide the id from xa_for_each.
1125 */
1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127 WARN_ON(ret);
1128 up_write(&rdma_nets_rwsem);
1129
1130 down_read(&devices_rwsem);
1131 xa_for_each (&devices, index, dev) {
1132 get_device(&dev->dev);
1133 /*
1134 * Release the devices_rwsem so that pontentially blocking
1135 * device_del, doesn't hold the devices_rwsem for too long.
1136 */
1137 up_read(&devices_rwsem);
1138
1139 remove_one_compat_dev(dev, rnet->id);
1140
1141 /*
1142 * If the real device is in the NS then move it back to init.
1143 */
1144 rdma_dev_change_netns(dev, net, &init_net);
1145
1146 put_device(&dev->dev);
1147 down_read(&devices_rwsem);
1148 }
1149 up_read(&devices_rwsem);
1150
1151 rdma_nl_net_exit(rnet);
1152 xa_erase(&rdma_nets, rnet->id);
1153 }
1154
rdma_dev_init_net(struct net * net)1155 static __net_init int rdma_dev_init_net(struct net *net)
1156 {
1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158 unsigned long index;
1159 struct ib_device *dev;
1160 int ret;
1161
1162 write_pnet(&rnet->net, net);
1163
1164 ret = rdma_nl_net_init(rnet);
1165 if (ret)
1166 return ret;
1167
1168 /* No need to create any compat devices in default init_net. */
1169 if (net_eq(net, &init_net))
1170 return 0;
1171
1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173 if (ret) {
1174 rdma_nl_net_exit(rnet);
1175 return ret;
1176 }
1177
1178 down_read(&devices_rwsem);
1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180 /* Hold nets_rwsem so that netlink command cannot change
1181 * system configuration for device sharing mode.
1182 */
1183 down_read(&rdma_nets_rwsem);
1184 ret = add_one_compat_dev(dev, rnet);
1185 up_read(&rdma_nets_rwsem);
1186 if (ret)
1187 break;
1188 }
1189 up_read(&devices_rwsem);
1190
1191 if (ret)
1192 rdma_dev_exit_net(net);
1193
1194 return ret;
1195 }
1196
1197 /*
1198 * Assign the unique string device name and the unique device index. This is
1199 * undone by ib_dealloc_device.
1200 */
assign_name(struct ib_device * device,const char * name)1201 static int assign_name(struct ib_device *device, const char *name)
1202 {
1203 static u32 last_id;
1204 int ret;
1205
1206 down_write(&devices_rwsem);
1207 /* Assign a unique name to the device */
1208 if (strchr(name, '%'))
1209 ret = alloc_name(device, name);
1210 else
1211 ret = dev_set_name(&device->dev, name);
1212 if (ret)
1213 goto out;
1214
1215 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216 ret = -ENFILE;
1217 goto out;
1218 }
1219 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220
1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222 &last_id, GFP_KERNEL);
1223 if (ret > 0)
1224 ret = 0;
1225
1226 out:
1227 up_write(&devices_rwsem);
1228 return ret;
1229 }
1230
1231 /*
1232 * setup_device() allocates memory and sets up data that requires calling the
1233 * device ops, this is the only reason these actions are not done during
1234 * ib_alloc_device. It is undone by ib_dealloc_device().
1235 */
setup_device(struct ib_device * device)1236 static int setup_device(struct ib_device *device)
1237 {
1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 int ret;
1240
1241 ib_device_check_mandatory(device);
1242
1243 ret = setup_port_data(device);
1244 if (ret) {
1245 dev_warn(&device->dev, "Couldn't create per-port data\n");
1246 return ret;
1247 }
1248
1249 memset(&device->attrs, 0, sizeof(device->attrs));
1250 ret = device->ops.query_device(device, &device->attrs, &uhw);
1251 if (ret) {
1252 dev_warn(&device->dev,
1253 "Couldn't query the device attributes\n");
1254 return ret;
1255 }
1256
1257 return 0;
1258 }
1259
disable_device(struct ib_device * device)1260 static void disable_device(struct ib_device *device)
1261 {
1262 u32 cid;
1263
1264 WARN_ON(!refcount_read(&device->refcount));
1265
1266 down_write(&devices_rwsem);
1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268 up_write(&devices_rwsem);
1269
1270 /*
1271 * Remove clients in LIFO order, see assign_client_id. This could be
1272 * more efficient if xarray learns to reverse iterate. Since no new
1273 * clients can be added to this ib_device past this point we only need
1274 * the maximum possible client_id value here.
1275 */
1276 down_read(&clients_rwsem);
1277 cid = highest_client_id;
1278 up_read(&clients_rwsem);
1279 while (cid) {
1280 cid--;
1281 remove_client_context(device, cid);
1282 }
1283
1284 ib_cq_pool_cleanup(device);
1285
1286 /* Pairs with refcount_set in enable_device */
1287 ib_device_put(device);
1288 wait_for_completion(&device->unreg_completion);
1289
1290 /*
1291 * compat devices must be removed after device refcount drops to zero.
1292 * Otherwise init_net() may add more compatdevs after removing compat
1293 * devices and before device is disabled.
1294 */
1295 remove_compat_devs(device);
1296 }
1297
1298 /*
1299 * An enabled device is visible to all clients and to all the public facing
1300 * APIs that return a device pointer. This always returns with a new get, even
1301 * if it fails.
1302 */
enable_device_and_get(struct ib_device * device)1303 static int enable_device_and_get(struct ib_device *device)
1304 {
1305 struct ib_client *client;
1306 unsigned long index;
1307 int ret = 0;
1308
1309 /*
1310 * One ref belongs to the xa and the other belongs to this
1311 * thread. This is needed to guard against parallel unregistration.
1312 */
1313 refcount_set(&device->refcount, 2);
1314 down_write(&devices_rwsem);
1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316
1317 /*
1318 * By using downgrade_write() we ensure that no other thread can clear
1319 * DEVICE_REGISTERED while we are completing the client setup.
1320 */
1321 downgrade_write(&devices_rwsem);
1322
1323 if (device->ops.enable_driver) {
1324 ret = device->ops.enable_driver(device);
1325 if (ret)
1326 goto out;
1327 }
1328
1329 down_read(&clients_rwsem);
1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331 ret = add_client_context(device, client);
1332 if (ret)
1333 break;
1334 }
1335 up_read(&clients_rwsem);
1336 if (!ret)
1337 ret = add_compat_devs(device);
1338 out:
1339 up_read(&devices_rwsem);
1340 return ret;
1341 }
1342
prevent_dealloc_device(struct ib_device * ib_dev)1343 static void prevent_dealloc_device(struct ib_device *ib_dev)
1344 {
1345 }
1346
ib_device_notify_register(struct ib_device * device)1347 static void ib_device_notify_register(struct ib_device *device)
1348 {
1349 struct net_device *netdev;
1350 u32 port;
1351 int ret;
1352
1353 down_read(&devices_rwsem);
1354
1355 /* Mark for userspace that device is ready */
1356 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1357
1358 ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1359 if (ret)
1360 goto out;
1361
1362 rdma_for_each_port(device, port) {
1363 netdev = ib_device_get_netdev(device, port);
1364 if (!netdev)
1365 continue;
1366
1367 ret = rdma_nl_notify_event(device, port,
1368 RDMA_NETDEV_ATTACH_EVENT);
1369 dev_put(netdev);
1370 if (ret)
1371 goto out;
1372 }
1373
1374 out:
1375 up_read(&devices_rwsem);
1376 }
1377
1378 /**
1379 * ib_register_device - Register an IB device with IB core
1380 * @device: Device to register
1381 * @name: unique string device name. This may include a '%' which will
1382 * cause a unique index to be added to the passed device name.
1383 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1384 * device will be used. In this case the caller should fully
1385 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1386 *
1387 * Low-level drivers use ib_register_device() to register their
1388 * devices with the IB core. All registered clients will receive a
1389 * callback for each device that is added. @device must be allocated
1390 * with ib_alloc_device().
1391 *
1392 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1393 * asynchronously then the device pointer may become freed as soon as this
1394 * function returns.
1395 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1396 int ib_register_device(struct ib_device *device, const char *name,
1397 struct device *dma_device)
1398 {
1399 int ret;
1400
1401 ret = assign_name(device, name);
1402 if (ret)
1403 return ret;
1404
1405 /*
1406 * If the caller does not provide a DMA capable device then the IB core
1407 * will set up ib_sge and scatterlist structures that stash the kernel
1408 * virtual address into the address field.
1409 */
1410 WARN_ON(dma_device && !dma_device->dma_parms);
1411 device->dma_device = dma_device;
1412
1413 ret = setup_device(device);
1414 if (ret)
1415 return ret;
1416
1417 ret = ib_cache_setup_one(device);
1418 if (ret) {
1419 dev_warn(&device->dev,
1420 "Couldn't set up InfiniBand P_Key/GID cache\n");
1421 return ret;
1422 }
1423
1424 device->groups[0] = &ib_dev_attr_group;
1425 device->groups[1] = device->ops.device_group;
1426 ret = ib_setup_device_attrs(device);
1427 if (ret)
1428 goto cache_cleanup;
1429
1430 ib_device_register_rdmacg(device);
1431
1432 rdma_counter_init(device);
1433
1434 /*
1435 * Ensure that ADD uevent is not fired because it
1436 * is too early amd device is not initialized yet.
1437 */
1438 dev_set_uevent_suppress(&device->dev, true);
1439 ret = device_add(&device->dev);
1440 if (ret)
1441 goto cg_cleanup;
1442
1443 ret = ib_setup_port_attrs(&device->coredev);
1444 if (ret) {
1445 dev_warn(&device->dev,
1446 "Couldn't register device with driver model\n");
1447 goto dev_cleanup;
1448 }
1449
1450 ret = enable_device_and_get(device);
1451 if (ret) {
1452 void (*dealloc_fn)(struct ib_device *);
1453
1454 /*
1455 * If we hit this error flow then we don't want to
1456 * automatically dealloc the device since the caller is
1457 * expected to call ib_dealloc_device() after
1458 * ib_register_device() fails. This is tricky due to the
1459 * possibility for a parallel unregistration along with this
1460 * error flow. Since we have a refcount here we know any
1461 * parallel flow is stopped in disable_device and will see the
1462 * special dealloc_driver pointer, causing the responsibility to
1463 * ib_dealloc_device() to revert back to this thread.
1464 */
1465 dealloc_fn = device->ops.dealloc_driver;
1466 device->ops.dealloc_driver = prevent_dealloc_device;
1467 ib_device_put(device);
1468 __ib_unregister_device(device);
1469 device->ops.dealloc_driver = dealloc_fn;
1470 dev_set_uevent_suppress(&device->dev, false);
1471 return ret;
1472 }
1473 dev_set_uevent_suppress(&device->dev, false);
1474
1475 ib_device_notify_register(device);
1476
1477 ib_device_put(device);
1478
1479 return 0;
1480
1481 dev_cleanup:
1482 device_del(&device->dev);
1483 cg_cleanup:
1484 dev_set_uevent_suppress(&device->dev, false);
1485 ib_device_unregister_rdmacg(device);
1486 cache_cleanup:
1487 ib_cache_cleanup_one(device);
1488 return ret;
1489 }
1490 EXPORT_SYMBOL(ib_register_device);
1491
1492 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1493 static void __ib_unregister_device(struct ib_device *ib_dev)
1494 {
1495 struct ib_device *sub, *tmp;
1496
1497 mutex_lock(&ib_dev->subdev_lock);
1498 list_for_each_entry_safe_reverse(sub, tmp,
1499 &ib_dev->subdev_list_head,
1500 subdev_list) {
1501 list_del(&sub->subdev_list);
1502 ib_dev->ops.del_sub_dev(sub);
1503 ib_device_put(ib_dev);
1504 }
1505 mutex_unlock(&ib_dev->subdev_lock);
1506
1507 /*
1508 * We have a registration lock so that all the calls to unregister are
1509 * fully fenced, once any unregister returns the device is truely
1510 * unregistered even if multiple callers are unregistering it at the
1511 * same time. This also interacts with the registration flow and
1512 * provides sane semantics if register and unregister are racing.
1513 */
1514 mutex_lock(&ib_dev->unregistration_lock);
1515 if (!refcount_read(&ib_dev->refcount))
1516 goto out;
1517
1518 disable_device(ib_dev);
1519 rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1520
1521 /* Expedite removing unregistered pointers from the hash table */
1522 free_netdevs(ib_dev);
1523
1524 ib_free_port_attrs(&ib_dev->coredev);
1525 device_del(&ib_dev->dev);
1526 ib_device_unregister_rdmacg(ib_dev);
1527 ib_cache_cleanup_one(ib_dev);
1528
1529 /*
1530 * Drivers using the new flow may not call ib_dealloc_device except
1531 * in error unwind prior to registration success.
1532 */
1533 if (ib_dev->ops.dealloc_driver &&
1534 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1535 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1536 ib_dealloc_device(ib_dev);
1537 }
1538 out:
1539 mutex_unlock(&ib_dev->unregistration_lock);
1540 }
1541
1542 /**
1543 * ib_unregister_device - Unregister an IB device
1544 * @ib_dev: The device to unregister
1545 *
1546 * Unregister an IB device. All clients will receive a remove callback.
1547 *
1548 * Callers should call this routine only once, and protect against races with
1549 * registration. Typically it should only be called as part of a remove
1550 * callback in an implementation of driver core's struct device_driver and
1551 * related.
1552 *
1553 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1554 * this function.
1555 */
ib_unregister_device(struct ib_device * ib_dev)1556 void ib_unregister_device(struct ib_device *ib_dev)
1557 {
1558 get_device(&ib_dev->dev);
1559 __ib_unregister_device(ib_dev);
1560 put_device(&ib_dev->dev);
1561 }
1562 EXPORT_SYMBOL(ib_unregister_device);
1563
1564 /**
1565 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1566 * @ib_dev: The device to unregister
1567 *
1568 * This is the same as ib_unregister_device(), except it includes an internal
1569 * ib_device_put() that should match a 'get' obtained by the caller.
1570 *
1571 * It is safe to call this routine concurrently from multiple threads while
1572 * holding the 'get'. When the function returns the device is fully
1573 * unregistered.
1574 *
1575 * Drivers using this flow MUST use the driver_unregister callback to clean up
1576 * their resources associated with the device and dealloc it.
1577 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1578 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1579 {
1580 WARN_ON(!ib_dev->ops.dealloc_driver);
1581 get_device(&ib_dev->dev);
1582 ib_device_put(ib_dev);
1583 __ib_unregister_device(ib_dev);
1584 put_device(&ib_dev->dev);
1585 }
1586 EXPORT_SYMBOL(ib_unregister_device_and_put);
1587
1588 /**
1589 * ib_unregister_driver - Unregister all IB devices for a driver
1590 * @driver_id: The driver to unregister
1591 *
1592 * This implements a fence for device unregistration. It only returns once all
1593 * devices associated with the driver_id have fully completed their
1594 * unregistration and returned from ib_unregister_device*().
1595 *
1596 * If device's are not yet unregistered it goes ahead and starts unregistering
1597 * them.
1598 *
1599 * This does not block creation of new devices with the given driver_id, that
1600 * is the responsibility of the caller.
1601 */
ib_unregister_driver(enum rdma_driver_id driver_id)1602 void ib_unregister_driver(enum rdma_driver_id driver_id)
1603 {
1604 struct ib_device *ib_dev;
1605 unsigned long index;
1606
1607 down_read(&devices_rwsem);
1608 xa_for_each (&devices, index, ib_dev) {
1609 if (ib_dev->ops.driver_id != driver_id)
1610 continue;
1611
1612 get_device(&ib_dev->dev);
1613 up_read(&devices_rwsem);
1614
1615 WARN_ON(!ib_dev->ops.dealloc_driver);
1616 __ib_unregister_device(ib_dev);
1617
1618 put_device(&ib_dev->dev);
1619 down_read(&devices_rwsem);
1620 }
1621 up_read(&devices_rwsem);
1622 }
1623 EXPORT_SYMBOL(ib_unregister_driver);
1624
ib_unregister_work(struct work_struct * work)1625 static void ib_unregister_work(struct work_struct *work)
1626 {
1627 struct ib_device *ib_dev =
1628 container_of(work, struct ib_device, unregistration_work);
1629
1630 __ib_unregister_device(ib_dev);
1631 put_device(&ib_dev->dev);
1632 }
1633
1634 /**
1635 * ib_unregister_device_queued - Unregister a device using a work queue
1636 * @ib_dev: The device to unregister
1637 *
1638 * This schedules an asynchronous unregistration using a WQ for the device. A
1639 * driver should use this to avoid holding locks while doing unregistration,
1640 * such as holding the RTNL lock.
1641 *
1642 * Drivers using this API must use ib_unregister_driver before module unload
1643 * to ensure that all scheduled unregistrations have completed.
1644 */
ib_unregister_device_queued(struct ib_device * ib_dev)1645 void ib_unregister_device_queued(struct ib_device *ib_dev)
1646 {
1647 WARN_ON(!refcount_read(&ib_dev->refcount));
1648 WARN_ON(!ib_dev->ops.dealloc_driver);
1649 get_device(&ib_dev->dev);
1650 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1651 put_device(&ib_dev->dev);
1652 }
1653 EXPORT_SYMBOL(ib_unregister_device_queued);
1654
1655 /*
1656 * The caller must pass in a device that has the kref held and the refcount
1657 * released. If the device is in cur_net and still registered then it is moved
1658 * into net.
1659 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1660 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1661 struct net *net)
1662 {
1663 int ret2 = -EINVAL;
1664 int ret;
1665
1666 mutex_lock(&device->unregistration_lock);
1667
1668 /*
1669 * If a device not under ib_device_get() or if the unregistration_lock
1670 * is not held, the namespace can be changed, or it can be unregistered.
1671 * Check again under the lock.
1672 */
1673 if (refcount_read(&device->refcount) == 0 ||
1674 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1675 ret = -ENODEV;
1676 goto out;
1677 }
1678
1679 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1680 disable_device(device);
1681
1682 /*
1683 * At this point no one can be using the device, so it is safe to
1684 * change the namespace.
1685 */
1686 write_pnet(&device->coredev.rdma_net, net);
1687
1688 down_read(&devices_rwsem);
1689 /*
1690 * Currently rdma devices are system wide unique. So the device name
1691 * is guaranteed free in the new namespace. Publish the new namespace
1692 * at the sysfs level.
1693 */
1694 ret = device_rename(&device->dev, dev_name(&device->dev));
1695 up_read(&devices_rwsem);
1696 if (ret) {
1697 dev_warn(&device->dev,
1698 "%s: Couldn't rename device after namespace change\n",
1699 __func__);
1700 /* Try and put things back and re-enable the device */
1701 write_pnet(&device->coredev.rdma_net, cur_net);
1702 }
1703
1704 ret2 = enable_device_and_get(device);
1705 if (ret2) {
1706 /*
1707 * This shouldn't really happen, but if it does, let the user
1708 * retry at later point. So don't disable the device.
1709 */
1710 dev_warn(&device->dev,
1711 "%s: Couldn't re-enable device after namespace change\n",
1712 __func__);
1713 }
1714 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1715
1716 ib_device_put(device);
1717 out:
1718 mutex_unlock(&device->unregistration_lock);
1719 if (ret)
1720 return ret;
1721 return ret2;
1722 }
1723
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1724 int ib_device_set_netns_put(struct sk_buff *skb,
1725 struct ib_device *dev, u32 ns_fd)
1726 {
1727 struct net *net;
1728 int ret;
1729
1730 net = get_net_ns_by_fd(ns_fd);
1731 if (IS_ERR(net)) {
1732 ret = PTR_ERR(net);
1733 goto net_err;
1734 }
1735
1736 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1737 ret = -EPERM;
1738 goto ns_err;
1739 }
1740
1741 /*
1742 * All the ib_clients, including uverbs, are reset when the namespace is
1743 * changed and this cannot be blocked waiting for userspace to do
1744 * something, so disassociation is mandatory.
1745 */
1746 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1747 ret = -EOPNOTSUPP;
1748 goto ns_err;
1749 }
1750
1751 get_device(&dev->dev);
1752 ib_device_put(dev);
1753 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1754 put_device(&dev->dev);
1755
1756 put_net(net);
1757 return ret;
1758
1759 ns_err:
1760 put_net(net);
1761 net_err:
1762 ib_device_put(dev);
1763 return ret;
1764 }
1765
1766 static struct pernet_operations rdma_dev_net_ops = {
1767 .init = rdma_dev_init_net,
1768 .exit = rdma_dev_exit_net,
1769 .id = &rdma_dev_net_id,
1770 .size = sizeof(struct rdma_dev_net),
1771 };
1772
assign_client_id(struct ib_client * client)1773 static int assign_client_id(struct ib_client *client)
1774 {
1775 int ret;
1776
1777 lockdep_assert_held(&clients_rwsem);
1778 /*
1779 * The add/remove callbacks must be called in FIFO/LIFO order. To
1780 * achieve this we assign client_ids so they are sorted in
1781 * registration order.
1782 */
1783 client->client_id = highest_client_id;
1784 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1785 if (ret)
1786 return ret;
1787
1788 highest_client_id++;
1789 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1790 return 0;
1791 }
1792
remove_client_id(struct ib_client * client)1793 static void remove_client_id(struct ib_client *client)
1794 {
1795 down_write(&clients_rwsem);
1796 xa_erase(&clients, client->client_id);
1797 for (; highest_client_id; highest_client_id--)
1798 if (xa_load(&clients, highest_client_id - 1))
1799 break;
1800 up_write(&clients_rwsem);
1801 }
1802
1803 /**
1804 * ib_register_client - Register an IB client
1805 * @client:Client to register
1806 *
1807 * Upper level users of the IB drivers can use ib_register_client() to
1808 * register callbacks for IB device addition and removal. When an IB
1809 * device is added, each registered client's add method will be called
1810 * (in the order the clients were registered), and when a device is
1811 * removed, each client's remove method will be called (in the reverse
1812 * order that clients were registered). In addition, when
1813 * ib_register_client() is called, the client will receive an add
1814 * callback for all devices already registered.
1815 */
ib_register_client(struct ib_client * client)1816 int ib_register_client(struct ib_client *client)
1817 {
1818 struct ib_device *device;
1819 unsigned long index;
1820 bool need_unreg = false;
1821 int ret;
1822
1823 refcount_set(&client->uses, 1);
1824 init_completion(&client->uses_zero);
1825
1826 /*
1827 * The devices_rwsem is held in write mode to ensure that a racing
1828 * ib_register_device() sees a consisent view of clients and devices.
1829 */
1830 down_write(&devices_rwsem);
1831 down_write(&clients_rwsem);
1832 ret = assign_client_id(client);
1833 if (ret)
1834 goto out;
1835
1836 need_unreg = true;
1837 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1838 ret = add_client_context(device, client);
1839 if (ret)
1840 goto out;
1841 }
1842 ret = 0;
1843 out:
1844 up_write(&clients_rwsem);
1845 up_write(&devices_rwsem);
1846 if (need_unreg && ret)
1847 ib_unregister_client(client);
1848 return ret;
1849 }
1850 EXPORT_SYMBOL(ib_register_client);
1851
1852 /**
1853 * ib_unregister_client - Unregister an IB client
1854 * @client:Client to unregister
1855 *
1856 * Upper level users use ib_unregister_client() to remove their client
1857 * registration. When ib_unregister_client() is called, the client
1858 * will receive a remove callback for each IB device still registered.
1859 *
1860 * This is a full fence, once it returns no client callbacks will be called,
1861 * or are running in another thread.
1862 */
ib_unregister_client(struct ib_client * client)1863 void ib_unregister_client(struct ib_client *client)
1864 {
1865 struct ib_device *device;
1866 unsigned long index;
1867
1868 down_write(&clients_rwsem);
1869 ib_client_put(client);
1870 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1871 up_write(&clients_rwsem);
1872
1873 /* We do not want to have locks while calling client->remove() */
1874 rcu_read_lock();
1875 xa_for_each (&devices, index, device) {
1876 if (!ib_device_try_get(device))
1877 continue;
1878 rcu_read_unlock();
1879
1880 remove_client_context(device, client->client_id);
1881
1882 ib_device_put(device);
1883 rcu_read_lock();
1884 }
1885 rcu_read_unlock();
1886
1887 /*
1888 * remove_client_context() is not a fence, it can return even though a
1889 * removal is ongoing. Wait until all removals are completed.
1890 */
1891 wait_for_completion(&client->uses_zero);
1892 remove_client_id(client);
1893 }
1894 EXPORT_SYMBOL(ib_unregister_client);
1895
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1896 static int __ib_get_global_client_nl_info(const char *client_name,
1897 struct ib_client_nl_info *res)
1898 {
1899 struct ib_client *client;
1900 unsigned long index;
1901 int ret = -ENOENT;
1902
1903 down_read(&clients_rwsem);
1904 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1905 if (strcmp(client->name, client_name) != 0)
1906 continue;
1907 if (!client->get_global_nl_info) {
1908 ret = -EOPNOTSUPP;
1909 break;
1910 }
1911 ret = client->get_global_nl_info(res);
1912 if (WARN_ON(ret == -ENOENT))
1913 ret = -EINVAL;
1914 if (!ret && res->cdev)
1915 get_device(res->cdev);
1916 break;
1917 }
1918 up_read(&clients_rwsem);
1919 return ret;
1920 }
1921
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1922 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1923 const char *client_name,
1924 struct ib_client_nl_info *res)
1925 {
1926 unsigned long index;
1927 void *client_data;
1928 int ret = -ENOENT;
1929
1930 down_read(&ibdev->client_data_rwsem);
1931 xan_for_each_marked (&ibdev->client_data, index, client_data,
1932 CLIENT_DATA_REGISTERED) {
1933 struct ib_client *client = xa_load(&clients, index);
1934
1935 if (!client || strcmp(client->name, client_name) != 0)
1936 continue;
1937 if (!client->get_nl_info) {
1938 ret = -EOPNOTSUPP;
1939 break;
1940 }
1941 ret = client->get_nl_info(ibdev, client_data, res);
1942 if (WARN_ON(ret == -ENOENT))
1943 ret = -EINVAL;
1944
1945 /*
1946 * The cdev is guaranteed valid as long as we are inside the
1947 * client_data_rwsem as remove_one can't be called. Keep it
1948 * valid for the caller.
1949 */
1950 if (!ret && res->cdev)
1951 get_device(res->cdev);
1952 break;
1953 }
1954 up_read(&ibdev->client_data_rwsem);
1955
1956 return ret;
1957 }
1958
1959 /**
1960 * ib_get_client_nl_info - Fetch the nl_info from a client
1961 * @ibdev: IB device
1962 * @client_name: Name of the client
1963 * @res: Result of the query
1964 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1965 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1966 struct ib_client_nl_info *res)
1967 {
1968 int ret;
1969
1970 if (ibdev)
1971 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1972 else
1973 ret = __ib_get_global_client_nl_info(client_name, res);
1974 #ifdef CONFIG_MODULES
1975 if (ret == -ENOENT) {
1976 request_module("rdma-client-%s", client_name);
1977 if (ibdev)
1978 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1979 else
1980 ret = __ib_get_global_client_nl_info(client_name, res);
1981 }
1982 #endif
1983 if (ret) {
1984 if (ret == -ENOENT)
1985 return -EOPNOTSUPP;
1986 return ret;
1987 }
1988
1989 if (WARN_ON(!res->cdev))
1990 return -EINVAL;
1991 return 0;
1992 }
1993
1994 /**
1995 * ib_set_client_data - Set IB client context
1996 * @device:Device to set context for
1997 * @client:Client to set context for
1998 * @data:Context to set
1999 *
2000 * ib_set_client_data() sets client context data that can be retrieved with
2001 * ib_get_client_data(). This can only be called while the client is
2002 * registered to the device, once the ib_client remove() callback returns this
2003 * cannot be called.
2004 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2005 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2006 void *data)
2007 {
2008 void *rc;
2009
2010 if (WARN_ON(IS_ERR(data)))
2011 data = NULL;
2012
2013 rc = xa_store(&device->client_data, client->client_id, data,
2014 GFP_KERNEL);
2015 WARN_ON(xa_is_err(rc));
2016 }
2017 EXPORT_SYMBOL(ib_set_client_data);
2018
2019 /**
2020 * ib_register_event_handler - Register an IB event handler
2021 * @event_handler:Handler to register
2022 *
2023 * ib_register_event_handler() registers an event handler that will be
2024 * called back when asynchronous IB events occur (as defined in
2025 * chapter 11 of the InfiniBand Architecture Specification). This
2026 * callback occurs in workqueue context.
2027 */
ib_register_event_handler(struct ib_event_handler * event_handler)2028 void ib_register_event_handler(struct ib_event_handler *event_handler)
2029 {
2030 down_write(&event_handler->device->event_handler_rwsem);
2031 list_add_tail(&event_handler->list,
2032 &event_handler->device->event_handler_list);
2033 up_write(&event_handler->device->event_handler_rwsem);
2034 }
2035 EXPORT_SYMBOL(ib_register_event_handler);
2036
2037 /**
2038 * ib_unregister_event_handler - Unregister an event handler
2039 * @event_handler:Handler to unregister
2040 *
2041 * Unregister an event handler registered with
2042 * ib_register_event_handler().
2043 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2044 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2045 {
2046 down_write(&event_handler->device->event_handler_rwsem);
2047 list_del(&event_handler->list);
2048 up_write(&event_handler->device->event_handler_rwsem);
2049 }
2050 EXPORT_SYMBOL(ib_unregister_event_handler);
2051
ib_dispatch_event_clients(struct ib_event * event)2052 void ib_dispatch_event_clients(struct ib_event *event)
2053 {
2054 struct ib_event_handler *handler;
2055
2056 down_read(&event->device->event_handler_rwsem);
2057
2058 list_for_each_entry(handler, &event->device->event_handler_list, list)
2059 handler->handler(handler, event);
2060
2061 up_read(&event->device->event_handler_rwsem);
2062 }
2063
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2064 static int iw_query_port(struct ib_device *device,
2065 u32 port_num,
2066 struct ib_port_attr *port_attr)
2067 {
2068 struct in_device *inetdev;
2069 struct net_device *netdev;
2070
2071 memset(port_attr, 0, sizeof(*port_attr));
2072
2073 netdev = ib_device_get_netdev(device, port_num);
2074 if (!netdev)
2075 return -ENODEV;
2076
2077 port_attr->max_mtu = IB_MTU_4096;
2078 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2079
2080 if (!netif_carrier_ok(netdev)) {
2081 port_attr->state = IB_PORT_DOWN;
2082 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2083 } else {
2084 rcu_read_lock();
2085 inetdev = __in_dev_get_rcu(netdev);
2086
2087 if (inetdev && inetdev->ifa_list) {
2088 port_attr->state = IB_PORT_ACTIVE;
2089 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2090 } else {
2091 port_attr->state = IB_PORT_INIT;
2092 port_attr->phys_state =
2093 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2094 }
2095
2096 rcu_read_unlock();
2097 }
2098
2099 dev_put(netdev);
2100 return device->ops.query_port(device, port_num, port_attr);
2101 }
2102
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2103 static int __ib_query_port(struct ib_device *device,
2104 u32 port_num,
2105 struct ib_port_attr *port_attr)
2106 {
2107 int err;
2108
2109 memset(port_attr, 0, sizeof(*port_attr));
2110
2111 err = device->ops.query_port(device, port_num, port_attr);
2112 if (err || port_attr->subnet_prefix)
2113 return err;
2114
2115 if (rdma_port_get_link_layer(device, port_num) !=
2116 IB_LINK_LAYER_INFINIBAND)
2117 return 0;
2118
2119 ib_get_cached_subnet_prefix(device, port_num,
2120 &port_attr->subnet_prefix);
2121 return 0;
2122 }
2123
2124 /**
2125 * ib_query_port - Query IB port attributes
2126 * @device:Device to query
2127 * @port_num:Port number to query
2128 * @port_attr:Port attributes
2129 *
2130 * ib_query_port() returns the attributes of a port through the
2131 * @port_attr pointer.
2132 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2133 int ib_query_port(struct ib_device *device,
2134 u32 port_num,
2135 struct ib_port_attr *port_attr)
2136 {
2137 if (!rdma_is_port_valid(device, port_num))
2138 return -EINVAL;
2139
2140 if (rdma_protocol_iwarp(device, port_num))
2141 return iw_query_port(device, port_num, port_attr);
2142 else
2143 return __ib_query_port(device, port_num, port_attr);
2144 }
2145 EXPORT_SYMBOL(ib_query_port);
2146
add_ndev_hash(struct ib_port_data * pdata)2147 static void add_ndev_hash(struct ib_port_data *pdata)
2148 {
2149 unsigned long flags;
2150
2151 might_sleep();
2152
2153 spin_lock_irqsave(&ndev_hash_lock, flags);
2154 if (hash_hashed(&pdata->ndev_hash_link)) {
2155 hash_del_rcu(&pdata->ndev_hash_link);
2156 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2157 /*
2158 * We cannot do hash_add_rcu after a hash_del_rcu until the
2159 * grace period
2160 */
2161 synchronize_rcu();
2162 spin_lock_irqsave(&ndev_hash_lock, flags);
2163 }
2164 if (pdata->netdev)
2165 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2166 (uintptr_t)pdata->netdev);
2167 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2168 }
2169
2170 /**
2171 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2172 * @ib_dev: Device to modify
2173 * @ndev: net_device to affiliate, may be NULL
2174 * @port: IB port the net_device is connected to
2175 *
2176 * Drivers should use this to link the ib_device to a netdev so the netdev
2177 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2178 * affiliated with any port.
2179 *
2180 * The caller must ensure that the given ndev is not unregistered or
2181 * unregistering, and that either the ib_device is unregistered or
2182 * ib_device_set_netdev() is called with NULL when the ndev sends a
2183 * NETDEV_UNREGISTER event.
2184 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2185 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2186 u32 port)
2187 {
2188 enum rdma_nl_notify_event_type etype;
2189 struct net_device *old_ndev;
2190 struct ib_port_data *pdata;
2191 unsigned long flags;
2192 int ret;
2193
2194 if (!rdma_is_port_valid(ib_dev, port))
2195 return -EINVAL;
2196
2197 /*
2198 * Drivers wish to call this before ib_register_driver, so we have to
2199 * setup the port data early.
2200 */
2201 ret = alloc_port_data(ib_dev);
2202 if (ret)
2203 return ret;
2204
2205 pdata = &ib_dev->port_data[port];
2206 spin_lock_irqsave(&pdata->netdev_lock, flags);
2207 old_ndev = rcu_dereference_protected(
2208 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2209 if (old_ndev == ndev) {
2210 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2211 return 0;
2212 }
2213
2214 rcu_assign_pointer(pdata->netdev, ndev);
2215 netdev_put(old_ndev, &pdata->netdev_tracker);
2216 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2217 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2218
2219 add_ndev_hash(pdata);
2220
2221 /* Make sure that the device is registered before we send events */
2222 if (xa_load(&devices, ib_dev->index) != ib_dev)
2223 return 0;
2224
2225 etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2226 rdma_nl_notify_event(ib_dev, port, etype);
2227
2228 return 0;
2229 }
2230 EXPORT_SYMBOL(ib_device_set_netdev);
2231
free_netdevs(struct ib_device * ib_dev)2232 static void free_netdevs(struct ib_device *ib_dev)
2233 {
2234 unsigned long flags;
2235 u32 port;
2236
2237 if (!ib_dev->port_data)
2238 return;
2239
2240 rdma_for_each_port (ib_dev, port) {
2241 struct ib_port_data *pdata = &ib_dev->port_data[port];
2242 struct net_device *ndev;
2243
2244 spin_lock_irqsave(&pdata->netdev_lock, flags);
2245 ndev = rcu_dereference_protected(
2246 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2247 if (ndev) {
2248 spin_lock(&ndev_hash_lock);
2249 hash_del_rcu(&pdata->ndev_hash_link);
2250 spin_unlock(&ndev_hash_lock);
2251
2252 /*
2253 * If this is the last dev_put there is still a
2254 * synchronize_rcu before the netdev is kfreed, so we
2255 * can continue to rely on unlocked pointer
2256 * comparisons after the put
2257 */
2258 rcu_assign_pointer(pdata->netdev, NULL);
2259 netdev_put(ndev, &pdata->netdev_tracker);
2260 }
2261 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2262 }
2263 }
2264
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2265 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2266 u32 port)
2267 {
2268 struct ib_port_data *pdata;
2269 struct net_device *res;
2270
2271 if (!rdma_is_port_valid(ib_dev, port))
2272 return NULL;
2273
2274 if (!ib_dev->port_data)
2275 return NULL;
2276
2277 pdata = &ib_dev->port_data[port];
2278
2279 /*
2280 * New drivers should use ib_device_set_netdev() not the legacy
2281 * get_netdev().
2282 */
2283 if (ib_dev->ops.get_netdev)
2284 res = ib_dev->ops.get_netdev(ib_dev, port);
2285 else {
2286 spin_lock(&pdata->netdev_lock);
2287 res = rcu_dereference_protected(
2288 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2289 dev_hold(res);
2290 spin_unlock(&pdata->netdev_lock);
2291 }
2292
2293 return res;
2294 }
2295 EXPORT_SYMBOL(ib_device_get_netdev);
2296
2297 /**
2298 * ib_query_netdev_port - Query the port number of a net_device
2299 * associated with an ibdev
2300 * @ibdev: IB device
2301 * @ndev: Network device
2302 * @port: IB port the net_device is connected to
2303 */
ib_query_netdev_port(struct ib_device * ibdev,struct net_device * ndev,u32 * port)2304 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
2305 u32 *port)
2306 {
2307 struct net_device *ib_ndev;
2308 u32 port_num;
2309
2310 rdma_for_each_port(ibdev, port_num) {
2311 ib_ndev = ib_device_get_netdev(ibdev, port_num);
2312 if (ndev == ib_ndev) {
2313 *port = port_num;
2314 dev_put(ib_ndev);
2315 return 0;
2316 }
2317 dev_put(ib_ndev);
2318 }
2319
2320 return -ENOENT;
2321 }
2322 EXPORT_SYMBOL(ib_query_netdev_port);
2323
2324 /**
2325 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2326 * @ndev: netdev to locate
2327 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2328 *
2329 * Find and hold an ib_device that is associated with a netdev via
2330 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2331 * returned pointer.
2332 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2333 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2334 enum rdma_driver_id driver_id)
2335 {
2336 struct ib_device *res = NULL;
2337 struct ib_port_data *cur;
2338
2339 rcu_read_lock();
2340 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2341 (uintptr_t)ndev) {
2342 if (rcu_access_pointer(cur->netdev) == ndev &&
2343 (driver_id == RDMA_DRIVER_UNKNOWN ||
2344 cur->ib_dev->ops.driver_id == driver_id) &&
2345 ib_device_try_get(cur->ib_dev)) {
2346 res = cur->ib_dev;
2347 break;
2348 }
2349 }
2350 rcu_read_unlock();
2351
2352 return res;
2353 }
2354 EXPORT_SYMBOL(ib_device_get_by_netdev);
2355
2356 /**
2357 * ib_enum_roce_netdev - enumerate all RoCE ports
2358 * @ib_dev : IB device we want to query
2359 * @filter: Should we call the callback?
2360 * @filter_cookie: Cookie passed to filter
2361 * @cb: Callback to call for each found RoCE ports
2362 * @cookie: Cookie passed back to the callback
2363 *
2364 * Enumerates all of the physical RoCE ports of ib_dev
2365 * which are related to netdevice and calls callback() on each
2366 * device for which filter() function returns non zero.
2367 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2368 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2369 roce_netdev_filter filter,
2370 void *filter_cookie,
2371 roce_netdev_callback cb,
2372 void *cookie)
2373 {
2374 u32 port;
2375
2376 rdma_for_each_port (ib_dev, port)
2377 if (rdma_protocol_roce(ib_dev, port)) {
2378 struct net_device *idev =
2379 ib_device_get_netdev(ib_dev, port);
2380
2381 if (filter(ib_dev, port, idev, filter_cookie))
2382 cb(ib_dev, port, idev, cookie);
2383 dev_put(idev);
2384 }
2385 }
2386
2387 /**
2388 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2389 * @filter: Should we call the callback?
2390 * @filter_cookie: Cookie passed to filter
2391 * @cb: Callback to call for each found RoCE ports
2392 * @cookie: Cookie passed back to the callback
2393 *
2394 * Enumerates all RoCE devices' physical ports which are related
2395 * to netdevices and calls callback() on each device for which
2396 * filter() function returns non zero.
2397 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2398 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2399 void *filter_cookie,
2400 roce_netdev_callback cb,
2401 void *cookie)
2402 {
2403 struct ib_device *dev;
2404 unsigned long index;
2405
2406 down_read(&devices_rwsem);
2407 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2408 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2409 up_read(&devices_rwsem);
2410 }
2411
2412 /*
2413 * ib_enum_all_devs - enumerate all ib_devices
2414 * @cb: Callback to call for each found ib_device
2415 *
2416 * Enumerates all ib_devices and calls callback() on each device.
2417 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2418 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2419 struct netlink_callback *cb)
2420 {
2421 unsigned long index;
2422 struct ib_device *dev;
2423 unsigned int idx = 0;
2424 int ret = 0;
2425
2426 down_read(&devices_rwsem);
2427 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2428 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2429 continue;
2430
2431 ret = nldev_cb(dev, skb, cb, idx);
2432 if (ret)
2433 break;
2434 idx++;
2435 }
2436 up_read(&devices_rwsem);
2437 return ret;
2438 }
2439
2440 /**
2441 * ib_query_pkey - Get P_Key table entry
2442 * @device:Device to query
2443 * @port_num:Port number to query
2444 * @index:P_Key table index to query
2445 * @pkey:Returned P_Key
2446 *
2447 * ib_query_pkey() fetches the specified P_Key table entry.
2448 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2449 int ib_query_pkey(struct ib_device *device,
2450 u32 port_num, u16 index, u16 *pkey)
2451 {
2452 if (!rdma_is_port_valid(device, port_num))
2453 return -EINVAL;
2454
2455 if (!device->ops.query_pkey)
2456 return -EOPNOTSUPP;
2457
2458 return device->ops.query_pkey(device, port_num, index, pkey);
2459 }
2460 EXPORT_SYMBOL(ib_query_pkey);
2461
2462 /**
2463 * ib_modify_device - Change IB device attributes
2464 * @device:Device to modify
2465 * @device_modify_mask:Mask of attributes to change
2466 * @device_modify:New attribute values
2467 *
2468 * ib_modify_device() changes a device's attributes as specified by
2469 * the @device_modify_mask and @device_modify structure.
2470 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2471 int ib_modify_device(struct ib_device *device,
2472 int device_modify_mask,
2473 struct ib_device_modify *device_modify)
2474 {
2475 if (!device->ops.modify_device)
2476 return -EOPNOTSUPP;
2477
2478 return device->ops.modify_device(device, device_modify_mask,
2479 device_modify);
2480 }
2481 EXPORT_SYMBOL(ib_modify_device);
2482
2483 /**
2484 * ib_modify_port - Modifies the attributes for the specified port.
2485 * @device: The device to modify.
2486 * @port_num: The number of the port to modify.
2487 * @port_modify_mask: Mask used to specify which attributes of the port
2488 * to change.
2489 * @port_modify: New attribute values for the port.
2490 *
2491 * ib_modify_port() changes a port's attributes as specified by the
2492 * @port_modify_mask and @port_modify structure.
2493 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2494 int ib_modify_port(struct ib_device *device,
2495 u32 port_num, int port_modify_mask,
2496 struct ib_port_modify *port_modify)
2497 {
2498 int rc;
2499
2500 if (!rdma_is_port_valid(device, port_num))
2501 return -EINVAL;
2502
2503 if (device->ops.modify_port)
2504 rc = device->ops.modify_port(device, port_num,
2505 port_modify_mask,
2506 port_modify);
2507 else if (rdma_protocol_roce(device, port_num) &&
2508 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2509 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2510 rc = 0;
2511 else
2512 rc = -EOPNOTSUPP;
2513 return rc;
2514 }
2515 EXPORT_SYMBOL(ib_modify_port);
2516
2517 /**
2518 * ib_find_gid - Returns the port number and GID table index where
2519 * a specified GID value occurs. Its searches only for IB link layer.
2520 * @device: The device to query.
2521 * @gid: The GID value to search for.
2522 * @port_num: The port number of the device where the GID value was found.
2523 * @index: The index into the GID table where the GID was found. This
2524 * parameter may be NULL.
2525 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2526 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2527 u32 *port_num, u16 *index)
2528 {
2529 union ib_gid tmp_gid;
2530 u32 port;
2531 int ret, i;
2532
2533 rdma_for_each_port (device, port) {
2534 if (!rdma_protocol_ib(device, port))
2535 continue;
2536
2537 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2538 ++i) {
2539 ret = rdma_query_gid(device, port, i, &tmp_gid);
2540 if (ret)
2541 continue;
2542
2543 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2544 *port_num = port;
2545 if (index)
2546 *index = i;
2547 return 0;
2548 }
2549 }
2550 }
2551
2552 return -ENOENT;
2553 }
2554 EXPORT_SYMBOL(ib_find_gid);
2555
2556 /**
2557 * ib_find_pkey - Returns the PKey table index where a specified
2558 * PKey value occurs.
2559 * @device: The device to query.
2560 * @port_num: The port number of the device to search for the PKey.
2561 * @pkey: The PKey value to search for.
2562 * @index: The index into the PKey table where the PKey was found.
2563 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2564 int ib_find_pkey(struct ib_device *device,
2565 u32 port_num, u16 pkey, u16 *index)
2566 {
2567 int ret, i;
2568 u16 tmp_pkey;
2569 int partial_ix = -1;
2570
2571 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2572 ++i) {
2573 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2574 if (ret)
2575 return ret;
2576 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2577 /* if there is full-member pkey take it.*/
2578 if (tmp_pkey & 0x8000) {
2579 *index = i;
2580 return 0;
2581 }
2582 if (partial_ix < 0)
2583 partial_ix = i;
2584 }
2585 }
2586
2587 /*no full-member, if exists take the limited*/
2588 if (partial_ix >= 0) {
2589 *index = partial_ix;
2590 return 0;
2591 }
2592 return -ENOENT;
2593 }
2594 EXPORT_SYMBOL(ib_find_pkey);
2595
2596 /**
2597 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2598 * for a received CM request
2599 * @dev: An RDMA device on which the request has been received.
2600 * @port: Port number on the RDMA device.
2601 * @pkey: The Pkey the request came on.
2602 * @gid: A GID that the net_dev uses to communicate.
2603 * @addr: Contains the IP address that the request specified as its
2604 * destination.
2605 *
2606 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2607 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2608 u32 port,
2609 u16 pkey,
2610 const union ib_gid *gid,
2611 const struct sockaddr *addr)
2612 {
2613 struct net_device *net_dev = NULL;
2614 unsigned long index;
2615 void *client_data;
2616
2617 if (!rdma_protocol_ib(dev, port))
2618 return NULL;
2619
2620 /*
2621 * Holding the read side guarantees that the client will not become
2622 * unregistered while we are calling get_net_dev_by_params()
2623 */
2624 down_read(&dev->client_data_rwsem);
2625 xan_for_each_marked (&dev->client_data, index, client_data,
2626 CLIENT_DATA_REGISTERED) {
2627 struct ib_client *client = xa_load(&clients, index);
2628
2629 if (!client || !client->get_net_dev_by_params)
2630 continue;
2631
2632 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2633 addr, client_data);
2634 if (net_dev)
2635 break;
2636 }
2637 up_read(&dev->client_data_rwsem);
2638
2639 return net_dev;
2640 }
2641 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2642
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2643 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2644 {
2645 struct ib_device_ops *dev_ops = &dev->ops;
2646 #define SET_DEVICE_OP(ptr, name) \
2647 do { \
2648 if (ops->name) \
2649 if (!((ptr)->name)) \
2650 (ptr)->name = ops->name; \
2651 } while (0)
2652
2653 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2654
2655 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2656 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2657 dev_ops->driver_id != ops->driver_id);
2658 dev_ops->driver_id = ops->driver_id;
2659 }
2660 if (ops->owner) {
2661 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2662 dev_ops->owner = ops->owner;
2663 }
2664 if (ops->uverbs_abi_ver)
2665 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2666
2667 dev_ops->uverbs_no_driver_id_binding |=
2668 ops->uverbs_no_driver_id_binding;
2669
2670 SET_DEVICE_OP(dev_ops, add_gid);
2671 SET_DEVICE_OP(dev_ops, add_sub_dev);
2672 SET_DEVICE_OP(dev_ops, advise_mr);
2673 SET_DEVICE_OP(dev_ops, alloc_dm);
2674 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2675 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2676 SET_DEVICE_OP(dev_ops, alloc_mr);
2677 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2678 SET_DEVICE_OP(dev_ops, alloc_mw);
2679 SET_DEVICE_OP(dev_ops, alloc_pd);
2680 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2681 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2682 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2683 SET_DEVICE_OP(dev_ops, attach_mcast);
2684 SET_DEVICE_OP(dev_ops, check_mr_status);
2685 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2686 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2687 SET_DEVICE_OP(dev_ops, counter_dealloc);
2688 SET_DEVICE_OP(dev_ops, counter_init);
2689 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2690 SET_DEVICE_OP(dev_ops, counter_update_stats);
2691 SET_DEVICE_OP(dev_ops, create_ah);
2692 SET_DEVICE_OP(dev_ops, create_counters);
2693 SET_DEVICE_OP(dev_ops, create_cq);
2694 SET_DEVICE_OP(dev_ops, create_flow);
2695 SET_DEVICE_OP(dev_ops, create_qp);
2696 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2697 SET_DEVICE_OP(dev_ops, create_srq);
2698 SET_DEVICE_OP(dev_ops, create_user_ah);
2699 SET_DEVICE_OP(dev_ops, create_wq);
2700 SET_DEVICE_OP(dev_ops, dealloc_dm);
2701 SET_DEVICE_OP(dev_ops, dealloc_driver);
2702 SET_DEVICE_OP(dev_ops, dealloc_mw);
2703 SET_DEVICE_OP(dev_ops, dealloc_pd);
2704 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2705 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2706 SET_DEVICE_OP(dev_ops, del_gid);
2707 SET_DEVICE_OP(dev_ops, del_sub_dev);
2708 SET_DEVICE_OP(dev_ops, dereg_mr);
2709 SET_DEVICE_OP(dev_ops, destroy_ah);
2710 SET_DEVICE_OP(dev_ops, destroy_counters);
2711 SET_DEVICE_OP(dev_ops, destroy_cq);
2712 SET_DEVICE_OP(dev_ops, destroy_flow);
2713 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2714 SET_DEVICE_OP(dev_ops, destroy_qp);
2715 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2716 SET_DEVICE_OP(dev_ops, destroy_srq);
2717 SET_DEVICE_OP(dev_ops, destroy_wq);
2718 SET_DEVICE_OP(dev_ops, device_group);
2719 SET_DEVICE_OP(dev_ops, detach_mcast);
2720 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2721 SET_DEVICE_OP(dev_ops, drain_rq);
2722 SET_DEVICE_OP(dev_ops, drain_sq);
2723 SET_DEVICE_OP(dev_ops, enable_driver);
2724 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2725 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2726 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2727 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2728 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2729 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2730 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2731 SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2732 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2733 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2734 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2735 SET_DEVICE_OP(dev_ops, get_dma_mr);
2736 SET_DEVICE_OP(dev_ops, get_hw_stats);
2737 SET_DEVICE_OP(dev_ops, get_link_layer);
2738 SET_DEVICE_OP(dev_ops, get_netdev);
2739 SET_DEVICE_OP(dev_ops, get_numa_node);
2740 SET_DEVICE_OP(dev_ops, get_port_immutable);
2741 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2742 SET_DEVICE_OP(dev_ops, get_vf_config);
2743 SET_DEVICE_OP(dev_ops, get_vf_guid);
2744 SET_DEVICE_OP(dev_ops, get_vf_stats);
2745 SET_DEVICE_OP(dev_ops, iw_accept);
2746 SET_DEVICE_OP(dev_ops, iw_add_ref);
2747 SET_DEVICE_OP(dev_ops, iw_connect);
2748 SET_DEVICE_OP(dev_ops, iw_create_listen);
2749 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2750 SET_DEVICE_OP(dev_ops, iw_get_qp);
2751 SET_DEVICE_OP(dev_ops, iw_reject);
2752 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2753 SET_DEVICE_OP(dev_ops, map_mr_sg);
2754 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2755 SET_DEVICE_OP(dev_ops, mmap);
2756 SET_DEVICE_OP(dev_ops, mmap_free);
2757 SET_DEVICE_OP(dev_ops, modify_ah);
2758 SET_DEVICE_OP(dev_ops, modify_cq);
2759 SET_DEVICE_OP(dev_ops, modify_device);
2760 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2761 SET_DEVICE_OP(dev_ops, modify_port);
2762 SET_DEVICE_OP(dev_ops, modify_qp);
2763 SET_DEVICE_OP(dev_ops, modify_srq);
2764 SET_DEVICE_OP(dev_ops, modify_wq);
2765 SET_DEVICE_OP(dev_ops, peek_cq);
2766 SET_DEVICE_OP(dev_ops, poll_cq);
2767 SET_DEVICE_OP(dev_ops, port_groups);
2768 SET_DEVICE_OP(dev_ops, post_recv);
2769 SET_DEVICE_OP(dev_ops, post_send);
2770 SET_DEVICE_OP(dev_ops, post_srq_recv);
2771 SET_DEVICE_OP(dev_ops, process_mad);
2772 SET_DEVICE_OP(dev_ops, query_ah);
2773 SET_DEVICE_OP(dev_ops, query_device);
2774 SET_DEVICE_OP(dev_ops, query_gid);
2775 SET_DEVICE_OP(dev_ops, query_pkey);
2776 SET_DEVICE_OP(dev_ops, query_port);
2777 SET_DEVICE_OP(dev_ops, query_qp);
2778 SET_DEVICE_OP(dev_ops, query_srq);
2779 SET_DEVICE_OP(dev_ops, query_ucontext);
2780 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2781 SET_DEVICE_OP(dev_ops, read_counters);
2782 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2783 SET_DEVICE_OP(dev_ops, reg_user_mr);
2784 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2785 SET_DEVICE_OP(dev_ops, req_notify_cq);
2786 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2787 SET_DEVICE_OP(dev_ops, resize_cq);
2788 SET_DEVICE_OP(dev_ops, set_vf_guid);
2789 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2790 SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2791 SET_DEVICE_OP(dev_ops, report_port_event);
2792
2793 SET_OBJ_SIZE(dev_ops, ib_ah);
2794 SET_OBJ_SIZE(dev_ops, ib_counters);
2795 SET_OBJ_SIZE(dev_ops, ib_cq);
2796 SET_OBJ_SIZE(dev_ops, ib_mw);
2797 SET_OBJ_SIZE(dev_ops, ib_pd);
2798 SET_OBJ_SIZE(dev_ops, ib_qp);
2799 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2800 SET_OBJ_SIZE(dev_ops, ib_srq);
2801 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2802 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2803 SET_OBJ_SIZE(dev_ops, rdma_counter);
2804 }
2805 EXPORT_SYMBOL(ib_set_device_ops);
2806
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2807 int ib_add_sub_device(struct ib_device *parent,
2808 enum rdma_nl_dev_type type,
2809 const char *name)
2810 {
2811 struct ib_device *sub;
2812 int ret = 0;
2813
2814 if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2815 return -EOPNOTSUPP;
2816
2817 if (!ib_device_try_get(parent))
2818 return -EINVAL;
2819
2820 sub = parent->ops.add_sub_dev(parent, type, name);
2821 if (IS_ERR(sub)) {
2822 ib_device_put(parent);
2823 return PTR_ERR(sub);
2824 }
2825
2826 sub->type = type;
2827 sub->parent = parent;
2828
2829 mutex_lock(&parent->subdev_lock);
2830 list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2831 mutex_unlock(&parent->subdev_lock);
2832
2833 return ret;
2834 }
2835 EXPORT_SYMBOL(ib_add_sub_device);
2836
ib_del_sub_device_and_put(struct ib_device * sub)2837 int ib_del_sub_device_and_put(struct ib_device *sub)
2838 {
2839 struct ib_device *parent = sub->parent;
2840
2841 if (!parent)
2842 return -EOPNOTSUPP;
2843
2844 mutex_lock(&parent->subdev_lock);
2845 list_del(&sub->subdev_list);
2846 mutex_unlock(&parent->subdev_lock);
2847
2848 ib_device_put(sub);
2849 parent->ops.del_sub_dev(sub);
2850 ib_device_put(parent);
2851
2852 return 0;
2853 }
2854 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2855
2856 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2857 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2858 {
2859 struct scatterlist *s;
2860 int i;
2861
2862 for_each_sg(sg, s, nents, i) {
2863 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2864 sg_dma_len(s) = s->length;
2865 }
2866 return nents;
2867 }
2868 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2869 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2870
2871 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2872 [RDMA_NL_LS_OP_RESOLVE] = {
2873 .doit = ib_nl_handle_resolve_resp,
2874 .flags = RDMA_NL_ADMIN_PERM,
2875 },
2876 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2877 .doit = ib_nl_handle_set_timeout,
2878 .flags = RDMA_NL_ADMIN_PERM,
2879 },
2880 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2881 .doit = ib_nl_handle_ip_res_resp,
2882 .flags = RDMA_NL_ADMIN_PERM,
2883 },
2884 };
2885
ib_dispatch_port_state_event(struct ib_device * ibdev,struct net_device * ndev)2886 void ib_dispatch_port_state_event(struct ib_device *ibdev, struct net_device *ndev)
2887 {
2888 enum ib_port_state curr_state;
2889 struct ib_event ibevent = {};
2890 u32 port;
2891
2892 if (ib_query_netdev_port(ibdev, ndev, &port))
2893 return;
2894
2895 curr_state = ib_get_curr_port_state(ndev);
2896
2897 write_lock_irq(&ibdev->cache_lock);
2898 if (ibdev->port_data[port].cache.last_port_state == curr_state) {
2899 write_unlock_irq(&ibdev->cache_lock);
2900 return;
2901 }
2902 ibdev->port_data[port].cache.last_port_state = curr_state;
2903 write_unlock_irq(&ibdev->cache_lock);
2904
2905 ibevent.event = (curr_state == IB_PORT_DOWN) ?
2906 IB_EVENT_PORT_ERR : IB_EVENT_PORT_ACTIVE;
2907 ibevent.device = ibdev;
2908 ibevent.element.port_num = port;
2909 ib_dispatch_event(&ibevent);
2910 }
2911 EXPORT_SYMBOL(ib_dispatch_port_state_event);
2912
handle_port_event(struct net_device * ndev,unsigned long event)2913 static void handle_port_event(struct net_device *ndev, unsigned long event)
2914 {
2915 struct ib_device *ibdev;
2916
2917 /* Currently, link events in bonding scenarios are still
2918 * reported by drivers that support bonding.
2919 */
2920 if (netif_is_lag_master(ndev) || netif_is_lag_port(ndev))
2921 return;
2922
2923 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2924 if (!ibdev)
2925 return;
2926
2927 if (ibdev->ops.report_port_event) {
2928 ibdev->ops.report_port_event(ibdev, ndev, event);
2929 goto put_ibdev;
2930 }
2931
2932 ib_dispatch_port_state_event(ibdev, ndev);
2933
2934 put_ibdev:
2935 ib_device_put(ibdev);
2936 };
2937
ib_netdevice_event(struct notifier_block * this,unsigned long event,void * ptr)2938 static int ib_netdevice_event(struct notifier_block *this,
2939 unsigned long event, void *ptr)
2940 {
2941 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2942 struct ib_device *ibdev;
2943 u32 port;
2944
2945 switch (event) {
2946 case NETDEV_CHANGENAME:
2947 ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2948 if (!ibdev)
2949 return NOTIFY_DONE;
2950
2951 if (ib_query_netdev_port(ibdev, ndev, &port)) {
2952 ib_device_put(ibdev);
2953 break;
2954 }
2955
2956 rdma_nl_notify_event(ibdev, port, RDMA_NETDEV_RENAME_EVENT);
2957 ib_device_put(ibdev);
2958 break;
2959
2960 case NETDEV_UP:
2961 case NETDEV_CHANGE:
2962 case NETDEV_DOWN:
2963 handle_port_event(ndev, event);
2964 break;
2965
2966 default:
2967 break;
2968 }
2969
2970 return NOTIFY_DONE;
2971 }
2972
2973 static struct notifier_block nb_netdevice = {
2974 .notifier_call = ib_netdevice_event,
2975 };
2976
ib_core_init(void)2977 static int __init ib_core_init(void)
2978 {
2979 int ret = -ENOMEM;
2980
2981 ib_wq = alloc_workqueue("infiniband", 0, 0);
2982 if (!ib_wq)
2983 return -ENOMEM;
2984
2985 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2986 WQ_UNBOUND_MAX_ACTIVE);
2987 if (!ib_unreg_wq)
2988 goto err;
2989
2990 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2991 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2992 if (!ib_comp_wq)
2993 goto err_unbound;
2994
2995 ib_comp_unbound_wq =
2996 alloc_workqueue("ib-comp-unb-wq",
2997 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2998 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2999 if (!ib_comp_unbound_wq)
3000 goto err_comp;
3001
3002 ret = class_register(&ib_class);
3003 if (ret) {
3004 pr_warn("Couldn't create InfiniBand device class\n");
3005 goto err_comp_unbound;
3006 }
3007
3008 rdma_nl_init();
3009
3010 ret = addr_init();
3011 if (ret) {
3012 pr_warn("Couldn't init IB address resolution\n");
3013 goto err_ibnl;
3014 }
3015
3016 ret = ib_mad_init();
3017 if (ret) {
3018 pr_warn("Couldn't init IB MAD\n");
3019 goto err_addr;
3020 }
3021
3022 ret = ib_sa_init();
3023 if (ret) {
3024 pr_warn("Couldn't init SA\n");
3025 goto err_mad;
3026 }
3027
3028 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
3029 if (ret) {
3030 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
3031 goto err_sa;
3032 }
3033
3034 ret = register_pernet_device(&rdma_dev_net_ops);
3035 if (ret) {
3036 pr_warn("Couldn't init compat dev. ret %d\n", ret);
3037 goto err_compat;
3038 }
3039
3040 nldev_init();
3041 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
3042 ret = roce_gid_mgmt_init();
3043 if (ret) {
3044 pr_warn("Couldn't init RoCE GID management\n");
3045 goto err_parent;
3046 }
3047
3048 register_netdevice_notifier(&nb_netdevice);
3049
3050 return 0;
3051
3052 err_parent:
3053 rdma_nl_unregister(RDMA_NL_LS);
3054 nldev_exit();
3055 unregister_pernet_device(&rdma_dev_net_ops);
3056 err_compat:
3057 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3058 err_sa:
3059 ib_sa_cleanup();
3060 err_mad:
3061 ib_mad_cleanup();
3062 err_addr:
3063 addr_cleanup();
3064 err_ibnl:
3065 class_unregister(&ib_class);
3066 err_comp_unbound:
3067 destroy_workqueue(ib_comp_unbound_wq);
3068 err_comp:
3069 destroy_workqueue(ib_comp_wq);
3070 err_unbound:
3071 destroy_workqueue(ib_unreg_wq);
3072 err:
3073 destroy_workqueue(ib_wq);
3074 return ret;
3075 }
3076
ib_core_cleanup(void)3077 static void __exit ib_core_cleanup(void)
3078 {
3079 unregister_netdevice_notifier(&nb_netdevice);
3080 roce_gid_mgmt_cleanup();
3081 rdma_nl_unregister(RDMA_NL_LS);
3082 nldev_exit();
3083 unregister_pernet_device(&rdma_dev_net_ops);
3084 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
3085 ib_sa_cleanup();
3086 ib_mad_cleanup();
3087 addr_cleanup();
3088 rdma_nl_exit();
3089 class_unregister(&ib_class);
3090 destroy_workqueue(ib_comp_unbound_wq);
3091 destroy_workqueue(ib_comp_wq);
3092 /* Make sure that any pending umem accounting work is done. */
3093 destroy_workqueue(ib_wq);
3094 destroy_workqueue(ib_unreg_wq);
3095 WARN_ON(!xa_empty(&clients));
3096 WARN_ON(!xa_empty(&devices));
3097 }
3098
3099 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3100
3101 /* ib core relies on netdev stack to first register net_ns_type_operations
3102 * ns kobject type before ib_core initialization.
3103 */
3104 fs_initcall(ib_core_init);
3105 module_exit(ib_core_cleanup);
3106