1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62
63 /*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86 /*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 if (refcount_dec_and_test(&client->uses))
105 complete(&client->uses_zero);
106 }
107
108 /*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113
114 unsigned int rdma_dev_net_id;
115
116 /*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131 /**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 return (ib_devices_shared_netns ||
144 net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147
148 /*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157 {
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(&xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196 {
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level[1] - '0',
199 ibdev->dev.parent,
200 "%s %s %s: %pV",
201 dev_driver_string(ibdev->dev.parent),
202 dev_name(ibdev->dev.parent),
203 dev_name(&ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 const char *format, ...)
214 {
215 struct va_format vaf;
216 va_list args;
217
218 va_start(args, format);
219
220 vaf.fmt = format;
221 vaf.va = &args;
222
223 __ibdev_printk(level, ibdev, &vaf);
224
225 va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228
229 #define define_ibdev_printk_level(func, level) \
230 void func(const struct ib_device *ibdev, const char *fmt, ...) \
231 { \
232 struct va_format vaf; \
233 va_list args; \
234 \
235 va_start(args, fmt); \
236 \
237 vaf.fmt = fmt; \
238 vaf.va = &args; \
239 \
240 __ibdev_printk(level, ibdev, &vaf); \
241 \
242 va_end(args); \
243 } \
244 EXPORT_SYMBOL(func);
245
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253
254 static struct notifier_block ibdev_lsm_nb = {
255 .notifier_call = ib_security_change,
256 };
257
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 struct net *net);
260
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 struct rcu_head rcu_head;
264 struct ib_port_data pdata[];
265 };
266
ib_device_check_mandatory(struct ib_device * device)267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 static const struct {
271 size_t offset;
272 char *name;
273 } mandatory_table[] = {
274 IB_MANDATORY_FUNC(query_device),
275 IB_MANDATORY_FUNC(query_port),
276 IB_MANDATORY_FUNC(alloc_pd),
277 IB_MANDATORY_FUNC(dealloc_pd),
278 IB_MANDATORY_FUNC(create_qp),
279 IB_MANDATORY_FUNC(modify_qp),
280 IB_MANDATORY_FUNC(destroy_qp),
281 IB_MANDATORY_FUNC(post_send),
282 IB_MANDATORY_FUNC(post_recv),
283 IB_MANDATORY_FUNC(create_cq),
284 IB_MANDATORY_FUNC(destroy_cq),
285 IB_MANDATORY_FUNC(poll_cq),
286 IB_MANDATORY_FUNC(req_notify_cq),
287 IB_MANDATORY_FUNC(get_dma_mr),
288 IB_MANDATORY_FUNC(reg_user_mr),
289 IB_MANDATORY_FUNC(dereg_mr),
290 IB_MANDATORY_FUNC(get_port_immutable)
291 };
292 int i;
293
294 device->kverbs_provider = true;
295 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 if (!*(void **) ((void *) &device->ops +
297 mandatory_table[i].offset)) {
298 device->kverbs_provider = false;
299 break;
300 }
301 }
302 }
303
304 /*
305 * Caller must perform ib_device_put() to return the device reference count
306 * when ib_device_get_by_index() returns valid device pointer.
307 */
ib_device_get_by_index(const struct net * net,u32 index)308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 struct ib_device *device;
311
312 down_read(&devices_rwsem);
313 device = xa_load(&devices, index);
314 if (device) {
315 if (!rdma_dev_access_netns(device, net)) {
316 device = NULL;
317 goto out;
318 }
319
320 if (!ib_device_try_get(device))
321 device = NULL;
322 }
323 out:
324 up_read(&devices_rwsem);
325 return device;
326 }
327
328 /**
329 * ib_device_put - Release IB device reference
330 * @device: device whose reference to be released
331 *
332 * ib_device_put() releases reference to the IB device to allow it to be
333 * unregistered and eventually free.
334 */
ib_device_put(struct ib_device * device)335 void ib_device_put(struct ib_device *device)
336 {
337 if (refcount_dec_and_test(&device->refcount))
338 complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341
__ib_device_get_by_name(const char * name)342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 struct ib_device *device;
345 unsigned long index;
346
347 xa_for_each (&devices, index, device)
348 if (!strcmp(name, dev_name(&device->dev)))
349 return device;
350
351 return NULL;
352 }
353
354 /**
355 * ib_device_get_by_name - Find an IB device by name
356 * @name: The name to look for
357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358 *
359 * Find and hold an ib_device by its name. The caller must call
360 * ib_device_put() on the returned pointer.
361 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362 struct ib_device *ib_device_get_by_name(const char *name,
363 enum rdma_driver_id driver_id)
364 {
365 struct ib_device *device;
366
367 down_read(&devices_rwsem);
368 device = __ib_device_get_by_name(name);
369 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 device->ops.driver_id != driver_id)
371 device = NULL;
372
373 if (device) {
374 if (!ib_device_try_get(device))
375 device = NULL;
376 }
377 up_read(&devices_rwsem);
378 return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381
rename_compat_devs(struct ib_device * device)382 static int rename_compat_devs(struct ib_device *device)
383 {
384 struct ib_core_device *cdev;
385 unsigned long index;
386 int ret = 0;
387
388 mutex_lock(&device->compat_devs_mutex);
389 xa_for_each (&device->compat_devs, index, cdev) {
390 ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 if (ret) {
392 dev_warn(&cdev->dev,
393 "Fail to rename compatdev to new name %s\n",
394 dev_name(&device->dev));
395 break;
396 }
397 }
398 mutex_unlock(&device->compat_devs_mutex);
399 return ret;
400 }
401
ib_device_rename(struct ib_device * ibdev,const char * name)402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 unsigned long index;
405 void *client_data;
406 int ret;
407
408 down_write(&devices_rwsem);
409 if (!strcmp(name, dev_name(&ibdev->dev))) {
410 up_write(&devices_rwsem);
411 return 0;
412 }
413
414 if (__ib_device_get_by_name(name)) {
415 up_write(&devices_rwsem);
416 return -EEXIST;
417 }
418
419 ret = device_rename(&ibdev->dev, name);
420 if (ret) {
421 up_write(&devices_rwsem);
422 return ret;
423 }
424
425 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 ret = rename_compat_devs(ibdev);
427
428 downgrade_write(&devices_rwsem);
429 down_read(&ibdev->client_data_rwsem);
430 xan_for_each_marked(&ibdev->client_data, index, client_data,
431 CLIENT_DATA_REGISTERED) {
432 struct ib_client *client = xa_load(&clients, index);
433
434 if (!client || !client->rename)
435 continue;
436
437 client->rename(ibdev, client_data);
438 }
439 up_read(&ibdev->client_data_rwsem);
440 up_read(&devices_rwsem);
441 return 0;
442 }
443
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 if (use_dim > 1)
447 return -EINVAL;
448 ibdev->use_cq_dim = use_dim;
449
450 return 0;
451 }
452
alloc_name(struct ib_device * ibdev,const char * name)453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 struct ib_device *device;
456 unsigned long index;
457 struct ida inuse;
458 int rc;
459 int i;
460
461 lockdep_assert_held_write(&devices_rwsem);
462 ida_init(&inuse);
463 xa_for_each (&devices, index, device) {
464 char buf[IB_DEVICE_NAME_MAX];
465
466 if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 continue;
468 if (i < 0 || i >= INT_MAX)
469 continue;
470 snprintf(buf, sizeof buf, name, i);
471 if (strcmp(buf, dev_name(&device->dev)) != 0)
472 continue;
473
474 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 if (rc < 0)
476 goto out;
477 }
478
479 rc = ida_alloc(&inuse, GFP_KERNEL);
480 if (rc < 0)
481 goto out;
482
483 rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 ida_destroy(&inuse);
486 return rc;
487 }
488
ib_device_release(struct device * device)489 static void ib_device_release(struct device *device)
490 {
491 struct ib_device *dev = container_of(device, struct ib_device, dev);
492
493 free_netdevs(dev);
494 WARN_ON(refcount_read(&dev->refcount));
495 if (dev->hw_stats_data)
496 ib_device_release_hw_stats(dev->hw_stats_data);
497 if (dev->port_data) {
498 ib_cache_release_one(dev);
499 ib_security_release_port_pkey_list(dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(&dev->subdev_lock);
507 mutex_destroy(&dev->unregistration_lock);
508 mutex_destroy(&dev->compat_devs_mutex);
509
510 xa_destroy(&dev->compat_devs);
511 xa_destroy(&dev->client_data);
512 kfree_rcu(dev, rcu_head);
513 }
514
ib_device_uevent(const struct device * device,struct kobj_uevent_env * env)515 static int ib_device_uevent(const struct device *device,
516 struct kobj_uevent_env *env)
517 {
518 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
519 return -ENOMEM;
520
521 /*
522 * It would be nice to pass the node GUID with the event...
523 */
524
525 return 0;
526 }
527
net_namespace(const struct device * d)528 static const void *net_namespace(const struct device *d)
529 {
530 const struct ib_core_device *coredev =
531 container_of(d, struct ib_core_device, dev);
532
533 return read_pnet(&coredev->rdma_net);
534 }
535
536 static struct class ib_class = {
537 .name = "infiniband",
538 .dev_release = ib_device_release,
539 .dev_uevent = ib_device_uevent,
540 .ns_type = &net_ns_type_operations,
541 .namespace = net_namespace,
542 };
543
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)544 static void rdma_init_coredev(struct ib_core_device *coredev,
545 struct ib_device *dev, struct net *net)
546 {
547 /* This BUILD_BUG_ON is intended to catch layout change
548 * of union of ib_core_device and device.
549 * dev must be the first element as ib_core and providers
550 * driver uses it. Adding anything in ib_core_device before
551 * device will break this assumption.
552 */
553 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
554 offsetof(struct ib_device, dev));
555
556 coredev->dev.class = &ib_class;
557 coredev->dev.groups = dev->groups;
558 device_initialize(&coredev->dev);
559 coredev->owner = dev;
560 INIT_LIST_HEAD(&coredev->port_list);
561 write_pnet(&coredev->rdma_net, net);
562 }
563
564 /**
565 * _ib_alloc_device - allocate an IB device struct
566 * @size:size of structure to allocate
567 *
568 * Low-level drivers should use ib_alloc_device() to allocate &struct
569 * ib_device. @size is the size of the structure to be allocated,
570 * including any private data used by the low-level driver.
571 * ib_dealloc_device() must be used to free structures allocated with
572 * ib_alloc_device().
573 */
_ib_alloc_device(size_t size)574 struct ib_device *_ib_alloc_device(size_t size)
575 {
576 struct ib_device *device;
577 unsigned int i;
578
579 if (WARN_ON(size < sizeof(struct ib_device)))
580 return NULL;
581
582 device = kzalloc(size, GFP_KERNEL);
583 if (!device)
584 return NULL;
585
586 if (rdma_restrack_init(device)) {
587 kfree(device);
588 return NULL;
589 }
590
591 rdma_init_coredev(&device->coredev, device, &init_net);
592
593 INIT_LIST_HEAD(&device->event_handler_list);
594 spin_lock_init(&device->qp_open_list_lock);
595 init_rwsem(&device->event_handler_rwsem);
596 mutex_init(&device->unregistration_lock);
597 /*
598 * client_data needs to be alloc because we don't want our mark to be
599 * destroyed if the user stores NULL in the client data.
600 */
601 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
602 init_rwsem(&device->client_data_rwsem);
603 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
604 mutex_init(&device->compat_devs_mutex);
605 init_completion(&device->unreg_completion);
606 INIT_WORK(&device->unregistration_work, ib_unregister_work);
607
608 spin_lock_init(&device->cq_pools_lock);
609 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
610 INIT_LIST_HEAD(&device->cq_pools[i]);
611
612 rwlock_init(&device->cache_lock);
613
614 device->uverbs_cmd_mask =
615 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
616 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
617 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
618 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
623 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
624 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
625 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
626 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
627 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
628 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
630 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
631 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
632 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
633 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
634 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
635 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
636 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
637 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
638 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
640 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
641 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
642 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
643 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
644 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
645
646 mutex_init(&device->subdev_lock);
647 INIT_LIST_HEAD(&device->subdev_list_head);
648 INIT_LIST_HEAD(&device->subdev_list);
649
650 return device;
651 }
652 EXPORT_SYMBOL(_ib_alloc_device);
653
654 /**
655 * ib_dealloc_device - free an IB device struct
656 * @device:structure to free
657 *
658 * Free a structure allocated with ib_alloc_device().
659 */
ib_dealloc_device(struct ib_device * device)660 void ib_dealloc_device(struct ib_device *device)
661 {
662 if (device->ops.dealloc_driver)
663 device->ops.dealloc_driver(device);
664
665 /*
666 * ib_unregister_driver() requires all devices to remain in the xarray
667 * while their ops are callable. The last op we call is dealloc_driver
668 * above. This is needed to create a fence on op callbacks prior to
669 * allowing the driver module to unload.
670 */
671 down_write(&devices_rwsem);
672 if (xa_load(&devices, device->index) == device)
673 xa_erase(&devices, device->index);
674 up_write(&devices_rwsem);
675
676 /* Expedite releasing netdev references */
677 free_netdevs(device);
678
679 WARN_ON(!xa_empty(&device->compat_devs));
680 WARN_ON(!xa_empty(&device->client_data));
681 WARN_ON(refcount_read(&device->refcount));
682 rdma_restrack_clean(device);
683 /* Balances with device_initialize */
684 put_device(&device->dev);
685 }
686 EXPORT_SYMBOL(ib_dealloc_device);
687
688 /*
689 * add_client_context() and remove_client_context() must be safe against
690 * parallel calls on the same device - registration/unregistration of both the
691 * device and client can be occurring in parallel.
692 *
693 * The routines need to be a fence, any caller must not return until the add
694 * or remove is fully completed.
695 */
add_client_context(struct ib_device * device,struct ib_client * client)696 static int add_client_context(struct ib_device *device,
697 struct ib_client *client)
698 {
699 int ret = 0;
700
701 if (!device->kverbs_provider && !client->no_kverbs_req)
702 return 0;
703
704 down_write(&device->client_data_rwsem);
705 /*
706 * So long as the client is registered hold both the client and device
707 * unregistration locks.
708 */
709 if (!refcount_inc_not_zero(&client->uses))
710 goto out_unlock;
711 refcount_inc(&device->refcount);
712
713 /*
714 * Another caller to add_client_context got here first and has already
715 * completely initialized context.
716 */
717 if (xa_get_mark(&device->client_data, client->client_id,
718 CLIENT_DATA_REGISTERED))
719 goto out;
720
721 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
722 GFP_KERNEL));
723 if (ret)
724 goto out;
725 downgrade_write(&device->client_data_rwsem);
726 if (client->add) {
727 if (client->add(device)) {
728 /*
729 * If a client fails to add then the error code is
730 * ignored, but we won't call any more ops on this
731 * client.
732 */
733 xa_erase(&device->client_data, client->client_id);
734 up_read(&device->client_data_rwsem);
735 ib_device_put(device);
736 ib_client_put(client);
737 return 0;
738 }
739 }
740
741 /* Readers shall not see a client until add has been completed */
742 xa_set_mark(&device->client_data, client->client_id,
743 CLIENT_DATA_REGISTERED);
744 up_read(&device->client_data_rwsem);
745 return 0;
746
747 out:
748 ib_device_put(device);
749 ib_client_put(client);
750 out_unlock:
751 up_write(&device->client_data_rwsem);
752 return ret;
753 }
754
remove_client_context(struct ib_device * device,unsigned int client_id)755 static void remove_client_context(struct ib_device *device,
756 unsigned int client_id)
757 {
758 struct ib_client *client;
759 void *client_data;
760
761 down_write(&device->client_data_rwsem);
762 if (!xa_get_mark(&device->client_data, client_id,
763 CLIENT_DATA_REGISTERED)) {
764 up_write(&device->client_data_rwsem);
765 return;
766 }
767 client_data = xa_load(&device->client_data, client_id);
768 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
769 client = xa_load(&clients, client_id);
770 up_write(&device->client_data_rwsem);
771
772 /*
773 * Notice we cannot be holding any exclusive locks when calling the
774 * remove callback as the remove callback can recurse back into any
775 * public functions in this module and thus try for any locks those
776 * functions take.
777 *
778 * For this reason clients and drivers should not call the
779 * unregistration functions will holdling any locks.
780 */
781 if (client->remove)
782 client->remove(device, client_data);
783
784 xa_erase(&device->client_data, client_id);
785 ib_device_put(device);
786 ib_client_put(client);
787 }
788
alloc_port_data(struct ib_device * device)789 static int alloc_port_data(struct ib_device *device)
790 {
791 struct ib_port_data_rcu *pdata_rcu;
792 u32 port;
793
794 if (device->port_data)
795 return 0;
796
797 /* This can only be called once the physical port range is defined */
798 if (WARN_ON(!device->phys_port_cnt))
799 return -EINVAL;
800
801 /* Reserve U32_MAX so the logic to go over all the ports is sane */
802 if (WARN_ON(device->phys_port_cnt == U32_MAX))
803 return -EINVAL;
804
805 /*
806 * device->port_data is indexed directly by the port number to make
807 * access to this data as efficient as possible.
808 *
809 * Therefore port_data is declared as a 1 based array with potential
810 * empty slots at the beginning.
811 */
812 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
813 size_add(rdma_end_port(device), 1)),
814 GFP_KERNEL);
815 if (!pdata_rcu)
816 return -ENOMEM;
817 /*
818 * The rcu_head is put in front of the port data array and the stored
819 * pointer is adjusted since we never need to see that member until
820 * kfree_rcu.
821 */
822 device->port_data = pdata_rcu->pdata;
823
824 rdma_for_each_port (device, port) {
825 struct ib_port_data *pdata = &device->port_data[port];
826
827 pdata->ib_dev = device;
828 spin_lock_init(&pdata->pkey_list_lock);
829 INIT_LIST_HEAD(&pdata->pkey_list);
830 spin_lock_init(&pdata->netdev_lock);
831 INIT_HLIST_NODE(&pdata->ndev_hash_link);
832 }
833 return 0;
834 }
835
verify_immutable(const struct ib_device * dev,u32 port)836 static int verify_immutable(const struct ib_device *dev, u32 port)
837 {
838 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
839 rdma_max_mad_size(dev, port) != 0);
840 }
841
setup_port_data(struct ib_device * device)842 static int setup_port_data(struct ib_device *device)
843 {
844 u32 port;
845 int ret;
846
847 ret = alloc_port_data(device);
848 if (ret)
849 return ret;
850
851 rdma_for_each_port (device, port) {
852 struct ib_port_data *pdata = &device->port_data[port];
853
854 ret = device->ops.get_port_immutable(device, port,
855 &pdata->immutable);
856 if (ret)
857 return ret;
858
859 if (verify_immutable(device, port))
860 return -EINVAL;
861 }
862 return 0;
863 }
864
865 /**
866 * ib_port_immutable_read() - Read rdma port's immutable data
867 * @dev: IB device
868 * @port: port number whose immutable data to read. It starts with index 1 and
869 * valid upto including rdma_end_port().
870 */
871 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)872 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
873 {
874 WARN_ON(!rdma_is_port_valid(dev, port));
875 return &dev->port_data[port].immutable;
876 }
877 EXPORT_SYMBOL(ib_port_immutable_read);
878
ib_get_device_fw_str(struct ib_device * dev,char * str)879 void ib_get_device_fw_str(struct ib_device *dev, char *str)
880 {
881 if (dev->ops.get_dev_fw_str)
882 dev->ops.get_dev_fw_str(dev, str);
883 else
884 str[0] = '\0';
885 }
886 EXPORT_SYMBOL(ib_get_device_fw_str);
887
ib_policy_change_task(struct work_struct * work)888 static void ib_policy_change_task(struct work_struct *work)
889 {
890 struct ib_device *dev;
891 unsigned long index;
892
893 down_read(&devices_rwsem);
894 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
895 unsigned int i;
896
897 rdma_for_each_port (dev, i) {
898 u64 sp;
899 ib_get_cached_subnet_prefix(dev, i, &sp);
900 ib_security_cache_change(dev, i, sp);
901 }
902 }
903 up_read(&devices_rwsem);
904 }
905
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)906 static int ib_security_change(struct notifier_block *nb, unsigned long event,
907 void *lsm_data)
908 {
909 if (event != LSM_POLICY_CHANGE)
910 return NOTIFY_DONE;
911
912 schedule_work(&ib_policy_change_work);
913 ib_mad_agent_security_change();
914
915 return NOTIFY_OK;
916 }
917
compatdev_release(struct device * dev)918 static void compatdev_release(struct device *dev)
919 {
920 struct ib_core_device *cdev =
921 container_of(dev, struct ib_core_device, dev);
922
923 kfree(cdev);
924 }
925
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)926 static int add_one_compat_dev(struct ib_device *device,
927 struct rdma_dev_net *rnet)
928 {
929 struct ib_core_device *cdev;
930 int ret;
931
932 lockdep_assert_held(&rdma_nets_rwsem);
933 if (!ib_devices_shared_netns)
934 return 0;
935
936 /*
937 * Create and add compat device in all namespaces other than where it
938 * is currently bound to.
939 */
940 if (net_eq(read_pnet(&rnet->net),
941 read_pnet(&device->coredev.rdma_net)))
942 return 0;
943
944 /*
945 * The first of init_net() or ib_register_device() to take the
946 * compat_devs_mutex wins and gets to add the device. Others will wait
947 * for completion here.
948 */
949 mutex_lock(&device->compat_devs_mutex);
950 cdev = xa_load(&device->compat_devs, rnet->id);
951 if (cdev) {
952 ret = 0;
953 goto done;
954 }
955 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
956 if (ret)
957 goto done;
958
959 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
960 if (!cdev) {
961 ret = -ENOMEM;
962 goto cdev_err;
963 }
964
965 cdev->dev.parent = device->dev.parent;
966 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
967 cdev->dev.release = compatdev_release;
968 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
969 if (ret)
970 goto add_err;
971
972 ret = device_add(&cdev->dev);
973 if (ret)
974 goto add_err;
975 ret = ib_setup_port_attrs(cdev);
976 if (ret)
977 goto port_err;
978
979 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
980 cdev, GFP_KERNEL));
981 if (ret)
982 goto insert_err;
983
984 mutex_unlock(&device->compat_devs_mutex);
985 return 0;
986
987 insert_err:
988 ib_free_port_attrs(cdev);
989 port_err:
990 device_del(&cdev->dev);
991 add_err:
992 put_device(&cdev->dev);
993 cdev_err:
994 xa_release(&device->compat_devs, rnet->id);
995 done:
996 mutex_unlock(&device->compat_devs_mutex);
997 return ret;
998 }
999
remove_one_compat_dev(struct ib_device * device,u32 id)1000 static void remove_one_compat_dev(struct ib_device *device, u32 id)
1001 {
1002 struct ib_core_device *cdev;
1003
1004 mutex_lock(&device->compat_devs_mutex);
1005 cdev = xa_erase(&device->compat_devs, id);
1006 mutex_unlock(&device->compat_devs_mutex);
1007 if (cdev) {
1008 ib_free_port_attrs(cdev);
1009 device_del(&cdev->dev);
1010 put_device(&cdev->dev);
1011 }
1012 }
1013
remove_compat_devs(struct ib_device * device)1014 static void remove_compat_devs(struct ib_device *device)
1015 {
1016 struct ib_core_device *cdev;
1017 unsigned long index;
1018
1019 xa_for_each (&device->compat_devs, index, cdev)
1020 remove_one_compat_dev(device, index);
1021 }
1022
add_compat_devs(struct ib_device * device)1023 static int add_compat_devs(struct ib_device *device)
1024 {
1025 struct rdma_dev_net *rnet;
1026 unsigned long index;
1027 int ret = 0;
1028
1029 lockdep_assert_held(&devices_rwsem);
1030
1031 down_read(&rdma_nets_rwsem);
1032 xa_for_each (&rdma_nets, index, rnet) {
1033 ret = add_one_compat_dev(device, rnet);
1034 if (ret)
1035 break;
1036 }
1037 up_read(&rdma_nets_rwsem);
1038 return ret;
1039 }
1040
remove_all_compat_devs(void)1041 static void remove_all_compat_devs(void)
1042 {
1043 struct ib_compat_device *cdev;
1044 struct ib_device *dev;
1045 unsigned long index;
1046
1047 down_read(&devices_rwsem);
1048 xa_for_each (&devices, index, dev) {
1049 unsigned long c_index = 0;
1050
1051 /* Hold nets_rwsem so that any other thread modifying this
1052 * system param can sync with this thread.
1053 */
1054 down_read(&rdma_nets_rwsem);
1055 xa_for_each (&dev->compat_devs, c_index, cdev)
1056 remove_one_compat_dev(dev, c_index);
1057 up_read(&rdma_nets_rwsem);
1058 }
1059 up_read(&devices_rwsem);
1060 }
1061
add_all_compat_devs(void)1062 static int add_all_compat_devs(void)
1063 {
1064 struct rdma_dev_net *rnet;
1065 struct ib_device *dev;
1066 unsigned long index;
1067 int ret = 0;
1068
1069 down_read(&devices_rwsem);
1070 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1071 unsigned long net_index = 0;
1072
1073 /* Hold nets_rwsem so that any other thread modifying this
1074 * system param can sync with this thread.
1075 */
1076 down_read(&rdma_nets_rwsem);
1077 xa_for_each (&rdma_nets, net_index, rnet) {
1078 ret = add_one_compat_dev(dev, rnet);
1079 if (ret)
1080 break;
1081 }
1082 up_read(&rdma_nets_rwsem);
1083 }
1084 up_read(&devices_rwsem);
1085 if (ret)
1086 remove_all_compat_devs();
1087 return ret;
1088 }
1089
rdma_compatdev_set(u8 enable)1090 int rdma_compatdev_set(u8 enable)
1091 {
1092 struct rdma_dev_net *rnet;
1093 unsigned long index;
1094 int ret = 0;
1095
1096 down_write(&rdma_nets_rwsem);
1097 if (ib_devices_shared_netns == enable) {
1098 up_write(&rdma_nets_rwsem);
1099 return 0;
1100 }
1101
1102 /* enable/disable of compat devices is not supported
1103 * when more than default init_net exists.
1104 */
1105 xa_for_each (&rdma_nets, index, rnet) {
1106 ret++;
1107 break;
1108 }
1109 if (!ret)
1110 ib_devices_shared_netns = enable;
1111 up_write(&rdma_nets_rwsem);
1112 if (ret)
1113 return -EBUSY;
1114
1115 if (enable)
1116 ret = add_all_compat_devs();
1117 else
1118 remove_all_compat_devs();
1119 return ret;
1120 }
1121
rdma_dev_exit_net(struct net * net)1122 static void rdma_dev_exit_net(struct net *net)
1123 {
1124 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1125 struct ib_device *dev;
1126 unsigned long index;
1127 int ret;
1128
1129 down_write(&rdma_nets_rwsem);
1130 /*
1131 * Prevent the ID from being re-used and hide the id from xa_for_each.
1132 */
1133 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1134 WARN_ON(ret);
1135 up_write(&rdma_nets_rwsem);
1136
1137 down_read(&devices_rwsem);
1138 xa_for_each (&devices, index, dev) {
1139 get_device(&dev->dev);
1140 /*
1141 * Release the devices_rwsem so that pontentially blocking
1142 * device_del, doesn't hold the devices_rwsem for too long.
1143 */
1144 up_read(&devices_rwsem);
1145
1146 remove_one_compat_dev(dev, rnet->id);
1147
1148 /*
1149 * If the real device is in the NS then move it back to init.
1150 */
1151 rdma_dev_change_netns(dev, net, &init_net);
1152
1153 put_device(&dev->dev);
1154 down_read(&devices_rwsem);
1155 }
1156 up_read(&devices_rwsem);
1157
1158 rdma_nl_net_exit(rnet);
1159 xa_erase(&rdma_nets, rnet->id);
1160 }
1161
rdma_dev_init_net(struct net * net)1162 static __net_init int rdma_dev_init_net(struct net *net)
1163 {
1164 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1165 unsigned long index;
1166 struct ib_device *dev;
1167 int ret;
1168
1169 write_pnet(&rnet->net, net);
1170
1171 ret = rdma_nl_net_init(rnet);
1172 if (ret)
1173 return ret;
1174
1175 /* No need to create any compat devices in default init_net. */
1176 if (net_eq(net, &init_net))
1177 return 0;
1178
1179 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1180 if (ret) {
1181 rdma_nl_net_exit(rnet);
1182 return ret;
1183 }
1184
1185 down_read(&devices_rwsem);
1186 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1187 /* Hold nets_rwsem so that netlink command cannot change
1188 * system configuration for device sharing mode.
1189 */
1190 down_read(&rdma_nets_rwsem);
1191 ret = add_one_compat_dev(dev, rnet);
1192 up_read(&rdma_nets_rwsem);
1193 if (ret)
1194 break;
1195 }
1196 up_read(&devices_rwsem);
1197
1198 if (ret)
1199 rdma_dev_exit_net(net);
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * Assign the unique string device name and the unique device index. This is
1206 * undone by ib_dealloc_device.
1207 */
assign_name(struct ib_device * device,const char * name)1208 static int assign_name(struct ib_device *device, const char *name)
1209 {
1210 static u32 last_id;
1211 int ret;
1212
1213 down_write(&devices_rwsem);
1214 /* Assign a unique name to the device */
1215 if (strchr(name, '%'))
1216 ret = alloc_name(device, name);
1217 else
1218 ret = dev_set_name(&device->dev, name);
1219 if (ret)
1220 goto out;
1221
1222 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1223 ret = -ENFILE;
1224 goto out;
1225 }
1226 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1227
1228 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1229 &last_id, GFP_KERNEL);
1230 if (ret > 0)
1231 ret = 0;
1232
1233 out:
1234 up_write(&devices_rwsem);
1235 return ret;
1236 }
1237
1238 /*
1239 * setup_device() allocates memory and sets up data that requires calling the
1240 * device ops, this is the only reason these actions are not done during
1241 * ib_alloc_device. It is undone by ib_dealloc_device().
1242 */
setup_device(struct ib_device * device)1243 static int setup_device(struct ib_device *device)
1244 {
1245 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1246 int ret;
1247
1248 ib_device_check_mandatory(device);
1249
1250 ret = setup_port_data(device);
1251 if (ret) {
1252 dev_warn(&device->dev, "Couldn't create per-port data\n");
1253 return ret;
1254 }
1255
1256 memset(&device->attrs, 0, sizeof(device->attrs));
1257 ret = device->ops.query_device(device, &device->attrs, &uhw);
1258 if (ret) {
1259 dev_warn(&device->dev,
1260 "Couldn't query the device attributes\n");
1261 return ret;
1262 }
1263
1264 return 0;
1265 }
1266
disable_device(struct ib_device * device)1267 static void disable_device(struct ib_device *device)
1268 {
1269 u32 cid;
1270
1271 WARN_ON(!refcount_read(&device->refcount));
1272
1273 down_write(&devices_rwsem);
1274 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1275 up_write(&devices_rwsem);
1276
1277 /*
1278 * Remove clients in LIFO order, see assign_client_id. This could be
1279 * more efficient if xarray learns to reverse iterate. Since no new
1280 * clients can be added to this ib_device past this point we only need
1281 * the maximum possible client_id value here.
1282 */
1283 down_read(&clients_rwsem);
1284 cid = highest_client_id;
1285 up_read(&clients_rwsem);
1286 while (cid) {
1287 cid--;
1288 remove_client_context(device, cid);
1289 }
1290
1291 ib_cq_pool_cleanup(device);
1292
1293 /* Pairs with refcount_set in enable_device */
1294 ib_device_put(device);
1295 wait_for_completion(&device->unreg_completion);
1296
1297 /*
1298 * compat devices must be removed after device refcount drops to zero.
1299 * Otherwise init_net() may add more compatdevs after removing compat
1300 * devices and before device is disabled.
1301 */
1302 remove_compat_devs(device);
1303 }
1304
1305 /*
1306 * An enabled device is visible to all clients and to all the public facing
1307 * APIs that return a device pointer. This always returns with a new get, even
1308 * if it fails.
1309 */
enable_device_and_get(struct ib_device * device)1310 static int enable_device_and_get(struct ib_device *device)
1311 {
1312 struct ib_client *client;
1313 unsigned long index;
1314 int ret = 0;
1315
1316 /*
1317 * One ref belongs to the xa and the other belongs to this
1318 * thread. This is needed to guard against parallel unregistration.
1319 */
1320 refcount_set(&device->refcount, 2);
1321 down_write(&devices_rwsem);
1322 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1323
1324 /*
1325 * By using downgrade_write() we ensure that no other thread can clear
1326 * DEVICE_REGISTERED while we are completing the client setup.
1327 */
1328 downgrade_write(&devices_rwsem);
1329
1330 if (device->ops.enable_driver) {
1331 ret = device->ops.enable_driver(device);
1332 if (ret)
1333 goto out;
1334 }
1335
1336 down_read(&clients_rwsem);
1337 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1338 ret = add_client_context(device, client);
1339 if (ret)
1340 break;
1341 }
1342 up_read(&clients_rwsem);
1343 if (!ret)
1344 ret = add_compat_devs(device);
1345 out:
1346 up_read(&devices_rwsem);
1347 return ret;
1348 }
1349
prevent_dealloc_device(struct ib_device * ib_dev)1350 static void prevent_dealloc_device(struct ib_device *ib_dev)
1351 {
1352 }
1353
ib_device_notify_register(struct ib_device * device)1354 static void ib_device_notify_register(struct ib_device *device)
1355 {
1356 struct net_device *netdev;
1357 u32 port;
1358 int ret;
1359
1360 ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1361 if (ret)
1362 return;
1363
1364 rdma_for_each_port(device, port) {
1365 netdev = ib_device_get_netdev(device, port);
1366 if (!netdev)
1367 continue;
1368
1369 ret = rdma_nl_notify_event(device, port,
1370 RDMA_NETDEV_ATTACH_EVENT);
1371 dev_put(netdev);
1372 if (ret)
1373 return;
1374 }
1375 }
1376
1377 /**
1378 * ib_register_device - Register an IB device with IB core
1379 * @device: Device to register
1380 * @name: unique string device name. This may include a '%' which will
1381 * cause a unique index to be added to the passed device name.
1382 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1383 * device will be used. In this case the caller should fully
1384 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1385 *
1386 * Low-level drivers use ib_register_device() to register their
1387 * devices with the IB core. All registered clients will receive a
1388 * callback for each device that is added. @device must be allocated
1389 * with ib_alloc_device().
1390 *
1391 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1392 * asynchronously then the device pointer may become freed as soon as this
1393 * function returns.
1394 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1395 int ib_register_device(struct ib_device *device, const char *name,
1396 struct device *dma_device)
1397 {
1398 int ret;
1399
1400 ret = assign_name(device, name);
1401 if (ret)
1402 return ret;
1403
1404 /*
1405 * If the caller does not provide a DMA capable device then the IB core
1406 * will set up ib_sge and scatterlist structures that stash the kernel
1407 * virtual address into the address field.
1408 */
1409 WARN_ON(dma_device && !dma_device->dma_parms);
1410 device->dma_device = dma_device;
1411
1412 ret = setup_device(device);
1413 if (ret)
1414 return ret;
1415
1416 ret = ib_cache_setup_one(device);
1417 if (ret) {
1418 dev_warn(&device->dev,
1419 "Couldn't set up InfiniBand P_Key/GID cache\n");
1420 return ret;
1421 }
1422
1423 device->groups[0] = &ib_dev_attr_group;
1424 device->groups[1] = device->ops.device_group;
1425 ret = ib_setup_device_attrs(device);
1426 if (ret)
1427 goto cache_cleanup;
1428
1429 ib_device_register_rdmacg(device);
1430
1431 rdma_counter_init(device);
1432
1433 /*
1434 * Ensure that ADD uevent is not fired because it
1435 * is too early amd device is not initialized yet.
1436 */
1437 dev_set_uevent_suppress(&device->dev, true);
1438 ret = device_add(&device->dev);
1439 if (ret)
1440 goto cg_cleanup;
1441
1442 ret = ib_setup_port_attrs(&device->coredev);
1443 if (ret) {
1444 dev_warn(&device->dev,
1445 "Couldn't register device with driver model\n");
1446 goto dev_cleanup;
1447 }
1448
1449 ret = enable_device_and_get(device);
1450 if (ret) {
1451 void (*dealloc_fn)(struct ib_device *);
1452
1453 /*
1454 * If we hit this error flow then we don't want to
1455 * automatically dealloc the device since the caller is
1456 * expected to call ib_dealloc_device() after
1457 * ib_register_device() fails. This is tricky due to the
1458 * possibility for a parallel unregistration along with this
1459 * error flow. Since we have a refcount here we know any
1460 * parallel flow is stopped in disable_device and will see the
1461 * special dealloc_driver pointer, causing the responsibility to
1462 * ib_dealloc_device() to revert back to this thread.
1463 */
1464 dealloc_fn = device->ops.dealloc_driver;
1465 device->ops.dealloc_driver = prevent_dealloc_device;
1466 ib_device_put(device);
1467 __ib_unregister_device(device);
1468 device->ops.dealloc_driver = dealloc_fn;
1469 dev_set_uevent_suppress(&device->dev, false);
1470 return ret;
1471 }
1472 dev_set_uevent_suppress(&device->dev, false);
1473 /* Mark for userspace that device is ready */
1474 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1475
1476 ib_device_notify_register(device);
1477 ib_device_put(device);
1478
1479 return 0;
1480
1481 dev_cleanup:
1482 device_del(&device->dev);
1483 cg_cleanup:
1484 dev_set_uevent_suppress(&device->dev, false);
1485 ib_device_unregister_rdmacg(device);
1486 cache_cleanup:
1487 ib_cache_cleanup_one(device);
1488 return ret;
1489 }
1490 EXPORT_SYMBOL(ib_register_device);
1491
1492 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1493 static void __ib_unregister_device(struct ib_device *ib_dev)
1494 {
1495 struct ib_device *sub, *tmp;
1496
1497 mutex_lock(&ib_dev->subdev_lock);
1498 list_for_each_entry_safe_reverse(sub, tmp,
1499 &ib_dev->subdev_list_head,
1500 subdev_list) {
1501 list_del(&sub->subdev_list);
1502 ib_dev->ops.del_sub_dev(sub);
1503 ib_device_put(ib_dev);
1504 }
1505 mutex_unlock(&ib_dev->subdev_lock);
1506
1507 /*
1508 * We have a registration lock so that all the calls to unregister are
1509 * fully fenced, once any unregister returns the device is truely
1510 * unregistered even if multiple callers are unregistering it at the
1511 * same time. This also interacts with the registration flow and
1512 * provides sane semantics if register and unregister are racing.
1513 */
1514 mutex_lock(&ib_dev->unregistration_lock);
1515 if (!refcount_read(&ib_dev->refcount))
1516 goto out;
1517
1518 disable_device(ib_dev);
1519 rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1520
1521 /* Expedite removing unregistered pointers from the hash table */
1522 free_netdevs(ib_dev);
1523
1524 ib_free_port_attrs(&ib_dev->coredev);
1525 device_del(&ib_dev->dev);
1526 ib_device_unregister_rdmacg(ib_dev);
1527 ib_cache_cleanup_one(ib_dev);
1528
1529 /*
1530 * Drivers using the new flow may not call ib_dealloc_device except
1531 * in error unwind prior to registration success.
1532 */
1533 if (ib_dev->ops.dealloc_driver &&
1534 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1535 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1536 ib_dealloc_device(ib_dev);
1537 }
1538 out:
1539 mutex_unlock(&ib_dev->unregistration_lock);
1540 }
1541
1542 /**
1543 * ib_unregister_device - Unregister an IB device
1544 * @ib_dev: The device to unregister
1545 *
1546 * Unregister an IB device. All clients will receive a remove callback.
1547 *
1548 * Callers should call this routine only once, and protect against races with
1549 * registration. Typically it should only be called as part of a remove
1550 * callback in an implementation of driver core's struct device_driver and
1551 * related.
1552 *
1553 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1554 * this function.
1555 */
ib_unregister_device(struct ib_device * ib_dev)1556 void ib_unregister_device(struct ib_device *ib_dev)
1557 {
1558 get_device(&ib_dev->dev);
1559 __ib_unregister_device(ib_dev);
1560 put_device(&ib_dev->dev);
1561 }
1562 EXPORT_SYMBOL(ib_unregister_device);
1563
1564 /**
1565 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1566 * @ib_dev: The device to unregister
1567 *
1568 * This is the same as ib_unregister_device(), except it includes an internal
1569 * ib_device_put() that should match a 'get' obtained by the caller.
1570 *
1571 * It is safe to call this routine concurrently from multiple threads while
1572 * holding the 'get'. When the function returns the device is fully
1573 * unregistered.
1574 *
1575 * Drivers using this flow MUST use the driver_unregister callback to clean up
1576 * their resources associated with the device and dealloc it.
1577 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1578 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1579 {
1580 WARN_ON(!ib_dev->ops.dealloc_driver);
1581 get_device(&ib_dev->dev);
1582 ib_device_put(ib_dev);
1583 __ib_unregister_device(ib_dev);
1584 put_device(&ib_dev->dev);
1585 }
1586 EXPORT_SYMBOL(ib_unregister_device_and_put);
1587
1588 /**
1589 * ib_unregister_driver - Unregister all IB devices for a driver
1590 * @driver_id: The driver to unregister
1591 *
1592 * This implements a fence for device unregistration. It only returns once all
1593 * devices associated with the driver_id have fully completed their
1594 * unregistration and returned from ib_unregister_device*().
1595 *
1596 * If device's are not yet unregistered it goes ahead and starts unregistering
1597 * them.
1598 *
1599 * This does not block creation of new devices with the given driver_id, that
1600 * is the responsibility of the caller.
1601 */
ib_unregister_driver(enum rdma_driver_id driver_id)1602 void ib_unregister_driver(enum rdma_driver_id driver_id)
1603 {
1604 struct ib_device *ib_dev;
1605 unsigned long index;
1606
1607 down_read(&devices_rwsem);
1608 xa_for_each (&devices, index, ib_dev) {
1609 if (ib_dev->ops.driver_id != driver_id)
1610 continue;
1611
1612 get_device(&ib_dev->dev);
1613 up_read(&devices_rwsem);
1614
1615 WARN_ON(!ib_dev->ops.dealloc_driver);
1616 __ib_unregister_device(ib_dev);
1617
1618 put_device(&ib_dev->dev);
1619 down_read(&devices_rwsem);
1620 }
1621 up_read(&devices_rwsem);
1622 }
1623 EXPORT_SYMBOL(ib_unregister_driver);
1624
ib_unregister_work(struct work_struct * work)1625 static void ib_unregister_work(struct work_struct *work)
1626 {
1627 struct ib_device *ib_dev =
1628 container_of(work, struct ib_device, unregistration_work);
1629
1630 __ib_unregister_device(ib_dev);
1631 put_device(&ib_dev->dev);
1632 }
1633
1634 /**
1635 * ib_unregister_device_queued - Unregister a device using a work queue
1636 * @ib_dev: The device to unregister
1637 *
1638 * This schedules an asynchronous unregistration using a WQ for the device. A
1639 * driver should use this to avoid holding locks while doing unregistration,
1640 * such as holding the RTNL lock.
1641 *
1642 * Drivers using this API must use ib_unregister_driver before module unload
1643 * to ensure that all scheduled unregistrations have completed.
1644 */
ib_unregister_device_queued(struct ib_device * ib_dev)1645 void ib_unregister_device_queued(struct ib_device *ib_dev)
1646 {
1647 WARN_ON(!refcount_read(&ib_dev->refcount));
1648 WARN_ON(!ib_dev->ops.dealloc_driver);
1649 get_device(&ib_dev->dev);
1650 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1651 put_device(&ib_dev->dev);
1652 }
1653 EXPORT_SYMBOL(ib_unregister_device_queued);
1654
1655 /*
1656 * The caller must pass in a device that has the kref held and the refcount
1657 * released. If the device is in cur_net and still registered then it is moved
1658 * into net.
1659 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1660 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1661 struct net *net)
1662 {
1663 int ret2 = -EINVAL;
1664 int ret;
1665
1666 mutex_lock(&device->unregistration_lock);
1667
1668 /*
1669 * If a device not under ib_device_get() or if the unregistration_lock
1670 * is not held, the namespace can be changed, or it can be unregistered.
1671 * Check again under the lock.
1672 */
1673 if (refcount_read(&device->refcount) == 0 ||
1674 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1675 ret = -ENODEV;
1676 goto out;
1677 }
1678
1679 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1680 disable_device(device);
1681
1682 /*
1683 * At this point no one can be using the device, so it is safe to
1684 * change the namespace.
1685 */
1686 write_pnet(&device->coredev.rdma_net, net);
1687
1688 down_read(&devices_rwsem);
1689 /*
1690 * Currently rdma devices are system wide unique. So the device name
1691 * is guaranteed free in the new namespace. Publish the new namespace
1692 * at the sysfs level.
1693 */
1694 ret = device_rename(&device->dev, dev_name(&device->dev));
1695 up_read(&devices_rwsem);
1696 if (ret) {
1697 dev_warn(&device->dev,
1698 "%s: Couldn't rename device after namespace change\n",
1699 __func__);
1700 /* Try and put things back and re-enable the device */
1701 write_pnet(&device->coredev.rdma_net, cur_net);
1702 }
1703
1704 ret2 = enable_device_and_get(device);
1705 if (ret2) {
1706 /*
1707 * This shouldn't really happen, but if it does, let the user
1708 * retry at later point. So don't disable the device.
1709 */
1710 dev_warn(&device->dev,
1711 "%s: Couldn't re-enable device after namespace change\n",
1712 __func__);
1713 }
1714 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1715
1716 ib_device_put(device);
1717 out:
1718 mutex_unlock(&device->unregistration_lock);
1719 if (ret)
1720 return ret;
1721 return ret2;
1722 }
1723
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1724 int ib_device_set_netns_put(struct sk_buff *skb,
1725 struct ib_device *dev, u32 ns_fd)
1726 {
1727 struct net *net;
1728 int ret;
1729
1730 net = get_net_ns_by_fd(ns_fd);
1731 if (IS_ERR(net)) {
1732 ret = PTR_ERR(net);
1733 goto net_err;
1734 }
1735
1736 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1737 ret = -EPERM;
1738 goto ns_err;
1739 }
1740
1741 /*
1742 * All the ib_clients, including uverbs, are reset when the namespace is
1743 * changed and this cannot be blocked waiting for userspace to do
1744 * something, so disassociation is mandatory.
1745 */
1746 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1747 ret = -EOPNOTSUPP;
1748 goto ns_err;
1749 }
1750
1751 get_device(&dev->dev);
1752 ib_device_put(dev);
1753 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1754 put_device(&dev->dev);
1755
1756 put_net(net);
1757 return ret;
1758
1759 ns_err:
1760 put_net(net);
1761 net_err:
1762 ib_device_put(dev);
1763 return ret;
1764 }
1765
1766 static struct pernet_operations rdma_dev_net_ops = {
1767 .init = rdma_dev_init_net,
1768 .exit = rdma_dev_exit_net,
1769 .id = &rdma_dev_net_id,
1770 .size = sizeof(struct rdma_dev_net),
1771 };
1772
assign_client_id(struct ib_client * client)1773 static int assign_client_id(struct ib_client *client)
1774 {
1775 int ret;
1776
1777 lockdep_assert_held(&clients_rwsem);
1778 /*
1779 * The add/remove callbacks must be called in FIFO/LIFO order. To
1780 * achieve this we assign client_ids so they are sorted in
1781 * registration order.
1782 */
1783 client->client_id = highest_client_id;
1784 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1785 if (ret)
1786 return ret;
1787
1788 highest_client_id++;
1789 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1790 return 0;
1791 }
1792
remove_client_id(struct ib_client * client)1793 static void remove_client_id(struct ib_client *client)
1794 {
1795 down_write(&clients_rwsem);
1796 xa_erase(&clients, client->client_id);
1797 for (; highest_client_id; highest_client_id--)
1798 if (xa_load(&clients, highest_client_id - 1))
1799 break;
1800 up_write(&clients_rwsem);
1801 }
1802
1803 /**
1804 * ib_register_client - Register an IB client
1805 * @client:Client to register
1806 *
1807 * Upper level users of the IB drivers can use ib_register_client() to
1808 * register callbacks for IB device addition and removal. When an IB
1809 * device is added, each registered client's add method will be called
1810 * (in the order the clients were registered), and when a device is
1811 * removed, each client's remove method will be called (in the reverse
1812 * order that clients were registered). In addition, when
1813 * ib_register_client() is called, the client will receive an add
1814 * callback for all devices already registered.
1815 */
ib_register_client(struct ib_client * client)1816 int ib_register_client(struct ib_client *client)
1817 {
1818 struct ib_device *device;
1819 unsigned long index;
1820 bool need_unreg = false;
1821 int ret;
1822
1823 refcount_set(&client->uses, 1);
1824 init_completion(&client->uses_zero);
1825
1826 /*
1827 * The devices_rwsem is held in write mode to ensure that a racing
1828 * ib_register_device() sees a consisent view of clients and devices.
1829 */
1830 down_write(&devices_rwsem);
1831 down_write(&clients_rwsem);
1832 ret = assign_client_id(client);
1833 if (ret)
1834 goto out;
1835
1836 need_unreg = true;
1837 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1838 ret = add_client_context(device, client);
1839 if (ret)
1840 goto out;
1841 }
1842 ret = 0;
1843 out:
1844 up_write(&clients_rwsem);
1845 up_write(&devices_rwsem);
1846 if (need_unreg && ret)
1847 ib_unregister_client(client);
1848 return ret;
1849 }
1850 EXPORT_SYMBOL(ib_register_client);
1851
1852 /**
1853 * ib_unregister_client - Unregister an IB client
1854 * @client:Client to unregister
1855 *
1856 * Upper level users use ib_unregister_client() to remove their client
1857 * registration. When ib_unregister_client() is called, the client
1858 * will receive a remove callback for each IB device still registered.
1859 *
1860 * This is a full fence, once it returns no client callbacks will be called,
1861 * or are running in another thread.
1862 */
ib_unregister_client(struct ib_client * client)1863 void ib_unregister_client(struct ib_client *client)
1864 {
1865 struct ib_device *device;
1866 unsigned long index;
1867
1868 down_write(&clients_rwsem);
1869 ib_client_put(client);
1870 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1871 up_write(&clients_rwsem);
1872
1873 /* We do not want to have locks while calling client->remove() */
1874 rcu_read_lock();
1875 xa_for_each (&devices, index, device) {
1876 if (!ib_device_try_get(device))
1877 continue;
1878 rcu_read_unlock();
1879
1880 remove_client_context(device, client->client_id);
1881
1882 ib_device_put(device);
1883 rcu_read_lock();
1884 }
1885 rcu_read_unlock();
1886
1887 /*
1888 * remove_client_context() is not a fence, it can return even though a
1889 * removal is ongoing. Wait until all removals are completed.
1890 */
1891 wait_for_completion(&client->uses_zero);
1892 remove_client_id(client);
1893 }
1894 EXPORT_SYMBOL(ib_unregister_client);
1895
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1896 static int __ib_get_global_client_nl_info(const char *client_name,
1897 struct ib_client_nl_info *res)
1898 {
1899 struct ib_client *client;
1900 unsigned long index;
1901 int ret = -ENOENT;
1902
1903 down_read(&clients_rwsem);
1904 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1905 if (strcmp(client->name, client_name) != 0)
1906 continue;
1907 if (!client->get_global_nl_info) {
1908 ret = -EOPNOTSUPP;
1909 break;
1910 }
1911 ret = client->get_global_nl_info(res);
1912 if (WARN_ON(ret == -ENOENT))
1913 ret = -EINVAL;
1914 if (!ret && res->cdev)
1915 get_device(res->cdev);
1916 break;
1917 }
1918 up_read(&clients_rwsem);
1919 return ret;
1920 }
1921
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1922 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1923 const char *client_name,
1924 struct ib_client_nl_info *res)
1925 {
1926 unsigned long index;
1927 void *client_data;
1928 int ret = -ENOENT;
1929
1930 down_read(&ibdev->client_data_rwsem);
1931 xan_for_each_marked (&ibdev->client_data, index, client_data,
1932 CLIENT_DATA_REGISTERED) {
1933 struct ib_client *client = xa_load(&clients, index);
1934
1935 if (!client || strcmp(client->name, client_name) != 0)
1936 continue;
1937 if (!client->get_nl_info) {
1938 ret = -EOPNOTSUPP;
1939 break;
1940 }
1941 ret = client->get_nl_info(ibdev, client_data, res);
1942 if (WARN_ON(ret == -ENOENT))
1943 ret = -EINVAL;
1944
1945 /*
1946 * The cdev is guaranteed valid as long as we are inside the
1947 * client_data_rwsem as remove_one can't be called. Keep it
1948 * valid for the caller.
1949 */
1950 if (!ret && res->cdev)
1951 get_device(res->cdev);
1952 break;
1953 }
1954 up_read(&ibdev->client_data_rwsem);
1955
1956 return ret;
1957 }
1958
1959 /**
1960 * ib_get_client_nl_info - Fetch the nl_info from a client
1961 * @ibdev: IB device
1962 * @client_name: Name of the client
1963 * @res: Result of the query
1964 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1965 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1966 struct ib_client_nl_info *res)
1967 {
1968 int ret;
1969
1970 if (ibdev)
1971 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1972 else
1973 ret = __ib_get_global_client_nl_info(client_name, res);
1974 #ifdef CONFIG_MODULES
1975 if (ret == -ENOENT) {
1976 request_module("rdma-client-%s", client_name);
1977 if (ibdev)
1978 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1979 else
1980 ret = __ib_get_global_client_nl_info(client_name, res);
1981 }
1982 #endif
1983 if (ret) {
1984 if (ret == -ENOENT)
1985 return -EOPNOTSUPP;
1986 return ret;
1987 }
1988
1989 if (WARN_ON(!res->cdev))
1990 return -EINVAL;
1991 return 0;
1992 }
1993
1994 /**
1995 * ib_set_client_data - Set IB client context
1996 * @device:Device to set context for
1997 * @client:Client to set context for
1998 * @data:Context to set
1999 *
2000 * ib_set_client_data() sets client context data that can be retrieved with
2001 * ib_get_client_data(). This can only be called while the client is
2002 * registered to the device, once the ib_client remove() callback returns this
2003 * cannot be called.
2004 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)2005 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2006 void *data)
2007 {
2008 void *rc;
2009
2010 if (WARN_ON(IS_ERR(data)))
2011 data = NULL;
2012
2013 rc = xa_store(&device->client_data, client->client_id, data,
2014 GFP_KERNEL);
2015 WARN_ON(xa_is_err(rc));
2016 }
2017 EXPORT_SYMBOL(ib_set_client_data);
2018
2019 /**
2020 * ib_register_event_handler - Register an IB event handler
2021 * @event_handler:Handler to register
2022 *
2023 * ib_register_event_handler() registers an event handler that will be
2024 * called back when asynchronous IB events occur (as defined in
2025 * chapter 11 of the InfiniBand Architecture Specification). This
2026 * callback occurs in workqueue context.
2027 */
ib_register_event_handler(struct ib_event_handler * event_handler)2028 void ib_register_event_handler(struct ib_event_handler *event_handler)
2029 {
2030 down_write(&event_handler->device->event_handler_rwsem);
2031 list_add_tail(&event_handler->list,
2032 &event_handler->device->event_handler_list);
2033 up_write(&event_handler->device->event_handler_rwsem);
2034 }
2035 EXPORT_SYMBOL(ib_register_event_handler);
2036
2037 /**
2038 * ib_unregister_event_handler - Unregister an event handler
2039 * @event_handler:Handler to unregister
2040 *
2041 * Unregister an event handler registered with
2042 * ib_register_event_handler().
2043 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)2044 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2045 {
2046 down_write(&event_handler->device->event_handler_rwsem);
2047 list_del(&event_handler->list);
2048 up_write(&event_handler->device->event_handler_rwsem);
2049 }
2050 EXPORT_SYMBOL(ib_unregister_event_handler);
2051
ib_dispatch_event_clients(struct ib_event * event)2052 void ib_dispatch_event_clients(struct ib_event *event)
2053 {
2054 struct ib_event_handler *handler;
2055
2056 down_read(&event->device->event_handler_rwsem);
2057
2058 list_for_each_entry(handler, &event->device->event_handler_list, list)
2059 handler->handler(handler, event);
2060
2061 up_read(&event->device->event_handler_rwsem);
2062 }
2063
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2064 static int iw_query_port(struct ib_device *device,
2065 u32 port_num,
2066 struct ib_port_attr *port_attr)
2067 {
2068 struct in_device *inetdev;
2069 struct net_device *netdev;
2070
2071 memset(port_attr, 0, sizeof(*port_attr));
2072
2073 netdev = ib_device_get_netdev(device, port_num);
2074 if (!netdev)
2075 return -ENODEV;
2076
2077 port_attr->max_mtu = IB_MTU_4096;
2078 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2079
2080 if (!netif_carrier_ok(netdev)) {
2081 port_attr->state = IB_PORT_DOWN;
2082 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2083 } else {
2084 rcu_read_lock();
2085 inetdev = __in_dev_get_rcu(netdev);
2086
2087 if (inetdev && inetdev->ifa_list) {
2088 port_attr->state = IB_PORT_ACTIVE;
2089 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2090 } else {
2091 port_attr->state = IB_PORT_INIT;
2092 port_attr->phys_state =
2093 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2094 }
2095
2096 rcu_read_unlock();
2097 }
2098
2099 dev_put(netdev);
2100 return device->ops.query_port(device, port_num, port_attr);
2101 }
2102
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2103 static int __ib_query_port(struct ib_device *device,
2104 u32 port_num,
2105 struct ib_port_attr *port_attr)
2106 {
2107 int err;
2108
2109 memset(port_attr, 0, sizeof(*port_attr));
2110
2111 err = device->ops.query_port(device, port_num, port_attr);
2112 if (err || port_attr->subnet_prefix)
2113 return err;
2114
2115 if (rdma_port_get_link_layer(device, port_num) !=
2116 IB_LINK_LAYER_INFINIBAND)
2117 return 0;
2118
2119 ib_get_cached_subnet_prefix(device, port_num,
2120 &port_attr->subnet_prefix);
2121 return 0;
2122 }
2123
2124 /**
2125 * ib_query_port - Query IB port attributes
2126 * @device:Device to query
2127 * @port_num:Port number to query
2128 * @port_attr:Port attributes
2129 *
2130 * ib_query_port() returns the attributes of a port through the
2131 * @port_attr pointer.
2132 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2133 int ib_query_port(struct ib_device *device,
2134 u32 port_num,
2135 struct ib_port_attr *port_attr)
2136 {
2137 if (!rdma_is_port_valid(device, port_num))
2138 return -EINVAL;
2139
2140 if (rdma_protocol_iwarp(device, port_num))
2141 return iw_query_port(device, port_num, port_attr);
2142 else
2143 return __ib_query_port(device, port_num, port_attr);
2144 }
2145 EXPORT_SYMBOL(ib_query_port);
2146
add_ndev_hash(struct ib_port_data * pdata)2147 static void add_ndev_hash(struct ib_port_data *pdata)
2148 {
2149 unsigned long flags;
2150
2151 might_sleep();
2152
2153 spin_lock_irqsave(&ndev_hash_lock, flags);
2154 if (hash_hashed(&pdata->ndev_hash_link)) {
2155 hash_del_rcu(&pdata->ndev_hash_link);
2156 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2157 /*
2158 * We cannot do hash_add_rcu after a hash_del_rcu until the
2159 * grace period
2160 */
2161 synchronize_rcu();
2162 spin_lock_irqsave(&ndev_hash_lock, flags);
2163 }
2164 if (pdata->netdev)
2165 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2166 (uintptr_t)pdata->netdev);
2167 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2168 }
2169
2170 /**
2171 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2172 * @ib_dev: Device to modify
2173 * @ndev: net_device to affiliate, may be NULL
2174 * @port: IB port the net_device is connected to
2175 *
2176 * Drivers should use this to link the ib_device to a netdev so the netdev
2177 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2178 * affiliated with any port.
2179 *
2180 * The caller must ensure that the given ndev is not unregistered or
2181 * unregistering, and that either the ib_device is unregistered or
2182 * ib_device_set_netdev() is called with NULL when the ndev sends a
2183 * NETDEV_UNREGISTER event.
2184 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2185 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2186 u32 port)
2187 {
2188 enum rdma_nl_notify_event_type etype;
2189 struct net_device *old_ndev;
2190 struct ib_port_data *pdata;
2191 unsigned long flags;
2192 int ret;
2193
2194 if (!rdma_is_port_valid(ib_dev, port))
2195 return -EINVAL;
2196
2197 /*
2198 * Drivers wish to call this before ib_register_driver, so we have to
2199 * setup the port data early.
2200 */
2201 ret = alloc_port_data(ib_dev);
2202 if (ret)
2203 return ret;
2204
2205 pdata = &ib_dev->port_data[port];
2206 spin_lock_irqsave(&pdata->netdev_lock, flags);
2207 old_ndev = rcu_dereference_protected(
2208 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2209 if (old_ndev == ndev) {
2210 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2211 return 0;
2212 }
2213
2214 rcu_assign_pointer(pdata->netdev, ndev);
2215 netdev_put(old_ndev, &pdata->netdev_tracker);
2216 netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2217 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2218
2219 add_ndev_hash(pdata);
2220
2221 /* Make sure that the device is registered before we send events */
2222 if (xa_load(&devices, ib_dev->index) != ib_dev)
2223 return 0;
2224
2225 etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2226 rdma_nl_notify_event(ib_dev, port, etype);
2227
2228 return 0;
2229 }
2230 EXPORT_SYMBOL(ib_device_set_netdev);
2231
free_netdevs(struct ib_device * ib_dev)2232 static void free_netdevs(struct ib_device *ib_dev)
2233 {
2234 unsigned long flags;
2235 u32 port;
2236
2237 if (!ib_dev->port_data)
2238 return;
2239
2240 rdma_for_each_port (ib_dev, port) {
2241 struct ib_port_data *pdata = &ib_dev->port_data[port];
2242 struct net_device *ndev;
2243
2244 spin_lock_irqsave(&pdata->netdev_lock, flags);
2245 ndev = rcu_dereference_protected(
2246 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2247 if (ndev) {
2248 spin_lock(&ndev_hash_lock);
2249 hash_del_rcu(&pdata->ndev_hash_link);
2250 spin_unlock(&ndev_hash_lock);
2251
2252 /*
2253 * If this is the last dev_put there is still a
2254 * synchronize_rcu before the netdev is kfreed, so we
2255 * can continue to rely on unlocked pointer
2256 * comparisons after the put
2257 */
2258 rcu_assign_pointer(pdata->netdev, NULL);
2259 netdev_put(ndev, &pdata->netdev_tracker);
2260 }
2261 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2262 }
2263 }
2264
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2265 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2266 u32 port)
2267 {
2268 struct ib_port_data *pdata;
2269 struct net_device *res;
2270
2271 if (!rdma_is_port_valid(ib_dev, port))
2272 return NULL;
2273
2274 if (!ib_dev->port_data)
2275 return NULL;
2276
2277 pdata = &ib_dev->port_data[port];
2278
2279 /*
2280 * New drivers should use ib_device_set_netdev() not the legacy
2281 * get_netdev().
2282 */
2283 if (ib_dev->ops.get_netdev)
2284 res = ib_dev->ops.get_netdev(ib_dev, port);
2285 else {
2286 spin_lock(&pdata->netdev_lock);
2287 res = rcu_dereference_protected(
2288 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2289 dev_hold(res);
2290 spin_unlock(&pdata->netdev_lock);
2291 }
2292
2293 return res;
2294 }
2295 EXPORT_SYMBOL(ib_device_get_netdev);
2296
2297 /**
2298 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2299 * @ndev: netdev to locate
2300 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2301 *
2302 * Find and hold an ib_device that is associated with a netdev via
2303 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2304 * returned pointer.
2305 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2306 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2307 enum rdma_driver_id driver_id)
2308 {
2309 struct ib_device *res = NULL;
2310 struct ib_port_data *cur;
2311
2312 rcu_read_lock();
2313 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2314 (uintptr_t)ndev) {
2315 if (rcu_access_pointer(cur->netdev) == ndev &&
2316 (driver_id == RDMA_DRIVER_UNKNOWN ||
2317 cur->ib_dev->ops.driver_id == driver_id) &&
2318 ib_device_try_get(cur->ib_dev)) {
2319 res = cur->ib_dev;
2320 break;
2321 }
2322 }
2323 rcu_read_unlock();
2324
2325 return res;
2326 }
2327 EXPORT_SYMBOL(ib_device_get_by_netdev);
2328
2329 /**
2330 * ib_enum_roce_netdev - enumerate all RoCE ports
2331 * @ib_dev : IB device we want to query
2332 * @filter: Should we call the callback?
2333 * @filter_cookie: Cookie passed to filter
2334 * @cb: Callback to call for each found RoCE ports
2335 * @cookie: Cookie passed back to the callback
2336 *
2337 * Enumerates all of the physical RoCE ports of ib_dev
2338 * which are related to netdevice and calls callback() on each
2339 * device for which filter() function returns non zero.
2340 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2341 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2342 roce_netdev_filter filter,
2343 void *filter_cookie,
2344 roce_netdev_callback cb,
2345 void *cookie)
2346 {
2347 u32 port;
2348
2349 rdma_for_each_port (ib_dev, port)
2350 if (rdma_protocol_roce(ib_dev, port)) {
2351 struct net_device *idev =
2352 ib_device_get_netdev(ib_dev, port);
2353
2354 if (filter(ib_dev, port, idev, filter_cookie))
2355 cb(ib_dev, port, idev, cookie);
2356 dev_put(idev);
2357 }
2358 }
2359
2360 /**
2361 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2362 * @filter: Should we call the callback?
2363 * @filter_cookie: Cookie passed to filter
2364 * @cb: Callback to call for each found RoCE ports
2365 * @cookie: Cookie passed back to the callback
2366 *
2367 * Enumerates all RoCE devices' physical ports which are related
2368 * to netdevices and calls callback() on each device for which
2369 * filter() function returns non zero.
2370 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2371 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2372 void *filter_cookie,
2373 roce_netdev_callback cb,
2374 void *cookie)
2375 {
2376 struct ib_device *dev;
2377 unsigned long index;
2378
2379 down_read(&devices_rwsem);
2380 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2381 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2382 up_read(&devices_rwsem);
2383 }
2384
2385 /*
2386 * ib_enum_all_devs - enumerate all ib_devices
2387 * @cb: Callback to call for each found ib_device
2388 *
2389 * Enumerates all ib_devices and calls callback() on each device.
2390 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2391 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2392 struct netlink_callback *cb)
2393 {
2394 unsigned long index;
2395 struct ib_device *dev;
2396 unsigned int idx = 0;
2397 int ret = 0;
2398
2399 down_read(&devices_rwsem);
2400 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2401 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2402 continue;
2403
2404 ret = nldev_cb(dev, skb, cb, idx);
2405 if (ret)
2406 break;
2407 idx++;
2408 }
2409 up_read(&devices_rwsem);
2410 return ret;
2411 }
2412
2413 /**
2414 * ib_query_pkey - Get P_Key table entry
2415 * @device:Device to query
2416 * @port_num:Port number to query
2417 * @index:P_Key table index to query
2418 * @pkey:Returned P_Key
2419 *
2420 * ib_query_pkey() fetches the specified P_Key table entry.
2421 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2422 int ib_query_pkey(struct ib_device *device,
2423 u32 port_num, u16 index, u16 *pkey)
2424 {
2425 if (!rdma_is_port_valid(device, port_num))
2426 return -EINVAL;
2427
2428 if (!device->ops.query_pkey)
2429 return -EOPNOTSUPP;
2430
2431 return device->ops.query_pkey(device, port_num, index, pkey);
2432 }
2433 EXPORT_SYMBOL(ib_query_pkey);
2434
2435 /**
2436 * ib_modify_device - Change IB device attributes
2437 * @device:Device to modify
2438 * @device_modify_mask:Mask of attributes to change
2439 * @device_modify:New attribute values
2440 *
2441 * ib_modify_device() changes a device's attributes as specified by
2442 * the @device_modify_mask and @device_modify structure.
2443 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2444 int ib_modify_device(struct ib_device *device,
2445 int device_modify_mask,
2446 struct ib_device_modify *device_modify)
2447 {
2448 if (!device->ops.modify_device)
2449 return -EOPNOTSUPP;
2450
2451 return device->ops.modify_device(device, device_modify_mask,
2452 device_modify);
2453 }
2454 EXPORT_SYMBOL(ib_modify_device);
2455
2456 /**
2457 * ib_modify_port - Modifies the attributes for the specified port.
2458 * @device: The device to modify.
2459 * @port_num: The number of the port to modify.
2460 * @port_modify_mask: Mask used to specify which attributes of the port
2461 * to change.
2462 * @port_modify: New attribute values for the port.
2463 *
2464 * ib_modify_port() changes a port's attributes as specified by the
2465 * @port_modify_mask and @port_modify structure.
2466 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2467 int ib_modify_port(struct ib_device *device,
2468 u32 port_num, int port_modify_mask,
2469 struct ib_port_modify *port_modify)
2470 {
2471 int rc;
2472
2473 if (!rdma_is_port_valid(device, port_num))
2474 return -EINVAL;
2475
2476 if (device->ops.modify_port)
2477 rc = device->ops.modify_port(device, port_num,
2478 port_modify_mask,
2479 port_modify);
2480 else if (rdma_protocol_roce(device, port_num) &&
2481 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2482 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2483 rc = 0;
2484 else
2485 rc = -EOPNOTSUPP;
2486 return rc;
2487 }
2488 EXPORT_SYMBOL(ib_modify_port);
2489
2490 /**
2491 * ib_find_gid - Returns the port number and GID table index where
2492 * a specified GID value occurs. Its searches only for IB link layer.
2493 * @device: The device to query.
2494 * @gid: The GID value to search for.
2495 * @port_num: The port number of the device where the GID value was found.
2496 * @index: The index into the GID table where the GID was found. This
2497 * parameter may be NULL.
2498 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2499 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2500 u32 *port_num, u16 *index)
2501 {
2502 union ib_gid tmp_gid;
2503 u32 port;
2504 int ret, i;
2505
2506 rdma_for_each_port (device, port) {
2507 if (!rdma_protocol_ib(device, port))
2508 continue;
2509
2510 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2511 ++i) {
2512 ret = rdma_query_gid(device, port, i, &tmp_gid);
2513 if (ret)
2514 continue;
2515
2516 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2517 *port_num = port;
2518 if (index)
2519 *index = i;
2520 return 0;
2521 }
2522 }
2523 }
2524
2525 return -ENOENT;
2526 }
2527 EXPORT_SYMBOL(ib_find_gid);
2528
2529 /**
2530 * ib_find_pkey - Returns the PKey table index where a specified
2531 * PKey value occurs.
2532 * @device: The device to query.
2533 * @port_num: The port number of the device to search for the PKey.
2534 * @pkey: The PKey value to search for.
2535 * @index: The index into the PKey table where the PKey was found.
2536 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2537 int ib_find_pkey(struct ib_device *device,
2538 u32 port_num, u16 pkey, u16 *index)
2539 {
2540 int ret, i;
2541 u16 tmp_pkey;
2542 int partial_ix = -1;
2543
2544 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2545 ++i) {
2546 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2547 if (ret)
2548 return ret;
2549 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2550 /* if there is full-member pkey take it.*/
2551 if (tmp_pkey & 0x8000) {
2552 *index = i;
2553 return 0;
2554 }
2555 if (partial_ix < 0)
2556 partial_ix = i;
2557 }
2558 }
2559
2560 /*no full-member, if exists take the limited*/
2561 if (partial_ix >= 0) {
2562 *index = partial_ix;
2563 return 0;
2564 }
2565 return -ENOENT;
2566 }
2567 EXPORT_SYMBOL(ib_find_pkey);
2568
2569 /**
2570 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2571 * for a received CM request
2572 * @dev: An RDMA device on which the request has been received.
2573 * @port: Port number on the RDMA device.
2574 * @pkey: The Pkey the request came on.
2575 * @gid: A GID that the net_dev uses to communicate.
2576 * @addr: Contains the IP address that the request specified as its
2577 * destination.
2578 *
2579 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2580 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2581 u32 port,
2582 u16 pkey,
2583 const union ib_gid *gid,
2584 const struct sockaddr *addr)
2585 {
2586 struct net_device *net_dev = NULL;
2587 unsigned long index;
2588 void *client_data;
2589
2590 if (!rdma_protocol_ib(dev, port))
2591 return NULL;
2592
2593 /*
2594 * Holding the read side guarantees that the client will not become
2595 * unregistered while we are calling get_net_dev_by_params()
2596 */
2597 down_read(&dev->client_data_rwsem);
2598 xan_for_each_marked (&dev->client_data, index, client_data,
2599 CLIENT_DATA_REGISTERED) {
2600 struct ib_client *client = xa_load(&clients, index);
2601
2602 if (!client || !client->get_net_dev_by_params)
2603 continue;
2604
2605 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2606 addr, client_data);
2607 if (net_dev)
2608 break;
2609 }
2610 up_read(&dev->client_data_rwsem);
2611
2612 return net_dev;
2613 }
2614 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2615
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2616 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2617 {
2618 struct ib_device_ops *dev_ops = &dev->ops;
2619 #define SET_DEVICE_OP(ptr, name) \
2620 do { \
2621 if (ops->name) \
2622 if (!((ptr)->name)) \
2623 (ptr)->name = ops->name; \
2624 } while (0)
2625
2626 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2627
2628 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2629 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2630 dev_ops->driver_id != ops->driver_id);
2631 dev_ops->driver_id = ops->driver_id;
2632 }
2633 if (ops->owner) {
2634 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2635 dev_ops->owner = ops->owner;
2636 }
2637 if (ops->uverbs_abi_ver)
2638 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2639
2640 dev_ops->uverbs_no_driver_id_binding |=
2641 ops->uverbs_no_driver_id_binding;
2642
2643 SET_DEVICE_OP(dev_ops, add_gid);
2644 SET_DEVICE_OP(dev_ops, add_sub_dev);
2645 SET_DEVICE_OP(dev_ops, advise_mr);
2646 SET_DEVICE_OP(dev_ops, alloc_dm);
2647 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2648 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2649 SET_DEVICE_OP(dev_ops, alloc_mr);
2650 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2651 SET_DEVICE_OP(dev_ops, alloc_mw);
2652 SET_DEVICE_OP(dev_ops, alloc_pd);
2653 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2654 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2655 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2656 SET_DEVICE_OP(dev_ops, attach_mcast);
2657 SET_DEVICE_OP(dev_ops, check_mr_status);
2658 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2659 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2660 SET_DEVICE_OP(dev_ops, counter_dealloc);
2661 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2662 SET_DEVICE_OP(dev_ops, counter_update_stats);
2663 SET_DEVICE_OP(dev_ops, create_ah);
2664 SET_DEVICE_OP(dev_ops, create_counters);
2665 SET_DEVICE_OP(dev_ops, create_cq);
2666 SET_DEVICE_OP(dev_ops, create_flow);
2667 SET_DEVICE_OP(dev_ops, create_qp);
2668 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2669 SET_DEVICE_OP(dev_ops, create_srq);
2670 SET_DEVICE_OP(dev_ops, create_user_ah);
2671 SET_DEVICE_OP(dev_ops, create_wq);
2672 SET_DEVICE_OP(dev_ops, dealloc_dm);
2673 SET_DEVICE_OP(dev_ops, dealloc_driver);
2674 SET_DEVICE_OP(dev_ops, dealloc_mw);
2675 SET_DEVICE_OP(dev_ops, dealloc_pd);
2676 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2677 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2678 SET_DEVICE_OP(dev_ops, del_gid);
2679 SET_DEVICE_OP(dev_ops, del_sub_dev);
2680 SET_DEVICE_OP(dev_ops, dereg_mr);
2681 SET_DEVICE_OP(dev_ops, destroy_ah);
2682 SET_DEVICE_OP(dev_ops, destroy_counters);
2683 SET_DEVICE_OP(dev_ops, destroy_cq);
2684 SET_DEVICE_OP(dev_ops, destroy_flow);
2685 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2686 SET_DEVICE_OP(dev_ops, destroy_qp);
2687 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2688 SET_DEVICE_OP(dev_ops, destroy_srq);
2689 SET_DEVICE_OP(dev_ops, destroy_wq);
2690 SET_DEVICE_OP(dev_ops, device_group);
2691 SET_DEVICE_OP(dev_ops, detach_mcast);
2692 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2693 SET_DEVICE_OP(dev_ops, drain_rq);
2694 SET_DEVICE_OP(dev_ops, drain_sq);
2695 SET_DEVICE_OP(dev_ops, enable_driver);
2696 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2697 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2698 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2699 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2700 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2701 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2702 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2703 SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2704 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2705 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2706 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2707 SET_DEVICE_OP(dev_ops, get_dma_mr);
2708 SET_DEVICE_OP(dev_ops, get_hw_stats);
2709 SET_DEVICE_OP(dev_ops, get_link_layer);
2710 SET_DEVICE_OP(dev_ops, get_netdev);
2711 SET_DEVICE_OP(dev_ops, get_numa_node);
2712 SET_DEVICE_OP(dev_ops, get_port_immutable);
2713 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2714 SET_DEVICE_OP(dev_ops, get_vf_config);
2715 SET_DEVICE_OP(dev_ops, get_vf_guid);
2716 SET_DEVICE_OP(dev_ops, get_vf_stats);
2717 SET_DEVICE_OP(dev_ops, iw_accept);
2718 SET_DEVICE_OP(dev_ops, iw_add_ref);
2719 SET_DEVICE_OP(dev_ops, iw_connect);
2720 SET_DEVICE_OP(dev_ops, iw_create_listen);
2721 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2722 SET_DEVICE_OP(dev_ops, iw_get_qp);
2723 SET_DEVICE_OP(dev_ops, iw_reject);
2724 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2725 SET_DEVICE_OP(dev_ops, map_mr_sg);
2726 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2727 SET_DEVICE_OP(dev_ops, mmap);
2728 SET_DEVICE_OP(dev_ops, mmap_free);
2729 SET_DEVICE_OP(dev_ops, modify_ah);
2730 SET_DEVICE_OP(dev_ops, modify_cq);
2731 SET_DEVICE_OP(dev_ops, modify_device);
2732 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2733 SET_DEVICE_OP(dev_ops, modify_port);
2734 SET_DEVICE_OP(dev_ops, modify_qp);
2735 SET_DEVICE_OP(dev_ops, modify_srq);
2736 SET_DEVICE_OP(dev_ops, modify_wq);
2737 SET_DEVICE_OP(dev_ops, peek_cq);
2738 SET_DEVICE_OP(dev_ops, poll_cq);
2739 SET_DEVICE_OP(dev_ops, port_groups);
2740 SET_DEVICE_OP(dev_ops, post_recv);
2741 SET_DEVICE_OP(dev_ops, post_send);
2742 SET_DEVICE_OP(dev_ops, post_srq_recv);
2743 SET_DEVICE_OP(dev_ops, process_mad);
2744 SET_DEVICE_OP(dev_ops, query_ah);
2745 SET_DEVICE_OP(dev_ops, query_device);
2746 SET_DEVICE_OP(dev_ops, query_gid);
2747 SET_DEVICE_OP(dev_ops, query_pkey);
2748 SET_DEVICE_OP(dev_ops, query_port);
2749 SET_DEVICE_OP(dev_ops, query_qp);
2750 SET_DEVICE_OP(dev_ops, query_srq);
2751 SET_DEVICE_OP(dev_ops, query_ucontext);
2752 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2753 SET_DEVICE_OP(dev_ops, read_counters);
2754 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2755 SET_DEVICE_OP(dev_ops, reg_user_mr);
2756 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2757 SET_DEVICE_OP(dev_ops, req_notify_cq);
2758 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2759 SET_DEVICE_OP(dev_ops, resize_cq);
2760 SET_DEVICE_OP(dev_ops, set_vf_guid);
2761 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2762
2763 SET_OBJ_SIZE(dev_ops, ib_ah);
2764 SET_OBJ_SIZE(dev_ops, ib_counters);
2765 SET_OBJ_SIZE(dev_ops, ib_cq);
2766 SET_OBJ_SIZE(dev_ops, ib_mw);
2767 SET_OBJ_SIZE(dev_ops, ib_pd);
2768 SET_OBJ_SIZE(dev_ops, ib_qp);
2769 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2770 SET_OBJ_SIZE(dev_ops, ib_srq);
2771 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2772 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2773 }
2774 EXPORT_SYMBOL(ib_set_device_ops);
2775
ib_add_sub_device(struct ib_device * parent,enum rdma_nl_dev_type type,const char * name)2776 int ib_add_sub_device(struct ib_device *parent,
2777 enum rdma_nl_dev_type type,
2778 const char *name)
2779 {
2780 struct ib_device *sub;
2781 int ret = 0;
2782
2783 if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2784 return -EOPNOTSUPP;
2785
2786 if (!ib_device_try_get(parent))
2787 return -EINVAL;
2788
2789 sub = parent->ops.add_sub_dev(parent, type, name);
2790 if (IS_ERR(sub)) {
2791 ib_device_put(parent);
2792 return PTR_ERR(sub);
2793 }
2794
2795 sub->type = type;
2796 sub->parent = parent;
2797
2798 mutex_lock(&parent->subdev_lock);
2799 list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2800 mutex_unlock(&parent->subdev_lock);
2801
2802 return ret;
2803 }
2804 EXPORT_SYMBOL(ib_add_sub_device);
2805
ib_del_sub_device_and_put(struct ib_device * sub)2806 int ib_del_sub_device_and_put(struct ib_device *sub)
2807 {
2808 struct ib_device *parent = sub->parent;
2809
2810 if (!parent)
2811 return -EOPNOTSUPP;
2812
2813 mutex_lock(&parent->subdev_lock);
2814 list_del(&sub->subdev_list);
2815 mutex_unlock(&parent->subdev_lock);
2816
2817 ib_device_put(sub);
2818 parent->ops.del_sub_dev(sub);
2819 ib_device_put(parent);
2820
2821 return 0;
2822 }
2823 EXPORT_SYMBOL(ib_del_sub_device_and_put);
2824
2825 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2826 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2827 {
2828 struct scatterlist *s;
2829 int i;
2830
2831 for_each_sg(sg, s, nents, i) {
2832 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2833 sg_dma_len(s) = s->length;
2834 }
2835 return nents;
2836 }
2837 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2838 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2839
2840 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2841 [RDMA_NL_LS_OP_RESOLVE] = {
2842 .doit = ib_nl_handle_resolve_resp,
2843 .flags = RDMA_NL_ADMIN_PERM,
2844 },
2845 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2846 .doit = ib_nl_handle_set_timeout,
2847 .flags = RDMA_NL_ADMIN_PERM,
2848 },
2849 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2850 .doit = ib_nl_handle_ip_res_resp,
2851 .flags = RDMA_NL_ADMIN_PERM,
2852 },
2853 };
2854
ib_core_init(void)2855 static int __init ib_core_init(void)
2856 {
2857 int ret = -ENOMEM;
2858
2859 ib_wq = alloc_workqueue("infiniband", 0, 0);
2860 if (!ib_wq)
2861 return -ENOMEM;
2862
2863 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2864 WQ_UNBOUND_MAX_ACTIVE);
2865 if (!ib_unreg_wq)
2866 goto err;
2867
2868 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2869 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2870 if (!ib_comp_wq)
2871 goto err_unbound;
2872
2873 ib_comp_unbound_wq =
2874 alloc_workqueue("ib-comp-unb-wq",
2875 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2876 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2877 if (!ib_comp_unbound_wq)
2878 goto err_comp;
2879
2880 ret = class_register(&ib_class);
2881 if (ret) {
2882 pr_warn("Couldn't create InfiniBand device class\n");
2883 goto err_comp_unbound;
2884 }
2885
2886 rdma_nl_init();
2887
2888 ret = addr_init();
2889 if (ret) {
2890 pr_warn("Couldn't init IB address resolution\n");
2891 goto err_ibnl;
2892 }
2893
2894 ret = ib_mad_init();
2895 if (ret) {
2896 pr_warn("Couldn't init IB MAD\n");
2897 goto err_addr;
2898 }
2899
2900 ret = ib_sa_init();
2901 if (ret) {
2902 pr_warn("Couldn't init SA\n");
2903 goto err_mad;
2904 }
2905
2906 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2907 if (ret) {
2908 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2909 goto err_sa;
2910 }
2911
2912 ret = register_pernet_device(&rdma_dev_net_ops);
2913 if (ret) {
2914 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2915 goto err_compat;
2916 }
2917
2918 nldev_init();
2919 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2920 ret = roce_gid_mgmt_init();
2921 if (ret) {
2922 pr_warn("Couldn't init RoCE GID management\n");
2923 goto err_parent;
2924 }
2925
2926 return 0;
2927
2928 err_parent:
2929 rdma_nl_unregister(RDMA_NL_LS);
2930 nldev_exit();
2931 unregister_pernet_device(&rdma_dev_net_ops);
2932 err_compat:
2933 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2934 err_sa:
2935 ib_sa_cleanup();
2936 err_mad:
2937 ib_mad_cleanup();
2938 err_addr:
2939 addr_cleanup();
2940 err_ibnl:
2941 class_unregister(&ib_class);
2942 err_comp_unbound:
2943 destroy_workqueue(ib_comp_unbound_wq);
2944 err_comp:
2945 destroy_workqueue(ib_comp_wq);
2946 err_unbound:
2947 destroy_workqueue(ib_unreg_wq);
2948 err:
2949 destroy_workqueue(ib_wq);
2950 return ret;
2951 }
2952
ib_core_cleanup(void)2953 static void __exit ib_core_cleanup(void)
2954 {
2955 roce_gid_mgmt_cleanup();
2956 rdma_nl_unregister(RDMA_NL_LS);
2957 nldev_exit();
2958 unregister_pernet_device(&rdma_dev_net_ops);
2959 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2960 ib_sa_cleanup();
2961 ib_mad_cleanup();
2962 addr_cleanup();
2963 rdma_nl_exit();
2964 class_unregister(&ib_class);
2965 destroy_workqueue(ib_comp_unbound_wq);
2966 destroy_workqueue(ib_comp_wq);
2967 /* Make sure that any pending umem accounting work is done. */
2968 destroy_workqueue(ib_wq);
2969 destroy_workqueue(ib_unreg_wq);
2970 WARN_ON(!xa_empty(&clients));
2971 WARN_ON(!xa_empty(&devices));
2972 }
2973
2974 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2975
2976 /* ib core relies on netdev stack to first register net_ns_type_operations
2977 * ns kobject type before ib_core initialization.
2978 */
2979 fs_initcall(ib_core_init);
2980 module_exit(ib_core_cleanup);
2981