1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/net/intel/libie/rx.h>
5
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25 static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28 /* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43 };
44
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS(LIBETH);
50 MODULE_IMPORT_NS(LIBIE);
51 MODULE_LICENSE("GPL v2");
52
53 static const struct net_device_ops iavf_netdev_ops;
54
iavf_status_to_errno(enum iavf_status status)55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139 }
140
virtchnl_status_to_errno(enum virtchnl_status_code v_status)141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160 }
161
162 /**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
iavf_pdev_to_adapter(struct pci_dev * pdev)166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 return netdev_priv(pci_get_drvdata(pdev));
169 }
170
171 /**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183 }
184
185 /**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
iavf_wait_for_reset(struct iavf_adapter * adapter)191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208 }
209
210 /**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220 {
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233 }
234
235 /**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249 }
250
251 /**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259 {
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270 }
271
272 /**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 kfree(mem->va);
280 }
281
282 /**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295 }
296
297 /**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307
308 /**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320
321 /**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337 }
338
339 /**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352 }
353
354 /**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
iavf_irq_disable(struct iavf_adapter * adapter)358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371 }
372
373 /**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387 }
388
389 /**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403 }
404
405 /**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
iavf_msix_aq(int irq,void * data)410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425 }
426
427 /**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
iavf_msix_clean_rings(int irq,void * data)432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442 }
443
444 /**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469
470 /**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495
496 /**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527
528 /**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538 {
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544
545 /**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
iavf_irq_affinity_release(struct kref * ref)553 static void iavf_irq_affinity_release(struct kref *ref) {}
554
555 /**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619 free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628 }
629
630 /**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656 }
657
658 /**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679 }
680
681 /**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696
697 /**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
iavf_configure_tx(struct iavf_adapter * adapter)703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711
712 /**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
iavf_configure_rx(struct iavf_adapter * adapter)718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725
726 /**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737 {
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747 }
748
749 /**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759 {
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 }
777
778 clearout:
779 spin_unlock_bh(&adapter->mac_vlan_list_lock);
780 return f;
781 }
782
783 /**
784 * iavf_del_vlan - Remove a vlan filter from the list
785 * @adapter: board private structure
786 * @vlan: VLAN tag
787 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
789 {
790 struct iavf_vlan_filter *f;
791
792 spin_lock_bh(&adapter->mac_vlan_list_lock);
793
794 f = iavf_find_vlan(adapter, vlan);
795 if (f) {
796 f->state = IAVF_VLAN_REMOVE;
797 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
798 }
799
800 spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 }
802
803 /**
804 * iavf_restore_filters
805 * @adapter: board private structure
806 *
807 * Restore existing non MAC filters when VF netdev comes back up
808 **/
iavf_restore_filters(struct iavf_adapter * adapter)809 static void iavf_restore_filters(struct iavf_adapter *adapter)
810 {
811 struct iavf_vlan_filter *f;
812
813 /* re-add all VLAN filters */
814 spin_lock_bh(&adapter->mac_vlan_list_lock);
815
816 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
817 if (f->state == IAVF_VLAN_INACTIVE)
818 f->state = IAVF_VLAN_ADD;
819 }
820
821 spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
823 }
824
825 /**
826 * iavf_get_num_vlans_added - get number of VLANs added
827 * @adapter: board private structure
828 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
830 {
831 return adapter->num_vlan_filters;
832 }
833
834 /**
835 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
836 * @adapter: board private structure
837 *
838 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
839 * do not impose a limit as that maintains current behavior and for
840 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
841 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
843 {
844 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
845 * never been a limit on the VF driver side
846 */
847 if (VLAN_ALLOWED(adapter))
848 return VLAN_N_VID;
849 else if (VLAN_V2_ALLOWED(adapter))
850 return adapter->vlan_v2_caps.filtering.max_filters;
851
852 return 0;
853 }
854
855 /**
856 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
857 * @adapter: board private structure
858 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
860 {
861 if (iavf_get_num_vlans_added(adapter) <
862 iavf_get_max_vlans_allowed(adapter))
863 return false;
864
865 return true;
866 }
867
868 /**
869 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
870 * @netdev: network device struct
871 * @proto: unused protocol data
872 * @vid: VLAN tag
873 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)874 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
875 __always_unused __be16 proto, u16 vid)
876 {
877 struct iavf_adapter *adapter = netdev_priv(netdev);
878
879 /* Do not track VLAN 0 filter, always added by the PF on VF init */
880 if (!vid)
881 return 0;
882
883 if (!VLAN_FILTERING_ALLOWED(adapter))
884 return -EIO;
885
886 if (iavf_max_vlans_added(adapter)) {
887 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
888 iavf_get_max_vlans_allowed(adapter));
889 return -EIO;
890 }
891
892 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
893 return -ENOMEM;
894
895 return 0;
896 }
897
898 /**
899 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
900 * @netdev: network device struct
901 * @proto: unused protocol data
902 * @vid: VLAN tag
903 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
905 __always_unused __be16 proto, u16 vid)
906 {
907 struct iavf_adapter *adapter = netdev_priv(netdev);
908
909 /* We do not track VLAN 0 filter */
910 if (!vid)
911 return 0;
912
913 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
914 return 0;
915 }
916
917 /**
918 * iavf_find_filter - Search filter list for specific mac filter
919 * @adapter: board private structure
920 * @macaddr: the MAC address
921 *
922 * Returns ptr to the filter object or NULL. Must be called while holding the
923 * mac_vlan_list_lock.
924 **/
925 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
927 const u8 *macaddr)
928 {
929 struct iavf_mac_filter *f;
930
931 if (!macaddr)
932 return NULL;
933
934 list_for_each_entry(f, &adapter->mac_filter_list, list) {
935 if (ether_addr_equal(macaddr, f->macaddr))
936 return f;
937 }
938 return NULL;
939 }
940
941 /**
942 * iavf_add_filter - Add a mac filter to the filter list
943 * @adapter: board private structure
944 * @macaddr: the MAC address
945 *
946 * Returns ptr to the filter object or NULL when no memory available.
947 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
949 const u8 *macaddr)
950 {
951 struct iavf_mac_filter *f;
952
953 if (!macaddr)
954 return NULL;
955
956 f = iavf_find_filter(adapter, macaddr);
957 if (!f) {
958 f = kzalloc(sizeof(*f), GFP_ATOMIC);
959 if (!f)
960 return f;
961
962 ether_addr_copy(f->macaddr, macaddr);
963
964 list_add_tail(&f->list, &adapter->mac_filter_list);
965 f->add = true;
966 f->add_handled = false;
967 f->is_new_mac = true;
968 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
970 } else {
971 f->remove = false;
972 }
973
974 return f;
975 }
976
977 /**
978 * iavf_replace_primary_mac - Replace current primary address
979 * @adapter: board private structure
980 * @new_mac: new MAC address to be applied
981 *
982 * Replace current dev_addr and send request to PF for removal of previous
983 * primary MAC address filter and addition of new primary MAC filter.
984 * Return 0 for success, -ENOMEM for failure.
985 *
986 * Do not call this with mac_vlan_list_lock!
987 **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
989 const u8 *new_mac)
990 {
991 struct iavf_hw *hw = &adapter->hw;
992 struct iavf_mac_filter *new_f;
993 struct iavf_mac_filter *old_f;
994
995 spin_lock_bh(&adapter->mac_vlan_list_lock);
996
997 new_f = iavf_add_filter(adapter, new_mac);
998 if (!new_f) {
999 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1000 return -ENOMEM;
1001 }
1002
1003 old_f = iavf_find_filter(adapter, hw->mac.addr);
1004 if (old_f) {
1005 old_f->is_primary = false;
1006 old_f->remove = true;
1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008 }
1009 /* Always send the request to add if changing primary MAC,
1010 * even if filter is already present on the list
1011 */
1012 new_f->is_primary = true;
1013 new_f->add = true;
1014 ether_addr_copy(hw->mac.addr, new_mac);
1015
1016 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1017
1018 /* schedule the watchdog task to immediately process the request */
1019 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1020 return 0;
1021 }
1022
1023 /**
1024 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1025 * @netdev: network interface device structure
1026 * @macaddr: MAC address to set
1027 *
1028 * Returns true on success, false on failure
1029 */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1030 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1031 const u8 *macaddr)
1032 {
1033 struct iavf_adapter *adapter = netdev_priv(netdev);
1034 struct iavf_mac_filter *f;
1035 bool ret = false;
1036
1037 spin_lock_bh(&adapter->mac_vlan_list_lock);
1038
1039 f = iavf_find_filter(adapter, macaddr);
1040
1041 if (!f || (!f->add && f->add_handled))
1042 ret = true;
1043
1044 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * iavf_set_mac - NDO callback to set port MAC address
1051 * @netdev: network interface device structure
1052 * @p: pointer to an address structure
1053 *
1054 * Returns 0 on success, negative on failure
1055 */
iavf_set_mac(struct net_device * netdev,void * p)1056 static int iavf_set_mac(struct net_device *netdev, void *p)
1057 {
1058 struct iavf_adapter *adapter = netdev_priv(netdev);
1059 struct sockaddr *addr = p;
1060 int ret;
1061
1062 if (!is_valid_ether_addr(addr->sa_data))
1063 return -EADDRNOTAVAIL;
1064
1065 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1066
1067 if (ret)
1068 return ret;
1069
1070 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1071 iavf_is_mac_set_handled(netdev, addr->sa_data),
1072 msecs_to_jiffies(2500));
1073
1074 /* If ret < 0 then it means wait was interrupted.
1075 * If ret == 0 then it means we got a timeout.
1076 * else it means we got response for set MAC from PF,
1077 * check if netdev MAC was updated to requested MAC,
1078 * if yes then set MAC succeeded otherwise it failed return -EACCES
1079 */
1080 if (ret < 0)
1081 return ret;
1082
1083 if (!ret)
1084 return -EAGAIN;
1085
1086 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1087 return -EACCES;
1088
1089 return 0;
1090 }
1091
1092 /**
1093 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1094 * @netdev: the netdevice
1095 * @addr: address to add
1096 *
1097 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1098 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1099 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1101 {
1102 struct iavf_adapter *adapter = netdev_priv(netdev);
1103
1104 if (iavf_add_filter(adapter, addr))
1105 return 0;
1106 else
1107 return -ENOMEM;
1108 }
1109
1110 /**
1111 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1112 * @netdev: the netdevice
1113 * @addr: address to add
1114 *
1115 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1116 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1117 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1119 {
1120 struct iavf_adapter *adapter = netdev_priv(netdev);
1121 struct iavf_mac_filter *f;
1122
1123 /* Under some circumstances, we might receive a request to delete
1124 * our own device address from our uc list. Because we store the
1125 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1126 * such requests and not delete our device address from this list.
1127 */
1128 if (ether_addr_equal(addr, netdev->dev_addr))
1129 return 0;
1130
1131 f = iavf_find_filter(adapter, addr);
1132 if (f) {
1133 f->remove = true;
1134 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1135 }
1136 return 0;
1137 }
1138
1139 /**
1140 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1141 * @adapter: device specific adapter
1142 */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1144 {
1145 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1146 (IFF_PROMISC | IFF_ALLMULTI);
1147 }
1148
1149 /**
1150 * iavf_set_rx_mode - NDO callback to set the netdev filters
1151 * @netdev: network interface device structure
1152 **/
iavf_set_rx_mode(struct net_device * netdev)1153 static void iavf_set_rx_mode(struct net_device *netdev)
1154 {
1155 struct iavf_adapter *adapter = netdev_priv(netdev);
1156
1157 spin_lock_bh(&adapter->mac_vlan_list_lock);
1158 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1159 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1160 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1161
1162 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1163 if (iavf_promiscuous_mode_changed(adapter))
1164 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1165 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1166 }
1167
1168 /**
1169 * iavf_napi_enable_all - enable NAPI on all queue vectors
1170 * @adapter: board private structure
1171 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1173 {
1174 int q_idx;
1175 struct iavf_q_vector *q_vector;
1176 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1177
1178 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1179 struct napi_struct *napi;
1180
1181 q_vector = &adapter->q_vectors[q_idx];
1182 napi = &q_vector->napi;
1183 napi_enable(napi);
1184 }
1185 }
1186
1187 /**
1188 * iavf_napi_disable_all - disable NAPI on all queue vectors
1189 * @adapter: board private structure
1190 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1192 {
1193 int q_idx;
1194 struct iavf_q_vector *q_vector;
1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1196
1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1198 q_vector = &adapter->q_vectors[q_idx];
1199 napi_disable(&q_vector->napi);
1200 }
1201 }
1202
1203 /**
1204 * iavf_configure - set up transmit and receive data structures
1205 * @adapter: board private structure
1206 **/
iavf_configure(struct iavf_adapter * adapter)1207 static void iavf_configure(struct iavf_adapter *adapter)
1208 {
1209 struct net_device *netdev = adapter->netdev;
1210 int i;
1211
1212 iavf_set_rx_mode(netdev);
1213
1214 iavf_configure_tx(adapter);
1215 iavf_configure_rx(adapter);
1216 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1217
1218 for (i = 0; i < adapter->num_active_queues; i++) {
1219 struct iavf_ring *ring = &adapter->rx_rings[i];
1220
1221 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1222 }
1223 }
1224
1225 /**
1226 * iavf_up_complete - Finish the last steps of bringing up a connection
1227 * @adapter: board private structure
1228 *
1229 * Expects to be called while holding crit_lock.
1230 **/
iavf_up_complete(struct iavf_adapter * adapter)1231 static void iavf_up_complete(struct iavf_adapter *adapter)
1232 {
1233 iavf_change_state(adapter, __IAVF_RUNNING);
1234 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1235
1236 iavf_napi_enable_all(adapter);
1237
1238 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1239 }
1240
1241 /**
1242 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1243 * yet and mark other to be removed.
1244 * @adapter: board private structure
1245 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1247 {
1248 struct iavf_vlan_filter *vlf, *vlftmp;
1249 struct iavf_mac_filter *f, *ftmp;
1250
1251 spin_lock_bh(&adapter->mac_vlan_list_lock);
1252 /* clear the sync flag on all filters */
1253 __dev_uc_unsync(adapter->netdev, NULL);
1254 __dev_mc_unsync(adapter->netdev, NULL);
1255
1256 /* remove all MAC filters */
1257 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1258 list) {
1259 if (f->add) {
1260 list_del(&f->list);
1261 kfree(f);
1262 } else {
1263 f->remove = true;
1264 }
1265 }
1266
1267 /* disable all VLAN filters */
1268 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1269 list)
1270 vlf->state = IAVF_VLAN_DISABLE;
1271
1272 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1273 }
1274
1275 /**
1276 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1277 * mark other to be removed.
1278 * @adapter: board private structure
1279 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1281 {
1282 struct iavf_cloud_filter *cf, *cftmp;
1283
1284 /* remove all cloud filters */
1285 spin_lock_bh(&adapter->cloud_filter_list_lock);
1286 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1287 list) {
1288 if (cf->add) {
1289 list_del(&cf->list);
1290 kfree(cf);
1291 adapter->num_cloud_filters--;
1292 } else {
1293 cf->del = true;
1294 }
1295 }
1296 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1297 }
1298
1299 /**
1300 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1301 * other to be removed.
1302 * @adapter: board private structure
1303 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1305 {
1306 struct iavf_fdir_fltr *fdir;
1307
1308 /* remove all Flow Director filters */
1309 spin_lock_bh(&adapter->fdir_fltr_lock);
1310 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1311 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1312 /* Cancel a request, keep filter as inactive */
1313 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1314 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1315 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1316 /* Disable filters which are active or have a pending
1317 * request to PF to be added
1318 */
1319 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1320 }
1321 }
1322 spin_unlock_bh(&adapter->fdir_fltr_lock);
1323 }
1324
1325 /**
1326 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1327 * other to be removed.
1328 * @adapter: board private structure
1329 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1331 {
1332 struct iavf_adv_rss *rss, *rsstmp;
1333
1334 /* remove all advance RSS configuration */
1335 spin_lock_bh(&adapter->adv_rss_lock);
1336 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1337 list) {
1338 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1339 list_del(&rss->list);
1340 kfree(rss);
1341 } else {
1342 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1343 }
1344 }
1345 spin_unlock_bh(&adapter->adv_rss_lock);
1346 }
1347
1348 /**
1349 * iavf_down - Shutdown the connection processing
1350 * @adapter: board private structure
1351 *
1352 * Expects to be called while holding crit_lock.
1353 **/
iavf_down(struct iavf_adapter * adapter)1354 void iavf_down(struct iavf_adapter *adapter)
1355 {
1356 struct net_device *netdev = adapter->netdev;
1357
1358 if (adapter->state <= __IAVF_DOWN_PENDING)
1359 return;
1360
1361 netif_carrier_off(netdev);
1362 netif_tx_disable(netdev);
1363 adapter->link_up = false;
1364 iavf_napi_disable_all(adapter);
1365 iavf_irq_disable(adapter);
1366
1367 iavf_clear_mac_vlan_filters(adapter);
1368 iavf_clear_cloud_filters(adapter);
1369 iavf_clear_fdir_filters(adapter);
1370 iavf_clear_adv_rss_conf(adapter);
1371
1372 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1373 return;
1374
1375 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1376 /* cancel any current operation */
1377 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1378 /* Schedule operations to close down the HW. Don't wait
1379 * here for this to complete. The watchdog is still running
1380 * and it will take care of this.
1381 */
1382 if (!list_empty(&adapter->mac_filter_list))
1383 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1384 if (!list_empty(&adapter->vlan_filter_list))
1385 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1386 if (!list_empty(&adapter->cloud_filter_list))
1387 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1388 if (!list_empty(&adapter->fdir_list_head))
1389 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1390 if (!list_empty(&adapter->adv_rss_list_head))
1391 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1392 }
1393
1394 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1395 }
1396
1397 /**
1398 * iavf_acquire_msix_vectors - Setup the MSIX capability
1399 * @adapter: board private structure
1400 * @vectors: number of vectors to request
1401 *
1402 * Work with the OS to set up the MSIX vectors needed.
1403 *
1404 * Returns 0 on success, negative on failure
1405 **/
1406 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1408 {
1409 int err, vector_threshold;
1410
1411 /* We'll want at least 3 (vector_threshold):
1412 * 0) Other (Admin Queue and link, mostly)
1413 * 1) TxQ[0] Cleanup
1414 * 2) RxQ[0] Cleanup
1415 */
1416 vector_threshold = MIN_MSIX_COUNT;
1417
1418 /* The more we get, the more we will assign to Tx/Rx Cleanup
1419 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1420 * Right now, we simply care about how many we'll get; we'll
1421 * set them up later while requesting irq's.
1422 */
1423 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1424 vector_threshold, vectors);
1425 if (err < 0) {
1426 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1427 kfree(adapter->msix_entries);
1428 adapter->msix_entries = NULL;
1429 return err;
1430 }
1431
1432 /* Adjust for only the vectors we'll use, which is minimum
1433 * of max_msix_q_vectors + NONQ_VECS, or the number of
1434 * vectors we were allocated.
1435 */
1436 adapter->num_msix_vectors = err;
1437 return 0;
1438 }
1439
1440 /**
1441 * iavf_free_queues - Free memory for all rings
1442 * @adapter: board private structure to initialize
1443 *
1444 * Free all of the memory associated with queue pairs.
1445 **/
iavf_free_queues(struct iavf_adapter * adapter)1446 static void iavf_free_queues(struct iavf_adapter *adapter)
1447 {
1448 if (!adapter->vsi_res)
1449 return;
1450 adapter->num_active_queues = 0;
1451 kfree(adapter->tx_rings);
1452 adapter->tx_rings = NULL;
1453 kfree(adapter->rx_rings);
1454 adapter->rx_rings = NULL;
1455 }
1456
1457 /**
1458 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1459 * @adapter: board private structure
1460 *
1461 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1462 * stripped in certain descriptor fields. Instead of checking the offload
1463 * capability bits in the hot path, cache the location the ring specific
1464 * flags.
1465 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1467 {
1468 int i;
1469
1470 for (i = 0; i < adapter->num_active_queues; i++) {
1471 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1472 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1473
1474 /* prevent multiple L2TAG bits being set after VFR */
1475 tx_ring->flags &=
1476 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1478 rx_ring->flags &=
1479 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1480 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1481
1482 if (VLAN_ALLOWED(adapter)) {
1483 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1484 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1485 } else if (VLAN_V2_ALLOWED(adapter)) {
1486 struct virtchnl_vlan_supported_caps *stripping_support;
1487 struct virtchnl_vlan_supported_caps *insertion_support;
1488
1489 stripping_support =
1490 &adapter->vlan_v2_caps.offloads.stripping_support;
1491 insertion_support =
1492 &adapter->vlan_v2_caps.offloads.insertion_support;
1493
1494 if (stripping_support->outer) {
1495 if (stripping_support->outer &
1496 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1497 rx_ring->flags |=
1498 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 else if (stripping_support->outer &
1500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1501 rx_ring->flags |=
1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1503 } else if (stripping_support->inner) {
1504 if (stripping_support->inner &
1505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1506 rx_ring->flags |=
1507 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1508 else if (stripping_support->inner &
1509 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1510 rx_ring->flags |=
1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1512 }
1513
1514 if (insertion_support->outer) {
1515 if (insertion_support->outer &
1516 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1517 tx_ring->flags |=
1518 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1519 else if (insertion_support->outer &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1521 tx_ring->flags |=
1522 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1523 } else if (insertion_support->inner) {
1524 if (insertion_support->inner &
1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1526 tx_ring->flags |=
1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1528 else if (insertion_support->inner &
1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1530 tx_ring->flags |=
1531 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1532 }
1533 }
1534 }
1535 }
1536
1537 /**
1538 * iavf_alloc_queues - Allocate memory for all rings
1539 * @adapter: board private structure to initialize
1540 *
1541 * We allocate one ring per queue at run-time since we don't know the
1542 * number of queues at compile-time. The polling_netdev array is
1543 * intended for Multiqueue, but should work fine with a single queue.
1544 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1545 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1546 {
1547 int i, num_active_queues;
1548
1549 /* If we're in reset reallocating queues we don't actually know yet for
1550 * certain the PF gave us the number of queues we asked for but we'll
1551 * assume it did. Once basic reset is finished we'll confirm once we
1552 * start negotiating config with PF.
1553 */
1554 if (adapter->num_req_queues)
1555 num_active_queues = adapter->num_req_queues;
1556 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1557 adapter->num_tc)
1558 num_active_queues = adapter->ch_config.total_qps;
1559 else
1560 num_active_queues = min_t(int,
1561 adapter->vsi_res->num_queue_pairs,
1562 (int)(num_online_cpus()));
1563
1564
1565 adapter->tx_rings = kcalloc(num_active_queues,
1566 sizeof(struct iavf_ring), GFP_KERNEL);
1567 if (!adapter->tx_rings)
1568 goto err_out;
1569 adapter->rx_rings = kcalloc(num_active_queues,
1570 sizeof(struct iavf_ring), GFP_KERNEL);
1571 if (!adapter->rx_rings)
1572 goto err_out;
1573
1574 for (i = 0; i < num_active_queues; i++) {
1575 struct iavf_ring *tx_ring;
1576 struct iavf_ring *rx_ring;
1577
1578 tx_ring = &adapter->tx_rings[i];
1579
1580 tx_ring->queue_index = i;
1581 tx_ring->netdev = adapter->netdev;
1582 tx_ring->dev = &adapter->pdev->dev;
1583 tx_ring->count = adapter->tx_desc_count;
1584 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1585 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1586 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1587
1588 rx_ring = &adapter->rx_rings[i];
1589 rx_ring->queue_index = i;
1590 rx_ring->netdev = adapter->netdev;
1591 rx_ring->count = adapter->rx_desc_count;
1592 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1593 }
1594
1595 adapter->num_active_queues = num_active_queues;
1596
1597 iavf_set_queue_vlan_tag_loc(adapter);
1598
1599 return 0;
1600
1601 err_out:
1602 iavf_free_queues(adapter);
1603 return -ENOMEM;
1604 }
1605
1606 /**
1607 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1608 * @adapter: board private structure to initialize
1609 *
1610 * Attempt to configure the interrupts using the best available
1611 * capabilities of the hardware and the kernel.
1612 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1614 {
1615 int vector, v_budget;
1616 int pairs = 0;
1617 int err = 0;
1618
1619 if (!adapter->vsi_res) {
1620 err = -EIO;
1621 goto out;
1622 }
1623 pairs = adapter->num_active_queues;
1624
1625 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1626 * us much good if we have more vectors than CPUs. However, we already
1627 * limit the total number of queues by the number of CPUs so we do not
1628 * need any further limiting here.
1629 */
1630 v_budget = min_t(int, pairs + NONQ_VECS,
1631 (int)adapter->vf_res->max_vectors);
1632
1633 adapter->msix_entries = kcalloc(v_budget,
1634 sizeof(struct msix_entry), GFP_KERNEL);
1635 if (!adapter->msix_entries) {
1636 err = -ENOMEM;
1637 goto out;
1638 }
1639
1640 for (vector = 0; vector < v_budget; vector++)
1641 adapter->msix_entries[vector].entry = vector;
1642
1643 err = iavf_acquire_msix_vectors(adapter, v_budget);
1644 if (!err)
1645 iavf_schedule_finish_config(adapter);
1646
1647 out:
1648 return err;
1649 }
1650
1651 /**
1652 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1653 * @adapter: board private structure
1654 *
1655 * Return 0 on success, negative on failure
1656 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1658 {
1659 struct iavf_aqc_get_set_rss_key_data *rss_key =
1660 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1661 struct iavf_hw *hw = &adapter->hw;
1662 enum iavf_status status;
1663
1664 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1665 /* bail because we already have a command pending */
1666 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1667 adapter->current_op);
1668 return -EBUSY;
1669 }
1670
1671 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1672 if (status) {
1673 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1674 iavf_stat_str(hw, status),
1675 iavf_aq_str(hw, hw->aq.asq_last_status));
1676 return iavf_status_to_errno(status);
1677
1678 }
1679
1680 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1681 adapter->rss_lut, adapter->rss_lut_size);
1682 if (status) {
1683 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1684 iavf_stat_str(hw, status),
1685 iavf_aq_str(hw, hw->aq.asq_last_status));
1686 return iavf_status_to_errno(status);
1687 }
1688
1689 return 0;
1690
1691 }
1692
1693 /**
1694 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1695 * @adapter: board private structure
1696 *
1697 * Returns 0 on success, negative on failure
1698 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1700 {
1701 struct iavf_hw *hw = &adapter->hw;
1702 u32 *dw;
1703 u16 i;
1704
1705 dw = (u32 *)adapter->rss_key;
1706 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1707 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1708
1709 dw = (u32 *)adapter->rss_lut;
1710 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1711 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1712
1713 iavf_flush(hw);
1714
1715 return 0;
1716 }
1717
1718 /**
1719 * iavf_config_rss - Configure RSS keys and lut
1720 * @adapter: board private structure
1721 *
1722 * Returns 0 on success, negative on failure
1723 **/
iavf_config_rss(struct iavf_adapter * adapter)1724 int iavf_config_rss(struct iavf_adapter *adapter)
1725 {
1726
1727 if (RSS_PF(adapter)) {
1728 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1729 IAVF_FLAG_AQ_SET_RSS_KEY;
1730 return 0;
1731 } else if (RSS_AQ(adapter)) {
1732 return iavf_config_rss_aq(adapter);
1733 } else {
1734 return iavf_config_rss_reg(adapter);
1735 }
1736 }
1737
1738 /**
1739 * iavf_fill_rss_lut - Fill the lut with default values
1740 * @adapter: board private structure
1741 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1743 {
1744 u16 i;
1745
1746 for (i = 0; i < adapter->rss_lut_size; i++)
1747 adapter->rss_lut[i] = i % adapter->num_active_queues;
1748 }
1749
1750 /**
1751 * iavf_init_rss - Prepare for RSS
1752 * @adapter: board private structure
1753 *
1754 * Return 0 on success, negative on failure
1755 **/
iavf_init_rss(struct iavf_adapter * adapter)1756 static int iavf_init_rss(struct iavf_adapter *adapter)
1757 {
1758 struct iavf_hw *hw = &adapter->hw;
1759
1760 if (!RSS_PF(adapter)) {
1761 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1762 if (adapter->vf_res->vf_cap_flags &
1763 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1764 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1765 else
1766 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1767
1768 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1769 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1770 }
1771
1772 iavf_fill_rss_lut(adapter);
1773 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1774
1775 return iavf_config_rss(adapter);
1776 }
1777
1778 /**
1779 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1780 * @adapter: board private structure to initialize
1781 *
1782 * We allocate one q_vector per queue interrupt. If allocation fails we
1783 * return -ENOMEM.
1784 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1786 {
1787 int q_idx = 0, num_q_vectors;
1788 struct iavf_q_vector *q_vector;
1789
1790 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1791 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1792 GFP_KERNEL);
1793 if (!adapter->q_vectors)
1794 return -ENOMEM;
1795
1796 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1797 q_vector = &adapter->q_vectors[q_idx];
1798 q_vector->adapter = adapter;
1799 q_vector->vsi = &adapter->vsi;
1800 q_vector->v_idx = q_idx;
1801 q_vector->reg_idx = q_idx;
1802 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1803 netif_napi_add(adapter->netdev, &q_vector->napi,
1804 iavf_napi_poll);
1805 }
1806
1807 return 0;
1808 }
1809
1810 /**
1811 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1812 * @adapter: board private structure to initialize
1813 *
1814 * This function frees the memory allocated to the q_vectors. In addition if
1815 * NAPI is enabled it will delete any references to the NAPI struct prior
1816 * to freeing the q_vector.
1817 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1819 {
1820 int q_idx, num_q_vectors;
1821
1822 if (!adapter->q_vectors)
1823 return;
1824
1825 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1826
1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1828 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1829
1830 netif_napi_del(&q_vector->napi);
1831 }
1832 kfree(adapter->q_vectors);
1833 adapter->q_vectors = NULL;
1834 }
1835
1836 /**
1837 * iavf_reset_interrupt_capability - Reset MSIX setup
1838 * @adapter: board private structure
1839 *
1840 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1842 {
1843 if (!adapter->msix_entries)
1844 return;
1845
1846 pci_disable_msix(adapter->pdev);
1847 kfree(adapter->msix_entries);
1848 adapter->msix_entries = NULL;
1849 }
1850
1851 /**
1852 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1853 * @adapter: board private structure to initialize
1854 *
1855 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1857 {
1858 int err;
1859
1860 err = iavf_alloc_queues(adapter);
1861 if (err) {
1862 dev_err(&adapter->pdev->dev,
1863 "Unable to allocate memory for queues\n");
1864 goto err_alloc_queues;
1865 }
1866
1867 err = iavf_set_interrupt_capability(adapter);
1868 if (err) {
1869 dev_err(&adapter->pdev->dev,
1870 "Unable to setup interrupt capabilities\n");
1871 goto err_set_interrupt;
1872 }
1873
1874 err = iavf_alloc_q_vectors(adapter);
1875 if (err) {
1876 dev_err(&adapter->pdev->dev,
1877 "Unable to allocate memory for queue vectors\n");
1878 goto err_alloc_q_vectors;
1879 }
1880
1881 /* If we've made it so far while ADq flag being ON, then we haven't
1882 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1883 * resources have been allocated in the reset path.
1884 * Now we can truly claim that ADq is enabled.
1885 */
1886 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1887 adapter->num_tc)
1888 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1889 adapter->num_tc);
1890
1891 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1892 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1893 adapter->num_active_queues);
1894
1895 return 0;
1896 err_alloc_q_vectors:
1897 iavf_reset_interrupt_capability(adapter);
1898 err_set_interrupt:
1899 iavf_free_queues(adapter);
1900 err_alloc_queues:
1901 return err;
1902 }
1903
1904 /**
1905 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1906 * @adapter: board private structure
1907 **/
iavf_free_interrupt_scheme(struct iavf_adapter * adapter)1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1909 {
1910 iavf_free_q_vectors(adapter);
1911 iavf_reset_interrupt_capability(adapter);
1912 iavf_free_queues(adapter);
1913 }
1914
1915 /**
1916 * iavf_free_rss - Free memory used by RSS structs
1917 * @adapter: board private structure
1918 **/
iavf_free_rss(struct iavf_adapter * adapter)1919 static void iavf_free_rss(struct iavf_adapter *adapter)
1920 {
1921 kfree(adapter->rss_key);
1922 adapter->rss_key = NULL;
1923
1924 kfree(adapter->rss_lut);
1925 adapter->rss_lut = NULL;
1926 }
1927
1928 /**
1929 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1930 * @adapter: board private structure
1931 * @running: true if adapter->state == __IAVF_RUNNING
1932 *
1933 * Returns 0 on success, negative on failure
1934 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1936 {
1937 struct net_device *netdev = adapter->netdev;
1938 int err;
1939
1940 if (running)
1941 iavf_free_traffic_irqs(adapter);
1942 iavf_free_misc_irq(adapter);
1943 iavf_free_interrupt_scheme(adapter);
1944
1945 err = iavf_init_interrupt_scheme(adapter);
1946 if (err)
1947 goto err;
1948
1949 netif_tx_stop_all_queues(netdev);
1950
1951 err = iavf_request_misc_irq(adapter);
1952 if (err)
1953 goto err;
1954
1955 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1956
1957 iavf_map_rings_to_vectors(adapter);
1958 err:
1959 return err;
1960 }
1961
1962 /**
1963 * iavf_finish_config - do all netdev work that needs RTNL
1964 * @work: our work_struct
1965 *
1966 * Do work that needs both RTNL and crit_lock.
1967 **/
iavf_finish_config(struct work_struct * work)1968 static void iavf_finish_config(struct work_struct *work)
1969 {
1970 struct iavf_adapter *adapter;
1971 int pairs, err;
1972
1973 adapter = container_of(work, struct iavf_adapter, finish_config);
1974
1975 /* Always take RTNL first to prevent circular lock dependency */
1976 rtnl_lock();
1977 mutex_lock(&adapter->crit_lock);
1978
1979 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1980 adapter->netdev->reg_state == NETREG_REGISTERED &&
1981 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1982 netdev_update_features(adapter->netdev);
1983 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1984 }
1985
1986 switch (adapter->state) {
1987 case __IAVF_DOWN:
1988 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
1989 err = register_netdevice(adapter->netdev);
1990 if (err) {
1991 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
1992 err);
1993
1994 /* go back and try again.*/
1995 iavf_free_rss(adapter);
1996 iavf_free_misc_irq(adapter);
1997 iavf_reset_interrupt_capability(adapter);
1998 iavf_change_state(adapter,
1999 __IAVF_INIT_CONFIG_ADAPTER);
2000 goto out;
2001 }
2002 }
2003
2004 /* Set the real number of queues when reset occurs while
2005 * state == __IAVF_DOWN
2006 */
2007 fallthrough;
2008 case __IAVF_RUNNING:
2009 pairs = adapter->num_active_queues;
2010 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2011 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2012 break;
2013
2014 default:
2015 break;
2016 }
2017
2018 out:
2019 mutex_unlock(&adapter->crit_lock);
2020 rtnl_unlock();
2021 }
2022
2023 /**
2024 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2025 * @adapter: board private structure
2026 **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2027 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2028 {
2029 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2030 queue_work(adapter->wq, &adapter->finish_config);
2031 }
2032
2033 /**
2034 * iavf_process_aq_command - process aq_required flags
2035 * and sends aq command
2036 * @adapter: pointer to iavf adapter structure
2037 *
2038 * Returns 0 on success
2039 * Returns error code if no command was sent
2040 * or error code if the command failed.
2041 **/
iavf_process_aq_command(struct iavf_adapter * adapter)2042 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2043 {
2044 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2045 return iavf_send_vf_config_msg(adapter);
2046 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2047 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2048 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2049 iavf_disable_queues(adapter);
2050 return 0;
2051 }
2052
2053 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2054 iavf_map_queues(adapter);
2055 return 0;
2056 }
2057
2058 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2059 iavf_add_ether_addrs(adapter);
2060 return 0;
2061 }
2062
2063 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2064 iavf_add_vlans(adapter);
2065 return 0;
2066 }
2067
2068 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2069 iavf_del_ether_addrs(adapter);
2070 return 0;
2071 }
2072
2073 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2074 iavf_del_vlans(adapter);
2075 return 0;
2076 }
2077
2078 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2079 iavf_enable_vlan_stripping(adapter);
2080 return 0;
2081 }
2082
2083 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2084 iavf_disable_vlan_stripping(adapter);
2085 return 0;
2086 }
2087
2088 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2089 iavf_configure_queues(adapter);
2090 return 0;
2091 }
2092
2093 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2094 iavf_enable_queues(adapter);
2095 return 0;
2096 }
2097
2098 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2099 /* This message goes straight to the firmware, not the
2100 * PF, so we don't have to set current_op as we will
2101 * not get a response through the ARQ.
2102 */
2103 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2104 return 0;
2105 }
2106 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2107 iavf_get_hena(adapter);
2108 return 0;
2109 }
2110 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2111 iavf_set_hena(adapter);
2112 return 0;
2113 }
2114 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2115 iavf_set_rss_key(adapter);
2116 return 0;
2117 }
2118 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2119 iavf_set_rss_lut(adapter);
2120 return 0;
2121 }
2122 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2123 iavf_set_rss_hfunc(adapter);
2124 return 0;
2125 }
2126
2127 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2128 iavf_set_promiscuous(adapter);
2129 return 0;
2130 }
2131
2132 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2133 iavf_enable_channels(adapter);
2134 return 0;
2135 }
2136
2137 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2138 iavf_disable_channels(adapter);
2139 return 0;
2140 }
2141 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2142 iavf_add_cloud_filter(adapter);
2143 return 0;
2144 }
2145 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2146 iavf_del_cloud_filter(adapter);
2147 return 0;
2148 }
2149 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2150 iavf_add_fdir_filter(adapter);
2151 return IAVF_SUCCESS;
2152 }
2153 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2154 iavf_del_fdir_filter(adapter);
2155 return IAVF_SUCCESS;
2156 }
2157 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2158 iavf_add_adv_rss_cfg(adapter);
2159 return 0;
2160 }
2161 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2162 iavf_del_adv_rss_cfg(adapter);
2163 return 0;
2164 }
2165 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2166 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2167 return 0;
2168 }
2169 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2170 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2171 return 0;
2172 }
2173 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2174 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2175 return 0;
2176 }
2177 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2178 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2179 return 0;
2180 }
2181 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2182 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2183 return 0;
2184 }
2185 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2186 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2187 return 0;
2188 }
2189 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2190 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2191 return 0;
2192 }
2193 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2194 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2195 return 0;
2196 }
2197
2198 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2199 iavf_request_stats(adapter);
2200 return 0;
2201 }
2202
2203 return -EAGAIN;
2204 }
2205
2206 /**
2207 * iavf_set_vlan_offload_features - set VLAN offload configuration
2208 * @adapter: board private structure
2209 * @prev_features: previous features used for comparison
2210 * @features: updated features used for configuration
2211 *
2212 * Set the aq_required bit(s) based on the requested features passed in to
2213 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2214 * the watchdog if any changes are requested to expedite the request via
2215 * virtchnl.
2216 **/
2217 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2218 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2219 netdev_features_t prev_features,
2220 netdev_features_t features)
2221 {
2222 bool enable_stripping = true, enable_insertion = true;
2223 u16 vlan_ethertype = 0;
2224 u64 aq_required = 0;
2225
2226 /* keep cases separate because one ethertype for offloads can be
2227 * disabled at the same time as another is disabled, so check for an
2228 * enabled ethertype first, then check for disabled. Default to
2229 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2230 * stripping.
2231 */
2232 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2233 vlan_ethertype = ETH_P_8021AD;
2234 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2235 vlan_ethertype = ETH_P_8021Q;
2236 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2237 vlan_ethertype = ETH_P_8021AD;
2238 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2239 vlan_ethertype = ETH_P_8021Q;
2240 else
2241 vlan_ethertype = ETH_P_8021Q;
2242
2243 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2244 enable_stripping = false;
2245 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2246 enable_insertion = false;
2247
2248 if (VLAN_ALLOWED(adapter)) {
2249 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2250 * stripping via virtchnl. VLAN insertion can be toggled on the
2251 * netdev, but it doesn't require a virtchnl message
2252 */
2253 if (enable_stripping)
2254 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2255 else
2256 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2257
2258 } else if (VLAN_V2_ALLOWED(adapter)) {
2259 switch (vlan_ethertype) {
2260 case ETH_P_8021Q:
2261 if (enable_stripping)
2262 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2263 else
2264 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2265
2266 if (enable_insertion)
2267 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2268 else
2269 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2270 break;
2271 case ETH_P_8021AD:
2272 if (enable_stripping)
2273 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2274 else
2275 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2276
2277 if (enable_insertion)
2278 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2279 else
2280 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2281 break;
2282 }
2283 }
2284
2285 if (aq_required)
2286 iavf_schedule_aq_request(adapter, aq_required);
2287 }
2288
2289 /**
2290 * iavf_startup - first step of driver startup
2291 * @adapter: board private structure
2292 *
2293 * Function process __IAVF_STARTUP driver state.
2294 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2295 * when fails the state is changed to __IAVF_INIT_FAILED
2296 **/
iavf_startup(struct iavf_adapter * adapter)2297 static void iavf_startup(struct iavf_adapter *adapter)
2298 {
2299 struct pci_dev *pdev = adapter->pdev;
2300 struct iavf_hw *hw = &adapter->hw;
2301 enum iavf_status status;
2302 int ret;
2303
2304 WARN_ON(adapter->state != __IAVF_STARTUP);
2305
2306 /* driver loaded, probe complete */
2307 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2308 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2309
2310 ret = iavf_check_reset_complete(hw);
2311 if (ret) {
2312 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2313 ret);
2314 goto err;
2315 }
2316 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2317 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2318 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2319 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2320
2321 status = iavf_init_adminq(hw);
2322 if (status) {
2323 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2324 status);
2325 goto err;
2326 }
2327 ret = iavf_send_api_ver(adapter);
2328 if (ret) {
2329 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2330 iavf_shutdown_adminq(hw);
2331 goto err;
2332 }
2333 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2334 return;
2335 err:
2336 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2337 }
2338
2339 /**
2340 * iavf_init_version_check - second step of driver startup
2341 * @adapter: board private structure
2342 *
2343 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2344 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2345 * when fails the state is changed to __IAVF_INIT_FAILED
2346 **/
iavf_init_version_check(struct iavf_adapter * adapter)2347 static void iavf_init_version_check(struct iavf_adapter *adapter)
2348 {
2349 struct pci_dev *pdev = adapter->pdev;
2350 struct iavf_hw *hw = &adapter->hw;
2351 int err = -EAGAIN;
2352
2353 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2354
2355 if (!iavf_asq_done(hw)) {
2356 dev_err(&pdev->dev, "Admin queue command never completed\n");
2357 iavf_shutdown_adminq(hw);
2358 iavf_change_state(adapter, __IAVF_STARTUP);
2359 goto err;
2360 }
2361
2362 /* aq msg sent, awaiting reply */
2363 err = iavf_verify_api_ver(adapter);
2364 if (err) {
2365 if (err == -EALREADY)
2366 err = iavf_send_api_ver(adapter);
2367 else
2368 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2369 adapter->pf_version.major,
2370 adapter->pf_version.minor,
2371 VIRTCHNL_VERSION_MAJOR,
2372 VIRTCHNL_VERSION_MINOR);
2373 goto err;
2374 }
2375 err = iavf_send_vf_config_msg(adapter);
2376 if (err) {
2377 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2378 err);
2379 goto err;
2380 }
2381 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2382 return;
2383 err:
2384 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2385 }
2386
2387 /**
2388 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2389 * @adapter: board private structure
2390 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2391 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2392 {
2393 int i, num_req_queues = adapter->num_req_queues;
2394 struct iavf_vsi *vsi = &adapter->vsi;
2395
2396 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2397 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2398 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2399 }
2400 if (!adapter->vsi_res) {
2401 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2402 return -ENODEV;
2403 }
2404
2405 if (num_req_queues &&
2406 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2407 /* Problem. The PF gave us fewer queues than what we had
2408 * negotiated in our request. Need a reset to see if we can't
2409 * get back to a working state.
2410 */
2411 dev_err(&adapter->pdev->dev,
2412 "Requested %d queues, but PF only gave us %d.\n",
2413 num_req_queues,
2414 adapter->vsi_res->num_queue_pairs);
2415 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2416 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2417 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2418
2419 return -EAGAIN;
2420 }
2421 adapter->num_req_queues = 0;
2422 adapter->vsi.id = adapter->vsi_res->vsi_id;
2423
2424 adapter->vsi.back = adapter;
2425 adapter->vsi.base_vector = 1;
2426 vsi->netdev = adapter->netdev;
2427 vsi->qs_handle = adapter->vsi_res->qset_handle;
2428 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2429 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2430 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2431 } else {
2432 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2433 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2434 }
2435
2436 return 0;
2437 }
2438
2439 /**
2440 * iavf_init_get_resources - third step of driver startup
2441 * @adapter: board private structure
2442 *
2443 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2444 * finishes driver initialization procedure.
2445 * When success the state is changed to __IAVF_DOWN
2446 * when fails the state is changed to __IAVF_INIT_FAILED
2447 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2448 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2449 {
2450 struct pci_dev *pdev = adapter->pdev;
2451 struct iavf_hw *hw = &adapter->hw;
2452 int err;
2453
2454 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2455 /* aq msg sent, awaiting reply */
2456 if (!adapter->vf_res) {
2457 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2458 GFP_KERNEL);
2459 if (!adapter->vf_res) {
2460 err = -ENOMEM;
2461 goto err;
2462 }
2463 }
2464 err = iavf_get_vf_config(adapter);
2465 if (err == -EALREADY) {
2466 err = iavf_send_vf_config_msg(adapter);
2467 goto err;
2468 } else if (err == -EINVAL) {
2469 /* We only get -EINVAL if the device is in a very bad
2470 * state or if we've been disabled for previous bad
2471 * behavior. Either way, we're done now.
2472 */
2473 iavf_shutdown_adminq(hw);
2474 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2475 return;
2476 }
2477 if (err) {
2478 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2479 goto err_alloc;
2480 }
2481
2482 err = iavf_parse_vf_resource_msg(adapter);
2483 if (err) {
2484 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2485 err);
2486 goto err_alloc;
2487 }
2488 /* Some features require additional messages to negotiate extended
2489 * capabilities. These are processed in sequence by the
2490 * __IAVF_INIT_EXTENDED_CAPS driver state.
2491 */
2492 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2493
2494 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2495 return;
2496
2497 err_alloc:
2498 kfree(adapter->vf_res);
2499 adapter->vf_res = NULL;
2500 err:
2501 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2502 }
2503
2504 /**
2505 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2506 * @adapter: board private structure
2507 *
2508 * Function processes send of the extended VLAN V2 capability message to the
2509 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2510 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2511 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2512 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2513 {
2514 int ret;
2515
2516 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2517
2518 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2519 if (ret && ret == -EOPNOTSUPP) {
2520 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2521 * we did not send the capability exchange message and do not
2522 * expect a response.
2523 */
2524 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2525 }
2526
2527 /* We sent the message, so move on to the next step */
2528 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2529 }
2530
2531 /**
2532 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2533 * @adapter: board private structure
2534 *
2535 * Function processes receipt of the extended VLAN V2 capability message from
2536 * the PF.
2537 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2538 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2539 {
2540 int ret;
2541
2542 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2543
2544 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2545
2546 ret = iavf_get_vf_vlan_v2_caps(adapter);
2547 if (ret)
2548 goto err;
2549
2550 /* We've processed receipt of the VLAN V2 caps message */
2551 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2552 return;
2553 err:
2554 /* We didn't receive a reply. Make sure we try sending again when
2555 * __IAVF_INIT_FAILED attempts to recover.
2556 */
2557 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2558 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2559 }
2560
2561 /**
2562 * iavf_init_process_extended_caps - Part of driver startup
2563 * @adapter: board private structure
2564 *
2565 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2566 * handles negotiating capabilities for features which require an additional
2567 * message.
2568 *
2569 * Once all extended capabilities exchanges are finished, the driver will
2570 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2571 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2572 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2573 {
2574 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2575
2576 /* Process capability exchange for VLAN V2 */
2577 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2578 iavf_init_send_offload_vlan_v2_caps(adapter);
2579 return;
2580 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2581 iavf_init_recv_offload_vlan_v2_caps(adapter);
2582 return;
2583 }
2584
2585 /* When we reach here, no further extended capabilities exchanges are
2586 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2587 */
2588 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2589 }
2590
2591 /**
2592 * iavf_init_config_adapter - last part of driver startup
2593 * @adapter: board private structure
2594 *
2595 * After all the supported capabilities are negotiated, then the
2596 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2597 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2598 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2599 {
2600 struct net_device *netdev = adapter->netdev;
2601 struct pci_dev *pdev = adapter->pdev;
2602 int err;
2603
2604 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2605
2606 if (iavf_process_config(adapter))
2607 goto err;
2608
2609 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2610
2611 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2612
2613 netdev->netdev_ops = &iavf_netdev_ops;
2614 iavf_set_ethtool_ops(netdev);
2615 netdev->watchdog_timeo = 5 * HZ;
2616
2617 netdev->min_mtu = ETH_MIN_MTU;
2618 netdev->max_mtu = LIBIE_MAX_MTU;
2619
2620 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2621 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2622 adapter->hw.mac.addr);
2623 eth_hw_addr_random(netdev);
2624 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2625 } else {
2626 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2627 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2628 }
2629
2630 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2631 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2632 err = iavf_init_interrupt_scheme(adapter);
2633 if (err)
2634 goto err_sw_init;
2635 iavf_map_rings_to_vectors(adapter);
2636 if (adapter->vf_res->vf_cap_flags &
2637 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2638 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2639
2640 err = iavf_request_misc_irq(adapter);
2641 if (err)
2642 goto err_sw_init;
2643
2644 netif_carrier_off(netdev);
2645 adapter->link_up = false;
2646 netif_tx_stop_all_queues(netdev);
2647
2648 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2649 if (netdev->features & NETIF_F_GRO)
2650 dev_info(&pdev->dev, "GRO is enabled\n");
2651
2652 iavf_change_state(adapter, __IAVF_DOWN);
2653 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2654
2655 iavf_misc_irq_enable(adapter);
2656 wake_up(&adapter->down_waitqueue);
2657
2658 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2659 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2660 if (!adapter->rss_key || !adapter->rss_lut) {
2661 err = -ENOMEM;
2662 goto err_mem;
2663 }
2664 if (RSS_AQ(adapter))
2665 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2666 else
2667 iavf_init_rss(adapter);
2668
2669 if (VLAN_V2_ALLOWED(adapter))
2670 /* request initial VLAN offload settings */
2671 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2672
2673 iavf_schedule_finish_config(adapter);
2674 return;
2675
2676 err_mem:
2677 iavf_free_rss(adapter);
2678 iavf_free_misc_irq(adapter);
2679 err_sw_init:
2680 iavf_reset_interrupt_capability(adapter);
2681 err:
2682 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2683 }
2684
2685 /**
2686 * iavf_watchdog_task - Periodic call-back task
2687 * @work: pointer to work_struct
2688 **/
iavf_watchdog_task(struct work_struct * work)2689 static void iavf_watchdog_task(struct work_struct *work)
2690 {
2691 struct iavf_adapter *adapter = container_of(work,
2692 struct iavf_adapter,
2693 watchdog_task.work);
2694 struct iavf_hw *hw = &adapter->hw;
2695 u32 reg_val;
2696
2697 if (!mutex_trylock(&adapter->crit_lock)) {
2698 if (adapter->state == __IAVF_REMOVE)
2699 return;
2700
2701 goto restart_watchdog;
2702 }
2703
2704 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2705 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2706
2707 switch (adapter->state) {
2708 case __IAVF_STARTUP:
2709 iavf_startup(adapter);
2710 mutex_unlock(&adapter->crit_lock);
2711 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2712 msecs_to_jiffies(30));
2713 return;
2714 case __IAVF_INIT_VERSION_CHECK:
2715 iavf_init_version_check(adapter);
2716 mutex_unlock(&adapter->crit_lock);
2717 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2718 msecs_to_jiffies(30));
2719 return;
2720 case __IAVF_INIT_GET_RESOURCES:
2721 iavf_init_get_resources(adapter);
2722 mutex_unlock(&adapter->crit_lock);
2723 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2724 msecs_to_jiffies(1));
2725 return;
2726 case __IAVF_INIT_EXTENDED_CAPS:
2727 iavf_init_process_extended_caps(adapter);
2728 mutex_unlock(&adapter->crit_lock);
2729 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2730 msecs_to_jiffies(1));
2731 return;
2732 case __IAVF_INIT_CONFIG_ADAPTER:
2733 iavf_init_config_adapter(adapter);
2734 mutex_unlock(&adapter->crit_lock);
2735 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2736 msecs_to_jiffies(1));
2737 return;
2738 case __IAVF_INIT_FAILED:
2739 if (test_bit(__IAVF_IN_REMOVE_TASK,
2740 &adapter->crit_section)) {
2741 /* Do not update the state and do not reschedule
2742 * watchdog task, iavf_remove should handle this state
2743 * as it can loop forever
2744 */
2745 mutex_unlock(&adapter->crit_lock);
2746 return;
2747 }
2748 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2749 dev_err(&adapter->pdev->dev,
2750 "Failed to communicate with PF; waiting before retry\n");
2751 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2752 iavf_shutdown_adminq(hw);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq,
2755 &adapter->watchdog_task, (5 * HZ));
2756 return;
2757 }
2758 /* Try again from failed step*/
2759 iavf_change_state(adapter, adapter->last_state);
2760 mutex_unlock(&adapter->crit_lock);
2761 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2762 return;
2763 case __IAVF_COMM_FAILED:
2764 if (test_bit(__IAVF_IN_REMOVE_TASK,
2765 &adapter->crit_section)) {
2766 /* Set state to __IAVF_INIT_FAILED and perform remove
2767 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2768 * doesn't bring the state back to __IAVF_COMM_FAILED.
2769 */
2770 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2771 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2772 mutex_unlock(&adapter->crit_lock);
2773 return;
2774 }
2775 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2776 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2777 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2778 reg_val == VIRTCHNL_VFR_COMPLETED) {
2779 /* A chance for redemption! */
2780 dev_err(&adapter->pdev->dev,
2781 "Hardware came out of reset. Attempting reinit.\n");
2782 /* When init task contacts the PF and
2783 * gets everything set up again, it'll restart the
2784 * watchdog for us. Down, boy. Sit. Stay. Woof.
2785 */
2786 iavf_change_state(adapter, __IAVF_STARTUP);
2787 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2788 }
2789 adapter->aq_required = 0;
2790 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2791 mutex_unlock(&adapter->crit_lock);
2792 queue_delayed_work(adapter->wq,
2793 &adapter->watchdog_task,
2794 msecs_to_jiffies(10));
2795 return;
2796 case __IAVF_RESETTING:
2797 mutex_unlock(&adapter->crit_lock);
2798 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2799 HZ * 2);
2800 return;
2801 case __IAVF_DOWN:
2802 case __IAVF_DOWN_PENDING:
2803 case __IAVF_TESTING:
2804 case __IAVF_RUNNING:
2805 if (adapter->current_op) {
2806 if (!iavf_asq_done(hw)) {
2807 dev_dbg(&adapter->pdev->dev,
2808 "Admin queue timeout\n");
2809 iavf_send_api_ver(adapter);
2810 }
2811 } else {
2812 int ret = iavf_process_aq_command(adapter);
2813
2814 /* An error will be returned if no commands were
2815 * processed; use this opportunity to update stats
2816 * if the error isn't -ENOTSUPP
2817 */
2818 if (ret && ret != -EOPNOTSUPP &&
2819 adapter->state == __IAVF_RUNNING)
2820 iavf_request_stats(adapter);
2821 }
2822 if (adapter->state == __IAVF_RUNNING)
2823 iavf_detect_recover_hung(&adapter->vsi);
2824 break;
2825 case __IAVF_REMOVE:
2826 default:
2827 mutex_unlock(&adapter->crit_lock);
2828 return;
2829 }
2830
2831 /* check for hw reset */
2832 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2833 if (!reg_val) {
2834 adapter->aq_required = 0;
2835 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2836 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2837 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2838 mutex_unlock(&adapter->crit_lock);
2839 queue_delayed_work(adapter->wq,
2840 &adapter->watchdog_task, HZ * 2);
2841 return;
2842 }
2843
2844 mutex_unlock(&adapter->crit_lock);
2845 restart_watchdog:
2846 if (adapter->state >= __IAVF_DOWN)
2847 queue_work(adapter->wq, &adapter->adminq_task);
2848 if (adapter->aq_required)
2849 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2850 msecs_to_jiffies(20));
2851 else
2852 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2853 HZ * 2);
2854 }
2855
2856 /**
2857 * iavf_disable_vf - disable VF
2858 * @adapter: board private structure
2859 *
2860 * Set communication failed flag and free all resources.
2861 * NOTE: This function is expected to be called with crit_lock being held.
2862 **/
iavf_disable_vf(struct iavf_adapter * adapter)2863 static void iavf_disable_vf(struct iavf_adapter *adapter)
2864 {
2865 struct iavf_mac_filter *f, *ftmp;
2866 struct iavf_vlan_filter *fv, *fvtmp;
2867 struct iavf_cloud_filter *cf, *cftmp;
2868
2869 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2870
2871 /* We don't use netif_running() because it may be true prior to
2872 * ndo_open() returning, so we can't assume it means all our open
2873 * tasks have finished, since we're not holding the rtnl_lock here.
2874 */
2875 if (adapter->state == __IAVF_RUNNING) {
2876 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2877 netif_carrier_off(adapter->netdev);
2878 netif_tx_disable(adapter->netdev);
2879 adapter->link_up = false;
2880 iavf_napi_disable_all(adapter);
2881 iavf_irq_disable(adapter);
2882 iavf_free_traffic_irqs(adapter);
2883 iavf_free_all_tx_resources(adapter);
2884 iavf_free_all_rx_resources(adapter);
2885 }
2886
2887 spin_lock_bh(&adapter->mac_vlan_list_lock);
2888
2889 /* Delete all of the filters */
2890 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2891 list_del(&f->list);
2892 kfree(f);
2893 }
2894
2895 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2896 list_del(&fv->list);
2897 kfree(fv);
2898 }
2899 adapter->num_vlan_filters = 0;
2900
2901 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2902
2903 spin_lock_bh(&adapter->cloud_filter_list_lock);
2904 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2905 list_del(&cf->list);
2906 kfree(cf);
2907 adapter->num_cloud_filters--;
2908 }
2909 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2910
2911 iavf_free_misc_irq(adapter);
2912 iavf_free_interrupt_scheme(adapter);
2913 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2914 iavf_shutdown_adminq(&adapter->hw);
2915 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2916 iavf_change_state(adapter, __IAVF_DOWN);
2917 wake_up(&adapter->down_waitqueue);
2918 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2919 }
2920
2921 /**
2922 * iavf_reset_task - Call-back task to handle hardware reset
2923 * @work: pointer to work_struct
2924 *
2925 * During reset we need to shut down and reinitialize the admin queue
2926 * before we can use it to communicate with the PF again. We also clear
2927 * and reinit the rings because that context is lost as well.
2928 **/
iavf_reset_task(struct work_struct * work)2929 static void iavf_reset_task(struct work_struct *work)
2930 {
2931 struct iavf_adapter *adapter = container_of(work,
2932 struct iavf_adapter,
2933 reset_task);
2934 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2935 struct net_device *netdev = adapter->netdev;
2936 struct iavf_hw *hw = &adapter->hw;
2937 struct iavf_mac_filter *f, *ftmp;
2938 struct iavf_cloud_filter *cf;
2939 enum iavf_status status;
2940 u32 reg_val;
2941 int i = 0, err;
2942 bool running;
2943
2944 /* When device is being removed it doesn't make sense to run the reset
2945 * task, just return in such a case.
2946 */
2947 if (!mutex_trylock(&adapter->crit_lock)) {
2948 if (adapter->state != __IAVF_REMOVE)
2949 queue_work(adapter->wq, &adapter->reset_task);
2950
2951 return;
2952 }
2953
2954 iavf_misc_irq_disable(adapter);
2955 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2956 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2957 /* Restart the AQ here. If we have been reset but didn't
2958 * detect it, or if the PF had to reinit, our AQ will be hosed.
2959 */
2960 iavf_shutdown_adminq(hw);
2961 iavf_init_adminq(hw);
2962 iavf_request_reset(adapter);
2963 }
2964 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2965
2966 /* poll until we see the reset actually happen */
2967 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2968 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2969 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2970 if (!reg_val)
2971 break;
2972 usleep_range(5000, 10000);
2973 }
2974 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2975 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2976 goto continue_reset; /* act like the reset happened */
2977 }
2978
2979 /* wait until the reset is complete and the PF is responding to us */
2980 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2981 /* sleep first to make sure a minimum wait time is met */
2982 msleep(IAVF_RESET_WAIT_MS);
2983
2984 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2985 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2986 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2987 break;
2988 }
2989
2990 pci_set_master(adapter->pdev);
2991 pci_restore_msi_state(adapter->pdev);
2992
2993 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2994 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2995 reg_val);
2996 iavf_disable_vf(adapter);
2997 mutex_unlock(&adapter->crit_lock);
2998 return; /* Do not attempt to reinit. It's dead, Jim. */
2999 }
3000
3001 continue_reset:
3002 /* We don't use netif_running() because it may be true prior to
3003 * ndo_open() returning, so we can't assume it means all our open
3004 * tasks have finished, since we're not holding the rtnl_lock here.
3005 */
3006 running = adapter->state == __IAVF_RUNNING;
3007
3008 if (running) {
3009 netif_carrier_off(netdev);
3010 netif_tx_stop_all_queues(netdev);
3011 adapter->link_up = false;
3012 iavf_napi_disable_all(adapter);
3013 }
3014 iavf_irq_disable(adapter);
3015
3016 iavf_change_state(adapter, __IAVF_RESETTING);
3017 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3018
3019 /* free the Tx/Rx rings and descriptors, might be better to just
3020 * re-use them sometime in the future
3021 */
3022 iavf_free_all_rx_resources(adapter);
3023 iavf_free_all_tx_resources(adapter);
3024
3025 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3026 /* kill and reinit the admin queue */
3027 iavf_shutdown_adminq(hw);
3028 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3029 status = iavf_init_adminq(hw);
3030 if (status) {
3031 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3032 status);
3033 goto reset_err;
3034 }
3035 adapter->aq_required = 0;
3036
3037 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3038 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3039 err = iavf_reinit_interrupt_scheme(adapter, running);
3040 if (err)
3041 goto reset_err;
3042 }
3043
3044 if (RSS_AQ(adapter)) {
3045 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3046 } else {
3047 err = iavf_init_rss(adapter);
3048 if (err)
3049 goto reset_err;
3050 }
3051
3052 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3053 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3054 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3055 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3056 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3057 * been successfully sent and negotiated
3058 */
3059 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3060 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3061
3062 spin_lock_bh(&adapter->mac_vlan_list_lock);
3063
3064 /* Delete filter for the current MAC address, it could have
3065 * been changed by the PF via administratively set MAC.
3066 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3067 */
3068 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3069 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3070 list_del(&f->list);
3071 kfree(f);
3072 }
3073 }
3074 /* re-add all MAC filters */
3075 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3076 f->add = true;
3077 }
3078 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3079
3080 /* check if TCs are running and re-add all cloud filters */
3081 spin_lock_bh(&adapter->cloud_filter_list_lock);
3082 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3083 adapter->num_tc) {
3084 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3085 cf->add = true;
3086 }
3087 }
3088 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3089
3090 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3091 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3092 iavf_misc_irq_enable(adapter);
3093
3094 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3095
3096 /* We were running when the reset started, so we need to restore some
3097 * state here.
3098 */
3099 if (running) {
3100 /* allocate transmit descriptors */
3101 err = iavf_setup_all_tx_resources(adapter);
3102 if (err)
3103 goto reset_err;
3104
3105 /* allocate receive descriptors */
3106 err = iavf_setup_all_rx_resources(adapter);
3107 if (err)
3108 goto reset_err;
3109
3110 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3111 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3112 err = iavf_request_traffic_irqs(adapter, netdev->name);
3113 if (err)
3114 goto reset_err;
3115
3116 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3117 }
3118
3119 iavf_configure(adapter);
3120
3121 /* iavf_up_complete() will switch device back
3122 * to __IAVF_RUNNING
3123 */
3124 iavf_up_complete(adapter);
3125
3126 iavf_irq_enable(adapter, true);
3127 } else {
3128 iavf_change_state(adapter, __IAVF_DOWN);
3129 wake_up(&adapter->down_waitqueue);
3130 }
3131
3132 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3133
3134 wake_up(&adapter->reset_waitqueue);
3135 mutex_unlock(&adapter->crit_lock);
3136
3137 return;
3138 reset_err:
3139 if (running) {
3140 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3141 iavf_free_traffic_irqs(adapter);
3142 }
3143 iavf_disable_vf(adapter);
3144
3145 mutex_unlock(&adapter->crit_lock);
3146 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3147 }
3148
3149 /**
3150 * iavf_adminq_task - worker thread to clean the admin queue
3151 * @work: pointer to work_struct containing our data
3152 **/
iavf_adminq_task(struct work_struct * work)3153 static void iavf_adminq_task(struct work_struct *work)
3154 {
3155 struct iavf_adapter *adapter =
3156 container_of(work, struct iavf_adapter, adminq_task);
3157 struct iavf_hw *hw = &adapter->hw;
3158 struct iavf_arq_event_info event;
3159 enum virtchnl_ops v_op;
3160 enum iavf_status ret, v_ret;
3161 u32 val, oldval;
3162 u16 pending;
3163
3164 if (!mutex_trylock(&adapter->crit_lock)) {
3165 if (adapter->state == __IAVF_REMOVE)
3166 return;
3167
3168 queue_work(adapter->wq, &adapter->adminq_task);
3169 goto out;
3170 }
3171
3172 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3173 goto unlock;
3174
3175 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3176 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3177 if (!event.msg_buf)
3178 goto unlock;
3179
3180 do {
3181 ret = iavf_clean_arq_element(hw, &event, &pending);
3182 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3183 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3184
3185 if (ret || !v_op)
3186 break; /* No event to process or error cleaning ARQ */
3187
3188 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3189 event.msg_len);
3190 if (pending != 0)
3191 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3192 } while (pending);
3193
3194 if (iavf_is_reset_in_progress(adapter))
3195 goto freedom;
3196
3197 /* check for error indications */
3198 val = rd32(hw, IAVF_VF_ARQLEN1);
3199 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3200 goto freedom;
3201 oldval = val;
3202 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3203 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3204 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3205 }
3206 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3207 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3208 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3209 }
3210 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3211 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3212 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3213 }
3214 if (oldval != val)
3215 wr32(hw, IAVF_VF_ARQLEN1, val);
3216
3217 val = rd32(hw, IAVF_VF_ATQLEN1);
3218 oldval = val;
3219 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3220 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3221 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3222 }
3223 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3224 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3225 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3226 }
3227 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3228 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3229 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3230 }
3231 if (oldval != val)
3232 wr32(hw, IAVF_VF_ATQLEN1, val);
3233
3234 freedom:
3235 kfree(event.msg_buf);
3236 unlock:
3237 mutex_unlock(&adapter->crit_lock);
3238 out:
3239 /* re-enable Admin queue interrupt cause */
3240 iavf_misc_irq_enable(adapter);
3241 }
3242
3243 /**
3244 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3245 * @adapter: board private structure
3246 *
3247 * Free all transmit software resources
3248 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3249 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3250 {
3251 int i;
3252
3253 if (!adapter->tx_rings)
3254 return;
3255
3256 for (i = 0; i < adapter->num_active_queues; i++)
3257 if (adapter->tx_rings[i].desc)
3258 iavf_free_tx_resources(&adapter->tx_rings[i]);
3259 }
3260
3261 /**
3262 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3263 * @adapter: board private structure
3264 *
3265 * If this function returns with an error, then it's possible one or
3266 * more of the rings is populated (while the rest are not). It is the
3267 * callers duty to clean those orphaned rings.
3268 *
3269 * Return 0 on success, negative on failure
3270 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3271 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3272 {
3273 int i, err = 0;
3274
3275 for (i = 0; i < adapter->num_active_queues; i++) {
3276 adapter->tx_rings[i].count = adapter->tx_desc_count;
3277 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3278 if (!err)
3279 continue;
3280 dev_err(&adapter->pdev->dev,
3281 "Allocation for Tx Queue %u failed\n", i);
3282 break;
3283 }
3284
3285 return err;
3286 }
3287
3288 /**
3289 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3290 * @adapter: board private structure
3291 *
3292 * If this function returns with an error, then it's possible one or
3293 * more of the rings is populated (while the rest are not). It is the
3294 * callers duty to clean those orphaned rings.
3295 *
3296 * Return 0 on success, negative on failure
3297 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3298 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3299 {
3300 int i, err = 0;
3301
3302 for (i = 0; i < adapter->num_active_queues; i++) {
3303 adapter->rx_rings[i].count = adapter->rx_desc_count;
3304 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3305 if (!err)
3306 continue;
3307 dev_err(&adapter->pdev->dev,
3308 "Allocation for Rx Queue %u failed\n", i);
3309 break;
3310 }
3311 return err;
3312 }
3313
3314 /**
3315 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3316 * @adapter: board private structure
3317 *
3318 * Free all receive software resources
3319 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3320 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3321 {
3322 int i;
3323
3324 if (!adapter->rx_rings)
3325 return;
3326
3327 for (i = 0; i < adapter->num_active_queues; i++)
3328 if (adapter->rx_rings[i].desc)
3329 iavf_free_rx_resources(&adapter->rx_rings[i]);
3330 }
3331
3332 /**
3333 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3334 * @adapter: board private structure
3335 * @max_tx_rate: max Tx bw for a tc
3336 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3337 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3338 u64 max_tx_rate)
3339 {
3340 int speed = 0, ret = 0;
3341
3342 if (ADV_LINK_SUPPORT(adapter)) {
3343 if (adapter->link_speed_mbps < U32_MAX) {
3344 speed = adapter->link_speed_mbps;
3345 goto validate_bw;
3346 } else {
3347 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3348 return -EINVAL;
3349 }
3350 }
3351
3352 switch (adapter->link_speed) {
3353 case VIRTCHNL_LINK_SPEED_40GB:
3354 speed = SPEED_40000;
3355 break;
3356 case VIRTCHNL_LINK_SPEED_25GB:
3357 speed = SPEED_25000;
3358 break;
3359 case VIRTCHNL_LINK_SPEED_20GB:
3360 speed = SPEED_20000;
3361 break;
3362 case VIRTCHNL_LINK_SPEED_10GB:
3363 speed = SPEED_10000;
3364 break;
3365 case VIRTCHNL_LINK_SPEED_5GB:
3366 speed = SPEED_5000;
3367 break;
3368 case VIRTCHNL_LINK_SPEED_2_5GB:
3369 speed = SPEED_2500;
3370 break;
3371 case VIRTCHNL_LINK_SPEED_1GB:
3372 speed = SPEED_1000;
3373 break;
3374 case VIRTCHNL_LINK_SPEED_100MB:
3375 speed = SPEED_100;
3376 break;
3377 default:
3378 break;
3379 }
3380
3381 validate_bw:
3382 if (max_tx_rate > speed) {
3383 dev_err(&adapter->pdev->dev,
3384 "Invalid tx rate specified\n");
3385 ret = -EINVAL;
3386 }
3387
3388 return ret;
3389 }
3390
3391 /**
3392 * iavf_validate_ch_config - validate queue mapping info
3393 * @adapter: board private structure
3394 * @mqprio_qopt: queue parameters
3395 *
3396 * This function validates if the config provided by the user to
3397 * configure queue channels is valid or not. Returns 0 on a valid
3398 * config.
3399 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3400 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3401 struct tc_mqprio_qopt_offload *mqprio_qopt)
3402 {
3403 u64 total_max_rate = 0;
3404 u32 tx_rate_rem = 0;
3405 int i, num_qps = 0;
3406 u64 tx_rate = 0;
3407 int ret = 0;
3408
3409 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3410 mqprio_qopt->qopt.num_tc < 1)
3411 return -EINVAL;
3412
3413 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3414 if (!mqprio_qopt->qopt.count[i] ||
3415 mqprio_qopt->qopt.offset[i] != num_qps)
3416 return -EINVAL;
3417 if (mqprio_qopt->min_rate[i]) {
3418 dev_err(&adapter->pdev->dev,
3419 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3420 i);
3421 return -EINVAL;
3422 }
3423
3424 /* convert to Mbps */
3425 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3426 IAVF_MBPS_DIVISOR);
3427
3428 if (mqprio_qopt->max_rate[i] &&
3429 tx_rate < IAVF_MBPS_QUANTA) {
3430 dev_err(&adapter->pdev->dev,
3431 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3432 i, IAVF_MBPS_QUANTA);
3433 return -EINVAL;
3434 }
3435
3436 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3437
3438 if (tx_rate_rem != 0) {
3439 dev_err(&adapter->pdev->dev,
3440 "Invalid max tx rate for TC%d, not divisible by %d\n",
3441 i, IAVF_MBPS_QUANTA);
3442 return -EINVAL;
3443 }
3444
3445 total_max_rate += tx_rate;
3446 num_qps += mqprio_qopt->qopt.count[i];
3447 }
3448 if (num_qps > adapter->num_active_queues) {
3449 dev_err(&adapter->pdev->dev,
3450 "Cannot support requested number of queues\n");
3451 return -EINVAL;
3452 }
3453
3454 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3455 return ret;
3456 }
3457
3458 /**
3459 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3460 * @adapter: board private structure
3461 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3462 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3463 {
3464 struct iavf_cloud_filter *cf, *cftmp;
3465
3466 spin_lock_bh(&adapter->cloud_filter_list_lock);
3467 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3468 list) {
3469 list_del(&cf->list);
3470 kfree(cf);
3471 adapter->num_cloud_filters--;
3472 }
3473 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3474 }
3475
3476 /**
3477 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3478 * TC config already configured on this adapter.
3479 * @adapter: board private structure
3480 * @mqprio_qopt: TC config received from kernel.
3481 *
3482 * This function compares the TC config received from the kernel
3483 * with the config already configured on the adapter.
3484 *
3485 * Return: True if configuration is same, false otherwise.
3486 **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3487 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3488 struct tc_mqprio_qopt *mqprio_qopt)
3489 {
3490 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3491 int i;
3492
3493 if (adapter->num_tc != mqprio_qopt->num_tc)
3494 return false;
3495
3496 for (i = 0; i < adapter->num_tc; i++) {
3497 if (ch[i].count != mqprio_qopt->count[i] ||
3498 ch[i].offset != mqprio_qopt->offset[i])
3499 return false;
3500 }
3501 return true;
3502 }
3503
3504 /**
3505 * __iavf_setup_tc - configure multiple traffic classes
3506 * @netdev: network interface device structure
3507 * @type_data: tc offload data
3508 *
3509 * This function processes the config information provided by the
3510 * user to configure traffic classes/queue channels and packages the
3511 * information to request the PF to setup traffic classes.
3512 *
3513 * Returns 0 on success.
3514 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3515 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3516 {
3517 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3518 struct iavf_adapter *adapter = netdev_priv(netdev);
3519 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3520 u8 num_tc = 0, total_qps = 0;
3521 int ret = 0, netdev_tc = 0;
3522 u64 max_tx_rate;
3523 u16 mode;
3524 int i;
3525
3526 num_tc = mqprio_qopt->qopt.num_tc;
3527 mode = mqprio_qopt->mode;
3528
3529 /* delete queue_channel */
3530 if (!mqprio_qopt->qopt.hw) {
3531 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3532 /* reset the tc configuration */
3533 netdev_reset_tc(netdev);
3534 adapter->num_tc = 0;
3535 netif_tx_stop_all_queues(netdev);
3536 netif_tx_disable(netdev);
3537 iavf_del_all_cloud_filters(adapter);
3538 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3539 total_qps = adapter->orig_num_active_queues;
3540 goto exit;
3541 } else {
3542 return -EINVAL;
3543 }
3544 }
3545
3546 /* add queue channel */
3547 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3548 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3549 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3550 return -EOPNOTSUPP;
3551 }
3552 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3553 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3554 return -EINVAL;
3555 }
3556
3557 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3558 if (ret)
3559 return ret;
3560 /* Return if same TC config is requested */
3561 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3562 return 0;
3563 adapter->num_tc = num_tc;
3564
3565 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3566 if (i < num_tc) {
3567 adapter->ch_config.ch_info[i].count =
3568 mqprio_qopt->qopt.count[i];
3569 adapter->ch_config.ch_info[i].offset =
3570 mqprio_qopt->qopt.offset[i];
3571 total_qps += mqprio_qopt->qopt.count[i];
3572 max_tx_rate = mqprio_qopt->max_rate[i];
3573 /* convert to Mbps */
3574 max_tx_rate = div_u64(max_tx_rate,
3575 IAVF_MBPS_DIVISOR);
3576 adapter->ch_config.ch_info[i].max_tx_rate =
3577 max_tx_rate;
3578 } else {
3579 adapter->ch_config.ch_info[i].count = 1;
3580 adapter->ch_config.ch_info[i].offset = 0;
3581 }
3582 }
3583
3584 /* Take snapshot of original config such as "num_active_queues"
3585 * It is used later when delete ADQ flow is exercised, so that
3586 * once delete ADQ flow completes, VF shall go back to its
3587 * original queue configuration
3588 */
3589
3590 adapter->orig_num_active_queues = adapter->num_active_queues;
3591
3592 /* Store queue info based on TC so that VF gets configured
3593 * with correct number of queues when VF completes ADQ config
3594 * flow
3595 */
3596 adapter->ch_config.total_qps = total_qps;
3597
3598 netif_tx_stop_all_queues(netdev);
3599 netif_tx_disable(netdev);
3600 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3601 netdev_reset_tc(netdev);
3602 /* Report the tc mapping up the stack */
3603 netdev_set_num_tc(adapter->netdev, num_tc);
3604 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3605 u16 qcount = mqprio_qopt->qopt.count[i];
3606 u16 qoffset = mqprio_qopt->qopt.offset[i];
3607
3608 if (i < num_tc)
3609 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3610 qoffset);
3611 }
3612 }
3613 exit:
3614 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3615 return 0;
3616
3617 netif_set_real_num_rx_queues(netdev, total_qps);
3618 netif_set_real_num_tx_queues(netdev, total_qps);
3619
3620 return ret;
3621 }
3622
3623 /**
3624 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3625 * @adapter: board private structure
3626 * @f: pointer to struct flow_cls_offload
3627 * @filter: pointer to cloud filter structure
3628 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3629 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3630 struct flow_cls_offload *f,
3631 struct iavf_cloud_filter *filter)
3632 {
3633 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3634 struct flow_dissector *dissector = rule->match.dissector;
3635 u16 n_proto_mask = 0;
3636 u16 n_proto_key = 0;
3637 u8 field_flags = 0;
3638 u16 addr_type = 0;
3639 u16 n_proto = 0;
3640 int i = 0;
3641 struct virtchnl_filter *vf = &filter->f;
3642
3643 if (dissector->used_keys &
3644 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3645 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3646 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3647 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3648 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3649 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3650 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3651 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3652 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3653 dissector->used_keys);
3654 return -EOPNOTSUPP;
3655 }
3656
3657 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3658 struct flow_match_enc_keyid match;
3659
3660 flow_rule_match_enc_keyid(rule, &match);
3661 if (match.mask->keyid != 0)
3662 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3663 }
3664
3665 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3666 struct flow_match_basic match;
3667
3668 flow_rule_match_basic(rule, &match);
3669 n_proto_key = ntohs(match.key->n_proto);
3670 n_proto_mask = ntohs(match.mask->n_proto);
3671
3672 if (n_proto_key == ETH_P_ALL) {
3673 n_proto_key = 0;
3674 n_proto_mask = 0;
3675 }
3676 n_proto = n_proto_key & n_proto_mask;
3677 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3678 return -EINVAL;
3679 if (n_proto == ETH_P_IPV6) {
3680 /* specify flow type as TCP IPv6 */
3681 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3682 }
3683
3684 if (match.key->ip_proto != IPPROTO_TCP) {
3685 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3686 return -EINVAL;
3687 }
3688 }
3689
3690 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3691 struct flow_match_eth_addrs match;
3692
3693 flow_rule_match_eth_addrs(rule, &match);
3694
3695 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3696 if (!is_zero_ether_addr(match.mask->dst)) {
3697 if (is_broadcast_ether_addr(match.mask->dst)) {
3698 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3699 } else {
3700 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3701 match.mask->dst);
3702 return -EINVAL;
3703 }
3704 }
3705
3706 if (!is_zero_ether_addr(match.mask->src)) {
3707 if (is_broadcast_ether_addr(match.mask->src)) {
3708 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3709 } else {
3710 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3711 match.mask->src);
3712 return -EINVAL;
3713 }
3714 }
3715
3716 if (!is_zero_ether_addr(match.key->dst))
3717 if (is_valid_ether_addr(match.key->dst) ||
3718 is_multicast_ether_addr(match.key->dst)) {
3719 /* set the mask if a valid dst_mac address */
3720 for (i = 0; i < ETH_ALEN; i++)
3721 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3722 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3723 match.key->dst);
3724 }
3725
3726 if (!is_zero_ether_addr(match.key->src))
3727 if (is_valid_ether_addr(match.key->src) ||
3728 is_multicast_ether_addr(match.key->src)) {
3729 /* set the mask if a valid dst_mac address */
3730 for (i = 0; i < ETH_ALEN; i++)
3731 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3732 ether_addr_copy(vf->data.tcp_spec.src_mac,
3733 match.key->src);
3734 }
3735 }
3736
3737 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3738 struct flow_match_vlan match;
3739
3740 flow_rule_match_vlan(rule, &match);
3741 if (match.mask->vlan_id) {
3742 if (match.mask->vlan_id == VLAN_VID_MASK) {
3743 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3744 } else {
3745 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3746 match.mask->vlan_id);
3747 return -EINVAL;
3748 }
3749 }
3750 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3751 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3752 }
3753
3754 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3755 struct flow_match_control match;
3756
3757 flow_rule_match_control(rule, &match);
3758 addr_type = match.key->addr_type;
3759
3760 if (flow_rule_has_control_flags(match.mask->flags,
3761 f->common.extack))
3762 return -EOPNOTSUPP;
3763 }
3764
3765 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3766 struct flow_match_ipv4_addrs match;
3767
3768 flow_rule_match_ipv4_addrs(rule, &match);
3769 if (match.mask->dst) {
3770 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3771 field_flags |= IAVF_CLOUD_FIELD_IIP;
3772 } else {
3773 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3774 be32_to_cpu(match.mask->dst));
3775 return -EINVAL;
3776 }
3777 }
3778
3779 if (match.mask->src) {
3780 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3781 field_flags |= IAVF_CLOUD_FIELD_IIP;
3782 } else {
3783 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3784 be32_to_cpu(match.mask->src));
3785 return -EINVAL;
3786 }
3787 }
3788
3789 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3790 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3791 return -EINVAL;
3792 }
3793 if (match.key->dst) {
3794 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3795 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3796 }
3797 if (match.key->src) {
3798 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3799 vf->data.tcp_spec.src_ip[0] = match.key->src;
3800 }
3801 }
3802
3803 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3804 struct flow_match_ipv6_addrs match;
3805
3806 flow_rule_match_ipv6_addrs(rule, &match);
3807
3808 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3809 if (ipv6_addr_any(&match.mask->dst)) {
3810 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3811 IPV6_ADDR_ANY);
3812 return -EINVAL;
3813 }
3814
3815 /* src and dest IPv6 address should not be LOOPBACK
3816 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3817 */
3818 if (ipv6_addr_loopback(&match.key->dst) ||
3819 ipv6_addr_loopback(&match.key->src)) {
3820 dev_err(&adapter->pdev->dev,
3821 "ipv6 addr should not be loopback\n");
3822 return -EINVAL;
3823 }
3824 if (!ipv6_addr_any(&match.mask->dst) ||
3825 !ipv6_addr_any(&match.mask->src))
3826 field_flags |= IAVF_CLOUD_FIELD_IIP;
3827
3828 for (i = 0; i < 4; i++)
3829 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3830 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3831 sizeof(vf->data.tcp_spec.dst_ip));
3832 for (i = 0; i < 4; i++)
3833 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3834 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3835 sizeof(vf->data.tcp_spec.src_ip));
3836 }
3837 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3838 struct flow_match_ports match;
3839
3840 flow_rule_match_ports(rule, &match);
3841 if (match.mask->src) {
3842 if (match.mask->src == cpu_to_be16(0xffff)) {
3843 field_flags |= IAVF_CLOUD_FIELD_IIP;
3844 } else {
3845 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3846 be16_to_cpu(match.mask->src));
3847 return -EINVAL;
3848 }
3849 }
3850
3851 if (match.mask->dst) {
3852 if (match.mask->dst == cpu_to_be16(0xffff)) {
3853 field_flags |= IAVF_CLOUD_FIELD_IIP;
3854 } else {
3855 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3856 be16_to_cpu(match.mask->dst));
3857 return -EINVAL;
3858 }
3859 }
3860 if (match.key->dst) {
3861 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3862 vf->data.tcp_spec.dst_port = match.key->dst;
3863 }
3864
3865 if (match.key->src) {
3866 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3867 vf->data.tcp_spec.src_port = match.key->src;
3868 }
3869 }
3870 vf->field_flags = field_flags;
3871
3872 return 0;
3873 }
3874
3875 /**
3876 * iavf_handle_tclass - Forward to a traffic class on the device
3877 * @adapter: board private structure
3878 * @tc: traffic class index on the device
3879 * @filter: pointer to cloud filter structure
3880 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3881 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3882 struct iavf_cloud_filter *filter)
3883 {
3884 if (tc == 0)
3885 return 0;
3886 if (tc < adapter->num_tc) {
3887 if (!filter->f.data.tcp_spec.dst_port) {
3888 dev_err(&adapter->pdev->dev,
3889 "Specify destination port to redirect to traffic class other than TC0\n");
3890 return -EINVAL;
3891 }
3892 }
3893 /* redirect to a traffic class on the same device */
3894 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3895 filter->f.action_meta = tc;
3896 return 0;
3897 }
3898
3899 /**
3900 * iavf_find_cf - Find the cloud filter in the list
3901 * @adapter: Board private structure
3902 * @cookie: filter specific cookie
3903 *
3904 * Returns ptr to the filter object or NULL. Must be called while holding the
3905 * cloud_filter_list_lock.
3906 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3907 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3908 unsigned long *cookie)
3909 {
3910 struct iavf_cloud_filter *filter = NULL;
3911
3912 if (!cookie)
3913 return NULL;
3914
3915 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3916 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3917 return filter;
3918 }
3919 return NULL;
3920 }
3921
3922 /**
3923 * iavf_configure_clsflower - Add tc flower filters
3924 * @adapter: board private structure
3925 * @cls_flower: Pointer to struct flow_cls_offload
3926 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3927 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3928 struct flow_cls_offload *cls_flower)
3929 {
3930 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3931 struct iavf_cloud_filter *filter = NULL;
3932 int err = -EINVAL, count = 50;
3933
3934 if (tc < 0) {
3935 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3936 return -EINVAL;
3937 }
3938
3939 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3940 if (!filter)
3941 return -ENOMEM;
3942
3943 while (!mutex_trylock(&adapter->crit_lock)) {
3944 if (--count == 0) {
3945 kfree(filter);
3946 return err;
3947 }
3948 udelay(1);
3949 }
3950
3951 filter->cookie = cls_flower->cookie;
3952
3953 /* bail out here if filter already exists */
3954 spin_lock_bh(&adapter->cloud_filter_list_lock);
3955 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3956 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3957 err = -EEXIST;
3958 goto spin_unlock;
3959 }
3960 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3961
3962 /* set the mask to all zeroes to begin with */
3963 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3964 /* start out with flow type and eth type IPv4 to begin with */
3965 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3966 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3967 if (err)
3968 goto err;
3969
3970 err = iavf_handle_tclass(adapter, tc, filter);
3971 if (err)
3972 goto err;
3973
3974 /* add filter to the list */
3975 spin_lock_bh(&adapter->cloud_filter_list_lock);
3976 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3977 adapter->num_cloud_filters++;
3978 filter->add = true;
3979 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3980 spin_unlock:
3981 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3982 err:
3983 if (err)
3984 kfree(filter);
3985
3986 mutex_unlock(&adapter->crit_lock);
3987 return err;
3988 }
3989
3990 /**
3991 * iavf_delete_clsflower - Remove tc flower filters
3992 * @adapter: board private structure
3993 * @cls_flower: Pointer to struct flow_cls_offload
3994 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3995 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3996 struct flow_cls_offload *cls_flower)
3997 {
3998 struct iavf_cloud_filter *filter = NULL;
3999 int err = 0;
4000
4001 spin_lock_bh(&adapter->cloud_filter_list_lock);
4002 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4003 if (filter) {
4004 filter->del = true;
4005 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4006 } else {
4007 err = -EINVAL;
4008 }
4009 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4010
4011 return err;
4012 }
4013
4014 /**
4015 * iavf_setup_tc_cls_flower - flower classifier offloads
4016 * @adapter: pointer to iavf adapter structure
4017 * @cls_flower: pointer to flow_cls_offload struct with flow info
4018 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4019 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4020 struct flow_cls_offload *cls_flower)
4021 {
4022 switch (cls_flower->command) {
4023 case FLOW_CLS_REPLACE:
4024 return iavf_configure_clsflower(adapter, cls_flower);
4025 case FLOW_CLS_DESTROY:
4026 return iavf_delete_clsflower(adapter, cls_flower);
4027 case FLOW_CLS_STATS:
4028 return -EOPNOTSUPP;
4029 default:
4030 return -EOPNOTSUPP;
4031 }
4032 }
4033
4034 /**
4035 * iavf_add_cls_u32 - Add U32 classifier offloads
4036 * @adapter: pointer to iavf adapter structure
4037 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4038 *
4039 * Return: 0 on success or negative errno on failure.
4040 */
iavf_add_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4041 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4042 struct tc_cls_u32_offload *cls_u32)
4043 {
4044 struct netlink_ext_ack *extack = cls_u32->common.extack;
4045 struct virtchnl_fdir_rule *rule_cfg;
4046 struct virtchnl_filter_action *vact;
4047 struct virtchnl_proto_hdrs *hdrs;
4048 struct ethhdr *spec_h, *mask_h;
4049 const struct tc_action *act;
4050 struct iavf_fdir_fltr *fltr;
4051 struct tcf_exts *exts;
4052 unsigned int q_index;
4053 int i, status = 0;
4054 int off_base = 0;
4055
4056 if (cls_u32->knode.link_handle) {
4057 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4058 return -EOPNOTSUPP;
4059 }
4060
4061 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4062 if (!fltr)
4063 return -ENOMEM;
4064
4065 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4066 hdrs = &rule_cfg->proto_hdrs;
4067 hdrs->count = 0;
4068
4069 /* The parser lib at the PF expects the packet starting with MAC hdr */
4070 switch (ntohs(cls_u32->common.protocol)) {
4071 case ETH_P_802_3:
4072 break;
4073 case ETH_P_IP:
4074 spec_h = (struct ethhdr *)hdrs->raw.spec;
4075 mask_h = (struct ethhdr *)hdrs->raw.mask;
4076 spec_h->h_proto = htons(ETH_P_IP);
4077 mask_h->h_proto = htons(0xFFFF);
4078 off_base += ETH_HLEN;
4079 break;
4080 default:
4081 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4082 status = -EOPNOTSUPP;
4083 goto free_alloc;
4084 }
4085
4086 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4087 __be32 val, mask;
4088 int off;
4089
4090 off = off_base + cls_u32->knode.sel->keys[i].off;
4091 val = cls_u32->knode.sel->keys[i].val;
4092 mask = cls_u32->knode.sel->keys[i].mask;
4093
4094 if (off >= sizeof(hdrs->raw.spec)) {
4095 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4096 status = -EINVAL;
4097 goto free_alloc;
4098 }
4099
4100 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4101 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4102 hdrs->raw.pkt_len = off + sizeof(val);
4103 }
4104
4105 /* Only one action is allowed */
4106 rule_cfg->action_set.count = 1;
4107 vact = &rule_cfg->action_set.actions[0];
4108 exts = cls_u32->knode.exts;
4109
4110 tcf_exts_for_each_action(i, act, exts) {
4111 /* FDIR queue */
4112 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4113 q_index = tcf_skbedit_rx_queue_mapping(act);
4114 if (q_index >= adapter->num_active_queues) {
4115 status = -EINVAL;
4116 goto free_alloc;
4117 }
4118
4119 vact->type = VIRTCHNL_ACTION_QUEUE;
4120 vact->act_conf.queue.index = q_index;
4121 break;
4122 }
4123
4124 /* Drop */
4125 if (is_tcf_gact_shot(act)) {
4126 vact->type = VIRTCHNL_ACTION_DROP;
4127 break;
4128 }
4129
4130 /* Unsupported action */
4131 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4132 status = -EOPNOTSUPP;
4133 goto free_alloc;
4134 }
4135
4136 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4137 fltr->cls_u32_handle = cls_u32->knode.handle;
4138 return iavf_fdir_add_fltr(adapter, fltr);
4139
4140 free_alloc:
4141 kfree(fltr);
4142 return status;
4143 }
4144
4145 /**
4146 * iavf_del_cls_u32 - Delete U32 classifier offloads
4147 * @adapter: pointer to iavf adapter structure
4148 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4149 *
4150 * Return: 0 on success or negative errno on failure.
4151 */
iavf_del_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4152 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4153 struct tc_cls_u32_offload *cls_u32)
4154 {
4155 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4156 }
4157
4158 /**
4159 * iavf_setup_tc_cls_u32 - U32 filter offloads
4160 * @adapter: pointer to iavf adapter structure
4161 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4162 *
4163 * Return: 0 on success or negative errno on failure.
4164 */
iavf_setup_tc_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4165 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4166 struct tc_cls_u32_offload *cls_u32)
4167 {
4168 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4169 return -EOPNOTSUPP;
4170
4171 switch (cls_u32->command) {
4172 case TC_CLSU32_NEW_KNODE:
4173 case TC_CLSU32_REPLACE_KNODE:
4174 return iavf_add_cls_u32(adapter, cls_u32);
4175 case TC_CLSU32_DELETE_KNODE:
4176 return iavf_del_cls_u32(adapter, cls_u32);
4177 default:
4178 return -EOPNOTSUPP;
4179 }
4180 }
4181
4182 /**
4183 * iavf_setup_tc_block_cb - block callback for tc
4184 * @type: type of offload
4185 * @type_data: offload data
4186 * @cb_priv:
4187 *
4188 * This function is the block callback for traffic classes
4189 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4190 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4191 void *cb_priv)
4192 {
4193 struct iavf_adapter *adapter = cb_priv;
4194
4195 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4196 return -EOPNOTSUPP;
4197
4198 switch (type) {
4199 case TC_SETUP_CLSFLOWER:
4200 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4201 case TC_SETUP_CLSU32:
4202 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4203 default:
4204 return -EOPNOTSUPP;
4205 }
4206 }
4207
4208 static LIST_HEAD(iavf_block_cb_list);
4209
4210 /**
4211 * iavf_setup_tc - configure multiple traffic classes
4212 * @netdev: network interface device structure
4213 * @type: type of offload
4214 * @type_data: tc offload data
4215 *
4216 * This function is the callback to ndo_setup_tc in the
4217 * netdev_ops.
4218 *
4219 * Returns 0 on success
4220 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4221 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4222 void *type_data)
4223 {
4224 struct iavf_adapter *adapter = netdev_priv(netdev);
4225
4226 switch (type) {
4227 case TC_SETUP_QDISC_MQPRIO:
4228 return __iavf_setup_tc(netdev, type_data);
4229 case TC_SETUP_BLOCK:
4230 return flow_block_cb_setup_simple(type_data,
4231 &iavf_block_cb_list,
4232 iavf_setup_tc_block_cb,
4233 adapter, adapter, true);
4234 default:
4235 return -EOPNOTSUPP;
4236 }
4237 }
4238
4239 /**
4240 * iavf_restore_fdir_filters
4241 * @adapter: board private structure
4242 *
4243 * Restore existing FDIR filters when VF netdev comes back up.
4244 **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4245 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4246 {
4247 struct iavf_fdir_fltr *f;
4248
4249 spin_lock_bh(&adapter->fdir_fltr_lock);
4250 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4251 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4252 /* Cancel a request, keep filter as active */
4253 f->state = IAVF_FDIR_FLTR_ACTIVE;
4254 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4255 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4256 /* Add filters which are inactive or have a pending
4257 * request to PF to be deleted
4258 */
4259 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4260 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4261 }
4262 }
4263 spin_unlock_bh(&adapter->fdir_fltr_lock);
4264 }
4265
4266 /**
4267 * iavf_open - Called when a network interface is made active
4268 * @netdev: network interface device structure
4269 *
4270 * Returns 0 on success, negative value on failure
4271 *
4272 * The open entry point is called when a network interface is made
4273 * active by the system (IFF_UP). At this point all resources needed
4274 * for transmit and receive operations are allocated, the interrupt
4275 * handler is registered with the OS, the watchdog is started,
4276 * and the stack is notified that the interface is ready.
4277 **/
iavf_open(struct net_device * netdev)4278 static int iavf_open(struct net_device *netdev)
4279 {
4280 struct iavf_adapter *adapter = netdev_priv(netdev);
4281 int err;
4282
4283 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4284 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4285 return -EIO;
4286 }
4287
4288 while (!mutex_trylock(&adapter->crit_lock)) {
4289 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4290 * is already taken and iavf_open is called from an upper
4291 * device's notifier reacting on NETDEV_REGISTER event.
4292 * We have to leave here to avoid dead lock.
4293 */
4294 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4295 return -EBUSY;
4296
4297 usleep_range(500, 1000);
4298 }
4299
4300 if (adapter->state != __IAVF_DOWN) {
4301 err = -EBUSY;
4302 goto err_unlock;
4303 }
4304
4305 if (adapter->state == __IAVF_RUNNING &&
4306 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4307 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4308 err = 0;
4309 goto err_unlock;
4310 }
4311
4312 /* allocate transmit descriptors */
4313 err = iavf_setup_all_tx_resources(adapter);
4314 if (err)
4315 goto err_setup_tx;
4316
4317 /* allocate receive descriptors */
4318 err = iavf_setup_all_rx_resources(adapter);
4319 if (err)
4320 goto err_setup_rx;
4321
4322 /* clear any pending interrupts, may auto mask */
4323 err = iavf_request_traffic_irqs(adapter, netdev->name);
4324 if (err)
4325 goto err_req_irq;
4326
4327 spin_lock_bh(&adapter->mac_vlan_list_lock);
4328
4329 iavf_add_filter(adapter, adapter->hw.mac.addr);
4330
4331 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4332
4333 /* Restore filters that were removed with IFF_DOWN */
4334 iavf_restore_filters(adapter);
4335 iavf_restore_fdir_filters(adapter);
4336
4337 iavf_configure(adapter);
4338
4339 iavf_up_complete(adapter);
4340
4341 iavf_irq_enable(adapter, true);
4342
4343 mutex_unlock(&adapter->crit_lock);
4344
4345 return 0;
4346
4347 err_req_irq:
4348 iavf_down(adapter);
4349 iavf_free_traffic_irqs(adapter);
4350 err_setup_rx:
4351 iavf_free_all_rx_resources(adapter);
4352 err_setup_tx:
4353 iavf_free_all_tx_resources(adapter);
4354 err_unlock:
4355 mutex_unlock(&adapter->crit_lock);
4356
4357 return err;
4358 }
4359
4360 /**
4361 * iavf_close - Disables a network interface
4362 * @netdev: network interface device structure
4363 *
4364 * Returns 0, this is not allowed to fail
4365 *
4366 * The close entry point is called when an interface is de-activated
4367 * by the OS. The hardware is still under the drivers control, but
4368 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4369 * are freed, along with all transmit and receive resources.
4370 **/
iavf_close(struct net_device * netdev)4371 static int iavf_close(struct net_device *netdev)
4372 {
4373 struct iavf_adapter *adapter = netdev_priv(netdev);
4374 u64 aq_to_restore;
4375 int status;
4376
4377 mutex_lock(&adapter->crit_lock);
4378
4379 if (adapter->state <= __IAVF_DOWN_PENDING) {
4380 mutex_unlock(&adapter->crit_lock);
4381 return 0;
4382 }
4383
4384 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4385 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4386 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4387 * deadlock with adminq_task() until iavf_close timeouts. We must send
4388 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4389 * disable queues possible for vf. Give only necessary flags to
4390 * iavf_down and save other to set them right before iavf_close()
4391 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4392 * iavf will be in DOWN state.
4393 */
4394 aq_to_restore = adapter->aq_required;
4395 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4396
4397 /* Remove flags which we do not want to send after close or we want to
4398 * send before disable queues.
4399 */
4400 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4401 IAVF_FLAG_AQ_ENABLE_QUEUES |
4402 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4403 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4404 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4405 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4406 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4407 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4408
4409 iavf_down(adapter);
4410 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4411 iavf_free_traffic_irqs(adapter);
4412
4413 mutex_unlock(&adapter->crit_lock);
4414
4415 /* We explicitly don't free resources here because the hardware is
4416 * still active and can DMA into memory. Resources are cleared in
4417 * iavf_virtchnl_completion() after we get confirmation from the PF
4418 * driver that the rings have been stopped.
4419 *
4420 * Also, we wait for state to transition to __IAVF_DOWN before
4421 * returning. State change occurs in iavf_virtchnl_completion() after
4422 * VF resources are released (which occurs after PF driver processes and
4423 * responds to admin queue commands).
4424 */
4425
4426 status = wait_event_timeout(adapter->down_waitqueue,
4427 adapter->state == __IAVF_DOWN,
4428 msecs_to_jiffies(500));
4429 if (!status)
4430 netdev_warn(netdev, "Device resources not yet released\n");
4431
4432 mutex_lock(&adapter->crit_lock);
4433 adapter->aq_required |= aq_to_restore;
4434 mutex_unlock(&adapter->crit_lock);
4435 return 0;
4436 }
4437
4438 /**
4439 * iavf_change_mtu - Change the Maximum Transfer Unit
4440 * @netdev: network interface device structure
4441 * @new_mtu: new value for maximum frame size
4442 *
4443 * Returns 0 on success, negative on failure
4444 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4445 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4446 {
4447 struct iavf_adapter *adapter = netdev_priv(netdev);
4448 int ret = 0;
4449
4450 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4451 netdev->mtu, new_mtu);
4452 WRITE_ONCE(netdev->mtu, new_mtu);
4453
4454 if (netif_running(netdev)) {
4455 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4456 ret = iavf_wait_for_reset(adapter);
4457 if (ret < 0)
4458 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4459 else if (ret)
4460 netdev_warn(netdev, "MTU change timed out waiting for reset");
4461 }
4462
4463 return ret;
4464 }
4465
4466 /**
4467 * iavf_disable_fdir - disable Flow Director and clear existing filters
4468 * @adapter: board private structure
4469 **/
iavf_disable_fdir(struct iavf_adapter * adapter)4470 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4471 {
4472 struct iavf_fdir_fltr *fdir, *fdirtmp;
4473 bool del_filters = false;
4474
4475 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4476
4477 /* remove all Flow Director filters */
4478 spin_lock_bh(&adapter->fdir_fltr_lock);
4479 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4480 list) {
4481 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4482 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4483 /* Delete filters not registered in PF */
4484 list_del(&fdir->list);
4485 iavf_dec_fdir_active_fltr(adapter, fdir);
4486 kfree(fdir);
4487 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4488 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4489 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4490 /* Filters registered in PF, schedule their deletion */
4491 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4492 del_filters = true;
4493 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4494 /* Request to delete filter already sent to PF, change
4495 * state to DEL_PENDING to delete filter after PF's
4496 * response, not set as INACTIVE
4497 */
4498 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4499 }
4500 }
4501 spin_unlock_bh(&adapter->fdir_fltr_lock);
4502
4503 if (del_filters) {
4504 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4505 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4506 }
4507 }
4508
4509 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4510 NETIF_F_HW_VLAN_CTAG_TX | \
4511 NETIF_F_HW_VLAN_STAG_RX | \
4512 NETIF_F_HW_VLAN_STAG_TX)
4513
4514 /**
4515 * iavf_set_features - set the netdev feature flags
4516 * @netdev: ptr to the netdev being adjusted
4517 * @features: the feature set that the stack is suggesting
4518 * Note: expects to be called while under rtnl_lock()
4519 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4520 static int iavf_set_features(struct net_device *netdev,
4521 netdev_features_t features)
4522 {
4523 struct iavf_adapter *adapter = netdev_priv(netdev);
4524
4525 /* trigger update on any VLAN feature change */
4526 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4527 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4528 iavf_set_vlan_offload_features(adapter, netdev->features,
4529 features);
4530 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4531 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4532 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4533
4534 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4535 if (features & NETIF_F_NTUPLE)
4536 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4537 else
4538 iavf_disable_fdir(adapter);
4539 }
4540
4541 return 0;
4542 }
4543
4544 /**
4545 * iavf_features_check - Validate encapsulated packet conforms to limits
4546 * @skb: skb buff
4547 * @dev: This physical port's netdev
4548 * @features: Offload features that the stack believes apply
4549 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4550 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4551 struct net_device *dev,
4552 netdev_features_t features)
4553 {
4554 size_t len;
4555
4556 /* No point in doing any of this if neither checksum nor GSO are
4557 * being requested for this frame. We can rule out both by just
4558 * checking for CHECKSUM_PARTIAL
4559 */
4560 if (skb->ip_summed != CHECKSUM_PARTIAL)
4561 return features;
4562
4563 /* We cannot support GSO if the MSS is going to be less than
4564 * 64 bytes. If it is then we need to drop support for GSO.
4565 */
4566 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4567 features &= ~NETIF_F_GSO_MASK;
4568
4569 /* MACLEN can support at most 63 words */
4570 len = skb_network_offset(skb);
4571 if (len & ~(63 * 2))
4572 goto out_err;
4573
4574 /* IPLEN and EIPLEN can support at most 127 dwords */
4575 len = skb_network_header_len(skb);
4576 if (len & ~(127 * 4))
4577 goto out_err;
4578
4579 if (skb->encapsulation) {
4580 /* L4TUNLEN can support 127 words */
4581 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4582 if (len & ~(127 * 2))
4583 goto out_err;
4584
4585 /* IPLEN can support at most 127 dwords */
4586 len = skb_inner_transport_header(skb) -
4587 skb_inner_network_header(skb);
4588 if (len & ~(127 * 4))
4589 goto out_err;
4590 }
4591
4592 /* No need to validate L4LEN as TCP is the only protocol with a
4593 * flexible value and we support all possible values supported
4594 * by TCP, which is at most 15 dwords
4595 */
4596
4597 return features;
4598 out_err:
4599 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4600 }
4601
4602 /**
4603 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4604 * @adapter: board private structure
4605 *
4606 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4607 * were negotiated determine the VLAN features that can be toggled on and off.
4608 **/
4609 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4610 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4611 {
4612 netdev_features_t hw_features = 0;
4613
4614 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4615 return hw_features;
4616
4617 /* Enable VLAN features if supported */
4618 if (VLAN_ALLOWED(adapter)) {
4619 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4620 NETIF_F_HW_VLAN_CTAG_RX);
4621 } else if (VLAN_V2_ALLOWED(adapter)) {
4622 struct virtchnl_vlan_caps *vlan_v2_caps =
4623 &adapter->vlan_v2_caps;
4624 struct virtchnl_vlan_supported_caps *stripping_support =
4625 &vlan_v2_caps->offloads.stripping_support;
4626 struct virtchnl_vlan_supported_caps *insertion_support =
4627 &vlan_v2_caps->offloads.insertion_support;
4628
4629 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4630 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4631 if (stripping_support->outer &
4632 VIRTCHNL_VLAN_ETHERTYPE_8100)
4633 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4634 if (stripping_support->outer &
4635 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4636 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4637 } else if (stripping_support->inner !=
4638 VIRTCHNL_VLAN_UNSUPPORTED &&
4639 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4640 if (stripping_support->inner &
4641 VIRTCHNL_VLAN_ETHERTYPE_8100)
4642 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4643 }
4644
4645 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4646 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4647 if (insertion_support->outer &
4648 VIRTCHNL_VLAN_ETHERTYPE_8100)
4649 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4650 if (insertion_support->outer &
4651 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4652 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4653 } else if (insertion_support->inner &&
4654 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4655 if (insertion_support->inner &
4656 VIRTCHNL_VLAN_ETHERTYPE_8100)
4657 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4658 }
4659 }
4660
4661 if (CRC_OFFLOAD_ALLOWED(adapter))
4662 hw_features |= NETIF_F_RXFCS;
4663
4664 return hw_features;
4665 }
4666
4667 /**
4668 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4669 * @adapter: board private structure
4670 *
4671 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4672 * were negotiated determine the VLAN features that are enabled by default.
4673 **/
4674 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4675 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4676 {
4677 netdev_features_t features = 0;
4678
4679 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4680 return features;
4681
4682 if (VLAN_ALLOWED(adapter)) {
4683 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4684 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4685 } else if (VLAN_V2_ALLOWED(adapter)) {
4686 struct virtchnl_vlan_caps *vlan_v2_caps =
4687 &adapter->vlan_v2_caps;
4688 struct virtchnl_vlan_supported_caps *filtering_support =
4689 &vlan_v2_caps->filtering.filtering_support;
4690 struct virtchnl_vlan_supported_caps *stripping_support =
4691 &vlan_v2_caps->offloads.stripping_support;
4692 struct virtchnl_vlan_supported_caps *insertion_support =
4693 &vlan_v2_caps->offloads.insertion_support;
4694 u32 ethertype_init;
4695
4696 /* give priority to outer stripping and don't support both outer
4697 * and inner stripping
4698 */
4699 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4700 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4701 if (stripping_support->outer &
4702 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4703 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4704 features |= NETIF_F_HW_VLAN_CTAG_RX;
4705 else if (stripping_support->outer &
4706 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4707 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4708 features |= NETIF_F_HW_VLAN_STAG_RX;
4709 } else if (stripping_support->inner !=
4710 VIRTCHNL_VLAN_UNSUPPORTED) {
4711 if (stripping_support->inner &
4712 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4713 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4714 features |= NETIF_F_HW_VLAN_CTAG_RX;
4715 }
4716
4717 /* give priority to outer insertion and don't support both outer
4718 * and inner insertion
4719 */
4720 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4721 if (insertion_support->outer &
4722 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4723 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4724 features |= NETIF_F_HW_VLAN_CTAG_TX;
4725 else if (insertion_support->outer &
4726 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4727 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4728 features |= NETIF_F_HW_VLAN_STAG_TX;
4729 } else if (insertion_support->inner !=
4730 VIRTCHNL_VLAN_UNSUPPORTED) {
4731 if (insertion_support->inner &
4732 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4733 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4734 features |= NETIF_F_HW_VLAN_CTAG_TX;
4735 }
4736
4737 /* give priority to outer filtering and don't bother if both
4738 * outer and inner filtering are enabled
4739 */
4740 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4741 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4742 if (filtering_support->outer &
4743 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4744 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4745 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4746 if (filtering_support->outer &
4747 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4748 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4749 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4750 } else if (filtering_support->inner !=
4751 VIRTCHNL_VLAN_UNSUPPORTED) {
4752 if (filtering_support->inner &
4753 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4754 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4755 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4756 if (filtering_support->inner &
4757 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4758 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4759 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4760 }
4761 }
4762
4763 return features;
4764 }
4765
4766 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4767 (!(((requested) & (feature_bit)) && \
4768 !((allowed) & (feature_bit))))
4769
4770 /**
4771 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4772 * @adapter: board private structure
4773 * @requested_features: stack requested NETDEV features
4774 **/
4775 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4776 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4777 netdev_features_t requested_features)
4778 {
4779 netdev_features_t allowed_features;
4780
4781 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4782 iavf_get_netdev_vlan_features(adapter);
4783
4784 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4785 allowed_features,
4786 NETIF_F_HW_VLAN_CTAG_TX))
4787 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4788
4789 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4790 allowed_features,
4791 NETIF_F_HW_VLAN_CTAG_RX))
4792 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4793
4794 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4795 allowed_features,
4796 NETIF_F_HW_VLAN_STAG_TX))
4797 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4798 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4799 allowed_features,
4800 NETIF_F_HW_VLAN_STAG_RX))
4801 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4802
4803 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4804 allowed_features,
4805 NETIF_F_HW_VLAN_CTAG_FILTER))
4806 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4807
4808 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4809 allowed_features,
4810 NETIF_F_HW_VLAN_STAG_FILTER))
4811 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4812
4813 if ((requested_features &
4814 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4815 (requested_features &
4816 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4817 adapter->vlan_v2_caps.offloads.ethertype_match ==
4818 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4819 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4820 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4821 NETIF_F_HW_VLAN_STAG_TX);
4822 }
4823
4824 return requested_features;
4825 }
4826
4827 /**
4828 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4829 * @adapter: board private structure
4830 * @requested_features: stack requested NETDEV features
4831 *
4832 * Returns fixed-up features bits
4833 **/
4834 static netdev_features_t
iavf_fix_strip_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4835 iavf_fix_strip_features(struct iavf_adapter *adapter,
4836 netdev_features_t requested_features)
4837 {
4838 struct net_device *netdev = adapter->netdev;
4839 bool crc_offload_req, is_vlan_strip;
4840 netdev_features_t vlan_strip;
4841 int num_non_zero_vlan;
4842
4843 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4844 (requested_features & NETIF_F_RXFCS);
4845 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4846 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4847 is_vlan_strip = requested_features & vlan_strip;
4848
4849 if (!crc_offload_req)
4850 return requested_features;
4851
4852 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4853 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4854 requested_features &= ~vlan_strip;
4855 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4856 return requested_features;
4857 }
4858
4859 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4860 requested_features &= ~vlan_strip;
4861 if (!(netdev->features & vlan_strip))
4862 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4863
4864 return requested_features;
4865 }
4866
4867 if (num_non_zero_vlan && is_vlan_strip &&
4868 !(netdev->features & NETIF_F_RXFCS)) {
4869 requested_features &= ~NETIF_F_RXFCS;
4870 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4871 }
4872
4873 return requested_features;
4874 }
4875
4876 /**
4877 * iavf_fix_features - fix up the netdev feature bits
4878 * @netdev: our net device
4879 * @features: desired feature bits
4880 *
4881 * Returns fixed-up features bits
4882 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4883 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4884 netdev_features_t features)
4885 {
4886 struct iavf_adapter *adapter = netdev_priv(netdev);
4887
4888 features = iavf_fix_netdev_vlan_features(adapter, features);
4889
4890 if (!FDIR_FLTR_SUPPORT(adapter))
4891 features &= ~NETIF_F_NTUPLE;
4892
4893 return iavf_fix_strip_features(adapter, features);
4894 }
4895
4896 static const struct net_device_ops iavf_netdev_ops = {
4897 .ndo_open = iavf_open,
4898 .ndo_stop = iavf_close,
4899 .ndo_start_xmit = iavf_xmit_frame,
4900 .ndo_set_rx_mode = iavf_set_rx_mode,
4901 .ndo_validate_addr = eth_validate_addr,
4902 .ndo_set_mac_address = iavf_set_mac,
4903 .ndo_change_mtu = iavf_change_mtu,
4904 .ndo_tx_timeout = iavf_tx_timeout,
4905 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4906 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4907 .ndo_features_check = iavf_features_check,
4908 .ndo_fix_features = iavf_fix_features,
4909 .ndo_set_features = iavf_set_features,
4910 .ndo_setup_tc = iavf_setup_tc,
4911 };
4912
4913 /**
4914 * iavf_check_reset_complete - check that VF reset is complete
4915 * @hw: pointer to hw struct
4916 *
4917 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4918 **/
iavf_check_reset_complete(struct iavf_hw * hw)4919 static int iavf_check_reset_complete(struct iavf_hw *hw)
4920 {
4921 u32 rstat;
4922 int i;
4923
4924 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4925 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4926 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4927 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4928 (rstat == VIRTCHNL_VFR_COMPLETED))
4929 return 0;
4930 msleep(IAVF_RESET_WAIT_MS);
4931 }
4932 return -EBUSY;
4933 }
4934
4935 /**
4936 * iavf_process_config - Process the config information we got from the PF
4937 * @adapter: board private structure
4938 *
4939 * Verify that we have a valid config struct, and set up our netdev features
4940 * and our VSI struct.
4941 **/
iavf_process_config(struct iavf_adapter * adapter)4942 int iavf_process_config(struct iavf_adapter *adapter)
4943 {
4944 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4945 netdev_features_t hw_vlan_features, vlan_features;
4946 struct net_device *netdev = adapter->netdev;
4947 netdev_features_t hw_enc_features;
4948 netdev_features_t hw_features;
4949
4950 hw_enc_features = NETIF_F_SG |
4951 NETIF_F_IP_CSUM |
4952 NETIF_F_IPV6_CSUM |
4953 NETIF_F_HIGHDMA |
4954 NETIF_F_SOFT_FEATURES |
4955 NETIF_F_TSO |
4956 NETIF_F_TSO_ECN |
4957 NETIF_F_TSO6 |
4958 NETIF_F_SCTP_CRC |
4959 NETIF_F_RXHASH |
4960 NETIF_F_RXCSUM |
4961 0;
4962
4963 /* advertise to stack only if offloads for encapsulated packets is
4964 * supported
4965 */
4966 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4967 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4968 NETIF_F_GSO_GRE |
4969 NETIF_F_GSO_GRE_CSUM |
4970 NETIF_F_GSO_IPXIP4 |
4971 NETIF_F_GSO_IPXIP6 |
4972 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4973 NETIF_F_GSO_PARTIAL |
4974 0;
4975
4976 if (!(vfres->vf_cap_flags &
4977 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4978 netdev->gso_partial_features |=
4979 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4980
4981 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4982 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4983 netdev->hw_enc_features |= hw_enc_features;
4984 }
4985 /* record features VLANs can make use of */
4986 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4987
4988 /* Write features and hw_features separately to avoid polluting
4989 * with, or dropping, features that are set when we registered.
4990 */
4991 hw_features = hw_enc_features;
4992
4993 /* get HW VLAN features that can be toggled */
4994 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4995
4996 /* Enable HW TC offload if ADQ or tc U32 is supported */
4997 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
4998 TC_U32_SUPPORT(adapter))
4999 hw_features |= NETIF_F_HW_TC;
5000
5001 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5002 hw_features |= NETIF_F_GSO_UDP_L4;
5003
5004 netdev->hw_features |= hw_features | hw_vlan_features;
5005 vlan_features = iavf_get_netdev_vlan_features(adapter);
5006
5007 netdev->features |= hw_features | vlan_features;
5008
5009 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5010 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5011
5012 if (FDIR_FLTR_SUPPORT(adapter)) {
5013 netdev->hw_features |= NETIF_F_NTUPLE;
5014 netdev->features |= NETIF_F_NTUPLE;
5015 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5016 }
5017
5018 netdev->priv_flags |= IFF_UNICAST_FLT;
5019
5020 /* Do not turn on offloads when they are requested to be turned off.
5021 * TSO needs minimum 576 bytes to work correctly.
5022 */
5023 if (netdev->wanted_features) {
5024 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5025 netdev->mtu < 576)
5026 netdev->features &= ~NETIF_F_TSO;
5027 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5028 netdev->mtu < 576)
5029 netdev->features &= ~NETIF_F_TSO6;
5030 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5031 netdev->features &= ~NETIF_F_TSO_ECN;
5032 if (!(netdev->wanted_features & NETIF_F_GRO))
5033 netdev->features &= ~NETIF_F_GRO;
5034 if (!(netdev->wanted_features & NETIF_F_GSO))
5035 netdev->features &= ~NETIF_F_GSO;
5036 }
5037
5038 return 0;
5039 }
5040
5041 /**
5042 * iavf_probe - Device Initialization Routine
5043 * @pdev: PCI device information struct
5044 * @ent: entry in iavf_pci_tbl
5045 *
5046 * Returns 0 on success, negative on failure
5047 *
5048 * iavf_probe initializes an adapter identified by a pci_dev structure.
5049 * The OS initialization, configuring of the adapter private structure,
5050 * and a hardware reset occur.
5051 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5052 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5053 {
5054 struct net_device *netdev;
5055 struct iavf_adapter *adapter = NULL;
5056 struct iavf_hw *hw = NULL;
5057 int err;
5058
5059 err = pci_enable_device(pdev);
5060 if (err)
5061 return err;
5062
5063 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5064 if (err) {
5065 dev_err(&pdev->dev,
5066 "DMA configuration failed: 0x%x\n", err);
5067 goto err_dma;
5068 }
5069
5070 err = pci_request_regions(pdev, iavf_driver_name);
5071 if (err) {
5072 dev_err(&pdev->dev,
5073 "pci_request_regions failed 0x%x\n", err);
5074 goto err_pci_reg;
5075 }
5076
5077 pci_set_master(pdev);
5078
5079 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5080 IAVF_MAX_REQ_QUEUES);
5081 if (!netdev) {
5082 err = -ENOMEM;
5083 goto err_alloc_etherdev;
5084 }
5085
5086 SET_NETDEV_DEV(netdev, &pdev->dev);
5087
5088 pci_set_drvdata(pdev, netdev);
5089 adapter = netdev_priv(netdev);
5090
5091 adapter->netdev = netdev;
5092 adapter->pdev = pdev;
5093
5094 hw = &adapter->hw;
5095 hw->back = adapter;
5096
5097 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5098 iavf_driver_name);
5099 if (!adapter->wq) {
5100 err = -ENOMEM;
5101 goto err_alloc_wq;
5102 }
5103
5104 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5105 iavf_change_state(adapter, __IAVF_STARTUP);
5106
5107 /* Call save state here because it relies on the adapter struct. */
5108 pci_save_state(pdev);
5109
5110 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5111 pci_resource_len(pdev, 0));
5112 if (!hw->hw_addr) {
5113 err = -EIO;
5114 goto err_ioremap;
5115 }
5116 hw->vendor_id = pdev->vendor;
5117 hw->device_id = pdev->device;
5118 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5119 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5120 hw->subsystem_device_id = pdev->subsystem_device;
5121 hw->bus.device = PCI_SLOT(pdev->devfn);
5122 hw->bus.func = PCI_FUNC(pdev->devfn);
5123 hw->bus.bus_id = pdev->bus->number;
5124
5125 /* set up the locks for the AQ, do this only once in probe
5126 * and destroy them only once in remove
5127 */
5128 mutex_init(&adapter->crit_lock);
5129 mutex_init(&hw->aq.asq_mutex);
5130 mutex_init(&hw->aq.arq_mutex);
5131
5132 spin_lock_init(&adapter->mac_vlan_list_lock);
5133 spin_lock_init(&adapter->cloud_filter_list_lock);
5134 spin_lock_init(&adapter->fdir_fltr_lock);
5135 spin_lock_init(&adapter->adv_rss_lock);
5136 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5137
5138 INIT_LIST_HEAD(&adapter->mac_filter_list);
5139 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5140 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5141 INIT_LIST_HEAD(&adapter->fdir_list_head);
5142 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5143
5144 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5145 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5146 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5147 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5148
5149 /* Setup the wait queue for indicating transition to down status */
5150 init_waitqueue_head(&adapter->down_waitqueue);
5151
5152 /* Setup the wait queue for indicating transition to running state */
5153 init_waitqueue_head(&adapter->reset_waitqueue);
5154
5155 /* Setup the wait queue for indicating virtchannel events */
5156 init_waitqueue_head(&adapter->vc_waitqueue);
5157
5158 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5159 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5160 /* Initialization goes on in the work. Do not add more of it below. */
5161 return 0;
5162
5163 err_ioremap:
5164 destroy_workqueue(adapter->wq);
5165 err_alloc_wq:
5166 free_netdev(netdev);
5167 err_alloc_etherdev:
5168 pci_release_regions(pdev);
5169 err_pci_reg:
5170 err_dma:
5171 pci_disable_device(pdev);
5172 return err;
5173 }
5174
5175 /**
5176 * iavf_suspend - Power management suspend routine
5177 * @dev_d: device info pointer
5178 *
5179 * Called when the system (VM) is entering sleep/suspend.
5180 **/
iavf_suspend(struct device * dev_d)5181 static int iavf_suspend(struct device *dev_d)
5182 {
5183 struct net_device *netdev = dev_get_drvdata(dev_d);
5184 struct iavf_adapter *adapter = netdev_priv(netdev);
5185
5186 netif_device_detach(netdev);
5187
5188 mutex_lock(&adapter->crit_lock);
5189
5190 if (netif_running(netdev)) {
5191 rtnl_lock();
5192 iavf_down(adapter);
5193 rtnl_unlock();
5194 }
5195 iavf_free_misc_irq(adapter);
5196 iavf_reset_interrupt_capability(adapter);
5197
5198 mutex_unlock(&adapter->crit_lock);
5199
5200 return 0;
5201 }
5202
5203 /**
5204 * iavf_resume - Power management resume routine
5205 * @dev_d: device info pointer
5206 *
5207 * Called when the system (VM) is resumed from sleep/suspend.
5208 **/
iavf_resume(struct device * dev_d)5209 static int iavf_resume(struct device *dev_d)
5210 {
5211 struct pci_dev *pdev = to_pci_dev(dev_d);
5212 struct iavf_adapter *adapter;
5213 u32 err;
5214
5215 adapter = iavf_pdev_to_adapter(pdev);
5216
5217 pci_set_master(pdev);
5218
5219 rtnl_lock();
5220 err = iavf_set_interrupt_capability(adapter);
5221 if (err) {
5222 rtnl_unlock();
5223 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5224 return err;
5225 }
5226 err = iavf_request_misc_irq(adapter);
5227 rtnl_unlock();
5228 if (err) {
5229 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5230 return err;
5231 }
5232
5233 queue_work(adapter->wq, &adapter->reset_task);
5234
5235 netif_device_attach(adapter->netdev);
5236
5237 return err;
5238 }
5239
5240 /**
5241 * iavf_remove - Device Removal Routine
5242 * @pdev: PCI device information struct
5243 *
5244 * iavf_remove is called by the PCI subsystem to alert the driver
5245 * that it should release a PCI device. The could be caused by a
5246 * Hot-Plug event, or because the driver is going to be removed from
5247 * memory.
5248 **/
iavf_remove(struct pci_dev * pdev)5249 static void iavf_remove(struct pci_dev *pdev)
5250 {
5251 struct iavf_fdir_fltr *fdir, *fdirtmp;
5252 struct iavf_vlan_filter *vlf, *vlftmp;
5253 struct iavf_cloud_filter *cf, *cftmp;
5254 struct iavf_adv_rss *rss, *rsstmp;
5255 struct iavf_mac_filter *f, *ftmp;
5256 struct iavf_adapter *adapter;
5257 struct net_device *netdev;
5258 struct iavf_hw *hw;
5259
5260 /* Don't proceed with remove if netdev is already freed */
5261 netdev = pci_get_drvdata(pdev);
5262 if (!netdev)
5263 return;
5264
5265 adapter = iavf_pdev_to_adapter(pdev);
5266 hw = &adapter->hw;
5267
5268 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5269 return;
5270
5271 /* Wait until port initialization is complete.
5272 * There are flows where register/unregister netdev may race.
5273 */
5274 while (1) {
5275 mutex_lock(&adapter->crit_lock);
5276 if (adapter->state == __IAVF_RUNNING ||
5277 adapter->state == __IAVF_DOWN ||
5278 adapter->state == __IAVF_INIT_FAILED) {
5279 mutex_unlock(&adapter->crit_lock);
5280 break;
5281 }
5282 /* Simply return if we already went through iavf_shutdown */
5283 if (adapter->state == __IAVF_REMOVE) {
5284 mutex_unlock(&adapter->crit_lock);
5285 return;
5286 }
5287
5288 mutex_unlock(&adapter->crit_lock);
5289 usleep_range(500, 1000);
5290 }
5291 cancel_delayed_work_sync(&adapter->watchdog_task);
5292 cancel_work_sync(&adapter->finish_config);
5293
5294 if (netdev->reg_state == NETREG_REGISTERED)
5295 unregister_netdev(netdev);
5296
5297 mutex_lock(&adapter->crit_lock);
5298 dev_info(&adapter->pdev->dev, "Removing device\n");
5299 iavf_change_state(adapter, __IAVF_REMOVE);
5300
5301 iavf_request_reset(adapter);
5302 msleep(50);
5303 /* If the FW isn't responding, kick it once, but only once. */
5304 if (!iavf_asq_done(hw)) {
5305 iavf_request_reset(adapter);
5306 msleep(50);
5307 }
5308
5309 iavf_misc_irq_disable(adapter);
5310 /* Shut down all the garbage mashers on the detention level */
5311 cancel_work_sync(&adapter->reset_task);
5312 cancel_delayed_work_sync(&adapter->watchdog_task);
5313 cancel_work_sync(&adapter->adminq_task);
5314
5315 adapter->aq_required = 0;
5316 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5317
5318 iavf_free_all_tx_resources(adapter);
5319 iavf_free_all_rx_resources(adapter);
5320 iavf_free_misc_irq(adapter);
5321 iavf_free_interrupt_scheme(adapter);
5322
5323 iavf_free_rss(adapter);
5324
5325 if (hw->aq.asq.count)
5326 iavf_shutdown_adminq(hw);
5327
5328 /* destroy the locks only once, here */
5329 mutex_destroy(&hw->aq.arq_mutex);
5330 mutex_destroy(&hw->aq.asq_mutex);
5331 mutex_unlock(&adapter->crit_lock);
5332 mutex_destroy(&adapter->crit_lock);
5333
5334 iounmap(hw->hw_addr);
5335 pci_release_regions(pdev);
5336 kfree(adapter->vf_res);
5337 spin_lock_bh(&adapter->mac_vlan_list_lock);
5338 /* If we got removed before an up/down sequence, we've got a filter
5339 * hanging out there that we need to get rid of.
5340 */
5341 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5342 list_del(&f->list);
5343 kfree(f);
5344 }
5345 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5346 list) {
5347 list_del(&vlf->list);
5348 kfree(vlf);
5349 }
5350
5351 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5352
5353 spin_lock_bh(&adapter->cloud_filter_list_lock);
5354 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5355 list_del(&cf->list);
5356 kfree(cf);
5357 }
5358 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5359
5360 spin_lock_bh(&adapter->fdir_fltr_lock);
5361 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5362 list_del(&fdir->list);
5363 kfree(fdir);
5364 }
5365 spin_unlock_bh(&adapter->fdir_fltr_lock);
5366
5367 spin_lock_bh(&adapter->adv_rss_lock);
5368 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5369 list) {
5370 list_del(&rss->list);
5371 kfree(rss);
5372 }
5373 spin_unlock_bh(&adapter->adv_rss_lock);
5374
5375 destroy_workqueue(adapter->wq);
5376
5377 pci_set_drvdata(pdev, NULL);
5378
5379 free_netdev(netdev);
5380
5381 pci_disable_device(pdev);
5382 }
5383
5384 /**
5385 * iavf_shutdown - Shutdown the device in preparation for a reboot
5386 * @pdev: pci device structure
5387 **/
iavf_shutdown(struct pci_dev * pdev)5388 static void iavf_shutdown(struct pci_dev *pdev)
5389 {
5390 iavf_remove(pdev);
5391
5392 if (system_state == SYSTEM_POWER_OFF)
5393 pci_set_power_state(pdev, PCI_D3hot);
5394 }
5395
5396 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5397
5398 static struct pci_driver iavf_driver = {
5399 .name = iavf_driver_name,
5400 .id_table = iavf_pci_tbl,
5401 .probe = iavf_probe,
5402 .remove = iavf_remove,
5403 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5404 .shutdown = iavf_shutdown,
5405 };
5406
5407 /**
5408 * iavf_init_module - Driver Registration Routine
5409 *
5410 * iavf_init_module is the first routine called when the driver is
5411 * loaded. All it does is register with the PCI subsystem.
5412 **/
iavf_init_module(void)5413 static int __init iavf_init_module(void)
5414 {
5415 pr_info("iavf: %s\n", iavf_driver_string);
5416
5417 pr_info("%s\n", iavf_copyright);
5418
5419 return pci_register_driver(&iavf_driver);
5420 }
5421
5422 module_init(iavf_init_module);
5423
5424 /**
5425 * iavf_exit_module - Driver Exit Cleanup Routine
5426 *
5427 * iavf_exit_module is called just before the driver is removed
5428 * from memory.
5429 **/
iavf_exit_module(void)5430 static void __exit iavf_exit_module(void)
5431 {
5432 pci_unregister_driver(&iavf_driver);
5433 }
5434
5435 module_exit(iavf_exit_module);
5436
5437 /* iavf_main.c */
5438