1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 */
26
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * Portions of this source code were derived from Berkeley 4.3 BSD
32 * under license from the Regents of the University of California.
33 */
34
35 #include <sys/types.h>
36 #include <sys/t_lock.h>
37 #include <sys/ksynch.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/systm.h>
41 #include <sys/sysmacros.h>
42 #include <sys/resource.h>
43 #include <sys/signal.h>
44 #include <sys/cred.h>
45 #include <sys/user.h>
46 #include <sys/buf.h>
47 #include <sys/vfs.h>
48 #include <sys/vfs_opreg.h>
49 #include <sys/vnode.h>
50 #include <sys/proc.h>
51 #include <sys/disp.h>
52 #include <sys/file.h>
53 #include <sys/fcntl.h>
54 #include <sys/flock.h>
55 #include <sys/atomic.h>
56 #include <sys/kmem.h>
57 #include <sys/uio.h>
58 #include <sys/dnlc.h>
59 #include <sys/conf.h>
60 #include <sys/mman.h>
61 #include <sys/pathname.h>
62 #include <sys/debug.h>
63 #include <sys/vmsystm.h>
64 #include <sys/cmn_err.h>
65 #include <sys/filio.h>
66 #include <sys/policy.h>
67
68 #include <sys/fs/ufs_fs.h>
69 #include <sys/fs/ufs_lockfs.h>
70 #include <sys/fs/ufs_filio.h>
71 #include <sys/fs/ufs_inode.h>
72 #include <sys/fs/ufs_fsdir.h>
73 #include <sys/fs/ufs_quota.h>
74 #include <sys/fs/ufs_log.h>
75 #include <sys/fs/ufs_snap.h>
76 #include <sys/fs/ufs_trans.h>
77 #include <sys/fs/ufs_panic.h>
78 #include <sys/fs/ufs_bio.h>
79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
80 #include <sys/errno.h>
81 #include <sys/fssnap_if.h>
82 #include <sys/unistd.h>
83 #include <sys/sunddi.h>
84
85 #include <sys/filio.h> /* _FIOIO */
86
87 #include <vm/hat.h>
88 #include <vm/page.h>
89 #include <vm/pvn.h>
90 #include <vm/as.h>
91 #include <vm/seg.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kmem.h>
95 #include <vm/rm.h>
96 #include <sys/swap.h>
97
98 #include <fs/fs_subr.h>
99
100 #include <sys/fs/decomp.h>
101
102 static struct instats ins;
103
104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
106 caddr_t, struct page **, size_t, enum seg_rw, int);
107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
109 caller_context_t *);
110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
111 struct caller_context *);
112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
113 struct caller_context *);
114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
115 int *, caller_context_t *);
116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
117 caller_context_t *);
118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
119 caller_context_t *);
120 static int ufs_access(struct vnode *, int, int, struct cred *,
121 caller_context_t *);
122 static int ufs_lookup(struct vnode *, char *, struct vnode **,
123 struct pathname *, int, struct vnode *, struct cred *,
124 caller_context_t *, int *, pathname_t *);
125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
126 int, struct vnode **, struct cred *, int,
127 caller_context_t *, vsecattr_t *);
128 static int ufs_remove(struct vnode *, char *, struct cred *,
129 caller_context_t *, int);
130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
131 caller_context_t *, int);
132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
133 struct cred *, caller_context_t *, int);
134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
135 struct cred *, caller_context_t *, int, vsecattr_t *);
136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
137 caller_context_t *, int);
138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
139 caller_context_t *, int);
140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
141 struct cred *, caller_context_t *, int);
142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
143 caller_context_t *);
144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
147 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
151 struct flk_callback *, struct cred *,
152 caller_context_t *);
153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
154 cred_t *, caller_context_t *);
155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
156 struct page **, size_t, struct seg *, caddr_t,
157 enum seg_rw, struct cred *, caller_context_t *);
158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
159 caller_context_t *);
160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
168 caller_context_t *);
169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
170 caller_context_t *);
171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
172 caller_context_t *);
173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
174 struct cred *, caller_context_t *);
175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
177 daddr32_t *, int, int);
178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
179 caller_context_t *);
180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
181 caller_context_t *);
182 static int ufs_priv_access(void *, int, struct cred *);
183 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
184 struct vnode **);
185 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
186
187 /*
188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
189 *
190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
191 */
192 struct vnodeops *ufs_vnodeops;
193
194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
195 const fs_operation_def_t ufs_vnodeops_template[] = {
196 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
197 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
198 VOPNAME_READ, { .vop_read = ufs_read },
199 VOPNAME_WRITE, { .vop_write = ufs_write },
200 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
201 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
202 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
203 VOPNAME_ACCESS, { .vop_access = ufs_access },
204 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
205 VOPNAME_CREATE, { .vop_create = ufs_create },
206 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
207 VOPNAME_LINK, { .vop_link = ufs_link },
208 VOPNAME_RENAME, { .vop_rename = ufs_rename },
209 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
210 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
211 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
212 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
213 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
214 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
215 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
216 VOPNAME_FID, { .vop_fid = ufs_fid },
217 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
218 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
219 VOPNAME_SEEK, { .vop_seek = ufs_seek },
220 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
221 VOPNAME_SPACE, { .vop_space = ufs_space },
222 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
223 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
224 VOPNAME_MAP, { .vop_map = ufs_map },
225 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
226 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
227 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
228 VOPNAME_DUMP, { .vop_dump = ufs_dump },
229 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
230 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
231 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
232 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
233 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
235 NULL, NULL
236 };
237
238 #define MAX_BACKFILE_COUNT 9999
239
240 /*
241 * Created by ufs_dumpctl() to store a file's disk block info into memory.
242 * Used by ufs_dump() to dump data to disk directly.
243 */
244 struct dump {
245 struct inode *ip; /* the file we contain */
246 daddr_t fsbs; /* number of blocks stored */
247 struct timeval32 time; /* time stamp for the struct */
248 daddr32_t dblk[1]; /* place holder for block info */
249 };
250
251 static struct dump *dump_info = NULL;
252
253 /*
254 * Previously there was no special action required for ordinary files.
255 * (Devices are handled through the device file system.)
256 * Now we support Large Files and Large File API requires open to
257 * fail if file is large.
258 * We could take care to prevent data corruption
259 * by doing an atomic check of size and truncate if file is opened with
260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
261 * layers. So taking care of truncation here is a change in the existing
262 * semantics of VOP_OPEN and therefore we chose not to implement any thing
263 * here. The check for the size of the file > 2GB is being done at the
264 * vfs layer in routine vn_open().
265 */
266
267 /* ARGSUSED */
268 static int
ufs_open(struct vnode ** vpp,int flag,struct cred * cr,caller_context_t * ct)269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
270 {
271 return (0);
272 }
273
274 /*ARGSUSED*/
275 static int
ufs_close(struct vnode * vp,int flag,int count,offset_t offset,struct cred * cr,caller_context_t * ct)276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
277 struct cred *cr, caller_context_t *ct)
278 {
279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
280 cleanshares(vp, ttoproc(curthread)->p_pid);
281
282 /*
283 * Push partially filled cluster at last close.
284 * ``last close'' is approximated because the dnlc
285 * may have a hold on the vnode.
286 * Checking for VBAD here will also act as a forced umount check.
287 */
288 if (vp->v_count <= 2 && vp->v_type != VBAD) {
289 struct inode *ip = VTOI(vp);
290 if (ip->i_delaylen) {
291 ins.in_poc.value.ul++;
292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
293 B_ASYNC | B_FREE, cr);
294 ip->i_delaylen = 0;
295 }
296 }
297
298 return (0);
299 }
300
301 /*ARGSUSED*/
302 static int
ufs_read(struct vnode * vp,struct uio * uiop,int ioflag,struct cred * cr,struct caller_context * ct)303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
304 struct caller_context *ct)
305 {
306 struct inode *ip = VTOI(vp);
307 struct ufsvfs *ufsvfsp;
308 struct ulockfs *ulp = NULL;
309 int error = 0;
310 int intrans = 0;
311
312 ASSERT(RW_READ_HELD(&ip->i_rwlock));
313
314 /*
315 * Mandatory locking needs to be done before ufs_lockfs_begin()
316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
317 */
318 if (MANDLOCK(vp, ip->i_mode)) {
319 /*
320 * ufs_getattr ends up being called by chklock
321 */
322 error = chklock(vp, FREAD, uiop->uio_loffset,
323 uiop->uio_resid, uiop->uio_fmode, ct);
324 if (error)
325 goto out;
326 }
327
328 ufsvfsp = ip->i_ufsvfs;
329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
330 if (error)
331 goto out;
332
333 /*
334 * In the case that a directory is opened for reading as a file
335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
336 * The locking order had to be changed to avoid a deadlock with
337 * an update taking place on that directory at the same time.
338 */
339 if ((ip->i_mode & IFMT) == IFDIR) {
340
341 rw_enter(&ip->i_contents, RW_READER);
342 error = rdip(ip, uiop, ioflag, cr);
343 rw_exit(&ip->i_contents);
344
345 if (error) {
346 if (ulp)
347 ufs_lockfs_end(ulp);
348 goto out;
349 }
350
351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
352 TRANS_ISTRANS(ufsvfsp)) {
353 rw_exit(&ip->i_rwlock);
354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
355 error);
356 ASSERT(!error);
357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
358 TOP_READ_SIZE);
359 rw_enter(&ip->i_rwlock, RW_READER);
360 }
361 } else {
362 /*
363 * Only transact reads to files opened for sync-read and
364 * sync-write on a file system that is not write locked.
365 *
366 * The ``not write locked'' check prevents problems with
367 * enabling/disabling logging on a busy file system. E.g.,
368 * logging exists at the beginning of the read but does not
369 * at the end.
370 *
371 */
372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
373 TRANS_ISTRANS(ufsvfsp)) {
374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
375 error);
376 ASSERT(!error);
377 intrans = 1;
378 }
379
380 rw_enter(&ip->i_contents, RW_READER);
381 error = rdip(ip, uiop, ioflag, cr);
382 rw_exit(&ip->i_contents);
383
384 if (intrans) {
385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
386 TOP_READ_SIZE);
387 }
388 }
389
390 if (ulp) {
391 ufs_lockfs_end(ulp);
392 }
393 out:
394
395 return (error);
396 }
397
398 extern int ufs_HW; /* high water mark */
399 extern int ufs_LW; /* low water mark */
400 int ufs_WRITES = 1; /* XXX - enable/disable */
401 int ufs_throttles = 0; /* throttling count */
402 int ufs_allow_shared_writes = 1; /* directio shared writes */
403
404 static int
ufs_check_rewrite(struct inode * ip,struct uio * uiop,int ioflag)405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
406 {
407 int shared_write;
408
409 /*
410 * If the FDSYNC flag is set then ignore the global
411 * ufs_allow_shared_writes in this case.
412 */
413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
414
415 /*
416 * Filter to determine if this request is suitable as a
417 * concurrent rewrite. This write must not allocate blocks
418 * by extending the file or filling in holes. No use trying
419 * through FSYNC descriptors as the inode will be synchronously
420 * updated after the write. The uio structure has not yet been
421 * checked for sanity, so assume nothing.
422 */
423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
424 (uiop->uio_loffset >= (offset_t)0) &&
425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
427 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
428 shared_write);
429 }
430
431 /*ARGSUSED*/
432 static int
ufs_write(struct vnode * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
434 caller_context_t *ct)
435 {
436 struct inode *ip = VTOI(vp);
437 struct ufsvfs *ufsvfsp;
438 struct ulockfs *ulp;
439 int retry = 1;
440 int error, resv, resid = 0;
441 int directio_status;
442 int exclusive;
443 int rewriteflg;
444 long start_resid = uiop->uio_resid;
445
446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
447
448 retry_mandlock:
449 /*
450 * Mandatory locking needs to be done before ufs_lockfs_begin()
451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
452 * Check for forced unmounts normally done in ufs_lockfs_begin().
453 */
454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
455 error = EIO;
456 goto out;
457 }
458 if (MANDLOCK(vp, ip->i_mode)) {
459
460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
461
462 /*
463 * ufs_getattr ends up being called by chklock
464 */
465 error = chklock(vp, FWRITE, uiop->uio_loffset,
466 uiop->uio_resid, uiop->uio_fmode, ct);
467 if (error)
468 goto out;
469 }
470
471 /* i_rwlock can change in chklock */
472 exclusive = rw_write_held(&ip->i_rwlock);
473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
474
475 /*
476 * Check for fast-path special case of directio re-writes.
477 */
478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
479 !exclusive && rewriteflg) {
480
481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
482 if (error)
483 goto out;
484
485 rw_enter(&ip->i_contents, RW_READER);
486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
487 &directio_status);
488 if (directio_status == DIRECTIO_SUCCESS) {
489 uint_t i_flag_save;
490
491 if (start_resid != uiop->uio_resid)
492 error = 0;
493 /*
494 * Special treatment of access times for re-writes.
495 * If IMOD is not already set, then convert it
496 * to IMODACC for this operation. This defers
497 * entering a delta into the log until the inode
498 * is flushed. This mimics what is done for read
499 * operations and inode access time.
500 */
501 mutex_enter(&ip->i_tlock);
502 i_flag_save = ip->i_flag;
503 ip->i_flag |= IUPD | ICHG;
504 ip->i_seq++;
505 ITIMES_NOLOCK(ip);
506 if ((i_flag_save & IMOD) == 0) {
507 ip->i_flag &= ~IMOD;
508 ip->i_flag |= IMODACC;
509 }
510 mutex_exit(&ip->i_tlock);
511 rw_exit(&ip->i_contents);
512 if (ulp)
513 ufs_lockfs_end(ulp);
514 goto out;
515 }
516 rw_exit(&ip->i_contents);
517 if (ulp)
518 ufs_lockfs_end(ulp);
519 }
520
521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
522 rw_exit(&ip->i_rwlock);
523 rw_enter(&ip->i_rwlock, RW_WRITER);
524 /*
525 * Mandatory locking could have been enabled
526 * after dropping the i_rwlock.
527 */
528 if (MANDLOCK(vp, ip->i_mode))
529 goto retry_mandlock;
530 }
531
532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
533 if (error)
534 goto out;
535
536 /*
537 * Amount of log space needed for this write
538 */
539 if (!rewriteflg || !(ioflag & FDSYNC))
540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
541
542 /*
543 * Throttle writes.
544 */
545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
546 mutex_enter(&ip->i_tlock);
547 while (ip->i_writes > ufs_HW) {
548 ufs_throttles++;
549 cv_wait(&ip->i_wrcv, &ip->i_tlock);
550 }
551 mutex_exit(&ip->i_tlock);
552 }
553
554 /*
555 * Enter Transaction
556 *
557 * If the write is a rewrite there is no need to open a transaction
558 * if the FDSYNC flag is set and not the FSYNC. In this case just
559 * set the IMODACC flag to modify do the update at a later time
560 * thus avoiding the overhead of the logging transaction that is
561 * not required.
562 */
563 if (ioflag & (FSYNC|FDSYNC)) {
564 if (ulp) {
565 if (rewriteflg) {
566 uint_t i_flag_save;
567
568 rw_enter(&ip->i_contents, RW_READER);
569 mutex_enter(&ip->i_tlock);
570 i_flag_save = ip->i_flag;
571 ip->i_flag |= IUPD | ICHG;
572 ip->i_seq++;
573 ITIMES_NOLOCK(ip);
574 if ((i_flag_save & IMOD) == 0) {
575 ip->i_flag &= ~IMOD;
576 ip->i_flag |= IMODACC;
577 }
578 mutex_exit(&ip->i_tlock);
579 rw_exit(&ip->i_contents);
580 } else {
581 int terr = 0;
582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
583 terr);
584 ASSERT(!terr);
585 }
586 }
587 } else {
588 if (ulp)
589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
590 }
591
592 /*
593 * Write the file
594 */
595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
596 rw_enter(&ip->i_contents, RW_WRITER);
597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
598 /*
599 * In append mode start at end of file.
600 */
601 uiop->uio_loffset = ip->i_size;
602 }
603
604 /*
605 * Mild optimisation, don't call ufs_trans_write() unless we have to
606 * Also, suppress file system full messages if we will retry.
607 */
608 if (retry)
609 ip->i_flag |= IQUIET;
610 if (resid) {
611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
612 } else {
613 error = wrip(ip, uiop, ioflag, cr);
614 }
615 ip->i_flag &= ~IQUIET;
616
617 rw_exit(&ip->i_contents);
618 rw_exit(&ufsvfsp->vfs_dqrwlock);
619
620 /*
621 * Leave Transaction
622 */
623 if (ulp) {
624 if (ioflag & (FSYNC|FDSYNC)) {
625 if (!rewriteflg) {
626 int terr = 0;
627
628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
629 resv);
630 if (error == 0)
631 error = terr;
632 }
633 } else {
634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
635 }
636 ufs_lockfs_end(ulp);
637 }
638 out:
639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
640 /*
641 * Any blocks tied up in pending deletes?
642 */
643 ufs_delete_drain_wait(ufsvfsp, 1);
644 retry = 0;
645 goto retry_mandlock;
646 }
647
648 if (error == ENOSPC && (start_resid != uiop->uio_resid))
649 error = 0;
650
651 return (error);
652 }
653
654 /*
655 * Don't cache write blocks to files with the sticky bit set.
656 * Used to keep swap files from blowing the page cache on a server.
657 */
658 int stickyhack = 1;
659
660 /*
661 * Free behind hacks. The pager is busted.
662 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
663 * or B_FREE_IF_TIGHT_ON_MEMORY.
664 */
665 int freebehind = 1;
666 int smallfile = 0;
667 u_offset_t smallfile64 = 32 * 1024;
668
669 /*
670 * While we should, in most cases, cache the pages for write, we
671 * may also want to cache the pages for read as long as they are
672 * frequently re-usable.
673 *
674 * If cache_read_ahead = 1, the pages for read will go to the tail
675 * of the cache list when they are released, otherwise go to the head.
676 */
677 int cache_read_ahead = 0;
678
679 /*
680 * Freebehind exists so that as we read large files sequentially we
681 * don't consume most of memory with pages from a few files. It takes
682 * longer to re-read from disk multiple small files as it does reading
683 * one large one sequentially. As system memory grows customers need
684 * to retain bigger chunks of files in memory. The advent of the
685 * cachelist opens up of the possibility freeing pages to the head or
686 * tail of the list.
687 *
688 * Not freeing a page is a bet that the page will be read again before
689 * it's segmap slot is needed for something else. If we loose the bet,
690 * it means some other thread is burdened with the page free we did
691 * not do. If we win we save a free and reclaim.
692 *
693 * Freeing it at the tail vs the head of cachelist is a bet that the
694 * page will survive until the next read. It's also saying that this
695 * page is more likely to be re-used than a page freed some time ago
696 * and never reclaimed.
697 *
698 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
699 *
700 * 0 < offset < smallfile1 : pages are not freed.
701 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
702 * smallfile2 < offset : pages freed to head of cachelist.
703 *
704 * The range is computed at most once per second and depends on
705 * freemem and ncpus_online. Both parameters are bounded to be
706 * >= smallfile && >= smallfile64.
707 *
708 * smallfile1 = (free memory / ncpu) / 1000
709 * smallfile2 = (free memory / ncpu) / 10
710 *
711 * A few examples values:
712 *
713 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
714 * ncpus_online = 4 ncpus_online = 64
715 * ------------------ ----------------------- -----------------------
716 * 1G [256K; 25M] [32K; 1.5M]
717 * 10G [2.5M; 250M] [156K; 15M]
718 * 100G [25M; 2.5G] [1.5M; 150M]
719 *
720 */
721
722 #define SMALLFILE1_D 1000
723 #define SMALLFILE2_D 10
724 static u_offset_t smallfile1 = 32 * 1024;
725 static u_offset_t smallfile2 = 32 * 1024;
726 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
727 uint_t smallfile1_d = SMALLFILE1_D;
728 uint_t smallfile2_d = SMALLFILE2_D;
729
730 /*
731 * wrip does the real work of write requests for ufs.
732 */
733 int
wrip(struct inode * ip,struct uio * uio,int ioflag,struct cred * cr)734 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
735 {
736 rlim64_t limit = uio->uio_llimit;
737 u_offset_t off;
738 u_offset_t old_i_size;
739 struct fs *fs;
740 struct vnode *vp;
741 struct ufsvfs *ufsvfsp;
742 caddr_t base;
743 long start_resid = uio->uio_resid; /* save starting resid */
744 long premove_resid; /* resid before uiomove() */
745 uint_t flags;
746 int newpage;
747 int iupdat_flag, directio_status;
748 int n, on, mapon;
749 int error, pagecreate;
750 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
751 int32_t iblocks;
752 int new_iblocks;
753
754 /*
755 * ip->i_size is incremented before the uiomove
756 * is done on a write. If the move fails (bad user
757 * address) reset ip->i_size.
758 * The better way would be to increment ip->i_size
759 * only if the uiomove succeeds.
760 */
761 int i_size_changed = 0;
762 o_mode_t type;
763 int i_seq_needed = 0;
764
765 vp = ITOV(ip);
766
767 /*
768 * check for forced unmount - should not happen as
769 * the request passed the lockfs checks.
770 */
771 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
772 return (EIO);
773
774 fs = ip->i_fs;
775
776 ASSERT(RW_WRITE_HELD(&ip->i_contents));
777
778 /* check for valid filetype */
779 type = ip->i_mode & IFMT;
780 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
781 (type != IFLNK) && (type != IFSHAD)) {
782 return (EIO);
783 }
784
785 /*
786 * the actual limit of UFS file size
787 * is UFS_MAXOFFSET_T
788 */
789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
790 limit = MAXOFFSET_T;
791
792 if (uio->uio_loffset >= limit) {
793 proc_t *p = ttoproc(curthread);
794
795 mutex_enter(&p->p_lock);
796 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
797 p, RCA_UNSAFE_SIGINFO);
798 mutex_exit(&p->p_lock);
799 return (EFBIG);
800 }
801
802 /*
803 * if largefiles are disallowed, the limit is
804 * the pre-largefiles value of 2GB
805 */
806 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
807 limit = MIN(UFS_MAXOFFSET_T, limit);
808 else
809 limit = MIN(MAXOFF32_T, limit);
810
811 if (uio->uio_loffset < (offset_t)0) {
812 return (EINVAL);
813 }
814 if (uio->uio_resid == 0) {
815 return (0);
816 }
817
818 if (uio->uio_loffset >= limit)
819 return (EFBIG);
820
821 ip->i_flag |= INOACC; /* don't update ref time in getpage */
822
823 if (ioflag & (FSYNC|FDSYNC)) {
824 ip->i_flag |= ISYNC;
825 iupdat_flag = 1;
826 }
827 /*
828 * Try to go direct
829 */
830 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
831 uio->uio_llimit = limit;
832 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
833 &directio_status);
834 /*
835 * If ufs_directio wrote to the file or set the flags,
836 * we need to update i_seq, but it may be deferred.
837 */
838 if (start_resid != uio->uio_resid ||
839 (ip->i_flag & (ICHG|IUPD))) {
840 i_seq_needed = 1;
841 ip->i_flag |= ISEQ;
842 }
843 if (directio_status == DIRECTIO_SUCCESS)
844 goto out;
845 }
846
847 /*
848 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
849 *
850 * o shadow inodes: vfs_dqrwlock is not held at all
851 * o quota updates: vfs_dqrwlock is read or write held
852 * o other updates: vfs_dqrwlock is read held
853 *
854 * The first case is the only one where we do not hold
855 * vfs_dqrwlock at all while entering wrip().
856 * We must make sure not to downgrade/drop vfs_dqrwlock if we
857 * have it as writer, i.e. if we are updating the quota inode.
858 * There is no potential deadlock scenario in this case as
859 * ufs_getpage() takes care of this and avoids reacquiring
860 * vfs_dqrwlock in that case.
861 *
862 * This check is done here since the above conditions do not change
863 * and we possibly loop below, so save a few cycles.
864 */
865 if ((type == IFSHAD) ||
866 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
867 do_dqrwlock = 0;
868 } else {
869 do_dqrwlock = 1;
870 }
871
872 /*
873 * Large Files: We cast MAXBMASK to offset_t
874 * inorder to mask out the higher bits. Since offset_t
875 * is a signed value, the high order bit set in MAXBMASK
876 * value makes it do the right thing by having all bits 1
877 * in the higher word. May be removed for _SOLARIS64_.
878 */
879
880 fs = ip->i_fs;
881 do {
882 u_offset_t uoff = uio->uio_loffset;
883 off = uoff & (offset_t)MAXBMASK;
884 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
885 on = (int)blkoff(fs, uoff);
886 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
887 new_iblocks = 1;
888
889 if (type == IFREG && uoff + n >= limit) {
890 if (uoff >= limit) {
891 error = EFBIG;
892 goto out;
893 }
894 /*
895 * since uoff + n >= limit,
896 * therefore n >= limit - uoff, and n is an int
897 * so it is safe to cast it to an int
898 */
899 n = (int)(limit - (rlim64_t)uoff);
900 }
901 if (uoff + n > ip->i_size) {
902 /*
903 * We are extending the length of the file.
904 * bmap is used so that we are sure that
905 * if we need to allocate new blocks, that it
906 * is done here before we up the file size.
907 */
908 error = bmap_write(ip, uoff, (int)(on + n),
909 mapon == 0, NULL, cr);
910 /*
911 * bmap_write never drops i_contents so if
912 * the flags are set it changed the file.
913 */
914 if (ip->i_flag & (ICHG|IUPD)) {
915 i_seq_needed = 1;
916 ip->i_flag |= ISEQ;
917 }
918 if (error)
919 break;
920 /*
921 * There is a window of vulnerability here.
922 * The sequence of operations: allocate file
923 * system blocks, uiomove the data into pages,
924 * and then update the size of the file in the
925 * inode, must happen atomically. However, due
926 * to current locking constraints, this can not
927 * be done.
928 */
929 ASSERT(ip->i_writer == NULL);
930 ip->i_writer = curthread;
931 i_size_changed = 1;
932 /*
933 * If we are writing from the beginning of
934 * the mapping, we can just create the
935 * pages without having to read them.
936 */
937 pagecreate = (mapon == 0);
938 } else if (n == MAXBSIZE) {
939 /*
940 * Going to do a whole mappings worth,
941 * so we can just create the pages w/o
942 * having to read them in. But before
943 * we do that, we need to make sure any
944 * needed blocks are allocated first.
945 */
946 iblocks = ip->i_blocks;
947 error = bmap_write(ip, uoff, (int)(on + n),
948 BI_ALLOC_ONLY, NULL, cr);
949 /*
950 * bmap_write never drops i_contents so if
951 * the flags are set it changed the file.
952 */
953 if (ip->i_flag & (ICHG|IUPD)) {
954 i_seq_needed = 1;
955 ip->i_flag |= ISEQ;
956 }
957 if (error)
958 break;
959 pagecreate = 1;
960 /*
961 * check if the new created page needed the
962 * allocation of new disk blocks.
963 */
964 if (iblocks == ip->i_blocks)
965 new_iblocks = 0; /* no new blocks allocated */
966 } else {
967 pagecreate = 0;
968 /*
969 * In sync mode flush the indirect blocks which
970 * may have been allocated and not written on
971 * disk. In above cases bmap_write will allocate
972 * in sync mode.
973 */
974 if (ioflag & (FSYNC|FDSYNC)) {
975 error = ufs_indirblk_sync(ip, uoff);
976 if (error)
977 break;
978 }
979 }
980
981 /*
982 * At this point we can enter ufs_getpage() in one
983 * of two ways:
984 * 1) segmap_getmapflt() calls ufs_getpage() when the
985 * forcefault parameter is true (pagecreate == 0)
986 * 2) uiomove() causes a page fault.
987 *
988 * We have to drop the contents lock to prevent the VM
989 * system from trying to reacquire it in ufs_getpage()
990 * should the uiomove cause a pagefault.
991 *
992 * We have to drop the reader vfs_dqrwlock here as well.
993 */
994 rw_exit(&ip->i_contents);
995 if (do_dqrwlock) {
996 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
997 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
998 rw_exit(&ufsvfsp->vfs_dqrwlock);
999 }
1000
1001 newpage = 0;
1002 premove_resid = uio->uio_resid;
1003
1004 /*
1005 * Touch the page and fault it in if it is not in core
1006 * before segmap_getmapflt or vpm_data_copy can lock it.
1007 * This is to avoid the deadlock if the buffer is mapped
1008 * to the same file through mmap which we want to write.
1009 */
1010 uio_prefaultpages((long)n, uio);
1011
1012 if (vpm_enable) {
1013 /*
1014 * Copy data. If new pages are created, part of
1015 * the page that is not written will be initizliazed
1016 * with zeros.
1017 */
1018 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1019 uio, !pagecreate, &newpage, 0, S_WRITE);
1020 } else {
1021
1022 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1023 (uint_t)n, !pagecreate, S_WRITE);
1024
1025 /*
1026 * segmap_pagecreate() returns 1 if it calls
1027 * page_create_va() to allocate any pages.
1028 */
1029
1030 if (pagecreate)
1031 newpage = segmap_pagecreate(segkmap, base,
1032 (size_t)n, 0);
1033
1034 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1035 }
1036
1037 /*
1038 * If "newpage" is set, then a new page was created and it
1039 * does not contain valid data, so it needs to be initialized
1040 * at this point.
1041 * Otherwise the page contains old data, which was overwritten
1042 * partially or as a whole in uiomove.
1043 * If there is only one iovec structure within uio, then
1044 * on error uiomove will not be able to update uio->uio_loffset
1045 * and we would zero the whole page here!
1046 *
1047 * If uiomove fails because of an error, the old valid data
1048 * is kept instead of filling the rest of the page with zero's.
1049 */
1050 if (!vpm_enable && newpage &&
1051 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1052 /*
1053 * We created pages w/o initializing them completely,
1054 * thus we need to zero the part that wasn't set up.
1055 * This happens on most EOF write cases and if
1056 * we had some sort of error during the uiomove.
1057 */
1058 int nzero, nmoved;
1059
1060 nmoved = (int)(uio->uio_loffset - (off + mapon));
1061 ASSERT(nmoved >= 0 && nmoved <= n);
1062 nzero = roundup(on + n, PAGESIZE) - nmoved;
1063 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1064 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1065 }
1066
1067 /*
1068 * Unlock the pages allocated by page_create_va()
1069 * in segmap_pagecreate()
1070 */
1071 if (!vpm_enable && newpage)
1072 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1073
1074 /*
1075 * If the size of the file changed, then update the
1076 * size field in the inode now. This can't be done
1077 * before the call to segmap_pageunlock or there is
1078 * a potential deadlock with callers to ufs_putpage().
1079 * They will be holding i_contents and trying to lock
1080 * a page, while this thread is holding a page locked
1081 * and trying to acquire i_contents.
1082 */
1083 if (i_size_changed) {
1084 rw_enter(&ip->i_contents, RW_WRITER);
1085 old_i_size = ip->i_size;
1086 UFS_SET_ISIZE(uoff + n, ip);
1087 TRANS_INODE(ufsvfsp, ip);
1088 /*
1089 * file has grown larger than 2GB. Set flag
1090 * in superblock to indicate this, if it
1091 * is not already set.
1092 */
1093 if ((ip->i_size > MAXOFF32_T) &&
1094 !(fs->fs_flags & FSLARGEFILES)) {
1095 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1096 mutex_enter(&ufsvfsp->vfs_lock);
1097 fs->fs_flags |= FSLARGEFILES;
1098 ufs_sbwrite(ufsvfsp);
1099 mutex_exit(&ufsvfsp->vfs_lock);
1100 }
1101 mutex_enter(&ip->i_tlock);
1102 ip->i_writer = NULL;
1103 cv_broadcast(&ip->i_wrcv);
1104 mutex_exit(&ip->i_tlock);
1105 rw_exit(&ip->i_contents);
1106 }
1107
1108 if (error) {
1109 /*
1110 * If we failed on a write, we may have already
1111 * allocated file blocks as well as pages. It's
1112 * hard to undo the block allocation, but we must
1113 * be sure to invalidate any pages that may have
1114 * been allocated.
1115 *
1116 * If the page was created without initialization
1117 * then we must check if it should be possible
1118 * to destroy the new page and to keep the old data
1119 * on the disk.
1120 *
1121 * It is possible to destroy the page without
1122 * having to write back its contents only when
1123 * - the size of the file keeps unchanged
1124 * - bmap_write() did not allocate new disk blocks
1125 * it is possible to create big files using "seek" and
1126 * write to the end of the file. A "write" to a
1127 * position before the end of the file would not
1128 * change the size of the file but it would allocate
1129 * new disk blocks.
1130 * - uiomove intended to overwrite the whole page.
1131 * - a new page was created (newpage == 1).
1132 */
1133
1134 if (i_size_changed == 0 && new_iblocks == 0 &&
1135 newpage) {
1136
1137 /* unwind what uiomove eventually last did */
1138 uio->uio_resid = premove_resid;
1139
1140 /*
1141 * destroy the page, do not write ambiguous
1142 * data to the disk.
1143 */
1144 flags = SM_DESTROY;
1145 } else {
1146 /*
1147 * write the page back to the disk, if dirty,
1148 * and remove the page from the cache.
1149 */
1150 flags = SM_INVAL;
1151 }
1152
1153 if (vpm_enable) {
1154 /*
1155 * Flush pages.
1156 */
1157 (void) vpm_sync_pages(vp, off, n, flags);
1158 } else {
1159 (void) segmap_release(segkmap, base, flags);
1160 }
1161 } else {
1162 flags = 0;
1163 /*
1164 * Force write back for synchronous write cases.
1165 */
1166 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1167 /*
1168 * If the sticky bit is set but the
1169 * execute bit is not set, we do a
1170 * synchronous write back and free
1171 * the page when done. We set up swap
1172 * files to be handled this way to
1173 * prevent servers from keeping around
1174 * the client's swap pages too long.
1175 * XXX - there ought to be a better way.
1176 */
1177 if (IS_SWAPVP(vp)) {
1178 flags = SM_WRITE | SM_FREE |
1179 SM_DONTNEED;
1180 iupdat_flag = 0;
1181 } else {
1182 flags = SM_WRITE;
1183 }
1184 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1185 /*
1186 * Have written a whole block.
1187 * Start an asynchronous write and
1188 * mark the buffer to indicate that
1189 * it won't be needed again soon.
1190 */
1191 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1192 }
1193 if (vpm_enable) {
1194 /*
1195 * Flush pages.
1196 */
1197 error = vpm_sync_pages(vp, off, n, flags);
1198 } else {
1199 error = segmap_release(segkmap, base, flags);
1200 }
1201 /*
1202 * If the operation failed and is synchronous,
1203 * then we need to unwind what uiomove() last
1204 * did so we can potentially return an error to
1205 * the caller. If this write operation was
1206 * done in two pieces and the first succeeded,
1207 * then we won't return an error for the second
1208 * piece that failed. However, we only want to
1209 * return a resid value that reflects what was
1210 * really done.
1211 *
1212 * Failures for non-synchronous operations can
1213 * be ignored since the page subsystem will
1214 * retry the operation until it succeeds or the
1215 * file system is unmounted.
1216 */
1217 if (error) {
1218 if ((ioflag & (FSYNC | FDSYNC)) ||
1219 type == IFDIR) {
1220 uio->uio_resid = premove_resid;
1221 } else {
1222 error = 0;
1223 }
1224 }
1225 }
1226
1227 /*
1228 * Re-acquire contents lock.
1229 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1230 */
1231 if (do_dqrwlock)
1232 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1233 rw_enter(&ip->i_contents, RW_WRITER);
1234
1235 /*
1236 * If the uiomove() failed or if a synchronous
1237 * page push failed, fix up i_size.
1238 */
1239 if (error) {
1240 if (i_size_changed) {
1241 /*
1242 * The uiomove failed, and we
1243 * allocated blocks,so get rid
1244 * of them.
1245 */
1246 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1247 }
1248 } else {
1249 /*
1250 * XXX - Can this be out of the loop?
1251 */
1252 ip->i_flag |= IUPD | ICHG;
1253 /*
1254 * Only do one increase of i_seq for multiple
1255 * pieces. Because we drop locks, record
1256 * the fact that we changed the timestamp and
1257 * are deferring the increase in case another thread
1258 * pushes our timestamp update.
1259 */
1260 i_seq_needed = 1;
1261 ip->i_flag |= ISEQ;
1262 if (i_size_changed)
1263 ip->i_flag |= IATTCHG;
1264 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1265 (IEXEC >> 6))) != 0 &&
1266 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1267 secpolicy_vnode_setid_retain(cr,
1268 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1269 /*
1270 * Clear Set-UID & Set-GID bits on
1271 * successful write if not privileged
1272 * and at least one of the execute bits
1273 * is set. If we always clear Set-GID,
1274 * mandatory file and record locking is
1275 * unuseable.
1276 */
1277 ip->i_mode &= ~(ISUID | ISGID);
1278 }
1279 }
1280 /*
1281 * In the case the FDSYNC flag is set and this is a
1282 * "rewrite" we won't log a delta.
1283 * The FSYNC flag overrides all cases.
1284 */
1285 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1286 TRANS_INODE(ufsvfsp, ip);
1287 }
1288 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1289
1290 out:
1291 /*
1292 * Make sure i_seq is increased at least once per write
1293 */
1294 if (i_seq_needed) {
1295 ip->i_seq++;
1296 ip->i_flag &= ~ISEQ; /* no longer deferred */
1297 }
1298
1299 /*
1300 * Inode is updated according to this table -
1301 *
1302 * FSYNC FDSYNC(posix.4)
1303 * --------------------------
1304 * always@ IATTCHG|IBDWRITE
1305 *
1306 * @ - If we are doing synchronous write the only time we should
1307 * not be sync'ing the ip here is if we have the stickyhack
1308 * activated, the file is marked with the sticky bit and
1309 * no exec bit, the file length has not been changed and
1310 * no new blocks have been allocated during this write.
1311 */
1312
1313 if ((ip->i_flag & ISYNC) != 0) {
1314 /*
1315 * we have eliminated nosync
1316 */
1317 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1318 ((ioflag & FSYNC) && iupdat_flag)) {
1319 ufs_iupdat(ip, 1);
1320 }
1321 }
1322
1323 /*
1324 * If we've already done a partial-write, terminate
1325 * the write but return no error unless the error is ENOSPC
1326 * because the caller can detect this and free resources and
1327 * try again.
1328 */
1329 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1330 error = 0;
1331
1332 ip->i_flag &= ~(INOACC | ISYNC);
1333 ITIMES_NOLOCK(ip);
1334 return (error);
1335 }
1336
1337 /*
1338 * rdip does the real work of read requests for ufs.
1339 */
1340 int
rdip(struct inode * ip,struct uio * uio,int ioflag,cred_t * cr)1341 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1342 {
1343 u_offset_t off;
1344 caddr_t base;
1345 struct fs *fs;
1346 struct ufsvfs *ufsvfsp;
1347 struct vnode *vp;
1348 long oresid = uio->uio_resid;
1349 u_offset_t n, on, mapon;
1350 int error = 0;
1351 int doupdate = 1;
1352 uint_t flags;
1353 int dofree, directio_status;
1354 krw_t rwtype;
1355 o_mode_t type;
1356 clock_t now;
1357
1358 vp = ITOV(ip);
1359
1360 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1361
1362 ufsvfsp = ip->i_ufsvfs;
1363
1364 if (ufsvfsp == NULL)
1365 return (EIO);
1366
1367 fs = ufsvfsp->vfs_fs;
1368
1369 /* check for valid filetype */
1370 type = ip->i_mode & IFMT;
1371 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1372 (type != IFLNK) && (type != IFSHAD)) {
1373 return (EIO);
1374 }
1375
1376 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1377 error = 0;
1378 goto out;
1379 }
1380 if (uio->uio_loffset < (offset_t)0) {
1381 return (EINVAL);
1382 }
1383 if (uio->uio_resid == 0) {
1384 return (0);
1385 }
1386
1387 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1388 (!ufsvfsp->vfs_noatime)) {
1389 mutex_enter(&ip->i_tlock);
1390 ip->i_flag |= IACC;
1391 mutex_exit(&ip->i_tlock);
1392 }
1393 /*
1394 * Try to go direct
1395 */
1396 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1397 error = ufs_directio_read(ip, uio, cr, &directio_status);
1398 if (directio_status == DIRECTIO_SUCCESS)
1399 goto out;
1400 }
1401
1402 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1403
1404 do {
1405 offset_t diff;
1406 u_offset_t uoff = uio->uio_loffset;
1407 off = uoff & (offset_t)MAXBMASK;
1408 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1409 on = (u_offset_t)blkoff(fs, uoff);
1410 n = MIN((u_offset_t)fs->fs_bsize - on,
1411 (u_offset_t)uio->uio_resid);
1412
1413 diff = ip->i_size - uoff;
1414
1415 if (diff <= (offset_t)0) {
1416 error = 0;
1417 goto out;
1418 }
1419 if (diff < (offset_t)n)
1420 n = (int)diff;
1421
1422 /*
1423 * We update smallfile2 and smallfile1 at most every second.
1424 */
1425 now = ddi_get_lbolt();
1426 if (now >= smallfile_update) {
1427 uint64_t percpufreeb;
1428 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1429 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1430 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1431 smallfile1 = percpufreeb / smallfile1_d;
1432 smallfile2 = percpufreeb / smallfile2_d;
1433 smallfile1 = MAX(smallfile1, smallfile);
1434 smallfile1 = MAX(smallfile1, smallfile64);
1435 smallfile2 = MAX(smallfile1, smallfile2);
1436 smallfile_update = now + hz;
1437 }
1438
1439 dofree = freebehind &&
1440 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1441
1442 /*
1443 * At this point we can enter ufs_getpage() in one of two
1444 * ways:
1445 * 1) segmap_getmapflt() calls ufs_getpage() when the
1446 * forcefault parameter is true (value of 1 is passed)
1447 * 2) uiomove() causes a page fault.
1448 *
1449 * We cannot hold onto an i_contents reader lock without
1450 * risking deadlock in ufs_getpage() so drop a reader lock.
1451 * The ufs_getpage() dolock logic already allows for a
1452 * thread holding i_contents as writer to work properly
1453 * so we keep a writer lock.
1454 */
1455 if (rwtype == RW_READER)
1456 rw_exit(&ip->i_contents);
1457
1458 if (vpm_enable) {
1459 /*
1460 * Copy data.
1461 */
1462 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1463 uio, 1, NULL, 0, S_READ);
1464 } else {
1465 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1466 (uint_t)n, 1, S_READ);
1467 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1468 }
1469
1470 flags = 0;
1471 if (!error) {
1472 /*
1473 * If reading sequential we won't need this
1474 * buffer again soon. For offsets in range
1475 * [smallfile1, smallfile2] release the pages
1476 * at the tail of the cache list, larger
1477 * offsets are released at the head.
1478 */
1479 if (dofree) {
1480 flags = SM_FREE | SM_ASYNC;
1481 if ((cache_read_ahead == 0) &&
1482 (off > smallfile2))
1483 flags |= SM_DONTNEED;
1484 }
1485 /*
1486 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1487 * we want to make sure that the page which has
1488 * been read, is written on disk if it is dirty.
1489 * And corresponding indirect blocks should also
1490 * be flushed out.
1491 */
1492 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1493 flags &= ~SM_ASYNC;
1494 flags |= SM_WRITE;
1495 }
1496 if (vpm_enable) {
1497 error = vpm_sync_pages(vp, off, n, flags);
1498 } else {
1499 error = segmap_release(segkmap, base, flags);
1500 }
1501 } else {
1502 if (vpm_enable) {
1503 (void) vpm_sync_pages(vp, off, n, flags);
1504 } else {
1505 (void) segmap_release(segkmap, base, flags);
1506 }
1507 }
1508
1509 if (rwtype == RW_READER)
1510 rw_enter(&ip->i_contents, rwtype);
1511 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1512 out:
1513 /*
1514 * Inode is updated according to this table if FRSYNC is set.
1515 *
1516 * FSYNC FDSYNC(posix.4)
1517 * --------------------------
1518 * always IATTCHG|IBDWRITE
1519 */
1520 /*
1521 * The inode is not updated if we're logging and the inode is a
1522 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1523 */
1524 if (ioflag & FRSYNC) {
1525 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1526 doupdate = 0;
1527 }
1528 if (doupdate) {
1529 if ((ioflag & FSYNC) ||
1530 ((ioflag & FDSYNC) &&
1531 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1532 ufs_iupdat(ip, 1);
1533 }
1534 }
1535 }
1536 /*
1537 * If we've already done a partial read, terminate
1538 * the read but return no error.
1539 */
1540 if (oresid != uio->uio_resid)
1541 error = 0;
1542 ITIMES(ip);
1543
1544 return (error);
1545 }
1546
1547 /* ARGSUSED */
1548 static int
ufs_ioctl(struct vnode * vp,int cmd,intptr_t arg,int flag,struct cred * cr,int * rvalp,caller_context_t * ct)1549 ufs_ioctl(
1550 struct vnode *vp,
1551 int cmd,
1552 intptr_t arg,
1553 int flag,
1554 struct cred *cr,
1555 int *rvalp,
1556 caller_context_t *ct)
1557 {
1558 struct lockfs lockfs, lockfs_out;
1559 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1560 char *comment, *original_comment;
1561 struct fs *fs;
1562 struct ulockfs *ulp;
1563 offset_t off;
1564 extern int maxphys;
1565 int error;
1566 int issync;
1567 int trans_size;
1568
1569
1570 /*
1571 * forcibly unmounted
1572 */
1573 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1574 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1575 return (EIO);
1576 fs = ufsvfsp->vfs_fs;
1577
1578 if (cmd == Q_QUOTACTL) {
1579 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1580 if (error)
1581 return (error);
1582
1583 if (ulp) {
1584 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1585 TOP_SETQUOTA_SIZE(fs));
1586 }
1587
1588 error = quotactl(vp, arg, flag, cr);
1589
1590 if (ulp) {
1591 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1592 TOP_SETQUOTA_SIZE(fs));
1593 ufs_lockfs_end(ulp);
1594 }
1595 return (error);
1596 }
1597
1598 switch (cmd) {
1599 case _FIOLFS:
1600 /*
1601 * file system locking
1602 */
1603 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1604 return (EPERM);
1605
1606 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1607 if (copyin((caddr_t)arg, &lockfs,
1608 sizeof (struct lockfs)))
1609 return (EFAULT);
1610 }
1611 #ifdef _SYSCALL32_IMPL
1612 else {
1613 struct lockfs32 lockfs32;
1614 /* Translate ILP32 lockfs to LP64 lockfs */
1615 if (copyin((caddr_t)arg, &lockfs32,
1616 sizeof (struct lockfs32)))
1617 return (EFAULT);
1618 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1619 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1620 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1621 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1622 lockfs.lf_comment =
1623 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1624 }
1625 #endif /* _SYSCALL32_IMPL */
1626
1627 if (lockfs.lf_comlen) {
1628 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1629 return (ENAMETOOLONG);
1630 comment =
1631 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1632 if (copyin(lockfs.lf_comment, comment,
1633 lockfs.lf_comlen)) {
1634 kmem_free(comment, lockfs.lf_comlen);
1635 return (EFAULT);
1636 }
1637 original_comment = lockfs.lf_comment;
1638 lockfs.lf_comment = comment;
1639 }
1640 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1641 lockfs.lf_comment = original_comment;
1642
1643 if ((flag & DATAMODEL_MASK) ==
1644 DATAMODEL_NATIVE) {
1645 (void) copyout(&lockfs, (caddr_t)arg,
1646 sizeof (struct lockfs));
1647 }
1648 #ifdef _SYSCALL32_IMPL
1649 else {
1650 struct lockfs32 lockfs32;
1651 /* Translate LP64 to ILP32 lockfs */
1652 lockfs32.lf_lock =
1653 (uint32_t)lockfs.lf_lock;
1654 lockfs32.lf_flags =
1655 (uint32_t)lockfs.lf_flags;
1656 lockfs32.lf_key =
1657 (uint32_t)lockfs.lf_key;
1658 lockfs32.lf_comlen =
1659 (uint32_t)lockfs.lf_comlen;
1660 lockfs32.lf_comment =
1661 (uint32_t)(uintptr_t)
1662 lockfs.lf_comment;
1663 (void) copyout(&lockfs32, (caddr_t)arg,
1664 sizeof (struct lockfs32));
1665 }
1666 #endif /* _SYSCALL32_IMPL */
1667
1668 } else {
1669 if (lockfs.lf_comlen)
1670 kmem_free(comment, lockfs.lf_comlen);
1671 }
1672 return (error);
1673
1674 case _FIOLFSS:
1675 /*
1676 * get file system locking status
1677 */
1678
1679 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1680 if (copyin((caddr_t)arg, &lockfs,
1681 sizeof (struct lockfs)))
1682 return (EFAULT);
1683 }
1684 #ifdef _SYSCALL32_IMPL
1685 else {
1686 struct lockfs32 lockfs32;
1687 /* Translate ILP32 lockfs to LP64 lockfs */
1688 if (copyin((caddr_t)arg, &lockfs32,
1689 sizeof (struct lockfs32)))
1690 return (EFAULT);
1691 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1692 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1693 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1694 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1695 lockfs.lf_comment =
1696 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1697 }
1698 #endif /* _SYSCALL32_IMPL */
1699
1700 if (error = ufs_fiolfss(vp, &lockfs_out))
1701 return (error);
1702 lockfs.lf_lock = lockfs_out.lf_lock;
1703 lockfs.lf_key = lockfs_out.lf_key;
1704 lockfs.lf_flags = lockfs_out.lf_flags;
1705 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1706 lockfs_out.lf_comlen);
1707
1708 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1709 if (copyout(&lockfs, (caddr_t)arg,
1710 sizeof (struct lockfs)))
1711 return (EFAULT);
1712 }
1713 #ifdef _SYSCALL32_IMPL
1714 else {
1715 /* Translate LP64 to ILP32 lockfs */
1716 struct lockfs32 lockfs32;
1717 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1718 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1719 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1720 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1721 lockfs32.lf_comment =
1722 (uint32_t)(uintptr_t)lockfs.lf_comment;
1723 if (copyout(&lockfs32, (caddr_t)arg,
1724 sizeof (struct lockfs32)))
1725 return (EFAULT);
1726 }
1727 #endif /* _SYSCALL32_IMPL */
1728
1729 if (lockfs.lf_comlen &&
1730 lockfs.lf_comment && lockfs_out.lf_comment)
1731 if (copyout(lockfs_out.lf_comment,
1732 lockfs.lf_comment, lockfs.lf_comlen))
1733 return (EFAULT);
1734 return (0);
1735
1736 case _FIOSATIME:
1737 /*
1738 * set access time
1739 */
1740
1741 /*
1742 * if mounted w/o atime, return quietly.
1743 * I briefly thought about returning ENOSYS, but
1744 * figured that most apps would consider this fatal
1745 * but the idea is to make this as seamless as poss.
1746 */
1747 if (ufsvfsp->vfs_noatime)
1748 return (0);
1749
1750 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1751 ULOCKFS_SETATTR_MASK);
1752 if (error)
1753 return (error);
1754
1755 if (ulp) {
1756 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1757 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1758 TOP_SETATTR, trans_size);
1759 }
1760
1761 error = ufs_fiosatime(vp, (struct timeval *)arg,
1762 flag, cr);
1763
1764 if (ulp) {
1765 TRANS_END_CSYNC(ufsvfsp, error, issync,
1766 TOP_SETATTR, trans_size);
1767 ufs_lockfs_end(ulp);
1768 }
1769 return (error);
1770
1771 case _FIOSDIO:
1772 /*
1773 * set delayed-io
1774 */
1775 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1776
1777 case _FIOGDIO:
1778 /*
1779 * get delayed-io
1780 */
1781 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1782
1783 case _FIOIO:
1784 /*
1785 * inode open
1786 */
1787 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1788 ULOCKFS_VGET_MASK);
1789 if (error)
1790 return (error);
1791
1792 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1793
1794 if (ulp) {
1795 ufs_lockfs_end(ulp);
1796 }
1797 return (error);
1798
1799 case _FIOFFS:
1800 /*
1801 * file system flush (push w/invalidate)
1802 */
1803 if ((caddr_t)arg != NULL)
1804 return (EINVAL);
1805 return (ufs_fioffs(vp, NULL, cr));
1806
1807 case _FIOISBUSY:
1808 /*
1809 * Contract-private interface for Legato
1810 * Purge this vnode from the DNLC and decide
1811 * if this vnode is busy (*arg == 1) or not
1812 * (*arg == 0)
1813 */
1814 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1815 return (EPERM);
1816 error = ufs_fioisbusy(vp, (int *)arg, cr);
1817 return (error);
1818
1819 case _FIODIRECTIO:
1820 return (ufs_fiodirectio(vp, (int)arg, cr));
1821
1822 case _FIOTUNE:
1823 /*
1824 * Tune the file system (aka setting fs attributes)
1825 */
1826 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1827 ULOCKFS_SETATTR_MASK);
1828 if (error)
1829 return (error);
1830
1831 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1832
1833 if (ulp)
1834 ufs_lockfs_end(ulp);
1835 return (error);
1836
1837 case _FIOLOGENABLE:
1838 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1839 return (EPERM);
1840 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1841
1842 case _FIOLOGDISABLE:
1843 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1844 return (EPERM);
1845 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1846
1847 case _FIOISLOG:
1848 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1849
1850 case _FIOSNAPSHOTCREATE_MULTI:
1851 {
1852 struct fiosnapcreate_multi fc, *fcp;
1853 size_t fcm_size;
1854
1855 if (copyin((void *)arg, &fc, sizeof (fc)))
1856 return (EFAULT);
1857 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1858 return (EINVAL);
1859 fcm_size = sizeof (struct fiosnapcreate_multi) +
1860 (fc.backfilecount - 1) * sizeof (int);
1861 fcp = (struct fiosnapcreate_multi *)
1862 kmem_alloc(fcm_size, KM_SLEEP);
1863 if (copyin((void *)arg, fcp, fcm_size)) {
1864 kmem_free(fcp, fcm_size);
1865 return (EFAULT);
1866 }
1867 error = ufs_snap_create(vp, fcp, cr);
1868 /*
1869 * Do copyout even if there is an error because
1870 * the details of error is stored in fcp.
1871 */
1872 if (copyout(fcp, (void *)arg, fcm_size))
1873 error = EFAULT;
1874 kmem_free(fcp, fcm_size);
1875 return (error);
1876 }
1877
1878 case _FIOSNAPSHOTDELETE:
1879 {
1880 struct fiosnapdelete fc;
1881
1882 if (copyin((void *)arg, &fc, sizeof (fc)))
1883 return (EFAULT);
1884 error = ufs_snap_delete(vp, &fc, cr);
1885 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1886 error = EFAULT;
1887 return (error);
1888 }
1889
1890 case _FIOGETSUPERBLOCK:
1891 if (copyout(fs, (void *)arg, SBSIZE))
1892 return (EFAULT);
1893 return (0);
1894
1895 case _FIOGETMAXPHYS:
1896 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1897 return (EFAULT);
1898 return (0);
1899
1900 /*
1901 * The following 3 ioctls are for TSufs support
1902 * although could potentially be used elsewhere
1903 */
1904 case _FIO_SET_LUFS_DEBUG:
1905 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1906 return (EPERM);
1907 lufs_debug = (uint32_t)arg;
1908 return (0);
1909
1910 case _FIO_SET_LUFS_ERROR:
1911 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1912 return (EPERM);
1913 TRANS_SETERROR(ufsvfsp);
1914 return (0);
1915
1916 case _FIO_GET_TOP_STATS:
1917 {
1918 fio_lufs_stats_t *ls;
1919 ml_unit_t *ul = ufsvfsp->vfs_log;
1920
1921 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1922 ls->ls_debug = ul->un_debug; /* return debug value */
1923 /* Copy stucture if statistics are being kept */
1924 if (ul->un_logmap->mtm_tops) {
1925 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1926 }
1927 error = 0;
1928 if (copyout(ls, (void *)arg, sizeof (*ls)))
1929 error = EFAULT;
1930 kmem_free(ls, sizeof (*ls));
1931 return (error);
1932 }
1933
1934 case _FIO_SEEK_DATA:
1935 case _FIO_SEEK_HOLE:
1936 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1937 return (EFAULT);
1938 /* offset paramater is in/out */
1939 error = ufs_fio_holey(vp, cmd, &off);
1940 if (error)
1941 return (error);
1942 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1943 return (EFAULT);
1944 return (0);
1945
1946 case _FIO_COMPRESSED:
1947 {
1948 /*
1949 * This is a project private ufs ioctl() to mark
1950 * the inode as that belonging to a compressed
1951 * file. This is used to mark individual
1952 * compressed files in a miniroot archive.
1953 * The files compressed in this manner are
1954 * automatically decompressed by the dcfs filesystem
1955 * (via an interception in ufs_lookup - see decompvp())
1956 * which is layered on top of ufs on a system running
1957 * from the archive. See uts/common/fs/dcfs for details.
1958 * This ioctl only marks the file as compressed - the
1959 * actual compression is done by fiocompress (a
1960 * userland utility) which invokes this ioctl().
1961 */
1962 struct inode *ip = VTOI(vp);
1963
1964 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1965 ULOCKFS_SETATTR_MASK);
1966 if (error)
1967 return (error);
1968
1969 if (ulp) {
1970 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1971 TOP_IUPDAT_SIZE(ip));
1972 }
1973
1974 error = ufs_mark_compressed(vp);
1975
1976 if (ulp) {
1977 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1978 TOP_IUPDAT_SIZE(ip));
1979 ufs_lockfs_end(ulp);
1980 }
1981
1982 return (error);
1983
1984 }
1985
1986 default:
1987 return (ENOTTY);
1988 }
1989 }
1990
1991
1992 /* ARGSUSED */
1993 static int
ufs_getattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)1994 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1995 struct cred *cr, caller_context_t *ct)
1996 {
1997 struct inode *ip = VTOI(vp);
1998 struct ufsvfs *ufsvfsp;
1999 int err;
2000
2001 if (vap->va_mask == AT_SIZE) {
2002 /*
2003 * for performance, if only the size is requested don't bother
2004 * with anything else.
2005 */
2006 UFS_GET_ISIZE(&vap->va_size, ip);
2007 return (0);
2008 }
2009
2010 /*
2011 * inlined lockfs checks
2012 */
2013 ufsvfsp = ip->i_ufsvfs;
2014 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2015 err = EIO;
2016 goto out;
2017 }
2018
2019 rw_enter(&ip->i_contents, RW_READER);
2020 /*
2021 * Return all the attributes. This should be refined so
2022 * that it only returns what's asked for.
2023 */
2024
2025 /*
2026 * Copy from inode table.
2027 */
2028 vap->va_type = vp->v_type;
2029 vap->va_mode = ip->i_mode & MODEMASK;
2030 /*
2031 * If there is an ACL and there is a mask entry, then do the
2032 * extra work that completes the equivalent of an acltomode(3)
2033 * call. According to POSIX P1003.1e, the acl mask should be
2034 * returned in the group permissions field.
2035 *
2036 * - start with the original permission and mode bits (from above)
2037 * - clear the group owner bits
2038 * - add in the mask bits.
2039 */
2040 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2041 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2042 vap->va_mode |=
2043 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2044 }
2045 vap->va_uid = ip->i_uid;
2046 vap->va_gid = ip->i_gid;
2047 vap->va_fsid = ip->i_dev;
2048 vap->va_nodeid = (ino64_t)ip->i_number;
2049 vap->va_nlink = ip->i_nlink;
2050 vap->va_size = ip->i_size;
2051 if (vp->v_type == VCHR || vp->v_type == VBLK)
2052 vap->va_rdev = ip->i_rdev;
2053 else
2054 vap->va_rdev = 0; /* not a b/c spec. */
2055 mutex_enter(&ip->i_tlock);
2056 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2057 vap->va_seq = ip->i_seq;
2058 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2059 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2060 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2061 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2062 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2063 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2064 mutex_exit(&ip->i_tlock);
2065
2066 switch (ip->i_mode & IFMT) {
2067
2068 case IFBLK:
2069 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2070 break;
2071
2072 case IFCHR:
2073 vap->va_blksize = MAXBSIZE;
2074 break;
2075
2076 default:
2077 vap->va_blksize = ip->i_fs->fs_bsize;
2078 break;
2079 }
2080 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2081 rw_exit(&ip->i_contents);
2082 err = 0;
2083
2084 out:
2085 return (err);
2086 }
2087
2088 /*
2089 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2090 * The i_contents lock is already held by the caller and we need to
2091 * declare the inode as 'void *' argument.
2092 */
2093 static int
ufs_priv_access(void * vip,int mode,struct cred * cr)2094 ufs_priv_access(void *vip, int mode, struct cred *cr)
2095 {
2096 struct inode *ip = vip;
2097
2098 return (ufs_iaccess(ip, mode, cr, 0));
2099 }
2100
2101 /*ARGSUSED4*/
2102 static int
ufs_setattr(struct vnode * vp,struct vattr * vap,int flags,struct cred * cr,caller_context_t * ct)2103 ufs_setattr(
2104 struct vnode *vp,
2105 struct vattr *vap,
2106 int flags,
2107 struct cred *cr,
2108 caller_context_t *ct)
2109 {
2110 struct inode *ip = VTOI(vp);
2111 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2112 struct fs *fs;
2113 struct ulockfs *ulp;
2114 char *errmsg1;
2115 char *errmsg2;
2116 long blocks;
2117 long int mask = vap->va_mask;
2118 size_t len1, len2;
2119 int issync;
2120 int trans_size;
2121 int dotrans;
2122 int dorwlock;
2123 int error;
2124 int owner_change;
2125 int dodqlock;
2126 timestruc_t now;
2127 vattr_t oldva;
2128 int retry = 1;
2129 int indeadlock;
2130
2131 /*
2132 * Cannot set these attributes.
2133 */
2134 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2135 return (EINVAL);
2136
2137 /*
2138 * check for forced unmount
2139 */
2140 if (ufsvfsp == NULL)
2141 return (EIO);
2142
2143 fs = ufsvfsp->vfs_fs;
2144 if (fs->fs_ronly != 0)
2145 return (EROFS);
2146
2147 again:
2148 errmsg1 = NULL;
2149 errmsg2 = NULL;
2150 dotrans = 0;
2151 dorwlock = 0;
2152 dodqlock = 0;
2153
2154 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2155 if (error)
2156 goto out;
2157
2158 /*
2159 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2160 * This follows the protocol for read()/write().
2161 */
2162 if (vp->v_type != VDIR) {
2163 /*
2164 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2165 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2166 * possible, retries the operation.
2167 */
2168 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2169 if (indeadlock) {
2170 if (ulp)
2171 ufs_lockfs_end(ulp);
2172 goto again;
2173 }
2174 dorwlock = 1;
2175 }
2176
2177 /*
2178 * Truncate file. Must have write permission and not be a directory.
2179 */
2180 if (mask & AT_SIZE) {
2181 rw_enter(&ip->i_contents, RW_WRITER);
2182 if (vp->v_type == VDIR) {
2183 error = EISDIR;
2184 goto update_inode;
2185 }
2186 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2187 goto update_inode;
2188
2189 rw_exit(&ip->i_contents);
2190 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2191 if (error) {
2192 rw_enter(&ip->i_contents, RW_WRITER);
2193 goto update_inode;
2194 }
2195
2196 if (error == 0 && vap->va_size)
2197 vnevent_truncate(vp, ct);
2198 }
2199
2200 if (ulp) {
2201 trans_size = (int)TOP_SETATTR_SIZE(ip);
2202 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2203 ++dotrans;
2204 }
2205
2206 /*
2207 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2208 * This follows the protocol established by
2209 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2210 */
2211 if (vp->v_type == VDIR) {
2212 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2213 retry_dir);
2214 if (indeadlock)
2215 goto again;
2216 dorwlock = 1;
2217 }
2218
2219 /*
2220 * Grab quota lock if we are changing the file's owner.
2221 */
2222 if (mask & AT_UID) {
2223 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2224 dodqlock = 1;
2225 }
2226 rw_enter(&ip->i_contents, RW_WRITER);
2227
2228 oldva.va_mode = ip->i_mode;
2229 oldva.va_uid = ip->i_uid;
2230 oldva.va_gid = ip->i_gid;
2231
2232 vap->va_mask &= ~AT_SIZE;
2233
2234 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2235 ufs_priv_access, ip);
2236 if (error)
2237 goto update_inode;
2238
2239 mask = vap->va_mask;
2240
2241 /*
2242 * Change file access modes.
2243 */
2244 if (mask & AT_MODE) {
2245 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2246 TRANS_INODE(ufsvfsp, ip);
2247 ip->i_flag |= ICHG;
2248 if (stickyhack) {
2249 mutex_enter(&vp->v_lock);
2250 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2251 vp->v_flag |= VSWAPLIKE;
2252 else
2253 vp->v_flag &= ~VSWAPLIKE;
2254 mutex_exit(&vp->v_lock);
2255 }
2256 }
2257 if (mask & (AT_UID|AT_GID)) {
2258 if (mask & AT_UID) {
2259 /*
2260 * Don't change ownership of the quota inode.
2261 */
2262 if (ufsvfsp->vfs_qinod == ip) {
2263 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2264 error = EINVAL;
2265 goto update_inode;
2266 }
2267
2268 /*
2269 * No real ownership change.
2270 */
2271 if (ip->i_uid == vap->va_uid) {
2272 blocks = 0;
2273 owner_change = 0;
2274 }
2275 /*
2276 * Remove the blocks and the file, from the old user's
2277 * quota.
2278 */
2279 else {
2280 blocks = ip->i_blocks;
2281 owner_change = 1;
2282
2283 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2284 (char **)NULL, (size_t *)NULL);
2285 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2286 (uid_t)ip->i_uid, /* force */ 1, cr,
2287 (char **)NULL, (size_t *)NULL);
2288 dqrele(ip->i_dquot);
2289 }
2290
2291 ip->i_uid = vap->va_uid;
2292
2293 /*
2294 * There is a real ownership change.
2295 */
2296 if (owner_change) {
2297 /*
2298 * Add the blocks and the file to the new
2299 * user's quota.
2300 */
2301 ip->i_dquot = getinoquota(ip);
2302 (void) chkdq(ip, blocks, /* force */ 1, cr,
2303 &errmsg1, &len1);
2304 (void) chkiq(ufsvfsp, /* change */ 1,
2305 (struct inode *)NULL, (uid_t)ip->i_uid,
2306 /* force */ 1, cr, &errmsg2, &len2);
2307 }
2308 }
2309 if (mask & AT_GID) {
2310 ip->i_gid = vap->va_gid;
2311 }
2312 TRANS_INODE(ufsvfsp, ip);
2313 ip->i_flag |= ICHG;
2314 }
2315 /*
2316 * Change file access or modified times.
2317 */
2318 if (mask & (AT_ATIME|AT_MTIME)) {
2319 /* Check that the time value is within ufs range */
2320 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2321 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2322 error = EOVERFLOW;
2323 goto update_inode;
2324 }
2325
2326 /*
2327 * if the "noaccess" mount option is set and only atime
2328 * update is requested, do nothing. No error is returned.
2329 */
2330 if ((ufsvfsp->vfs_noatime) &&
2331 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2332 goto skip_atime;
2333
2334 if (mask & AT_ATIME) {
2335 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2336 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2337 ip->i_flag &= ~IACC;
2338 }
2339 if (mask & AT_MTIME) {
2340 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2341 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2342 gethrestime(&now);
2343 if (now.tv_sec > TIME32_MAX) {
2344 /*
2345 * In 2038, ctime sticks forever..
2346 */
2347 ip->i_ctime.tv_sec = TIME32_MAX;
2348 ip->i_ctime.tv_usec = 0;
2349 } else {
2350 ip->i_ctime.tv_sec = now.tv_sec;
2351 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2352 }
2353 ip->i_flag &= ~(IUPD|ICHG);
2354 ip->i_flag |= IMODTIME;
2355 }
2356 TRANS_INODE(ufsvfsp, ip);
2357 ip->i_flag |= IMOD;
2358 }
2359
2360 skip_atime:
2361 /*
2362 * The presence of a shadow inode may indicate an ACL, but does
2363 * not imply an ACL. Future FSD types should be handled here too
2364 * and check for the presence of the attribute-specific data
2365 * before referencing it.
2366 */
2367 if (ip->i_shadow) {
2368 /*
2369 * XXX if ufs_iupdat is changed to sandbagged write fix
2370 * ufs_acl_setattr to push ip to keep acls consistent
2371 *
2372 * Suppress out of inodes messages if we will retry.
2373 */
2374 if (retry)
2375 ip->i_flag |= IQUIET;
2376 error = ufs_acl_setattr(ip, vap, cr);
2377 ip->i_flag &= ~IQUIET;
2378 }
2379
2380 update_inode:
2381 /*
2382 * Setattr always increases the sequence number
2383 */
2384 ip->i_seq++;
2385
2386 /*
2387 * if nfsd and not logging; push synchronously
2388 */
2389 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2390 ufs_iupdat(ip, 1);
2391 } else {
2392 ITIMES_NOLOCK(ip);
2393 }
2394
2395 rw_exit(&ip->i_contents);
2396 if (dodqlock) {
2397 rw_exit(&ufsvfsp->vfs_dqrwlock);
2398 }
2399 if (dorwlock)
2400 rw_exit(&ip->i_rwlock);
2401
2402 if (ulp) {
2403 if (dotrans) {
2404 int terr = 0;
2405 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2406 trans_size);
2407 if (error == 0)
2408 error = terr;
2409 }
2410 ufs_lockfs_end(ulp);
2411 }
2412 out:
2413 /*
2414 * If out of inodes or blocks, see if we can free something
2415 * up from the delete queue.
2416 */
2417 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2418 ufs_delete_drain_wait(ufsvfsp, 1);
2419 retry = 0;
2420 if (errmsg1 != NULL)
2421 kmem_free(errmsg1, len1);
2422 if (errmsg2 != NULL)
2423 kmem_free(errmsg2, len2);
2424 goto again;
2425 }
2426 if (errmsg1 != NULL) {
2427 uprintf(errmsg1);
2428 kmem_free(errmsg1, len1);
2429 }
2430 if (errmsg2 != NULL) {
2431 uprintf(errmsg2);
2432 kmem_free(errmsg2, len2);
2433 }
2434 return (error);
2435 }
2436
2437 /*ARGSUSED*/
2438 static int
ufs_access(struct vnode * vp,int mode,int flags,struct cred * cr,caller_context_t * ct)2439 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2440 caller_context_t *ct)
2441 {
2442 struct inode *ip = VTOI(vp);
2443
2444 if (ip->i_ufsvfs == NULL)
2445 return (EIO);
2446
2447 /*
2448 * The ufs_iaccess function wants to be called with
2449 * mode bits expressed as "ufs specific" bits.
2450 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2451 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2452 * But since they're the same we just pass the vnode mode
2453 * bit but just verify that assumption at compile time.
2454 */
2455 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2456 #error "ufs_access needs to map Vmodes to Imodes"
2457 #endif
2458 return (ufs_iaccess(ip, mode, cr, 1));
2459 }
2460
2461 /* ARGSUSED */
2462 static int
ufs_readlink(struct vnode * vp,struct uio * uiop,struct cred * cr,caller_context_t * ct)2463 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2464 caller_context_t *ct)
2465 {
2466 struct inode *ip = VTOI(vp);
2467 struct ufsvfs *ufsvfsp;
2468 struct ulockfs *ulp;
2469 int error;
2470 int fastsymlink;
2471
2472 if (vp->v_type != VLNK) {
2473 error = EINVAL;
2474 goto nolockout;
2475 }
2476
2477 /*
2478 * If the symbolic link is empty there is nothing to read.
2479 * Fast-track these empty symbolic links
2480 */
2481 if (ip->i_size == 0) {
2482 error = 0;
2483 goto nolockout;
2484 }
2485
2486 ufsvfsp = ip->i_ufsvfs;
2487 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2488 if (error)
2489 goto nolockout;
2490 /*
2491 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2492 */
2493 again:
2494 fastsymlink = 0;
2495 if (ip->i_flag & IFASTSYMLNK) {
2496 rw_enter(&ip->i_rwlock, RW_READER);
2497 rw_enter(&ip->i_contents, RW_READER);
2498 if (ip->i_flag & IFASTSYMLNK) {
2499 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2500 (ip->i_fs->fs_ronly == 0) &&
2501 (!ufsvfsp->vfs_noatime)) {
2502 mutex_enter(&ip->i_tlock);
2503 ip->i_flag |= IACC;
2504 mutex_exit(&ip->i_tlock);
2505 }
2506 error = uiomove((caddr_t)&ip->i_db[1],
2507 MIN(ip->i_size, uiop->uio_resid),
2508 UIO_READ, uiop);
2509 ITIMES(ip);
2510 ++fastsymlink;
2511 }
2512 rw_exit(&ip->i_contents);
2513 rw_exit(&ip->i_rwlock);
2514 }
2515 if (!fastsymlink) {
2516 ssize_t size; /* number of bytes read */
2517 caddr_t basep; /* pointer to input data */
2518 ino_t ino;
2519 long igen;
2520 struct uio tuio; /* temp uio struct */
2521 struct uio *tuiop;
2522 iovec_t tiov; /* temp iovec struct */
2523 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2524 int tflag = 0; /* flag to indicate temp vars used */
2525
2526 ino = ip->i_number;
2527 igen = ip->i_gen;
2528 size = uiop->uio_resid;
2529 basep = uiop->uio_iov->iov_base;
2530 tuiop = uiop;
2531
2532 rw_enter(&ip->i_rwlock, RW_WRITER);
2533 rw_enter(&ip->i_contents, RW_WRITER);
2534 if (ip->i_flag & IFASTSYMLNK) {
2535 rw_exit(&ip->i_contents);
2536 rw_exit(&ip->i_rwlock);
2537 goto again;
2538 }
2539
2540 /* can this be a fast symlink and is it a user buffer? */
2541 if (ip->i_size <= FSL_SIZE &&
2542 (uiop->uio_segflg == UIO_USERSPACE ||
2543 uiop->uio_segflg == UIO_USERISPACE)) {
2544
2545 bzero(&tuio, sizeof (struct uio));
2546 /*
2547 * setup a kernel buffer to read link into. this
2548 * is to fix a race condition where the user buffer
2549 * got corrupted before copying it into the inode.
2550 */
2551 size = ip->i_size;
2552 tiov.iov_len = size;
2553 tiov.iov_base = kbuf;
2554 tuio.uio_iov = &tiov;
2555 tuio.uio_iovcnt = 1;
2556 tuio.uio_offset = uiop->uio_offset;
2557 tuio.uio_segflg = UIO_SYSSPACE;
2558 tuio.uio_fmode = uiop->uio_fmode;
2559 tuio.uio_extflg = uiop->uio_extflg;
2560 tuio.uio_limit = uiop->uio_limit;
2561 tuio.uio_resid = size;
2562
2563 basep = tuio.uio_iov->iov_base;
2564 tuiop = &tuio;
2565 tflag = 1;
2566 }
2567
2568 error = rdip(ip, tuiop, 0, cr);
2569 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2570 rw_exit(&ip->i_contents);
2571 rw_exit(&ip->i_rwlock);
2572 goto out;
2573 }
2574
2575 if (tflag == 0)
2576 size -= uiop->uio_resid;
2577
2578 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2579 ip->i_size == size) || (tflag == 1 &&
2580 tuio.uio_resid == 0)) {
2581 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2582 if (error == 0) {
2583 ip->i_flag |= IFASTSYMLNK;
2584 /*
2585 * free page
2586 */
2587 (void) VOP_PUTPAGE(ITOV(ip),
2588 (offset_t)0, PAGESIZE,
2589 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2590 cr, ct);
2591 } else {
2592 int i;
2593 /* error, clear garbage left behind */
2594 for (i = 1; i < NDADDR; i++)
2595 ip->i_db[i] = 0;
2596 for (i = 0; i < NIADDR; i++)
2597 ip->i_ib[i] = 0;
2598 }
2599 }
2600 if (tflag == 1) {
2601 /* now, copy it into the user buffer */
2602 error = uiomove((caddr_t)kbuf,
2603 MIN(size, uiop->uio_resid),
2604 UIO_READ, uiop);
2605 }
2606 rw_exit(&ip->i_contents);
2607 rw_exit(&ip->i_rwlock);
2608 }
2609 out:
2610 if (ulp) {
2611 ufs_lockfs_end(ulp);
2612 }
2613 nolockout:
2614 return (error);
2615 }
2616
2617 /* ARGSUSED */
2618 static int
ufs_fsync(struct vnode * vp,int syncflag,struct cred * cr,caller_context_t * ct)2619 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
2620 caller_context_t *ct)
2621 {
2622 struct inode *ip = VTOI(vp);
2623 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2624 struct ulockfs *ulp;
2625 int error;
2626
2627 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2628 if (error)
2629 return (error);
2630
2631 if (TRANS_ISTRANS(ufsvfsp)) {
2632 /*
2633 * First push out any data pages
2634 */
2635 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2636 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2637 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2638 0, CRED(), ct);
2639 if (error)
2640 goto out;
2641 }
2642
2643 /*
2644 * Delta any delayed inode times updates
2645 * and push inode to log.
2646 * All other inode deltas will have already been delta'd
2647 * and will be pushed during the commit.
2648 */
2649 if (!(syncflag & FDSYNC) &&
2650 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2651 if (ulp) {
2652 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2653 TOP_SYNCIP_SIZE);
2654 }
2655 rw_enter(&ip->i_contents, RW_READER);
2656 mutex_enter(&ip->i_tlock);
2657 ip->i_flag &= ~IMODTIME;
2658 mutex_exit(&ip->i_tlock);
2659 ufs_iupdat(ip, I_SYNC);
2660 rw_exit(&ip->i_contents);
2661 if (ulp) {
2662 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2663 TOP_SYNCIP_SIZE);
2664 }
2665 }
2666
2667 /*
2668 * Commit the Moby transaction
2669 *
2670 * Deltas have already been made so we just need to
2671 * commit them with a synchronous transaction.
2672 * TRANS_BEGIN_SYNC() will return an error
2673 * if there are no deltas to commit, for an
2674 * empty transaction.
2675 */
2676 if (ulp) {
2677 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2678 error);
2679 if (error) {
2680 error = 0; /* commit wasn't needed */
2681 goto out;
2682 }
2683 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2684 TOP_COMMIT_SIZE);
2685 }
2686 } else { /* not logging */
2687 if (!(IS_SWAPVP(vp)))
2688 if (syncflag & FNODSYNC) {
2689 /* Just update the inode only */
2690 TRANS_IUPDAT(ip, 1);
2691 error = 0;
2692 } else if (syncflag & FDSYNC)
2693 /* Do data-synchronous writes */
2694 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2695 else
2696 /* Do synchronous writes */
2697 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2698
2699 rw_enter(&ip->i_contents, RW_WRITER);
2700 if (!error)
2701 error = ufs_sync_indir(ip);
2702 rw_exit(&ip->i_contents);
2703 }
2704 out:
2705 if (ulp) {
2706 ufs_lockfs_end(ulp);
2707 }
2708 return (error);
2709 }
2710
2711 /*ARGSUSED*/
2712 static void
ufs_inactive(struct vnode * vp,struct cred * cr,caller_context_t * ct)2713 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2714 {
2715 ufs_iinactive(VTOI(vp));
2716 }
2717
2718 /*
2719 * Unix file system operations having to do with directory manipulation.
2720 */
2721 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2722 /* ARGSUSED */
2723 static int
ufs_lookup(struct vnode * dvp,char * nm,struct vnode ** vpp,struct pathname * pnp,int flags,struct vnode * rdir,struct cred * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)2724 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2725 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2726 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2727 {
2728 struct inode *ip;
2729 struct inode *sip;
2730 struct inode *xip;
2731 struct ufsvfs *ufsvfsp;
2732 struct ulockfs *ulp;
2733 struct vnode *vp;
2734 int error;
2735
2736 /*
2737 * Check flags for type of lookup (regular file or attribute file)
2738 */
2739
2740 ip = VTOI(dvp);
2741
2742 if (flags & LOOKUP_XATTR) {
2743
2744 /*
2745 * If not mounted with XATTR support then return EINVAL
2746 */
2747
2748 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2749 return (EINVAL);
2750 /*
2751 * We don't allow recursive attributes...
2752 * Maybe someday we will.
2753 */
2754 if ((ip->i_cflags & IXATTR)) {
2755 return (EINVAL);
2756 }
2757
2758 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2759 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2760 if (error) {
2761 *vpp = NULL;
2762 goto out;
2763 }
2764
2765 vp = ITOV(sip);
2766 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2767 }
2768
2769 /*
2770 * Check accessibility of directory.
2771 */
2772 if (vp == DNLC_NO_VNODE) {
2773 VN_RELE(vp);
2774 error = ENOENT;
2775 goto out;
2776 }
2777 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2778 VN_RELE(vp);
2779 goto out;
2780 }
2781
2782 *vpp = vp;
2783 return (0);
2784 }
2785
2786 /*
2787 * Check for a null component, which we should treat as
2788 * looking at dvp from within it's parent, so we don't
2789 * need a call to ufs_iaccess(), as it has already been
2790 * done.
2791 */
2792 if (nm[0] == 0) {
2793 VN_HOLD(dvp);
2794 error = 0;
2795 *vpp = dvp;
2796 goto out;
2797 }
2798
2799 /*
2800 * Check for "." ie itself. this is a quick check and
2801 * avoids adding "." into the dnlc (which have been seen
2802 * to occupy >10% of the cache).
2803 */
2804 if ((nm[0] == '.') && (nm[1] == 0)) {
2805 /*
2806 * Don't return without checking accessibility
2807 * of the directory. We only need the lock if
2808 * we are going to return it.
2809 */
2810 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2811 VN_HOLD(dvp);
2812 *vpp = dvp;
2813 }
2814 goto out;
2815 }
2816
2817 /*
2818 * Fast path: Check the directory name lookup cache.
2819 */
2820 if (vp = dnlc_lookup(dvp, nm)) {
2821 /*
2822 * Check accessibility of directory.
2823 */
2824 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2825 VN_RELE(vp);
2826 goto out;
2827 }
2828 if (vp == DNLC_NO_VNODE) {
2829 VN_RELE(vp);
2830 error = ENOENT;
2831 goto out;
2832 }
2833 xip = VTOI(vp);
2834 ulp = NULL;
2835 goto fastpath;
2836 }
2837
2838 /*
2839 * Keep the idle queue from getting too long by
2840 * idling two inodes before attempting to allocate another.
2841 * This operation must be performed before entering
2842 * lockfs or a transaction.
2843 */
2844 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2845 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2846 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2847 ufs_idle_some(ufs_lookup_idle_count);
2848 }
2849
2850 retry_lookup:
2851 /*
2852 * Check accessibility of directory.
2853 */
2854 if (error = ufs_diraccess(ip, IEXEC, cr))
2855 goto out;
2856
2857 ufsvfsp = ip->i_ufsvfs;
2858 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2859 if (error)
2860 goto out;
2861
2862 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2863
2864 fastpath:
2865 if (error == 0) {
2866 ip = xip;
2867 *vpp = ITOV(ip);
2868
2869 /*
2870 * If vnode is a device return special vnode instead.
2871 */
2872 if (IS_DEVVP(*vpp)) {
2873 struct vnode *newvp;
2874
2875 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2876 cr);
2877 VN_RELE(*vpp);
2878 if (newvp == NULL)
2879 error = ENOSYS;
2880 else
2881 *vpp = newvp;
2882 } else if (ip->i_cflags & ICOMPRESS) {
2883 struct vnode *newvp;
2884
2885 /*
2886 * Compressed file, substitute dcfs vnode
2887 */
2888 newvp = decompvp(*vpp, cr, ct);
2889 VN_RELE(*vpp);
2890 if (newvp == NULL)
2891 error = ENOSYS;
2892 else
2893 *vpp = newvp;
2894 }
2895 }
2896 if (ulp) {
2897 ufs_lockfs_end(ulp);
2898 }
2899
2900 if (error == EAGAIN)
2901 goto retry_lookup;
2902
2903 out:
2904 return (error);
2905 }
2906
2907 /*ARGSUSED*/
2908 static int
ufs_create(struct vnode * dvp,char * name,struct vattr * vap,enum vcexcl excl,int mode,struct vnode ** vpp,struct cred * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)2909 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2910 int mode, struct vnode **vpp, struct cred *cr, int flag,
2911 caller_context_t *ct, vsecattr_t *vsecp)
2912 {
2913 struct inode *ip;
2914 struct inode *xip;
2915 struct inode *dip;
2916 struct vnode *xvp;
2917 struct ufsvfs *ufsvfsp;
2918 struct ulockfs *ulp;
2919 int error;
2920 int issync;
2921 int truncflag;
2922 int trans_size;
2923 int noentry;
2924 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2925 int retry = 1;
2926 int indeadlock;
2927
2928 again:
2929 ip = VTOI(dvp);
2930 ufsvfsp = ip->i_ufsvfs;
2931 truncflag = 0;
2932
2933 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2934 if (error)
2935 goto out;
2936
2937 if (ulp) {
2938 trans_size = (int)TOP_CREATE_SIZE(ip);
2939 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2940 }
2941
2942 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2943 vap->va_mode &= ~VSVTX;
2944
2945 if (*name == '\0') {
2946 /*
2947 * Null component name refers to the directory itself.
2948 */
2949 VN_HOLD(dvp);
2950 /*
2951 * Even though this is an error case, we need to grab the
2952 * quota lock since the error handling code below is common.
2953 */
2954 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2955 rw_enter(&ip->i_contents, RW_WRITER);
2956 error = EEXIST;
2957 } else {
2958 xip = NULL;
2959 noentry = 0;
2960 /*
2961 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2962 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2963 * possible, retries the operation.
2964 */
2965 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2966 retry_dir);
2967 if (indeadlock)
2968 goto again;
2969
2970 xvp = dnlc_lookup(dvp, name);
2971 if (xvp == DNLC_NO_VNODE) {
2972 noentry = 1;
2973 VN_RELE(xvp);
2974 xvp = NULL;
2975 }
2976 if (xvp) {
2977 rw_exit(&ip->i_rwlock);
2978 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2979 VN_RELE(xvp);
2980 } else {
2981 error = EEXIST;
2982 xip = VTOI(xvp);
2983 }
2984 } else {
2985 /*
2986 * Suppress file system full message if we will retry
2987 */
2988 error = ufs_direnter_cm(ip, name, DE_CREATE,
2989 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2990 if (error == EAGAIN) {
2991 if (ulp) {
2992 TRANS_END_CSYNC(ufsvfsp, error, issync,
2993 TOP_CREATE, trans_size);
2994 ufs_lockfs_end(ulp);
2995 }
2996 goto again;
2997 }
2998 rw_exit(&ip->i_rwlock);
2999 }
3000 ip = xip;
3001 if (ip != NULL) {
3002 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
3003 rw_enter(&ip->i_contents, RW_WRITER);
3004 }
3005 }
3006
3007 /*
3008 * If the file already exists and this is a non-exclusive create,
3009 * check permissions and allow access for non-directories.
3010 * Read-only create of an existing directory is also allowed.
3011 * We fail an exclusive create of anything which already exists.
3012 */
3013 if (error == EEXIST) {
3014 dip = VTOI(dvp);
3015 if (excl == NONEXCL) {
3016 if ((((ip->i_mode & IFMT) == IFDIR) ||
3017 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3018 (mode & IWRITE))
3019 error = EISDIR;
3020 else if (mode)
3021 error = ufs_iaccess(ip, mode, cr, 0);
3022 else
3023 error = 0;
3024 }
3025 if (error) {
3026 rw_exit(&ip->i_contents);
3027 rw_exit(&ufsvfsp->vfs_dqrwlock);
3028 VN_RELE(ITOV(ip));
3029 goto unlock;
3030 }
3031 /*
3032 * If the error EEXIST was set, then i_seq can not
3033 * have been updated. The sequence number interface
3034 * is defined such that a non-error VOP_CREATE must
3035 * increase the dir va_seq it by at least one. If we
3036 * have cleared the error, increase i_seq. Note that
3037 * we are increasing the dir i_seq and in rare cases
3038 * ip may actually be from the dvp, so we already have
3039 * the locks and it will not be subject to truncation.
3040 * In case we have to update i_seq of the parent
3041 * directory dip, we have to defer it till we have
3042 * released our locks on ip due to lock ordering requirements.
3043 */
3044 if (ip != dip)
3045 defer_dip_seq_update = 1;
3046 else
3047 ip->i_seq++;
3048
3049 if (((ip->i_mode & IFMT) == IFREG) &&
3050 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3051 /*
3052 * Truncate regular files, if requested by caller.
3053 * Grab i_rwlock to make sure no one else is
3054 * currently writing to the file (we promised
3055 * bmap we would do this).
3056 * Must get the locks in the correct order.
3057 */
3058 if (ip->i_size == 0) {
3059 ip->i_flag |= ICHG | IUPD;
3060 ip->i_seq++;
3061 TRANS_INODE(ufsvfsp, ip);
3062 } else {
3063 /*
3064 * Large Files: Why this check here?
3065 * Though we do it in vn_create() we really
3066 * want to guarantee that we do not destroy
3067 * Large file data by atomically checking
3068 * the size while holding the contents
3069 * lock.
3070 */
3071 if (flag && !(flag & FOFFMAX) &&
3072 ((ip->i_mode & IFMT) == IFREG) &&
3073 (ip->i_size > (offset_t)MAXOFF32_T)) {
3074 rw_exit(&ip->i_contents);
3075 rw_exit(&ufsvfsp->vfs_dqrwlock);
3076 error = EOVERFLOW;
3077 goto unlock;
3078 }
3079 if (TRANS_ISTRANS(ufsvfsp))
3080 truncflag++;
3081 else {
3082 rw_exit(&ip->i_contents);
3083 rw_exit(&ufsvfsp->vfs_dqrwlock);
3084 ufs_tryirwlock_trans(&ip->i_rwlock,
3085 RW_WRITER, TOP_CREATE,
3086 retry_file);
3087 if (indeadlock) {
3088 VN_RELE(ITOV(ip));
3089 goto again;
3090 }
3091 rw_enter(&ufsvfsp->vfs_dqrwlock,
3092 RW_READER);
3093 rw_enter(&ip->i_contents, RW_WRITER);
3094 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3095 cr);
3096 rw_exit(&ip->i_rwlock);
3097 }
3098
3099 }
3100 if (error == 0) {
3101 vnevent_create(ITOV(ip), ct);
3102 }
3103 }
3104 }
3105
3106 if (error) {
3107 if (ip != NULL) {
3108 rw_exit(&ufsvfsp->vfs_dqrwlock);
3109 rw_exit(&ip->i_contents);
3110 }
3111 goto unlock;
3112 }
3113
3114 *vpp = ITOV(ip);
3115 ITIMES(ip);
3116 rw_exit(&ip->i_contents);
3117 rw_exit(&ufsvfsp->vfs_dqrwlock);
3118
3119 /*
3120 * If vnode is a device return special vnode instead.
3121 */
3122 if (!error && IS_DEVVP(*vpp)) {
3123 struct vnode *newvp;
3124
3125 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3126 VN_RELE(*vpp);
3127 if (newvp == NULL) {
3128 error = ENOSYS;
3129 goto unlock;
3130 }
3131 truncflag = 0;
3132 *vpp = newvp;
3133 }
3134 unlock:
3135
3136 /*
3137 * Do the deferred update of the parent directory's sequence
3138 * number now.
3139 */
3140 if (defer_dip_seq_update == 1) {
3141 rw_enter(&dip->i_contents, RW_READER);
3142 mutex_enter(&dip->i_tlock);
3143 dip->i_seq++;
3144 mutex_exit(&dip->i_tlock);
3145 rw_exit(&dip->i_contents);
3146 }
3147
3148 if (ulp) {
3149 int terr = 0;
3150
3151 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3152 trans_size);
3153
3154 /*
3155 * If we haven't had a more interesting failure
3156 * already, then anything that might've happened
3157 * here should be reported.
3158 */
3159 if (error == 0)
3160 error = terr;
3161 }
3162
3163 if (!error && truncflag) {
3164 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3165 if (indeadlock) {
3166 if (ulp)
3167 ufs_lockfs_end(ulp);
3168 VN_RELE(ITOV(ip));
3169 goto again;
3170 }
3171 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3172 rw_exit(&ip->i_rwlock);
3173 }
3174
3175 if (ulp)
3176 ufs_lockfs_end(ulp);
3177
3178 /*
3179 * If no inodes available, try to free one up out of the
3180 * pending delete queue.
3181 */
3182 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3183 ufs_delete_drain_wait(ufsvfsp, 1);
3184 retry = 0;
3185 goto again;
3186 }
3187
3188 out:
3189 return (error);
3190 }
3191
3192 extern int ufs_idle_max;
3193 /*ARGSUSED*/
3194 static int
ufs_remove(struct vnode * vp,char * nm,struct cred * cr,caller_context_t * ct,int flags)3195 ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
3196 caller_context_t *ct, int flags)
3197 {
3198 struct inode *ip = VTOI(vp);
3199 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3200 struct ulockfs *ulp;
3201 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3202 int indeadlock;
3203 int error;
3204 int issync;
3205 int trans_size;
3206
3207 /*
3208 * don't let the delete queue get too long
3209 */
3210 if (ufsvfsp == NULL) {
3211 error = EIO;
3212 goto out;
3213 }
3214 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3215 ufs_delete_drain(vp->v_vfsp, 1, 1);
3216
3217 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3218 if (rmvp != NULL) {
3219 /* Only send the event if there were no errors */
3220 if (error == 0)
3221 vnevent_remove(rmvp, vp, nm, ct);
3222 VN_RELE(rmvp);
3223 }
3224
3225 retry_remove:
3226 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3227 if (error)
3228 goto out;
3229
3230 if (ulp)
3231 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3232 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3233
3234 /*
3235 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3236 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3237 * possible, retries the operation.
3238 */
3239 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3240 if (indeadlock)
3241 goto retry_remove;
3242 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3243 DR_REMOVE, cr);
3244 rw_exit(&ip->i_rwlock);
3245
3246 if (ulp) {
3247 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3248 ufs_lockfs_end(ulp);
3249 }
3250
3251 out:
3252 return (error);
3253 }
3254
3255 /*
3256 * Link a file or a directory. Only privileged processes are allowed to
3257 * make links to directories.
3258 */
3259 /*ARGSUSED*/
3260 static int
ufs_link(struct vnode * tdvp,struct vnode * svp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3261 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3262 caller_context_t *ct, int flags)
3263 {
3264 struct inode *sip;
3265 struct inode *tdp = VTOI(tdvp);
3266 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3267 struct ulockfs *ulp;
3268 struct vnode *realvp;
3269 int error;
3270 int issync;
3271 int trans_size;
3272 int isdev;
3273 int indeadlock;
3274
3275 retry_link:
3276 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3277 if (error)
3278 goto out;
3279
3280 if (ulp)
3281 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3282 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3283
3284 if (VOP_REALVP(svp, &realvp, ct) == 0)
3285 svp = realvp;
3286
3287 /*
3288 * Make sure link for extended attributes is valid
3289 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3290 *
3291 * Make certain we don't attempt to look at a device node as
3292 * a ufs inode.
3293 */
3294
3295 isdev = IS_DEVVP(svp);
3296 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3297 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3298 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3299 ((tdp->i_mode & IFMT) == IFDIR))) {
3300 error = EINVAL;
3301 goto unlock;
3302 }
3303
3304 sip = VTOI(svp);
3305 if ((svp->v_type == VDIR &&
3306 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3307 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3308 error = EPERM;
3309 goto unlock;
3310 }
3311
3312 /*
3313 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3314 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3315 * possible, retries the operation.
3316 */
3317 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3318 if (indeadlock)
3319 goto retry_link;
3320 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3321 sip, cr);
3322 rw_exit(&tdp->i_rwlock);
3323
3324 unlock:
3325 if (ulp) {
3326 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3327 ufs_lockfs_end(ulp);
3328 }
3329
3330 if (!error) {
3331 vnevent_link(svp, ct);
3332 }
3333 out:
3334 return (error);
3335 }
3336
3337 uint64_t ufs_rename_retry_cnt;
3338 uint64_t ufs_rename_upgrade_retry_cnt;
3339 uint64_t ufs_rename_dircheck_retry_cnt;
3340 clock_t ufs_rename_backoff_delay = 1;
3341
3342 /*
3343 * Rename a file or directory.
3344 * We are given the vnode and entry string of the source and the
3345 * vnode and entry string of the place we want to move the source
3346 * to (the target). The essential operation is:
3347 * unlink(target);
3348 * link(source, target);
3349 * unlink(source);
3350 * but "atomically". Can't do full commit without saving state in
3351 * the inode on disk, which isn't feasible at this time. Best we
3352 * can do is always guarantee that the TARGET exists.
3353 */
3354
3355 /*ARGSUSED*/
3356 static int
ufs_rename(struct vnode * sdvp,char * snm,struct vnode * tdvp,char * tnm,struct cred * cr,caller_context_t * ct,int flags)3357 ufs_rename(
3358 struct vnode *sdvp, /* old (source) parent vnode */
3359 char *snm, /* old (source) entry name */
3360 struct vnode *tdvp, /* new (target) parent vnode */
3361 char *tnm, /* new (target) entry name */
3362 struct cred *cr,
3363 caller_context_t *ct,
3364 int flags)
3365 {
3366 struct inode *sip = NULL; /* source inode */
3367 struct inode *ip = NULL; /* check inode */
3368 struct inode *sdp; /* old (source) parent inode */
3369 struct inode *tdp; /* new (target) parent inode */
3370 struct vnode *svp = NULL; /* source vnode */
3371 struct vnode *tvp = NULL; /* target vnode, if it exists */
3372 struct vnode *realvp;
3373 struct ufsvfs *ufsvfsp;
3374 struct ulockfs *ulp;
3375 struct ufs_slot slot;
3376 timestruc_t now;
3377 int error;
3378 int issync;
3379 int trans_size;
3380 krwlock_t *first_lock;
3381 krwlock_t *second_lock;
3382 krwlock_t *reverse_lock;
3383 int serr, terr;
3384
3385 sdp = VTOI(sdvp);
3386 slot.fbp = NULL;
3387 ufsvfsp = sdp->i_ufsvfs;
3388
3389 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3390 tdvp = realvp;
3391
3392 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3393 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3394
3395 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3396 if (tvp != NULL)
3397 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3398
3399 /*
3400 * Notify the target directory of the rename event
3401 * if source and target directories are not the same.
3402 */
3403 if (sdvp != tdvp)
3404 vnevent_rename_dest_dir(tdvp, ct);
3405
3406 if (svp != NULL)
3407 vnevent_rename_src(svp, sdvp, snm, ct);
3408 }
3409
3410 if (tvp != NULL)
3411 VN_RELE(tvp);
3412
3413 if (svp != NULL)
3414 VN_RELE(svp);
3415
3416 retry_rename:
3417 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3418 if (error)
3419 goto out;
3420
3421 if (ulp)
3422 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3423 trans_size = (int)TOP_RENAME_SIZE(sdp));
3424
3425 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3426 tdvp = realvp;
3427
3428 tdp = VTOI(tdvp);
3429
3430 /*
3431 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3432 */
3433 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3434 error = EINVAL;
3435 goto unlock;
3436 }
3437
3438 /*
3439 * Check accessibility of directory.
3440 */
3441 if (error = ufs_diraccess(sdp, IEXEC, cr))
3442 goto unlock;
3443
3444 /*
3445 * Look up inode of file we're supposed to rename.
3446 */
3447 gethrestime(&now);
3448 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3449 if (error == EAGAIN) {
3450 if (ulp) {
3451 TRANS_END_CSYNC(ufsvfsp, error, issync,
3452 TOP_RENAME, trans_size);
3453 ufs_lockfs_end(ulp);
3454 }
3455 goto retry_rename;
3456 }
3457
3458 goto unlock;
3459 }
3460
3461 /*
3462 * Lock both the source and target directories (they may be
3463 * the same) to provide the atomicity semantics that was
3464 * previously provided by the per file system vfs_rename_lock
3465 *
3466 * with vfs_rename_lock removed to allow simultaneous renames
3467 * within a file system, ufs_dircheckpath can deadlock while
3468 * traversing back to ensure that source is not a parent directory
3469 * of target parent directory. This is because we get into
3470 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3471 * If the tdp and sdp of the simultaneous renames happen to be
3472 * in the path of each other, it can lead to a deadlock. This
3473 * can be avoided by getting the locks as RW_READER here and then
3474 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3475 *
3476 * We hold the target directory's i_rwlock after calling
3477 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3478 * VOP_RWLOCK is explicitly called by the filesystem independent code
3479 * before calling the file system operation. In these cases the order
3480 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3481 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3482 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3483 * synchronizing object which might lead to a deadlock. So we use
3484 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3485 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3486 * operation.
3487 */
3488 retry:
3489 first_lock = &tdp->i_rwlock;
3490 second_lock = &sdp->i_rwlock;
3491 retry_firstlock:
3492 if (!rw_tryenter(first_lock, RW_READER)) {
3493 /*
3494 * We didn't get the lock. Check if the SLOCK is set in the
3495 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3496 * and wait for SLOCK to be cleared.
3497 */
3498
3499 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3500 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3501 trans_size);
3502 ufs_lockfs_end(ulp);
3503 goto retry_rename;
3504
3505 } else {
3506 /*
3507 * SLOCK isn't set so this is a genuine synchronization
3508 * case. Let's try again after giving them a breather.
3509 */
3510 delay(RETRY_LOCK_DELAY);
3511 goto retry_firstlock;
3512 }
3513 }
3514 /*
3515 * Need to check if the tdp and sdp are same !!!
3516 */
3517 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3518 /*
3519 * We didn't get the lock. Check if the SLOCK is set in the
3520 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3521 * and wait for SLOCK to be cleared.
3522 */
3523
3524 rw_exit(first_lock);
3525 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3526 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3527 trans_size);
3528 ufs_lockfs_end(ulp);
3529 goto retry_rename;
3530
3531 } else {
3532 /*
3533 * So we couldn't get the second level peer lock *and*
3534 * the SLOCK bit isn't set. Too bad we can be
3535 * contentding with someone wanting these locks otherway
3536 * round. Reverse the locks in case there is a heavy
3537 * contention for the second level lock.
3538 */
3539 reverse_lock = first_lock;
3540 first_lock = second_lock;
3541 second_lock = reverse_lock;
3542 ufs_rename_retry_cnt++;
3543 goto retry_firstlock;
3544 }
3545 }
3546
3547 if (sip == tdp) {
3548 error = EINVAL;
3549 goto errout;
3550 }
3551 /*
3552 * Make sure we can delete the source entry. This requires
3553 * write permission on the containing directory.
3554 * Check for sticky directories.
3555 */
3556 rw_enter(&sdp->i_contents, RW_READER);
3557 rw_enter(&sip->i_contents, RW_READER);
3558 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3559 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3560 rw_exit(&sip->i_contents);
3561 rw_exit(&sdp->i_contents);
3562 goto errout;
3563 }
3564
3565 /*
3566 * If this is a rename of a directory and the parent is
3567 * different (".." must be changed), then the source
3568 * directory must not be in the directory hierarchy
3569 * above the target, as this would orphan everything
3570 * below the source directory. Also the user must have
3571 * write permission in the source so as to be able to
3572 * change "..".
3573 */
3574 if ((((sip->i_mode & IFMT) == IFDIR) ||
3575 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3576 ino_t inum;
3577
3578 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3579 rw_exit(&sip->i_contents);
3580 rw_exit(&sdp->i_contents);
3581 goto errout;
3582 }
3583 inum = sip->i_number;
3584 rw_exit(&sip->i_contents);
3585 rw_exit(&sdp->i_contents);
3586 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3587 /*
3588 * If we got EAGAIN ufs_dircheckpath detected a
3589 * potential deadlock and backed out. We need
3590 * to retry the operation since sdp and tdp have
3591 * to be released to avoid the deadlock.
3592 */
3593 if (error == EAGAIN) {
3594 rw_exit(&tdp->i_rwlock);
3595 if (tdp != sdp)
3596 rw_exit(&sdp->i_rwlock);
3597 delay(ufs_rename_backoff_delay);
3598 ufs_rename_dircheck_retry_cnt++;
3599 goto retry;
3600 }
3601 goto errout;
3602 }
3603 } else {
3604 rw_exit(&sip->i_contents);
3605 rw_exit(&sdp->i_contents);
3606 }
3607
3608
3609 /*
3610 * Check for renaming '.' or '..' or alias of '.'
3611 */
3612 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3613 error = EINVAL;
3614 goto errout;
3615 }
3616
3617 /*
3618 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3619 * tries to traverse back the file tree with both tdp and sdp held
3620 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3621 * as RW_READERS till ufs_dircheckpath is done.
3622 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3623 * to RW_WRITER.
3624 */
3625 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3626 /*
3627 * The upgrade failed. We got to give away the lock
3628 * as to avoid deadlocking with someone else who is
3629 * waiting for writer lock. With the lock gone, we
3630 * cannot be sure the checks done above will hold
3631 * good when we eventually get them back as writer.
3632 * So if we can't upgrade we drop the locks and retry
3633 * everything again.
3634 */
3635 rw_exit(&tdp->i_rwlock);
3636 if (tdp != sdp)
3637 rw_exit(&sdp->i_rwlock);
3638 delay(ufs_rename_backoff_delay);
3639 ufs_rename_upgrade_retry_cnt++;
3640 goto retry;
3641 }
3642 if (tdp != sdp) {
3643 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3644 /*
3645 * The upgrade failed. We got to give away the lock
3646 * as to avoid deadlocking with someone else who is
3647 * waiting for writer lock. With the lock gone, we
3648 * cannot be sure the checks done above will hold
3649 * good when we eventually get them back as writer.
3650 * So if we can't upgrade we drop the locks and retry
3651 * everything again.
3652 */
3653 rw_exit(&tdp->i_rwlock);
3654 rw_exit(&sdp->i_rwlock);
3655 delay(ufs_rename_backoff_delay);
3656 ufs_rename_upgrade_retry_cnt++;
3657 goto retry;
3658 }
3659 }
3660
3661 /*
3662 * Now that all the locks are held check to make sure another thread
3663 * didn't slip in and take out the sip.
3664 */
3665 slot.status = NONE;
3666 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3667 sip->i_ctime.tv_sec > now.tv_sec) {
3668 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3669 rw_enter(&sdp->i_contents, RW_WRITER);
3670 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3671 &ip, cr, 0);
3672 rw_exit(&sdp->i_contents);
3673 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3674 if (error) {
3675 goto errout;
3676 }
3677 if (ip == NULL) {
3678 error = ENOENT;
3679 goto errout;
3680 } else {
3681 /*
3682 * If the inode was found need to drop the v_count
3683 * so as not to keep the filesystem from being
3684 * unmounted at a later time.
3685 */
3686 VN_RELE(ITOV(ip));
3687 }
3688
3689 /*
3690 * Release the slot.fbp that has the page mapped and
3691 * locked SE_SHARED, and could be used in in
3692 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3693 * on said page.
3694 */
3695 if (slot.fbp) {
3696 fbrelse(slot.fbp, S_OTHER);
3697 slot.fbp = NULL;
3698 }
3699 }
3700
3701 /*
3702 * Link source to the target.
3703 */
3704 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3705 /*
3706 * ESAME isn't really an error; it indicates that the
3707 * operation should not be done because the source and target
3708 * are the same file, but that no error should be reported.
3709 */
3710 if (error == ESAME)
3711 error = 0;
3712 goto errout;
3713 }
3714
3715 /*
3716 * Unlink the source.
3717 * Remove the source entry. ufs_dirremove() checks that the entry
3718 * still reflects sip, and returns an error if it doesn't.
3719 * If the entry has changed just forget about it. Release
3720 * the source inode.
3721 */
3722 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3723 DR_RENAME, cr)) == ENOENT)
3724 error = 0;
3725
3726 errout:
3727 if (slot.fbp)
3728 fbrelse(slot.fbp, S_OTHER);
3729
3730 rw_exit(&tdp->i_rwlock);
3731 if (sdp != tdp) {
3732 rw_exit(&sdp->i_rwlock);
3733 }
3734
3735 VN_RELE(ITOV(sip));
3736
3737 unlock:
3738 if (ulp) {
3739 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3740 ufs_lockfs_end(ulp);
3741 }
3742
3743 out:
3744 return (error);
3745 }
3746
3747 /*ARGSUSED*/
3748 static int
ufs_mkdir(struct vnode * dvp,char * dirname,struct vattr * vap,struct vnode ** vpp,struct cred * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3749 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3750 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3751 vsecattr_t *vsecp)
3752 {
3753 struct inode *ip;
3754 struct inode *xip;
3755 struct ufsvfs *ufsvfsp;
3756 struct ulockfs *ulp;
3757 int error;
3758 int issync;
3759 int trans_size;
3760 int indeadlock;
3761 int retry = 1;
3762
3763 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3764
3765 /*
3766 * Can't make directory in attr hidden dir
3767 */
3768 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3769 return (EINVAL);
3770
3771 again:
3772 ip = VTOI(dvp);
3773 ufsvfsp = ip->i_ufsvfs;
3774 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3775 if (error)
3776 goto out;
3777 if (ulp)
3778 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3779 trans_size = (int)TOP_MKDIR_SIZE(ip));
3780
3781 /*
3782 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3783 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3784 * possible, retries the operation.
3785 */
3786 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3787 if (indeadlock)
3788 goto again;
3789
3790 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3791 (retry ? IQUIET : 0));
3792 if (error == EAGAIN) {
3793 if (ulp) {
3794 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3795 trans_size);
3796 ufs_lockfs_end(ulp);
3797 }
3798 goto again;
3799 }
3800
3801 rw_exit(&ip->i_rwlock);
3802 if (error == 0) {
3803 ip = xip;
3804 *vpp = ITOV(ip);
3805 } else if (error == EEXIST)
3806 VN_RELE(ITOV(xip));
3807
3808 if (ulp) {
3809 int terr = 0;
3810 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3811 ufs_lockfs_end(ulp);
3812 if (error == 0)
3813 error = terr;
3814 }
3815 out:
3816 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3817 ufs_delete_drain_wait(ufsvfsp, 1);
3818 retry = 0;
3819 goto again;
3820 }
3821
3822 return (error);
3823 }
3824
3825 /*ARGSUSED*/
3826 static int
ufs_rmdir(struct vnode * vp,char * nm,struct vnode * cdir,struct cred * cr,caller_context_t * ct,int flags)3827 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3828 caller_context_t *ct, int flags)
3829 {
3830 struct inode *ip = VTOI(vp);
3831 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3832 struct ulockfs *ulp;
3833 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3834 int error;
3835 int issync;
3836 int trans_size;
3837 int indeadlock;
3838
3839 /*
3840 * don't let the delete queue get too long
3841 */
3842 if (ufsvfsp == NULL) {
3843 error = EIO;
3844 goto out;
3845 }
3846 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3847 ufs_delete_drain(vp->v_vfsp, 1, 1);
3848
3849 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3850 if (rmvp != NULL) {
3851 /* Only send the event if there were no errors */
3852 if (error == 0)
3853 vnevent_rmdir(rmvp, vp, nm, ct);
3854 VN_RELE(rmvp);
3855 }
3856
3857 retry_rmdir:
3858 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3859 if (error)
3860 goto out;
3861
3862 if (ulp)
3863 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3864 trans_size = TOP_RMDIR_SIZE);
3865
3866 /*
3867 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3868 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3869 * possible, retries the operation.
3870 */
3871 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3872 if (indeadlock)
3873 goto retry_rmdir;
3874 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3875
3876 rw_exit(&ip->i_rwlock);
3877
3878 if (ulp) {
3879 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3880 trans_size);
3881 ufs_lockfs_end(ulp);
3882 }
3883
3884 out:
3885 return (error);
3886 }
3887
3888 /* ARGSUSED */
3889 static int
ufs_readdir(struct vnode * vp,struct uio * uiop,struct cred * cr,int * eofp,caller_context_t * ct,int flags)3890 ufs_readdir(
3891 struct vnode *vp,
3892 struct uio *uiop,
3893 struct cred *cr,
3894 int *eofp,
3895 caller_context_t *ct,
3896 int flags)
3897 {
3898 struct iovec *iovp;
3899 struct inode *ip;
3900 struct direct *idp;
3901 struct dirent64 *odp;
3902 struct fbuf *fbp;
3903 struct ufsvfs *ufsvfsp;
3904 struct ulockfs *ulp;
3905 caddr_t outbuf;
3906 size_t bufsize;
3907 uint_t offset;
3908 uint_t bytes_wanted, total_bytes_wanted;
3909 int incount = 0;
3910 int outcount = 0;
3911 int error;
3912
3913 ip = VTOI(vp);
3914 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3915
3916 if (uiop->uio_loffset >= MAXOFF32_T) {
3917 if (eofp)
3918 *eofp = 1;
3919 return (0);
3920 }
3921
3922 /*
3923 * Check if we have been called with a valid iov_len
3924 * and bail out if not, otherwise we may potentially loop
3925 * forever further down.
3926 */
3927 if (uiop->uio_iov->iov_len <= 0) {
3928 error = EINVAL;
3929 goto out;
3930 }
3931
3932 /*
3933 * Large Files: When we come here we are guaranteed that
3934 * uio_offset can be used safely. The high word is zero.
3935 */
3936
3937 ufsvfsp = ip->i_ufsvfs;
3938 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3939 if (error)
3940 goto out;
3941
3942 iovp = uiop->uio_iov;
3943 total_bytes_wanted = iovp->iov_len;
3944
3945 /* Large Files: directory files should not be "large" */
3946
3947 ASSERT(ip->i_size <= MAXOFF32_T);
3948
3949 /* Force offset to be valid (to guard against bogus lseek() values) */
3950 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3951
3952 /* Quit if at end of file or link count of zero (posix) */
3953 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3954 if (eofp)
3955 *eofp = 1;
3956 error = 0;
3957 goto unlock;
3958 }
3959
3960 /*
3961 * Get space to change directory entries into fs independent format.
3962 * Do fast alloc for the most commonly used-request size (filesystem
3963 * block size).
3964 */
3965 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3966 bufsize = total_bytes_wanted;
3967 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3968 odp = (struct dirent64 *)outbuf;
3969 } else {
3970 bufsize = total_bytes_wanted;
3971 odp = (struct dirent64 *)iovp->iov_base;
3972 }
3973
3974 nextblk:
3975 bytes_wanted = total_bytes_wanted;
3976
3977 /* Truncate request to file size */
3978 if (offset + bytes_wanted > (int)ip->i_size)
3979 bytes_wanted = (int)(ip->i_size - offset);
3980
3981 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3982 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3983 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3984
3985 /*
3986 * Read in the next chunk.
3987 * We are still holding the i_rwlock.
3988 */
3989 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
3990
3991 if (error)
3992 goto update_inode;
3993 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
3994 (!ufsvfsp->vfs_noatime)) {
3995 ip->i_flag |= IACC;
3996 }
3997 incount = 0;
3998 idp = (struct direct *)fbp->fb_addr;
3999 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
4000 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
4001 "fs = %s\n",
4002 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
4003 fbrelse(fbp, S_OTHER);
4004 error = ENXIO;
4005 goto update_inode;
4006 }
4007 /* Transform to file-system independent format */
4008 while (incount < bytes_wanted) {
4009 /*
4010 * If the current directory entry is mangled, then skip
4011 * to the next block. It would be nice to set the FSBAD
4012 * flag in the super-block so that a fsck is forced on
4013 * next reboot, but locking is a problem.
4014 */
4015 if (idp->d_reclen & 0x3) {
4016 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4017 break;
4018 }
4019
4020 /* Skip to requested offset and skip empty entries */
4021 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4022 ushort_t this_reclen =
4023 DIRENT64_RECLEN(idp->d_namlen);
4024 /* Buffer too small for any entries */
4025 if (!outcount && this_reclen > bufsize) {
4026 fbrelse(fbp, S_OTHER);
4027 error = EINVAL;
4028 goto update_inode;
4029 }
4030 /* If would overrun the buffer, quit */
4031 if (outcount + this_reclen > bufsize) {
4032 break;
4033 }
4034 /* Take this entry */
4035 odp->d_ino = (ino64_t)idp->d_ino;
4036 odp->d_reclen = (ushort_t)this_reclen;
4037 odp->d_off = (offset_t)(offset + idp->d_reclen);
4038
4039 /* use strncpy(9f) to zero out uninitialized bytes */
4040
4041 ASSERT(strlen(idp->d_name) + 1 <=
4042 DIRENT64_NAMELEN(this_reclen));
4043 (void) strncpy(odp->d_name, idp->d_name,
4044 DIRENT64_NAMELEN(this_reclen));
4045 outcount += odp->d_reclen;
4046 odp = (struct dirent64 *)
4047 ((intptr_t)odp + odp->d_reclen);
4048 ASSERT(outcount <= bufsize);
4049 }
4050 if (idp->d_reclen) {
4051 incount += idp->d_reclen;
4052 offset += idp->d_reclen;
4053 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4054 } else {
4055 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4056 break;
4057 }
4058 }
4059 /* Release the chunk */
4060 fbrelse(fbp, S_OTHER);
4061
4062 /* Read whole block, but got no entries, read another if not eof */
4063
4064 /*
4065 * Large Files: casting i_size to int here is not a problem
4066 * because directory sizes are always less than MAXOFF32_T.
4067 * See assertion above.
4068 */
4069
4070 if (offset < (int)ip->i_size && !outcount)
4071 goto nextblk;
4072
4073 /* Copy out the entry data */
4074 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4075 iovp->iov_base += outcount;
4076 iovp->iov_len -= outcount;
4077 uiop->uio_resid -= outcount;
4078 uiop->uio_offset = offset;
4079 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4080 uiop)) == 0)
4081 uiop->uio_offset = offset;
4082 update_inode:
4083 ITIMES(ip);
4084 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4085 kmem_free(outbuf, bufsize);
4086
4087 if (eofp && error == 0)
4088 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4089 unlock:
4090 if (ulp) {
4091 ufs_lockfs_end(ulp);
4092 }
4093 out:
4094 return (error);
4095 }
4096
4097 /*ARGSUSED*/
4098 static int
ufs_symlink(struct vnode * dvp,char * linkname,struct vattr * vap,char * target,struct cred * cr,caller_context_t * ct,int flags)4099 ufs_symlink(
4100 struct vnode *dvp, /* ptr to parent dir vnode */
4101 char *linkname, /* name of symbolic link */
4102 struct vattr *vap, /* attributes */
4103 char *target, /* target path */
4104 struct cred *cr, /* user credentials */
4105 caller_context_t *ct,
4106 int flags)
4107 {
4108 struct inode *ip, *dip = VTOI(dvp);
4109 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4110 struct ulockfs *ulp;
4111 int error;
4112 int issync;
4113 int trans_size;
4114 int residual;
4115 int ioflag;
4116 int retry = 1;
4117
4118 /*
4119 * No symlinks in attrdirs at this time
4120 */
4121 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4122 return (EINVAL);
4123
4124 again:
4125 ip = (struct inode *)NULL;
4126 vap->va_type = VLNK;
4127 vap->va_rdev = 0;
4128
4129 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4130 if (error)
4131 goto out;
4132
4133 if (ulp)
4134 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4135 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4136
4137 /*
4138 * We must create the inode before the directory entry, to avoid
4139 * racing with readlink(). ufs_dirmakeinode requires that we
4140 * hold the quota lock as reader, and directory locks as writer.
4141 */
4142
4143 rw_enter(&dip->i_rwlock, RW_WRITER);
4144 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4145 rw_enter(&dip->i_contents, RW_WRITER);
4146
4147 /*
4148 * Suppress any out of inodes messages if we will retry on
4149 * ENOSP
4150 */
4151 if (retry)
4152 dip->i_flag |= IQUIET;
4153
4154 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4155
4156 dip->i_flag &= ~IQUIET;
4157
4158 rw_exit(&dip->i_contents);
4159 rw_exit(&ufsvfsp->vfs_dqrwlock);
4160 rw_exit(&dip->i_rwlock);
4161
4162 if (error)
4163 goto unlock;
4164
4165 /*
4166 * OK. The inode has been created. Write out the data of the
4167 * symbolic link. Since symbolic links are metadata, and should
4168 * remain consistent across a system crash, we need to force the
4169 * data out synchronously.
4170 *
4171 * (This is a change from the semantics in earlier releases, which
4172 * only created symbolic links synchronously if the semi-documented
4173 * 'syncdir' option was set, or if we were being invoked by the NFS
4174 * server, which requires symbolic links to be created synchronously.)
4175 *
4176 * We need to pass in a pointer for the residual length; otherwise
4177 * ufs_rdwri() will always return EIO if it can't write the data,
4178 * even if the error was really ENOSPC or EDQUOT.
4179 */
4180
4181 ioflag = FWRITE | FDSYNC;
4182 residual = 0;
4183
4184 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4185 rw_enter(&ip->i_contents, RW_WRITER);
4186
4187 /*
4188 * Suppress file system full messages if we will retry
4189 */
4190 if (retry)
4191 ip->i_flag |= IQUIET;
4192
4193 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4194 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4195
4196 ip->i_flag &= ~IQUIET;
4197
4198 if (error) {
4199 rw_exit(&ip->i_contents);
4200 rw_exit(&ufsvfsp->vfs_dqrwlock);
4201 goto remove;
4202 }
4203
4204 /*
4205 * If the link's data is small enough, we can cache it in the inode.
4206 * This is a "fast symbolic link". We don't use the first direct
4207 * block because that's actually used to point at the symbolic link's
4208 * contents on disk; but we know that none of the other direct or
4209 * indirect blocks can be used because symbolic links are restricted
4210 * to be smaller than a file system block.
4211 */
4212
4213 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4214
4215 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4216 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4217 ip->i_flag |= IFASTSYMLNK;
4218 } else {
4219 int i;
4220 /* error, clear garbage left behind */
4221 for (i = 1; i < NDADDR; i++)
4222 ip->i_db[i] = 0;
4223 for (i = 0; i < NIADDR; i++)
4224 ip->i_ib[i] = 0;
4225 }
4226 }
4227
4228 rw_exit(&ip->i_contents);
4229 rw_exit(&ufsvfsp->vfs_dqrwlock);
4230
4231 /*
4232 * OK. We've successfully created the symbolic link. All that
4233 * remains is to insert it into the appropriate directory.
4234 */
4235
4236 rw_enter(&dip->i_rwlock, RW_WRITER);
4237 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4238 rw_exit(&dip->i_rwlock);
4239
4240 /*
4241 * Fall through into remove-on-error code. We're either done, or we
4242 * need to remove the inode (if we couldn't insert it).
4243 */
4244
4245 remove:
4246 if (error && (ip != NULL)) {
4247 rw_enter(&ip->i_contents, RW_WRITER);
4248 ip->i_nlink--;
4249 ip->i_flag |= ICHG;
4250 ip->i_seq++;
4251 ufs_setreclaim(ip);
4252 rw_exit(&ip->i_contents);
4253 }
4254
4255 unlock:
4256 if (ip != NULL)
4257 VN_RELE(ITOV(ip));
4258
4259 if (ulp) {
4260 int terr = 0;
4261
4262 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4263 trans_size);
4264 ufs_lockfs_end(ulp);
4265 if (error == 0)
4266 error = terr;
4267 }
4268
4269 /*
4270 * We may have failed due to lack of an inode or of a block to
4271 * store the target in. Try flushing the delete queue to free
4272 * logically-available things up and try again.
4273 */
4274 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4275 ufs_delete_drain_wait(ufsvfsp, 1);
4276 retry = 0;
4277 goto again;
4278 }
4279
4280 out:
4281 return (error);
4282 }
4283
4284 /*
4285 * Ufs specific routine used to do ufs io.
4286 */
4287 int
ufs_rdwri(enum uio_rw rw,int ioflag,struct inode * ip,caddr_t base,ssize_t len,offset_t offset,enum uio_seg seg,int * aresid,struct cred * cr)4288 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4289 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4290 struct cred *cr)
4291 {
4292 struct uio auio;
4293 struct iovec aiov;
4294 int error;
4295
4296 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4297
4298 bzero((caddr_t)&auio, sizeof (uio_t));
4299 bzero((caddr_t)&aiov, sizeof (iovec_t));
4300
4301 aiov.iov_base = base;
4302 aiov.iov_len = len;
4303 auio.uio_iov = &aiov;
4304 auio.uio_iovcnt = 1;
4305 auio.uio_loffset = offset;
4306 auio.uio_segflg = (short)seg;
4307 auio.uio_resid = len;
4308
4309 if (rw == UIO_WRITE) {
4310 auio.uio_fmode = FWRITE;
4311 auio.uio_extflg = UIO_COPY_DEFAULT;
4312 auio.uio_llimit = curproc->p_fsz_ctl;
4313 error = wrip(ip, &auio, ioflag, cr);
4314 } else {
4315 auio.uio_fmode = FREAD;
4316 auio.uio_extflg = UIO_COPY_CACHED;
4317 auio.uio_llimit = MAXOFFSET_T;
4318 error = rdip(ip, &auio, ioflag, cr);
4319 }
4320
4321 if (aresid) {
4322 *aresid = auio.uio_resid;
4323 } else if (auio.uio_resid) {
4324 error = EIO;
4325 }
4326 return (error);
4327 }
4328
4329 /*ARGSUSED*/
4330 static int
ufs_fid(struct vnode * vp,struct fid * fidp,caller_context_t * ct)4331 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4332 {
4333 struct ufid *ufid;
4334 struct inode *ip = VTOI(vp);
4335
4336 if (ip->i_ufsvfs == NULL)
4337 return (EIO);
4338
4339 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4340 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4341 return (ENOSPC);
4342 }
4343
4344 ufid = (struct ufid *)fidp;
4345 bzero((char *)ufid, sizeof (struct ufid));
4346 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4347 ufid->ufid_ino = ip->i_number;
4348 ufid->ufid_gen = ip->i_gen;
4349
4350 return (0);
4351 }
4352
4353 /* ARGSUSED2 */
4354 static int
ufs_rwlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4355 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4356 {
4357 struct inode *ip = VTOI(vp);
4358 struct ufsvfs *ufsvfsp;
4359 int forcedirectio;
4360
4361 /*
4362 * Read case is easy.
4363 */
4364 if (!write_lock) {
4365 rw_enter(&ip->i_rwlock, RW_READER);
4366 return (V_WRITELOCK_FALSE);
4367 }
4368
4369 /*
4370 * Caller has requested a writer lock, but that inhibits any
4371 * concurrency in the VOPs that follow. Acquire the lock shared
4372 * and defer exclusive access until it is known to be needed in
4373 * other VOP handlers. Some cases can be determined here.
4374 */
4375
4376 /*
4377 * If directio is not set, there is no chance of concurrency,
4378 * so just acquire the lock exclusive. Beware of a forced
4379 * unmount before looking at the mount option.
4380 */
4381 ufsvfsp = ip->i_ufsvfs;
4382 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4383 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4384 !ufs_allow_shared_writes) {
4385 rw_enter(&ip->i_rwlock, RW_WRITER);
4386 return (V_WRITELOCK_TRUE);
4387 }
4388
4389 /*
4390 * Mandatory locking forces acquiring i_rwlock exclusive.
4391 */
4392 if (MANDLOCK(vp, ip->i_mode)) {
4393 rw_enter(&ip->i_rwlock, RW_WRITER);
4394 return (V_WRITELOCK_TRUE);
4395 }
4396
4397 /*
4398 * Acquire the lock shared in case a concurrent write follows.
4399 * Mandatory locking could have become enabled before the lock
4400 * was acquired. Re-check and upgrade if needed.
4401 */
4402 rw_enter(&ip->i_rwlock, RW_READER);
4403 if (MANDLOCK(vp, ip->i_mode)) {
4404 rw_exit(&ip->i_rwlock);
4405 rw_enter(&ip->i_rwlock, RW_WRITER);
4406 return (V_WRITELOCK_TRUE);
4407 }
4408 return (V_WRITELOCK_FALSE);
4409 }
4410
4411 /*ARGSUSED*/
4412 static void
ufs_rwunlock(struct vnode * vp,int write_lock,caller_context_t * ctp)4413 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4414 {
4415 struct inode *ip = VTOI(vp);
4416
4417 rw_exit(&ip->i_rwlock);
4418 }
4419
4420 /* ARGSUSED */
4421 static int
ufs_seek(struct vnode * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4422 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
4423 caller_context_t *ct)
4424 {
4425 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4426 }
4427
4428 /* ARGSUSED */
4429 static int
ufs_frlock(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,struct cred * cr,caller_context_t * ct)4430 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4431 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4432 caller_context_t *ct)
4433 {
4434 struct inode *ip = VTOI(vp);
4435
4436 if (ip->i_ufsvfs == NULL)
4437 return (EIO);
4438
4439 /*
4440 * If file is being mapped, disallow frlock.
4441 * XXX I am not holding tlock while checking i_mapcnt because the
4442 * current locking strategy drops all locks before calling fs_frlock.
4443 * So, mapcnt could change before we enter fs_frlock making is
4444 * meaningless to have held tlock in the first place.
4445 */
4446 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4447 return (EAGAIN);
4448 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4449 }
4450
4451 /* ARGSUSED */
4452 static int
ufs_space(struct vnode * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4453 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4454 offset_t offset, cred_t *cr, caller_context_t *ct)
4455 {
4456 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4457 struct ulockfs *ulp;
4458 int error;
4459
4460 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4461 if (cmd == F_FREESP) {
4462 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4463 ULOCKFS_SPACE_MASK);
4464 if (error)
4465 return (error);
4466 error = ufs_freesp(vp, bfp, flag, cr);
4467
4468 if (error == 0 && bfp->l_start == 0)
4469 vnevent_truncate(vp, ct);
4470 } else if (cmd == F_ALLOCSP) {
4471 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4472 ULOCKFS_FALLOCATE_MASK);
4473 if (error)
4474 return (error);
4475 error = ufs_allocsp(vp, bfp, cr);
4476 } else
4477 return (EINVAL); /* Command not handled here */
4478
4479 if (ulp)
4480 ufs_lockfs_end(ulp);
4481
4482 }
4483 return (error);
4484 }
4485
4486 /*
4487 * Used to determine if read ahead should be done. Also used to
4488 * to determine when write back occurs.
4489 */
4490 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4491
4492 /*
4493 * A faster version of ufs_getpage.
4494 *
4495 * We optimize by inlining the pvn_getpages iterator, eliminating
4496 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4497 * the overhead of page_exists().
4498 *
4499 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4500 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4501 * victimizes performance when a file with UFS holes is faulted
4502 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4503 * two MMU faults in this case.
4504 *
4505 * XXX - the inode fields which control the sequential mode are not
4506 * protected by any mutex. The read ahead will act wild if
4507 * multiple processes will access the file concurrently and
4508 * some of them in sequential mode. One particulary bad case
4509 * is if another thread will change the value of i_nextrio between
4510 * the time this thread tests the i_nextrio value and then reads it
4511 * again to use it as the offset for the read ahead.
4512 */
4513 /*ARGSUSED*/
4514 static int
ufs_getpage(struct vnode * vp,offset_t off,size_t len,uint_t * protp,page_t * plarr[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,struct cred * cr,caller_context_t * ct)4515 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4516 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4517 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4518 {
4519 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4520 u_offset_t pgoff;
4521 u_offset_t eoff;
4522 struct inode *ip = VTOI(vp);
4523 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4524 struct fs *fs;
4525 struct ulockfs *ulp;
4526 page_t **pl;
4527 caddr_t pgaddr;
4528 krw_t rwtype;
4529 int err;
4530 int has_holes;
4531 int beyond_eof;
4532 int seqmode;
4533 int pgsize = PAGESIZE;
4534 int dolock;
4535 int do_qlock;
4536 int trans_size;
4537
4538 ASSERT((uoff & PAGEOFFSET) == 0);
4539
4540 if (protp)
4541 *protp = PROT_ALL;
4542
4543 /*
4544 * Obey the lockfs protocol
4545 */
4546 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4547 rw == S_READ || rw == S_EXEC, protp);
4548 if (err)
4549 goto out;
4550
4551 fs = ufsvfsp->vfs_fs;
4552
4553 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4554 !(vp->v_flag & VISSWAP)) {
4555 /*
4556 * Try to start a transaction, will return if blocking is
4557 * expected to occur and the address space is not the
4558 * kernel address space.
4559 */
4560 trans_size = TOP_GETPAGE_SIZE(ip);
4561 if (seg->s_as != &kas) {
4562 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4563 trans_size, err)
4564 if (err == EWOULDBLOCK) {
4565 /*
4566 * Use EDEADLK here because the VM code
4567 * can normally never see this error.
4568 */
4569 err = EDEADLK;
4570 ufs_lockfs_end(ulp);
4571 goto out;
4572 }
4573 } else {
4574 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4575 }
4576 }
4577
4578 if (vp->v_flag & VNOMAP) {
4579 err = ENOSYS;
4580 goto unlock;
4581 }
4582
4583 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4584
4585 rwtype = RW_READER; /* start as a reader */
4586 dolock = (rw_owner(&ip->i_contents) != curthread);
4587 /*
4588 * If this thread owns the lock, i.e., this thread grabbed it
4589 * as writer somewhere above, then we don't need to grab the
4590 * lock as reader in this routine.
4591 */
4592 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4593
4594 retrylock:
4595 if (dolock) {
4596 /*
4597 * Grab the quota lock if we need to call
4598 * bmap_write() below (with i_contents as writer).
4599 */
4600 if (do_qlock && rwtype == RW_WRITER)
4601 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4602 rw_enter(&ip->i_contents, rwtype);
4603 }
4604
4605 /*
4606 * We may be getting called as a side effect of a bmap using
4607 * fbread() when the blocks might be being allocated and the
4608 * size has not yet been up'ed. In this case we want to be
4609 * able to return zero pages if we get back UFS_HOLE from
4610 * calling bmap for a non write case here. We also might have
4611 * to read some frags from the disk into a page if we are
4612 * extending the number of frags for a given lbn in bmap().
4613 * Large Files: The read of i_size here is atomic because
4614 * i_contents is held here. If dolock is zero, the lock
4615 * is held in bmap routines.
4616 */
4617 beyond_eof = uoff + len >
4618 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4619 if (beyond_eof && seg != segkmap) {
4620 if (dolock) {
4621 rw_exit(&ip->i_contents);
4622 if (do_qlock && rwtype == RW_WRITER)
4623 rw_exit(&ufsvfsp->vfs_dqrwlock);
4624 }
4625 err = EFAULT;
4626 goto unlock;
4627 }
4628
4629 /*
4630 * Must hold i_contents lock throughout the call to pvn_getpages
4631 * since locked pages are returned from each call to ufs_getapage.
4632 * Must *not* return locked pages and then try for contents lock
4633 * due to lock ordering requirements (inode > page)
4634 */
4635
4636 has_holes = bmap_has_holes(ip);
4637
4638 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4639 int blk_size;
4640 u_offset_t offset;
4641
4642 /*
4643 * We must acquire the RW_WRITER lock in order to
4644 * call bmap_write().
4645 */
4646 if (dolock && rwtype == RW_READER) {
4647 rwtype = RW_WRITER;
4648
4649 /*
4650 * Grab the quota lock before
4651 * upgrading i_contents, but if we can't grab it
4652 * don't wait here due to lock order:
4653 * vfs_dqrwlock > i_contents.
4654 */
4655 if (do_qlock &&
4656 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4657 == 0) {
4658 rw_exit(&ip->i_contents);
4659 goto retrylock;
4660 }
4661 if (!rw_tryupgrade(&ip->i_contents)) {
4662 rw_exit(&ip->i_contents);
4663 if (do_qlock)
4664 rw_exit(&ufsvfsp->vfs_dqrwlock);
4665 goto retrylock;
4666 }
4667 }
4668
4669 /*
4670 * May be allocating disk blocks for holes here as
4671 * a result of mmap faults. write(2) does the bmap_write
4672 * in rdip/wrip, not here. We are not dealing with frags
4673 * in this case.
4674 */
4675 /*
4676 * Large Files: We cast fs_bmask field to offset_t
4677 * just as we do for MAXBMASK because uoff is a 64-bit
4678 * data type. fs_bmask will still be a 32-bit type
4679 * as we cannot change any ondisk data structures.
4680 */
4681
4682 offset = uoff & (offset_t)fs->fs_bmask;
4683 while (offset < uoff + len) {
4684 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4685 err = bmap_write(ip, offset, blk_size,
4686 BI_NORMAL, NULL, cr);
4687 if (ip->i_flag & (ICHG|IUPD))
4688 ip->i_seq++;
4689 if (err)
4690 goto update_inode;
4691 offset += blk_size; /* XXX - make this contig */
4692 }
4693 }
4694
4695 /*
4696 * Can be a reader from now on.
4697 */
4698 if (dolock && rwtype == RW_WRITER) {
4699 rw_downgrade(&ip->i_contents);
4700 /*
4701 * We can release vfs_dqrwlock early so do it, but make
4702 * sure we don't try to release it again at the bottom.
4703 */
4704 if (do_qlock) {
4705 rw_exit(&ufsvfsp->vfs_dqrwlock);
4706 do_qlock = 0;
4707 }
4708 }
4709
4710 /*
4711 * We remove PROT_WRITE in cases when the file has UFS holes
4712 * because we don't want to call bmap_read() to check each
4713 * page if it is backed with a disk block.
4714 */
4715 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4716 *protp &= ~PROT_WRITE;
4717
4718 err = 0;
4719
4720 /*
4721 * The loop looks up pages in the range [off, off + len).
4722 * For each page, we first check if we should initiate an asynchronous
4723 * read ahead before we call page_lookup (we may sleep in page_lookup
4724 * for a previously initiated disk read).
4725 */
4726 eoff = (uoff + len);
4727 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4728 pgoff < eoff; /* empty */) {
4729 page_t *pp;
4730 u_offset_t nextrio;
4731 se_t se;
4732 int retval;
4733
4734 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4735
4736 /* Handle async getpage (faultahead) */
4737 if (plarr == NULL) {
4738 ip->i_nextrio = pgoff;
4739 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4740 pgoff += pgsize;
4741 pgaddr += pgsize;
4742 continue;
4743 }
4744 /*
4745 * Check if we should initiate read ahead of next cluster.
4746 * We call page_exists only when we need to confirm that
4747 * we have the current page before we initiate the read ahead.
4748 */
4749 nextrio = ip->i_nextrio;
4750 if (seqmode &&
4751 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4752 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4753 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4754 /*
4755 * We always read ahead the next cluster of data
4756 * starting from i_nextrio. If the page (vp,nextrio)
4757 * is actually in core at this point, the routine
4758 * ufs_getpage_ra() will stop pre-fetching data
4759 * until we read that page in a synchronized manner
4760 * through ufs_getpage_miss(). So, we should increase
4761 * i_nextrio if the page (vp, nextrio) exists.
4762 */
4763 if ((retval == 0) && page_exists(vp, nextrio)) {
4764 ip->i_nextrio = nextrio + pgsize;
4765 }
4766 }
4767
4768 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4769 /*
4770 * We found the page in the page cache.
4771 */
4772 *pl++ = pp;
4773 pgoff += pgsize;
4774 pgaddr += pgsize;
4775 len -= pgsize;
4776 plsz -= pgsize;
4777 } else {
4778 /*
4779 * We have to create the page, or read it from disk.
4780 */
4781 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4782 pl, plsz, rw, seqmode))
4783 goto error;
4784
4785 while (*pl != NULL) {
4786 pl++;
4787 pgoff += pgsize;
4788 pgaddr += pgsize;
4789 len -= pgsize;
4790 plsz -= pgsize;
4791 }
4792 }
4793 }
4794
4795 /*
4796 * Return pages up to plsz if they are in the page cache.
4797 * We cannot return pages if there is a chance that they are
4798 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4799 */
4800 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4801
4802 ASSERT((protp == NULL) ||
4803 !(has_holes && (*protp & PROT_WRITE)));
4804
4805 eoff = pgoff + plsz;
4806 while (pgoff < eoff) {
4807 page_t *pp;
4808
4809 if ((pp = page_lookup_nowait(vp, pgoff,
4810 SE_SHARED)) == NULL)
4811 break;
4812
4813 *pl++ = pp;
4814 pgoff += pgsize;
4815 plsz -= pgsize;
4816 }
4817 }
4818
4819 if (plarr)
4820 *pl = NULL; /* Terminate page list */
4821 ip->i_nextr = pgoff;
4822
4823 error:
4824 if (err && plarr) {
4825 /*
4826 * Release any pages we have locked.
4827 */
4828 while (pl > &plarr[0])
4829 page_unlock(*--pl);
4830
4831 plarr[0] = NULL;
4832 }
4833
4834 update_inode:
4835 /*
4836 * If the inode is not already marked for IACC (in rdip() for read)
4837 * and the inode is not marked for no access time update (in wrip()
4838 * for write) then update the inode access time and mod time now.
4839 */
4840 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4841 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4842 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4843 (fs->fs_ronly == 0) &&
4844 (!ufsvfsp->vfs_noatime)) {
4845 mutex_enter(&ip->i_tlock);
4846 ip->i_flag |= IACC;
4847 ITIMES_NOLOCK(ip);
4848 mutex_exit(&ip->i_tlock);
4849 }
4850 }
4851 }
4852
4853 if (dolock) {
4854 rw_exit(&ip->i_contents);
4855 if (do_qlock && rwtype == RW_WRITER)
4856 rw_exit(&ufsvfsp->vfs_dqrwlock);
4857 }
4858
4859 unlock:
4860 if (ulp) {
4861 if ((rw == S_CREATE || rw == S_WRITE) &&
4862 !(vp->v_flag & VISSWAP)) {
4863 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4864 }
4865 ufs_lockfs_end(ulp);
4866 }
4867 out:
4868 return (err);
4869 }
4870
4871 /*
4872 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4873 * cache. The page is either read from the disk, or it's created.
4874 * A page is created (without disk read) if rw == S_CREATE, or if
4875 * the page is not backed with a real disk block (UFS hole).
4876 */
4877 /* ARGSUSED */
4878 static int
ufs_getpage_miss(struct vnode * vp,u_offset_t off,size_t len,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw,int seq)4879 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4880 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4881 {
4882 struct inode *ip = VTOI(vp);
4883 page_t *pp;
4884 daddr_t bn;
4885 size_t io_len;
4886 int crpage = 0;
4887 int err;
4888 int contig;
4889 int bsize = ip->i_fs->fs_bsize;
4890
4891 /*
4892 * Figure out whether the page can be created, or must be
4893 * must be read from the disk.
4894 */
4895 if (rw == S_CREATE)
4896 crpage = 1;
4897 else {
4898 contig = 0;
4899 if (err = bmap_read(ip, off, &bn, &contig))
4900 return (err);
4901
4902 crpage = (bn == UFS_HOLE);
4903
4904 /*
4905 * If its also a fallocated block that hasn't been written to
4906 * yet, we will treat it just like a UFS_HOLE and create
4907 * a zero page for it
4908 */
4909 if (ISFALLOCBLK(ip, bn))
4910 crpage = 1;
4911 }
4912
4913 if (crpage) {
4914 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4915 addr)) == NULL) {
4916 return (ufs_fault(vp,
4917 "ufs_getpage_miss: page_create == NULL"));
4918 }
4919
4920 if (rw != S_CREATE)
4921 pagezero(pp, 0, PAGESIZE);
4922
4923 io_len = PAGESIZE;
4924 } else {
4925 u_offset_t io_off;
4926 uint_t xlen;
4927 struct buf *bp;
4928 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4929
4930 /*
4931 * If access is not in sequential order, we read from disk
4932 * in bsize units.
4933 *
4934 * We limit the size of the transfer to bsize if we are reading
4935 * from the beginning of the file. Note in this situation we
4936 * will hedge our bets and initiate an async read ahead of
4937 * the second block.
4938 */
4939 if (!seq || off == 0)
4940 contig = MIN(contig, bsize);
4941
4942 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4943 &io_len, off, contig, 0);
4944
4945 /*
4946 * Some other thread has entered the page.
4947 * ufs_getpage will retry page_lookup.
4948 */
4949 if (pp == NULL) {
4950 pl[0] = NULL;
4951 return (0);
4952 }
4953
4954 /*
4955 * Zero part of the page which we are not
4956 * going to read from the disk.
4957 */
4958 xlen = io_len & PAGEOFFSET;
4959 if (xlen != 0)
4960 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4961
4962 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4963 bp->b_edev = ip->i_dev;
4964 bp->b_dev = cmpdev(ip->i_dev);
4965 bp->b_blkno = bn;
4966 bp->b_un.b_addr = (caddr_t)0;
4967 bp->b_file = ip->i_vnode;
4968 bp->b_offset = off;
4969
4970 if (ufsvfsp->vfs_log) {
4971 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4972 } else if (ufsvfsp->vfs_snapshot) {
4973 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4974 } else {
4975 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4976 ub.ub_getpages.value.ul++;
4977 (void) bdev_strategy(bp);
4978 lwp_stat_update(LWP_STAT_INBLK, 1);
4979 }
4980
4981 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4982
4983 /*
4984 * If the file access is sequential, initiate read ahead
4985 * of the next cluster.
4986 */
4987 if (seq && ip->i_nextrio < ip->i_size)
4988 (void) ufs_getpage_ra(vp, off, seg, addr);
4989 err = biowait(bp);
4990 pageio_done(bp);
4991
4992 if (err) {
4993 pvn_read_done(pp, B_ERROR);
4994 return (err);
4995 }
4996 }
4997
4998 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4999 return (0);
5000 }
5001
5002 /*
5003 * Read ahead a cluster from the disk. Returns the length in bytes.
5004 */
5005 static int
ufs_getpage_ra(struct vnode * vp,u_offset_t off,struct seg * seg,caddr_t addr)5006 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
5007 {
5008 struct inode *ip = VTOI(vp);
5009 page_t *pp;
5010 u_offset_t io_off = ip->i_nextrio;
5011 ufsvfs_t *ufsvfsp;
5012 caddr_t addr2 = addr + (io_off - off);
5013 struct buf *bp;
5014 daddr_t bn;
5015 size_t io_len;
5016 int err;
5017 int contig;
5018 int xlen;
5019 int bsize = ip->i_fs->fs_bsize;
5020
5021 /*
5022 * If the directio advisory is in effect on this file,
5023 * then do not do buffered read ahead. Read ahead makes
5024 * it more difficult on threads using directio as they
5025 * will be forced to flush the pages from this vnode.
5026 */
5027 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5028 return (0);
5029 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5030 return (0);
5031
5032 /*
5033 * Is this test needed?
5034 */
5035 if (addr2 >= seg->s_base + seg->s_size)
5036 return (0);
5037
5038 contig = 0;
5039 err = bmap_read(ip, io_off, &bn, &contig);
5040 /*
5041 * If its a UFS_HOLE or a fallocated block, do not perform
5042 * any read ahead's since there probably is nothing to read ahead
5043 */
5044 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5045 return (0);
5046
5047 /*
5048 * Limit the transfer size to bsize if this is the 2nd block.
5049 */
5050 if (io_off == (u_offset_t)bsize)
5051 contig = MIN(contig, bsize);
5052
5053 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5054 &io_len, io_off, contig, 1)) == NULL)
5055 return (0);
5056
5057 /*
5058 * Zero part of page which we are not going to read from disk
5059 */
5060 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5061 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5062
5063 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5064
5065 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5066 bp->b_edev = ip->i_dev;
5067 bp->b_dev = cmpdev(ip->i_dev);
5068 bp->b_blkno = bn;
5069 bp->b_un.b_addr = (caddr_t)0;
5070 bp->b_file = ip->i_vnode;
5071 bp->b_offset = off;
5072
5073 if (ufsvfsp->vfs_log) {
5074 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5075 } else if (ufsvfsp->vfs_snapshot) {
5076 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5077 } else {
5078 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5079 ub.ub_getras.value.ul++;
5080 (void) bdev_strategy(bp);
5081 lwp_stat_update(LWP_STAT_INBLK, 1);
5082 }
5083
5084 return (io_len);
5085 }
5086
5087 int ufs_delay = 1;
5088 /*
5089 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5090 *
5091 * LMXXX - the inode really ought to contain a pointer to one of these
5092 * async args. Stuff gunk in there and just hand the whole mess off.
5093 * This would replace i_delaylen, i_delayoff.
5094 */
5095 /*ARGSUSED*/
5096 static int
ufs_putpage(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr,caller_context_t * ct)5097 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5098 struct cred *cr, caller_context_t *ct)
5099 {
5100 struct inode *ip = VTOI(vp);
5101 int err = 0;
5102
5103 if (vp->v_count == 0) {
5104 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5105 }
5106
5107 /*
5108 * XXX - Why should this check be made here?
5109 */
5110 if (vp->v_flag & VNOMAP) {
5111 err = ENOSYS;
5112 goto errout;
5113 }
5114
5115 if (ip->i_ufsvfs == NULL) {
5116 err = EIO;
5117 goto errout;
5118 }
5119
5120 if (flags & B_ASYNC) {
5121 if (ufs_delay && len &&
5122 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5123 mutex_enter(&ip->i_tlock);
5124 /*
5125 * If nobody stalled, start a new cluster.
5126 */
5127 if (ip->i_delaylen == 0) {
5128 ip->i_delayoff = off;
5129 ip->i_delaylen = len;
5130 mutex_exit(&ip->i_tlock);
5131 goto errout;
5132 }
5133 /*
5134 * If we have a full cluster or they are not contig,
5135 * then push last cluster and start over.
5136 */
5137 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5138 ip->i_delayoff + ip->i_delaylen != off) {
5139 u_offset_t doff;
5140 size_t dlen;
5141
5142 doff = ip->i_delayoff;
5143 dlen = ip->i_delaylen;
5144 ip->i_delayoff = off;
5145 ip->i_delaylen = len;
5146 mutex_exit(&ip->i_tlock);
5147 err = ufs_putpages(vp, doff, dlen,
5148 flags, cr);
5149 /* LMXXX - flags are new val, not old */
5150 goto errout;
5151 }
5152 /*
5153 * There is something there, it's not full, and
5154 * it is contig.
5155 */
5156 ip->i_delaylen += len;
5157 mutex_exit(&ip->i_tlock);
5158 goto errout;
5159 }
5160 /*
5161 * Must have weird flags or we are not clustering.
5162 */
5163 }
5164
5165 err = ufs_putpages(vp, off, len, flags, cr);
5166
5167 errout:
5168 return (err);
5169 }
5170
5171 /*
5172 * If len == 0, do from off to EOF.
5173 *
5174 * The normal cases should be len == 0 & off == 0 (entire vp list),
5175 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5176 * (from pageout).
5177 */
5178 /*ARGSUSED*/
5179 static int
ufs_putpages(struct vnode * vp,offset_t off,size_t len,int flags,struct cred * cr)5180 ufs_putpages(
5181 struct vnode *vp,
5182 offset_t off,
5183 size_t len,
5184 int flags,
5185 struct cred *cr)
5186 {
5187 u_offset_t io_off;
5188 u_offset_t eoff;
5189 struct inode *ip = VTOI(vp);
5190 page_t *pp;
5191 size_t io_len;
5192 int err = 0;
5193 int dolock;
5194
5195 if (vp->v_count == 0)
5196 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5197 /*
5198 * Acquire the readers/write inode lock before locking
5199 * any pages in this inode.
5200 * The inode lock is held during i/o.
5201 */
5202 if (len == 0) {
5203 mutex_enter(&ip->i_tlock);
5204 ip->i_delayoff = ip->i_delaylen = 0;
5205 mutex_exit(&ip->i_tlock);
5206 }
5207 dolock = (rw_owner(&ip->i_contents) != curthread);
5208 if (dolock) {
5209 /*
5210 * Must synchronize this thread and any possible thread
5211 * operating in the window of vulnerability in wrip().
5212 * It is dangerous to allow both a thread doing a putpage
5213 * and a thread writing, so serialize them. The exception
5214 * is when the thread in wrip() does something which causes
5215 * a putpage operation. Then, the thread must be allowed
5216 * to continue. It may encounter a bmap_read problem in
5217 * ufs_putapage, but that is handled in ufs_putapage.
5218 * Allow async writers to proceed, we don't want to block
5219 * the pageout daemon.
5220 */
5221 if (ip->i_writer == curthread)
5222 rw_enter(&ip->i_contents, RW_READER);
5223 else {
5224 for (;;) {
5225 rw_enter(&ip->i_contents, RW_READER);
5226 mutex_enter(&ip->i_tlock);
5227 /*
5228 * If there is no thread in the critical
5229 * section of wrip(), then proceed.
5230 * Otherwise, wait until there isn't one.
5231 */
5232 if (ip->i_writer == NULL) {
5233 mutex_exit(&ip->i_tlock);
5234 break;
5235 }
5236 rw_exit(&ip->i_contents);
5237 /*
5238 * Bounce async writers when we have a writer
5239 * working on this file so we don't deadlock
5240 * the pageout daemon.
5241 */
5242 if (flags & B_ASYNC) {
5243 mutex_exit(&ip->i_tlock);
5244 return (0);
5245 }
5246 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5247 mutex_exit(&ip->i_tlock);
5248 }
5249 }
5250 }
5251
5252 if (!vn_has_cached_data(vp)) {
5253 if (dolock)
5254 rw_exit(&ip->i_contents);
5255 return (0);
5256 }
5257
5258 if (len == 0) {
5259 /*
5260 * Search the entire vp list for pages >= off.
5261 */
5262 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5263 flags, cr);
5264 } else {
5265 /*
5266 * Loop over all offsets in the range looking for
5267 * pages to deal with.
5268 */
5269 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5270 eoff = MIN(off + len, eoff);
5271 else
5272 eoff = off + len;
5273
5274 for (io_off = off; io_off < eoff; io_off += io_len) {
5275 /*
5276 * If we are not invalidating, synchronously
5277 * freeing or writing pages, use the routine
5278 * page_lookup_nowait() to prevent reclaiming
5279 * them from the free list.
5280 */
5281 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5282 pp = page_lookup(vp, io_off,
5283 (flags & (B_INVAL | B_FREE)) ?
5284 SE_EXCL : SE_SHARED);
5285 } else {
5286 pp = page_lookup_nowait(vp, io_off,
5287 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5288 }
5289
5290 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5291 io_len = PAGESIZE;
5292 else {
5293 u_offset_t *io_offp = &io_off;
5294
5295 err = ufs_putapage(vp, pp, io_offp, &io_len,
5296 flags, cr);
5297 if (err != 0)
5298 break;
5299 /*
5300 * "io_off" and "io_len" are returned as
5301 * the range of pages we actually wrote.
5302 * This allows us to skip ahead more quickly
5303 * since several pages may've been dealt
5304 * with by this iteration of the loop.
5305 */
5306 }
5307 }
5308 }
5309 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5310 /*
5311 * We have just sync'ed back all the pages on
5312 * the inode, turn off the IMODTIME flag.
5313 */
5314 mutex_enter(&ip->i_tlock);
5315 ip->i_flag &= ~IMODTIME;
5316 mutex_exit(&ip->i_tlock);
5317 }
5318 if (dolock)
5319 rw_exit(&ip->i_contents);
5320 return (err);
5321 }
5322
5323 static void
ufs_iodone(buf_t * bp)5324 ufs_iodone(buf_t *bp)
5325 {
5326 struct inode *ip;
5327
5328 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5329
5330 bp->b_iodone = NULL;
5331
5332 ip = VTOI(bp->b_pages->p_vnode);
5333
5334 mutex_enter(&ip->i_tlock);
5335 if (ip->i_writes >= ufs_LW) {
5336 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5337 if (ufs_WRITES)
5338 cv_broadcast(&ip->i_wrcv); /* wake all up */
5339 } else {
5340 ip->i_writes -= bp->b_bcount;
5341 }
5342
5343 mutex_exit(&ip->i_tlock);
5344 iodone(bp);
5345 }
5346
5347 /*
5348 * Write out a single page, possibly klustering adjacent
5349 * dirty pages. The inode lock must be held.
5350 *
5351 * LMXXX - bsize < pagesize not done.
5352 */
5353 /*ARGSUSED*/
5354 int
ufs_putapage(struct vnode * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,struct cred * cr)5355 ufs_putapage(
5356 struct vnode *vp,
5357 page_t *pp,
5358 u_offset_t *offp,
5359 size_t *lenp, /* return values */
5360 int flags,
5361 struct cred *cr)
5362 {
5363 u_offset_t io_off;
5364 u_offset_t off;
5365 struct inode *ip = VTOI(vp);
5366 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5367 struct fs *fs;
5368 struct buf *bp;
5369 size_t io_len;
5370 daddr_t bn;
5371 int err;
5372 int contig;
5373 int dotrans;
5374
5375 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5376
5377 if (ufsvfsp == NULL) {
5378 err = EIO;
5379 goto out_trace;
5380 }
5381
5382 fs = ip->i_fs;
5383 ASSERT(fs->fs_ronly == 0);
5384
5385 /*
5386 * If the modified time on the inode has not already been
5387 * set elsewhere (e.g. for write/setattr) we set the time now.
5388 * This gives us approximate modified times for mmap'ed files
5389 * which are modified via stores in the user address space.
5390 */
5391 if ((ip->i_flag & IMODTIME) == 0) {
5392 mutex_enter(&ip->i_tlock);
5393 ip->i_flag |= IUPD;
5394 ip->i_seq++;
5395 ITIMES_NOLOCK(ip);
5396 mutex_exit(&ip->i_tlock);
5397 }
5398
5399 /*
5400 * Align the request to a block boundry (for old file systems),
5401 * and go ask bmap() how contiguous things are for this file.
5402 */
5403 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5404 contig = 0;
5405 err = bmap_read(ip, off, &bn, &contig);
5406 if (err)
5407 goto out;
5408 if (bn == UFS_HOLE) { /* putpage never allocates */
5409 /*
5410 * logging device is in error mode; simply return EIO
5411 */
5412 if (TRANS_ISERROR(ufsvfsp)) {
5413 err = EIO;
5414 goto out;
5415 }
5416 /*
5417 * Oops, the thread in the window in wrip() did some
5418 * sort of operation which caused a putpage in the bad
5419 * range. In this case, just return an error which will
5420 * cause the software modified bit on the page to set
5421 * and the page will get written out again later.
5422 */
5423 if (ip->i_writer == curthread) {
5424 err = EIO;
5425 goto out;
5426 }
5427 /*
5428 * If the pager is trying to push a page in the bad range
5429 * just tell him to try again later when things are better.
5430 */
5431 if (flags & B_ASYNC) {
5432 err = EAGAIN;
5433 goto out;
5434 }
5435 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5436 goto out;
5437 }
5438
5439 /*
5440 * If it is an fallocate'd block, reverse the negativity since
5441 * we are now writing to it
5442 */
5443 if (ISFALLOCBLK(ip, bn)) {
5444 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5445 if (err)
5446 goto out;
5447
5448 bn = -bn;
5449 }
5450
5451 /*
5452 * Take the length (of contiguous bytes) passed back from bmap()
5453 * and _try_ and get a set of pages covering that extent.
5454 */
5455 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5456
5457 /*
5458 * May have run out of memory and not clustered backwards.
5459 * off p_offset
5460 * [ pp - 1 ][ pp ]
5461 * [ block ]
5462 * We told bmap off, so we have to adjust the bn accordingly.
5463 */
5464 if (io_off > off) {
5465 bn += btod(io_off - off);
5466 contig -= (io_off - off);
5467 }
5468
5469 /*
5470 * bmap was carefull to tell us the right size so use that.
5471 * There might be unallocated frags at the end.
5472 * LMXXX - bzero the end of the page? We must be writing after EOF.
5473 */
5474 if (io_len > contig) {
5475 ASSERT(io_len - contig < fs->fs_bsize);
5476 io_len -= (io_len - contig);
5477 }
5478
5479 /*
5480 * Handle the case where we are writing the last page after EOF.
5481 *
5482 * XXX - just a patch for i-mt3.
5483 */
5484 if (io_len == 0) {
5485 ASSERT(pp->p_offset >=
5486 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5487 io_len = PAGESIZE;
5488 }
5489
5490 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5491
5492 ULOCKFS_SET_MOD(ITOUL(ip));
5493
5494 bp->b_edev = ip->i_dev;
5495 bp->b_dev = cmpdev(ip->i_dev);
5496 bp->b_blkno = bn;
5497 bp->b_un.b_addr = (caddr_t)0;
5498 bp->b_file = ip->i_vnode;
5499
5500 /*
5501 * File contents of shadow or quota inodes are metadata, and updates
5502 * to these need to be put into a logging transaction. All direct
5503 * callers in UFS do that, but fsflush can come here _before_ the
5504 * normal codepath. An example would be updating ACL information, for
5505 * which the normal codepath would be:
5506 * ufs_si_store()
5507 * ufs_rdwri()
5508 * wrip()
5509 * segmap_release()
5510 * VOP_PUTPAGE()
5511 * Here, fsflush can pick up the dirty page before segmap_release()
5512 * forces it out. If that happens, there's no transaction.
5513 * We therefore need to test whether a transaction exists, and if not
5514 * create one - for fsflush.
5515 */
5516 dotrans =
5517 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5518 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5519 (TRANS_ISTRANS(ufsvfsp)));
5520
5521 if (dotrans) {
5522 curthread->t_flag |= T_DONTBLOCK;
5523 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5524 }
5525 if (TRANS_ISTRANS(ufsvfsp)) {
5526 if ((ip->i_mode & IFMT) == IFSHAD) {
5527 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5528 } else if (ufsvfsp->vfs_qinod == ip) {
5529 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5530 0, 0);
5531 }
5532 }
5533 if (dotrans) {
5534 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5535 curthread->t_flag &= ~T_DONTBLOCK;
5536 }
5537
5538 /* write throttle */
5539
5540 ASSERT(bp->b_iodone == NULL);
5541 bp->b_iodone = (int (*)())ufs_iodone;
5542 mutex_enter(&ip->i_tlock);
5543 ip->i_writes += bp->b_bcount;
5544 mutex_exit(&ip->i_tlock);
5545
5546 if (bp->b_flags & B_ASYNC) {
5547 if (ufsvfsp->vfs_log) {
5548 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5549 } else if (ufsvfsp->vfs_snapshot) {
5550 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5551 } else {
5552 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5553 ub.ub_putasyncs.value.ul++;
5554 (void) bdev_strategy(bp);
5555 lwp_stat_update(LWP_STAT_OUBLK, 1);
5556 }
5557 } else {
5558 if (ufsvfsp->vfs_log) {
5559 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5560 } else if (ufsvfsp->vfs_snapshot) {
5561 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5562 } else {
5563 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5564 ub.ub_putsyncs.value.ul++;
5565 (void) bdev_strategy(bp);
5566 lwp_stat_update(LWP_STAT_OUBLK, 1);
5567 }
5568 err = biowait(bp);
5569 pageio_done(bp);
5570 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5571 }
5572
5573 pp = NULL;
5574
5575 out:
5576 if (err != 0 && pp != NULL)
5577 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5578
5579 if (offp)
5580 *offp = io_off;
5581 if (lenp)
5582 *lenp = io_len;
5583 out_trace:
5584 return (err);
5585 }
5586
5587 uint64_t ufs_map_alock_retry_cnt;
5588 uint64_t ufs_map_lockfs_retry_cnt;
5589
5590 /* ARGSUSED */
5591 static int
ufs_map(struct vnode * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5592 ufs_map(struct vnode *vp,
5593 offset_t off,
5594 struct as *as,
5595 caddr_t *addrp,
5596 size_t len,
5597 uchar_t prot,
5598 uchar_t maxprot,
5599 uint_t flags,
5600 struct cred *cr,
5601 caller_context_t *ct)
5602 {
5603 struct segvn_crargs vn_a;
5604 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5605 struct ulockfs *ulp;
5606 int error, sig;
5607 k_sigset_t smask;
5608 caddr_t hint = *addrp;
5609
5610 if (vp->v_flag & VNOMAP) {
5611 error = ENOSYS;
5612 goto out;
5613 }
5614
5615 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5616 error = ENXIO;
5617 goto out;
5618 }
5619
5620 if (vp->v_type != VREG) {
5621 error = ENODEV;
5622 goto out;
5623 }
5624
5625 retry_map:
5626 *addrp = hint;
5627 /*
5628 * If file is being locked, disallow mapping.
5629 */
5630 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5631 error = EAGAIN;
5632 goto out;
5633 }
5634
5635 as_rangelock(as);
5636 /*
5637 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5638 * the previous attempt), some other thread could have grabbed
5639 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5640 * would unmap the valid VA range, that is ok.
5641 */
5642 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5643 if (error != 0) {
5644 as_rangeunlock(as);
5645 goto out;
5646 }
5647
5648 /*
5649 * a_lock has to be acquired before entering the lockfs protocol
5650 * because that is the order in which pagefault works. Also we cannot
5651 * block on a_lock here because this waiting writer will prevent
5652 * further readers like ufs_read from progressing and could cause
5653 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5654 * pending.
5655 */
5656 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5657 ufs_map_alock_retry_cnt++;
5658 delay(RETRY_LOCK_DELAY);
5659 }
5660
5661 /*
5662 * We can't hold as->a_lock and wait for lockfs to succeed because
5663 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5664 * instead.
5665 */
5666 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5667 /*
5668 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5669 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5670 */
5671 ufs_map_lockfs_retry_cnt++;
5672 AS_LOCK_EXIT(as);
5673 as_rangeunlock(as);
5674 if (error == EIO)
5675 goto out;
5676
5677 mutex_enter(&ulp->ul_lock);
5678 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5679 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5680 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5681 } else {
5682 sigintr(&smask, 1);
5683 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5684 sigunintr(&smask);
5685 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5686 !sig) || ufsvfsp->vfs_dontblock) {
5687 mutex_exit(&ulp->ul_lock);
5688 return (EINTR);
5689 }
5690 }
5691 }
5692 mutex_exit(&ulp->ul_lock);
5693 goto retry_map;
5694 }
5695
5696 vn_a.vp = vp;
5697 vn_a.offset = (u_offset_t)off;
5698 vn_a.type = flags & MAP_TYPE;
5699 vn_a.prot = prot;
5700 vn_a.maxprot = maxprot;
5701 vn_a.cred = cr;
5702 vn_a.amp = NULL;
5703 vn_a.flags = flags & ~MAP_TYPE;
5704 vn_a.szc = 0;
5705 vn_a.lgrp_mem_policy_flags = 0;
5706
5707 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5708 if (ulp)
5709 ufs_lockfs_end(ulp);
5710 as_rangeunlock(as);
5711 out:
5712 return (error);
5713 }
5714
5715 /* ARGSUSED */
5716 static int
ufs_addmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5717 ufs_addmap(struct vnode *vp,
5718 offset_t off,
5719 struct as *as,
5720 caddr_t addr,
5721 size_t len,
5722 uchar_t prot,
5723 uchar_t maxprot,
5724 uint_t flags,
5725 struct cred *cr,
5726 caller_context_t *ct)
5727 {
5728 struct inode *ip = VTOI(vp);
5729
5730 if (vp->v_flag & VNOMAP) {
5731 return (ENOSYS);
5732 }
5733
5734 mutex_enter(&ip->i_tlock);
5735 ip->i_mapcnt += btopr(len);
5736 mutex_exit(&ip->i_tlock);
5737 return (0);
5738 }
5739
5740 /*ARGSUSED*/
5741 static int
ufs_delmap(struct vnode * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,struct cred * cr,caller_context_t * ct)5742 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5743 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5744 struct cred *cr, caller_context_t *ct)
5745 {
5746 struct inode *ip = VTOI(vp);
5747
5748 if (vp->v_flag & VNOMAP) {
5749 return (ENOSYS);
5750 }
5751
5752 mutex_enter(&ip->i_tlock);
5753 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5754 ASSERT(ip->i_mapcnt >= 0);
5755 mutex_exit(&ip->i_tlock);
5756 return (0);
5757 }
5758 /*
5759 * Return the answer requested to poll() for non-device files
5760 */
5761 struct pollhead ufs_pollhd;
5762
5763 /* ARGSUSED */
5764 int
ufs_poll(vnode_t * vp,short ev,int any,short * revp,struct pollhead ** phpp,caller_context_t * ct)5765 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5766 caller_context_t *ct)
5767 {
5768 struct ufsvfs *ufsvfsp;
5769
5770 *revp = 0;
5771 ufsvfsp = VTOI(vp)->i_ufsvfs;
5772
5773 if (!ufsvfsp) {
5774 *revp = POLLHUP;
5775 goto out;
5776 }
5777
5778 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5779 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5780 *revp |= POLLERR;
5781
5782 } else {
5783 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5784 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5785 *revp |= POLLOUT;
5786
5787 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5788 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5789 *revp |= POLLWRBAND;
5790
5791 if (ev & POLLIN)
5792 *revp |= POLLIN;
5793
5794 if (ev & POLLRDNORM)
5795 *revp |= POLLRDNORM;
5796
5797 if (ev & POLLRDBAND)
5798 *revp |= POLLRDBAND;
5799 }
5800
5801 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5802 *revp |= POLLPRI;
5803 out:
5804 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
5805
5806 return (0);
5807 }
5808
5809 /* ARGSUSED */
5810 static int
ufs_l_pathconf(struct vnode * vp,int cmd,ulong_t * valp,struct cred * cr,caller_context_t * ct)5811 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5812 caller_context_t *ct)
5813 {
5814 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5815 struct ulockfs *ulp = NULL;
5816 struct inode *sip = NULL;
5817 int error;
5818 struct inode *ip = VTOI(vp);
5819 int issync;
5820
5821 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5822 if (error)
5823 return (error);
5824
5825 switch (cmd) {
5826 /*
5827 * Have to handle _PC_NAME_MAX here, because the normal way
5828 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5829 * results in a lock ordering reversal between
5830 * ufs_lockfs_{begin,end}() and
5831 * ufs_thread_{suspend,continue}().
5832 *
5833 * Keep in sync with ufs_statvfs().
5834 */
5835 case _PC_NAME_MAX:
5836 *valp = MAXNAMLEN;
5837 break;
5838
5839 case _PC_FILESIZEBITS:
5840 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5841 *valp = UFS_FILESIZE_BITS;
5842 else
5843 *valp = 32;
5844 break;
5845
5846 case _PC_XATTR_EXISTS:
5847 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5848
5849 error =
5850 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5851 if (error == 0 && sip != NULL) {
5852 /* Start transaction */
5853 if (ulp) {
5854 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5855 TOP_RMDIR, TOP_RMDIR_SIZE);
5856 }
5857 /*
5858 * Is directory empty
5859 */
5860 rw_enter(&sip->i_rwlock, RW_WRITER);
5861 rw_enter(&sip->i_contents, RW_WRITER);
5862 if (ufs_xattrdirempty(sip,
5863 sip->i_number, CRED())) {
5864 rw_enter(&ip->i_contents, RW_WRITER);
5865 ufs_unhook_shadow(ip, sip);
5866 rw_exit(&ip->i_contents);
5867
5868 *valp = 0;
5869
5870 } else
5871 *valp = 1;
5872 rw_exit(&sip->i_contents);
5873 rw_exit(&sip->i_rwlock);
5874 if (ulp) {
5875 TRANS_END_CSYNC(ufsvfsp, error, issync,
5876 TOP_RMDIR, TOP_RMDIR_SIZE);
5877 }
5878 VN_RELE(ITOV(sip));
5879 } else if (error == ENOENT) {
5880 *valp = 0;
5881 error = 0;
5882 }
5883 } else {
5884 error = fs_pathconf(vp, cmd, valp, cr, ct);
5885 }
5886 break;
5887
5888 case _PC_ACL_ENABLED:
5889 *valp = _ACL_ACLENT_ENABLED;
5890 break;
5891
5892 case _PC_MIN_HOLE_SIZE:
5893 *valp = (ulong_t)ip->i_fs->fs_bsize;
5894 break;
5895
5896 case _PC_SATTR_ENABLED:
5897 case _PC_SATTR_EXISTS:
5898 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5899 (vp->v_type == VREG || vp->v_type == VDIR);
5900 break;
5901
5902 case _PC_TIMESTAMP_RESOLUTION:
5903 /*
5904 * UFS keeps only microsecond timestamp resolution.
5905 * This is historical and will probably never change.
5906 */
5907 *valp = 1000L;
5908 break;
5909
5910 default:
5911 error = fs_pathconf(vp, cmd, valp, cr, ct);
5912 break;
5913 }
5914
5915 if (ulp != NULL) {
5916 ufs_lockfs_end(ulp);
5917 }
5918 return (error);
5919 }
5920
5921 int ufs_pageio_writes, ufs_pageio_reads;
5922
5923 /*ARGSUSED*/
5924 static int
ufs_pageio(struct vnode * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,struct cred * cr,caller_context_t * ct)5925 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5926 int flags, struct cred *cr, caller_context_t *ct)
5927 {
5928 struct inode *ip = VTOI(vp);
5929 struct ufsvfs *ufsvfsp;
5930 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5931 struct buf *bp;
5932 daddr_t bn;
5933 size_t done_len = 0, cur_len = 0;
5934 int err = 0;
5935 int contig = 0;
5936 int dolock;
5937 int vmpss = 0;
5938 struct ulockfs *ulp;
5939
5940 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5941 vp->v_mpssdata != NULL) {
5942 vmpss = 1;
5943 }
5944
5945 dolock = (rw_owner(&ip->i_contents) != curthread);
5946 /*
5947 * We need a better check. Ideally, we would use another
5948 * vnodeops so that hlocked and forcibly unmounted file
5949 * systems would return EIO where appropriate and w/o the
5950 * need for these checks.
5951 */
5952 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5953 return (EIO);
5954
5955 /*
5956 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5957 * ul_lock must be taken before locking pages so we can't use it here
5958 * if pp is non NULL because segvn already locked pages
5959 * SE_EXCL. Instead we rely on the fact that a forced umount or
5960 * applying a filesystem lock via ufs_fiolfs() will block in the
5961 * implicit call to ufs_flush() until we unlock the pages after the
5962 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5963 * above 0 until they are done. We have to be careful not to increment
5964 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5965 *
5966 * If pp is NULL use ul_lock to make sure we don't increment
5967 * ul_vnops_cnt after forceful unmount hlocks the file system.
5968 */
5969 if (vmpss || pp == NULL) {
5970 ulp = &ufsvfsp->vfs_ulockfs;
5971 if (pp == NULL)
5972 mutex_enter(&ulp->ul_lock);
5973 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5974 if (pp == NULL) {
5975 mutex_exit(&ulp->ul_lock);
5976 }
5977 return (vmpss ? EIO : EINVAL);
5978 }
5979 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5980 if (pp == NULL)
5981 mutex_exit(&ulp->ul_lock);
5982 if (ufs_quiesce_pend) {
5983 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5984 cv_broadcast(&ulp->ul_cv);
5985 return (vmpss ? EIO : EINVAL);
5986 }
5987 }
5988
5989 if (dolock) {
5990 /*
5991 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
5992 * handle a fault against a segment that maps vnode pages with
5993 * large mappings. Segvn creates pages and holds them locked
5994 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
5995 * use rw_tryenter() to avoid a potential deadlock since in
5996 * lock order i_contents needs to be taken first.
5997 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
5998 */
5999 if (!vmpss) {
6000 rw_enter(&ip->i_contents, RW_READER);
6001 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
6002 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6003 cv_broadcast(&ulp->ul_cv);
6004 return (EDEADLK);
6005 }
6006 }
6007
6008 /*
6009 * Return an error to segvn because the pagefault request is beyond
6010 * PAGESIZE rounded EOF.
6011 */
6012 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
6013 if (dolock)
6014 rw_exit(&ip->i_contents);
6015 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6016 cv_broadcast(&ulp->ul_cv);
6017 return (EFAULT);
6018 }
6019
6020 if (pp == NULL) {
6021 if (bmap_has_holes(ip)) {
6022 err = ENOSYS;
6023 } else {
6024 err = EINVAL;
6025 }
6026 if (dolock)
6027 rw_exit(&ip->i_contents);
6028 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6029 cv_broadcast(&ulp->ul_cv);
6030 return (err);
6031 }
6032
6033 /*
6034 * Break the io request into chunks, one for each contiguous
6035 * stretch of disk blocks in the target file.
6036 */
6037 while (done_len < io_len) {
6038 ASSERT(cpp);
6039 contig = 0;
6040 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6041 &bn, &contig))
6042 break;
6043
6044 if (bn == UFS_HOLE) { /* No holey swapfiles */
6045 if (vmpss) {
6046 err = EFAULT;
6047 break;
6048 }
6049 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6050 break;
6051 }
6052
6053 cur_len = MIN(io_len - done_len, contig);
6054 /*
6055 * Zero out a page beyond EOF, when the last block of
6056 * a file is a UFS fragment so that ufs_pageio() can be used
6057 * instead of ufs_getpage() to handle faults against
6058 * segvn segments that use large pages.
6059 */
6060 page_list_break(&cpp, &npp, btopr(cur_len));
6061 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6062 size_t xlen = cur_len & PAGEOFFSET;
6063 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6064 }
6065
6066 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6067 ASSERT(bp != NULL);
6068
6069 bp->b_edev = ip->i_dev;
6070 bp->b_dev = cmpdev(ip->i_dev);
6071 bp->b_blkno = bn;
6072 bp->b_un.b_addr = (caddr_t)0;
6073 bp->b_file = ip->i_vnode;
6074
6075 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6076 ub.ub_pageios.value.ul++;
6077 if (ufsvfsp->vfs_snapshot)
6078 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6079 else
6080 (void) bdev_strategy(bp);
6081
6082 if (flags & B_READ)
6083 ufs_pageio_reads++;
6084 else
6085 ufs_pageio_writes++;
6086 if (flags & B_READ)
6087 lwp_stat_update(LWP_STAT_INBLK, 1);
6088 else
6089 lwp_stat_update(LWP_STAT_OUBLK, 1);
6090 /*
6091 * If the request is not B_ASYNC, wait for i/o to complete
6092 * and re-assemble the page list to return to the caller.
6093 * If it is B_ASYNC we leave the page list in pieces and
6094 * cleanup() will dispose of them.
6095 */
6096 if ((flags & B_ASYNC) == 0) {
6097 err = biowait(bp);
6098 pageio_done(bp);
6099 if (err)
6100 break;
6101 page_list_concat(&opp, &cpp);
6102 }
6103 cpp = npp;
6104 npp = NULL;
6105 if (flags & B_READ)
6106 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6107 done_len += cur_len;
6108 }
6109 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6110 if (err) {
6111 if (flags & B_ASYNC) {
6112 /* Cleanup unprocessed parts of list */
6113 page_list_concat(&cpp, &npp);
6114 if (flags & B_READ)
6115 pvn_read_done(cpp, B_ERROR);
6116 else
6117 pvn_write_done(cpp, B_ERROR);
6118 } else {
6119 /* Re-assemble list and let caller clean up */
6120 page_list_concat(&opp, &cpp);
6121 page_list_concat(&opp, &npp);
6122 }
6123 }
6124
6125 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6126 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6127 mutex_enter(&ip->i_tlock);
6128 ip->i_flag |= IACC;
6129 ITIMES_NOLOCK(ip);
6130 mutex_exit(&ip->i_tlock);
6131 }
6132
6133 if (dolock)
6134 rw_exit(&ip->i_contents);
6135 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6136 cv_broadcast(&ulp->ul_cv);
6137 return (err);
6138 }
6139
6140 /*
6141 * Called when the kernel is in a frozen state to dump data
6142 * directly to the device. It uses a private dump data structure,
6143 * set up by dump_ctl, to locate the correct disk block to which to dump.
6144 */
6145 /*ARGSUSED*/
6146 static int
ufs_dump(vnode_t * vp,caddr_t addr,offset_t ldbn,offset_t dblks,caller_context_t * ct)6147 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6148 caller_context_t *ct)
6149 {
6150 u_offset_t file_size;
6151 struct inode *ip = VTOI(vp);
6152 struct fs *fs = ip->i_fs;
6153 daddr_t dbn, lfsbn;
6154 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6155 int error = 0;
6156 int ndbs, nfsbs;
6157
6158 /*
6159 * forced unmount case
6160 */
6161 if (ip->i_ufsvfs == NULL)
6162 return (EIO);
6163 /*
6164 * Validate the inode that it has not been modified since
6165 * the dump structure is allocated.
6166 */
6167 mutex_enter(&ip->i_tlock);
6168 if ((dump_info == NULL) ||
6169 (dump_info->ip != ip) ||
6170 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6171 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6172 mutex_exit(&ip->i_tlock);
6173 return (-1);
6174 }
6175 mutex_exit(&ip->i_tlock);
6176
6177 /*
6178 * See that the file has room for this write
6179 */
6180 UFS_GET_ISIZE(&file_size, ip);
6181
6182 if (ldbtob(ldbn + dblks) > file_size)
6183 return (ENOSPC);
6184
6185 /*
6186 * Find the physical disk block numbers from the dump
6187 * private data structure directly and write out the data
6188 * in contiguous block lumps
6189 */
6190 while (dblks > 0 && !error) {
6191 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6192 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6193 nfsbs = 1;
6194 ndbs = disk_blks - ldbn % disk_blks;
6195 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6196 nfsbs]) == dbn + ndbs) {
6197 nfsbs++;
6198 ndbs += disk_blks;
6199 }
6200 if (ndbs > dblks)
6201 ndbs = dblks;
6202 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6203 addr += ldbtob((offset_t)ndbs);
6204 dblks -= ndbs;
6205 ldbn += ndbs;
6206 }
6207 return (error);
6208
6209 }
6210
6211 /*
6212 * Prepare the file system before and after the dump operation.
6213 *
6214 * action = DUMP_ALLOC:
6215 * Preparation before dump, allocate dump private data structure
6216 * to hold all the direct and indirect block info for dump.
6217 *
6218 * action = DUMP_FREE:
6219 * Clean up after dump, deallocate the dump private data structure.
6220 *
6221 * action = DUMP_SCAN:
6222 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6223 * if found, the starting file-relative DEV_BSIZE lbn is written
6224 * to *bklp; that lbn is intended for use with VOP_DUMP()
6225 */
6226 /*ARGSUSED*/
6227 static int
ufs_dumpctl(vnode_t * vp,int action,offset_t * blkp,caller_context_t * ct)6228 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6229 {
6230 struct inode *ip = VTOI(vp);
6231 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6232 struct fs *fs;
6233 daddr32_t *dblk, *storeblk;
6234 daddr32_t *nextblk, *endblk;
6235 struct buf *bp;
6236 int i, entry, entries;
6237 int n, ncontig;
6238
6239 /*
6240 * check for forced unmount
6241 */
6242 if (ufsvfsp == NULL)
6243 return (EIO);
6244
6245 if (action == DUMP_ALLOC) {
6246 /*
6247 * alloc and record dump_info
6248 */
6249 if (dump_info != NULL)
6250 return (EINVAL);
6251
6252 ASSERT(vp->v_type == VREG);
6253 fs = ufsvfsp->vfs_fs;
6254
6255 rw_enter(&ip->i_contents, RW_READER);
6256
6257 if (bmap_has_holes(ip)) {
6258 rw_exit(&ip->i_contents);
6259 return (EFAULT);
6260 }
6261
6262 /*
6263 * calculate and allocate space needed according to i_size
6264 */
6265 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6266 dump_info = kmem_alloc(sizeof (struct dump) +
6267 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6268 if (dump_info == NULL) {
6269 rw_exit(&ip->i_contents);
6270 return (ENOMEM);
6271 }
6272
6273 /* Start saving the info */
6274 dump_info->fsbs = entries;
6275 dump_info->ip = ip;
6276 storeblk = &dump_info->dblk[0];
6277
6278 /* Direct Blocks */
6279 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6280 *storeblk++ = ip->i_db[entry];
6281
6282 /* Indirect Blocks */
6283 for (i = 0; i < NIADDR; i++) {
6284 int error = 0;
6285
6286 bp = UFS_BREAD(ufsvfsp,
6287 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6288 if (bp->b_flags & B_ERROR)
6289 error = EIO;
6290 else {
6291 dblk = bp->b_un.b_daddr;
6292 if ((storeblk = save_dblks(ip, ufsvfsp,
6293 storeblk, dblk, i, entries)) == NULL)
6294 error = EIO;
6295 }
6296
6297 brelse(bp);
6298
6299 if (error != 0) {
6300 kmem_free(dump_info, sizeof (struct dump) +
6301 (entries - 1) * sizeof (daddr32_t));
6302 rw_exit(&ip->i_contents);
6303 dump_info = NULL;
6304 return (error);
6305 }
6306 }
6307 /* and time stamp the information */
6308 mutex_enter(&ip->i_tlock);
6309 dump_info->time = ip->i_mtime;
6310 mutex_exit(&ip->i_tlock);
6311
6312 rw_exit(&ip->i_contents);
6313 } else if (action == DUMP_FREE) {
6314 /*
6315 * free dump_info
6316 */
6317 if (dump_info == NULL)
6318 return (EINVAL);
6319 entries = dump_info->fsbs - 1;
6320 kmem_free(dump_info, sizeof (struct dump) +
6321 entries * sizeof (daddr32_t));
6322 dump_info = NULL;
6323 } else if (action == DUMP_SCAN) {
6324 /*
6325 * scan dump_info
6326 */
6327 if (dump_info == NULL)
6328 return (EINVAL);
6329
6330 dblk = dump_info->dblk;
6331 nextblk = dblk + 1;
6332 endblk = dblk + dump_info->fsbs - 1;
6333 fs = ufsvfsp->vfs_fs;
6334 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6335
6336 /*
6337 * scan dblk[] entries; contig fs space is found when:
6338 * ((current blkno + frags per block) == next blkno)
6339 */
6340 n = 0;
6341 while (n < ncontig && dblk < endblk) {
6342 if ((*dblk + fs->fs_frag) == *nextblk)
6343 n++;
6344 else
6345 n = 0;
6346 dblk++;
6347 nextblk++;
6348 }
6349
6350 /*
6351 * index is where size bytes of contig space begins;
6352 * conversion from index to the file's DEV_BSIZE lbn
6353 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6354 */
6355 if (n == ncontig) {
6356 i = (dblk - dump_info->dblk) - ncontig;
6357 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6358 } else
6359 return (EFAULT);
6360 }
6361 return (0);
6362 }
6363
6364 /*
6365 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6366 * system blocks until it reaches the the disk block addresses, which are
6367 * then stored into the given buffer, storeblk.
6368 */
6369 static daddr32_t *
save_dblks(struct inode * ip,struct ufsvfs * ufsvfsp,daddr32_t * storeblk,daddr32_t * dblk,int level,int entries)6370 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6371 daddr32_t *dblk, int level, int entries)
6372 {
6373 struct fs *fs = ufsvfsp->vfs_fs;
6374 struct buf *bp;
6375 int i;
6376
6377 if (level == 0) {
6378 for (i = 0; i < NINDIR(fs); i++) {
6379 if (storeblk - dump_info->dblk >= entries)
6380 break;
6381 *storeblk++ = dblk[i];
6382 }
6383 return (storeblk);
6384 }
6385 for (i = 0; i < NINDIR(fs); i++) {
6386 if (storeblk - dump_info->dblk >= entries)
6387 break;
6388 bp = UFS_BREAD(ufsvfsp,
6389 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6390 if (bp->b_flags & B_ERROR) {
6391 brelse(bp);
6392 return (NULL);
6393 }
6394 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6395 level - 1, entries);
6396 brelse(bp);
6397
6398 if (storeblk == NULL)
6399 return (NULL);
6400 }
6401 return (storeblk);
6402 }
6403
6404 /* ARGSUSED */
6405 static int
ufs_getsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6406 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6407 struct cred *cr, caller_context_t *ct)
6408 {
6409 struct inode *ip = VTOI(vp);
6410 struct ulockfs *ulp;
6411 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6412 ulong_t vsa_mask = vsap->vsa_mask;
6413 int err = EINVAL;
6414
6415 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6416
6417 /*
6418 * Only grab locks if needed - they're not needed to check vsa_mask
6419 * or if the mask contains no acl flags.
6420 */
6421 if (vsa_mask != 0) {
6422 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6423 ULOCKFS_GETATTR_MASK))
6424 return (err);
6425
6426 rw_enter(&ip->i_contents, RW_READER);
6427 err = ufs_acl_get(ip, vsap, flag, cr);
6428 rw_exit(&ip->i_contents);
6429
6430 if (ulp)
6431 ufs_lockfs_end(ulp);
6432 }
6433 return (err);
6434 }
6435
6436 /* ARGSUSED */
6437 static int
ufs_setsecattr(struct vnode * vp,vsecattr_t * vsap,int flag,struct cred * cr,caller_context_t * ct)6438 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6439 caller_context_t *ct)
6440 {
6441 struct inode *ip = VTOI(vp);
6442 struct ulockfs *ulp = NULL;
6443 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6444 ulong_t vsa_mask = vsap->vsa_mask;
6445 int err;
6446 int haverwlock = 1;
6447 int trans_size;
6448 int donetrans = 0;
6449 int retry = 1;
6450
6451 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6452
6453 /* Abort now if the request is either empty or invalid. */
6454 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6455 if ((vsa_mask == 0) ||
6456 ((vsap->vsa_aclentp == NULL) &&
6457 (vsap->vsa_dfaclentp == NULL))) {
6458 err = EINVAL;
6459 goto out;
6460 }
6461
6462 /*
6463 * Following convention, if this is a directory then we acquire the
6464 * inode's i_rwlock after starting a UFS logging transaction;
6465 * otherwise, we acquire it beforehand. Since we were called (and
6466 * must therefore return) with the lock held, we will have to drop it,
6467 * and later reacquire it, if operating on a directory.
6468 */
6469 if (vp->v_type == VDIR) {
6470 rw_exit(&ip->i_rwlock);
6471 haverwlock = 0;
6472 } else {
6473 /* Upgrade the lock if required. */
6474 if (!rw_write_held(&ip->i_rwlock)) {
6475 rw_exit(&ip->i_rwlock);
6476 rw_enter(&ip->i_rwlock, RW_WRITER);
6477 }
6478 }
6479
6480 again:
6481 ASSERT(!(vp->v_type == VDIR && haverwlock));
6482 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6483 ulp = NULL;
6484 retry = 0;
6485 goto out;
6486 }
6487
6488 /*
6489 * Check that the file system supports this operation. Note that
6490 * ufs_lockfs_begin() will have checked that the file system had
6491 * not been forcibly unmounted.
6492 */
6493 if (ufsvfsp->vfs_fs->fs_ronly) {
6494 err = EROFS;
6495 goto out;
6496 }
6497 if (ufsvfsp->vfs_nosetsec) {
6498 err = ENOSYS;
6499 goto out;
6500 }
6501
6502 if (ulp) {
6503 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6504 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6505 donetrans = 1;
6506 }
6507
6508 if (vp->v_type == VDIR) {
6509 rw_enter(&ip->i_rwlock, RW_WRITER);
6510 haverwlock = 1;
6511 }
6512
6513 ASSERT(haverwlock);
6514
6515 /* Do the actual work. */
6516 rw_enter(&ip->i_contents, RW_WRITER);
6517 /*
6518 * Suppress out of inodes messages if we will retry.
6519 */
6520 if (retry)
6521 ip->i_flag |= IQUIET;
6522 err = ufs_acl_set(ip, vsap, flag, cr);
6523 ip->i_flag &= ~IQUIET;
6524 rw_exit(&ip->i_contents);
6525
6526 out:
6527 if (ulp) {
6528 if (donetrans) {
6529 /*
6530 * top_end_async() can eventually call
6531 * top_end_sync(), which can block. We must
6532 * therefore observe the lock-ordering protocol
6533 * here as well.
6534 */
6535 if (vp->v_type == VDIR) {
6536 rw_exit(&ip->i_rwlock);
6537 haverwlock = 0;
6538 }
6539 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6540 }
6541 ufs_lockfs_end(ulp);
6542 }
6543 /*
6544 * If no inodes available, try scaring a logically-
6545 * free one out of the delete queue to someplace
6546 * that we can find it.
6547 */
6548 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6549 ufs_delete_drain_wait(ufsvfsp, 1);
6550 retry = 0;
6551 if (vp->v_type == VDIR && haverwlock) {
6552 rw_exit(&ip->i_rwlock);
6553 haverwlock = 0;
6554 }
6555 goto again;
6556 }
6557 /*
6558 * If we need to reacquire the lock then it is safe to do so
6559 * as a reader. This is because ufs_rwunlock(), which will be
6560 * called by our caller after we return, does not differentiate
6561 * between shared and exclusive locks.
6562 */
6563 if (!haverwlock) {
6564 ASSERT(vp->v_type == VDIR);
6565 rw_enter(&ip->i_rwlock, RW_READER);
6566 }
6567
6568 return (err);
6569 }
6570
6571 /*
6572 * Locate the vnode to be used for an event notification. As this will
6573 * be called prior to the name space change perform basic verification
6574 * that the change will be allowed.
6575 */
6576
6577 static int
ufs_eventlookup(struct vnode * dvp,char * nm,struct cred * cr,struct vnode ** vpp)6578 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6579 struct vnode **vpp)
6580 {
6581 int namlen;
6582 int error;
6583 struct vnode *vp;
6584 struct inode *ip;
6585 struct inode *xip;
6586 struct ufsvfs *ufsvfsp;
6587 struct ulockfs *ulp;
6588
6589 ip = VTOI(dvp);
6590 *vpp = NULL;
6591
6592 if ((namlen = strlen(nm)) == 0)
6593 return (EINVAL);
6594
6595 if (nm[0] == '.') {
6596 if (namlen == 1)
6597 return (EINVAL);
6598 else if ((namlen == 2) && nm[1] == '.') {
6599 return (EEXIST);
6600 }
6601 }
6602
6603 /*
6604 * Check accessibility and write access of parent directory as we
6605 * only want to post the event if we're able to make a change.
6606 */
6607 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6608 return (error);
6609
6610 if (vp = dnlc_lookup(dvp, nm)) {
6611 if (vp == DNLC_NO_VNODE) {
6612 VN_RELE(vp);
6613 return (ENOENT);
6614 }
6615
6616 *vpp = vp;
6617 return (0);
6618 }
6619
6620 /*
6621 * Keep the idle queue from getting too long by idling two
6622 * inodes before attempting to allocate another.
6623 * This operation must be performed before entering lockfs
6624 * or a transaction.
6625 */
6626 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6627 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6628 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6629 ufs_idle_some(ufs_lookup_idle_count);
6630 }
6631
6632 ufsvfsp = ip->i_ufsvfs;
6633
6634 retry_lookup:
6635 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6636 return (error);
6637
6638 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6639 vp = ITOV(xip);
6640 *vpp = vp;
6641 }
6642
6643 if (ulp) {
6644 ufs_lockfs_end(ulp);
6645 }
6646
6647 if (error == EAGAIN)
6648 goto retry_lookup;
6649
6650 return (error);
6651 }
6652