1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/id_space.h>
29 #include <sys/esunddi.h>
30 #include <sys/stat.h>
31 #include <sys/mkdev.h>
32 #include <sys/stream.h>
33 #include <sys/strsubr.h>
34 #include <sys/dlpi.h>
35 #include <sys/modhash.h>
36 #include <sys/mac.h>
37 #include <sys/mac_provider.h>
38 #include <sys/mac_impl.h>
39 #include <sys/mac_client_impl.h>
40 #include <sys/mac_client_priv.h>
41 #include <sys/mac_soft_ring.h>
42 #include <sys/mac_stat.h>
43 #include <sys/dld.h>
44 #include <sys/modctl.h>
45 #include <sys/fs/dv_node.h>
46 #include <sys/thread.h>
47 #include <sys/proc.h>
48 #include <sys/callb.h>
49 #include <sys/cpuvar.h>
50 #include <sys/atomic.h>
51 #include <sys/sdt.h>
52 #include <sys/mac_flow.h>
53 #include <sys/ddi_intr_impl.h>
54 #include <sys/disp.h>
55 #include <sys/sdt.h>
56 #include <sys/pattr.h>
57 #include <sys/strsun.h>
58
59 /*
60 * MAC Provider Interface.
61 *
62 * Interface for GLDv3 compatible NIC drivers.
63 */
64
65 static void i_mac_notify_thread(void *);
66
67 typedef void (*mac_notify_default_cb_fn_t)(mac_impl_t *);
68
69 static const mac_notify_default_cb_fn_t mac_notify_cb_list[MAC_NNOTE] = {
70 mac_fanout_recompute, /* MAC_NOTE_LINK */
71 NULL, /* MAC_NOTE_UNICST */
72 NULL, /* MAC_NOTE_TX */
73 NULL, /* MAC_NOTE_DEVPROMISC */
74 NULL, /* MAC_NOTE_FASTPATH_FLUSH */
75 NULL, /* MAC_NOTE_SDU_SIZE */
76 NULL, /* MAC_NOTE_MARGIN */
77 NULL, /* MAC_NOTE_CAPAB_CHG */
78 NULL /* MAC_NOTE_LOWLINK */
79 };
80
81 /*
82 * Driver support functions.
83 */
84
85 /* REGISTRATION */
86
87 mac_register_t *
mac_alloc(uint_t mac_version)88 mac_alloc(uint_t mac_version)
89 {
90 mac_register_t *mregp;
91
92 /*
93 * Make sure there isn't a version mismatch between the driver and
94 * the framework. In the future, if multiple versions are
95 * supported, this check could become more sophisticated.
96 */
97 if (mac_version != MAC_VERSION)
98 return (NULL);
99
100 mregp = kmem_zalloc(sizeof (mac_register_t), KM_SLEEP);
101 mregp->m_version = mac_version;
102 return (mregp);
103 }
104
105 void
mac_free(mac_register_t * mregp)106 mac_free(mac_register_t *mregp)
107 {
108 kmem_free(mregp, sizeof (mac_register_t));
109 }
110
111 /*
112 * mac_register() is how drivers register new MACs with the GLDv3
113 * framework. The mregp argument is allocated by drivers using the
114 * mac_alloc() function, and can be freed using mac_free() immediately upon
115 * return from mac_register(). Upon success (0 return value), the mhp
116 * opaque pointer becomes the driver's handle to its MAC interface, and is
117 * the argument to all other mac module entry points.
118 */
119 /* ARGSUSED */
120 int
mac_register(mac_register_t * mregp,mac_handle_t * mhp)121 mac_register(mac_register_t *mregp, mac_handle_t *mhp)
122 {
123 mac_impl_t *mip;
124 mactype_t *mtype;
125 int err = EINVAL;
126 struct devnames *dnp = NULL;
127 uint_t instance;
128 boolean_t style1_created = B_FALSE;
129 boolean_t style2_created = B_FALSE;
130 char *driver;
131 minor_t minor = 0;
132
133 /* A successful call to mac_init_ops() sets the DN_GLDV3_DRIVER flag. */
134 if (!GLDV3_DRV(ddi_driver_major(mregp->m_dip)))
135 return (EINVAL);
136
137 /* Find the required MAC-Type plugin. */
138 if ((mtype = mactype_getplugin(mregp->m_type_ident)) == NULL)
139 return (EINVAL);
140
141 /* Create a mac_impl_t to represent this MAC. */
142 mip = kmem_cache_alloc(i_mac_impl_cachep, KM_SLEEP);
143
144 /*
145 * The mac is not ready for open yet.
146 */
147 mip->mi_state_flags |= MIS_DISABLED;
148
149 /*
150 * When a mac is registered, the m_instance field can be set to:
151 *
152 * 0: Get the mac's instance number from m_dip.
153 * This is usually used for physical device dips.
154 *
155 * [1 .. MAC_MAX_MINOR-1]: Use the value as the mac's instance number.
156 * For example, when an aggregation is created with the key option,
157 * "key" will be used as the instance number.
158 *
159 * -1: Assign an instance number from [MAC_MAX_MINOR .. MAXMIN-1].
160 * This is often used when a MAC of a virtual link is registered
161 * (e.g., aggregation when "key" is not specified, or vnic).
162 *
163 * Note that the instance number is used to derive the mi_minor field
164 * of mac_impl_t, which will then be used to derive the name of kstats
165 * and the devfs nodes. The first 2 cases are needed to preserve
166 * backward compatibility.
167 */
168 switch (mregp->m_instance) {
169 case 0:
170 instance = ddi_get_instance(mregp->m_dip);
171 break;
172 case ((uint_t)-1):
173 minor = mac_minor_hold(B_TRUE);
174 if (minor == 0) {
175 err = ENOSPC;
176 goto fail;
177 }
178 instance = minor - 1;
179 break;
180 default:
181 instance = mregp->m_instance;
182 if (instance >= MAC_MAX_MINOR) {
183 err = EINVAL;
184 goto fail;
185 }
186 break;
187 }
188
189 mip->mi_minor = (minor_t)(instance + 1);
190 mip->mi_dip = mregp->m_dip;
191 mip->mi_clients_list = NULL;
192 mip->mi_nclients = 0;
193
194 /* Set the default IEEE Port VLAN Identifier */
195 mip->mi_pvid = 1;
196
197 /* Default bridge link learning protection values */
198 mip->mi_llimit = 1000;
199 mip->mi_ldecay = 200;
200
201 driver = (char *)ddi_driver_name(mip->mi_dip);
202
203 /* Construct the MAC name as <drvname><instance> */
204 (void) snprintf(mip->mi_name, sizeof (mip->mi_name), "%s%d",
205 driver, instance);
206
207 mip->mi_driver = mregp->m_driver;
208
209 mip->mi_type = mtype;
210 mip->mi_margin = mregp->m_margin;
211 mip->mi_info.mi_media = mtype->mt_type;
212 mip->mi_info.mi_nativemedia = mtype->mt_nativetype;
213 if (mregp->m_max_sdu <= mregp->m_min_sdu)
214 goto fail;
215 if (mregp->m_multicast_sdu == 0)
216 mregp->m_multicast_sdu = mregp->m_max_sdu;
217 if (mregp->m_multicast_sdu < mregp->m_min_sdu ||
218 mregp->m_multicast_sdu > mregp->m_max_sdu)
219 goto fail;
220 mip->mi_sdu_min = mregp->m_min_sdu;
221 mip->mi_sdu_max = mregp->m_max_sdu;
222 mip->mi_sdu_multicast = mregp->m_multicast_sdu;
223 mip->mi_info.mi_addr_length = mip->mi_type->mt_addr_length;
224 /*
225 * If the media supports a broadcast address, cache a pointer to it
226 * in the mac_info_t so that upper layers can use it.
227 */
228 mip->mi_info.mi_brdcst_addr = mip->mi_type->mt_brdcst_addr;
229
230 mip->mi_v12n_level = mregp->m_v12n;
231
232 /*
233 * Copy the unicast source address into the mac_info_t, but only if
234 * the MAC-Type defines a non-zero address length. We need to
235 * handle MAC-Types that have an address length of 0
236 * (point-to-point protocol MACs for example).
237 */
238 if (mip->mi_type->mt_addr_length > 0) {
239 if (mregp->m_src_addr == NULL)
240 goto fail;
241 mip->mi_info.mi_unicst_addr =
242 kmem_alloc(mip->mi_type->mt_addr_length, KM_SLEEP);
243 bcopy(mregp->m_src_addr, mip->mi_info.mi_unicst_addr,
244 mip->mi_type->mt_addr_length);
245
246 /*
247 * Copy the fixed 'factory' MAC address from the immutable
248 * info. This is taken to be the MAC address currently in
249 * use.
250 */
251 bcopy(mip->mi_info.mi_unicst_addr, mip->mi_addr,
252 mip->mi_type->mt_addr_length);
253
254 /*
255 * At this point, we should set up the classification
256 * rules etc but we delay it till mac_open() so that
257 * the resource discovery has taken place and we
258 * know someone wants to use the device. Otherwise
259 * memory gets allocated for Rx ring structures even
260 * during probe.
261 */
262
263 /* Copy the destination address if one is provided. */
264 if (mregp->m_dst_addr != NULL) {
265 bcopy(mregp->m_dst_addr, mip->mi_dstaddr,
266 mip->mi_type->mt_addr_length);
267 mip->mi_dstaddr_set = B_TRUE;
268 }
269 } else if (mregp->m_src_addr != NULL) {
270 goto fail;
271 }
272
273 /*
274 * The format of the m_pdata is specific to the plugin. It is
275 * passed in as an argument to all of the plugin callbacks. The
276 * driver can update this information by calling
277 * mac_pdata_update().
278 */
279 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY) {
280 /*
281 * Verify if the supplied plugin data is valid. Note that
282 * even if the caller passed in a NULL pointer as plugin data,
283 * we still need to verify if that's valid as the plugin may
284 * require plugin data to function.
285 */
286 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mregp->m_pdata,
287 mregp->m_pdata_size)) {
288 goto fail;
289 }
290 if (mregp->m_pdata != NULL) {
291 mip->mi_pdata =
292 kmem_alloc(mregp->m_pdata_size, KM_SLEEP);
293 bcopy(mregp->m_pdata, mip->mi_pdata,
294 mregp->m_pdata_size);
295 mip->mi_pdata_size = mregp->m_pdata_size;
296 }
297 } else if (mregp->m_pdata != NULL) {
298 /*
299 * The caller supplied non-NULL plugin data, but the plugin
300 * does not recognize plugin data.
301 */
302 err = EINVAL;
303 goto fail;
304 }
305
306 /*
307 * Register the private properties.
308 */
309 mac_register_priv_prop(mip, mregp->m_priv_props);
310
311 /*
312 * Stash the driver callbacks into the mac_impl_t, but first sanity
313 * check to make sure all mandatory callbacks are set.
314 */
315 if (mregp->m_callbacks->mc_getstat == NULL ||
316 mregp->m_callbacks->mc_start == NULL ||
317 mregp->m_callbacks->mc_stop == NULL ||
318 mregp->m_callbacks->mc_setpromisc == NULL ||
319 mregp->m_callbacks->mc_multicst == NULL) {
320 goto fail;
321 }
322 mip->mi_callbacks = mregp->m_callbacks;
323
324 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LEGACY,
325 &mip->mi_capab_legacy)) {
326 mip->mi_state_flags |= MIS_LEGACY;
327 mip->mi_phy_dev = mip->mi_capab_legacy.ml_dev;
328 } else {
329 mip->mi_phy_dev = makedevice(ddi_driver_major(mip->mi_dip),
330 mip->mi_minor);
331 }
332
333 /*
334 * Allocate a notification thread. thread_create blocks for memory
335 * if needed, it never fails.
336 */
337 mip->mi_notify_thread = thread_create(NULL, 0, i_mac_notify_thread,
338 mip, 0, &p0, TS_RUN, minclsyspri);
339
340 /*
341 * Initialize the capabilities
342 */
343
344 bzero(&mip->mi_rx_rings_cap, sizeof (mac_capab_rings_t));
345 bzero(&mip->mi_tx_rings_cap, sizeof (mac_capab_rings_t));
346
347 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, NULL))
348 mip->mi_state_flags |= MIS_IS_VNIC;
349
350 if (i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, NULL))
351 mip->mi_state_flags |= MIS_IS_AGGR;
352
353 mac_addr_factory_init(mip);
354
355 /*
356 * Enforce the virtrualization level registered.
357 */
358 if (mip->mi_v12n_level & MAC_VIRT_LEVEL1) {
359 if (mac_init_rings(mip, MAC_RING_TYPE_RX) != 0 ||
360 mac_init_rings(mip, MAC_RING_TYPE_TX) != 0)
361 goto fail;
362
363 /*
364 * The driver needs to register at least rx rings for this
365 * virtualization level.
366 */
367 if (mip->mi_rx_groups == NULL)
368 goto fail;
369 }
370
371 /*
372 * The driver must set mc_unicst entry point to NULL when it advertises
373 * CAP_RINGS for rx groups.
374 */
375 if (mip->mi_rx_groups != NULL) {
376 if (mregp->m_callbacks->mc_unicst != NULL)
377 goto fail;
378 } else {
379 if (mregp->m_callbacks->mc_unicst == NULL)
380 goto fail;
381 }
382
383 /*
384 * Initialize MAC addresses. Must be called after mac_init_rings().
385 */
386 mac_init_macaddr(mip);
387
388 mip->mi_share_capab.ms_snum = 0;
389 if (mip->mi_v12n_level & MAC_VIRT_HIO) {
390 (void) mac_capab_get((mac_handle_t)mip, MAC_CAPAB_SHARES,
391 &mip->mi_share_capab);
392 }
393
394 /*
395 * Initialize the kstats for this device.
396 */
397 mac_driver_stat_create(mip);
398
399 /* Zero out any properties. */
400 bzero(&mip->mi_resource_props, sizeof (mac_resource_props_t));
401
402 if (mip->mi_minor <= MAC_MAX_MINOR) {
403 /* Create a style-2 DLPI device */
404 if (ddi_create_minor_node(mip->mi_dip, driver, S_IFCHR, 0,
405 DDI_NT_NET, CLONE_DEV) != DDI_SUCCESS)
406 goto fail;
407 style2_created = B_TRUE;
408
409 /* Create a style-1 DLPI device */
410 if (ddi_create_minor_node(mip->mi_dip, mip->mi_name, S_IFCHR,
411 mip->mi_minor, DDI_NT_NET, 0) != DDI_SUCCESS)
412 goto fail;
413 style1_created = B_TRUE;
414 }
415
416 mac_flow_l2tab_create(mip, &mip->mi_flow_tab);
417
418 rw_enter(&i_mac_impl_lock, RW_WRITER);
419 if (mod_hash_insert(i_mac_impl_hash,
420 (mod_hash_key_t)mip->mi_name, (mod_hash_val_t)mip) != 0) {
421 rw_exit(&i_mac_impl_lock);
422 err = EEXIST;
423 goto fail;
424 }
425
426 DTRACE_PROBE2(mac__register, struct devnames *, dnp,
427 (mac_impl_t *), mip);
428
429 /*
430 * Mark the MAC to be ready for open.
431 */
432 mip->mi_state_flags &= ~MIS_DISABLED;
433 rw_exit(&i_mac_impl_lock);
434
435 atomic_inc_32(&i_mac_impl_count);
436
437 cmn_err(CE_NOTE, "!%s registered", mip->mi_name);
438 *mhp = (mac_handle_t)mip;
439 return (0);
440
441 fail:
442 if (style1_created)
443 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
444
445 if (style2_created)
446 ddi_remove_minor_node(mip->mi_dip, driver);
447
448 mac_addr_factory_fini(mip);
449
450 /* Clean up registered MAC addresses */
451 mac_fini_macaddr(mip);
452
453 /* Clean up registered rings */
454 mac_free_rings(mip, MAC_RING_TYPE_RX);
455 mac_free_rings(mip, MAC_RING_TYPE_TX);
456
457 /* Clean up notification thread */
458 if (mip->mi_notify_thread != NULL)
459 i_mac_notify_exit(mip);
460
461 if (mip->mi_info.mi_unicst_addr != NULL) {
462 kmem_free(mip->mi_info.mi_unicst_addr,
463 mip->mi_type->mt_addr_length);
464 mip->mi_info.mi_unicst_addr = NULL;
465 }
466
467 mac_driver_stat_delete(mip);
468
469 if (mip->mi_type != NULL) {
470 atomic_dec_32(&mip->mi_type->mt_ref);
471 mip->mi_type = NULL;
472 }
473
474 if (mip->mi_pdata != NULL) {
475 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
476 mip->mi_pdata = NULL;
477 mip->mi_pdata_size = 0;
478 }
479
480 if (minor != 0) {
481 ASSERT(minor > MAC_MAX_MINOR);
482 mac_minor_rele(minor);
483 }
484
485 mip->mi_state_flags = 0;
486 mac_unregister_priv_prop(mip);
487
488 /*
489 * Clear the state before destroying the mac_impl_t
490 */
491 mip->mi_state_flags = 0;
492
493 kmem_cache_free(i_mac_impl_cachep, mip);
494 return (err);
495 }
496
497 /*
498 * Unregister from the GLDv3 framework
499 */
500 int
mac_unregister(mac_handle_t mh)501 mac_unregister(mac_handle_t mh)
502 {
503 int err;
504 mac_impl_t *mip = (mac_impl_t *)mh;
505 mod_hash_val_t val;
506 mac_margin_req_t *mmr, *nextmmr;
507
508 /* Fail the unregister if there are any open references to this mac. */
509 if ((err = mac_disable_nowait(mh)) != 0)
510 return (err);
511
512 /*
513 * Clean up notification thread and wait for it to exit.
514 */
515 i_mac_notify_exit(mip);
516
517 i_mac_perim_enter(mip);
518
519 /*
520 * There is still resource properties configured over this mac.
521 */
522 if (mip->mi_resource_props.mrp_mask != 0)
523 mac_fastpath_enable((mac_handle_t)mip);
524
525 if (mip->mi_minor < MAC_MAX_MINOR + 1) {
526 ddi_remove_minor_node(mip->mi_dip, mip->mi_name);
527 ddi_remove_minor_node(mip->mi_dip,
528 (char *)ddi_driver_name(mip->mi_dip));
529 }
530
531 ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags &
532 MIS_EXCLUSIVE));
533
534 mac_driver_stat_delete(mip);
535
536 (void) mod_hash_remove(i_mac_impl_hash,
537 (mod_hash_key_t)mip->mi_name, &val);
538 ASSERT(mip == (mac_impl_t *)val);
539
540 ASSERT(i_mac_impl_count > 0);
541 atomic_dec_32(&i_mac_impl_count);
542
543 if (mip->mi_pdata != NULL)
544 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
545 mip->mi_pdata = NULL;
546 mip->mi_pdata_size = 0;
547
548 /*
549 * Free the list of margin request.
550 */
551 for (mmr = mip->mi_mmrp; mmr != NULL; mmr = nextmmr) {
552 nextmmr = mmr->mmr_nextp;
553 kmem_free(mmr, sizeof (mac_margin_req_t));
554 }
555 mip->mi_mmrp = NULL;
556
557 mip->mi_linkstate = mip->mi_lowlinkstate = LINK_STATE_UNKNOWN;
558 kmem_free(mip->mi_info.mi_unicst_addr, mip->mi_type->mt_addr_length);
559 mip->mi_info.mi_unicst_addr = NULL;
560
561 atomic_dec_32(&mip->mi_type->mt_ref);
562 mip->mi_type = NULL;
563
564 /*
565 * Free the primary MAC address.
566 */
567 mac_fini_macaddr(mip);
568
569 /*
570 * free all rings
571 */
572 mac_free_rings(mip, MAC_RING_TYPE_RX);
573 mac_free_rings(mip, MAC_RING_TYPE_TX);
574
575 mac_addr_factory_fini(mip);
576
577 bzero(mip->mi_addr, MAXMACADDRLEN);
578 bzero(mip->mi_dstaddr, MAXMACADDRLEN);
579 mip->mi_dstaddr_set = B_FALSE;
580
581 /* and the flows */
582 mac_flow_tab_destroy(mip->mi_flow_tab);
583 mip->mi_flow_tab = NULL;
584
585 if (mip->mi_minor > MAC_MAX_MINOR)
586 mac_minor_rele(mip->mi_minor);
587
588 cmn_err(CE_NOTE, "!%s unregistered", mip->mi_name);
589
590 /*
591 * Reset the perim related fields to default values before
592 * kmem_cache_free
593 */
594 i_mac_perim_exit(mip);
595 mip->mi_state_flags = 0;
596
597 mac_unregister_priv_prop(mip);
598
599 ASSERT(mip->mi_bridge_link == NULL);
600 kmem_cache_free(i_mac_impl_cachep, mip);
601
602 return (0);
603 }
604
605 /* DATA RECEPTION */
606
607 /*
608 * This function is invoked for packets received by the MAC driver in
609 * interrupt context. The ring generation number provided by the driver
610 * is matched with the ring generation number held in MAC. If they do not
611 * match, received packets are considered stale packets coming from an older
612 * assignment of the ring. Drop them.
613 */
614 void
mac_rx_ring(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp_chain,uint64_t mr_gen_num)615 mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain,
616 uint64_t mr_gen_num)
617 {
618 mac_ring_t *mr = (mac_ring_t *)mrh;
619
620 if ((mr != NULL) && (mr->mr_gen_num != mr_gen_num)) {
621 DTRACE_PROBE2(mac__rx__rings__stale__packet, uint64_t,
622 mr->mr_gen_num, uint64_t, mr_gen_num);
623 freemsgchain(mp_chain);
624 return;
625 }
626 mac_rx(mh, (mac_resource_handle_t)mrh, mp_chain);
627 }
628
629 /*
630 * This function is invoked for each packet received by the underlying driver.
631 */
632 void
mac_rx(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)633 mac_rx(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
634 {
635 mac_impl_t *mip = (mac_impl_t *)mh;
636
637 /*
638 * Check if the link is part of a bridge. If not, then we don't need
639 * to take the lock to remain consistent. Make this common case
640 * lock-free and tail-call optimized.
641 */
642 if (mip->mi_bridge_link == NULL) {
643 mac_rx_common(mh, mrh, mp_chain);
644 } else {
645 /*
646 * Once we take a reference on the bridge link, the bridge
647 * module itself can't unload, so the callback pointers are
648 * stable.
649 */
650 mutex_enter(&mip->mi_bridge_lock);
651 if ((mh = mip->mi_bridge_link) != NULL)
652 mac_bridge_ref_cb(mh, B_TRUE);
653 mutex_exit(&mip->mi_bridge_lock);
654 if (mh == NULL) {
655 mac_rx_common((mac_handle_t)mip, mrh, mp_chain);
656 } else {
657 mac_bridge_rx_cb(mh, mrh, mp_chain);
658 mac_bridge_ref_cb(mh, B_FALSE);
659 }
660 }
661 }
662
663 /*
664 * Special case function: this allows snooping of packets transmitted and
665 * received by TRILL. By design, they go directly into the TRILL module.
666 */
667 void
mac_trill_snoop(mac_handle_t mh,mblk_t * mp)668 mac_trill_snoop(mac_handle_t mh, mblk_t *mp)
669 {
670 mac_impl_t *mip = (mac_impl_t *)mh;
671
672 if (mip->mi_promisc_list != NULL)
673 mac_promisc_dispatch(mip, mp, NULL);
674 }
675
676 /*
677 * This is the upward reentry point for packets arriving from the bridging
678 * module and from mac_rx for links not part of a bridge.
679 */
680 void
mac_rx_common(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)681 mac_rx_common(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
682 {
683 mac_impl_t *mip = (mac_impl_t *)mh;
684 mac_ring_t *mr = (mac_ring_t *)mrh;
685 mac_soft_ring_set_t *mac_srs;
686 mblk_t *bp = mp_chain;
687 boolean_t hw_classified = B_FALSE;
688
689 /*
690 * If there are any promiscuous mode callbacks defined for
691 * this MAC, pass them a copy if appropriate.
692 */
693 if (mip->mi_promisc_list != NULL)
694 mac_promisc_dispatch(mip, mp_chain, NULL);
695
696 if (mr != NULL) {
697 /*
698 * If the SRS teardown has started, just return. The 'mr'
699 * continues to be valid until the driver unregisters the mac.
700 * Hardware classified packets will not make their way up
701 * beyond this point once the teardown has started. The driver
702 * is never passed a pointer to a flow entry or SRS or any
703 * structure that can be freed much before mac_unregister.
704 */
705 mutex_enter(&mr->mr_lock);
706 if ((mr->mr_state != MR_INUSE) || (mr->mr_flag &
707 (MR_INCIPIENT | MR_CONDEMNED | MR_QUIESCE))) {
708 mutex_exit(&mr->mr_lock);
709 freemsgchain(mp_chain);
710 return;
711 }
712 if (mr->mr_classify_type == MAC_HW_CLASSIFIER) {
713 hw_classified = B_TRUE;
714 MR_REFHOLD_LOCKED(mr);
715 }
716 mutex_exit(&mr->mr_lock);
717
718 /*
719 * We check if an SRS is controlling this ring.
720 * If so, we can directly call the srs_lower_proc
721 * routine otherwise we need to go through mac_rx_classify
722 * to reach the right place.
723 */
724 if (hw_classified) {
725 mac_srs = mr->mr_srs;
726 /*
727 * This is supposed to be the fast path.
728 * All packets received though here were steered by
729 * the hardware classifier, and share the same
730 * MAC header info.
731 */
732 mac_srs->srs_rx.sr_lower_proc(mh,
733 (mac_resource_handle_t)mac_srs, mp_chain, B_FALSE);
734 MR_REFRELE(mr);
735 return;
736 }
737 /* We'll fall through to software classification */
738 } else {
739 flow_entry_t *flent;
740 int err;
741
742 rw_enter(&mip->mi_rw_lock, RW_READER);
743 if (mip->mi_single_active_client != NULL) {
744 flent = mip->mi_single_active_client->mci_flent_list;
745 FLOW_TRY_REFHOLD(flent, err);
746 rw_exit(&mip->mi_rw_lock);
747 if (err == 0) {
748 (flent->fe_cb_fn)(flent->fe_cb_arg1,
749 flent->fe_cb_arg2, mp_chain, B_FALSE);
750 FLOW_REFRELE(flent);
751 return;
752 }
753 } else {
754 rw_exit(&mip->mi_rw_lock);
755 }
756 }
757
758 if (!FLOW_TAB_EMPTY(mip->mi_flow_tab)) {
759 if ((bp = mac_rx_flow(mh, mrh, bp)) == NULL)
760 return;
761 }
762
763 freemsgchain(bp);
764 }
765
766 /* DATA TRANSMISSION */
767
768 /*
769 * A driver's notification to resume transmission, in case of a provider
770 * without TX rings.
771 */
772 void
mac_tx_update(mac_handle_t mh)773 mac_tx_update(mac_handle_t mh)
774 {
775 mac_tx_ring_update(mh, NULL);
776 }
777
778 /*
779 * A driver's notification to resume transmission on the specified TX ring.
780 */
781 void
mac_tx_ring_update(mac_handle_t mh,mac_ring_handle_t rh)782 mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)
783 {
784 i_mac_tx_srs_notify((mac_impl_t *)mh, rh);
785 }
786
787 /* LINK STATE */
788 /*
789 * Notify the MAC layer about a link state change
790 */
791 void
mac_link_update(mac_handle_t mh,link_state_t link)792 mac_link_update(mac_handle_t mh, link_state_t link)
793 {
794 mac_impl_t *mip = (mac_impl_t *)mh;
795
796 /*
797 * Save the link state.
798 */
799 mip->mi_lowlinkstate = link;
800
801 /*
802 * Send a MAC_NOTE_LOWLINK notification. This tells the notification
803 * thread to deliver both lower and upper notifications.
804 */
805 i_mac_notify(mip, MAC_NOTE_LOWLINK);
806 }
807
808 /*
809 * Notify the MAC layer about a link state change due to bridging.
810 */
811 void
mac_link_redo(mac_handle_t mh,link_state_t link)812 mac_link_redo(mac_handle_t mh, link_state_t link)
813 {
814 mac_impl_t *mip = (mac_impl_t *)mh;
815
816 /*
817 * Save the link state.
818 */
819 mip->mi_linkstate = link;
820
821 /*
822 * Send a MAC_NOTE_LINK notification. Only upper notifications are
823 * made.
824 */
825 i_mac_notify(mip, MAC_NOTE_LINK);
826 }
827
828 /* MINOR NODE HANDLING */
829
830 /*
831 * Given a dev_t, return the instance number (PPA) associated with it.
832 * Drivers can use this in their getinfo(9e) implementation to lookup
833 * the instance number (i.e. PPA) of the device, to use as an index to
834 * their own array of soft state structures.
835 *
836 * Returns -1 on error.
837 */
838 int
mac_devt_to_instance(dev_t devt)839 mac_devt_to_instance(dev_t devt)
840 {
841 return (dld_devt_to_instance(devt));
842 }
843
844 /*
845 * This function returns the first minor number that is available for
846 * driver private use. All minor numbers smaller than this are
847 * reserved for GLDv3 use.
848 */
849 minor_t
mac_private_minor(void)850 mac_private_minor(void)
851 {
852 return (MAC_PRIVATE_MINOR);
853 }
854
855 /* OTHER CONTROL INFORMATION */
856
857 /*
858 * A driver notified us that its primary MAC address has changed.
859 */
860 void
mac_unicst_update(mac_handle_t mh,const uint8_t * addr)861 mac_unicst_update(mac_handle_t mh, const uint8_t *addr)
862 {
863 mac_impl_t *mip = (mac_impl_t *)mh;
864
865 if (mip->mi_type->mt_addr_length == 0)
866 return;
867
868 i_mac_perim_enter(mip);
869
870 /*
871 * If address changes, freshen the MAC address value and update
872 * all MAC clients that share this MAC address.
873 */
874 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) != 0) {
875 mac_freshen_macaddr(mac_find_macaddr(mip, mip->mi_addr),
876 (uint8_t *)addr);
877 }
878
879 i_mac_perim_exit(mip);
880
881 /*
882 * Send a MAC_NOTE_UNICST notification.
883 */
884 i_mac_notify(mip, MAC_NOTE_UNICST);
885 }
886
887 void
mac_dst_update(mac_handle_t mh,const uint8_t * addr)888 mac_dst_update(mac_handle_t mh, const uint8_t *addr)
889 {
890 mac_impl_t *mip = (mac_impl_t *)mh;
891
892 if (mip->mi_type->mt_addr_length == 0)
893 return;
894
895 i_mac_perim_enter(mip);
896 bcopy(addr, mip->mi_dstaddr, mip->mi_type->mt_addr_length);
897 i_mac_perim_exit(mip);
898 i_mac_notify(mip, MAC_NOTE_DEST);
899 }
900
901 /*
902 * MAC plugin information changed.
903 */
904 int
mac_pdata_update(mac_handle_t mh,void * mac_pdata,size_t dsize)905 mac_pdata_update(mac_handle_t mh, void *mac_pdata, size_t dsize)
906 {
907 mac_impl_t *mip = (mac_impl_t *)mh;
908
909 /*
910 * Verify that the plugin supports MAC plugin data and that the
911 * supplied data is valid.
912 */
913 if (!(mip->mi_type->mt_ops.mtops_ops & MTOPS_PDATA_VERIFY))
914 return (EINVAL);
915 if (!mip->mi_type->mt_ops.mtops_pdata_verify(mac_pdata, dsize))
916 return (EINVAL);
917
918 if (mip->mi_pdata != NULL)
919 kmem_free(mip->mi_pdata, mip->mi_pdata_size);
920
921 mip->mi_pdata = kmem_alloc(dsize, KM_SLEEP);
922 bcopy(mac_pdata, mip->mi_pdata, dsize);
923 mip->mi_pdata_size = dsize;
924
925 /*
926 * Since the MAC plugin data is used to construct MAC headers that
927 * were cached in fast-path headers, we need to flush fast-path
928 * information for links associated with this mac.
929 */
930 i_mac_notify(mip, MAC_NOTE_FASTPATH_FLUSH);
931 return (0);
932 }
933
934 /*
935 * Invoked by driver as well as the framework to notify its capability change.
936 */
937 void
mac_capab_update(mac_handle_t mh)938 mac_capab_update(mac_handle_t mh)
939 {
940 /* Send MAC_NOTE_CAPAB_CHG notification */
941 i_mac_notify((mac_impl_t *)mh, MAC_NOTE_CAPAB_CHG);
942 }
943
944 /*
945 * Used by normal drivers to update the max sdu size.
946 * We need to handle the case of a smaller mi_sdu_multicast
947 * since this is called by mac_set_mtu() even for drivers that
948 * have differing unicast and multicast mtu and we don't want to
949 * increase the multicast mtu by accident in that case.
950 */
951 int
mac_maxsdu_update(mac_handle_t mh,uint_t sdu_max)952 mac_maxsdu_update(mac_handle_t mh, uint_t sdu_max)
953 {
954 mac_impl_t *mip = (mac_impl_t *)mh;
955
956 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
957 return (EINVAL);
958 mip->mi_sdu_max = sdu_max;
959 if (mip->mi_sdu_multicast > mip->mi_sdu_max)
960 mip->mi_sdu_multicast = mip->mi_sdu_max;
961
962 /* Send a MAC_NOTE_SDU_SIZE notification. */
963 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
964 return (0);
965 }
966
967 /*
968 * Version of the above function that is used by drivers that have a different
969 * max sdu size for multicast/broadcast vs. unicast.
970 */
971 int
mac_maxsdu_update2(mac_handle_t mh,uint_t sdu_max,uint_t sdu_multicast)972 mac_maxsdu_update2(mac_handle_t mh, uint_t sdu_max, uint_t sdu_multicast)
973 {
974 mac_impl_t *mip = (mac_impl_t *)mh;
975
976 if (sdu_max == 0 || sdu_max < mip->mi_sdu_min)
977 return (EINVAL);
978 if (sdu_multicast == 0)
979 sdu_multicast = sdu_max;
980 if (sdu_multicast > sdu_max || sdu_multicast < mip->mi_sdu_min)
981 return (EINVAL);
982 mip->mi_sdu_max = sdu_max;
983 mip->mi_sdu_multicast = sdu_multicast;
984
985 /* Send a MAC_NOTE_SDU_SIZE notification. */
986 i_mac_notify(mip, MAC_NOTE_SDU_SIZE);
987 return (0);
988 }
989
990 static void
mac_ring_intr_retarget(mac_group_t * group,mac_ring_t * ring)991 mac_ring_intr_retarget(mac_group_t *group, mac_ring_t *ring)
992 {
993 mac_client_impl_t *mcip;
994 flow_entry_t *flent;
995 mac_soft_ring_set_t *mac_rx_srs;
996 mac_cpus_t *srs_cpu;
997 int i;
998
999 if (((mcip = MAC_GROUP_ONLY_CLIENT(group)) != NULL) &&
1000 (!ring->mr_info.mri_intr.mi_ddi_shared)) {
1001 /* interrupt can be re-targeted */
1002 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
1003 flent = mcip->mci_flent;
1004 if (ring->mr_type == MAC_RING_TYPE_RX) {
1005 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1006 mac_rx_srs = flent->fe_rx_srs[i];
1007 if (mac_rx_srs->srs_ring != ring)
1008 continue;
1009 srs_cpu = &mac_rx_srs->srs_cpu;
1010 mutex_enter(&cpu_lock);
1011 mac_rx_srs_retarget_intr(mac_rx_srs,
1012 srs_cpu->mc_rx_intr_cpu);
1013 mutex_exit(&cpu_lock);
1014 break;
1015 }
1016 } else {
1017 if (flent->fe_tx_srs != NULL) {
1018 mutex_enter(&cpu_lock);
1019 mac_tx_srs_retarget_intr(
1020 flent->fe_tx_srs);
1021 mutex_exit(&cpu_lock);
1022 }
1023 }
1024 }
1025 }
1026
1027 /*
1028 * Clients like aggr create pseudo rings (mac_ring_t) and expose them to
1029 * their clients. There is a 1-1 mapping pseudo ring and the hardware
1030 * ring. ddi interrupt handles are exported from the hardware ring to
1031 * the pseudo ring. Thus when the interrupt handle changes, clients of
1032 * aggr that are using the handle need to use the new handle and
1033 * re-target their interrupts.
1034 */
1035 static void
mac_pseudo_ring_intr_retarget(mac_impl_t * mip,mac_ring_t * ring,ddi_intr_handle_t ddh)1036 mac_pseudo_ring_intr_retarget(mac_impl_t *mip, mac_ring_t *ring,
1037 ddi_intr_handle_t ddh)
1038 {
1039 mac_ring_t *pring;
1040 mac_group_t *pgroup;
1041 mac_impl_t *pmip;
1042 char macname[MAXNAMELEN];
1043 mac_perim_handle_t p_mph;
1044 uint64_t saved_gen_num;
1045
1046 again:
1047 pring = (mac_ring_t *)ring->mr_prh;
1048 pgroup = (mac_group_t *)pring->mr_gh;
1049 pmip = (mac_impl_t *)pgroup->mrg_mh;
1050 saved_gen_num = ring->mr_gen_num;
1051 (void) strlcpy(macname, pmip->mi_name, MAXNAMELEN);
1052 /*
1053 * We need to enter aggr's perimeter. The locking hierarchy
1054 * dictates that aggr's perimeter should be entered first
1055 * and then the port's perimeter. So drop the port's
1056 * perimeter, enter aggr's and then re-enter port's
1057 * perimeter.
1058 */
1059 i_mac_perim_exit(mip);
1060 /*
1061 * While we know pmip is the aggr's mip, there is a
1062 * possibility that aggr could have unregistered by
1063 * the time we exit port's perimeter (mip) and
1064 * enter aggr's perimeter (pmip). To avoid that
1065 * scenario, enter aggr's perimeter using its name.
1066 */
1067 if (mac_perim_enter_by_macname(macname, &p_mph) != 0)
1068 return;
1069 i_mac_perim_enter(mip);
1070 /*
1071 * Check if the ring got assigned to another aggregation before
1072 * be could enter aggr's and the port's perimeter. When a ring
1073 * gets deleted from an aggregation, it calls mac_stop_ring()
1074 * which increments the generation number. So checking
1075 * generation number will be enough.
1076 */
1077 if (ring->mr_gen_num != saved_gen_num && ring->mr_prh != NULL) {
1078 i_mac_perim_exit(mip);
1079 mac_perim_exit(p_mph);
1080 i_mac_perim_enter(mip);
1081 goto again;
1082 }
1083
1084 /* Check if pseudo ring is still present */
1085 if (ring->mr_prh != NULL) {
1086 pring->mr_info.mri_intr.mi_ddi_handle = ddh;
1087 pring->mr_info.mri_intr.mi_ddi_shared =
1088 ring->mr_info.mri_intr.mi_ddi_shared;
1089 if (ddh != NULL)
1090 mac_ring_intr_retarget(pgroup, pring);
1091 }
1092 i_mac_perim_exit(mip);
1093 mac_perim_exit(p_mph);
1094 }
1095 /*
1096 * API called by driver to provide new interrupt handle for TX/RX rings.
1097 * This usually happens when IRM (Interrupt Resource Manangement)
1098 * framework either gives the driver more MSI-x interrupts or takes
1099 * away MSI-x interrupts from the driver.
1100 */
1101 void
mac_ring_intr_set(mac_ring_handle_t mrh,ddi_intr_handle_t ddh)1102 mac_ring_intr_set(mac_ring_handle_t mrh, ddi_intr_handle_t ddh)
1103 {
1104 mac_ring_t *ring = (mac_ring_t *)mrh;
1105 mac_group_t *group = (mac_group_t *)ring->mr_gh;
1106 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1107
1108 i_mac_perim_enter(mip);
1109 ring->mr_info.mri_intr.mi_ddi_handle = ddh;
1110 if (ddh == NULL) {
1111 /* Interrupts being reset */
1112 ring->mr_info.mri_intr.mi_ddi_shared = B_FALSE;
1113 if (ring->mr_prh != NULL) {
1114 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1115 return;
1116 }
1117 } else {
1118 /* New interrupt handle */
1119 mac_compare_ddi_handle(mip->mi_rx_groups,
1120 mip->mi_rx_group_count, ring);
1121 if (!ring->mr_info.mri_intr.mi_ddi_shared) {
1122 mac_compare_ddi_handle(mip->mi_tx_groups,
1123 mip->mi_tx_group_count, ring);
1124 }
1125 if (ring->mr_prh != NULL) {
1126 mac_pseudo_ring_intr_retarget(mip, ring, ddh);
1127 return;
1128 } else {
1129 mac_ring_intr_retarget(group, ring);
1130 }
1131 }
1132 i_mac_perim_exit(mip);
1133 }
1134
1135 /* PRIVATE FUNCTIONS, FOR INTERNAL USE ONLY */
1136
1137 /*
1138 * Updates the mac_impl structure with the current state of the link
1139 */
1140 static void
i_mac_log_link_state(mac_impl_t * mip)1141 i_mac_log_link_state(mac_impl_t *mip)
1142 {
1143 /*
1144 * If no change, then it is not interesting.
1145 */
1146 if (mip->mi_lastlowlinkstate == mip->mi_lowlinkstate)
1147 return;
1148
1149 switch (mip->mi_lowlinkstate) {
1150 case LINK_STATE_UP:
1151 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_LINK_DETAILS) {
1152 char det[200];
1153
1154 mip->mi_type->mt_ops.mtops_link_details(det,
1155 sizeof (det), (mac_handle_t)mip, mip->mi_pdata);
1156
1157 cmn_err(CE_NOTE, "!%s link up, %s", mip->mi_name, det);
1158 } else {
1159 cmn_err(CE_NOTE, "!%s link up", mip->mi_name);
1160 }
1161 break;
1162
1163 case LINK_STATE_DOWN:
1164 /*
1165 * Only transitions from UP to DOWN are interesting
1166 */
1167 if (mip->mi_lastlowlinkstate != LINK_STATE_UNKNOWN)
1168 cmn_err(CE_NOTE, "!%s link down", mip->mi_name);
1169 break;
1170
1171 case LINK_STATE_UNKNOWN:
1172 /*
1173 * This case is normally not interesting.
1174 */
1175 break;
1176 }
1177 mip->mi_lastlowlinkstate = mip->mi_lowlinkstate;
1178 }
1179
1180 /*
1181 * Main routine for the callbacks notifications thread
1182 */
1183 static void
i_mac_notify_thread(void * arg)1184 i_mac_notify_thread(void *arg)
1185 {
1186 mac_impl_t *mip = arg;
1187 callb_cpr_t cprinfo;
1188 mac_cb_t *mcb;
1189 mac_cb_info_t *mcbi;
1190 mac_notify_cb_t *mncb;
1191
1192 mcbi = &mip->mi_notify_cb_info;
1193 CALLB_CPR_INIT(&cprinfo, mcbi->mcbi_lockp, callb_generic_cpr,
1194 "i_mac_notify_thread");
1195
1196 mutex_enter(mcbi->mcbi_lockp);
1197
1198 for (;;) {
1199 uint32_t bits;
1200 uint32_t type;
1201
1202 bits = mip->mi_notify_bits;
1203 if (bits == 0) {
1204 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1205 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1206 CALLB_CPR_SAFE_END(&cprinfo, mcbi->mcbi_lockp);
1207 continue;
1208 }
1209 mip->mi_notify_bits = 0;
1210 if ((bits & (1 << MAC_NNOTE)) != 0) {
1211 /* request to quit */
1212 ASSERT(mip->mi_state_flags & MIS_DISABLED);
1213 break;
1214 }
1215
1216 mutex_exit(mcbi->mcbi_lockp);
1217
1218 /*
1219 * Log link changes on the actual link, but then do reports on
1220 * synthetic state (if part of a bridge).
1221 */
1222 if ((bits & (1 << MAC_NOTE_LOWLINK)) != 0) {
1223 link_state_t newstate;
1224 mac_handle_t mh;
1225
1226 i_mac_log_link_state(mip);
1227 newstate = mip->mi_lowlinkstate;
1228 if (mip->mi_bridge_link != NULL) {
1229 mutex_enter(&mip->mi_bridge_lock);
1230 if ((mh = mip->mi_bridge_link) != NULL) {
1231 newstate = mac_bridge_ls_cb(mh,
1232 newstate);
1233 }
1234 mutex_exit(&mip->mi_bridge_lock);
1235 }
1236 if (newstate != mip->mi_linkstate) {
1237 mip->mi_linkstate = newstate;
1238 bits |= 1 << MAC_NOTE_LINK;
1239 }
1240 }
1241
1242 /*
1243 * Do notification callbacks for each notification type.
1244 */
1245 for (type = 0; type < MAC_NNOTE; type++) {
1246 if ((bits & (1 << type)) == 0) {
1247 continue;
1248 }
1249
1250 if (mac_notify_cb_list[type] != NULL)
1251 (*mac_notify_cb_list[type])(mip);
1252
1253 /*
1254 * Walk the list of notifications.
1255 */
1256 MAC_CALLBACK_WALKER_INC(&mip->mi_notify_cb_info);
1257 for (mcb = mip->mi_notify_cb_list; mcb != NULL;
1258 mcb = mcb->mcb_nextp) {
1259 mncb = (mac_notify_cb_t *)mcb->mcb_objp;
1260 mncb->mncb_fn(mncb->mncb_arg, type);
1261 }
1262 MAC_CALLBACK_WALKER_DCR(&mip->mi_notify_cb_info,
1263 &mip->mi_notify_cb_list);
1264 }
1265
1266 mutex_enter(mcbi->mcbi_lockp);
1267 }
1268
1269 mip->mi_state_flags |= MIS_NOTIFY_DONE;
1270 cv_broadcast(&mcbi->mcbi_cv);
1271
1272 /* CALLB_CPR_EXIT drops the lock */
1273 CALLB_CPR_EXIT(&cprinfo);
1274 thread_exit();
1275 }
1276
1277 /*
1278 * Signal the i_mac_notify_thread asking it to quit.
1279 * Then wait till it is done.
1280 */
1281 void
i_mac_notify_exit(mac_impl_t * mip)1282 i_mac_notify_exit(mac_impl_t *mip)
1283 {
1284 mac_cb_info_t *mcbi;
1285
1286 mcbi = &mip->mi_notify_cb_info;
1287
1288 mutex_enter(mcbi->mcbi_lockp);
1289 mip->mi_notify_bits = (1 << MAC_NNOTE);
1290 cv_broadcast(&mcbi->mcbi_cv);
1291
1292
1293 while ((mip->mi_notify_thread != NULL) &&
1294 !(mip->mi_state_flags & MIS_NOTIFY_DONE)) {
1295 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
1296 }
1297
1298 /* Necessary clean up before doing kmem_cache_free */
1299 mip->mi_state_flags &= ~MIS_NOTIFY_DONE;
1300 mip->mi_notify_bits = 0;
1301 mip->mi_notify_thread = NULL;
1302 mutex_exit(mcbi->mcbi_lockp);
1303 }
1304
1305 /*
1306 * Entry point invoked by drivers to dynamically add a ring to an
1307 * existing group.
1308 */
1309 int
mac_group_add_ring(mac_group_handle_t gh,int index)1310 mac_group_add_ring(mac_group_handle_t gh, int index)
1311 {
1312 mac_group_t *group = (mac_group_t *)gh;
1313 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1314 int ret;
1315
1316 i_mac_perim_enter(mip);
1317 ret = i_mac_group_add_ring(group, NULL, index);
1318 i_mac_perim_exit(mip);
1319 return (ret);
1320 }
1321
1322 /*
1323 * Entry point invoked by drivers to dynamically remove a ring
1324 * from an existing group. The specified ring handle must no longer
1325 * be used by the driver after a call to this function.
1326 */
1327 void
mac_group_rem_ring(mac_group_handle_t gh,mac_ring_handle_t rh)1328 mac_group_rem_ring(mac_group_handle_t gh, mac_ring_handle_t rh)
1329 {
1330 mac_group_t *group = (mac_group_t *)gh;
1331 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
1332
1333 i_mac_perim_enter(mip);
1334 i_mac_group_rem_ring(group, (mac_ring_t *)rh, B_TRUE);
1335 i_mac_perim_exit(mip);
1336 }
1337
1338 /*
1339 * mac_prop_info_*() callbacks called from the driver's prefix_propinfo()
1340 * entry points.
1341 */
1342
1343 void
mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph,uint8_t val)1344 mac_prop_info_set_default_uint8(mac_prop_info_handle_t ph, uint8_t val)
1345 {
1346 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1347
1348 /* nothing to do if the caller doesn't want the default value */
1349 if (pr->pr_default == NULL)
1350 return;
1351
1352 ASSERT(pr->pr_default_size >= sizeof (uint8_t));
1353
1354 *(uint8_t *)(pr->pr_default) = val;
1355 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1356 }
1357
1358 void
mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph,uint64_t val)1359 mac_prop_info_set_default_uint64(mac_prop_info_handle_t ph, uint64_t val)
1360 {
1361 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1362
1363 /* nothing to do if the caller doesn't want the default value */
1364 if (pr->pr_default == NULL)
1365 return;
1366
1367 ASSERT(pr->pr_default_size >= sizeof (uint64_t));
1368
1369 bcopy(&val, pr->pr_default, sizeof (val));
1370
1371 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1372 }
1373
1374 void
mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph,uint32_t val)1375 mac_prop_info_set_default_uint32(mac_prop_info_handle_t ph, uint32_t val)
1376 {
1377 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1378
1379 /* nothing to do if the caller doesn't want the default value */
1380 if (pr->pr_default == NULL)
1381 return;
1382
1383 ASSERT(pr->pr_default_size >= sizeof (uint32_t));
1384
1385 bcopy(&val, pr->pr_default, sizeof (val));
1386
1387 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1388 }
1389
1390 void
mac_prop_info_set_default_str(mac_prop_info_handle_t ph,const char * str)1391 mac_prop_info_set_default_str(mac_prop_info_handle_t ph, const char *str)
1392 {
1393 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1394
1395 /* nothing to do if the caller doesn't want the default value */
1396 if (pr->pr_default == NULL)
1397 return;
1398
1399 if (strlen(str) >= pr->pr_default_size)
1400 pr->pr_errno = ENOBUFS;
1401 else
1402 (void) strlcpy(pr->pr_default, str, pr->pr_default_size);
1403 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1404 }
1405
1406 void
mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,link_flowctrl_t val)1407 mac_prop_info_set_default_link_flowctrl(mac_prop_info_handle_t ph,
1408 link_flowctrl_t val)
1409 {
1410 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1411
1412 /* nothing to do if the caller doesn't want the default value */
1413 if (pr->pr_default == NULL)
1414 return;
1415
1416 ASSERT(pr->pr_default_size >= sizeof (link_flowctrl_t));
1417
1418 bcopy(&val, pr->pr_default, sizeof (val));
1419
1420 pr->pr_flags |= MAC_PROP_INFO_DEFAULT;
1421 }
1422
1423 void
mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph,uint32_t min,uint32_t max)1424 mac_prop_info_set_range_uint32(mac_prop_info_handle_t ph, uint32_t min,
1425 uint32_t max)
1426 {
1427 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1428 mac_propval_range_t *range = pr->pr_range;
1429 mac_propval_uint32_range_t *range32;
1430
1431 /* nothing to do if the caller doesn't want the range info */
1432 if (range == NULL)
1433 return;
1434
1435 if (pr->pr_range_cur_count++ == 0) {
1436 /* first range */
1437 pr->pr_flags |= MAC_PROP_INFO_RANGE;
1438 range->mpr_type = MAC_PROPVAL_UINT32;
1439 } else {
1440 /* all ranges of a property should be of the same type */
1441 ASSERT(range->mpr_type == MAC_PROPVAL_UINT32);
1442 if (pr->pr_range_cur_count > range->mpr_count) {
1443 pr->pr_errno = ENOSPC;
1444 return;
1445 }
1446 }
1447
1448 range32 = range->mpr_range_uint32;
1449 range32[pr->pr_range_cur_count - 1].mpur_min = min;
1450 range32[pr->pr_range_cur_count - 1].mpur_max = max;
1451 }
1452
1453 void
mac_prop_info_set_perm(mac_prop_info_handle_t ph,uint8_t perm)1454 mac_prop_info_set_perm(mac_prop_info_handle_t ph, uint8_t perm)
1455 {
1456 mac_prop_info_state_t *pr = (mac_prop_info_state_t *)ph;
1457
1458 pr->pr_perm = perm;
1459 pr->pr_flags |= MAC_PROP_INFO_PERM;
1460 }
1461
mac_hcksum_get(mblk_t * mp,uint32_t * start,uint32_t * stuff,uint32_t * end,uint32_t * value,uint32_t * flags_ptr)1462 void mac_hcksum_get(mblk_t *mp, uint32_t *start, uint32_t *stuff,
1463 uint32_t *end, uint32_t *value, uint32_t *flags_ptr)
1464 {
1465 uint32_t flags;
1466
1467 ASSERT(DB_TYPE(mp) == M_DATA);
1468
1469 flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
1470 if ((flags & (HCK_PARTIALCKSUM | HCK_FULLCKSUM)) != 0) {
1471 if (value != NULL)
1472 *value = (uint32_t)DB_CKSUM16(mp);
1473 if ((flags & HCK_PARTIALCKSUM) != 0) {
1474 if (start != NULL)
1475 *start = (uint32_t)DB_CKSUMSTART(mp);
1476 if (stuff != NULL)
1477 *stuff = (uint32_t)DB_CKSUMSTUFF(mp);
1478 if (end != NULL)
1479 *end = (uint32_t)DB_CKSUMEND(mp);
1480 }
1481 }
1482
1483 if (flags_ptr != NULL)
1484 *flags_ptr = flags;
1485 }
1486
mac_hcksum_set(mblk_t * mp,uint32_t start,uint32_t stuff,uint32_t end,uint32_t value,uint32_t flags)1487 void mac_hcksum_set(mblk_t *mp, uint32_t start, uint32_t stuff,
1488 uint32_t end, uint32_t value, uint32_t flags)
1489 {
1490 ASSERT(DB_TYPE(mp) == M_DATA);
1491
1492 DB_CKSUMSTART(mp) = (intptr_t)start;
1493 DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
1494 DB_CKSUMEND(mp) = (intptr_t)end;
1495 DB_CKSUMFLAGS(mp) = (uint16_t)flags;
1496 DB_CKSUM16(mp) = (uint16_t)value;
1497 }
1498
1499 void
mac_lso_get(mblk_t * mp,uint32_t * mss,uint32_t * flags)1500 mac_lso_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
1501 {
1502 ASSERT(DB_TYPE(mp) == M_DATA);
1503
1504 if (flags != NULL) {
1505 *flags = DB_CKSUMFLAGS(mp) & HW_LSO;
1506 if ((*flags != 0) && (mss != NULL))
1507 *mss = (uint32_t)DB_LSOMSS(mp);
1508 }
1509 }
1510