1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2020 Joyent, Inc.
25 * Copyright 2015 Garrett D'Amore <garrett@damore.org>
26 * Copyright 2020 RackTop Systems, Inc.
27 * Copyright 2024 Oxide Computer Company
28 */
29
30 /*
31 * MAC Services Module
32 *
33 * The GLDv3 framework locking - The MAC layer
34 * --------------------------------------------
35 *
36 * The MAC layer is central to the GLD framework and can provide the locking
37 * framework needed for itself and for the use of MAC clients. MAC end points
38 * are fairly disjoint and don't share a lot of state. So a coarse grained
39 * multi-threading scheme is to single thread all create/modify/delete or set
40 * type of control operations on a per mac end point while allowing data threads
41 * concurrently.
42 *
43 * Control operations (set) that modify a mac end point are always serialized on
44 * a per mac end point basis, We have at most 1 such thread per mac end point
45 * at a time.
46 *
47 * All other operations that are not serialized are essentially multi-threaded.
48 * For example a control operation (get) like getting statistics which may not
49 * care about reading values atomically or data threads sending or receiving
50 * data. Mostly these type of operations don't modify the control state. Any
51 * state these operations care about are protected using traditional locks.
52 *
53 * The perimeter only serializes serial operations. It does not imply there
54 * aren't any other concurrent operations. However a serialized operation may
55 * sometimes need to make sure it is the only thread. In this case it needs
56 * to use reference counting mechanisms to cv_wait until any current data
57 * threads are done.
58 *
59 * The mac layer itself does not hold any locks across a call to another layer.
60 * The perimeter is however held across a down call to the driver to make the
61 * whole control operation atomic with respect to other control operations.
62 * Also the data path and get type control operations may proceed concurrently.
63 * These operations synchronize with the single serial operation on a given mac
64 * end point using regular locks. The perimeter ensures that conflicting
65 * operations like say a mac_multicast_add and a mac_multicast_remove on the
66 * same mac end point don't interfere with each other and also ensures that the
67 * changes in the mac layer and the call to the underlying driver to say add a
68 * multicast address are done atomically without interference from a thread
69 * trying to delete the same address.
70 *
71 * For example, consider
72 * mac_multicst_add()
73 * {
74 * mac_perimeter_enter(); serialize all control operations
75 *
76 * grab list lock protect against access by data threads
77 * add to list
78 * drop list lock
79 *
80 * call driver's mi_multicst
81 *
82 * mac_perimeter_exit();
83 * }
84 *
85 * To lessen the number of serialization locks and simplify the lock hierarchy,
86 * we serialize all the control operations on a per mac end point by using a
87 * single serialization lock called the perimeter. We allow recursive entry into
88 * the perimeter to facilitate use of this mechanism by both the mac client and
89 * the MAC layer itself.
90 *
91 * MAC client means an entity that does an operation on a mac handle
92 * obtained from a mac_open/mac_client_open. Similarly MAC driver means
93 * an entity that does an operation on a mac handle obtained from a
94 * mac_register. An entity could be both client and driver but on different
95 * handles eg. aggr. and should only make the corresponding mac interface calls
96 * i.e. mac driver interface or mac client interface as appropriate for that
97 * mac handle.
98 *
99 * General rules.
100 * -------------
101 *
102 * R1. The lock order of upcall threads is natually opposite to downcall
103 * threads. Hence upcalls must not hold any locks across layers for fear of
104 * recursive lock enter and lock order violation. This applies to all layers.
105 *
106 * R2. The perimeter is just another lock. Since it is held in the down
107 * direction, acquiring the perimeter in an upcall is prohibited as it would
108 * cause a deadlock. This applies to all layers.
109 *
110 * Note that upcalls that need to grab the mac perimeter (for example
111 * mac_notify upcalls) can still achieve that by posting the request to a
112 * thread, which can then grab all the required perimeters and locks in the
113 * right global order. Note that in the above example the mac layer iself
114 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
115 * to the client must do that. Please see the aggr code for an example.
116 *
117 * MAC client rules
118 * ----------------
119 *
120 * R3. A MAC client may use the MAC provided perimeter facility to serialize
121 * control operations on a per mac end point. It does this by by acquring
122 * and holding the perimeter across a sequence of calls to the mac layer.
123 * This ensures atomicity across the entire block of mac calls. In this
124 * model the MAC client must not hold any client locks across the calls to
125 * the mac layer. This model is the preferred solution.
126 *
127 * R4. However if a MAC client has a lot of global state across all mac end
128 * points the per mac end point serialization may not be sufficient. In this
129 * case the client may choose to use global locks or use its own serialization.
130 * To avoid deadlocks, these client layer locks held across the mac calls
131 * in the control path must never be acquired by the data path for the reason
132 * mentioned below.
133 *
134 * (Assume that a control operation that holds a client lock blocks in the
135 * mac layer waiting for upcall reference counts to drop to zero. If an upcall
136 * data thread that holds this reference count, tries to acquire the same
137 * client lock subsequently it will deadlock).
138 *
139 * A MAC client may follow either the R3 model or the R4 model, but can't
140 * mix both. In the former, the hierarchy is Perim -> client locks, but in
141 * the latter it is client locks -> Perim.
142 *
143 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
144 * context since they may block while trying to acquire the perimeter.
145 * In addition some calls may block waiting for upcall refcnts to come down to
146 * zero.
147 *
148 * R6. MAC clients must make sure that they are single threaded and all threads
149 * from the top (in particular data threads) have finished before calling
150 * mac_client_close. The MAC framework does not track the number of client
151 * threads using the mac client handle. Also mac clients must make sure
152 * they have undone all the control operations before calling mac_client_close.
153 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
154 * mac_unicast_add/mac_multicast_add.
155 *
156 * MAC framework rules
157 * -------------------
158 *
159 * R7. The mac layer itself must not hold any mac layer locks (except the mac
160 * perimeter) across a call to any other layer from the mac layer. The call to
161 * any other layer could be via mi_* entry points, classifier entry points into
162 * the driver or via upcall pointers into layers above. The mac perimeter may
163 * be acquired or held only in the down direction, for e.g. when calling into
164 * a mi_* driver enty point to provide atomicity of the operation.
165 *
166 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
167 * mac driver interfaces, the MAC layer must provide a cut out for control
168 * interfaces like upcall notifications and start them in a separate thread.
169 *
170 * R9. Note that locking order also implies a plumbing order. For example
171 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
172 * to plumb in any other order must be failed at mac_open time, otherwise it
173 * could lead to deadlocks due to inverse locking order.
174 *
175 * R10. MAC driver interfaces must not block since the driver could call them
176 * in interrupt context.
177 *
178 * R11. Walkers must preferably not hold any locks while calling walker
179 * callbacks. Instead these can operate on reference counts. In simple
180 * callbacks it may be ok to hold a lock and call the callbacks, but this is
181 * harder to maintain in the general case of arbitrary callbacks.
182 *
183 * R12. The MAC layer must protect upcall notification callbacks using reference
184 * counts rather than holding locks across the callbacks.
185 *
186 * R13. Given the variety of drivers, it is preferable if the MAC layer can make
187 * sure that any pointers (such as mac ring pointers) it passes to the driver
188 * remain valid until mac unregister time. Currently the mac layer achieves
189 * this by using generation numbers for rings and freeing the mac rings only
190 * at unregister time. The MAC layer must provide a layer of indirection and
191 * must not expose underlying driver rings or driver data structures/pointers
192 * directly to MAC clients.
193 *
194 * MAC driver rules
195 * ----------------
196 *
197 * R14. It would be preferable if MAC drivers don't hold any locks across any
198 * mac call. However at a minimum they must not hold any locks across data
199 * upcalls. They must also make sure that all references to mac data structures
200 * are cleaned up and that it is single threaded at mac_unregister time.
201 *
202 * R15. MAC driver interfaces don't block and so the action may be done
203 * asynchronously in a separate thread as for example handling notifications.
204 * The driver must not assume that the action is complete when the call
205 * returns.
206 *
207 * R16. Drivers must maintain a generation number per Rx ring, and pass it
208 * back to mac_rx_ring(); They are expected to increment the generation
209 * number whenever the ring's stop routine is invoked.
210 * See comments in mac_rx_ring();
211 *
212 * R17 Similarly mi_stop is another synchronization point and the driver must
213 * ensure that all upcalls are done and there won't be any future upcall
214 * before returning from mi_stop.
215 *
216 * R18. The driver may assume that all set/modify control operations via
217 * the mi_* entry points are single threaded on a per mac end point.
218 *
219 * Lock and Perimeter hierarchy scenarios
220 * ---------------------------------------
221 *
222 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
223 *
224 * ft_lock -> fe_lock [mac_flow_lookup]
225 *
226 * mi_rw_lock -> fe_lock [mac_bcast_send]
227 *
228 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
229 *
230 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
231 *
232 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
233 *
234 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
235 * client to driver. In the case of clients that explictly use the mac provided
236 * perimeter mechanism for its serialization, the hierarchy is
237 * Perimeter -> mac layer locks, since the client never holds any locks across
238 * the mac calls. In the case of clients that use its own locks the hierarchy
239 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
240 * calls mac_perim_enter/exit in this case.
241 *
242 * Subflow creation rules
243 * ---------------------------
244 * o In case of a user specified cpulist present on underlying link and flows,
245 * the flows cpulist must be a subset of the underlying link.
246 * o In case of a user specified fanout mode present on link and flow, the
247 * subflow fanout count has to be less than or equal to that of the
248 * underlying link. The cpu-bindings for the subflows will be a subset of
249 * the underlying link.
250 * o In case if no cpulist specified on both underlying link and flow, the
251 * underlying link relies on a MAC tunable to provide out of box fanout.
252 * The subflow will have no cpulist (the subflow will be unbound)
253 * o In case if no cpulist is specified on the underlying link, a subflow can
254 * carry either a user-specified cpulist or fanout count. The cpu-bindings
255 * for the subflow will not adhere to restriction that they need to be subset
256 * of the underlying link.
257 * o In case where the underlying link is carrying either a user specified
258 * cpulist or fanout mode and for a unspecified subflow, the subflow will be
259 * created unbound.
260 * o While creating unbound subflows, bandwidth mode changes attempt to
261 * figure a right fanout count. In such cases the fanout count will override
262 * the unbound cpu-binding behavior.
263 * o In addition to this, while cycling between flow and link properties, we
264 * impose a restriction that if a link property has a subflow with
265 * user-specified attributes, we will not allow changing the link property.
266 * The administrator needs to reset all the user specified properties for the
267 * subflows before attempting a link property change.
268 * Some of the above rules can be overridden by specifying additional command
269 * line options while creating or modifying link or subflow properties.
270 *
271 * Datapath
272 * --------
273 *
274 * For information on the datapath, the world of soft rings, hardware rings, how
275 * it is structured, and the path of an mblk_t between a driver and a mac
276 * client, see mac_sched.c.
277 */
278
279 #include <sys/types.h>
280 #include <sys/conf.h>
281 #include <sys/id_space.h>
282 #include <sys/esunddi.h>
283 #include <sys/stat.h>
284 #include <sys/mkdev.h>
285 #include <sys/stream.h>
286 #include <sys/strsun.h>
287 #include <sys/strsubr.h>
288 #include <sys/dlpi.h>
289 #include <sys/list.h>
290 #include <sys/modhash.h>
291 #include <sys/mac_provider.h>
292 #include <sys/mac_client_impl.h>
293 #include <sys/mac_soft_ring.h>
294 #include <sys/mac_stat.h>
295 #include <sys/mac_impl.h>
296 #include <sys/mac.h>
297 #include <sys/dls.h>
298 #include <sys/dld.h>
299 #include <sys/modctl.h>
300 #include <sys/fs/dv_node.h>
301 #include <sys/thread.h>
302 #include <sys/proc.h>
303 #include <sys/callb.h>
304 #include <sys/cpuvar.h>
305 #include <sys/atomic.h>
306 #include <sys/bitmap.h>
307 #include <sys/sdt.h>
308 #include <sys/mac_flow.h>
309 #include <sys/ddi_intr_impl.h>
310 #include <sys/disp.h>
311 #include <sys/sdt.h>
312 #include <sys/vnic.h>
313 #include <sys/vnic_impl.h>
314 #include <sys/vlan.h>
315 #include <inet/ip.h>
316 #include <inet/ip6.h>
317 #include <sys/exacct.h>
318 #include <sys/exacct_impl.h>
319 #include <inet/nd.h>
320 #include <sys/ethernet.h>
321 #include <sys/pool.h>
322 #include <sys/pool_pset.h>
323 #include <sys/cpupart.h>
324 #include <inet/wifi_ioctl.h>
325 #include <net/wpa.h>
326 #include <sys/mac_ether.h>
327
328 #define IMPL_HASHSZ 67 /* prime */
329
330 kmem_cache_t *i_mac_impl_cachep;
331 mod_hash_t *i_mac_impl_hash;
332 krwlock_t i_mac_impl_lock;
333 uint_t i_mac_impl_count;
334 static kmem_cache_t *mac_ring_cache;
335 static id_space_t *minor_ids;
336 static uint32_t minor_count;
337 static pool_event_cb_t mac_pool_event_reg;
338
339 /*
340 * Logging stuff. Perhaps mac_logging_interval could be broken into
341 * mac_flow_log_interval and mac_link_log_interval if we want to be
342 * able to schedule them differently.
343 */
344 uint_t mac_logging_interval;
345 boolean_t mac_flow_log_enable;
346 boolean_t mac_link_log_enable;
347 timeout_id_t mac_logging_timer;
348
349 #define MACTYPE_KMODDIR "mac"
350 #define MACTYPE_HASHSZ 67
351 static mod_hash_t *i_mactype_hash;
352 /*
353 * i_mactype_lock synchronizes threads that obtain references to mactype_t
354 * structures through i_mactype_getplugin().
355 */
356 static kmutex_t i_mactype_lock;
357
358 /*
359 * mac_tx_percpu_cnt
360 *
361 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
362 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
363 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
364 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
365 */
366 int mac_tx_percpu_cnt;
367 int mac_tx_percpu_cnt_max = 128;
368
369 /*
370 * Call back functions for the bridge module. These are guaranteed to be valid
371 * when holding a reference on a link or when holding mip->mi_bridge_lock and
372 * mi_bridge_link is non-NULL.
373 */
374 mac_bridge_tx_t mac_bridge_tx_cb;
375 mac_bridge_rx_t mac_bridge_rx_cb;
376 mac_bridge_ref_t mac_bridge_ref_cb;
377 mac_bridge_ls_t mac_bridge_ls_cb;
378
379 static int i_mac_constructor(void *, void *, int);
380 static void i_mac_destructor(void *, void *);
381 static int i_mac_ring_ctor(void *, void *, int);
382 static void i_mac_ring_dtor(void *, void *);
383 static flow_entry_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t,
384 mblk_t *);
385 void mac_tx_client_flush(mac_client_impl_t *);
386 void mac_tx_client_block(mac_client_impl_t *);
387 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
388 static int mac_start_group_and_rings(mac_group_t *);
389 static void mac_stop_group_and_rings(mac_group_t *);
390 static void mac_pool_event_cb(pool_event_t, int, void *);
391
392 typedef struct netinfo_s {
393 list_node_t ni_link;
394 void *ni_record;
395 int ni_size;
396 int ni_type;
397 } netinfo_t;
398
399 /*
400 * Module initialization functions.
401 */
402
403 void
mac_init(void)404 mac_init(void)
405 {
406 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
407 boot_max_ncpus);
408
409 /* Upper bound is mac_tx_percpu_cnt_max */
410 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
411 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
412
413 if (mac_tx_percpu_cnt < 1) {
414 /* Someone set max_tx_percpu_cnt_max to 0 or less */
415 mac_tx_percpu_cnt = 1;
416 }
417
418 ASSERT(mac_tx_percpu_cnt >= 1);
419 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
420 /*
421 * Make it of the form 2**N - 1 in the range
422 * [0 .. mac_tx_percpu_cnt_max - 1]
423 */
424 mac_tx_percpu_cnt--;
425
426 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
427 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
428 NULL, NULL, NULL, 0);
429 ASSERT(i_mac_impl_cachep != NULL);
430
431 mac_ring_cache = kmem_cache_create("mac_ring_cache",
432 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
433 NULL, NULL, 0);
434 ASSERT(mac_ring_cache != NULL);
435
436 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
437 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
438 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
439 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
440
441 mac_flow_init();
442 mac_soft_ring_init();
443 mac_bcast_init();
444 mac_client_init();
445
446 i_mac_impl_count = 0;
447
448 i_mactype_hash = mod_hash_create_extended("mactype_hash",
449 MACTYPE_HASHSZ,
450 mod_hash_null_keydtor, mod_hash_null_valdtor,
451 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
452
453 /*
454 * Allocate an id space to manage minor numbers. The range of the
455 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This
456 * leaves half of the 32-bit minors available for driver private use.
457 */
458 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1,
459 MAC_PRIVATE_MINOR-1);
460 ASSERT(minor_ids != NULL);
461 minor_count = 0;
462
463 /* Let's default to 20 seconds */
464 mac_logging_interval = 20;
465 mac_flow_log_enable = B_FALSE;
466 mac_link_log_enable = B_FALSE;
467 mac_logging_timer = NULL;
468
469 /* Register to be notified of noteworthy pools events */
470 mac_pool_event_reg.pec_func = mac_pool_event_cb;
471 mac_pool_event_reg.pec_arg = NULL;
472 pool_event_cb_register(&mac_pool_event_reg);
473 }
474
475 int
mac_fini(void)476 mac_fini(void)
477 {
478
479 if (i_mac_impl_count > 0 || minor_count > 0)
480 return (EBUSY);
481
482 pool_event_cb_unregister(&mac_pool_event_reg);
483
484 id_space_destroy(minor_ids);
485 mac_flow_fini();
486
487 mod_hash_destroy_hash(i_mac_impl_hash);
488 rw_destroy(&i_mac_impl_lock);
489
490 mac_client_fini();
491 kmem_cache_destroy(mac_ring_cache);
492
493 mod_hash_destroy_hash(i_mactype_hash);
494 mac_soft_ring_finish();
495
496
497 return (0);
498 }
499
500 /*
501 * Initialize a GLDv3 driver's device ops. A driver that manages its own ops
502 * (e.g. softmac) may pass in a NULL ops argument.
503 */
504 void
mac_init_ops(struct dev_ops * ops,const char * name)505 mac_init_ops(struct dev_ops *ops, const char *name)
506 {
507 major_t major = ddi_name_to_major((char *)name);
508
509 /*
510 * By returning on error below, we are not letting the driver continue
511 * in an undefined context. The mac_register() function will faill if
512 * DN_GLDV3_DRIVER isn't set.
513 */
514 if (major == DDI_MAJOR_T_NONE)
515 return;
516 LOCK_DEV_OPS(&devnamesp[major].dn_lock);
517 devnamesp[major].dn_flags |= (DN_GLDV3_DRIVER | DN_NETWORK_DRIVER);
518 UNLOCK_DEV_OPS(&devnamesp[major].dn_lock);
519 if (ops != NULL)
520 dld_init_ops(ops, name);
521 }
522
523 void
mac_fini_ops(struct dev_ops * ops)524 mac_fini_ops(struct dev_ops *ops)
525 {
526 dld_fini_ops(ops);
527 }
528
529 /*ARGSUSED*/
530 static int
i_mac_constructor(void * buf,void * arg,int kmflag)531 i_mac_constructor(void *buf, void *arg, int kmflag)
532 {
533 mac_impl_t *mip = buf;
534
535 bzero(buf, sizeof (mac_impl_t));
536
537 mip->mi_linkstate = LINK_STATE_UNKNOWN;
538
539 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
540 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
541 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
542 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
543
544 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
545 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
546 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
547 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
548
549 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL);
550
551 return (0);
552 }
553
554 /*ARGSUSED*/
555 static void
i_mac_destructor(void * buf,void * arg)556 i_mac_destructor(void *buf, void *arg)
557 {
558 mac_impl_t *mip = buf;
559 mac_cb_info_t *mcbi;
560
561 ASSERT(mip->mi_ref == 0);
562 ASSERT(mip->mi_active == 0);
563 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
564 ASSERT(mip->mi_devpromisc == 0);
565 ASSERT(mip->mi_ksp == NULL);
566 ASSERT(mip->mi_kstat_count == 0);
567 ASSERT(mip->mi_nclients == 0);
568 ASSERT(mip->mi_nactiveclients == 0);
569 ASSERT(mip->mi_single_active_client == NULL);
570 ASSERT(mip->mi_state_flags == 0);
571 ASSERT(mip->mi_factory_addr == NULL);
572 ASSERT(mip->mi_factory_addr_num == 0);
573 ASSERT(mip->mi_default_tx_ring == NULL);
574
575 mcbi = &mip->mi_notify_cb_info;
576 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
577 ASSERT(mip->mi_notify_bits == 0);
578 ASSERT(mip->mi_notify_thread == NULL);
579 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
580 mcbi->mcbi_lockp = NULL;
581
582 mcbi = &mip->mi_promisc_cb_info;
583 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
584 ASSERT(mip->mi_promisc_list == NULL);
585 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
586 mcbi->mcbi_lockp = NULL;
587
588 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
589 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
590
591 rw_destroy(&mip->mi_rw_lock);
592
593 mutex_destroy(&mip->mi_promisc_lock);
594 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
595 mutex_destroy(&mip->mi_notify_lock);
596 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
597 mutex_destroy(&mip->mi_ring_lock);
598
599 ASSERT(mip->mi_bridge_link == NULL);
600 }
601
602 /* ARGSUSED */
603 static int
i_mac_ring_ctor(void * buf,void * arg,int kmflag)604 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
605 {
606 mac_ring_t *ring = (mac_ring_t *)buf;
607
608 bzero(ring, sizeof (mac_ring_t));
609 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
610 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
611 ring->mr_state = MR_FREE;
612 return (0);
613 }
614
615 /* ARGSUSED */
616 static void
i_mac_ring_dtor(void * buf,void * arg)617 i_mac_ring_dtor(void *buf, void *arg)
618 {
619 mac_ring_t *ring = (mac_ring_t *)buf;
620
621 cv_destroy(&ring->mr_cv);
622 mutex_destroy(&ring->mr_lock);
623 }
624
625 /*
626 * Common functions to do mac callback addition and deletion. Currently this is
627 * used by promisc callbacks and notify callbacks. List addition and deletion
628 * need to take care of list walkers. List walkers in general, can't hold list
629 * locks and make upcall callbacks due to potential lock order and recursive
630 * reentry issues. Instead list walkers increment the list walker count to mark
631 * the presence of a walker thread. Addition can be carefully done to ensure
632 * that the list walker always sees either the old list or the new list.
633 * However the deletion can't be done while the walker is active, instead the
634 * deleting thread simply marks the entry as logically deleted. The last walker
635 * physically deletes and frees up the logically deleted entries when the walk
636 * is complete.
637 */
638 void
mac_callback_add(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)639 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
640 mac_cb_t *mcb_elem)
641 {
642 mac_cb_t *p;
643 mac_cb_t **pp;
644
645 /* Verify it is not already in the list */
646 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
647 if (p == mcb_elem)
648 break;
649 }
650 VERIFY(p == NULL);
651
652 /*
653 * Add it to the head of the callback list. The membar ensures that
654 * the following list pointer manipulations reach global visibility
655 * in exactly the program order below.
656 */
657 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
658
659 mcb_elem->mcb_nextp = *mcb_head;
660 membar_producer();
661 *mcb_head = mcb_elem;
662 }
663
664 /*
665 * Mark the entry as logically deleted. If there aren't any walkers unlink
666 * from the list. In either case return the corresponding status.
667 */
668 boolean_t
mac_callback_remove(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head,mac_cb_t * mcb_elem)669 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
670 mac_cb_t *mcb_elem)
671 {
672 mac_cb_t *p;
673 mac_cb_t **pp;
674
675 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
676 /*
677 * Search the callback list for the entry to be removed
678 */
679 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
680 if (p == mcb_elem)
681 break;
682 }
683 VERIFY(p != NULL);
684
685 /*
686 * If there are walkers just mark it as deleted and the last walker
687 * will remove from the list and free it.
688 */
689 if (mcbi->mcbi_walker_cnt != 0) {
690 p->mcb_flags |= MCB_CONDEMNED;
691 mcbi->mcbi_del_cnt++;
692 return (B_FALSE);
693 }
694
695 ASSERT(mcbi->mcbi_del_cnt == 0);
696 *pp = p->mcb_nextp;
697 p->mcb_nextp = NULL;
698 return (B_TRUE);
699 }
700
701 /*
702 * Wait for all pending callback removals to be completed
703 */
704 void
mac_callback_remove_wait(mac_cb_info_t * mcbi)705 mac_callback_remove_wait(mac_cb_info_t *mcbi)
706 {
707 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
708 while (mcbi->mcbi_del_cnt != 0) {
709 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
710 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
711 }
712 }
713
714 void
mac_callback_barrier(mac_cb_info_t * mcbi)715 mac_callback_barrier(mac_cb_info_t *mcbi)
716 {
717 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
718 ASSERT3U(mcbi->mcbi_barrier_cnt, <, UINT_MAX);
719
720 if (mcbi->mcbi_walker_cnt == 0) {
721 return;
722 }
723
724 mcbi->mcbi_barrier_cnt++;
725 do {
726 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
727 } while (mcbi->mcbi_walker_cnt > 0);
728 mcbi->mcbi_barrier_cnt--;
729 cv_broadcast(&mcbi->mcbi_cv);
730 }
731
732 void
mac_callback_walker_enter(mac_cb_info_t * mcbi)733 mac_callback_walker_enter(mac_cb_info_t *mcbi)
734 {
735 mutex_enter(mcbi->mcbi_lockp);
736 /*
737 * Incoming walkers should give precedence to timely clean-up of
738 * deleted callback entries and requested barriers.
739 */
740 while (mcbi->mcbi_del_cnt > 0 || mcbi->mcbi_barrier_cnt > 0) {
741 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
742 }
743 mcbi->mcbi_walker_cnt++;
744 mutex_exit(mcbi->mcbi_lockp);
745 }
746
747 /*
748 * The last mac callback walker does the cleanup. Walk the list and unlik
749 * all the logically deleted entries and construct a temporary list of
750 * removed entries. Return the list of removed entries to the caller.
751 */
752 static mac_cb_t *
mac_callback_walker_cleanup(mac_cb_info_t * mcbi,mac_cb_t ** mcb_head)753 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
754 {
755 mac_cb_t *p;
756 mac_cb_t **pp;
757 mac_cb_t *rmlist = NULL; /* List of removed elements */
758 int cnt = 0;
759
760 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
761 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
762
763 pp = mcb_head;
764 while (*pp != NULL) {
765 if ((*pp)->mcb_flags & MCB_CONDEMNED) {
766 p = *pp;
767 *pp = p->mcb_nextp;
768 p->mcb_nextp = rmlist;
769 rmlist = p;
770 cnt++;
771 continue;
772 }
773 pp = &(*pp)->mcb_nextp;
774 }
775
776 ASSERT(mcbi->mcbi_del_cnt == cnt);
777 mcbi->mcbi_del_cnt = 0;
778 return (rmlist);
779 }
780
781 void
mac_callback_walker_exit(mac_cb_info_t * mcbi,mac_cb_t ** headp,boolean_t is_promisc)782 mac_callback_walker_exit(mac_cb_info_t *mcbi, mac_cb_t **headp,
783 boolean_t is_promisc)
784 {
785 boolean_t do_wake = B_FALSE;
786
787 mutex_enter(mcbi->mcbi_lockp);
788
789 /* If walkers remain, nothing more can be done for now */
790 if (--mcbi->mcbi_walker_cnt != 0) {
791 mutex_exit(mcbi->mcbi_lockp);
792 return;
793 }
794
795 if (mcbi->mcbi_del_cnt != 0) {
796 mac_cb_t *rmlist;
797
798 rmlist = mac_callback_walker_cleanup(mcbi, headp);
799
800 if (!is_promisc) {
801 /* The "normal" non-promisc callback clean-up */
802 mac_callback_free(rmlist);
803 } else {
804 mac_cb_t *mcb, *mcb_next;
805
806 /*
807 * The promisc callbacks are in 2 lists, one off the
808 * 'mip' and another off the 'mcip' threaded by
809 * mpi_mi_link and mpi_mci_link respectively. There
810 * is, however, only a single shared total walker
811 * count, and an entry cannot be physically unlinked if
812 * a walker is active on either list. The last walker
813 * does this cleanup of logically deleted entries.
814 *
815 * With a list of callbacks deleted from above from
816 * mi_promisc_list (headp), remove the corresponding
817 * entry from mci_promisc_list (headp_pair) and free
818 * the structure.
819 */
820 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
821 mac_promisc_impl_t *mpip;
822 mac_client_impl_t *mcip;
823
824 mcb_next = mcb->mcb_nextp;
825 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
826 mcip = mpip->mpi_mcip;
827
828 ASSERT3P(&mcip->mci_mip->mi_promisc_cb_info,
829 ==, mcbi);
830 ASSERT3P(&mcip->mci_mip->mi_promisc_list,
831 ==, headp);
832
833 VERIFY(mac_callback_remove(mcbi,
834 &mcip->mci_promisc_list,
835 &mpip->mpi_mci_link));
836 mcb->mcb_flags = 0;
837 mcb->mcb_nextp = NULL;
838 kmem_cache_free(mac_promisc_impl_cache, mpip);
839 }
840 }
841
842 /*
843 * Wake any walker threads that could be waiting in
844 * mac_callback_walker_enter() until deleted items have been
845 * cleaned from the list.
846 */
847 do_wake = B_TRUE;
848 }
849
850 if (mcbi->mcbi_barrier_cnt != 0) {
851 /*
852 * One or more threads are waiting for all walkers to exit the
853 * callback list. Notify them, now that the list is clear.
854 */
855 do_wake = B_TRUE;
856 }
857
858 if (do_wake) {
859 cv_broadcast(&mcbi->mcbi_cv);
860 }
861 mutex_exit(mcbi->mcbi_lockp);
862 }
863
864 static boolean_t
mac_callback_lookup(mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)865 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
866 {
867 mac_cb_t *mcb;
868
869 /* Verify it is not already in the list */
870 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
871 if (mcb == mcb_elem)
872 return (B_TRUE);
873 }
874
875 return (B_FALSE);
876 }
877
878 static boolean_t
mac_callback_find(mac_cb_info_t * mcbi,mac_cb_t ** mcb_headp,mac_cb_t * mcb_elem)879 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
880 {
881 boolean_t found;
882
883 mutex_enter(mcbi->mcbi_lockp);
884 found = mac_callback_lookup(mcb_headp, mcb_elem);
885 mutex_exit(mcbi->mcbi_lockp);
886
887 return (found);
888 }
889
890 /* Free the list of removed callbacks */
891 void
mac_callback_free(mac_cb_t * rmlist)892 mac_callback_free(mac_cb_t *rmlist)
893 {
894 mac_cb_t *mcb;
895 mac_cb_t *mcb_next;
896
897 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
898 mcb_next = mcb->mcb_nextp;
899 kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
900 }
901 }
902
903 void
i_mac_notify(mac_impl_t * mip,mac_notify_type_t type)904 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
905 {
906 mac_cb_info_t *mcbi;
907
908 /*
909 * Signal the notify thread even after mi_ref has become zero and
910 * mi_disabled is set. The synchronization with the notify thread
911 * happens in mac_unregister and that implies the driver must make
912 * sure it is single-threaded (with respect to mac calls) and that
913 * all pending mac calls have returned before it calls mac_unregister
914 */
915 rw_enter(&i_mac_impl_lock, RW_READER);
916 if (mip->mi_state_flags & MIS_DISABLED)
917 goto exit;
918
919 /*
920 * Guard against incorrect notifications. (Running a newer
921 * mac client against an older implementation?)
922 */
923 if (type >= MAC_NNOTE)
924 goto exit;
925
926 mcbi = &mip->mi_notify_cb_info;
927 mutex_enter(mcbi->mcbi_lockp);
928 mip->mi_notify_bits |= (1 << type);
929 cv_broadcast(&mcbi->mcbi_cv);
930 mutex_exit(mcbi->mcbi_lockp);
931
932 exit:
933 rw_exit(&i_mac_impl_lock);
934 }
935
936 /*
937 * Mac serialization primitives. Please see the block comment at the
938 * top of the file.
939 */
940 void
i_mac_perim_enter(mac_impl_t * mip)941 i_mac_perim_enter(mac_impl_t *mip)
942 {
943 mac_client_impl_t *mcip;
944
945 if (mip->mi_state_flags & MIS_IS_VNIC) {
946 /*
947 * This is a VNIC. Return the lower mac since that is what
948 * we want to serialize on.
949 */
950 mcip = mac_vnic_lower(mip);
951 mip = mcip->mci_mip;
952 }
953
954 mutex_enter(&mip->mi_perim_lock);
955 if (mip->mi_perim_owner == curthread) {
956 mip->mi_perim_ocnt++;
957 mutex_exit(&mip->mi_perim_lock);
958 return;
959 }
960
961 while (mip->mi_perim_owner != NULL)
962 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
963
964 mip->mi_perim_owner = curthread;
965 ASSERT(mip->mi_perim_ocnt == 0);
966 mip->mi_perim_ocnt++;
967 #ifdef DEBUG
968 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
969 MAC_PERIM_STACK_DEPTH);
970 #endif
971 mutex_exit(&mip->mi_perim_lock);
972 }
973
974 int
i_mac_perim_enter_nowait(mac_impl_t * mip)975 i_mac_perim_enter_nowait(mac_impl_t *mip)
976 {
977 /*
978 * The vnic is a special case, since the serialization is done based
979 * on the lower mac. If the lower mac is busy, it does not imply the
980 * vnic can't be unregistered. But in the case of other drivers,
981 * a busy perimeter or open mac handles implies that the mac is busy
982 * and can't be unregistered.
983 */
984 if (mip->mi_state_flags & MIS_IS_VNIC) {
985 i_mac_perim_enter(mip);
986 return (0);
987 }
988
989 mutex_enter(&mip->mi_perim_lock);
990 if (mip->mi_perim_owner != NULL) {
991 mutex_exit(&mip->mi_perim_lock);
992 return (EBUSY);
993 }
994 ASSERT(mip->mi_perim_ocnt == 0);
995 mip->mi_perim_owner = curthread;
996 mip->mi_perim_ocnt++;
997 mutex_exit(&mip->mi_perim_lock);
998
999 return (0);
1000 }
1001
1002 void
i_mac_perim_exit(mac_impl_t * mip)1003 i_mac_perim_exit(mac_impl_t *mip)
1004 {
1005 mac_client_impl_t *mcip;
1006
1007 if (mip->mi_state_flags & MIS_IS_VNIC) {
1008 /*
1009 * This is a VNIC. Return the lower mac since that is what
1010 * we want to serialize on.
1011 */
1012 mcip = mac_vnic_lower(mip);
1013 mip = mcip->mci_mip;
1014 }
1015
1016 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
1017
1018 mutex_enter(&mip->mi_perim_lock);
1019 if (--mip->mi_perim_ocnt == 0) {
1020 mip->mi_perim_owner = NULL;
1021 cv_signal(&mip->mi_perim_cv);
1022 }
1023 mutex_exit(&mip->mi_perim_lock);
1024 }
1025
1026 /*
1027 * Returns whether the current thread holds the mac perimeter. Used in making
1028 * assertions.
1029 */
1030 boolean_t
mac_perim_held(mac_handle_t mh)1031 mac_perim_held(mac_handle_t mh)
1032 {
1033 mac_impl_t *mip = (mac_impl_t *)mh;
1034 mac_client_impl_t *mcip;
1035
1036 if (mip->mi_state_flags & MIS_IS_VNIC) {
1037 /*
1038 * This is a VNIC. Return the lower mac since that is what
1039 * we want to serialize on.
1040 */
1041 mcip = mac_vnic_lower(mip);
1042 mip = mcip->mci_mip;
1043 }
1044 return (mip->mi_perim_owner == curthread);
1045 }
1046
1047 /*
1048 * mac client interfaces to enter the mac perimeter of a mac end point, given
1049 * its mac handle, or macname or linkid.
1050 */
1051 void
mac_perim_enter_by_mh(mac_handle_t mh,mac_perim_handle_t * mphp)1052 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
1053 {
1054 mac_impl_t *mip = (mac_impl_t *)mh;
1055
1056 i_mac_perim_enter(mip);
1057 /*
1058 * The mac_perim_handle_t returned encodes the 'mip' and whether a
1059 * mac_open has been done internally while entering the perimeter.
1060 * This information is used in mac_perim_exit
1061 */
1062 MAC_ENCODE_MPH(*mphp, mip, 0);
1063 }
1064
1065 int
mac_perim_enter_by_macname(const char * name,mac_perim_handle_t * mphp)1066 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
1067 {
1068 int err;
1069 mac_handle_t mh;
1070
1071 if ((err = mac_open(name, &mh)) != 0)
1072 return (err);
1073
1074 mac_perim_enter_by_mh(mh, mphp);
1075 MAC_ENCODE_MPH(*mphp, mh, 1);
1076 return (0);
1077 }
1078
1079 int
mac_perim_enter_by_linkid(datalink_id_t linkid,mac_perim_handle_t * mphp)1080 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
1081 {
1082 int err;
1083 mac_handle_t mh;
1084
1085 if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
1086 return (err);
1087
1088 mac_perim_enter_by_mh(mh, mphp);
1089 MAC_ENCODE_MPH(*mphp, mh, 1);
1090 return (0);
1091 }
1092
1093 void
mac_perim_exit(mac_perim_handle_t mph)1094 mac_perim_exit(mac_perim_handle_t mph)
1095 {
1096 mac_impl_t *mip;
1097 boolean_t need_close;
1098
1099 MAC_DECODE_MPH(mph, mip, need_close);
1100 i_mac_perim_exit(mip);
1101 if (need_close)
1102 mac_close((mac_handle_t)mip);
1103 }
1104
1105 int
mac_hold(const char * macname,mac_impl_t ** pmip)1106 mac_hold(const char *macname, mac_impl_t **pmip)
1107 {
1108 mac_impl_t *mip;
1109 int err;
1110
1111 /*
1112 * Check the device name length to make sure it won't overflow our
1113 * buffer.
1114 */
1115 if (strlen(macname) >= MAXNAMELEN)
1116 return (EINVAL);
1117
1118 /*
1119 * Look up its entry in the global hash table.
1120 */
1121 rw_enter(&i_mac_impl_lock, RW_WRITER);
1122 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
1123 (mod_hash_val_t *)&mip);
1124
1125 if (err != 0) {
1126 rw_exit(&i_mac_impl_lock);
1127 return (ENOENT);
1128 }
1129
1130 if (mip->mi_state_flags & MIS_DISABLED) {
1131 rw_exit(&i_mac_impl_lock);
1132 return (ENOENT);
1133 }
1134
1135 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
1136 rw_exit(&i_mac_impl_lock);
1137 return (EBUSY);
1138 }
1139
1140 mip->mi_ref++;
1141 rw_exit(&i_mac_impl_lock);
1142
1143 *pmip = mip;
1144 return (0);
1145 }
1146
1147 void
mac_rele(mac_impl_t * mip)1148 mac_rele(mac_impl_t *mip)
1149 {
1150 rw_enter(&i_mac_impl_lock, RW_WRITER);
1151 ASSERT(mip->mi_ref != 0);
1152 if (--mip->mi_ref == 0) {
1153 ASSERT(mip->mi_nactiveclients == 0 &&
1154 !(mip->mi_state_flags & MIS_EXCLUSIVE));
1155 }
1156 rw_exit(&i_mac_impl_lock);
1157 }
1158
1159 /*
1160 * Private GLDv3 function to start a MAC instance.
1161 */
1162 int
mac_start(mac_handle_t mh)1163 mac_start(mac_handle_t mh)
1164 {
1165 mac_impl_t *mip = (mac_impl_t *)mh;
1166 int err = 0;
1167 mac_group_t *defgrp;
1168
1169 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1170 ASSERT(mip->mi_start != NULL);
1171
1172 /*
1173 * Check whether the device is already started.
1174 */
1175 if (mip->mi_active++ == 0) {
1176 mac_ring_t *ring = NULL;
1177
1178 /*
1179 * Start the device.
1180 */
1181 err = mip->mi_start(mip->mi_driver);
1182 if (err != 0) {
1183 mip->mi_active--;
1184 return (err);
1185 }
1186
1187 /*
1188 * Start the default tx ring.
1189 */
1190 if (mip->mi_default_tx_ring != NULL) {
1191
1192 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1193 if (ring->mr_state != MR_INUSE) {
1194 err = mac_start_ring(ring);
1195 if (err != 0) {
1196 mip->mi_active--;
1197 return (err);
1198 }
1199 }
1200 }
1201
1202 if ((defgrp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1203 /*
1204 * Start the default group which is responsible
1205 * for receiving broadcast and multicast
1206 * traffic for both primary and non-primary
1207 * MAC clients.
1208 */
1209 ASSERT(defgrp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1210 err = mac_start_group_and_rings(defgrp);
1211 if (err != 0) {
1212 mip->mi_active--;
1213 if ((ring != NULL) &&
1214 (ring->mr_state == MR_INUSE))
1215 mac_stop_ring(ring);
1216 return (err);
1217 }
1218 mac_set_group_state(defgrp, MAC_GROUP_STATE_SHARED);
1219 }
1220 }
1221
1222 return (err);
1223 }
1224
1225 /*
1226 * Private GLDv3 function to stop a MAC instance.
1227 */
1228 void
mac_stop(mac_handle_t mh)1229 mac_stop(mac_handle_t mh)
1230 {
1231 mac_impl_t *mip = (mac_impl_t *)mh;
1232 mac_group_t *grp;
1233
1234 ASSERT(mip->mi_stop != NULL);
1235 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1236
1237 /*
1238 * Check whether the device is still needed.
1239 */
1240 ASSERT(mip->mi_active != 0);
1241 if (--mip->mi_active == 0) {
1242 if ((grp = MAC_DEFAULT_RX_GROUP(mip)) != NULL) {
1243 /*
1244 * There should be no more active clients since the
1245 * MAC is being stopped. Stop the default RX group
1246 * and transition it back to registered state.
1247 *
1248 * When clients are torn down, the groups
1249 * are release via mac_release_rx_group which
1250 * knows the the default group is always in
1251 * started mode since broadcast uses it. So
1252 * we can assert that their are no clients
1253 * (since mac_bcast_add doesn't register itself
1254 * as a client) and group is in SHARED state.
1255 */
1256 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1257 ASSERT(MAC_GROUP_NO_CLIENT(grp) &&
1258 mip->mi_nactiveclients == 0);
1259 mac_stop_group_and_rings(grp);
1260 mac_set_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1261 }
1262
1263 if (mip->mi_default_tx_ring != NULL) {
1264 mac_ring_t *ring;
1265
1266 ring = (mac_ring_t *)mip->mi_default_tx_ring;
1267 if (ring->mr_state == MR_INUSE) {
1268 mac_stop_ring(ring);
1269 ring->mr_flag = 0;
1270 }
1271 }
1272
1273 /*
1274 * Stop the device.
1275 */
1276 mip->mi_stop(mip->mi_driver);
1277 }
1278 }
1279
1280 int
i_mac_promisc_set(mac_impl_t * mip,boolean_t on)1281 i_mac_promisc_set(mac_impl_t *mip, boolean_t on)
1282 {
1283 int err = 0;
1284
1285 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1286 ASSERT(mip->mi_setpromisc != NULL);
1287
1288 if (on) {
1289 /*
1290 * Enable promiscuous mode on the device if not yet enabled.
1291 */
1292 if (mip->mi_devpromisc++ == 0) {
1293 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1294 if (err != 0) {
1295 mip->mi_devpromisc--;
1296 return (err);
1297 }
1298 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1299 }
1300 } else {
1301 if (mip->mi_devpromisc == 0)
1302 return (EPROTO);
1303
1304 /*
1305 * Disable promiscuous mode on the device if this is the last
1306 * enabling.
1307 */
1308 if (--mip->mi_devpromisc == 0) {
1309 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1310 if (err != 0) {
1311 mip->mi_devpromisc++;
1312 return (err);
1313 }
1314 i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1315 }
1316 }
1317
1318 return (0);
1319 }
1320
1321 /*
1322 * The promiscuity state can change any time. If the caller needs to take
1323 * actions that are atomic with the promiscuity state, then the caller needs
1324 * to bracket the entire sequence with mac_perim_enter/exit
1325 */
1326 boolean_t
mac_promisc_get(mac_handle_t mh)1327 mac_promisc_get(mac_handle_t mh)
1328 {
1329 mac_impl_t *mip = (mac_impl_t *)mh;
1330
1331 /*
1332 * Return the current promiscuity.
1333 */
1334 return (mip->mi_devpromisc != 0);
1335 }
1336
1337 /*
1338 * Invoked at MAC instance attach time to initialize the list
1339 * of factory MAC addresses supported by a MAC instance. This function
1340 * builds a local cache in the mac_impl_t for the MAC addresses
1341 * supported by the underlying hardware. The MAC clients themselves
1342 * use the mac_addr_factory*() functions to query and reserve
1343 * factory MAC addresses.
1344 */
1345 void
mac_addr_factory_init(mac_impl_t * mip)1346 mac_addr_factory_init(mac_impl_t *mip)
1347 {
1348 mac_capab_multifactaddr_t capab;
1349 uint8_t *addr;
1350 int i;
1351
1352 /*
1353 * First round to see how many factory MAC addresses are available.
1354 */
1355 bzero(&capab, sizeof (capab));
1356 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1357 &capab) || (capab.mcm_naddr == 0)) {
1358 /*
1359 * The MAC instance doesn't support multiple factory
1360 * MAC addresses, we're done here.
1361 */
1362 return;
1363 }
1364
1365 /*
1366 * Allocate the space and get all the factory addresses.
1367 */
1368 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1369 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1370
1371 mip->mi_factory_addr_num = capab.mcm_naddr;
1372 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1373 sizeof (mac_factory_addr_t), KM_SLEEP);
1374
1375 for (i = 0; i < capab.mcm_naddr; i++) {
1376 bcopy(addr + i * MAXMACADDRLEN,
1377 mip->mi_factory_addr[i].mfa_addr,
1378 mip->mi_type->mt_addr_length);
1379 mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1380 }
1381
1382 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1383 }
1384
1385 void
mac_addr_factory_fini(mac_impl_t * mip)1386 mac_addr_factory_fini(mac_impl_t *mip)
1387 {
1388 if (mip->mi_factory_addr == NULL) {
1389 ASSERT(mip->mi_factory_addr_num == 0);
1390 return;
1391 }
1392
1393 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1394 sizeof (mac_factory_addr_t));
1395
1396 mip->mi_factory_addr = NULL;
1397 mip->mi_factory_addr_num = 0;
1398 }
1399
1400 /*
1401 * Reserve a factory MAC address. If *slot is set to -1, the function
1402 * attempts to reserve any of the available factory MAC addresses and
1403 * returns the reserved slot id. If no slots are available, the function
1404 * returns ENOSPC. If *slot is not set to -1, the function reserves
1405 * the specified slot if it is available, or returns EBUSY is the slot
1406 * is already used. Returns ENOTSUP if the underlying MAC does not
1407 * support multiple factory addresses. If the slot number is not -1 but
1408 * is invalid, returns EINVAL.
1409 */
1410 int
mac_addr_factory_reserve(mac_client_handle_t mch,int * slot)1411 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1412 {
1413 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1414 mac_impl_t *mip = mcip->mci_mip;
1415 int i, ret = 0;
1416
1417 i_mac_perim_enter(mip);
1418 /*
1419 * Protect against concurrent readers that may need a self-consistent
1420 * view of the factory addresses
1421 */
1422 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1423
1424 if (mip->mi_factory_addr_num == 0) {
1425 ret = ENOTSUP;
1426 goto bail;
1427 }
1428
1429 if (*slot != -1) {
1430 /* check the specified slot */
1431 if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1432 ret = EINVAL;
1433 goto bail;
1434 }
1435 if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1436 ret = EBUSY;
1437 goto bail;
1438 }
1439 } else {
1440 /* pick the next available slot */
1441 for (i = 0; i < mip->mi_factory_addr_num; i++) {
1442 if (!mip->mi_factory_addr[i].mfa_in_use)
1443 break;
1444 }
1445
1446 if (i == mip->mi_factory_addr_num) {
1447 ret = ENOSPC;
1448 goto bail;
1449 }
1450 *slot = i+1;
1451 }
1452
1453 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1454 mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1455
1456 bail:
1457 rw_exit(&mip->mi_rw_lock);
1458 i_mac_perim_exit(mip);
1459 return (ret);
1460 }
1461
1462 /*
1463 * Release the specified factory MAC address slot.
1464 */
1465 void
mac_addr_factory_release(mac_client_handle_t mch,uint_t slot)1466 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1467 {
1468 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1469 mac_impl_t *mip = mcip->mci_mip;
1470
1471 i_mac_perim_enter(mip);
1472 /*
1473 * Protect against concurrent readers that may need a self-consistent
1474 * view of the factory addresses
1475 */
1476 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1477
1478 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1479 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1480
1481 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1482
1483 rw_exit(&mip->mi_rw_lock);
1484 i_mac_perim_exit(mip);
1485 }
1486
1487 /*
1488 * Stores in mac_addr the value of the specified MAC address. Returns
1489 * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1490 * The caller must provide a string of at least MAXNAMELEN bytes.
1491 */
1492 void
mac_addr_factory_value(mac_handle_t mh,int slot,uchar_t * mac_addr,uint_t * addr_len,char * client_name,boolean_t * in_use_arg)1493 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1494 uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1495 {
1496 mac_impl_t *mip = (mac_impl_t *)mh;
1497 boolean_t in_use;
1498
1499 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1500
1501 /*
1502 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1503 * and mi_rw_lock
1504 */
1505 rw_enter(&mip->mi_rw_lock, RW_READER);
1506 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1507 *addr_len = mip->mi_type->mt_addr_length;
1508 in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1509 if (in_use && client_name != NULL) {
1510 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1511 client_name, MAXNAMELEN);
1512 }
1513 if (in_use_arg != NULL)
1514 *in_use_arg = in_use;
1515 rw_exit(&mip->mi_rw_lock);
1516 }
1517
1518 /*
1519 * Returns the number of factory MAC addresses (in addition to the
1520 * primary MAC address), 0 if the underlying MAC doesn't support
1521 * that feature.
1522 */
1523 uint_t
mac_addr_factory_num(mac_handle_t mh)1524 mac_addr_factory_num(mac_handle_t mh)
1525 {
1526 mac_impl_t *mip = (mac_impl_t *)mh;
1527
1528 return (mip->mi_factory_addr_num);
1529 }
1530
1531
1532 void
mac_rx_group_unmark(mac_group_t * grp,uint_t flag)1533 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1534 {
1535 mac_ring_t *ring;
1536
1537 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1538 ring->mr_flag &= ~flag;
1539 }
1540
1541 /*
1542 * The following mac_hwrings_xxx() functions are private mac client functions
1543 * used by the aggr driver to access and control the underlying HW Rx group
1544 * and rings. In this case, the aggr driver has exclusive control of the
1545 * underlying HW Rx group/rings, it calls the following functions to
1546 * start/stop the HW Rx rings, disable/enable polling, add/remove MAC
1547 * addresses, or set up the Rx callback.
1548 */
1549 /* ARGSUSED */
1550 static void
mac_hwrings_rx_process(void * arg,mac_resource_handle_t srs,mblk_t * mp_chain,boolean_t loopback)1551 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1552 mblk_t *mp_chain, boolean_t loopback)
1553 {
1554 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
1555 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1556 mac_direct_rx_t proc;
1557 void *arg1;
1558 mac_resource_handle_t arg2;
1559
1560 proc = srs_rx->sr_func;
1561 arg1 = srs_rx->sr_arg1;
1562 arg2 = mac_srs->srs_mrh;
1563
1564 proc(arg1, arg2, mp_chain, NULL);
1565 }
1566
1567 /*
1568 * This function is called to get the list of HW rings that are reserved by
1569 * an exclusive mac client.
1570 *
1571 * Return value: the number of HW rings.
1572 */
1573 int
mac_hwrings_get(mac_client_handle_t mch,mac_group_handle_t * hwgh,mac_ring_handle_t * hwrh,mac_ring_type_t rtype)1574 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1575 mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1576 {
1577 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1578 flow_entry_t *flent = mcip->mci_flent;
1579 mac_group_t *grp;
1580 mac_ring_t *ring;
1581 int cnt = 0;
1582
1583 if (rtype == MAC_RING_TYPE_RX) {
1584 grp = flent->fe_rx_ring_group;
1585 } else if (rtype == MAC_RING_TYPE_TX) {
1586 grp = flent->fe_tx_ring_group;
1587 } else {
1588 ASSERT(B_FALSE);
1589 return (-1);
1590 }
1591
1592 /*
1593 * The MAC client did not reserve an Rx group, return directly.
1594 * This is probably because the underlying MAC does not support
1595 * any groups.
1596 */
1597 if (hwgh != NULL)
1598 *hwgh = NULL;
1599 if (grp == NULL)
1600 return (0);
1601 /*
1602 * This group must be reserved by this MAC client.
1603 */
1604 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1605 (mcip == MAC_GROUP_ONLY_CLIENT(grp)));
1606
1607 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1608 ASSERT(cnt < MAX_RINGS_PER_GROUP);
1609 hwrh[cnt] = (mac_ring_handle_t)ring;
1610 }
1611 if (hwgh != NULL)
1612 *hwgh = (mac_group_handle_t)grp;
1613
1614 return (cnt);
1615 }
1616
1617 /*
1618 * Get the HW ring handles of the given group index. If the MAC
1619 * doesn't have a group at this index, or any groups at all, then 0 is
1620 * returned and hwgh is set to NULL. This is a private client API. The
1621 * MAC perimeter must be held when calling this function.
1622 *
1623 * mh: A handle to the MAC that owns the group.
1624 *
1625 * idx: The index of the HW group to be read.
1626 *
1627 * hwgh: If non-NULL, contains a handle to the HW group on return.
1628 *
1629 * hwrh: An array of ring handles pointing to the HW rings in the
1630 * group. The array must be large enough to hold a handle to each ring
1631 * in the group. To be safe, this array should be of size MAX_RINGS_PER_GROUP.
1632 *
1633 * rtype: Used to determine if we are fetching Rx or Tx rings.
1634 *
1635 * Returns the number of rings in the group.
1636 */
1637 uint_t
mac_hwrings_idx_get(mac_handle_t mh,uint_t idx,mac_group_handle_t * hwgh,mac_ring_handle_t * hwrh,mac_ring_type_t rtype)1638 mac_hwrings_idx_get(mac_handle_t mh, uint_t idx, mac_group_handle_t *hwgh,
1639 mac_ring_handle_t *hwrh, mac_ring_type_t rtype)
1640 {
1641 mac_impl_t *mip = (mac_impl_t *)mh;
1642 mac_group_t *grp;
1643 mac_ring_t *ring;
1644 uint_t cnt = 0;
1645
1646 /*
1647 * The MAC perimeter must be held when accessing the
1648 * mi_{rx,tx}_groups fields.
1649 */
1650 ASSERT(MAC_PERIM_HELD(mh));
1651 ASSERT(rtype == MAC_RING_TYPE_RX || rtype == MAC_RING_TYPE_TX);
1652
1653 if (rtype == MAC_RING_TYPE_RX) {
1654 grp = mip->mi_rx_groups;
1655 } else {
1656 ASSERT(rtype == MAC_RING_TYPE_TX);
1657 grp = mip->mi_tx_groups;
1658 }
1659
1660 while (grp != NULL && grp->mrg_index != idx)
1661 grp = grp->mrg_next;
1662
1663 /*
1664 * If the MAC doesn't have a group at this index or doesn't
1665 * impelement RINGS capab, then set hwgh to NULL and return 0.
1666 */
1667 if (hwgh != NULL)
1668 *hwgh = NULL;
1669
1670 if (grp == NULL)
1671 return (0);
1672
1673 ASSERT3U(idx, ==, grp->mrg_index);
1674
1675 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) {
1676 ASSERT3U(cnt, <, MAX_RINGS_PER_GROUP);
1677 hwrh[cnt] = (mac_ring_handle_t)ring;
1678 }
1679
1680 /* A group should always have at least one ring. */
1681 ASSERT3U(cnt, >, 0);
1682
1683 if (hwgh != NULL)
1684 *hwgh = (mac_group_handle_t)grp;
1685
1686 return (cnt);
1687 }
1688
1689 /*
1690 * This function is called to get info about Tx/Rx rings.
1691 *
1692 * Return value: returns uint_t which will have various bits set
1693 * that indicates different properties of the ring.
1694 */
1695 uint_t
mac_hwring_getinfo(mac_ring_handle_t rh)1696 mac_hwring_getinfo(mac_ring_handle_t rh)
1697 {
1698 mac_ring_t *ring = (mac_ring_t *)rh;
1699 mac_ring_info_t *info = &ring->mr_info;
1700
1701 return (info->mri_flags);
1702 }
1703
1704 /*
1705 * Set the passthru callback on the hardware ring.
1706 */
1707 void
mac_hwring_set_passthru(mac_ring_handle_t hwrh,mac_rx_t fn,void * arg1,mac_resource_handle_t arg2)1708 mac_hwring_set_passthru(mac_ring_handle_t hwrh, mac_rx_t fn, void *arg1,
1709 mac_resource_handle_t arg2)
1710 {
1711 mac_ring_t *hwring = (mac_ring_t *)hwrh;
1712
1713 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1714
1715 hwring->mr_classify_type = MAC_PASSTHRU_CLASSIFIER;
1716
1717 hwring->mr_pt_fn = fn;
1718 hwring->mr_pt_arg1 = arg1;
1719 hwring->mr_pt_arg2 = arg2;
1720 }
1721
1722 /*
1723 * Clear the passthru callback on the hardware ring.
1724 */
1725 void
mac_hwring_clear_passthru(mac_ring_handle_t hwrh)1726 mac_hwring_clear_passthru(mac_ring_handle_t hwrh)
1727 {
1728 mac_ring_t *hwring = (mac_ring_t *)hwrh;
1729
1730 ASSERT3S(hwring->mr_type, ==, MAC_RING_TYPE_RX);
1731
1732 hwring->mr_classify_type = MAC_NO_CLASSIFIER;
1733
1734 hwring->mr_pt_fn = NULL;
1735 hwring->mr_pt_arg1 = NULL;
1736 hwring->mr_pt_arg2 = NULL;
1737 }
1738
1739 void
mac_client_set_flow_cb(mac_client_handle_t mch,mac_rx_t func,void * arg1)1740 mac_client_set_flow_cb(mac_client_handle_t mch, mac_rx_t func, void *arg1)
1741 {
1742 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1743 flow_entry_t *flent = mcip->mci_flent;
1744
1745 mutex_enter(&flent->fe_lock);
1746 flent->fe_cb_fn = (flow_fn_t)func;
1747 flent->fe_cb_arg1 = arg1;
1748 flent->fe_cb_arg2 = NULL;
1749 flent->fe_flags &= ~FE_MC_NO_DATAPATH;
1750 mutex_exit(&flent->fe_lock);
1751 }
1752
1753 void
mac_client_clear_flow_cb(mac_client_handle_t mch)1754 mac_client_clear_flow_cb(mac_client_handle_t mch)
1755 {
1756 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1757 flow_entry_t *flent = mcip->mci_flent;
1758
1759 mutex_enter(&flent->fe_lock);
1760 flent->fe_cb_fn = (flow_fn_t)mac_rx_def;
1761 flent->fe_cb_arg1 = NULL;
1762 flent->fe_cb_arg2 = NULL;
1763 flent->fe_flags |= FE_MC_NO_DATAPATH;
1764 mutex_exit(&flent->fe_lock);
1765 }
1766
1767 /*
1768 * Export ddi interrupt handles from the HW ring to the pseudo ring and
1769 * setup the RX callback of the mac client which exclusively controls
1770 * HW ring.
1771 */
1772 void
mac_hwring_setup(mac_ring_handle_t hwrh,mac_resource_handle_t prh,mac_ring_handle_t pseudo_rh)1773 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh,
1774 mac_ring_handle_t pseudo_rh)
1775 {
1776 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1777 mac_ring_t *pseudo_ring;
1778 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs;
1779
1780 if (pseudo_rh != NULL) {
1781 pseudo_ring = (mac_ring_t *)pseudo_rh;
1782 /* Export the ddi handles to pseudo ring */
1783 pseudo_ring->mr_info.mri_intr.mi_ddi_handle =
1784 hw_ring->mr_info.mri_intr.mi_ddi_handle;
1785 pseudo_ring->mr_info.mri_intr.mi_ddi_shared =
1786 hw_ring->mr_info.mri_intr.mi_ddi_shared;
1787 /*
1788 * Save a pointer to pseudo ring in the hw ring. If
1789 * interrupt handle changes, the hw ring will be
1790 * notified of the change (see mac_ring_intr_set())
1791 * and the appropriate change has to be made to
1792 * the pseudo ring that has exported the ddi handle.
1793 */
1794 hw_ring->mr_prh = pseudo_rh;
1795 }
1796
1797 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1798 ASSERT(!(mac_srs->srs_type & SRST_TX));
1799 mac_srs->srs_mrh = prh;
1800 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1801 }
1802 }
1803
1804 void
mac_hwring_teardown(mac_ring_handle_t hwrh)1805 mac_hwring_teardown(mac_ring_handle_t hwrh)
1806 {
1807 mac_ring_t *hw_ring = (mac_ring_t *)hwrh;
1808 mac_soft_ring_set_t *mac_srs;
1809
1810 if (hw_ring == NULL)
1811 return;
1812 hw_ring->mr_prh = NULL;
1813 if (hw_ring->mr_type == MAC_RING_TYPE_RX) {
1814 mac_srs = hw_ring->mr_srs;
1815 ASSERT(!(mac_srs->srs_type & SRST_TX));
1816 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1817 mac_srs->srs_mrh = NULL;
1818 }
1819 }
1820
1821 int
mac_hwring_disable_intr(mac_ring_handle_t rh)1822 mac_hwring_disable_intr(mac_ring_handle_t rh)
1823 {
1824 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1825 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1826
1827 return (intr->mi_disable(intr->mi_handle));
1828 }
1829
1830 int
mac_hwring_enable_intr(mac_ring_handle_t rh)1831 mac_hwring_enable_intr(mac_ring_handle_t rh)
1832 {
1833 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1834 mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1835
1836 return (intr->mi_enable(intr->mi_handle));
1837 }
1838
1839 /*
1840 * Start the HW ring pointed to by rh.
1841 *
1842 * This is used by special MAC clients that are MAC themselves and
1843 * need to exert control over the underlying HW rings of the NIC.
1844 */
1845 int
mac_hwring_start(mac_ring_handle_t rh)1846 mac_hwring_start(mac_ring_handle_t rh)
1847 {
1848 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1849 int rv = 0;
1850
1851 if (rr_ring->mr_state != MR_INUSE)
1852 rv = mac_start_ring(rr_ring);
1853
1854 return (rv);
1855 }
1856
1857 /*
1858 * Stop the HW ring pointed to by rh. Also see mac_hwring_start().
1859 */
1860 void
mac_hwring_stop(mac_ring_handle_t rh)1861 mac_hwring_stop(mac_ring_handle_t rh)
1862 {
1863 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1864
1865 if (rr_ring->mr_state != MR_FREE)
1866 mac_stop_ring(rr_ring);
1867 }
1868
1869 /*
1870 * Remove the quiesced flag from the HW ring pointed to by rh.
1871 *
1872 * This is used by special MAC clients that are MAC themselves and
1873 * need to exert control over the underlying HW rings of the NIC.
1874 */
1875 int
mac_hwring_activate(mac_ring_handle_t rh)1876 mac_hwring_activate(mac_ring_handle_t rh)
1877 {
1878 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1879
1880 MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1881 return (0);
1882 }
1883
1884 /*
1885 * Quiesce the HW ring pointed to by rh. Also see mac_hwring_activate().
1886 */
1887 void
mac_hwring_quiesce(mac_ring_handle_t rh)1888 mac_hwring_quiesce(mac_ring_handle_t rh)
1889 {
1890 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1891
1892 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1893 }
1894
1895 mblk_t *
mac_hwring_poll(mac_ring_handle_t rh,int bytes_to_pickup)1896 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1897 {
1898 mac_ring_t *rr_ring = (mac_ring_t *)rh;
1899 mac_ring_info_t *info = &rr_ring->mr_info;
1900
1901 return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1902 }
1903
1904 /*
1905 * Send packets through a selected tx ring.
1906 */
1907 mblk_t *
mac_hwring_tx(mac_ring_handle_t rh,mblk_t * mp)1908 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp)
1909 {
1910 mac_ring_t *ring = (mac_ring_t *)rh;
1911 mac_ring_info_t *info = &ring->mr_info;
1912
1913 ASSERT(ring->mr_type == MAC_RING_TYPE_TX &&
1914 ring->mr_state >= MR_INUSE);
1915 return (info->mri_tx(info->mri_driver, mp));
1916 }
1917
1918 /*
1919 * Query stats for a particular rx/tx ring
1920 */
1921 int
mac_hwring_getstat(mac_ring_handle_t rh,uint_t stat,uint64_t * val)1922 mac_hwring_getstat(mac_ring_handle_t rh, uint_t stat, uint64_t *val)
1923 {
1924 mac_ring_t *ring = (mac_ring_t *)rh;
1925 mac_ring_info_t *info = &ring->mr_info;
1926
1927 return (info->mri_stat(info->mri_driver, stat, val));
1928 }
1929
1930 /*
1931 * Private function that is only used by aggr to send packets through
1932 * a port/Tx ring. Since aggr exposes a pseudo Tx ring even for ports
1933 * that does not expose Tx rings, aggr_ring_tx() entry point needs
1934 * access to mac_impl_t to send packets through m_tx() entry point.
1935 * It accomplishes this by calling mac_hwring_send_priv() function.
1936 */
1937 mblk_t *
mac_hwring_send_priv(mac_client_handle_t mch,mac_ring_handle_t rh,mblk_t * mp)1938 mac_hwring_send_priv(mac_client_handle_t mch, mac_ring_handle_t rh, mblk_t *mp)
1939 {
1940 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1941 mac_impl_t *mip = mcip->mci_mip;
1942
1943 return (mac_provider_tx(mip, rh, mp, mcip));
1944 }
1945
1946 /*
1947 * Private function that is only used by aggr to update the default transmission
1948 * ring. Because aggr exposes a pseudo Tx ring even for ports that may
1949 * temporarily be down, it may need to update the default ring that is used by
1950 * MAC such that it refers to a link that can actively be used to send traffic.
1951 * Note that this is different from the case where the port has been removed
1952 * from the group. In those cases, all of the rings will be torn down because
1953 * the ring will no longer exist. It's important to give aggr a case where the
1954 * rings can still exist such that it may be able to continue to send LACP PDUs
1955 * to potentially restore the link.
1956 */
1957 void
mac_hwring_set_default(mac_handle_t mh,mac_ring_handle_t rh)1958 mac_hwring_set_default(mac_handle_t mh, mac_ring_handle_t rh)
1959 {
1960 mac_impl_t *mip = (mac_impl_t *)mh;
1961 mac_ring_t *ring = (mac_ring_t *)rh;
1962
1963 ASSERT(MAC_PERIM_HELD(mh));
1964 VERIFY(mip->mi_state_flags & MIS_IS_AGGR);
1965
1966 /*
1967 * We used to condition this assignment on the ring's
1968 * 'mr_state' being one of 'MR_INUSE'. However, there are
1969 * cases where this is called before the ring has any active
1970 * clients, and therefore is not marked as in use. Since the
1971 * sole purpose of this function is for aggr to make sure
1972 * 'mi_default_tx_ring' matches 'lg_tx_ports[0]', its
1973 * imperative that we update its value regardless of ring
1974 * state. Otherwise, we can end up in a state where
1975 * 'mi_default_tx_ring' points to a pseudo ring of a downed
1976 * port, even when 'lg_tx_ports[0]' points to a port that is
1977 * up.
1978 */
1979 mip->mi_default_tx_ring = rh;
1980 }
1981
1982 int
mac_hwgroup_addmac(mac_group_handle_t gh,const uint8_t * addr)1983 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1984 {
1985 mac_group_t *group = (mac_group_t *)gh;
1986
1987 return (mac_group_addmac(group, addr));
1988 }
1989
1990 int
mac_hwgroup_remmac(mac_group_handle_t gh,const uint8_t * addr)1991 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1992 {
1993 mac_group_t *group = (mac_group_t *)gh;
1994
1995 return (mac_group_remmac(group, addr));
1996 }
1997
1998 /*
1999 * Program the group's HW VLAN filter if it has such support.
2000 * Otherwise, the group will implicitly accept tagged traffic and
2001 * there is nothing to do.
2002 */
2003 int
mac_hwgroup_addvlan(mac_group_handle_t gh,uint16_t vid)2004 mac_hwgroup_addvlan(mac_group_handle_t gh, uint16_t vid)
2005 {
2006 mac_group_t *group = (mac_group_t *)gh;
2007
2008 if (!MAC_GROUP_HW_VLAN(group))
2009 return (0);
2010
2011 return (mac_group_addvlan(group, vid));
2012 }
2013
2014 int
mac_hwgroup_remvlan(mac_group_handle_t gh,uint16_t vid)2015 mac_hwgroup_remvlan(mac_group_handle_t gh, uint16_t vid)
2016 {
2017 mac_group_t *group = (mac_group_t *)gh;
2018
2019 if (!MAC_GROUP_HW_VLAN(group))
2020 return (0);
2021
2022 return (mac_group_remvlan(group, vid));
2023 }
2024
2025 /*
2026 * Determine if a MAC has HW VLAN support. This is a private API
2027 * consumed by aggr. In the future it might be nice to have a bitfield
2028 * in mac_capab_rings_t to track which forms of HW filtering are
2029 * supported by the MAC.
2030 */
2031 boolean_t
mac_has_hw_vlan(mac_handle_t mh)2032 mac_has_hw_vlan(mac_handle_t mh)
2033 {
2034 mac_impl_t *mip = (mac_impl_t *)mh;
2035
2036 return (MAC_GROUP_HW_VLAN(mip->mi_rx_groups));
2037 }
2038
2039 /*
2040 * Get the number of Rx HW groups on this MAC.
2041 */
2042 uint_t
mac_get_num_rx_groups(mac_handle_t mh)2043 mac_get_num_rx_groups(mac_handle_t mh)
2044 {
2045 mac_impl_t *mip = (mac_impl_t *)mh;
2046
2047 ASSERT(MAC_PERIM_HELD(mh));
2048 return (mip->mi_rx_group_count);
2049 }
2050
2051 int
mac_set_promisc(mac_handle_t mh,boolean_t value)2052 mac_set_promisc(mac_handle_t mh, boolean_t value)
2053 {
2054 mac_impl_t *mip = (mac_impl_t *)mh;
2055
2056 ASSERT(MAC_PERIM_HELD(mh));
2057 return (i_mac_promisc_set(mip, value));
2058 }
2059
2060 /*
2061 * Set the RX group to be shared/reserved. Note that the group must be
2062 * started/stopped outside of this function.
2063 */
2064 void
mac_set_group_state(mac_group_t * grp,mac_group_state_t state)2065 mac_set_group_state(mac_group_t *grp, mac_group_state_t state)
2066 {
2067 /*
2068 * If there is no change in the group state, just return.
2069 */
2070 if (grp->mrg_state == state)
2071 return;
2072
2073 switch (state) {
2074 case MAC_GROUP_STATE_RESERVED:
2075 /*
2076 * Successfully reserved the group.
2077 *
2078 * Given that there is an exclusive client controlling this
2079 * group, we enable the group level polling when available,
2080 * so that SRSs get to turn on/off individual rings they's
2081 * assigned to.
2082 */
2083 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2084
2085 if (grp->mrg_type == MAC_RING_TYPE_RX &&
2086 GROUP_INTR_DISABLE_FUNC(grp) != NULL) {
2087 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2088 }
2089 break;
2090
2091 case MAC_GROUP_STATE_SHARED:
2092 /*
2093 * Set all rings of this group to software classified.
2094 * If the group has an overriding interrupt, then re-enable it.
2095 */
2096 ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
2097
2098 if (grp->mrg_type == MAC_RING_TYPE_RX &&
2099 GROUP_INTR_ENABLE_FUNC(grp) != NULL) {
2100 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
2101 }
2102 /* The ring is not available for reservations any more */
2103 break;
2104
2105 case MAC_GROUP_STATE_REGISTERED:
2106 /* Also callable from mac_register, perim is not held */
2107 break;
2108
2109 default:
2110 ASSERT(B_FALSE);
2111 break;
2112 }
2113
2114 grp->mrg_state = state;
2115 }
2116
2117 /*
2118 * Quiesce future hardware classified packets for the specified Rx ring
2119 */
2120 static void
mac_rx_ring_quiesce(mac_ring_t * rx_ring,uint_t ring_flag)2121 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
2122 {
2123 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
2124 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE);
2125
2126 mutex_enter(&rx_ring->mr_lock);
2127 rx_ring->mr_flag |= ring_flag;
2128 while (rx_ring->mr_refcnt != 0)
2129 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
2130 mutex_exit(&rx_ring->mr_lock);
2131 }
2132
2133 /*
2134 * Please see mac_tx for details about the per cpu locking scheme
2135 */
2136 static void
mac_tx_lock_all(mac_client_impl_t * mcip)2137 mac_tx_lock_all(mac_client_impl_t *mcip)
2138 {
2139 int i;
2140
2141 for (i = 0; i <= mac_tx_percpu_cnt; i++)
2142 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2143 }
2144
2145 static void
mac_tx_unlock_all(mac_client_impl_t * mcip)2146 mac_tx_unlock_all(mac_client_impl_t *mcip)
2147 {
2148 int i;
2149
2150 for (i = mac_tx_percpu_cnt; i >= 0; i--)
2151 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2152 }
2153
2154 static void
mac_tx_unlock_allbutzero(mac_client_impl_t * mcip)2155 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
2156 {
2157 int i;
2158
2159 for (i = mac_tx_percpu_cnt; i > 0; i--)
2160 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
2161 }
2162
2163 static int
mac_tx_sum_refcnt(mac_client_impl_t * mcip)2164 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
2165 {
2166 int i;
2167 int refcnt = 0;
2168
2169 for (i = 0; i <= mac_tx_percpu_cnt; i++)
2170 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
2171
2172 return (refcnt);
2173 }
2174
2175 /*
2176 * Stop future Tx packets coming down from the client in preparation for
2177 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
2178 * of rings between clients
2179 */
2180 void
mac_tx_client_block(mac_client_impl_t * mcip)2181 mac_tx_client_block(mac_client_impl_t *mcip)
2182 {
2183 mac_tx_lock_all(mcip);
2184 mcip->mci_tx_flag |= MCI_TX_QUIESCE;
2185 while (mac_tx_sum_refcnt(mcip) != 0) {
2186 mac_tx_unlock_allbutzero(mcip);
2187 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2188 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
2189 mac_tx_lock_all(mcip);
2190 }
2191 mac_tx_unlock_all(mcip);
2192 }
2193
2194 void
mac_tx_client_unblock(mac_client_impl_t * mcip)2195 mac_tx_client_unblock(mac_client_impl_t *mcip)
2196 {
2197 mac_tx_lock_all(mcip);
2198 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
2199 mac_tx_unlock_all(mcip);
2200 /*
2201 * We may fail to disable flow control for the last MAC_NOTE_TX
2202 * notification because the MAC client is quiesced. Send the
2203 * notification again.
2204 */
2205 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
2206 }
2207
2208 /*
2209 * Wait for an SRS to quiesce. The SRS worker will signal us when the
2210 * quiesce is done.
2211 */
2212 static void
mac_srs_quiesce_wait(mac_soft_ring_set_t * srs,uint_t srs_flag)2213 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
2214 {
2215 mutex_enter(&srs->srs_lock);
2216 while (!(srs->srs_state & srs_flag))
2217 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
2218 mutex_exit(&srs->srs_lock);
2219 }
2220
2221 /*
2222 * Quiescing an Rx SRS is achieved by the following sequence. The protocol
2223 * works bottom up by cutting off packet flow from the bottommost point in the
2224 * mac, then the SRS, and then the soft rings. There are 2 use cases of this
2225 * mechanism. One is a temporary quiesce of the SRS, such as say while changing
2226 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
2227 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
2228 * for the SRS and MR flags. In the former case the threads pause waiting for
2229 * a restart, while in the latter case the threads exit. The Tx SRS teardown
2230 * is also mostly similar to the above.
2231 *
2232 * 1. Stop future hardware classified packets at the lowest level in the mac.
2233 * Remove any hardware classification rule (CONDEMNED case) and mark the
2234 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
2235 * from increasing. Upcalls from the driver that come through hardware
2236 * classification will be dropped in mac_rx from now on. Then we wait for
2237 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
2238 * sure there aren't any upcall threads from the driver through hardware
2239 * classification. In the case of SRS teardown we also remove the
2240 * classification rule in the driver.
2241 *
2242 * 2. Stop future software classified packets by marking the flow entry with
2243 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
2244 * increasing. We also remove the flow entry from the table in the latter
2245 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value
2246 * that indicates there aren't any active threads using that flow entry.
2247 *
2248 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
2249 * SRS worker thread, and the soft ring threads are quiesced in sequence
2250 * with the SRS worker thread serving as a master controller. This
2251 * mechansim is explained in mac_srs_worker_quiesce().
2252 *
2253 * The restart mechanism to reactivate the SRS and softrings is explained
2254 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
2255 * restart sequence.
2256 */
2257 void
mac_rx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)2258 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2259 {
2260 flow_entry_t *flent = srs->srs_flent;
2261 uint_t mr_flag, srs_done_flag;
2262
2263 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2264 ASSERT(!(srs->srs_type & SRST_TX));
2265
2266 if (srs_quiesce_flag == SRS_CONDEMNED) {
2267 mr_flag = MR_CONDEMNED;
2268 srs_done_flag = SRS_CONDEMNED_DONE;
2269 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2270 mac_srs_client_poll_disable(srs->srs_mcip, srs);
2271 } else {
2272 ASSERT(srs_quiesce_flag == SRS_QUIESCE);
2273 mr_flag = MR_QUIESCE;
2274 srs_done_flag = SRS_QUIESCE_DONE;
2275 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
2276 mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
2277 }
2278
2279 if (srs->srs_ring != NULL) {
2280 mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
2281 } else {
2282 /*
2283 * SRS is driven by software classification. In case
2284 * of CONDEMNED, the top level teardown functions will
2285 * deal with flow removal.
2286 */
2287 if (srs_quiesce_flag != SRS_CONDEMNED) {
2288 FLOW_MARK(flent, FE_QUIESCE);
2289 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
2290 }
2291 }
2292
2293 /*
2294 * Signal the SRS to quiesce itself, and then cv_wait for the
2295 * SRS quiesce to complete. The SRS worker thread will wake us
2296 * up when the quiesce is complete
2297 */
2298 mac_srs_signal(srs, srs_quiesce_flag);
2299 mac_srs_quiesce_wait(srs, srs_done_flag);
2300 }
2301
2302 /*
2303 * Remove an SRS.
2304 */
2305 void
mac_rx_srs_remove(mac_soft_ring_set_t * srs)2306 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
2307 {
2308 flow_entry_t *flent = srs->srs_flent;
2309 int i;
2310
2311 mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
2312 /*
2313 * Locate and remove our entry in the fe_rx_srs[] array, and
2314 * adjust the fe_rx_srs array entries and array count by
2315 * moving the last entry into the vacated spot.
2316 */
2317 mutex_enter(&flent->fe_lock);
2318 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2319 if (flent->fe_rx_srs[i] == srs)
2320 break;
2321 }
2322
2323 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
2324 if (i != flent->fe_rx_srs_cnt - 1) {
2325 flent->fe_rx_srs[i] =
2326 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
2327 i = flent->fe_rx_srs_cnt - 1;
2328 }
2329
2330 flent->fe_rx_srs[i] = NULL;
2331 flent->fe_rx_srs_cnt--;
2332 mutex_exit(&flent->fe_lock);
2333
2334 mac_srs_free(srs);
2335 }
2336
2337 static void
mac_srs_clear_flag(mac_soft_ring_set_t * srs,uint_t flag)2338 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
2339 {
2340 mutex_enter(&srs->srs_lock);
2341 srs->srs_state &= ~flag;
2342 mutex_exit(&srs->srs_lock);
2343 }
2344
2345 void
mac_rx_srs_restart(mac_soft_ring_set_t * srs)2346 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
2347 {
2348 flow_entry_t *flent = srs->srs_flent;
2349 mac_ring_t *mr;
2350
2351 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
2352 ASSERT((srs->srs_type & SRST_TX) == 0);
2353
2354 /*
2355 * This handles a change in the number of SRSs between the quiesce and
2356 * and restart operation of a flow.
2357 */
2358 if (!SRS_QUIESCED(srs))
2359 return;
2360
2361 /*
2362 * Signal the SRS to restart itself. Wait for the restart to complete
2363 * Note that we only restart the SRS if it is not marked as
2364 * permanently quiesced.
2365 */
2366 if (!SRS_QUIESCED_PERMANENT(srs)) {
2367 mac_srs_signal(srs, SRS_RESTART);
2368 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2369 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2370
2371 mac_srs_client_poll_restart(srs->srs_mcip, srs);
2372 }
2373
2374 /* Finally clear the flags to let the packets in */
2375 mr = srs->srs_ring;
2376 if (mr != NULL) {
2377 MAC_RING_UNMARK(mr, MR_QUIESCE);
2378 /* In case the ring was stopped, safely restart it */
2379 if (mr->mr_state != MR_INUSE)
2380 (void) mac_start_ring(mr);
2381 } else {
2382 FLOW_UNMARK(flent, FE_QUIESCE);
2383 }
2384 }
2385
2386 /*
2387 * Temporary quiesce of a flow and associated Rx SRS.
2388 * Please see block comment above mac_rx_classify_flow_rem.
2389 */
2390 /* ARGSUSED */
2391 int
mac_rx_classify_flow_quiesce(flow_entry_t * flent,void * arg)2392 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
2393 {
2394 int i;
2395
2396 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2397 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
2398 SRS_QUIESCE);
2399 }
2400 return (0);
2401 }
2402
2403 /*
2404 * Restart a flow and associated Rx SRS that has been quiesced temporarily
2405 * Please see block comment above mac_rx_classify_flow_rem
2406 */
2407 /* ARGSUSED */
2408 int
mac_rx_classify_flow_restart(flow_entry_t * flent,void * arg)2409 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
2410 {
2411 int i;
2412
2413 for (i = 0; i < flent->fe_rx_srs_cnt; i++)
2414 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
2415
2416 return (0);
2417 }
2418
2419 void
mac_srs_perm_quiesce(mac_client_handle_t mch,boolean_t on)2420 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
2421 {
2422 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2423 flow_entry_t *flent = mcip->mci_flent;
2424 mac_impl_t *mip = mcip->mci_mip;
2425 mac_soft_ring_set_t *mac_srs;
2426 int i;
2427
2428 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2429
2430 if (flent == NULL)
2431 return;
2432
2433 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
2434 mac_srs = flent->fe_rx_srs[i];
2435 mutex_enter(&mac_srs->srs_lock);
2436 if (on)
2437 mac_srs->srs_state |= SRS_QUIESCE_PERM;
2438 else
2439 mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
2440 mutex_exit(&mac_srs->srs_lock);
2441 }
2442 }
2443
2444 void
mac_rx_client_quiesce(mac_client_handle_t mch)2445 mac_rx_client_quiesce(mac_client_handle_t mch)
2446 {
2447 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2448 mac_impl_t *mip = mcip->mci_mip;
2449
2450 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2451
2452 if (MCIP_DATAPATH_SETUP(mcip)) {
2453 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
2454 NULL);
2455 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2456 mac_rx_classify_flow_quiesce, NULL);
2457 }
2458 }
2459
2460 void
mac_rx_client_restart(mac_client_handle_t mch)2461 mac_rx_client_restart(mac_client_handle_t mch)
2462 {
2463 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2464 mac_impl_t *mip = mcip->mci_mip;
2465
2466 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2467
2468 if (MCIP_DATAPATH_SETUP(mcip)) {
2469 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
2470 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2471 mac_rx_classify_flow_restart, NULL);
2472 }
2473 }
2474
2475 /*
2476 * This function only quiesces the Tx SRS and softring worker threads. Callers
2477 * need to make sure that there aren't any mac client threads doing current or
2478 * future transmits in the mac before calling this function.
2479 */
2480 void
mac_tx_srs_quiesce(mac_soft_ring_set_t * srs,uint_t srs_quiesce_flag)2481 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2482 {
2483 mac_client_impl_t *mcip = srs->srs_mcip;
2484
2485 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2486
2487 ASSERT(srs->srs_type & SRST_TX);
2488 ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2489 srs_quiesce_flag == SRS_QUIESCE);
2490
2491 /*
2492 * Signal the SRS to quiesce itself, and then cv_wait for the
2493 * SRS quiesce to complete. The SRS worker thread will wake us
2494 * up when the quiesce is complete
2495 */
2496 mac_srs_signal(srs, srs_quiesce_flag);
2497 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2498 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2499 }
2500
2501 void
mac_tx_srs_restart(mac_soft_ring_set_t * srs)2502 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2503 {
2504 /*
2505 * Resizing the fanout could result in creation of new SRSs.
2506 * They may not necessarily be in the quiesced state in which
2507 * case it need be restarted
2508 */
2509 if (!SRS_QUIESCED(srs))
2510 return;
2511
2512 mac_srs_signal(srs, SRS_RESTART);
2513 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2514 mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2515 }
2516
2517 /*
2518 * Temporary quiesce of a flow and associated Rx SRS.
2519 * Please see block comment above mac_rx_srs_quiesce
2520 */
2521 /* ARGSUSED */
2522 int
mac_tx_flow_quiesce(flow_entry_t * flent,void * arg)2523 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2524 {
2525 /*
2526 * The fe_tx_srs is null for a subflow on an interface that is
2527 * not plumbed
2528 */
2529 if (flent->fe_tx_srs != NULL)
2530 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2531 return (0);
2532 }
2533
2534 /* ARGSUSED */
2535 int
mac_tx_flow_restart(flow_entry_t * flent,void * arg)2536 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2537 {
2538 /*
2539 * The fe_tx_srs is null for a subflow on an interface that is
2540 * not plumbed
2541 */
2542 if (flent->fe_tx_srs != NULL)
2543 mac_tx_srs_restart(flent->fe_tx_srs);
2544 return (0);
2545 }
2546
2547 static void
i_mac_tx_client_quiesce(mac_client_handle_t mch,uint_t srs_quiesce_flag)2548 i_mac_tx_client_quiesce(mac_client_handle_t mch, uint_t srs_quiesce_flag)
2549 {
2550 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2551
2552 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2553
2554 mac_tx_client_block(mcip);
2555 if (MCIP_TX_SRS(mcip) != NULL) {
2556 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2557 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2558 mac_tx_flow_quiesce, NULL);
2559 }
2560 }
2561
2562 void
mac_tx_client_quiesce(mac_client_handle_t mch)2563 mac_tx_client_quiesce(mac_client_handle_t mch)
2564 {
2565 i_mac_tx_client_quiesce(mch, SRS_QUIESCE);
2566 }
2567
2568 void
mac_tx_client_condemn(mac_client_handle_t mch)2569 mac_tx_client_condemn(mac_client_handle_t mch)
2570 {
2571 i_mac_tx_client_quiesce(mch, SRS_CONDEMNED);
2572 }
2573
2574 void
mac_tx_client_restart(mac_client_handle_t mch)2575 mac_tx_client_restart(mac_client_handle_t mch)
2576 {
2577 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2578
2579 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2580
2581 mac_tx_client_unblock(mcip);
2582 if (MCIP_TX_SRS(mcip) != NULL) {
2583 mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2584 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2585 mac_tx_flow_restart, NULL);
2586 }
2587 }
2588
2589 void
mac_tx_client_flush(mac_client_impl_t * mcip)2590 mac_tx_client_flush(mac_client_impl_t *mcip)
2591 {
2592 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2593
2594 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2595 mac_tx_client_restart((mac_client_handle_t)mcip);
2596 }
2597
2598 void
mac_client_quiesce(mac_client_impl_t * mcip)2599 mac_client_quiesce(mac_client_impl_t *mcip)
2600 {
2601 mac_rx_client_quiesce((mac_client_handle_t)mcip);
2602 mac_tx_client_quiesce((mac_client_handle_t)mcip);
2603 }
2604
2605 void
mac_client_restart(mac_client_impl_t * mcip)2606 mac_client_restart(mac_client_impl_t *mcip)
2607 {
2608 mac_rx_client_restart((mac_client_handle_t)mcip);
2609 mac_tx_client_restart((mac_client_handle_t)mcip);
2610 }
2611
2612 /*
2613 * Allocate a minor number.
2614 */
2615 minor_t
mac_minor_hold(boolean_t sleep)2616 mac_minor_hold(boolean_t sleep)
2617 {
2618 id_t id;
2619
2620 /*
2621 * Grab a value from the arena.
2622 */
2623 atomic_inc_32(&minor_count);
2624
2625 if (sleep)
2626 return ((uint_t)id_alloc(minor_ids));
2627
2628 if ((id = id_alloc_nosleep(minor_ids)) == -1) {
2629 atomic_dec_32(&minor_count);
2630 return (0);
2631 }
2632
2633 return ((uint_t)id);
2634 }
2635
2636 /*
2637 * Release a previously allocated minor number.
2638 */
2639 void
mac_minor_rele(minor_t minor)2640 mac_minor_rele(minor_t minor)
2641 {
2642 /*
2643 * Return the value to the arena.
2644 */
2645 id_free(minor_ids, minor);
2646 atomic_dec_32(&minor_count);
2647 }
2648
2649 uint32_t
mac_no_notification(mac_handle_t mh)2650 mac_no_notification(mac_handle_t mh)
2651 {
2652 mac_impl_t *mip = (mac_impl_t *)mh;
2653
2654 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ?
2655 mip->mi_capab_legacy.ml_unsup_note : 0);
2656 }
2657
2658 /*
2659 * Prevent any new opens of this mac in preparation for unregister
2660 */
2661 int
i_mac_disable(mac_impl_t * mip)2662 i_mac_disable(mac_impl_t *mip)
2663 {
2664 mac_client_impl_t *mcip;
2665
2666 rw_enter(&i_mac_impl_lock, RW_WRITER);
2667 if (mip->mi_state_flags & MIS_DISABLED) {
2668 /* Already disabled, return success */
2669 rw_exit(&i_mac_impl_lock);
2670 return (0);
2671 }
2672 /*
2673 * See if there are any other references to this mac_t (e.g., VLAN's).
2674 * If so return failure. If all the other checks below pass, then
2675 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2676 * any new VLAN's from being created or new mac client opens of this
2677 * mac end point.
2678 */
2679 if (mip->mi_ref > 0) {
2680 rw_exit(&i_mac_impl_lock);
2681 return (EBUSY);
2682 }
2683
2684 /*
2685 * mac clients must delete all multicast groups they join before
2686 * closing. bcast groups are reference counted, the last client
2687 * to delete the group will wait till the group is physically
2688 * deleted. Since all clients have closed this mac end point
2689 * mi_bcast_ngrps must be zero at this point
2690 */
2691 ASSERT(mip->mi_bcast_ngrps == 0);
2692
2693 /*
2694 * Don't let go of this if it has some flows.
2695 * All other code guarantees no flows are added to a disabled
2696 * mac, therefore it is sufficient to check for the flow table
2697 * only here.
2698 */
2699 mcip = mac_primary_client_handle(mip);
2700 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2701 rw_exit(&i_mac_impl_lock);
2702 return (ENOTEMPTY);
2703 }
2704
2705 mip->mi_state_flags |= MIS_DISABLED;
2706 rw_exit(&i_mac_impl_lock);
2707 return (0);
2708 }
2709
2710 int
mac_disable_nowait(mac_handle_t mh)2711 mac_disable_nowait(mac_handle_t mh)
2712 {
2713 mac_impl_t *mip = (mac_impl_t *)mh;
2714 int err;
2715
2716 if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2717 return (err);
2718 err = i_mac_disable(mip);
2719 i_mac_perim_exit(mip);
2720 return (err);
2721 }
2722
2723 int
mac_disable(mac_handle_t mh)2724 mac_disable(mac_handle_t mh)
2725 {
2726 mac_impl_t *mip = (mac_impl_t *)mh;
2727 int err;
2728
2729 i_mac_perim_enter(mip);
2730 err = i_mac_disable(mip);
2731 i_mac_perim_exit(mip);
2732
2733 /*
2734 * Clean up notification thread and wait for it to exit.
2735 */
2736 if (err == 0)
2737 i_mac_notify_exit(mip);
2738
2739 return (err);
2740 }
2741
2742 /*
2743 * Called when the MAC instance has a non empty flow table, to de-multiplex
2744 * incoming packets to the right flow.
2745 */
2746 /* ARGSUSED */
2747 static flow_entry_t *
mac_rx_classify(mac_impl_t * mip,mac_resource_handle_t mrh,mblk_t * mp)2748 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2749 {
2750 flow_entry_t *flent = NULL;
2751 uint_t flags = FLOW_INBOUND;
2752 int err;
2753
2754 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2755 if (err == 0) {
2756 mac_client_impl_t *mcip;
2757
2758 /*
2759 * This flent might just be an additional one on the MAC client,
2760 * i.e. for classification purposes (different fdesc), however
2761 * the resources, SRS et. al., are in the mci_flent, so if
2762 * this isn't the mci_flent, we need to get it.
2763 */
2764 if ((mcip = flent->fe_mcip) != NULL &&
2765 mcip->mci_flent != flent) {
2766 FLOW_REFRELE(flent);
2767 flent = mcip->mci_flent;
2768 FLOW_TRY_REFHOLD(flent, err);
2769 if (err != 0)
2770 return (NULL);
2771 }
2772 }
2773
2774 /* flent will be NULL if mac_flow_lookup fails to find a match. */
2775 return (flent);
2776 }
2777
2778 mblk_t *
mac_rx_flow(mac_handle_t mh,mac_resource_handle_t mrh,mblk_t * mp_chain)2779 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2780 {
2781 mac_impl_t *mip = (mac_impl_t *)mh;
2782 mblk_t *mp_next, *tail, **unclass_nextp;
2783 mblk_t *unclass_list = NULL;
2784 flow_entry_t *prev_flent = NULL;
2785
2786 /*
2787 * We walk the chain and attempt to classify each packet.
2788 * The packets that couldn't be classified will be returned
2789 * back to the caller.
2790 *
2791 * We want to batch together runs of matched packets bound
2792 * for the same flent into the same callback. Unmatched
2793 * packets should not break an ongoing chain.
2794 */
2795 mp_next = tail = mp_chain;
2796 unclass_nextp = &unclass_list;
2797 while (mp_next != NULL) {
2798 flow_entry_t *flent;
2799 mblk_t *mp = mp_next;
2800 mp_next = mp_next->b_next;
2801 mp->b_next = NULL;
2802
2803 flent = mac_rx_classify(mip, mrh, mp);
2804 if (flent == NULL) {
2805 /*
2806 * Add the current mblk_t to the end of the
2807 * unclassified packet chain at 'unclass_list'.
2808 * Move the current head forward if we have not
2809 * yet made any match.
2810 */
2811 if (prev_flent == NULL) {
2812 mp_chain = mp_next;
2813 tail = mp_next;
2814 }
2815 *unclass_nextp = mp;
2816 unclass_nextp = &mp->b_next;
2817 continue;
2818 }
2819
2820 if (prev_flent == NULL || flent == prev_flent) {
2821 /* Either the first valid match, or in the same chain */
2822 if (prev_flent != NULL)
2823 FLOW_REFRELE(prev_flent);
2824 if (mp != tail)
2825 tail->b_next = mp;
2826 } else {
2827 ASSERT3P(prev_flent, !=, NULL);
2828 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2829 prev_flent->fe_cb_arg2, mp_chain, B_FALSE);
2830 FLOW_REFRELE(prev_flent);
2831 mp_chain = mp;
2832 }
2833
2834 prev_flent = flent;
2835 tail = mp;
2836 }
2837 /* Last chain */
2838 if (mp_chain != NULL) {
2839 ASSERT3P(prev_flent, !=, NULL);
2840 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2841 prev_flent->fe_cb_arg2, mp_chain, B_FALSE);
2842 FLOW_REFRELE(prev_flent);
2843 }
2844 return (unclass_list);
2845 }
2846
2847 static int
mac_tx_flow_srs_wakeup(flow_entry_t * flent,void * arg)2848 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2849 {
2850 mac_ring_handle_t ring = arg;
2851
2852 if (flent->fe_tx_srs)
2853 mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2854 return (0);
2855 }
2856
2857 void
i_mac_tx_srs_notify(mac_impl_t * mip,mac_ring_handle_t ring)2858 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2859 {
2860 mac_client_impl_t *cclient;
2861 mac_soft_ring_set_t *mac_srs;
2862
2863 /*
2864 * After grabbing the mi_rw_lock, the list of clients can't change.
2865 * If there are any clients mi_disabled must be B_FALSE and can't
2866 * get set since there are clients. If there aren't any clients we
2867 * don't do anything. In any case the mip has to be valid. The driver
2868 * must make sure that it goes single threaded (with respect to mac
2869 * calls) and wait for all pending mac calls to finish before calling
2870 * mac_unregister.
2871 */
2872 rw_enter(&i_mac_impl_lock, RW_READER);
2873 if (mip->mi_state_flags & MIS_DISABLED) {
2874 rw_exit(&i_mac_impl_lock);
2875 return;
2876 }
2877
2878 /*
2879 * Get MAC tx srs from walking mac_client_handle list.
2880 */
2881 rw_enter(&mip->mi_rw_lock, RW_READER);
2882 for (cclient = mip->mi_clients_list; cclient != NULL;
2883 cclient = cclient->mci_client_next) {
2884 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) {
2885 mac_tx_srs_wakeup(mac_srs, ring);
2886 } else {
2887 /*
2888 * Aggr opens underlying ports in exclusive mode
2889 * and registers flow control callbacks using
2890 * mac_tx_client_notify(). When opened in
2891 * exclusive mode, Tx SRS won't be created
2892 * during mac_unicast_add().
2893 */
2894 if (cclient->mci_state_flags & MCIS_EXCLUSIVE) {
2895 mac_tx_invoke_callbacks(cclient,
2896 (mac_tx_cookie_t)ring);
2897 }
2898 }
2899 (void) mac_flow_walk(cclient->mci_subflow_tab,
2900 mac_tx_flow_srs_wakeup, ring);
2901 }
2902 rw_exit(&mip->mi_rw_lock);
2903 rw_exit(&i_mac_impl_lock);
2904 }
2905
2906 /* ARGSUSED */
2907 void
mac_multicast_refresh(mac_handle_t mh,mac_multicst_t refresh,void * arg,boolean_t add)2908 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2909 boolean_t add)
2910 {
2911 mac_impl_t *mip = (mac_impl_t *)mh;
2912
2913 i_mac_perim_enter((mac_impl_t *)mh);
2914 /*
2915 * If no specific refresh function was given then default to the
2916 * driver's m_multicst entry point.
2917 */
2918 if (refresh == NULL) {
2919 refresh = mip->mi_multicst;
2920 arg = mip->mi_driver;
2921 }
2922
2923 mac_bcast_refresh(mip, refresh, arg, add);
2924 i_mac_perim_exit((mac_impl_t *)mh);
2925 }
2926
2927 void
mac_promisc_refresh(mac_handle_t mh,mac_setpromisc_t refresh,void * arg)2928 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2929 {
2930 mac_impl_t *mip = (mac_impl_t *)mh;
2931
2932 /*
2933 * If no specific refresh function was given then default to the
2934 * driver's m_promisc entry point.
2935 */
2936 if (refresh == NULL) {
2937 refresh = mip->mi_setpromisc;
2938 arg = mip->mi_driver;
2939 }
2940 ASSERT(refresh != NULL);
2941
2942 /*
2943 * Call the refresh function with the current promiscuity.
2944 */
2945 refresh(arg, (mip->mi_devpromisc != 0));
2946 }
2947
2948 /*
2949 * The mac client requests that the mac not to change its margin size to
2950 * be less than the specified value. If "current" is B_TRUE, then the client
2951 * requests the mac not to change its margin size to be smaller than the
2952 * current size. Further, return the current margin size value in this case.
2953 *
2954 * We keep every requested size in an ordered list from largest to smallest.
2955 */
2956 int
mac_margin_add(mac_handle_t mh,uint32_t * marginp,boolean_t current)2957 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2958 {
2959 mac_impl_t *mip = (mac_impl_t *)mh;
2960 mac_margin_req_t **pp, *p;
2961 int err = 0;
2962
2963 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2964 if (current)
2965 *marginp = mip->mi_margin;
2966
2967 /*
2968 * If the current margin value cannot satisfy the margin requested,
2969 * return ENOTSUP directly.
2970 */
2971 if (*marginp > mip->mi_margin) {
2972 err = ENOTSUP;
2973 goto done;
2974 }
2975
2976 /*
2977 * Check whether the given margin is already in the list. If so,
2978 * bump the reference count.
2979 */
2980 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2981 if (p->mmr_margin == *marginp) {
2982 /*
2983 * The margin requested is already in the list,
2984 * so just bump the reference count.
2985 */
2986 p->mmr_ref++;
2987 goto done;
2988 }
2989 if (p->mmr_margin < *marginp)
2990 break;
2991 }
2992
2993
2994 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2995 p->mmr_margin = *marginp;
2996 p->mmr_ref++;
2997 p->mmr_nextp = *pp;
2998 *pp = p;
2999
3000 done:
3001 rw_exit(&(mip->mi_rw_lock));
3002 return (err);
3003 }
3004
3005 /*
3006 * The mac client requests to cancel its previous mac_margin_add() request.
3007 * We remove the requested margin size from the list.
3008 */
3009 int
mac_margin_remove(mac_handle_t mh,uint32_t margin)3010 mac_margin_remove(mac_handle_t mh, uint32_t margin)
3011 {
3012 mac_impl_t *mip = (mac_impl_t *)mh;
3013 mac_margin_req_t **pp, *p;
3014 int err = 0;
3015
3016 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
3017 /*
3018 * Find the entry in the list for the given margin.
3019 */
3020 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
3021 if (p->mmr_margin == margin) {
3022 if (--p->mmr_ref == 0)
3023 break;
3024
3025 /*
3026 * There is still a reference to this address so
3027 * there's nothing more to do.
3028 */
3029 goto done;
3030 }
3031 }
3032
3033 /*
3034 * We did not find an entry for the given margin.
3035 */
3036 if (p == NULL) {
3037 err = ENOENT;
3038 goto done;
3039 }
3040
3041 ASSERT(p->mmr_ref == 0);
3042
3043 /*
3044 * Remove it from the list.
3045 */
3046 *pp = p->mmr_nextp;
3047 kmem_free(p, sizeof (mac_margin_req_t));
3048 done:
3049 rw_exit(&(mip->mi_rw_lock));
3050 return (err);
3051 }
3052
3053 boolean_t
mac_margin_update(mac_handle_t mh,uint32_t margin)3054 mac_margin_update(mac_handle_t mh, uint32_t margin)
3055 {
3056 mac_impl_t *mip = (mac_impl_t *)mh;
3057 uint32_t margin_needed = 0;
3058
3059 rw_enter(&(mip->mi_rw_lock), RW_WRITER);
3060
3061 if (mip->mi_mmrp != NULL)
3062 margin_needed = mip->mi_mmrp->mmr_margin;
3063
3064 if (margin_needed <= margin)
3065 mip->mi_margin = margin;
3066
3067 rw_exit(&(mip->mi_rw_lock));
3068
3069 if (margin_needed <= margin)
3070 i_mac_notify(mip, MAC_NOTE_MARGIN);
3071
3072 return (margin_needed <= margin);
3073 }
3074
3075 /*
3076 * MAC clients use this interface to request that a MAC device not change its
3077 * MTU below the specified amount. At this time, that amount must be within the
3078 * range of the device's current minimum and the device's current maximum. eg. a
3079 * client cannot request a 3000 byte MTU when the device's MTU is currently
3080 * 2000.
3081 *
3082 * If "current" is set to B_TRUE, then the request is to simply to reserve the
3083 * current underlying mac's maximum for this mac client and return it in mtup.
3084 */
3085 int
mac_mtu_add(mac_handle_t mh,uint32_t * mtup,boolean_t current)3086 mac_mtu_add(mac_handle_t mh, uint32_t *mtup, boolean_t current)
3087 {
3088 mac_impl_t *mip = (mac_impl_t *)mh;
3089 mac_mtu_req_t *prev, *cur;
3090 mac_propval_range_t mpr;
3091 int err;
3092
3093 i_mac_perim_enter(mip);
3094 rw_enter(&mip->mi_rw_lock, RW_WRITER);
3095
3096 if (current == B_TRUE)
3097 *mtup = mip->mi_sdu_max;
3098 mpr.mpr_count = 1;
3099 err = mac_prop_info(mh, MAC_PROP_MTU, "mtu", NULL, 0, &mpr, NULL);
3100 if (err != 0) {
3101 rw_exit(&mip->mi_rw_lock);
3102 i_mac_perim_exit(mip);
3103 return (err);
3104 }
3105
3106 if (*mtup > mip->mi_sdu_max ||
3107 *mtup < mpr.mpr_range_uint32[0].mpur_min) {
3108 rw_exit(&mip->mi_rw_lock);
3109 i_mac_perim_exit(mip);
3110 return (ENOTSUP);
3111 }
3112
3113 prev = NULL;
3114 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3115 if (*mtup == cur->mtr_mtu) {
3116 cur->mtr_ref++;
3117 rw_exit(&mip->mi_rw_lock);
3118 i_mac_perim_exit(mip);
3119 return (0);
3120 }
3121
3122 if (*mtup > cur->mtr_mtu)
3123 break;
3124
3125 prev = cur;
3126 }
3127
3128 cur = kmem_alloc(sizeof (mac_mtu_req_t), KM_SLEEP);
3129 cur->mtr_mtu = *mtup;
3130 cur->mtr_ref = 1;
3131 if (prev != NULL) {
3132 cur->mtr_nextp = prev->mtr_nextp;
3133 prev->mtr_nextp = cur;
3134 } else {
3135 cur->mtr_nextp = mip->mi_mtrp;
3136 mip->mi_mtrp = cur;
3137 }
3138
3139 rw_exit(&mip->mi_rw_lock);
3140 i_mac_perim_exit(mip);
3141 return (0);
3142 }
3143
3144 int
mac_mtu_remove(mac_handle_t mh,uint32_t mtu)3145 mac_mtu_remove(mac_handle_t mh, uint32_t mtu)
3146 {
3147 mac_impl_t *mip = (mac_impl_t *)mh;
3148 mac_mtu_req_t *cur, *prev;
3149
3150 i_mac_perim_enter(mip);
3151 rw_enter(&mip->mi_rw_lock, RW_WRITER);
3152
3153 prev = NULL;
3154 for (cur = mip->mi_mtrp; cur != NULL; cur = cur->mtr_nextp) {
3155 if (cur->mtr_mtu == mtu) {
3156 ASSERT(cur->mtr_ref > 0);
3157 cur->mtr_ref--;
3158 if (cur->mtr_ref == 0) {
3159 if (prev == NULL) {
3160 mip->mi_mtrp = cur->mtr_nextp;
3161 } else {
3162 prev->mtr_nextp = cur->mtr_nextp;
3163 }
3164 kmem_free(cur, sizeof (mac_mtu_req_t));
3165 }
3166 rw_exit(&mip->mi_rw_lock);
3167 i_mac_perim_exit(mip);
3168 return (0);
3169 }
3170
3171 prev = cur;
3172 }
3173
3174 rw_exit(&mip->mi_rw_lock);
3175 i_mac_perim_exit(mip);
3176 return (ENOENT);
3177 }
3178
3179 /*
3180 * MAC Type Plugin functions.
3181 */
3182
3183 mactype_t *
mactype_getplugin(const char * pname)3184 mactype_getplugin(const char *pname)
3185 {
3186 mactype_t *mtype = NULL;
3187 boolean_t tried_modload = B_FALSE;
3188
3189 mutex_enter(&i_mactype_lock);
3190
3191 find_registered_mactype:
3192 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
3193 (mod_hash_val_t *)&mtype) != 0) {
3194 if (!tried_modload) {
3195 /*
3196 * If the plugin has not yet been loaded, then
3197 * attempt to load it now. If modload() succeeds,
3198 * the plugin should have registered using
3199 * mactype_register(), in which case we can go back
3200 * and attempt to find it again.
3201 */
3202 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
3203 tried_modload = B_TRUE;
3204 goto find_registered_mactype;
3205 }
3206 }
3207 } else {
3208 /*
3209 * Note that there's no danger that the plugin we've loaded
3210 * could be unloaded between the modload() step and the
3211 * reference count bump here, as we're holding
3212 * i_mactype_lock, which mactype_unregister() also holds.
3213 */
3214 atomic_inc_32(&mtype->mt_ref);
3215 }
3216
3217 mutex_exit(&i_mactype_lock);
3218 return (mtype);
3219 }
3220
3221 mactype_register_t *
mactype_alloc(uint_t mactype_version)3222 mactype_alloc(uint_t mactype_version)
3223 {
3224 mactype_register_t *mtrp;
3225
3226 /*
3227 * Make sure there isn't a version mismatch between the plugin and
3228 * the framework. In the future, if multiple versions are
3229 * supported, this check could become more sophisticated.
3230 */
3231 if (mactype_version != MACTYPE_VERSION)
3232 return (NULL);
3233
3234 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
3235 mtrp->mtr_version = mactype_version;
3236 return (mtrp);
3237 }
3238
3239 void
mactype_free(mactype_register_t * mtrp)3240 mactype_free(mactype_register_t *mtrp)
3241 {
3242 kmem_free(mtrp, sizeof (mactype_register_t));
3243 }
3244
3245 int
mactype_register(mactype_register_t * mtrp)3246 mactype_register(mactype_register_t *mtrp)
3247 {
3248 mactype_t *mtp;
3249 mactype_ops_t *ops = mtrp->mtr_ops;
3250
3251 /* Do some sanity checking before we register this MAC type. */
3252 if (mtrp->mtr_ident == NULL || ops == NULL)
3253 return (EINVAL);
3254
3255 /*
3256 * Verify that all mandatory callbacks are set in the ops
3257 * vector.
3258 */
3259 if (ops->mtops_unicst_verify == NULL ||
3260 ops->mtops_multicst_verify == NULL ||
3261 ops->mtops_sap_verify == NULL ||
3262 ops->mtops_header == NULL ||
3263 ops->mtops_header_info == NULL) {
3264 return (EINVAL);
3265 }
3266
3267 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
3268 mtp->mt_ident = mtrp->mtr_ident;
3269 mtp->mt_ops = *ops;
3270 mtp->mt_type = mtrp->mtr_mactype;
3271 mtp->mt_nativetype = mtrp->mtr_nativetype;
3272 mtp->mt_addr_length = mtrp->mtr_addrlen;
3273 if (mtrp->mtr_brdcst_addr != NULL) {
3274 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
3275 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
3276 mtrp->mtr_addrlen);
3277 }
3278
3279 mtp->mt_stats = mtrp->mtr_stats;
3280 mtp->mt_statcount = mtrp->mtr_statcount;
3281
3282 mtp->mt_mapping = mtrp->mtr_mapping;
3283 mtp->mt_mappingcount = mtrp->mtr_mappingcount;
3284
3285 if (mod_hash_insert(i_mactype_hash,
3286 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
3287 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3288 kmem_free(mtp, sizeof (*mtp));
3289 return (EEXIST);
3290 }
3291 return (0);
3292 }
3293
3294 int
mactype_unregister(const char * ident)3295 mactype_unregister(const char *ident)
3296 {
3297 mactype_t *mtp;
3298 mod_hash_val_t val;
3299 int err;
3300
3301 /*
3302 * Let's not allow MAC drivers to use this plugin while we're
3303 * trying to unregister it. Holding i_mactype_lock also prevents a
3304 * plugin from unregistering while a MAC driver is attempting to
3305 * hold a reference to it in i_mactype_getplugin().
3306 */
3307 mutex_enter(&i_mactype_lock);
3308
3309 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
3310 (mod_hash_val_t *)&mtp)) != 0) {
3311 /* A plugin is trying to unregister, but it never registered. */
3312 err = ENXIO;
3313 goto done;
3314 }
3315
3316 if (mtp->mt_ref != 0) {
3317 err = EBUSY;
3318 goto done;
3319 }
3320
3321 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
3322 ASSERT(err == 0);
3323 if (err != 0) {
3324 /* This should never happen, thus the ASSERT() above. */
3325 err = EINVAL;
3326 goto done;
3327 }
3328 ASSERT(mtp == (mactype_t *)val);
3329
3330 if (mtp->mt_brdcst_addr != NULL)
3331 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
3332 kmem_free(mtp, sizeof (mactype_t));
3333 done:
3334 mutex_exit(&i_mactype_lock);
3335 return (err);
3336 }
3337
3338 /*
3339 * Checks the size of the value size specified for a property as
3340 * part of a property operation. Returns B_TRUE if the size is
3341 * correct, B_FALSE otherwise.
3342 */
3343 boolean_t
mac_prop_check_size(mac_prop_id_t id,uint_t valsize,boolean_t is_range)3344 mac_prop_check_size(mac_prop_id_t id, uint_t valsize, boolean_t is_range)
3345 {
3346 uint_t minsize = 0;
3347
3348 if (is_range)
3349 return (valsize >= sizeof (mac_propval_range_t));
3350
3351 switch (id) {
3352 case MAC_PROP_ZONE:
3353 minsize = sizeof (dld_ioc_zid_t);
3354 break;
3355 case MAC_PROP_AUTOPUSH:
3356 if (valsize != 0)
3357 minsize = sizeof (struct dlautopush);
3358 break;
3359 case MAC_PROP_TAGMODE:
3360 minsize = sizeof (link_tagmode_t);
3361 break;
3362 case MAC_PROP_RESOURCE:
3363 case MAC_PROP_RESOURCE_EFF:
3364 minsize = sizeof (mac_resource_props_t);
3365 break;
3366 case MAC_PROP_DUPLEX:
3367 minsize = sizeof (link_duplex_t);
3368 break;
3369 case MAC_PROP_SPEED:
3370 minsize = sizeof (uint64_t);
3371 break;
3372 case MAC_PROP_STATUS:
3373 minsize = sizeof (link_state_t);
3374 break;
3375 case MAC_PROP_AUTONEG:
3376 case MAC_PROP_EN_AUTONEG:
3377 minsize = sizeof (uint8_t);
3378 break;
3379 case MAC_PROP_MTU:
3380 case MAC_PROP_LLIMIT:
3381 case MAC_PROP_LDECAY:
3382 minsize = sizeof (uint32_t);
3383 break;
3384 case MAC_PROP_FLOWCTRL:
3385 minsize = sizeof (link_flowctrl_t);
3386 break;
3387 case MAC_PROP_ADV_FEC_CAP:
3388 case MAC_PROP_EN_FEC_CAP:
3389 minsize = sizeof (link_fec_t);
3390 break;
3391 case MAC_PROP_ADV_400GFDX_CAP:
3392 case MAC_PROP_EN_400GFDX_CAP:
3393 case MAC_PROP_ADV_200GFDX_CAP:
3394 case MAC_PROP_EN_200GFDX_CAP:
3395 case MAC_PROP_ADV_100GFDX_CAP:
3396 case MAC_PROP_EN_100GFDX_CAP:
3397 case MAC_PROP_ADV_50GFDX_CAP:
3398 case MAC_PROP_EN_50GFDX_CAP:
3399 case MAC_PROP_ADV_40GFDX_CAP:
3400 case MAC_PROP_EN_40GFDX_CAP:
3401 case MAC_PROP_ADV_25GFDX_CAP:
3402 case MAC_PROP_EN_25GFDX_CAP:
3403 case MAC_PROP_ADV_10GFDX_CAP:
3404 case MAC_PROP_EN_10GFDX_CAP:
3405 case MAC_PROP_ADV_5000FDX_CAP:
3406 case MAC_PROP_EN_5000FDX_CAP:
3407 case MAC_PROP_ADV_2500FDX_CAP:
3408 case MAC_PROP_EN_2500FDX_CAP:
3409 case MAC_PROP_ADV_1000HDX_CAP:
3410 case MAC_PROP_EN_1000HDX_CAP:
3411 case MAC_PROP_ADV_100FDX_CAP:
3412 case MAC_PROP_EN_100FDX_CAP:
3413 case MAC_PROP_ADV_100T4_CAP:
3414 case MAC_PROP_EN_100T4_CAP:
3415 case MAC_PROP_ADV_100HDX_CAP:
3416 case MAC_PROP_EN_100HDX_CAP:
3417 case MAC_PROP_ADV_10FDX_CAP:
3418 case MAC_PROP_EN_10FDX_CAP:
3419 case MAC_PROP_ADV_10HDX_CAP:
3420 case MAC_PROP_EN_10HDX_CAP:
3421 minsize = sizeof (uint8_t);
3422 break;
3423 case MAC_PROP_PVID:
3424 minsize = sizeof (uint16_t);
3425 break;
3426 case MAC_PROP_IPTUN_HOPLIMIT:
3427 minsize = sizeof (uint32_t);
3428 break;
3429 case MAC_PROP_IPTUN_ENCAPLIMIT:
3430 minsize = sizeof (uint32_t);
3431 break;
3432 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3433 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3434 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3435 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3436 minsize = sizeof (uint_t);
3437 break;
3438 case MAC_PROP_WL_ESSID:
3439 minsize = sizeof (wl_linkstatus_t);
3440 break;
3441 case MAC_PROP_WL_BSSID:
3442 minsize = sizeof (wl_bssid_t);
3443 break;
3444 case MAC_PROP_WL_BSSTYPE:
3445 minsize = sizeof (wl_bss_type_t);
3446 break;
3447 case MAC_PROP_WL_LINKSTATUS:
3448 minsize = sizeof (wl_linkstatus_t);
3449 break;
3450 case MAC_PROP_WL_DESIRED_RATES:
3451 minsize = sizeof (wl_rates_t);
3452 break;
3453 case MAC_PROP_WL_SUPPORTED_RATES:
3454 minsize = sizeof (wl_rates_t);
3455 break;
3456 case MAC_PROP_WL_AUTH_MODE:
3457 minsize = sizeof (wl_authmode_t);
3458 break;
3459 case MAC_PROP_WL_ENCRYPTION:
3460 minsize = sizeof (wl_encryption_t);
3461 break;
3462 case MAC_PROP_WL_RSSI:
3463 minsize = sizeof (wl_rssi_t);
3464 break;
3465 case MAC_PROP_WL_PHY_CONFIG:
3466 minsize = sizeof (wl_phy_conf_t);
3467 break;
3468 case MAC_PROP_WL_CAPABILITY:
3469 minsize = sizeof (wl_capability_t);
3470 break;
3471 case MAC_PROP_WL_WPA:
3472 minsize = sizeof (wl_wpa_t);
3473 break;
3474 case MAC_PROP_WL_SCANRESULTS:
3475 minsize = sizeof (wl_wpa_ess_t);
3476 break;
3477 case MAC_PROP_WL_POWER_MODE:
3478 minsize = sizeof (wl_ps_mode_t);
3479 break;
3480 case MAC_PROP_WL_RADIO:
3481 minsize = sizeof (wl_radio_t);
3482 break;
3483 case MAC_PROP_WL_ESS_LIST:
3484 minsize = sizeof (wl_ess_list_t);
3485 break;
3486 case MAC_PROP_WL_KEY_TAB:
3487 minsize = sizeof (wl_wep_key_tab_t);
3488 break;
3489 case MAC_PROP_WL_CREATE_IBSS:
3490 minsize = sizeof (wl_create_ibss_t);
3491 break;
3492 case MAC_PROP_WL_SETOPTIE:
3493 minsize = sizeof (wl_wpa_ie_t);
3494 break;
3495 case MAC_PROP_WL_DELKEY:
3496 minsize = sizeof (wl_del_key_t);
3497 break;
3498 case MAC_PROP_WL_KEY:
3499 minsize = sizeof (wl_key_t);
3500 break;
3501 case MAC_PROP_WL_MLME:
3502 minsize = sizeof (wl_mlme_t);
3503 break;
3504 case MAC_PROP_VN_PROMISC_FILTERED:
3505 minsize = sizeof (boolean_t);
3506 break;
3507 case MAC_PROP_MEDIA:
3508 /*
3509 * Our assumption is that each class of device uses an enum and
3510 * that all enums will be the same size so it is OK to use a
3511 * single one.
3512 */
3513 minsize = sizeof (mac_ether_media_t);
3514 break;
3515 }
3516
3517 return (valsize >= minsize);
3518 }
3519
3520 /*
3521 * mac_set_prop() sets MAC or hardware driver properties:
3522 *
3523 * - MAC-managed properties such as resource properties include maxbw,
3524 * priority, and cpu binding list, as well as the default port VID
3525 * used by bridging. These properties are consumed by the MAC layer
3526 * itself and not passed down to the driver. For resource control
3527 * properties, this function invokes mac_set_resources() which will
3528 * cache the property value in mac_impl_t and may call
3529 * mac_client_set_resource() to update property value of the primary
3530 * mac client, if it exists.
3531 *
3532 * - Properties which act on the hardware and must be passed to the
3533 * driver, such as MTU, through the driver's mc_setprop() entry point.
3534 */
3535 int
mac_set_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3536 mac_set_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3537 uint_t valsize)
3538 {
3539 int err = ENOTSUP;
3540 mac_impl_t *mip = (mac_impl_t *)mh;
3541
3542 ASSERT(MAC_PERIM_HELD(mh));
3543
3544 switch (id) {
3545 case MAC_PROP_RESOURCE: {
3546 mac_resource_props_t *mrp;
3547
3548 /* call mac_set_resources() for MAC properties */
3549 ASSERT(valsize >= sizeof (mac_resource_props_t));
3550 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3551 bcopy(val, mrp, sizeof (*mrp));
3552 err = mac_set_resources(mh, mrp);
3553 kmem_free(mrp, sizeof (*mrp));
3554 break;
3555 }
3556
3557 case MAC_PROP_PVID:
3558 ASSERT(valsize >= sizeof (uint16_t));
3559 if (mip->mi_state_flags & MIS_IS_VNIC)
3560 return (EINVAL);
3561 err = mac_set_pvid(mh, *(uint16_t *)val);
3562 break;
3563
3564 case MAC_PROP_MTU: {
3565 uint32_t mtu;
3566
3567 ASSERT(valsize >= sizeof (uint32_t));
3568 bcopy(val, &mtu, sizeof (mtu));
3569 err = mac_set_mtu(mh, mtu, NULL);
3570 break;
3571 }
3572
3573 case MAC_PROP_LLIMIT:
3574 case MAC_PROP_LDECAY: {
3575 uint32_t learnval;
3576
3577 if (valsize < sizeof (learnval) ||
3578 (mip->mi_state_flags & MIS_IS_VNIC))
3579 return (EINVAL);
3580 bcopy(val, &learnval, sizeof (learnval));
3581 if (learnval == 0 && id == MAC_PROP_LDECAY)
3582 return (EINVAL);
3583 if (id == MAC_PROP_LLIMIT)
3584 mip->mi_llimit = learnval;
3585 else
3586 mip->mi_ldecay = learnval;
3587 err = 0;
3588 break;
3589 }
3590
3591 case MAC_PROP_ADV_FEC_CAP:
3592 case MAC_PROP_EN_FEC_CAP: {
3593 link_fec_t fec;
3594
3595 ASSERT(valsize >= sizeof (link_fec_t));
3596
3597 /*
3598 * fec cannot be zero, and auto must be set exclusively.
3599 */
3600 bcopy(val, &fec, sizeof (link_fec_t));
3601 if (fec == 0)
3602 return (EINVAL);
3603 if ((fec & LINK_FEC_AUTO) != 0 && (fec & ~LINK_FEC_AUTO) != 0)
3604 return (EINVAL);
3605
3606 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3607 err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3608 name, id, valsize, val);
3609 }
3610 break;
3611 }
3612
3613 default:
3614 /* For other driver properties, call driver's callback */
3615 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
3616 err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
3617 name, id, valsize, val);
3618 }
3619 }
3620 return (err);
3621 }
3622
3623 /*
3624 * mac_get_prop() gets MAC or device driver properties.
3625 *
3626 * If the property is a driver property, mac_get_prop() calls driver's callback
3627 * entry point to get it.
3628 * If the property is a MAC property, mac_get_prop() invokes mac_get_resources()
3629 * which returns the cached value in mac_impl_t.
3630 */
3631 int
mac_get_prop(mac_handle_t mh,mac_prop_id_t id,char * name,void * val,uint_t valsize)3632 mac_get_prop(mac_handle_t mh, mac_prop_id_t id, char *name, void *val,
3633 uint_t valsize)
3634 {
3635 int err = ENOTSUP;
3636 mac_impl_t *mip = (mac_impl_t *)mh;
3637 uint_t rings;
3638 uint_t vlinks;
3639
3640 bzero(val, valsize);
3641
3642 switch (id) {
3643 case MAC_PROP_RESOURCE: {
3644 mac_resource_props_t *mrp;
3645
3646 /* If mac property, read from cache */
3647 ASSERT(valsize >= sizeof (mac_resource_props_t));
3648 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3649 mac_get_resources(mh, mrp);
3650 bcopy(mrp, val, sizeof (*mrp));
3651 kmem_free(mrp, sizeof (*mrp));
3652 return (0);
3653 }
3654 case MAC_PROP_RESOURCE_EFF: {
3655 mac_resource_props_t *mrp;
3656
3657 /* If mac effective property, read from client */
3658 ASSERT(valsize >= sizeof (mac_resource_props_t));
3659 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3660 mac_get_effective_resources(mh, mrp);
3661 bcopy(mrp, val, sizeof (*mrp));
3662 kmem_free(mrp, sizeof (*mrp));
3663 return (0);
3664 }
3665
3666 case MAC_PROP_PVID:
3667 ASSERT(valsize >= sizeof (uint16_t));
3668 if (mip->mi_state_flags & MIS_IS_VNIC)
3669 return (EINVAL);
3670 *(uint16_t *)val = mac_get_pvid(mh);
3671 return (0);
3672
3673 case MAC_PROP_LLIMIT:
3674 case MAC_PROP_LDECAY:
3675 ASSERT(valsize >= sizeof (uint32_t));
3676 if (mip->mi_state_flags & MIS_IS_VNIC)
3677 return (EINVAL);
3678 if (id == MAC_PROP_LLIMIT)
3679 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit));
3680 else
3681 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay));
3682 return (0);
3683
3684 case MAC_PROP_MTU: {
3685 uint32_t sdu;
3686
3687 ASSERT(valsize >= sizeof (uint32_t));
3688 mac_sdu_get2(mh, NULL, &sdu, NULL);
3689 bcopy(&sdu, val, sizeof (sdu));
3690
3691 return (0);
3692 }
3693 case MAC_PROP_STATUS: {
3694 link_state_t link_state;
3695
3696 if (valsize < sizeof (link_state))
3697 return (EINVAL);
3698 link_state = mac_link_get(mh);
3699 bcopy(&link_state, val, sizeof (link_state));
3700
3701 return (0);
3702 }
3703
3704 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3705 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3706 ASSERT(valsize >= sizeof (uint_t));
3707 rings = id == MAC_PROP_MAX_RX_RINGS_AVAIL ?
3708 mac_rxavail_get(mh) : mac_txavail_get(mh);
3709 bcopy(&rings, val, sizeof (uint_t));
3710 return (0);
3711
3712 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3713 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3714 ASSERT(valsize >= sizeof (uint_t));
3715 vlinks = id == MAC_PROP_MAX_RXHWCLNT_AVAIL ?
3716 mac_rxhwlnksavail_get(mh) : mac_txhwlnksavail_get(mh);
3717 bcopy(&vlinks, val, sizeof (uint_t));
3718 return (0);
3719
3720 case MAC_PROP_RXRINGSRANGE:
3721 case MAC_PROP_TXRINGSRANGE:
3722 /*
3723 * The value for these properties are returned through
3724 * the MAC_PROP_RESOURCE property.
3725 */
3726 return (0);
3727
3728 default:
3729 break;
3730
3731 }
3732
3733 /* If driver property, request from driver */
3734 if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
3735 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, name, id,
3736 valsize, val);
3737 }
3738
3739 return (err);
3740 }
3741
3742 /*
3743 * Helper function to initialize the range structure for use in
3744 * mac_get_prop. If the type can be other than uint32, we can
3745 * pass that as an arg.
3746 */
3747 static void
_mac_set_range(mac_propval_range_t * range,uint32_t min,uint32_t max)3748 _mac_set_range(mac_propval_range_t *range, uint32_t min, uint32_t max)
3749 {
3750 range->mpr_count = 1;
3751 range->mpr_type = MAC_PROPVAL_UINT32;
3752 range->mpr_range_uint32[0].mpur_min = min;
3753 range->mpr_range_uint32[0].mpur_max = max;
3754 }
3755
3756 /*
3757 * Returns information about the specified property, such as default
3758 * values or permissions.
3759 */
3760 int
mac_prop_info(mac_handle_t mh,mac_prop_id_t id,char * name,void * default_val,uint_t default_size,mac_propval_range_t * range,uint_t * perm)3761 mac_prop_info(mac_handle_t mh, mac_prop_id_t id, char *name,
3762 void *default_val, uint_t default_size, mac_propval_range_t *range,
3763 uint_t *perm)
3764 {
3765 mac_prop_info_state_t state;
3766 mac_impl_t *mip = (mac_impl_t *)mh;
3767 uint_t max;
3768
3769 /*
3770 * A property is read/write by default unless the driver says
3771 * otherwise.
3772 */
3773 if (perm != NULL)
3774 *perm = MAC_PROP_PERM_RW;
3775
3776 if (default_val != NULL)
3777 bzero(default_val, default_size);
3778
3779 /*
3780 * First, handle framework properties for which we don't need to
3781 * involve the driver.
3782 */
3783 switch (id) {
3784 case MAC_PROP_RESOURCE:
3785 case MAC_PROP_PVID:
3786 case MAC_PROP_LLIMIT:
3787 case MAC_PROP_LDECAY:
3788 return (0);
3789
3790 case MAC_PROP_MAX_RX_RINGS_AVAIL:
3791 case MAC_PROP_MAX_TX_RINGS_AVAIL:
3792 case MAC_PROP_MAX_RXHWCLNT_AVAIL:
3793 case MAC_PROP_MAX_TXHWCLNT_AVAIL:
3794 if (perm != NULL)
3795 *perm = MAC_PROP_PERM_READ;
3796 return (0);
3797
3798 case MAC_PROP_RXRINGSRANGE:
3799 case MAC_PROP_TXRINGSRANGE:
3800 /*
3801 * Currently, we support range for RX and TX rings properties.
3802 * When we extend this support to maxbw, cpus and priority,
3803 * we should move this to mac_get_resources.
3804 * There is no default value for RX or TX rings.
3805 */
3806 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
3807 mac_is_vnic_primary(mh)) {
3808 /*
3809 * We don't support setting rings for a VLAN
3810 * data link because it shares its ring with the
3811 * primary MAC client.
3812 */
3813 if (perm != NULL)
3814 *perm = MAC_PROP_PERM_READ;
3815 if (range != NULL)
3816 range->mpr_count = 0;
3817 } else if (range != NULL) {
3818 if (mip->mi_state_flags & MIS_IS_VNIC)
3819 mh = mac_get_lower_mac_handle(mh);
3820 mip = (mac_impl_t *)mh;
3821 if ((id == MAC_PROP_RXRINGSRANGE &&
3822 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) ||
3823 (id == MAC_PROP_TXRINGSRANGE &&
3824 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC)) {
3825 if (id == MAC_PROP_RXRINGSRANGE) {
3826 if ((mac_rxhwlnksavail_get(mh) +
3827 mac_rxhwlnksrsvd_get(mh)) <= 1) {
3828 /*
3829 * doesn't support groups or
3830 * rings
3831 */
3832 range->mpr_count = 0;
3833 } else {
3834 /*
3835 * supports specifying groups,
3836 * but not rings
3837 */
3838 _mac_set_range(range, 0, 0);
3839 }
3840 } else {
3841 if ((mac_txhwlnksavail_get(mh) +
3842 mac_txhwlnksrsvd_get(mh)) <= 1) {
3843 /*
3844 * doesn't support groups or
3845 * rings
3846 */
3847 range->mpr_count = 0;
3848 } else {
3849 /*
3850 * supports specifying groups,
3851 * but not rings
3852 */
3853 _mac_set_range(range, 0, 0);
3854 }
3855 }
3856 } else {
3857 max = id == MAC_PROP_RXRINGSRANGE ?
3858 mac_rxavail_get(mh) + mac_rxrsvd_get(mh) :
3859 mac_txavail_get(mh) + mac_txrsvd_get(mh);
3860 if (max <= 1) {
3861 /*
3862 * doesn't support groups or
3863 * rings
3864 */
3865 range->mpr_count = 0;
3866 } else {
3867 /*
3868 * -1 because we have to leave out the
3869 * default ring.
3870 */
3871 _mac_set_range(range, 1, max - 1);
3872 }
3873 }
3874 }
3875 return (0);
3876
3877 case MAC_PROP_STATUS:
3878 case MAC_PROP_MEDIA:
3879 if (perm != NULL)
3880 *perm = MAC_PROP_PERM_READ;
3881 return (0);
3882 }
3883
3884 /*
3885 * Get the property info from the driver if it implements the
3886 * property info entry point.
3887 */
3888 bzero(&state, sizeof (state));
3889
3890 if (mip->mi_callbacks->mc_callbacks & MC_PROPINFO) {
3891 state.pr_default = default_val;
3892 state.pr_default_size = default_size;
3893
3894 /*
3895 * The caller specifies the maximum number of ranges
3896 * it can accomodate using mpr_count. We don't touch
3897 * this value until the driver returns from its
3898 * mc_propinfo() callback, and ensure we don't exceed
3899 * this number of range as the driver defines
3900 * supported range from its mc_propinfo().
3901 *
3902 * pr_range_cur_count keeps track of how many ranges
3903 * were defined by the driver from its mc_propinfo()
3904 * entry point.
3905 *
3906 * On exit, the user-specified range mpr_count returns
3907 * the number of ranges specified by the driver on
3908 * success, or the number of ranges it wanted to
3909 * define if that number of ranges could not be
3910 * accomodated by the specified range structure. In
3911 * the latter case, the caller will be able to
3912 * allocate a larger range structure, and query the
3913 * property again.
3914 */
3915 state.pr_range_cur_count = 0;
3916 state.pr_range = range;
3917
3918 mip->mi_callbacks->mc_propinfo(mip->mi_driver, name, id,
3919 (mac_prop_info_handle_t)&state);
3920
3921 if (state.pr_flags & MAC_PROP_INFO_RANGE)
3922 range->mpr_count = state.pr_range_cur_count;
3923
3924 /*
3925 * The operation could fail if the buffer supplied by
3926 * the user was too small for the range or default
3927 * value of the property.
3928 */
3929 if (state.pr_errno != 0)
3930 return (state.pr_errno);
3931
3932 if (perm != NULL && state.pr_flags & MAC_PROP_INFO_PERM)
3933 *perm = state.pr_perm;
3934 }
3935
3936 /*
3937 * The MAC layer may want to provide default values or allowed
3938 * ranges for properties if the driver does not provide a
3939 * property info entry point, or that entry point exists, but
3940 * it did not provide a default value or allowed ranges for
3941 * that property.
3942 */
3943 switch (id) {
3944 case MAC_PROP_MTU: {
3945 uint32_t sdu;
3946
3947 mac_sdu_get2(mh, NULL, &sdu, NULL);
3948
3949 if (range != NULL && !(state.pr_flags &
3950 MAC_PROP_INFO_RANGE)) {
3951 /* MTU range */
3952 _mac_set_range(range, sdu, sdu);
3953 }
3954
3955 if (default_val != NULL && !(state.pr_flags &
3956 MAC_PROP_INFO_DEFAULT)) {
3957 if (mip->mi_info.mi_media == DL_ETHER)
3958 sdu = ETHERMTU;
3959 /* default MTU value */
3960 bcopy(&sdu, default_val, sizeof (sdu));
3961 }
3962 }
3963 }
3964
3965 return (0);
3966 }
3967
3968 int
mac_fastpath_disable(mac_handle_t mh)3969 mac_fastpath_disable(mac_handle_t mh)
3970 {
3971 mac_impl_t *mip = (mac_impl_t *)mh;
3972
3973 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3974 return (0);
3975
3976 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver));
3977 }
3978
3979 void
mac_fastpath_enable(mac_handle_t mh)3980 mac_fastpath_enable(mac_handle_t mh)
3981 {
3982 mac_impl_t *mip = (mac_impl_t *)mh;
3983
3984 if ((mip->mi_state_flags & MIS_LEGACY) == 0)
3985 return;
3986
3987 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver);
3988 }
3989
3990 void
mac_register_priv_prop(mac_impl_t * mip,char ** priv_props)3991 mac_register_priv_prop(mac_impl_t *mip, char **priv_props)
3992 {
3993 uint_t nprops, i;
3994
3995 if (priv_props == NULL)
3996 return;
3997
3998 nprops = 0;
3999 while (priv_props[nprops] != NULL)
4000 nprops++;
4001 if (nprops == 0)
4002 return;
4003
4004
4005 mip->mi_priv_prop = kmem_zalloc(nprops * sizeof (char *), KM_SLEEP);
4006
4007 for (i = 0; i < nprops; i++) {
4008 mip->mi_priv_prop[i] = kmem_zalloc(MAXLINKPROPNAME, KM_SLEEP);
4009 (void) strlcpy(mip->mi_priv_prop[i], priv_props[i],
4010 MAXLINKPROPNAME);
4011 }
4012
4013 mip->mi_priv_prop_count = nprops;
4014 }
4015
4016 void
mac_unregister_priv_prop(mac_impl_t * mip)4017 mac_unregister_priv_prop(mac_impl_t *mip)
4018 {
4019 uint_t i;
4020
4021 if (mip->mi_priv_prop_count == 0) {
4022 ASSERT(mip->mi_priv_prop == NULL);
4023 return;
4024 }
4025
4026 for (i = 0; i < mip->mi_priv_prop_count; i++)
4027 kmem_free(mip->mi_priv_prop[i], MAXLINKPROPNAME);
4028 kmem_free(mip->mi_priv_prop, mip->mi_priv_prop_count *
4029 sizeof (char *));
4030
4031 mip->mi_priv_prop = NULL;
4032 mip->mi_priv_prop_count = 0;
4033 }
4034
4035 /*
4036 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
4037 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
4038 * cases if MAC free's the ring structure after mac_stop_ring(), any
4039 * illegal access to the ring structure coming from the driver will panic
4040 * the system. In order to protect the system from such inadverent access,
4041 * we maintain a cache of rings in the mac_impl_t after they get free'd up.
4042 * When packets are received on free'd up rings, MAC (through the generation
4043 * count mechanism) will drop such packets.
4044 */
4045 static mac_ring_t *
mac_ring_alloc(mac_impl_t * mip)4046 mac_ring_alloc(mac_impl_t *mip)
4047 {
4048 mac_ring_t *ring;
4049
4050 mutex_enter(&mip->mi_ring_lock);
4051 if (mip->mi_ring_freelist != NULL) {
4052 ring = mip->mi_ring_freelist;
4053 mip->mi_ring_freelist = ring->mr_next;
4054 bzero(ring, sizeof (mac_ring_t));
4055 mutex_exit(&mip->mi_ring_lock);
4056 } else {
4057 mutex_exit(&mip->mi_ring_lock);
4058 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
4059 }
4060 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
4061 return (ring);
4062 }
4063
4064 static void
mac_ring_free(mac_impl_t * mip,mac_ring_t * ring)4065 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
4066 {
4067 ASSERT(ring->mr_state == MR_FREE);
4068
4069 mutex_enter(&mip->mi_ring_lock);
4070 ring->mr_state = MR_FREE;
4071 ring->mr_flag = 0;
4072 ring->mr_next = mip->mi_ring_freelist;
4073 ring->mr_mip = NULL;
4074 mip->mi_ring_freelist = ring;
4075 mac_ring_stat_delete(ring);
4076 mutex_exit(&mip->mi_ring_lock);
4077 }
4078
4079 static void
mac_ring_freeall(mac_impl_t * mip)4080 mac_ring_freeall(mac_impl_t *mip)
4081 {
4082 mac_ring_t *ring_next;
4083 mutex_enter(&mip->mi_ring_lock);
4084 mac_ring_t *ring = mip->mi_ring_freelist;
4085 while (ring != NULL) {
4086 ring_next = ring->mr_next;
4087 kmem_cache_free(mac_ring_cache, ring);
4088 ring = ring_next;
4089 }
4090 mip->mi_ring_freelist = NULL;
4091 mutex_exit(&mip->mi_ring_lock);
4092 }
4093
4094 int
mac_start_ring(mac_ring_t * ring)4095 mac_start_ring(mac_ring_t *ring)
4096 {
4097 int rv = 0;
4098
4099 ASSERT(ring->mr_state == MR_FREE);
4100
4101 if (ring->mr_start != NULL) {
4102 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
4103 if (rv != 0)
4104 return (rv);
4105 }
4106
4107 ring->mr_state = MR_INUSE;
4108 return (rv);
4109 }
4110
4111 void
mac_stop_ring(mac_ring_t * ring)4112 mac_stop_ring(mac_ring_t *ring)
4113 {
4114 ASSERT(ring->mr_state == MR_INUSE);
4115
4116 if (ring->mr_stop != NULL)
4117 ring->mr_stop(ring->mr_driver);
4118
4119 ring->mr_state = MR_FREE;
4120
4121 /*
4122 * Increment the ring generation number for this ring.
4123 */
4124 ring->mr_gen_num++;
4125 }
4126
4127 int
mac_start_group(mac_group_t * group)4128 mac_start_group(mac_group_t *group)
4129 {
4130 int rv = 0;
4131
4132 if (group->mrg_start != NULL)
4133 rv = group->mrg_start(group->mrg_driver);
4134
4135 return (rv);
4136 }
4137
4138 void
mac_stop_group(mac_group_t * group)4139 mac_stop_group(mac_group_t *group)
4140 {
4141 if (group->mrg_stop != NULL)
4142 group->mrg_stop(group->mrg_driver);
4143 }
4144
4145 /*
4146 * Called from mac_start() on the default Rx group. Broadcast and multicast
4147 * packets are received only on the default group. Hence the default group
4148 * needs to be up even if the primary client is not up, for the other groups
4149 * to be functional. We do this by calling this function at mac_start time
4150 * itself. However the broadcast packets that are received can't make their
4151 * way beyond mac_rx until a mac client creates a broadcast flow.
4152 */
4153 static int
mac_start_group_and_rings(mac_group_t * group)4154 mac_start_group_and_rings(mac_group_t *group)
4155 {
4156 mac_ring_t *ring;
4157 int rv = 0;
4158
4159 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
4160 if ((rv = mac_start_group(group)) != 0)
4161 return (rv);
4162
4163 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4164 ASSERT(ring->mr_state == MR_FREE);
4165
4166 if ((rv = mac_start_ring(ring)) != 0)
4167 goto error;
4168
4169 /*
4170 * When aggr_set_port_sdu() is called, it will remove
4171 * the port client's unicast address. This will cause
4172 * MAC to stop the default group's rings on the port
4173 * MAC. After it modifies the SDU, it will then re-add
4174 * the unicast address. At which time, this function is
4175 * called to start the default group's rings. Normally
4176 * this function would set the classify type to
4177 * MAC_SW_CLASSIFIER; but that will break aggr which
4178 * relies on the passthru classify mode being set for
4179 * correct delivery (see mac_rx_common()). To avoid
4180 * that, we check for a passthru callback and set the
4181 * classify type to MAC_PASSTHRU_CLASSIFIER; as it was
4182 * before the rings were stopped.
4183 */
4184 ring->mr_classify_type = (ring->mr_pt_fn != NULL) ?
4185 MAC_PASSTHRU_CLASSIFIER : MAC_SW_CLASSIFIER;
4186 }
4187 return (0);
4188
4189 error:
4190 mac_stop_group_and_rings(group);
4191 return (rv);
4192 }
4193
4194 /* Called from mac_stop on the default Rx group */
4195 static void
mac_stop_group_and_rings(mac_group_t * group)4196 mac_stop_group_and_rings(mac_group_t *group)
4197 {
4198 mac_ring_t *ring;
4199
4200 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4201 if (ring->mr_state != MR_FREE) {
4202 mac_stop_ring(ring);
4203 ring->mr_flag = 0;
4204 ring->mr_classify_type = MAC_NO_CLASSIFIER;
4205 }
4206 }
4207 mac_stop_group(group);
4208 }
4209
4210
4211 static mac_ring_t *
mac_init_ring(mac_impl_t * mip,mac_group_t * group,int index,mac_capab_rings_t * cap_rings)4212 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
4213 mac_capab_rings_t *cap_rings)
4214 {
4215 mac_ring_t *ring, *rnext;
4216 mac_ring_info_t ring_info;
4217 ddi_intr_handle_t ddi_handle;
4218
4219 ring = mac_ring_alloc(mip);
4220
4221 /* Prepare basic information of ring */
4222
4223 /*
4224 * Ring index is numbered to be unique across a particular device.
4225 * Ring index computation makes following assumptions:
4226 * - For drivers with static grouping (e.g. ixgbe, bge),
4227 * ring index exchanged with the driver (e.g. during mr_rget)
4228 * is unique only across the group the ring belongs to.
4229 * - Drivers with dynamic grouping (e.g. nxge), start
4230 * with single group (mrg_index = 0).
4231 */
4232 ring->mr_index = group->mrg_index * group->mrg_info.mgi_count + index;
4233 ring->mr_type = group->mrg_type;
4234 ring->mr_gh = (mac_group_handle_t)group;
4235
4236 /* Insert the new ring to the list. */
4237 ring->mr_next = group->mrg_rings;
4238 group->mrg_rings = ring;
4239
4240 /* Zero to reuse the info data structure */
4241 bzero(&ring_info, sizeof (ring_info));
4242
4243 /* Query ring information from driver */
4244 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
4245 index, &ring_info, (mac_ring_handle_t)ring);
4246
4247 ring->mr_info = ring_info;
4248
4249 /*
4250 * The interrupt handle could be shared among multiple rings.
4251 * Thus if there is a bunch of rings that are sharing an
4252 * interrupt, then only one ring among the bunch will be made
4253 * available for interrupt re-targeting; the rest will have
4254 * ddi_shared flag set to TRUE and would not be available for
4255 * be interrupt re-targeting.
4256 */
4257 if ((ddi_handle = ring_info.mri_intr.mi_ddi_handle) != NULL) {
4258 rnext = ring->mr_next;
4259 while (rnext != NULL) {
4260 if (rnext->mr_info.mri_intr.mi_ddi_handle ==
4261 ddi_handle) {
4262 /*
4263 * If default ring (mr_index == 0) is part
4264 * of a group of rings sharing an
4265 * interrupt, then set ddi_shared flag for
4266 * the default ring and give another ring
4267 * the chance to be re-targeted.
4268 */
4269 if (rnext->mr_index == 0 &&
4270 !rnext->mr_info.mri_intr.mi_ddi_shared) {
4271 rnext->mr_info.mri_intr.mi_ddi_shared =
4272 B_TRUE;
4273 } else {
4274 ring->mr_info.mri_intr.mi_ddi_shared =
4275 B_TRUE;
4276 }
4277 break;
4278 }
4279 rnext = rnext->mr_next;
4280 }
4281 /*
4282 * If rnext is NULL, then no matching ddi_handle was found.
4283 * Rx rings get registered first. So if this is a Tx ring,
4284 * then go through all the Rx rings and see if there is a
4285 * matching ddi handle.
4286 */
4287 if (rnext == NULL && ring->mr_type == MAC_RING_TYPE_TX) {
4288 mac_compare_ddi_handle(mip->mi_rx_groups,
4289 mip->mi_rx_group_count, ring);
4290 }
4291 }
4292
4293 /* Update ring's status */
4294 ring->mr_state = MR_FREE;
4295 ring->mr_flag = 0;
4296
4297 /* Update the ring count of the group */
4298 group->mrg_cur_count++;
4299
4300 /* Create per ring kstats */
4301 if (ring->mr_stat != NULL) {
4302 ring->mr_mip = mip;
4303 mac_ring_stat_create(ring);
4304 }
4305
4306 return (ring);
4307 }
4308
4309 /*
4310 * Rings are chained together for easy regrouping.
4311 */
4312 static void
mac_init_group(mac_impl_t * mip,mac_group_t * group,int size,mac_capab_rings_t * cap_rings)4313 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
4314 mac_capab_rings_t *cap_rings)
4315 {
4316 int index;
4317
4318 /*
4319 * Initialize all ring members of this group. Size of zero will not
4320 * enter the loop, so it's safe for initializing an empty group.
4321 */
4322 for (index = size - 1; index >= 0; index--)
4323 (void) mac_init_ring(mip, group, index, cap_rings);
4324 }
4325
4326 int
mac_init_rings(mac_impl_t * mip,mac_ring_type_t rtype)4327 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4328 {
4329 mac_capab_rings_t *cap_rings;
4330 mac_group_t *group;
4331 mac_group_t *groups;
4332 mac_group_info_t group_info;
4333 uint_t group_free = 0;
4334 uint_t ring_left;
4335 mac_ring_t *ring;
4336 int g;
4337 int err = 0;
4338 uint_t grpcnt;
4339 boolean_t pseudo_txgrp = B_FALSE;
4340
4341 switch (rtype) {
4342 case MAC_RING_TYPE_RX:
4343 ASSERT(mip->mi_rx_groups == NULL);
4344
4345 cap_rings = &mip->mi_rx_rings_cap;
4346 cap_rings->mr_type = MAC_RING_TYPE_RX;
4347 break;
4348 case MAC_RING_TYPE_TX:
4349 ASSERT(mip->mi_tx_groups == NULL);
4350
4351 cap_rings = &mip->mi_tx_rings_cap;
4352 cap_rings->mr_type = MAC_RING_TYPE_TX;
4353 break;
4354 default:
4355 ASSERT(B_FALSE);
4356 }
4357
4358 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings))
4359 return (0);
4360 grpcnt = cap_rings->mr_gnum;
4361
4362 /*
4363 * If we have multiple TX rings, but only one TX group, we can
4364 * create pseudo TX groups (one per TX ring) in the MAC layer,
4365 * except for an aggr. For an aggr currently we maintain only
4366 * one group with all the rings (for all its ports), going
4367 * forwards we might change this.
4368 */
4369 if (rtype == MAC_RING_TYPE_TX &&
4370 cap_rings->mr_gnum == 0 && cap_rings->mr_rnum > 0 &&
4371 (mip->mi_state_flags & MIS_IS_AGGR) == 0) {
4372 /*
4373 * The -1 here is because we create a default TX group
4374 * with all the rings in it.
4375 */
4376 grpcnt = cap_rings->mr_rnum - 1;
4377 pseudo_txgrp = B_TRUE;
4378 }
4379
4380 /*
4381 * Allocate a contiguous buffer for all groups.
4382 */
4383 groups = kmem_zalloc(sizeof (mac_group_t) * (grpcnt+ 1), KM_SLEEP);
4384
4385 ring_left = cap_rings->mr_rnum;
4386
4387 /*
4388 * Get all ring groups if any, and get their ring members
4389 * if any.
4390 */
4391 for (g = 0; g < grpcnt; g++) {
4392 group = groups + g;
4393
4394 /* Prepare basic information of the group */
4395 group->mrg_index = g;
4396 group->mrg_type = rtype;
4397 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4398 group->mrg_mh = (mac_handle_t)mip;
4399 group->mrg_next = group + 1;
4400
4401 /* Zero to reuse the info data structure */
4402 bzero(&group_info, sizeof (group_info));
4403
4404 if (pseudo_txgrp) {
4405 /*
4406 * This is a pseudo group that we created, apart
4407 * from setting the state there is nothing to be
4408 * done.
4409 */
4410 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4411 group_free++;
4412 continue;
4413 }
4414 /* Query group information from driver */
4415 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
4416 (mac_group_handle_t)group);
4417
4418 switch (cap_rings->mr_group_type) {
4419 case MAC_GROUP_TYPE_DYNAMIC:
4420 if (cap_rings->mr_gaddring == NULL ||
4421 cap_rings->mr_gremring == NULL) {
4422 DTRACE_PROBE3(
4423 mac__init__rings_no_addremring,
4424 char *, mip->mi_name,
4425 mac_group_add_ring_t,
4426 cap_rings->mr_gaddring,
4427 mac_group_add_ring_t,
4428 cap_rings->mr_gremring);
4429 err = EINVAL;
4430 goto bail;
4431 }
4432
4433 switch (rtype) {
4434 case MAC_RING_TYPE_RX:
4435 /*
4436 * The first RX group must have non-zero
4437 * rings, and the following groups must
4438 * have zero rings.
4439 */
4440 if (g == 0 && group_info.mgi_count == 0) {
4441 DTRACE_PROBE1(
4442 mac__init__rings__rx__def__zero,
4443 char *, mip->mi_name);
4444 err = EINVAL;
4445 goto bail;
4446 }
4447 if (g > 0 && group_info.mgi_count != 0) {
4448 DTRACE_PROBE3(
4449 mac__init__rings__rx__nonzero,
4450 char *, mip->mi_name,
4451 int, g, int, group_info.mgi_count);
4452 err = EINVAL;
4453 goto bail;
4454 }
4455 break;
4456 case MAC_RING_TYPE_TX:
4457 /*
4458 * All TX ring groups must have zero rings.
4459 */
4460 if (group_info.mgi_count != 0) {
4461 DTRACE_PROBE3(
4462 mac__init__rings__tx__nonzero,
4463 char *, mip->mi_name,
4464 int, g, int, group_info.mgi_count);
4465 err = EINVAL;
4466 goto bail;
4467 }
4468 break;
4469 }
4470 break;
4471 case MAC_GROUP_TYPE_STATIC:
4472 /*
4473 * Note that an empty group is allowed, e.g., an aggr
4474 * would start with an empty group.
4475 */
4476 break;
4477 default:
4478 /* unknown group type */
4479 DTRACE_PROBE2(mac__init__rings__unknown__type,
4480 char *, mip->mi_name,
4481 int, cap_rings->mr_group_type);
4482 err = EINVAL;
4483 goto bail;
4484 }
4485
4486
4487 /*
4488 * The driver must register some form of hardware MAC
4489 * filter in order for Rx groups to support multiple
4490 * MAC addresses.
4491 */
4492 if (rtype == MAC_RING_TYPE_RX &&
4493 (group_info.mgi_addmac == NULL ||
4494 group_info.mgi_remmac == NULL)) {
4495 DTRACE_PROBE1(mac__init__rings__no__mac__filter,
4496 char *, mip->mi_name);
4497 err = EINVAL;
4498 goto bail;
4499 }
4500
4501 /* Cache driver-supplied information */
4502 group->mrg_info = group_info;
4503
4504 /* Update the group's status and group count. */
4505 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4506 group_free++;
4507
4508 group->mrg_rings = NULL;
4509 group->mrg_cur_count = 0;
4510 mac_init_group(mip, group, group_info.mgi_count, cap_rings);
4511 ring_left -= group_info.mgi_count;
4512
4513 /* The current group size should be equal to default value */
4514 ASSERT(group->mrg_cur_count == group_info.mgi_count);
4515 }
4516
4517 /* Build up a dummy group for free resources as a pool */
4518 group = groups + grpcnt;
4519
4520 /* Prepare basic information of the group */
4521 group->mrg_index = -1;
4522 group->mrg_type = rtype;
4523 group->mrg_state = MAC_GROUP_STATE_UNINIT;
4524 group->mrg_mh = (mac_handle_t)mip;
4525 group->mrg_next = NULL;
4526
4527 /*
4528 * If there are ungrouped rings, allocate a continuous buffer for
4529 * remaining resources.
4530 */
4531 if (ring_left != 0) {
4532 group->mrg_rings = NULL;
4533 group->mrg_cur_count = 0;
4534 mac_init_group(mip, group, ring_left, cap_rings);
4535
4536 /* The current group size should be equal to ring_left */
4537 ASSERT(group->mrg_cur_count == ring_left);
4538
4539 ring_left = 0;
4540
4541 /* Update this group's status */
4542 mac_set_group_state(group, MAC_GROUP_STATE_REGISTERED);
4543 } else {
4544 group->mrg_rings = NULL;
4545 }
4546
4547 ASSERT(ring_left == 0);
4548
4549 bail:
4550
4551 /* Cache other important information to finalize the initialization */
4552 switch (rtype) {
4553 case MAC_RING_TYPE_RX:
4554 mip->mi_rx_group_type = cap_rings->mr_group_type;
4555 mip->mi_rx_group_count = cap_rings->mr_gnum;
4556 mip->mi_rx_groups = groups;
4557 mip->mi_rx_donor_grp = groups;
4558 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4559 /*
4560 * The default ring is reserved since it is
4561 * used for sending the broadcast etc. packets.
4562 */
4563 mip->mi_rxrings_avail =
4564 mip->mi_rx_groups->mrg_cur_count - 1;
4565 mip->mi_rxrings_rsvd = 1;
4566 }
4567 /*
4568 * The default group cannot be reserved. It is used by
4569 * all the clients that do not have an exclusive group.
4570 */
4571 mip->mi_rxhwclnt_avail = mip->mi_rx_group_count - 1;
4572 mip->mi_rxhwclnt_used = 1;
4573 break;
4574 case MAC_RING_TYPE_TX:
4575 mip->mi_tx_group_type = pseudo_txgrp ? MAC_GROUP_TYPE_DYNAMIC :
4576 cap_rings->mr_group_type;
4577 mip->mi_tx_group_count = grpcnt;
4578 mip->mi_tx_group_free = group_free;
4579 mip->mi_tx_groups = groups;
4580
4581 group = groups + grpcnt;
4582 ring = group->mrg_rings;
4583 /*
4584 * The ring can be NULL in the case of aggr. Aggr will
4585 * have an empty Tx group which will get populated
4586 * later when pseudo Tx rings are added after
4587 * mac_register() is done.
4588 */
4589 if (ring == NULL) {
4590 ASSERT(mip->mi_state_flags & MIS_IS_AGGR);
4591 /*
4592 * pass the group to aggr so it can add Tx
4593 * rings to the group later.
4594 */
4595 cap_rings->mr_gget(mip->mi_driver, rtype, 0, NULL,
4596 (mac_group_handle_t)group);
4597 /*
4598 * Even though there are no rings at this time
4599 * (rings will come later), set the group
4600 * state to registered.
4601 */
4602 group->mrg_state = MAC_GROUP_STATE_REGISTERED;
4603 } else {
4604 /*
4605 * Ring 0 is used as the default one and it could be
4606 * assigned to a client as well.
4607 */
4608 while ((ring->mr_index != 0) && (ring->mr_next != NULL))
4609 ring = ring->mr_next;
4610 ASSERT(ring->mr_index == 0);
4611 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
4612 }
4613 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
4614 mip->mi_txrings_avail = group->mrg_cur_count - 1;
4615 /*
4616 * The default ring cannot be reserved.
4617 */
4618 mip->mi_txrings_rsvd = 1;
4619 }
4620 /*
4621 * The default group cannot be reserved. It will be shared
4622 * by clients that do not have an exclusive group.
4623 */
4624 mip->mi_txhwclnt_avail = mip->mi_tx_group_count;
4625 mip->mi_txhwclnt_used = 1;
4626 break;
4627 default:
4628 ASSERT(B_FALSE);
4629 }
4630
4631 if (err != 0)
4632 mac_free_rings(mip, rtype);
4633
4634 return (err);
4635 }
4636
4637 /*
4638 * The ddi interrupt handle could be shared amoung rings. If so, compare
4639 * the new ring's ddi handle with the existing ones and set ddi_shared
4640 * flag.
4641 */
4642 void
mac_compare_ddi_handle(mac_group_t * groups,uint_t grpcnt,mac_ring_t * cring)4643 mac_compare_ddi_handle(mac_group_t *groups, uint_t grpcnt, mac_ring_t *cring)
4644 {
4645 mac_group_t *group;
4646 mac_ring_t *ring;
4647 ddi_intr_handle_t ddi_handle;
4648 int g;
4649
4650 ddi_handle = cring->mr_info.mri_intr.mi_ddi_handle;
4651 for (g = 0; g < grpcnt; g++) {
4652 group = groups + g;
4653 for (ring = group->mrg_rings; ring != NULL;
4654 ring = ring->mr_next) {
4655 if (ring == cring)
4656 continue;
4657 if (ring->mr_info.mri_intr.mi_ddi_handle ==
4658 ddi_handle) {
4659 if (cring->mr_type == MAC_RING_TYPE_RX &&
4660 ring->mr_index == 0 &&
4661 !ring->mr_info.mri_intr.mi_ddi_shared) {
4662 ring->mr_info.mri_intr.mi_ddi_shared =
4663 B_TRUE;
4664 } else {
4665 cring->mr_info.mri_intr.mi_ddi_shared =
4666 B_TRUE;
4667 }
4668 return;
4669 }
4670 }
4671 }
4672 }
4673
4674 /*
4675 * Called to free all groups of particular type (RX or TX). It's assumed that
4676 * no clients are using these groups.
4677 */
4678 void
mac_free_rings(mac_impl_t * mip,mac_ring_type_t rtype)4679 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
4680 {
4681 mac_group_t *group, *groups;
4682 uint_t group_count;
4683
4684 switch (rtype) {
4685 case MAC_RING_TYPE_RX:
4686 if (mip->mi_rx_groups == NULL)
4687 return;
4688
4689 groups = mip->mi_rx_groups;
4690 group_count = mip->mi_rx_group_count;
4691
4692 mip->mi_rx_groups = NULL;
4693 mip->mi_rx_donor_grp = NULL;
4694 mip->mi_rx_group_count = 0;
4695 break;
4696 case MAC_RING_TYPE_TX:
4697 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
4698
4699 if (mip->mi_tx_groups == NULL)
4700 return;
4701
4702 groups = mip->mi_tx_groups;
4703 group_count = mip->mi_tx_group_count;
4704
4705 mip->mi_tx_groups = NULL;
4706 mip->mi_tx_group_count = 0;
4707 mip->mi_tx_group_free = 0;
4708 mip->mi_default_tx_ring = NULL;
4709 break;
4710 default:
4711 ASSERT(B_FALSE);
4712 }
4713
4714 for (group = groups; group != NULL; group = group->mrg_next) {
4715 mac_ring_t *ring;
4716
4717 if (group->mrg_cur_count == 0)
4718 continue;
4719
4720 ASSERT(group->mrg_rings != NULL);
4721
4722 while ((ring = group->mrg_rings) != NULL) {
4723 group->mrg_rings = ring->mr_next;
4724 mac_ring_free(mip, ring);
4725 }
4726 }
4727
4728 /* Free all the cached rings */
4729 mac_ring_freeall(mip);
4730 /* Free the block of group data strutures */
4731 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
4732 }
4733
4734 /*
4735 * Associate the VLAN filter to the receive group.
4736 */
4737 int
mac_group_addvlan(mac_group_t * group,uint16_t vlan)4738 mac_group_addvlan(mac_group_t *group, uint16_t vlan)
4739 {
4740 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4741 VERIFY3P(group->mrg_info.mgi_addvlan, !=, NULL);
4742
4743 if (vlan > VLAN_ID_MAX)
4744 return (EINVAL);
4745
4746 vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4747 return (group->mrg_info.mgi_addvlan(group->mrg_info.mgi_driver, vlan));
4748 }
4749
4750 /*
4751 * Dissociate the VLAN from the receive group.
4752 */
4753 int
mac_group_remvlan(mac_group_t * group,uint16_t vlan)4754 mac_group_remvlan(mac_group_t *group, uint16_t vlan)
4755 {
4756 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4757 VERIFY3P(group->mrg_info.mgi_remvlan, !=, NULL);
4758
4759 if (vlan > VLAN_ID_MAX)
4760 return (EINVAL);
4761
4762 vlan = MAC_VLAN_UNTAGGED_VID(vlan);
4763 return (group->mrg_info.mgi_remvlan(group->mrg_info.mgi_driver, vlan));
4764 }
4765
4766 /*
4767 * Associate a MAC address with a receive group.
4768 *
4769 * The return value of this function should always be checked properly, because
4770 * any type of failure could cause unexpected results. A group can be added
4771 * or removed with a MAC address only after it has been reserved. Ideally,
4772 * a successful reservation always leads to calling mac_group_addmac() to
4773 * steer desired traffic. Failure of adding an unicast MAC address doesn't
4774 * always imply that the group is functioning abnormally.
4775 *
4776 * Currently this function is called everywhere, and it reflects assumptions
4777 * about MAC addresses in the implementation. CR 6735196.
4778 */
4779 int
mac_group_addmac(mac_group_t * group,const uint8_t * addr)4780 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
4781 {
4782 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4783 VERIFY3P(group->mrg_info.mgi_addmac, !=, NULL);
4784
4785 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
4786 }
4787
4788 /*
4789 * Remove the association between MAC address and receive group.
4790 */
4791 int
mac_group_remmac(mac_group_t * group,const uint8_t * addr)4792 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
4793 {
4794 VERIFY3S(group->mrg_type, ==, MAC_RING_TYPE_RX);
4795 VERIFY3P(group->mrg_info.mgi_remmac, !=, NULL);
4796
4797 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
4798 }
4799
4800 /*
4801 * This is the entry point for packets transmitted through the bridge
4802 * code. If no bridge is in place, mac_ring_tx() transmits via the tx
4803 * ring. The 'rh' pointer may be NULL to select the default ring.
4804 */
4805 mblk_t *
mac_bridge_tx(mac_impl_t * mip,mac_ring_handle_t rh,mblk_t * mp)4806 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp)
4807 {
4808 mac_handle_t mh;
4809
4810 /*
4811 * Once we take a reference on the bridge link, the bridge
4812 * module itself can't unload, so the callback pointers are
4813 * stable.
4814 */
4815 mutex_enter(&mip->mi_bridge_lock);
4816 if ((mh = mip->mi_bridge_link) != NULL)
4817 mac_bridge_ref_cb(mh, B_TRUE);
4818 mutex_exit(&mip->mi_bridge_lock);
4819 if (mh == NULL) {
4820 mp = mac_ring_tx((mac_handle_t)mip, rh, mp);
4821 } else {
4822 /*
4823 * The bridge may place this mblk on a provider's Tx
4824 * path, a mac's Rx path, or both. Since we don't have
4825 * enough information at this point, we can't be sure
4826 * that the destination(s) are capable of handling the
4827 * hardware offloads requested by the mblk. We emulate
4828 * them here as it is the safest choice. In the
4829 * future, if bridge performance becomes a priority,
4830 * we can elide the emulation here and leave the
4831 * choice up to bridge.
4832 *
4833 * We don't clear the DB_CKSUMFLAGS here because
4834 * HCK_IPV4_HDRCKSUM (Tx) and HCK_IPV4_HDRCKSUM_OK
4835 * (Rx) still have the same value. If the bridge
4836 * receives a packet from a HCKSUM_IPHDRCKSUM NIC then
4837 * the mac(s) it is forwarded on may calculate the
4838 * checksum again, but incorrectly (because the
4839 * checksum field is not zero). Until the
4840 * HCK_IPV4_HDRCKSUM/HCK_IPV4_HDRCKSUM_OK issue is
4841 * resovled, we leave the flag clearing in bridge
4842 * itself.
4843 */
4844 if ((DB_CKSUMFLAGS(mp) & (HCK_TX_FLAGS | HW_LSO_FLAGS)) != 0) {
4845 mac_hw_emul(&mp, NULL, NULL, MAC_ALL_EMULS);
4846 }
4847
4848 mp = mac_bridge_tx_cb(mh, rh, mp);
4849 mac_bridge_ref_cb(mh, B_FALSE);
4850 }
4851
4852 return (mp);
4853 }
4854
4855 /*
4856 * Find a ring from its index.
4857 */
4858 mac_ring_handle_t
mac_find_ring(mac_group_handle_t gh,int index)4859 mac_find_ring(mac_group_handle_t gh, int index)
4860 {
4861 mac_group_t *group = (mac_group_t *)gh;
4862 mac_ring_t *ring = group->mrg_rings;
4863
4864 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
4865 if (ring->mr_index == index)
4866 break;
4867
4868 return ((mac_ring_handle_t)ring);
4869 }
4870 /*
4871 * Add a ring to an existing group.
4872 *
4873 * The ring must be either passed directly (for example if the ring
4874 * movement is initiated by the framework), or specified through a driver
4875 * index (for example when the ring is added by the driver.
4876 *
4877 * The caller needs to call mac_perim_enter() before calling this function.
4878 */
4879 int
i_mac_group_add_ring(mac_group_t * group,mac_ring_t * ring,int index)4880 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
4881 {
4882 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
4883 mac_capab_rings_t *cap_rings;
4884 boolean_t driver_call = (ring == NULL);
4885 mac_group_type_t group_type;
4886 int ret = 0;
4887 flow_entry_t *flent;
4888
4889 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4890
4891 switch (group->mrg_type) {
4892 case MAC_RING_TYPE_RX:
4893 cap_rings = &mip->mi_rx_rings_cap;
4894 group_type = mip->mi_rx_group_type;
4895 break;
4896 case MAC_RING_TYPE_TX:
4897 cap_rings = &mip->mi_tx_rings_cap;
4898 group_type = mip->mi_tx_group_type;
4899 break;
4900 default:
4901 ASSERT(B_FALSE);
4902 }
4903
4904 /*
4905 * There should be no ring with the same ring index in the target
4906 * group.
4907 */
4908 ASSERT(mac_find_ring((mac_group_handle_t)group,
4909 driver_call ? index : ring->mr_index) == NULL);
4910
4911 if (driver_call) {
4912 /*
4913 * The function is called as a result of a request from
4914 * a driver to add a ring to an existing group, for example
4915 * from the aggregation driver. Allocate a new mac_ring_t
4916 * for that ring.
4917 */
4918 ring = mac_init_ring(mip, group, index, cap_rings);
4919 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
4920 } else {
4921 /*
4922 * The function is called as a result of a MAC layer request
4923 * to add a ring to an existing group. In this case the
4924 * ring is being moved between groups, which requires
4925 * the underlying driver to support dynamic grouping,
4926 * and the mac_ring_t already exists.
4927 */
4928 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
4929 ASSERT(group->mrg_driver == NULL ||
4930 cap_rings->mr_gaddring != NULL);
4931 ASSERT(ring->mr_gh == NULL);
4932 }
4933
4934 /*
4935 * At this point the ring should not be in use, and it should be
4936 * of the right for the target group.
4937 */
4938 ASSERT(ring->mr_state < MR_INUSE);
4939 ASSERT(ring->mr_srs == NULL);
4940 ASSERT(ring->mr_type == group->mrg_type);
4941
4942 if (!driver_call) {
4943 /*
4944 * Add the driver level hardware ring if the process was not
4945 * initiated by the driver, and the target group is not the
4946 * group.
4947 */
4948 if (group->mrg_driver != NULL) {
4949 cap_rings->mr_gaddring(group->mrg_driver,
4950 ring->mr_driver, ring->mr_type);
4951 }
4952
4953 /*
4954 * Insert the ring ahead existing rings.
4955 */
4956 ring->mr_next = group->mrg_rings;
4957 group->mrg_rings = ring;
4958 ring->mr_gh = (mac_group_handle_t)group;
4959 group->mrg_cur_count++;
4960 }
4961
4962 /*
4963 * If the group has not been actively used, we're done.
4964 */
4965 if (group->mrg_index != -1 &&
4966 group->mrg_state < MAC_GROUP_STATE_RESERVED)
4967 return (0);
4968
4969 /*
4970 * Start the ring if needed. Failure causes to undo the grouping action.
4971 */
4972 if (ring->mr_state != MR_INUSE) {
4973 if ((ret = mac_start_ring(ring)) != 0) {
4974 if (!driver_call) {
4975 cap_rings->mr_gremring(group->mrg_driver,
4976 ring->mr_driver, ring->mr_type);
4977 }
4978 group->mrg_cur_count--;
4979 group->mrg_rings = ring->mr_next;
4980
4981 ring->mr_gh = NULL;
4982
4983 if (driver_call)
4984 mac_ring_free(mip, ring);
4985
4986 return (ret);
4987 }
4988 }
4989
4990 /*
4991 * Set up SRS/SR according to the ring type.
4992 */
4993 switch (ring->mr_type) {
4994 case MAC_RING_TYPE_RX:
4995 /*
4996 * Setup an SRS on top of the new ring if the group is
4997 * reserved for someone's exclusive use.
4998 */
4999 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
5000 mac_client_impl_t *mcip = MAC_GROUP_ONLY_CLIENT(group);
5001
5002 VERIFY3P(mcip, !=, NULL);
5003 flent = mcip->mci_flent;
5004 VERIFY3S(flent->fe_rx_srs_cnt, >, 0);
5005 mac_rx_srs_group_setup(mcip, flent, SRST_LINK);
5006 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
5007 mac_rx_deliver, mcip, NULL, NULL);
5008 } else {
5009 ring->mr_classify_type = MAC_SW_CLASSIFIER;
5010 }
5011 break;
5012 case MAC_RING_TYPE_TX:
5013 {
5014 mac_grp_client_t *mgcp = group->mrg_clients;
5015 mac_client_impl_t *mcip;
5016 mac_soft_ring_set_t *mac_srs;
5017 mac_srs_tx_t *tx;
5018
5019 if (MAC_GROUP_NO_CLIENT(group)) {
5020 if (ring->mr_state == MR_INUSE)
5021 mac_stop_ring(ring);
5022 ring->mr_flag = 0;
5023 break;
5024 }
5025 /*
5026 * If the rings are being moved to a group that has
5027 * clients using it, then add the new rings to the
5028 * clients SRS.
5029 */
5030 while (mgcp != NULL) {
5031 boolean_t is_aggr;
5032
5033 mcip = mgcp->mgc_client;
5034 flent = mcip->mci_flent;
5035 is_aggr = (mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
5036 mac_srs = MCIP_TX_SRS(mcip);
5037 tx = &mac_srs->srs_tx;
5038 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5039 /*
5040 * If we are growing from 1 to multiple rings.
5041 */
5042 if (tx->st_mode == SRS_TX_BW ||
5043 tx->st_mode == SRS_TX_SERIALIZE ||
5044 tx->st_mode == SRS_TX_DEFAULT) {
5045 mac_ring_t *tx_ring = tx->st_arg2;
5046
5047 tx->st_arg2 = NULL;
5048 mac_tx_srs_stat_recreate(mac_srs, B_TRUE);
5049 mac_tx_srs_add_ring(mac_srs, tx_ring);
5050 if (mac_srs->srs_type & SRST_BW_CONTROL) {
5051 tx->st_mode = is_aggr ? SRS_TX_BW_AGGR :
5052 SRS_TX_BW_FANOUT;
5053 } else {
5054 tx->st_mode = is_aggr ? SRS_TX_AGGR :
5055 SRS_TX_FANOUT;
5056 }
5057 tx->st_func = mac_tx_get_func(tx->st_mode);
5058 }
5059 mac_tx_srs_add_ring(mac_srs, ring);
5060 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
5061 mac_rx_deliver, mcip, NULL, NULL);
5062 mac_tx_client_restart((mac_client_handle_t)mcip);
5063 mgcp = mgcp->mgc_next;
5064 }
5065 break;
5066 }
5067 default:
5068 ASSERT(B_FALSE);
5069 }
5070 /*
5071 * For aggr, the default ring will be NULL to begin with. If it
5072 * is NULL, then pick the first ring that gets added as the
5073 * default ring. Any ring in an aggregation can be removed at
5074 * any time (by the user action of removing a link) and if the
5075 * current default ring gets removed, then a new one gets
5076 * picked (see i_mac_group_rem_ring()).
5077 */
5078 if (mip->mi_state_flags & MIS_IS_AGGR &&
5079 mip->mi_default_tx_ring == NULL &&
5080 ring->mr_type == MAC_RING_TYPE_TX) {
5081 mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
5082 }
5083
5084 MAC_RING_UNMARK(ring, MR_INCIPIENT);
5085 return (0);
5086 }
5087
5088 /*
5089 * Remove a ring from it's current group. MAC internal function for dynamic
5090 * grouping.
5091 *
5092 * The caller needs to call mac_perim_enter() before calling this function.
5093 */
5094 void
i_mac_group_rem_ring(mac_group_t * group,mac_ring_t * ring,boolean_t driver_call)5095 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
5096 boolean_t driver_call)
5097 {
5098 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
5099 mac_capab_rings_t *cap_rings = NULL;
5100 mac_group_type_t group_type;
5101
5102 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5103
5104 ASSERT(mac_find_ring((mac_group_handle_t)group,
5105 ring->mr_index) == (mac_ring_handle_t)ring);
5106 ASSERT((mac_group_t *)ring->mr_gh == group);
5107 ASSERT(ring->mr_type == group->mrg_type);
5108
5109 if (ring->mr_state == MR_INUSE)
5110 mac_stop_ring(ring);
5111 switch (ring->mr_type) {
5112 case MAC_RING_TYPE_RX:
5113 group_type = mip->mi_rx_group_type;
5114 cap_rings = &mip->mi_rx_rings_cap;
5115
5116 /*
5117 * Only hardware classified packets hold a reference to the
5118 * ring all the way up the Rx path. mac_rx_srs_remove()
5119 * will take care of quiescing the Rx path and removing the
5120 * SRS. The software classified path neither holds a reference
5121 * nor any association with the ring in mac_rx.
5122 */
5123 if (ring->mr_srs != NULL) {
5124 mac_rx_srs_remove(ring->mr_srs);
5125 ring->mr_srs = NULL;
5126 }
5127
5128 break;
5129 case MAC_RING_TYPE_TX:
5130 {
5131 mac_grp_client_t *mgcp;
5132 mac_client_impl_t *mcip;
5133 mac_soft_ring_set_t *mac_srs;
5134 mac_srs_tx_t *tx;
5135 mac_ring_t *rem_ring;
5136 mac_group_t *defgrp;
5137 uint_t ring_info = 0;
5138
5139 /*
5140 * For TX this function is invoked in three
5141 * cases:
5142 *
5143 * 1) In the case of a failure during the
5144 * initial creation of a group when a share is
5145 * associated with a MAC client. So the SRS is not
5146 * yet setup, and will be setup later after the
5147 * group has been reserved and populated.
5148 *
5149 * 2) From mac_release_tx_group() when freeing
5150 * a TX SRS.
5151 *
5152 * 3) In the case of aggr, when a port gets removed,
5153 * the pseudo Tx rings that it exposed gets removed.
5154 *
5155 * In the first two cases the SRS and its soft
5156 * rings are already quiesced.
5157 */
5158 if (driver_call) {
5159 mac_client_impl_t *mcip;
5160 mac_soft_ring_set_t *mac_srs;
5161 mac_soft_ring_t *sringp;
5162 mac_srs_tx_t *srs_tx;
5163
5164 if (mip->mi_state_flags & MIS_IS_AGGR &&
5165 mip->mi_default_tx_ring ==
5166 (mac_ring_handle_t)ring) {
5167 /* pick a new default Tx ring */
5168 mip->mi_default_tx_ring =
5169 (group->mrg_rings != ring) ?
5170 (mac_ring_handle_t)group->mrg_rings :
5171 (mac_ring_handle_t)(ring->mr_next);
5172 }
5173 /* Presently only aggr case comes here */
5174 if (group->mrg_state != MAC_GROUP_STATE_RESERVED)
5175 break;
5176
5177 mcip = MAC_GROUP_ONLY_CLIENT(group);
5178 ASSERT(mcip != NULL);
5179 ASSERT(mcip->mci_state_flags & MCIS_IS_AGGR_CLIENT);
5180 mac_srs = MCIP_TX_SRS(mcip);
5181 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
5182 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
5183 srs_tx = &mac_srs->srs_tx;
5184 /*
5185 * Wakeup any callers blocked on this
5186 * Tx ring due to flow control.
5187 */
5188 sringp = srs_tx->st_soft_rings[ring->mr_index];
5189 ASSERT(sringp != NULL);
5190 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)sringp);
5191 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5192 mac_tx_srs_del_ring(mac_srs, ring);
5193 mac_tx_client_restart((mac_client_handle_t)mcip);
5194 break;
5195 }
5196 ASSERT(ring != (mac_ring_t *)mip->mi_default_tx_ring);
5197 group_type = mip->mi_tx_group_type;
5198 cap_rings = &mip->mi_tx_rings_cap;
5199 /*
5200 * See if we need to take it out of the MAC clients using
5201 * this group
5202 */
5203 if (MAC_GROUP_NO_CLIENT(group))
5204 break;
5205 mgcp = group->mrg_clients;
5206 defgrp = MAC_DEFAULT_TX_GROUP(mip);
5207 while (mgcp != NULL) {
5208 mcip = mgcp->mgc_client;
5209 mac_srs = MCIP_TX_SRS(mcip);
5210 tx = &mac_srs->srs_tx;
5211 mac_tx_client_quiesce((mac_client_handle_t)mcip);
5212 /*
5213 * If we are here when removing rings from the
5214 * defgroup, mac_reserve_tx_ring would have
5215 * already deleted the ring from the MAC
5216 * clients in the group.
5217 */
5218 if (group != defgrp) {
5219 mac_tx_invoke_callbacks(mcip,
5220 (mac_tx_cookie_t)
5221 mac_tx_srs_get_soft_ring(mac_srs, ring));
5222 mac_tx_srs_del_ring(mac_srs, ring);
5223 }
5224 /*
5225 * Additionally, if we are left with only
5226 * one ring in the group after this, we need
5227 * to modify the mode etc. to. (We haven't
5228 * yet taken the ring out, so we check with 2).
5229 */
5230 if (group->mrg_cur_count == 2) {
5231 if (ring->mr_next == NULL)
5232 rem_ring = group->mrg_rings;
5233 else
5234 rem_ring = ring->mr_next;
5235 mac_tx_invoke_callbacks(mcip,
5236 (mac_tx_cookie_t)
5237 mac_tx_srs_get_soft_ring(mac_srs,
5238 rem_ring));
5239 mac_tx_srs_del_ring(mac_srs, rem_ring);
5240 if (rem_ring->mr_state != MR_INUSE) {
5241 (void) mac_start_ring(rem_ring);
5242 }
5243 tx->st_arg2 = (void *)rem_ring;
5244 mac_tx_srs_stat_recreate(mac_srs, B_FALSE);
5245 ring_info = mac_hwring_getinfo(
5246 (mac_ring_handle_t)rem_ring);
5247 /*
5248 * We are shrinking from multiple
5249 * to 1 ring.
5250 */
5251 if (mac_srs->srs_type & SRST_BW_CONTROL) {
5252 tx->st_mode = SRS_TX_BW;
5253 } else if (mac_tx_serialize ||
5254 (ring_info & MAC_RING_TX_SERIALIZE)) {
5255 tx->st_mode = SRS_TX_SERIALIZE;
5256 } else {
5257 tx->st_mode = SRS_TX_DEFAULT;
5258 }
5259 tx->st_func = mac_tx_get_func(tx->st_mode);
5260 }
5261 mac_tx_client_restart((mac_client_handle_t)mcip);
5262 mgcp = mgcp->mgc_next;
5263 }
5264 break;
5265 }
5266 default:
5267 ASSERT(B_FALSE);
5268 }
5269
5270 /*
5271 * Remove the ring from the group.
5272 */
5273 if (ring == group->mrg_rings)
5274 group->mrg_rings = ring->mr_next;
5275 else {
5276 mac_ring_t *pre;
5277
5278 pre = group->mrg_rings;
5279 while (pre->mr_next != ring)
5280 pre = pre->mr_next;
5281 pre->mr_next = ring->mr_next;
5282 }
5283 group->mrg_cur_count--;
5284
5285 if (!driver_call) {
5286 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
5287 ASSERT(group->mrg_driver == NULL ||
5288 cap_rings->mr_gremring != NULL);
5289
5290 /*
5291 * Remove the driver level hardware ring.
5292 */
5293 if (group->mrg_driver != NULL) {
5294 cap_rings->mr_gremring(group->mrg_driver,
5295 ring->mr_driver, ring->mr_type);
5296 }
5297 }
5298
5299 ring->mr_gh = NULL;
5300 if (driver_call)
5301 mac_ring_free(mip, ring);
5302 else
5303 ring->mr_flag = 0;
5304 }
5305
5306 /*
5307 * Move a ring to the target group. If needed, remove the ring from the group
5308 * that it currently belongs to.
5309 *
5310 * The caller need to enter MAC's perimeter by calling mac_perim_enter().
5311 */
5312 static int
mac_group_mov_ring(mac_impl_t * mip,mac_group_t * d_group,mac_ring_t * ring)5313 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
5314 {
5315 mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
5316 int rv;
5317
5318 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5319 ASSERT(d_group != NULL);
5320 ASSERT(s_group == NULL || s_group->mrg_mh == d_group->mrg_mh);
5321
5322 if (s_group == d_group)
5323 return (0);
5324
5325 /*
5326 * Remove it from current group first.
5327 */
5328 if (s_group != NULL)
5329 i_mac_group_rem_ring(s_group, ring, B_FALSE);
5330
5331 /*
5332 * Add it to the new group.
5333 */
5334 rv = i_mac_group_add_ring(d_group, ring, 0);
5335 if (rv != 0) {
5336 /*
5337 * Failed to add ring back to source group. If
5338 * that fails, the ring is stuck in limbo, log message.
5339 */
5340 if (i_mac_group_add_ring(s_group, ring, 0)) {
5341 cmn_err(CE_WARN, "%s: failed to move ring %p\n",
5342 mip->mi_name, (void *)ring);
5343 }
5344 }
5345
5346 return (rv);
5347 }
5348
5349 /*
5350 * Find a MAC address according to its value.
5351 */
5352 mac_address_t *
mac_find_macaddr(mac_impl_t * mip,uint8_t * mac_addr)5353 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
5354 {
5355 mac_address_t *map;
5356
5357 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5358
5359 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
5360 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
5361 break;
5362 }
5363
5364 return (map);
5365 }
5366
5367 /*
5368 * Check whether the MAC address is shared by multiple clients.
5369 */
5370 boolean_t
mac_check_macaddr_shared(mac_address_t * map)5371 mac_check_macaddr_shared(mac_address_t *map)
5372 {
5373 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
5374
5375 return (map->ma_nusers > 1);
5376 }
5377
5378 /*
5379 * Remove the specified MAC address from the MAC address list and free it.
5380 */
5381 static void
mac_free_macaddr(mac_address_t * map)5382 mac_free_macaddr(mac_address_t *map)
5383 {
5384 mac_impl_t *mip = map->ma_mip;
5385
5386 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5387 VERIFY3P(mip->mi_addresses, !=, NULL);
5388
5389 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5390 VERIFY3P(map, !=, NULL);
5391 VERIFY3S(map->ma_nusers, ==, 0);
5392 VERIFY3P(map->ma_vlans, ==, NULL);
5393
5394 if (map == mip->mi_addresses) {
5395 mip->mi_addresses = map->ma_next;
5396 } else {
5397 mac_address_t *pre;
5398
5399 pre = mip->mi_addresses;
5400 while (pre->ma_next != map)
5401 pre = pre->ma_next;
5402 pre->ma_next = map->ma_next;
5403 }
5404
5405 kmem_free(map, sizeof (mac_address_t));
5406 }
5407
5408 static mac_vlan_t *
mac_find_vlan(mac_address_t * map,uint16_t vid)5409 mac_find_vlan(mac_address_t *map, uint16_t vid)
5410 {
5411 mac_vlan_t *mvp;
5412
5413 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next) {
5414 if (mvp->mv_vid == vid)
5415 return (mvp);
5416 }
5417
5418 return (NULL);
5419 }
5420
5421 static mac_vlan_t *
mac_add_vlan(mac_address_t * map,uint16_t vid)5422 mac_add_vlan(mac_address_t *map, uint16_t vid)
5423 {
5424 mac_vlan_t *mvp;
5425
5426 /*
5427 * We should never add the same {addr, VID} tuple more
5428 * than once, but let's be sure.
5429 */
5430 for (mvp = map->ma_vlans; mvp != NULL; mvp = mvp->mv_next)
5431 VERIFY3U(mvp->mv_vid, !=, vid);
5432
5433 /* Add the VLAN to the head of the VLAN list. */
5434 mvp = kmem_zalloc(sizeof (mac_vlan_t), KM_SLEEP);
5435 mvp->mv_vid = vid;
5436 mvp->mv_next = map->ma_vlans;
5437 map->ma_vlans = mvp;
5438
5439 return (mvp);
5440 }
5441
5442 static void
mac_rem_vlan(mac_address_t * map,mac_vlan_t * mvp)5443 mac_rem_vlan(mac_address_t *map, mac_vlan_t *mvp)
5444 {
5445 mac_vlan_t *pre;
5446
5447 if (map->ma_vlans == mvp) {
5448 map->ma_vlans = mvp->mv_next;
5449 } else {
5450 pre = map->ma_vlans;
5451 while (pre->mv_next != mvp) {
5452 pre = pre->mv_next;
5453
5454 /*
5455 * We've reached the end of the list without
5456 * finding mvp.
5457 */
5458 VERIFY3P(pre, !=, NULL);
5459 }
5460 pre->mv_next = mvp->mv_next;
5461 }
5462
5463 kmem_free(mvp, sizeof (mac_vlan_t));
5464 }
5465
5466 /*
5467 * Create a new mac_address_t if this is the first use of the address
5468 * or add a VID to an existing address. In either case, the
5469 * mac_address_t acts as a list of {addr, VID} tuples where each tuple
5470 * shares the same addr. If group is non-NULL then attempt to program
5471 * the MAC's HW filters for this group. Otherwise, if group is NULL,
5472 * then the MAC has no rings and there is nothing to program.
5473 */
5474 int
mac_add_macaddr_vlan(mac_impl_t * mip,mac_group_t * group,uint8_t * addr,uint16_t vid,boolean_t use_hw)5475 mac_add_macaddr_vlan(mac_impl_t *mip, mac_group_t *group, uint8_t *addr,
5476 uint16_t vid, boolean_t use_hw)
5477 {
5478 mac_address_t *map;
5479 mac_vlan_t *mvp;
5480 int err = 0;
5481 boolean_t allocated_map = B_FALSE;
5482 boolean_t hw_mac = B_FALSE;
5483 boolean_t hw_vlan = B_FALSE;
5484
5485 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5486
5487 map = mac_find_macaddr(mip, addr);
5488
5489 /*
5490 * If this is the first use of this MAC address then allocate
5491 * and initialize a new structure.
5492 */
5493 if (map == NULL) {
5494 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5495 map->ma_len = mip->mi_type->mt_addr_length;
5496 bcopy(addr, map->ma_addr, map->ma_len);
5497 map->ma_nusers = 0;
5498 map->ma_group = group;
5499 map->ma_mip = mip;
5500 map->ma_untagged = B_FALSE;
5501
5502 /* Add the new MAC address to the head of the address list. */
5503 map->ma_next = mip->mi_addresses;
5504 mip->mi_addresses = map;
5505
5506 allocated_map = B_TRUE;
5507 }
5508
5509 VERIFY(map->ma_group == NULL || map->ma_group == group);
5510 if (map->ma_group == NULL)
5511 map->ma_group = group;
5512
5513 if (vid == VLAN_ID_NONE) {
5514 map->ma_untagged = B_TRUE;
5515 mvp = NULL;
5516 } else {
5517 mvp = mac_add_vlan(map, vid);
5518 }
5519
5520 /*
5521 * Set the VLAN HW filter if:
5522 *
5523 * o the MAC's VLAN HW filtering is enabled, and
5524 * o the address does not currently rely on promisc mode.
5525 *
5526 * This is called even when the client specifies an untagged
5527 * address (VLAN_ID_NONE) because some MAC providers require
5528 * setting additional bits to accept untagged traffic when
5529 * VLAN HW filtering is enabled.
5530 */
5531 if (MAC_GROUP_HW_VLAN(group) &&
5532 map->ma_type != MAC_ADDRESS_TYPE_UNICAST_PROMISC) {
5533 if ((err = mac_group_addvlan(group, vid)) != 0)
5534 goto bail;
5535
5536 hw_vlan = B_TRUE;
5537 }
5538
5539 VERIFY3S(map->ma_nusers, >=, 0);
5540 map->ma_nusers++;
5541
5542 /*
5543 * If this MAC address already has a HW filter then simply
5544 * increment the counter.
5545 */
5546 if (map->ma_nusers > 1)
5547 return (0);
5548
5549 /*
5550 * All logic from here on out is executed during initial
5551 * creation only.
5552 */
5553 VERIFY3S(map->ma_nusers, ==, 1);
5554
5555 /*
5556 * Activate this MAC address by adding it to the reserved group.
5557 */
5558 if (group != NULL) {
5559 err = mac_group_addmac(group, (const uint8_t *)addr);
5560
5561 /*
5562 * If the driver is out of filters then we can
5563 * continue and use promisc mode. For any other error,
5564 * assume the driver is in a state where we can't
5565 * program the filters or use promisc mode; so we must
5566 * bail.
5567 */
5568 if (err != 0 && err != ENOSPC) {
5569 map->ma_nusers--;
5570 goto bail;
5571 }
5572
5573 hw_mac = (err == 0);
5574 }
5575
5576 if (hw_mac) {
5577 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5578 return (0);
5579 }
5580
5581 /*
5582 * The MAC address addition failed. If the client requires a
5583 * hardware classified MAC address, fail the operation. This
5584 * feature is only used by sun4v vsw.
5585 */
5586 if (use_hw && !hw_mac) {
5587 err = ENOSPC;
5588 map->ma_nusers--;
5589 goto bail;
5590 }
5591
5592 /*
5593 * If we reach this point then either the MAC doesn't have
5594 * RINGS capability or we are out of MAC address HW filters.
5595 * In any case we must put the MAC into promiscuous mode.
5596 */
5597 VERIFY(group == NULL || !hw_mac);
5598
5599 /*
5600 * The one exception is the primary address. A non-RINGS
5601 * driver filters the primary address by default; promisc mode
5602 * is not needed.
5603 */
5604 if ((group == NULL) &&
5605 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
5606 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5607 return (0);
5608 }
5609
5610 /*
5611 * Enable promiscuous mode in order to receive traffic to the
5612 * new MAC address. All existing HW filters still send their
5613 * traffic to their respective group/SRSes. But with promisc
5614 * enabled all unknown traffic is delivered to the default
5615 * group where it is SW classified via mac_rx_classify().
5616 */
5617 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) {
5618 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
5619 return (0);
5620 }
5621
5622 /*
5623 * We failed to set promisc mode and we are about to free 'map'.
5624 */
5625 map->ma_nusers = 0;
5626
5627 bail:
5628 if (hw_vlan) {
5629 int err2 = mac_group_remvlan(group, vid);
5630
5631 if (err2 != 0) {
5632 cmn_err(CE_WARN, "Failed to remove VLAN %u from group"
5633 " %d on MAC %s: %d.", vid, group->mrg_index,
5634 mip->mi_name, err2);
5635 }
5636 }
5637
5638 if (mvp != NULL)
5639 mac_rem_vlan(map, mvp);
5640
5641 if (allocated_map)
5642 mac_free_macaddr(map);
5643
5644 return (err);
5645 }
5646
5647 int
mac_remove_macaddr_vlan(mac_address_t * map,uint16_t vid)5648 mac_remove_macaddr_vlan(mac_address_t *map, uint16_t vid)
5649 {
5650 mac_vlan_t *mvp;
5651 mac_impl_t *mip = map->ma_mip;
5652 mac_group_t *group = map->ma_group;
5653 int err = 0;
5654
5655 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5656 VERIFY3P(map, ==, mac_find_macaddr(mip, map->ma_addr));
5657
5658 if (vid == VLAN_ID_NONE) {
5659 map->ma_untagged = B_FALSE;
5660 mvp = NULL;
5661 } else {
5662 mvp = mac_find_vlan(map, vid);
5663 VERIFY3P(mvp, !=, NULL);
5664 }
5665
5666 if (MAC_GROUP_HW_VLAN(group) &&
5667 map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED &&
5668 ((err = mac_group_remvlan(group, vid)) != 0))
5669 return (err);
5670
5671 if (mvp != NULL)
5672 mac_rem_vlan(map, mvp);
5673
5674 /*
5675 * If it's not the last client using this MAC address, only update
5676 * the MAC clients count.
5677 */
5678 map->ma_nusers--;
5679 if (map->ma_nusers > 0)
5680 return (0);
5681
5682 VERIFY3S(map->ma_nusers, ==, 0);
5683
5684 /*
5685 * The MAC address is no longer used by any MAC client, so
5686 * remove it from its associated group. Turn off promiscuous
5687 * mode if this is the last address relying on it.
5688 */
5689 switch (map->ma_type) {
5690 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5691 /*
5692 * Don't free the preset primary address for drivers that
5693 * don't advertise RINGS capability.
5694 */
5695 if (group == NULL)
5696 return (0);
5697
5698 if ((err = mac_group_remmac(group, map->ma_addr)) != 0) {
5699 if (vid == VLAN_ID_NONE)
5700 map->ma_untagged = B_TRUE;
5701 else
5702 (void) mac_add_vlan(map, vid);
5703
5704 /*
5705 * If we fail to remove the MAC address HW
5706 * filter but then also fail to re-add the
5707 * VLAN HW filter then we are in a busted
5708 * state. We do our best by logging a warning
5709 * and returning the original 'err' that got
5710 * us here. At this point, traffic for this
5711 * address + VLAN combination will be dropped
5712 * until the user reboots the system. In the
5713 * future, it would be nice to have a system
5714 * that can compare the state of expected
5715 * classification according to mac to the
5716 * actual state of the provider, and report
5717 * and fix any inconsistencies.
5718 */
5719 if (MAC_GROUP_HW_VLAN(group)) {
5720 int err2;
5721
5722 err2 = mac_group_addvlan(group, vid);
5723 if (err2 != 0) {
5724 cmn_err(CE_WARN, "Failed to readd VLAN"
5725 " %u to group %d on MAC %s: %d.",
5726 vid, group->mrg_index, mip->mi_name,
5727 err2);
5728 }
5729 }
5730
5731 map->ma_nusers = 1;
5732 return (err);
5733 }
5734
5735 map->ma_group = NULL;
5736 break;
5737 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5738 err = i_mac_promisc_set(mip, B_FALSE);
5739 break;
5740 default:
5741 panic("Unexpected ma_type 0x%x, file: %s, line %d",
5742 map->ma_type, __FILE__, __LINE__);
5743 }
5744
5745 if (err != 0) {
5746 map->ma_nusers = 1;
5747 return (err);
5748 }
5749
5750 /*
5751 * We created MAC address for the primary one at registration, so we
5752 * won't free it here. mac_fini_macaddr() will take care of it.
5753 */
5754 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
5755 mac_free_macaddr(map);
5756
5757 return (0);
5758 }
5759
5760 /*
5761 * Update an existing MAC address. The caller need to make sure that the new
5762 * value has not been used.
5763 */
5764 int
mac_update_macaddr(mac_address_t * map,uint8_t * mac_addr)5765 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
5766 {
5767 mac_impl_t *mip = map->ma_mip;
5768 int err = 0;
5769
5770 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5771 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5772
5773 switch (map->ma_type) {
5774 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
5775 /*
5776 * Update the primary address for drivers that are not
5777 * RINGS capable.
5778 */
5779 if (mip->mi_rx_groups == NULL) {
5780 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
5781 mac_addr);
5782 if (err != 0)
5783 return (err);
5784 break;
5785 }
5786
5787 /*
5788 * If this MAC address is not currently in use,
5789 * simply break out and update the value.
5790 */
5791 if (map->ma_nusers == 0)
5792 break;
5793
5794 /*
5795 * Need to replace the MAC address associated with a group.
5796 */
5797 err = mac_group_remmac(map->ma_group, map->ma_addr);
5798 if (err != 0)
5799 return (err);
5800
5801 err = mac_group_addmac(map->ma_group, mac_addr);
5802
5803 /*
5804 * Failure hints hardware error. The MAC layer needs to
5805 * have error notification facility to handle this.
5806 * Now, simply try to restore the value.
5807 */
5808 if (err != 0)
5809 (void) mac_group_addmac(map->ma_group, map->ma_addr);
5810
5811 break;
5812 case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
5813 /*
5814 * Need to do nothing more if in promiscuous mode.
5815 */
5816 break;
5817 default:
5818 ASSERT(B_FALSE);
5819 }
5820
5821 /*
5822 * Successfully replaced the MAC address.
5823 */
5824 if (err == 0)
5825 bcopy(mac_addr, map->ma_addr, map->ma_len);
5826
5827 return (err);
5828 }
5829
5830 /*
5831 * Freshen the MAC address with new value. Its caller must have updated the
5832 * hardware MAC address before calling this function.
5833 * This funcitons is supposed to be used to handle the MAC address change
5834 * notification from underlying drivers.
5835 */
5836 void
mac_freshen_macaddr(mac_address_t * map,uint8_t * mac_addr)5837 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
5838 {
5839 mac_impl_t *mip = map->ma_mip;
5840
5841 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
5842 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
5843
5844 /*
5845 * Freshen the MAC address with new value.
5846 */
5847 bcopy(mac_addr, map->ma_addr, map->ma_len);
5848 bcopy(mac_addr, mip->mi_addr, map->ma_len);
5849
5850 /*
5851 * Update all MAC clients that share this MAC address.
5852 */
5853 mac_unicast_update_clients(mip, map);
5854 }
5855
5856 /*
5857 * Set up the primary MAC address.
5858 */
5859 void
mac_init_macaddr(mac_impl_t * mip)5860 mac_init_macaddr(mac_impl_t *mip)
5861 {
5862 mac_address_t *map;
5863
5864 /*
5865 * The reference count is initialized to zero, until it's really
5866 * activated.
5867 */
5868 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
5869 map->ma_len = mip->mi_type->mt_addr_length;
5870 bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
5871
5872 /*
5873 * If driver advertises RINGS capability, it shouldn't have initialized
5874 * its primary MAC address. For other drivers, including VNIC, the
5875 * primary address must work after registration.
5876 */
5877 if (mip->mi_rx_groups == NULL)
5878 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
5879
5880 map->ma_mip = mip;
5881
5882 mip->mi_addresses = map;
5883 }
5884
5885 /*
5886 * Clean up the primary MAC address. Note, only one primary MAC address
5887 * is allowed. All other MAC addresses must have been freed appropriately.
5888 */
5889 void
mac_fini_macaddr(mac_impl_t * mip)5890 mac_fini_macaddr(mac_impl_t *mip)
5891 {
5892 mac_address_t *map = mip->mi_addresses;
5893
5894 if (map == NULL)
5895 return;
5896
5897 /*
5898 * If mi_addresses is initialized, there should be exactly one
5899 * entry left on the list with no users.
5900 */
5901 VERIFY3S(map->ma_nusers, ==, 0);
5902 VERIFY3P(map->ma_next, ==, NULL);
5903 VERIFY3P(map->ma_vlans, ==, NULL);
5904
5905 kmem_free(map, sizeof (mac_address_t));
5906 mip->mi_addresses = NULL;
5907 }
5908
5909 /*
5910 * Logging related functions.
5911 *
5912 * Note that Kernel statistics have been extended to maintain fine
5913 * granularity of statistics viz. hardware lane, software lane, fanout
5914 * stats etc. However, extended accounting continues to support only
5915 * aggregate statistics like before.
5916 */
5917
5918 /* Write the flow description to a netinfo_t record */
5919 static netinfo_t *
mac_write_flow_desc(flow_entry_t * flent,mac_client_impl_t * mcip)5920 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
5921 {
5922 netinfo_t *ninfo;
5923 net_desc_t *ndesc;
5924 flow_desc_t *fdesc;
5925 mac_resource_props_t *mrp;
5926
5927 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5928 if (ninfo == NULL)
5929 return (NULL);
5930 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
5931 if (ndesc == NULL) {
5932 kmem_free(ninfo, sizeof (netinfo_t));
5933 return (NULL);
5934 }
5935
5936 /*
5937 * Grab the fe_lock to see a self-consistent fe_flow_desc.
5938 * Updates to the fe_flow_desc are done under the fe_lock
5939 */
5940 mutex_enter(&flent->fe_lock);
5941 fdesc = &flent->fe_flow_desc;
5942 mrp = &flent->fe_resource_props;
5943
5944 ndesc->nd_name = flent->fe_flow_name;
5945 ndesc->nd_devname = mcip->mci_name;
5946 bcopy(fdesc->fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
5947 bcopy(fdesc->fd_dst_mac, ndesc->nd_edest, ETHERADDRL);
5948 ndesc->nd_sap = htonl(fdesc->fd_sap);
5949 ndesc->nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
5950 ndesc->nd_bw_limit = mrp->mrp_maxbw;
5951 if (ndesc->nd_isv4) {
5952 ndesc->nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
5953 ndesc->nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
5954 } else {
5955 bcopy(&fdesc->fd_local_addr, ndesc->nd_saddr, IPV6_ADDR_LEN);
5956 bcopy(&fdesc->fd_remote_addr, ndesc->nd_daddr, IPV6_ADDR_LEN);
5957 }
5958 ndesc->nd_sport = htons(fdesc->fd_local_port);
5959 ndesc->nd_dport = htons(fdesc->fd_remote_port);
5960 ndesc->nd_protocol = (uint8_t)fdesc->fd_protocol;
5961 mutex_exit(&flent->fe_lock);
5962
5963 ninfo->ni_record = ndesc;
5964 ninfo->ni_size = sizeof (net_desc_t);
5965 ninfo->ni_type = EX_NET_FLDESC_REC;
5966
5967 return (ninfo);
5968 }
5969
5970 /* Write the flow statistics to a netinfo_t record */
5971 static netinfo_t *
mac_write_flow_stats(flow_entry_t * flent)5972 mac_write_flow_stats(flow_entry_t *flent)
5973 {
5974 netinfo_t *ninfo;
5975 net_stat_t *nstat;
5976 mac_soft_ring_set_t *mac_srs;
5977 mac_rx_stats_t *mac_rx_stat;
5978 mac_tx_stats_t *mac_tx_stat;
5979 int i;
5980
5981 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
5982 if (ninfo == NULL)
5983 return (NULL);
5984 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
5985 if (nstat == NULL) {
5986 kmem_free(ninfo, sizeof (netinfo_t));
5987 return (NULL);
5988 }
5989
5990 nstat->ns_name = flent->fe_flow_name;
5991 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
5992 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
5993 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
5994
5995 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
5996 mac_rx_stat->mrs_pollbytes + mac_rx_stat->mrs_lclbytes;
5997 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
5998 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
5999 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
6000 }
6001
6002 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
6003 if (mac_srs != NULL) {
6004 mac_tx_stat = &mac_srs->srs_tx.st_stat;
6005
6006 nstat->ns_obytes = mac_tx_stat->mts_obytes;
6007 nstat->ns_opackets = mac_tx_stat->mts_opackets;
6008 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
6009 }
6010
6011 ninfo->ni_record = nstat;
6012 ninfo->ni_size = sizeof (net_stat_t);
6013 ninfo->ni_type = EX_NET_FLSTAT_REC;
6014
6015 return (ninfo);
6016 }
6017
6018 /* Write the link description to a netinfo_t record */
6019 static netinfo_t *
mac_write_link_desc(mac_client_impl_t * mcip)6020 mac_write_link_desc(mac_client_impl_t *mcip)
6021 {
6022 netinfo_t *ninfo;
6023 net_desc_t *ndesc;
6024 flow_entry_t *flent = mcip->mci_flent;
6025
6026 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
6027 if (ninfo == NULL)
6028 return (NULL);
6029 ndesc = kmem_zalloc(sizeof (net_desc_t), KM_NOSLEEP);
6030 if (ndesc == NULL) {
6031 kmem_free(ninfo, sizeof (netinfo_t));
6032 return (NULL);
6033 }
6034
6035 ndesc->nd_name = mcip->mci_name;
6036 ndesc->nd_devname = mcip->mci_name;
6037 ndesc->nd_isv4 = B_TRUE;
6038 /*
6039 * Grab the fe_lock to see a self-consistent fe_flow_desc.
6040 * Updates to the fe_flow_desc are done under the fe_lock
6041 * after removing the flent from the flow table.
6042 */
6043 mutex_enter(&flent->fe_lock);
6044 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc->nd_ehost, ETHERADDRL);
6045 mutex_exit(&flent->fe_lock);
6046
6047 ninfo->ni_record = ndesc;
6048 ninfo->ni_size = sizeof (net_desc_t);
6049 ninfo->ni_type = EX_NET_LNDESC_REC;
6050
6051 return (ninfo);
6052 }
6053
6054 /* Write the link statistics to a netinfo_t record */
6055 static netinfo_t *
mac_write_link_stats(mac_client_impl_t * mcip)6056 mac_write_link_stats(mac_client_impl_t *mcip)
6057 {
6058 netinfo_t *ninfo;
6059 net_stat_t *nstat;
6060 flow_entry_t *flent;
6061 mac_soft_ring_set_t *mac_srs;
6062 mac_rx_stats_t *mac_rx_stat;
6063 mac_tx_stats_t *mac_tx_stat;
6064 int i;
6065
6066 ninfo = kmem_zalloc(sizeof (netinfo_t), KM_NOSLEEP);
6067 if (ninfo == NULL)
6068 return (NULL);
6069 nstat = kmem_zalloc(sizeof (net_stat_t), KM_NOSLEEP);
6070 if (nstat == NULL) {
6071 kmem_free(ninfo, sizeof (netinfo_t));
6072 return (NULL);
6073 }
6074
6075 nstat->ns_name = mcip->mci_name;
6076 flent = mcip->mci_flent;
6077 if (flent != NULL) {
6078 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
6079 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
6080 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
6081
6082 nstat->ns_ibytes += mac_rx_stat->mrs_intrbytes +
6083 mac_rx_stat->mrs_pollbytes +
6084 mac_rx_stat->mrs_lclbytes;
6085 nstat->ns_ipackets += mac_rx_stat->mrs_intrcnt +
6086 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
6087 nstat->ns_oerrors += mac_rx_stat->mrs_ierrors;
6088 }
6089 }
6090
6091 mac_srs = (mac_soft_ring_set_t *)(mcip->mci_flent->fe_tx_srs);
6092 if (mac_srs != NULL) {
6093 mac_tx_stat = &mac_srs->srs_tx.st_stat;
6094
6095 nstat->ns_obytes = mac_tx_stat->mts_obytes;
6096 nstat->ns_opackets = mac_tx_stat->mts_opackets;
6097 nstat->ns_oerrors = mac_tx_stat->mts_oerrors;
6098 }
6099
6100 ninfo->ni_record = nstat;
6101 ninfo->ni_size = sizeof (net_stat_t);
6102 ninfo->ni_type = EX_NET_LNSTAT_REC;
6103
6104 return (ninfo);
6105 }
6106
6107 typedef struct i_mac_log_state_s {
6108 boolean_t mi_last;
6109 int mi_fenable;
6110 int mi_lenable;
6111 list_t *mi_list;
6112 } i_mac_log_state_t;
6113
6114 /*
6115 * For a given flow, if the description has not been logged before, do it now.
6116 * If it is a VNIC, then we have collected information about it from the MAC
6117 * table, so skip it.
6118 *
6119 * Called through mac_flow_walk_nolock()
6120 *
6121 * Return 0 if successful.
6122 */
6123 static int
mac_log_flowinfo(flow_entry_t * flent,void * arg)6124 mac_log_flowinfo(flow_entry_t *flent, void *arg)
6125 {
6126 mac_client_impl_t *mcip = flent->fe_mcip;
6127 i_mac_log_state_t *lstate = arg;
6128 netinfo_t *ninfo;
6129
6130 if (mcip == NULL)
6131 return (0);
6132
6133 /*
6134 * If the name starts with "vnic", and fe_user_generated is true (to
6135 * exclude the mcast and active flow entries created implicitly for
6136 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow,
6137 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
6138 */
6139 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
6140 (flent->fe_type & FLOW_USER) != 0) {
6141 return (0);
6142 }
6143
6144 if (!flent->fe_desc_logged) {
6145 /*
6146 * We don't return error because we want to continue the
6147 * walk in case this is the last walk which means we
6148 * need to reset fe_desc_logged in all the flows.
6149 */
6150 if ((ninfo = mac_write_flow_desc(flent, mcip)) == NULL)
6151 return (0);
6152 list_insert_tail(lstate->mi_list, ninfo);
6153 flent->fe_desc_logged = B_TRUE;
6154 }
6155
6156 /*
6157 * Regardless of the error, we want to proceed in case we have to
6158 * reset fe_desc_logged.
6159 */
6160 ninfo = mac_write_flow_stats(flent);
6161 if (ninfo == NULL)
6162 return (-1);
6163
6164 list_insert_tail(lstate->mi_list, ninfo);
6165
6166 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
6167 flent->fe_desc_logged = B_FALSE;
6168
6169 return (0);
6170 }
6171
6172 /*
6173 * Log the description for each mac client of this mac_impl_t, if it
6174 * hasn't already been done. Additionally, log statistics for the link as
6175 * well. Walk the flow table and log information for each flow as well.
6176 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
6177 * also fe_desc_logged, if flow logging is on) since we want to log the
6178 * description if and when logging is restarted.
6179 *
6180 * Return 0 upon success or -1 upon failure
6181 */
6182 static int
i_mac_impl_log(mac_impl_t * mip,i_mac_log_state_t * lstate)6183 i_mac_impl_log(mac_impl_t *mip, i_mac_log_state_t *lstate)
6184 {
6185 mac_client_impl_t *mcip;
6186 netinfo_t *ninfo;
6187
6188 i_mac_perim_enter(mip);
6189 /*
6190 * Only walk the client list for NIC and etherstub
6191 */
6192 if ((mip->mi_state_flags & MIS_DISABLED) ||
6193 ((mip->mi_state_flags & MIS_IS_VNIC) &&
6194 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) {
6195 i_mac_perim_exit(mip);
6196 return (0);
6197 }
6198
6199 for (mcip = mip->mi_clients_list; mcip != NULL;
6200 mcip = mcip->mci_client_next) {
6201 if (!MCIP_DATAPATH_SETUP(mcip))
6202 continue;
6203 if (lstate->mi_lenable) {
6204 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
6205 ninfo = mac_write_link_desc(mcip);
6206 if (ninfo == NULL) {
6207 /*
6208 * We can't terminate it if this is the last
6209 * walk, else there might be some links with
6210 * mi_desc_logged set to true, which means
6211 * their description won't be logged the next
6212 * time logging is started (similarly for the
6213 * flows within such links). We can continue
6214 * without walking the flow table (i.e. to
6215 * set fe_desc_logged to false) because we
6216 * won't have written any flow stuff for this
6217 * link as we haven't logged the link itself.
6218 */
6219 i_mac_perim_exit(mip);
6220 if (lstate->mi_last)
6221 return (0);
6222 else
6223 return (-1);
6224 }
6225 mcip->mci_state_flags |= MCIS_DESC_LOGGED;
6226 list_insert_tail(lstate->mi_list, ninfo);
6227 }
6228 }
6229
6230 ninfo = mac_write_link_stats(mcip);
6231 if (ninfo == NULL && !lstate->mi_last) {
6232 i_mac_perim_exit(mip);
6233 return (-1);
6234 }
6235 list_insert_tail(lstate->mi_list, ninfo);
6236
6237 if (lstate->mi_last)
6238 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
6239
6240 if (lstate->mi_fenable) {
6241 if (mcip->mci_subflow_tab != NULL) {
6242 (void) mac_flow_walk_nolock(
6243 mcip->mci_subflow_tab, mac_log_flowinfo,
6244 lstate);
6245 }
6246 }
6247 }
6248 i_mac_perim_exit(mip);
6249 return (0);
6250 }
6251
6252 /*
6253 * modhash walker function to add a mac_impl_t to a list
6254 */
6255 /*ARGSUSED*/
6256 static uint_t
i_mac_impl_list_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)6257 i_mac_impl_list_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
6258 {
6259 list_t *list = (list_t *)arg;
6260 mac_impl_t *mip = (mac_impl_t *)val;
6261
6262 if ((mip->mi_state_flags & MIS_DISABLED) == 0) {
6263 list_insert_tail(list, mip);
6264 mip->mi_ref++;
6265 }
6266
6267 return (MH_WALK_CONTINUE);
6268 }
6269
6270 void
i_mac_log_info(list_t * net_log_list,i_mac_log_state_t * lstate)6271 i_mac_log_info(list_t *net_log_list, i_mac_log_state_t *lstate)
6272 {
6273 list_t mac_impl_list;
6274 mac_impl_t *mip;
6275 netinfo_t *ninfo;
6276
6277 /* Create list of mac_impls */
6278 ASSERT(RW_LOCK_HELD(&i_mac_impl_lock));
6279 list_create(&mac_impl_list, sizeof (mac_impl_t), offsetof(mac_impl_t,
6280 mi_node));
6281 mod_hash_walk(i_mac_impl_hash, i_mac_impl_list_walker, &mac_impl_list);
6282 rw_exit(&i_mac_impl_lock);
6283
6284 /* Create log entries for each mac_impl */
6285 for (mip = list_head(&mac_impl_list); mip != NULL;
6286 mip = list_next(&mac_impl_list, mip)) {
6287 if (i_mac_impl_log(mip, lstate) != 0)
6288 continue;
6289 }
6290
6291 /* Remove elements and destroy list of mac_impls */
6292 rw_enter(&i_mac_impl_lock, RW_WRITER);
6293 while ((mip = list_remove_tail(&mac_impl_list)) != NULL) {
6294 mip->mi_ref--;
6295 }
6296 rw_exit(&i_mac_impl_lock);
6297 list_destroy(&mac_impl_list);
6298
6299 /*
6300 * Write log entries to files outside of locks, free associated
6301 * structures, and remove entries from the list.
6302 */
6303 while ((ninfo = list_head(net_log_list)) != NULL) {
6304 (void) exacct_commit_netinfo(ninfo->ni_record, ninfo->ni_type);
6305 list_remove(net_log_list, ninfo);
6306 kmem_free(ninfo->ni_record, ninfo->ni_size);
6307 kmem_free(ninfo, sizeof (*ninfo));
6308 }
6309 list_destroy(net_log_list);
6310 }
6311
6312 /*
6313 * The timer thread that runs every mac_logging_interval seconds and logs
6314 * link and/or flow information.
6315 */
6316 /* ARGSUSED */
6317 void
mac_log_linkinfo(void * arg)6318 mac_log_linkinfo(void *arg)
6319 {
6320 i_mac_log_state_t lstate;
6321 list_t net_log_list;
6322
6323 list_create(&net_log_list, sizeof (netinfo_t),
6324 offsetof(netinfo_t, ni_link));
6325
6326 rw_enter(&i_mac_impl_lock, RW_READER);
6327 if (!mac_flow_log_enable && !mac_link_log_enable) {
6328 rw_exit(&i_mac_impl_lock);
6329 return;
6330 }
6331 lstate.mi_fenable = mac_flow_log_enable;
6332 lstate.mi_lenable = mac_link_log_enable;
6333 lstate.mi_last = B_FALSE;
6334 lstate.mi_list = &net_log_list;
6335
6336 /* Write log entries for each mac_impl in the list */
6337 i_mac_log_info(&net_log_list, &lstate);
6338
6339 if (mac_flow_log_enable || mac_link_log_enable) {
6340 mac_logging_timer = timeout(mac_log_linkinfo, NULL,
6341 SEC_TO_TICK(mac_logging_interval));
6342 }
6343 }
6344
6345 typedef struct i_mac_fastpath_state_s {
6346 boolean_t mf_disable;
6347 int mf_err;
6348 } i_mac_fastpath_state_t;
6349
6350 /* modhash walker function to enable or disable fastpath */
6351 /*ARGSUSED*/
6352 static uint_t
i_mac_fastpath_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)6353 i_mac_fastpath_walker(mod_hash_key_t key, mod_hash_val_t *val,
6354 void *arg)
6355 {
6356 i_mac_fastpath_state_t *state = arg;
6357 mac_handle_t mh = (mac_handle_t)val;
6358
6359 if (state->mf_disable)
6360 state->mf_err = mac_fastpath_disable(mh);
6361 else
6362 mac_fastpath_enable(mh);
6363
6364 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE);
6365 }
6366
6367 /*
6368 * Start the logging timer.
6369 */
6370 int
mac_start_logusage(mac_logtype_t type,uint_t interval)6371 mac_start_logusage(mac_logtype_t type, uint_t interval)
6372 {
6373 i_mac_fastpath_state_t dstate = {B_TRUE, 0};
6374 i_mac_fastpath_state_t estate = {B_FALSE, 0};
6375 int err;
6376
6377 rw_enter(&i_mac_impl_lock, RW_WRITER);
6378 switch (type) {
6379 case MAC_LOGTYPE_FLOW:
6380 if (mac_flow_log_enable) {
6381 rw_exit(&i_mac_impl_lock);
6382 return (0);
6383 }
6384 /* FALLTHRU */
6385 case MAC_LOGTYPE_LINK:
6386 if (mac_link_log_enable) {
6387 rw_exit(&i_mac_impl_lock);
6388 return (0);
6389 }
6390 break;
6391 default:
6392 ASSERT(0);
6393 }
6394
6395 /* Disable fastpath */
6396 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &dstate);
6397 if ((err = dstate.mf_err) != 0) {
6398 /* Reenable fastpath */
6399 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6400 rw_exit(&i_mac_impl_lock);
6401 return (err);
6402 }
6403
6404 switch (type) {
6405 case MAC_LOGTYPE_FLOW:
6406 mac_flow_log_enable = B_TRUE;
6407 /* FALLTHRU */
6408 case MAC_LOGTYPE_LINK:
6409 mac_link_log_enable = B_TRUE;
6410 break;
6411 }
6412
6413 mac_logging_interval = interval;
6414 rw_exit(&i_mac_impl_lock);
6415 mac_log_linkinfo(NULL);
6416 return (0);
6417 }
6418
6419 /*
6420 * Stop the logging timer if both link and flow logging are turned off.
6421 */
6422 void
mac_stop_logusage(mac_logtype_t type)6423 mac_stop_logusage(mac_logtype_t type)
6424 {
6425 i_mac_log_state_t lstate;
6426 i_mac_fastpath_state_t estate = {B_FALSE, 0};
6427 list_t net_log_list;
6428
6429 list_create(&net_log_list, sizeof (netinfo_t),
6430 offsetof(netinfo_t, ni_link));
6431
6432 rw_enter(&i_mac_impl_lock, RW_WRITER);
6433
6434 lstate.mi_fenable = mac_flow_log_enable;
6435 lstate.mi_lenable = mac_link_log_enable;
6436 lstate.mi_list = &net_log_list;
6437
6438 /* Last walk */
6439 lstate.mi_last = B_TRUE;
6440
6441 switch (type) {
6442 case MAC_LOGTYPE_FLOW:
6443 if (lstate.mi_fenable) {
6444 ASSERT(mac_link_log_enable);
6445 mac_flow_log_enable = B_FALSE;
6446 mac_link_log_enable = B_FALSE;
6447 break;
6448 }
6449 /* FALLTHRU */
6450 case MAC_LOGTYPE_LINK:
6451 if (!lstate.mi_lenable || mac_flow_log_enable) {
6452 rw_exit(&i_mac_impl_lock);
6453 return;
6454 }
6455 mac_link_log_enable = B_FALSE;
6456 break;
6457 default:
6458 ASSERT(0);
6459 }
6460
6461 /* Reenable fastpath */
6462 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_walker, &estate);
6463
6464 (void) untimeout(mac_logging_timer);
6465 mac_logging_timer = NULL;
6466
6467 /* Write log entries for each mac_impl in the list */
6468 i_mac_log_info(&net_log_list, &lstate);
6469 }
6470
6471 /*
6472 * Walk the rx and tx SRS/SRs for a flow and update the priority value.
6473 */
6474 void
mac_flow_update_priority(mac_client_impl_t * mcip,flow_entry_t * flent)6475 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
6476 {
6477 pri_t pri;
6478 int count;
6479 mac_soft_ring_set_t *mac_srs;
6480
6481 if (flent->fe_rx_srs_cnt <= 0)
6482 return;
6483
6484 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
6485 SRST_FLOW) {
6486 pri = FLOW_PRIORITY(mcip->mci_min_pri,
6487 mcip->mci_max_pri,
6488 flent->fe_resource_props.mrp_priority);
6489 } else {
6490 pri = mcip->mci_max_pri;
6491 }
6492
6493 for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
6494 mac_srs = flent->fe_rx_srs[count];
6495 mac_update_srs_priority(mac_srs, pri);
6496 }
6497 /*
6498 * If we have a Tx SRS, we need to modify all the threads associated
6499 * with it.
6500 */
6501 if (flent->fe_tx_srs != NULL)
6502 mac_update_srs_priority(flent->fe_tx_srs, pri);
6503 }
6504
6505 /*
6506 * RX and TX rings are reserved according to different semantics depending
6507 * on the requests from the MAC clients and type of rings:
6508 *
6509 * On the Tx side, by default we reserve individual rings, independently from
6510 * the groups.
6511 *
6512 * On the Rx side, the reservation is at the granularity of the group
6513 * of rings, and used for v12n level 1 only. It has a special case for the
6514 * primary client.
6515 *
6516 * If a share is allocated to a MAC client, we allocate a TX group and an
6517 * RX group to the client, and assign TX rings and RX rings to these
6518 * groups according to information gathered from the driver through
6519 * the share capability.
6520 *
6521 * The foreseable evolution of Rx rings will handle v12n level 2 and higher
6522 * to allocate individual rings out of a group and program the hw classifier
6523 * based on IP address or higher level criteria.
6524 */
6525
6526 /*
6527 * mac_reserve_tx_ring()
6528 * Reserve a unused ring by marking it with MR_INUSE state.
6529 * As reserved, the ring is ready to function.
6530 *
6531 * Notes for Hybrid I/O:
6532 *
6533 * If a specific ring is needed, it is specified through the desired_ring
6534 * argument. Otherwise that argument is set to NULL.
6535 * If the desired ring was previous allocated to another client, this
6536 * function swaps it with a new ring from the group of unassigned rings.
6537 */
6538 mac_ring_t *
mac_reserve_tx_ring(mac_impl_t * mip,mac_ring_t * desired_ring)6539 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
6540 {
6541 mac_group_t *group;
6542 mac_grp_client_t *mgcp;
6543 mac_client_impl_t *mcip;
6544 mac_soft_ring_set_t *srs;
6545
6546 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
6547
6548 /*
6549 * Find an available ring and start it before changing its status.
6550 * The unassigned rings are at the end of the mi_tx_groups
6551 * array.
6552 */
6553 group = MAC_DEFAULT_TX_GROUP(mip);
6554
6555 /* Can't take the default ring out of the default group */
6556 ASSERT(desired_ring != (mac_ring_t *)mip->mi_default_tx_ring);
6557
6558 if (desired_ring->mr_state == MR_FREE) {
6559 ASSERT(MAC_GROUP_NO_CLIENT(group));
6560 if (mac_start_ring(desired_ring) != 0)
6561 return (NULL);
6562 return (desired_ring);
6563 }
6564 /*
6565 * There are clients using this ring, so let's move the clients
6566 * away from using this ring.
6567 */
6568 for (mgcp = group->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6569 mcip = mgcp->mgc_client;
6570 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6571 srs = MCIP_TX_SRS(mcip);
6572 ASSERT(mac_tx_srs_ring_present(srs, desired_ring));
6573 mac_tx_invoke_callbacks(mcip,
6574 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(srs,
6575 desired_ring));
6576 mac_tx_srs_del_ring(srs, desired_ring);
6577 mac_tx_client_restart((mac_client_handle_t)mcip);
6578 }
6579 return (desired_ring);
6580 }
6581
6582 /*
6583 * For a non-default group with multiple clients, return the primary client.
6584 */
6585 static mac_client_impl_t *
mac_get_grp_primary(mac_group_t * grp)6586 mac_get_grp_primary(mac_group_t *grp)
6587 {
6588 mac_grp_client_t *mgcp = grp->mrg_clients;
6589 mac_client_impl_t *mcip;
6590
6591 while (mgcp != NULL) {
6592 mcip = mgcp->mgc_client;
6593 if (mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC)
6594 return (mcip);
6595 mgcp = mgcp->mgc_next;
6596 }
6597 return (NULL);
6598 }
6599
6600 /*
6601 * Hybrid I/O specifies the ring that should be given to a share.
6602 * If the ring is already used by clients, then we need to release
6603 * the ring back to the default group so that we can give it to
6604 * the share. This means the clients using this ring now get a
6605 * replacement ring. If there aren't any replacement rings, this
6606 * function returns a failure.
6607 */
6608 static int
mac_reclaim_ring_from_grp(mac_impl_t * mip,mac_ring_type_t ring_type,mac_ring_t * ring,mac_ring_t ** rings,int nrings)6609 mac_reclaim_ring_from_grp(mac_impl_t *mip, mac_ring_type_t ring_type,
6610 mac_ring_t *ring, mac_ring_t **rings, int nrings)
6611 {
6612 mac_group_t *group = (mac_group_t *)ring->mr_gh;
6613 mac_resource_props_t *mrp;
6614 mac_client_impl_t *mcip;
6615 mac_group_t *defgrp;
6616 mac_ring_t *tring;
6617 mac_group_t *tgrp;
6618 int i;
6619 int j;
6620
6621 mcip = MAC_GROUP_ONLY_CLIENT(group);
6622 if (mcip == NULL)
6623 mcip = mac_get_grp_primary(group);
6624 ASSERT(mcip != NULL);
6625 ASSERT(mcip->mci_share == 0);
6626
6627 mrp = MCIP_RESOURCE_PROPS(mcip);
6628 if (ring_type == MAC_RING_TYPE_RX) {
6629 defgrp = mip->mi_rx_donor_grp;
6630 if ((mrp->mrp_mask & MRP_RX_RINGS) == 0) {
6631 /* Need to put this mac client in the default group */
6632 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
6633 return (ENOSPC);
6634 } else {
6635 /*
6636 * Switch this ring with some other ring from
6637 * the default group.
6638 */
6639 for (tring = defgrp->mrg_rings; tring != NULL;
6640 tring = tring->mr_next) {
6641 if (tring->mr_index == 0)
6642 continue;
6643 for (j = 0; j < nrings; j++) {
6644 if (rings[j] == tring)
6645 break;
6646 }
6647 if (j >= nrings)
6648 break;
6649 }
6650 if (tring == NULL)
6651 return (ENOSPC);
6652 if (mac_group_mov_ring(mip, group, tring) != 0)
6653 return (ENOSPC);
6654 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6655 (void) mac_group_mov_ring(mip, defgrp, tring);
6656 return (ENOSPC);
6657 }
6658 }
6659 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6660 return (0);
6661 }
6662
6663 defgrp = MAC_DEFAULT_TX_GROUP(mip);
6664 if (ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6665 /*
6666 * See if we can get a spare ring to replace the default
6667 * ring.
6668 */
6669 if (defgrp->mrg_cur_count == 1) {
6670 /*
6671 * Need to get a ring from another client, see if
6672 * there are any clients that can be moved to
6673 * the default group, thereby freeing some rings.
6674 */
6675 for (i = 0; i < mip->mi_tx_group_count; i++) {
6676 tgrp = &mip->mi_tx_groups[i];
6677 if (tgrp->mrg_state ==
6678 MAC_GROUP_STATE_REGISTERED) {
6679 continue;
6680 }
6681 mcip = MAC_GROUP_ONLY_CLIENT(tgrp);
6682 if (mcip == NULL)
6683 mcip = mac_get_grp_primary(tgrp);
6684 ASSERT(mcip != NULL);
6685 mrp = MCIP_RESOURCE_PROPS(mcip);
6686 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6687 ASSERT(tgrp->mrg_cur_count == 1);
6688 /*
6689 * If this ring is part of the
6690 * rings asked by the share we cannot
6691 * use it as the default ring.
6692 */
6693 for (j = 0; j < nrings; j++) {
6694 if (rings[j] == tgrp->mrg_rings)
6695 break;
6696 }
6697 if (j < nrings)
6698 continue;
6699 mac_tx_client_quiesce(
6700 (mac_client_handle_t)mcip);
6701 mac_tx_switch_group(mcip, tgrp,
6702 defgrp);
6703 mac_tx_client_restart(
6704 (mac_client_handle_t)mcip);
6705 break;
6706 }
6707 }
6708 /*
6709 * All the rings are reserved, can't give up the
6710 * default ring.
6711 */
6712 if (defgrp->mrg_cur_count <= 1)
6713 return (ENOSPC);
6714 }
6715 /*
6716 * Swap the default ring with another.
6717 */
6718 for (tring = defgrp->mrg_rings; tring != NULL;
6719 tring = tring->mr_next) {
6720 /*
6721 * If this ring is part of the rings asked by the
6722 * share we cannot use it as the default ring.
6723 */
6724 for (j = 0; j < nrings; j++) {
6725 if (rings[j] == tring)
6726 break;
6727 }
6728 if (j >= nrings)
6729 break;
6730 }
6731 ASSERT(tring != NULL);
6732 mip->mi_default_tx_ring = (mac_ring_handle_t)tring;
6733 return (0);
6734 }
6735 /*
6736 * The Tx ring is with a group reserved by a MAC client. See if
6737 * we can swap it.
6738 */
6739 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
6740 mcip = MAC_GROUP_ONLY_CLIENT(group);
6741 if (mcip == NULL)
6742 mcip = mac_get_grp_primary(group);
6743 ASSERT(mcip != NULL);
6744 mrp = MCIP_RESOURCE_PROPS(mcip);
6745 mac_tx_client_quiesce((mac_client_handle_t)mcip);
6746 if ((mrp->mrp_mask & MRP_TX_RINGS) == 0) {
6747 ASSERT(group->mrg_cur_count == 1);
6748 /* Put this mac client in the default group */
6749 mac_tx_switch_group(mcip, group, defgrp);
6750 } else {
6751 /*
6752 * Switch this ring with some other ring from
6753 * the default group.
6754 */
6755 for (tring = defgrp->mrg_rings; tring != NULL;
6756 tring = tring->mr_next) {
6757 if (tring == (mac_ring_t *)mip->mi_default_tx_ring)
6758 continue;
6759 /*
6760 * If this ring is part of the rings asked by the
6761 * share we cannot use it for swapping.
6762 */
6763 for (j = 0; j < nrings; j++) {
6764 if (rings[j] == tring)
6765 break;
6766 }
6767 if (j >= nrings)
6768 break;
6769 }
6770 if (tring == NULL) {
6771 mac_tx_client_restart((mac_client_handle_t)mcip);
6772 return (ENOSPC);
6773 }
6774 if (mac_group_mov_ring(mip, group, tring) != 0) {
6775 mac_tx_client_restart((mac_client_handle_t)mcip);
6776 return (ENOSPC);
6777 }
6778 if (mac_group_mov_ring(mip, defgrp, ring) != 0) {
6779 (void) mac_group_mov_ring(mip, defgrp, tring);
6780 mac_tx_client_restart((mac_client_handle_t)mcip);
6781 return (ENOSPC);
6782 }
6783 }
6784 mac_tx_client_restart((mac_client_handle_t)mcip);
6785 ASSERT(ring->mr_gh == (mac_group_handle_t)defgrp);
6786 return (0);
6787 }
6788
6789 /*
6790 * Populate a zero-ring group with rings. If the share is non-NULL,
6791 * the rings are chosen according to that share.
6792 * Invoked after allocating a new RX or TX group through
6793 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
6794 * Returns zero on success, an errno otherwise.
6795 */
6796 int
i_mac_group_allocate_rings(mac_impl_t * mip,mac_ring_type_t ring_type,mac_group_t * src_group,mac_group_t * new_group,mac_share_handle_t share,uint32_t ringcnt)6797 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
6798 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share,
6799 uint32_t ringcnt)
6800 {
6801 mac_ring_t **rings, *ring;
6802 uint_t nrings;
6803 int rv = 0, i = 0, j;
6804
6805 ASSERT((ring_type == MAC_RING_TYPE_RX &&
6806 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) ||
6807 (ring_type == MAC_RING_TYPE_TX &&
6808 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC));
6809
6810 /*
6811 * First find the rings to allocate to the group.
6812 */
6813 if (share != 0) {
6814 /* get rings through ms_squery() */
6815 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
6816 ASSERT(nrings != 0);
6817 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
6818 KM_SLEEP);
6819 mip->mi_share_capab.ms_squery(share, ring_type,
6820 (mac_ring_handle_t *)rings, &nrings);
6821 for (i = 0; i < nrings; i++) {
6822 /*
6823 * If we have given this ring to a non-default
6824 * group, we need to check if we can get this
6825 * ring.
6826 */
6827 ring = rings[i];
6828 if (ring->mr_gh != (mac_group_handle_t)src_group ||
6829 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6830 if (mac_reclaim_ring_from_grp(mip, ring_type,
6831 ring, rings, nrings) != 0) {
6832 rv = ENOSPC;
6833 goto bail;
6834 }
6835 }
6836 }
6837 } else {
6838 /*
6839 * Pick one ring from default group.
6840 *
6841 * for now pick the second ring which requires the first ring
6842 * at index 0 to stay in the default group, since it is the
6843 * ring which carries the multicast traffic.
6844 * We need a better way for a driver to indicate this,
6845 * for example a per-ring flag.
6846 */
6847 rings = kmem_alloc(ringcnt * sizeof (mac_ring_handle_t),
6848 KM_SLEEP);
6849 for (ring = src_group->mrg_rings; ring != NULL;
6850 ring = ring->mr_next) {
6851 if (ring_type == MAC_RING_TYPE_RX &&
6852 ring->mr_index == 0) {
6853 continue;
6854 }
6855 if (ring_type == MAC_RING_TYPE_TX &&
6856 ring == (mac_ring_t *)mip->mi_default_tx_ring) {
6857 continue;
6858 }
6859 rings[i++] = ring;
6860 if (i == ringcnt)
6861 break;
6862 }
6863 ASSERT(ring != NULL);
6864 nrings = i;
6865 /* Not enough rings as required */
6866 if (nrings != ringcnt) {
6867 rv = ENOSPC;
6868 goto bail;
6869 }
6870 }
6871
6872 switch (ring_type) {
6873 case MAC_RING_TYPE_RX:
6874 if (src_group->mrg_cur_count - nrings < 1) {
6875 /* we ran out of rings */
6876 rv = ENOSPC;
6877 goto bail;
6878 }
6879
6880 /* move receive rings to new group */
6881 for (i = 0; i < nrings; i++) {
6882 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6883 if (rv != 0) {
6884 /* move rings back on failure */
6885 for (j = 0; j < i; j++) {
6886 (void) mac_group_mov_ring(mip,
6887 src_group, rings[j]);
6888 }
6889 goto bail;
6890 }
6891 }
6892 break;
6893
6894 case MAC_RING_TYPE_TX: {
6895 mac_ring_t *tmp_ring;
6896
6897 /* move the TX rings to the new group */
6898 for (i = 0; i < nrings; i++) {
6899 /* get the desired ring */
6900 tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
6901 if (tmp_ring == NULL) {
6902 rv = ENOSPC;
6903 goto bail;
6904 }
6905 ASSERT(tmp_ring == rings[i]);
6906 rv = mac_group_mov_ring(mip, new_group, rings[i]);
6907 if (rv != 0) {
6908 /* cleanup on failure */
6909 for (j = 0; j < i; j++) {
6910 (void) mac_group_mov_ring(mip,
6911 MAC_DEFAULT_TX_GROUP(mip),
6912 rings[j]);
6913 }
6914 goto bail;
6915 }
6916 }
6917 break;
6918 }
6919 }
6920
6921 /* add group to share */
6922 if (share != 0)
6923 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
6924
6925 bail:
6926 /* free temporary array of rings */
6927 kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
6928
6929 return (rv);
6930 }
6931
6932 void
mac_group_add_client(mac_group_t * grp,mac_client_impl_t * mcip)6933 mac_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
6934 {
6935 mac_grp_client_t *mgcp;
6936
6937 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
6938 if (mgcp->mgc_client == mcip)
6939 break;
6940 }
6941
6942 ASSERT(mgcp == NULL);
6943
6944 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
6945 mgcp->mgc_client = mcip;
6946 mgcp->mgc_next = grp->mrg_clients;
6947 grp->mrg_clients = mgcp;
6948 }
6949
6950 void
mac_group_remove_client(mac_group_t * grp,mac_client_impl_t * mcip)6951 mac_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
6952 {
6953 mac_grp_client_t *mgcp, **pprev;
6954
6955 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
6956 pprev = &mgcp->mgc_next, mgcp = *pprev) {
6957 if (mgcp->mgc_client == mcip)
6958 break;
6959 }
6960
6961 ASSERT(mgcp != NULL);
6962
6963 *pprev = mgcp->mgc_next;
6964 kmem_free(mgcp, sizeof (mac_grp_client_t));
6965 }
6966
6967 /*
6968 * Return true if any client on this group explicitly asked for HW
6969 * rings (of type mask) or have a bound share.
6970 */
6971 static boolean_t
i_mac_clients_hw(mac_group_t * grp,uint32_t mask)6972 i_mac_clients_hw(mac_group_t *grp, uint32_t mask)
6973 {
6974 mac_grp_client_t *mgcip;
6975 mac_client_impl_t *mcip;
6976 mac_resource_props_t *mrp;
6977
6978 for (mgcip = grp->mrg_clients; mgcip != NULL; mgcip = mgcip->mgc_next) {
6979 mcip = mgcip->mgc_client;
6980 mrp = MCIP_RESOURCE_PROPS(mcip);
6981 if (mcip->mci_share != 0 || (mrp->mrp_mask & mask) != 0)
6982 return (B_TRUE);
6983 }
6984
6985 return (B_FALSE);
6986 }
6987
6988 /*
6989 * Finds an available group and exclusively reserves it for a client.
6990 * The group is chosen to suit the flow's resource controls (bandwidth and
6991 * fanout requirements) and the address type.
6992 * If the requestor is the pimary MAC then return the group with the
6993 * largest number of rings, otherwise the default ring when available.
6994 */
6995 mac_group_t *
mac_reserve_rx_group(mac_client_impl_t * mcip,uint8_t * mac_addr,boolean_t move)6996 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, boolean_t move)
6997 {
6998 mac_share_handle_t share = mcip->mci_share;
6999 mac_impl_t *mip = mcip->mci_mip;
7000 mac_group_t *grp = NULL;
7001 int i;
7002 int err = 0;
7003 mac_address_t *map;
7004 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7005 int nrings;
7006 int donor_grp_rcnt;
7007 boolean_t need_exclgrp = B_FALSE;
7008 int need_rings = 0;
7009 mac_group_t *candidate_grp = NULL;
7010 mac_client_impl_t *gclient;
7011 mac_group_t *donorgrp = NULL;
7012 boolean_t rxhw = mrp->mrp_mask & MRP_RX_RINGS;
7013 boolean_t unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
7014 boolean_t isprimary;
7015
7016 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
7017
7018 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7019
7020 /*
7021 * Check if a group already has this MAC address (case of VLANs)
7022 * unless we are moving this MAC client from one group to another.
7023 */
7024 if (!move && (map = mac_find_macaddr(mip, mac_addr)) != NULL) {
7025 if (map->ma_group != NULL)
7026 return (map->ma_group);
7027 }
7028
7029 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0)
7030 return (NULL);
7031
7032 /*
7033 * If this client is requesting exclusive MAC access then
7034 * return NULL to ensure the client uses the default group.
7035 */
7036 if (mcip->mci_state_flags & MCIS_EXCLUSIVE)
7037 return (NULL);
7038
7039 /* For dynamic groups default unspecified to 1 */
7040 if (rxhw && unspec &&
7041 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7042 mrp->mrp_nrxrings = 1;
7043 }
7044
7045 /*
7046 * For static grouping we allow only specifying rings=0 and
7047 * unspecified
7048 */
7049 if (rxhw && mrp->mrp_nrxrings > 0 &&
7050 mip->mi_rx_group_type == MAC_GROUP_TYPE_STATIC) {
7051 return (NULL);
7052 }
7053
7054 if (rxhw) {
7055 /*
7056 * We have explicitly asked for a group (with nrxrings,
7057 * if unspec).
7058 */
7059 if (unspec || mrp->mrp_nrxrings > 0) {
7060 need_exclgrp = B_TRUE;
7061 need_rings = mrp->mrp_nrxrings;
7062 } else if (mrp->mrp_nrxrings == 0) {
7063 /*
7064 * We have asked for a software group.
7065 */
7066 return (NULL);
7067 }
7068 } else if (isprimary && mip->mi_nactiveclients == 1 &&
7069 mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7070 /*
7071 * If the primary is the only active client on this
7072 * mip and we have not asked for any rings, we give
7073 * it the default group so that the primary gets to
7074 * use all the rings.
7075 */
7076 return (NULL);
7077 }
7078
7079 /* The group that can donate rings */
7080 donorgrp = mip->mi_rx_donor_grp;
7081
7082 /*
7083 * The number of rings that the default group can donate.
7084 * We need to leave at least one ring.
7085 */
7086 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7087
7088 /*
7089 * Try to exclusively reserve a RX group.
7090 *
7091 * For flows requiring HW_DEFAULT_RING (unicast flow of the primary
7092 * client), try to reserve the a non-default RX group and give
7093 * it all the rings from the donor group, except the default ring
7094 *
7095 * For flows requiring HW_RING (unicast flow of other clients), try
7096 * to reserve non-default RX group with the specified number of
7097 * rings, if available.
7098 *
7099 * For flows that have not asked for software or hardware ring,
7100 * try to reserve a non-default group with 1 ring, if available.
7101 */
7102 for (i = 1; i < mip->mi_rx_group_count; i++) {
7103 grp = &mip->mi_rx_groups[i];
7104
7105 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
7106 int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
7107
7108 /*
7109 * Check if this group could be a candidate group for
7110 * eviction if we need a group for this MAC client,
7111 * but there aren't any. A candidate group is one
7112 * that didn't ask for an exclusive group, but got
7113 * one and it has enough rings (combined with what
7114 * the donor group can donate) for the new MAC
7115 * client.
7116 */
7117 if (grp->mrg_state >= MAC_GROUP_STATE_RESERVED) {
7118 /*
7119 * If the donor group is not the default
7120 * group, don't bother looking for a candidate
7121 * group. If we don't have enough rings we
7122 * will check if the primary group can be
7123 * vacated.
7124 */
7125 if (candidate_grp == NULL &&
7126 donorgrp == MAC_DEFAULT_RX_GROUP(mip)) {
7127 if (!i_mac_clients_hw(grp, MRP_RX_RINGS) &&
7128 (unspec ||
7129 (grp->mrg_cur_count + donor_grp_rcnt >=
7130 need_rings))) {
7131 candidate_grp = grp;
7132 }
7133 }
7134 continue;
7135 }
7136 /*
7137 * This group could already be SHARED by other multicast
7138 * flows on this client. In that case, the group would
7139 * be shared and has already been started.
7140 */
7141 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
7142
7143 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
7144 (mac_start_group(grp) != 0)) {
7145 continue;
7146 }
7147
7148 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7149 break;
7150 ASSERT(grp->mrg_cur_count == 0);
7151
7152 /*
7153 * Populate the group. Rings should be taken
7154 * from the donor group.
7155 */
7156 nrings = rxhw ? need_rings : isprimary ? donor_grp_rcnt: 1;
7157
7158 /*
7159 * If the donor group can't donate, let's just walk and
7160 * see if someone can vacate a group, so that we have
7161 * enough rings for this, unless we already have
7162 * identified a candiate group..
7163 */
7164 if (nrings <= donor_grp_rcnt) {
7165 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7166 donorgrp, grp, share, nrings);
7167 if (err == 0) {
7168 /*
7169 * For a share i_mac_group_allocate_rings gets
7170 * the rings from the driver, let's populate
7171 * the property for the client now.
7172 */
7173 if (share != 0) {
7174 mac_client_set_rings(
7175 (mac_client_handle_t)mcip,
7176 grp->mrg_cur_count, -1);
7177 }
7178 if (mac_is_primary_client(mcip) && !rxhw)
7179 mip->mi_rx_donor_grp = grp;
7180 break;
7181 }
7182 }
7183
7184 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7185 mip->mi_name, int, grp->mrg_index, int, err);
7186
7187 /*
7188 * It's a dynamic group but the grouping operation
7189 * failed.
7190 */
7191 mac_stop_group(grp);
7192 }
7193
7194 /* We didn't find an exclusive group for this MAC client */
7195 if (i >= mip->mi_rx_group_count) {
7196
7197 if (!need_exclgrp)
7198 return (NULL);
7199
7200 /*
7201 * If we found a candidate group then move the
7202 * existing MAC client from the candidate_group to the
7203 * default group and give the candidate_group to the
7204 * new MAC client. If we didn't find a candidate
7205 * group, then check if the primary is in its own
7206 * group and if it can make way for this MAC client.
7207 */
7208 if (candidate_grp == NULL &&
7209 donorgrp != MAC_DEFAULT_RX_GROUP(mip) &&
7210 donorgrp->mrg_cur_count >= need_rings) {
7211 candidate_grp = donorgrp;
7212 }
7213 if (candidate_grp != NULL) {
7214 boolean_t prim_grp = B_FALSE;
7215
7216 /*
7217 * Switch the existing MAC client from the
7218 * candidate group to the default group. If
7219 * the candidate group is the donor group,
7220 * then after the switch we need to update the
7221 * donor group too.
7222 */
7223 grp = candidate_grp;
7224 gclient = grp->mrg_clients->mgc_client;
7225 VERIFY3P(gclient, !=, NULL);
7226 if (grp == mip->mi_rx_donor_grp)
7227 prim_grp = B_TRUE;
7228 if (mac_rx_switch_group(gclient, grp,
7229 MAC_DEFAULT_RX_GROUP(mip)) != 0) {
7230 return (NULL);
7231 }
7232 if (prim_grp) {
7233 mip->mi_rx_donor_grp =
7234 MAC_DEFAULT_RX_GROUP(mip);
7235 donorgrp = MAC_DEFAULT_RX_GROUP(mip);
7236 }
7237
7238 /*
7239 * Now give this group with the required rings
7240 * to this MAC client.
7241 */
7242 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7243 if (mac_start_group(grp) != 0)
7244 return (NULL);
7245
7246 if (mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7247 return (grp);
7248
7249 donor_grp_rcnt = donorgrp->mrg_cur_count - 1;
7250 ASSERT(grp->mrg_cur_count == 0);
7251 ASSERT(donor_grp_rcnt >= need_rings);
7252 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
7253 donorgrp, grp, share, need_rings);
7254 if (err == 0) {
7255 /*
7256 * For a share i_mac_group_allocate_rings gets
7257 * the rings from the driver, let's populate
7258 * the property for the client now.
7259 */
7260 if (share != 0) {
7261 mac_client_set_rings(
7262 (mac_client_handle_t)mcip,
7263 grp->mrg_cur_count, -1);
7264 }
7265 DTRACE_PROBE2(rx__group__reserved,
7266 char *, mip->mi_name, int, grp->mrg_index);
7267 return (grp);
7268 }
7269 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
7270 mip->mi_name, int, grp->mrg_index, int, err);
7271 mac_stop_group(grp);
7272 }
7273 return (NULL);
7274 }
7275 ASSERT(grp != NULL);
7276
7277 DTRACE_PROBE2(rx__group__reserved,
7278 char *, mip->mi_name, int, grp->mrg_index);
7279 return (grp);
7280 }
7281
7282 /*
7283 * mac_rx_release_group()
7284 *
7285 * Release the group when it has no remaining clients. The group is
7286 * stopped and its shares are removed and all rings are assigned back
7287 * to default group. This should never be called against the default
7288 * group.
7289 */
7290 void
mac_release_rx_group(mac_client_impl_t * mcip,mac_group_t * group)7291 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
7292 {
7293 mac_impl_t *mip = mcip->mci_mip;
7294 mac_ring_t *ring;
7295
7296 ASSERT(group != MAC_DEFAULT_RX_GROUP(mip));
7297 ASSERT(MAC_GROUP_NO_CLIENT(group) == B_TRUE);
7298
7299 if (mip->mi_rx_donor_grp == group)
7300 mip->mi_rx_donor_grp = MAC_DEFAULT_RX_GROUP(mip);
7301
7302 /*
7303 * This is the case where there are no clients left. Any
7304 * SRS etc on this group have also be quiesced.
7305 */
7306 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
7307 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
7308 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
7309 /*
7310 * Remove the SRS associated with the HW ring.
7311 * As a result, polling will be disabled.
7312 */
7313 ring->mr_srs = NULL;
7314 }
7315 ASSERT(group->mrg_state < MAC_GROUP_STATE_RESERVED ||
7316 ring->mr_state == MR_INUSE);
7317 if (ring->mr_state == MR_INUSE) {
7318 mac_stop_ring(ring);
7319 ring->mr_flag = 0;
7320 }
7321 }
7322
7323 /* remove group from share */
7324 if (mcip->mci_share != 0) {
7325 mip->mi_share_capab.ms_sremove(mcip->mci_share,
7326 group->mrg_driver);
7327 }
7328
7329 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7330 mac_ring_t *ring;
7331
7332 /*
7333 * Rings were dynamically allocated to group.
7334 * Move rings back to default group.
7335 */
7336 while ((ring = group->mrg_rings) != NULL) {
7337 (void) mac_group_mov_ring(mip, mip->mi_rx_donor_grp,
7338 ring);
7339 }
7340 }
7341 mac_stop_group(group);
7342 /*
7343 * Possible improvement: See if we can assign the group just released
7344 * to a another client of the mip
7345 */
7346 }
7347
7348 /*
7349 * Move the MAC address from fgrp to tgrp.
7350 */
7351 static int
mac_rx_move_macaddr(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)7352 mac_rx_move_macaddr(mac_client_impl_t *mcip, mac_group_t *fgrp,
7353 mac_group_t *tgrp)
7354 {
7355 mac_impl_t *mip = mcip->mci_mip;
7356 uint8_t maddr[MAXMACADDRLEN];
7357 int err = 0;
7358 uint16_t vid;
7359 mac_unicast_impl_t *muip;
7360 boolean_t use_hw;
7361
7362 mac_rx_client_quiesce((mac_client_handle_t)mcip);
7363 VERIFY3P(mcip->mci_unicast, !=, NULL);
7364 bcopy(mcip->mci_unicast->ma_addr, maddr, mcip->mci_unicast->ma_len);
7365
7366 /*
7367 * Does the client require MAC address hardware classifiction?
7368 */
7369 use_hw = (mcip->mci_state_flags & MCIS_UNICAST_HW) != 0;
7370 vid = i_mac_flow_vid(mcip->mci_flent);
7371
7372 /*
7373 * You can never move an address that is shared by multiple
7374 * clients. mac_datapath_setup() ensures that clients sharing
7375 * an address are placed on the default group. This guarantees
7376 * that a non-default group will only ever have one client and
7377 * thus make full use of HW filters.
7378 */
7379 if (mac_check_macaddr_shared(mcip->mci_unicast))
7380 return (EINVAL);
7381
7382 err = mac_remove_macaddr_vlan(mcip->mci_unicast, vid);
7383
7384 if (err != 0) {
7385 mac_rx_client_restart((mac_client_handle_t)mcip);
7386 return (err);
7387 }
7388
7389 /*
7390 * If this isn't the primary MAC address then the
7391 * mac_address_t has been freed by the last call to
7392 * mac_remove_macaddr_vlan(). In any case, NULL the reference
7393 * to avoid a dangling pointer.
7394 */
7395 mcip->mci_unicast = NULL;
7396
7397 /*
7398 * We also have to NULL all the mui_map references -- sun4v
7399 * strikes again!
7400 */
7401 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7402 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7403 muip->mui_map = NULL;
7404 rw_exit(&mcip->mci_rw_lock);
7405
7406 /*
7407 * Program the H/W Classifier first, if this fails we need not
7408 * proceed with the other stuff.
7409 */
7410 if ((err = mac_add_macaddr_vlan(mip, tgrp, maddr, vid, use_hw)) != 0) {
7411 int err2;
7412
7413 /* Revert back the H/W Classifier */
7414 err2 = mac_add_macaddr_vlan(mip, fgrp, maddr, vid, use_hw);
7415
7416 if (err2 != 0) {
7417 cmn_err(CE_WARN, "Failed to revert HW classification"
7418 " on MAC %s, for client %s: %d.", mip->mi_name,
7419 mcip->mci_name, err2);
7420 }
7421
7422 mac_rx_client_restart((mac_client_handle_t)mcip);
7423 return (err);
7424 }
7425
7426 /*
7427 * Get a reference to the new mac_address_t and update the
7428 * client's reference. Then restart the client and add the
7429 * other clients of this MAC addr (if they exsit).
7430 */
7431 mcip->mci_unicast = mac_find_macaddr(mip, maddr);
7432 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
7433 for (muip = mcip->mci_unicast_list; muip != NULL; muip = muip->mui_next)
7434 muip->mui_map = mcip->mci_unicast;
7435 rw_exit(&mcip->mci_rw_lock);
7436 mac_rx_client_restart((mac_client_handle_t)mcip);
7437 return (0);
7438 }
7439
7440 /*
7441 * Switch the MAC client from one group to another. This means we need
7442 * to remove the MAC address from the group, remove the MAC client,
7443 * teardown the SRSs and revert the group state. Then, we add the client
7444 * to the destination group, set the SRSs, and add the MAC address to the
7445 * group.
7446 */
7447 int
mac_rx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)7448 mac_rx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7449 mac_group_t *tgrp)
7450 {
7451 int err;
7452 mac_group_state_t next_state;
7453 mac_client_impl_t *group_only_mcip;
7454 mac_client_impl_t *gmcip;
7455 mac_impl_t *mip = mcip->mci_mip;
7456 mac_grp_client_t *mgcp;
7457
7458 VERIFY3P(fgrp, ==, mcip->mci_flent->fe_rx_ring_group);
7459
7460 if ((err = mac_rx_move_macaddr(mcip, fgrp, tgrp)) != 0)
7461 return (err);
7462
7463 /*
7464 * If the group is marked as reserved and in use by a single
7465 * client, then there is an SRS to teardown.
7466 */
7467 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7468 MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7469 mac_rx_srs_group_teardown(mcip->mci_flent, B_TRUE);
7470 }
7471
7472 /*
7473 * If we are moving the client from a non-default group, then
7474 * we know that any additional clients on this group share the
7475 * same MAC address. Since we moved the MAC address filter, we
7476 * need to move these clients too.
7477 *
7478 * If we are moving the client from the default group and its
7479 * MAC address has VLAN clients, then we must move those
7480 * clients as well.
7481 *
7482 * In both cases the idea is the same: we moved the MAC
7483 * address filter to the tgrp, so we must move all clients
7484 * using that MAC address to tgrp as well.
7485 */
7486 if (fgrp != MAC_DEFAULT_RX_GROUP(mip)) {
7487 mgcp = fgrp->mrg_clients;
7488 while (mgcp != NULL) {
7489 gmcip = mgcp->mgc_client;
7490 mgcp = mgcp->mgc_next;
7491 mac_group_remove_client(fgrp, gmcip);
7492 mac_group_add_client(tgrp, gmcip);
7493 gmcip->mci_flent->fe_rx_ring_group = tgrp;
7494 }
7495 mac_release_rx_group(mcip, fgrp);
7496 VERIFY3B(MAC_GROUP_NO_CLIENT(fgrp), ==, B_TRUE);
7497 mac_set_group_state(fgrp, MAC_GROUP_STATE_REGISTERED);
7498 } else {
7499 mac_group_remove_client(fgrp, mcip);
7500 mac_group_add_client(tgrp, mcip);
7501 mcip->mci_flent->fe_rx_ring_group = tgrp;
7502
7503 /*
7504 * If there are other clients (VLANs) sharing this address
7505 * then move them too.
7506 */
7507 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7508 /*
7509 * We need to move all the clients that are using
7510 * this MAC address.
7511 */
7512 mgcp = fgrp->mrg_clients;
7513 while (mgcp != NULL) {
7514 gmcip = mgcp->mgc_client;
7515 mgcp = mgcp->mgc_next;
7516 if (mcip->mci_unicast == gmcip->mci_unicast) {
7517 mac_group_remove_client(fgrp, gmcip);
7518 mac_group_add_client(tgrp, gmcip);
7519 gmcip->mci_flent->fe_rx_ring_group =
7520 tgrp;
7521 }
7522 }
7523 }
7524
7525 /*
7526 * The default group still handles multicast and
7527 * broadcast traffic; it won't transition to
7528 * MAC_GROUP_STATE_REGISTERED.
7529 */
7530 if (fgrp->mrg_state == MAC_GROUP_STATE_RESERVED)
7531 mac_rx_group_unmark(fgrp, MR_CONDEMNED);
7532 mac_set_group_state(fgrp, MAC_GROUP_STATE_SHARED);
7533 }
7534
7535 next_state = mac_group_next_state(tgrp, &group_only_mcip,
7536 MAC_DEFAULT_RX_GROUP(mip), B_TRUE);
7537 mac_set_group_state(tgrp, next_state);
7538
7539 /*
7540 * If the destination group is reserved, then setup the SRSes.
7541 * Otherwise make sure to use SW classification.
7542 */
7543 if (tgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
7544 mac_rx_srs_group_setup(mcip, mcip->mci_flent, SRST_LINK);
7545 mac_fanout_setup(mcip, mcip->mci_flent,
7546 MCIP_RESOURCE_PROPS(mcip), mac_rx_deliver, mcip, NULL,
7547 NULL);
7548 mac_rx_group_unmark(tgrp, MR_INCIPIENT);
7549 } else {
7550 mac_rx_switch_grp_to_sw(tgrp);
7551 }
7552
7553 return (0);
7554 }
7555
7556 /*
7557 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
7558 * when a share was allocated to the client.
7559 */
7560 mac_group_t *
mac_reserve_tx_group(mac_client_impl_t * mcip,boolean_t move)7561 mac_reserve_tx_group(mac_client_impl_t *mcip, boolean_t move)
7562 {
7563 mac_impl_t *mip = mcip->mci_mip;
7564 mac_group_t *grp = NULL;
7565 int rv;
7566 int i;
7567 int err;
7568 mac_group_t *defgrp;
7569 mac_share_handle_t share = mcip->mci_share;
7570 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
7571 int nrings;
7572 int defnrings;
7573 boolean_t need_exclgrp = B_FALSE;
7574 int need_rings = 0;
7575 mac_group_t *candidate_grp = NULL;
7576 mac_client_impl_t *gclient;
7577 mac_resource_props_t *gmrp;
7578 boolean_t txhw = mrp->mrp_mask & MRP_TX_RINGS;
7579 boolean_t unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
7580 boolean_t isprimary;
7581
7582 isprimary = mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC;
7583
7584 /*
7585 * When we come here for a VLAN on the primary (dladm create-vlan),
7586 * we need to pair it along with the primary (to keep it consistent
7587 * with the RX side). So, we check if the primary is already assigned
7588 * to a group and return the group if so. The other way is also
7589 * true, i.e. the VLAN is already created and now we are plumbing
7590 * the primary.
7591 */
7592 if (!move && isprimary) {
7593 for (gclient = mip->mi_clients_list; gclient != NULL;
7594 gclient = gclient->mci_client_next) {
7595 if (gclient->mci_flent->fe_type & FLOW_PRIMARY_MAC &&
7596 gclient->mci_flent->fe_tx_ring_group != NULL) {
7597 return (gclient->mci_flent->fe_tx_ring_group);
7598 }
7599 }
7600 }
7601
7602 if (mip->mi_tx_groups == NULL || mip->mi_tx_group_count == 0)
7603 return (NULL);
7604
7605 /* For dynamic groups, default unspec to 1 */
7606 if (txhw && unspec &&
7607 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7608 mrp->mrp_ntxrings = 1;
7609 }
7610 /*
7611 * For static grouping we allow only specifying rings=0 and
7612 * unspecified
7613 */
7614 if (txhw && mrp->mrp_ntxrings > 0 &&
7615 mip->mi_tx_group_type == MAC_GROUP_TYPE_STATIC) {
7616 return (NULL);
7617 }
7618
7619 if (txhw) {
7620 /*
7621 * We have explicitly asked for a group (with ntxrings,
7622 * if unspec).
7623 */
7624 if (unspec || mrp->mrp_ntxrings > 0) {
7625 need_exclgrp = B_TRUE;
7626 need_rings = mrp->mrp_ntxrings;
7627 } else if (mrp->mrp_ntxrings == 0) {
7628 /*
7629 * We have asked for a software group.
7630 */
7631 return (NULL);
7632 }
7633 }
7634 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7635 /*
7636 * The number of rings that the default group can donate.
7637 * We need to leave at least one ring - the default ring - in
7638 * this group.
7639 */
7640 defnrings = defgrp->mrg_cur_count - 1;
7641
7642 /*
7643 * Primary gets default group unless explicitly told not
7644 * to (i.e. rings > 0).
7645 */
7646 if (isprimary && !need_exclgrp)
7647 return (NULL);
7648
7649 nrings = (mrp->mrp_mask & MRP_TX_RINGS) != 0 ? mrp->mrp_ntxrings : 1;
7650 for (i = 0; i < mip->mi_tx_group_count; i++) {
7651 grp = &mip->mi_tx_groups[i];
7652 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
7653 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) {
7654 /*
7655 * Select a candidate for replacement if we don't
7656 * get an exclusive group. A candidate group is one
7657 * that didn't ask for an exclusive group, but got
7658 * one and it has enough rings (combined with what
7659 * the default group can donate) for the new MAC
7660 * client.
7661 */
7662 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED &&
7663 candidate_grp == NULL) {
7664 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7665 VERIFY3P(gclient, !=, NULL);
7666 gmrp = MCIP_RESOURCE_PROPS(gclient);
7667 if (gclient->mci_share == 0 &&
7668 (gmrp->mrp_mask & MRP_TX_RINGS) == 0 &&
7669 (unspec ||
7670 (grp->mrg_cur_count + defnrings) >=
7671 need_rings)) {
7672 candidate_grp = grp;
7673 }
7674 }
7675 continue;
7676 }
7677 /*
7678 * If the default can't donate let's just walk and
7679 * see if someone can vacate a group, so that we have
7680 * enough rings for this.
7681 */
7682 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC ||
7683 nrings <= defnrings) {
7684 if (grp->mrg_state == MAC_GROUP_STATE_REGISTERED) {
7685 rv = mac_start_group(grp);
7686 ASSERT(rv == 0);
7687 }
7688 break;
7689 }
7690 }
7691
7692 /* The default group */
7693 if (i >= mip->mi_tx_group_count) {
7694 /*
7695 * If we need an exclusive group and have identified a
7696 * candidate group we switch the MAC client from the
7697 * candidate group to the default group and give the
7698 * candidate group to this client.
7699 */
7700 if (need_exclgrp && candidate_grp != NULL) {
7701 /*
7702 * Switch the MAC client from the candidate
7703 * group to the default group. We know the
7704 * candidate_grp came from a reserved group
7705 * and thus only has one client.
7706 */
7707 grp = candidate_grp;
7708 gclient = MAC_GROUP_ONLY_CLIENT(grp);
7709 VERIFY3P(gclient, !=, NULL);
7710 mac_tx_client_quiesce((mac_client_handle_t)gclient);
7711 mac_tx_switch_group(gclient, grp, defgrp);
7712 mac_tx_client_restart((mac_client_handle_t)gclient);
7713
7714 /*
7715 * Give the candidate group with the specified number
7716 * of rings to this MAC client.
7717 */
7718 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
7719 rv = mac_start_group(grp);
7720 ASSERT(rv == 0);
7721
7722 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC)
7723 return (grp);
7724
7725 ASSERT(grp->mrg_cur_count == 0);
7726 ASSERT(defgrp->mrg_cur_count > need_rings);
7727
7728 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX,
7729 defgrp, grp, share, need_rings);
7730 if (err == 0) {
7731 /*
7732 * For a share i_mac_group_allocate_rings gets
7733 * the rings from the driver, let's populate
7734 * the property for the client now.
7735 */
7736 if (share != 0) {
7737 mac_client_set_rings(
7738 (mac_client_handle_t)mcip, -1,
7739 grp->mrg_cur_count);
7740 }
7741 mip->mi_tx_group_free--;
7742 return (grp);
7743 }
7744 DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *,
7745 mip->mi_name, int, grp->mrg_index, int, err);
7746 mac_stop_group(grp);
7747 }
7748 return (NULL);
7749 }
7750 /*
7751 * We got an exclusive group, but it is not dynamic.
7752 */
7753 if (mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
7754 mip->mi_tx_group_free--;
7755 return (grp);
7756 }
7757
7758 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, defgrp, grp,
7759 share, nrings);
7760 if (rv != 0) {
7761 DTRACE_PROBE3(tx__group__reserve__alloc__rings,
7762 char *, mip->mi_name, int, grp->mrg_index, int, rv);
7763 mac_stop_group(grp);
7764 return (NULL);
7765 }
7766 /*
7767 * For a share i_mac_group_allocate_rings gets the rings from the
7768 * driver, let's populate the property for the client now.
7769 */
7770 if (share != 0) {
7771 mac_client_set_rings((mac_client_handle_t)mcip, -1,
7772 grp->mrg_cur_count);
7773 }
7774 mip->mi_tx_group_free--;
7775 return (grp);
7776 }
7777
7778 void
mac_release_tx_group(mac_client_impl_t * mcip,mac_group_t * grp)7779 mac_release_tx_group(mac_client_impl_t *mcip, mac_group_t *grp)
7780 {
7781 mac_impl_t *mip = mcip->mci_mip;
7782 mac_share_handle_t share = mcip->mci_share;
7783 mac_ring_t *ring;
7784 mac_soft_ring_set_t *srs = MCIP_TX_SRS(mcip);
7785 mac_group_t *defgrp;
7786
7787 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7788 if (srs != NULL) {
7789 if (srs->srs_soft_ring_count > 0) {
7790 for (ring = grp->mrg_rings; ring != NULL;
7791 ring = ring->mr_next) {
7792 ASSERT(mac_tx_srs_ring_present(srs, ring));
7793 mac_tx_invoke_callbacks(mcip,
7794 (mac_tx_cookie_t)
7795 mac_tx_srs_get_soft_ring(srs, ring));
7796 mac_tx_srs_del_ring(srs, ring);
7797 }
7798 } else {
7799 ASSERT(srs->srs_tx.st_arg2 != NULL);
7800 srs->srs_tx.st_arg2 = NULL;
7801 mac_srs_stat_delete(srs);
7802 }
7803 }
7804 if (share != 0)
7805 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
7806
7807 /* move the ring back to the pool */
7808 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
7809 while ((ring = grp->mrg_rings) != NULL)
7810 (void) mac_group_mov_ring(mip, defgrp, ring);
7811 }
7812 mac_stop_group(grp);
7813 mip->mi_tx_group_free++;
7814 }
7815
7816 /*
7817 * Disassociate a MAC client from a group, i.e go through the rings in the
7818 * group and delete all the soft rings tied to them.
7819 */
7820 static void
mac_tx_dismantle_soft_rings(mac_group_t * fgrp,flow_entry_t * flent)7821 mac_tx_dismantle_soft_rings(mac_group_t *fgrp, flow_entry_t *flent)
7822 {
7823 mac_client_impl_t *mcip = flent->fe_mcip;
7824 mac_soft_ring_set_t *tx_srs;
7825 mac_srs_tx_t *tx;
7826 mac_ring_t *ring;
7827
7828 tx_srs = flent->fe_tx_srs;
7829 tx = &tx_srs->srs_tx;
7830
7831 /* Single ring case we haven't created any soft rings */
7832 if (tx->st_mode == SRS_TX_BW || tx->st_mode == SRS_TX_SERIALIZE ||
7833 tx->st_mode == SRS_TX_DEFAULT) {
7834 tx->st_arg2 = NULL;
7835 mac_srs_stat_delete(tx_srs);
7836 /* Fanout case, where we have to dismantle the soft rings */
7837 } else {
7838 for (ring = fgrp->mrg_rings; ring != NULL;
7839 ring = ring->mr_next) {
7840 ASSERT(mac_tx_srs_ring_present(tx_srs, ring));
7841 mac_tx_invoke_callbacks(mcip,
7842 (mac_tx_cookie_t)mac_tx_srs_get_soft_ring(tx_srs,
7843 ring));
7844 mac_tx_srs_del_ring(tx_srs, ring);
7845 }
7846 ASSERT(tx->st_arg2 == NULL);
7847 }
7848 }
7849
7850 /*
7851 * Switch the MAC client from one group to another. This means we need
7852 * to remove the MAC client, teardown the SRSs and revert the group state.
7853 * Then, we add the client to the destination roup, set the SRSs etc.
7854 */
7855 void
mac_tx_switch_group(mac_client_impl_t * mcip,mac_group_t * fgrp,mac_group_t * tgrp)7856 mac_tx_switch_group(mac_client_impl_t *mcip, mac_group_t *fgrp,
7857 mac_group_t *tgrp)
7858 {
7859 mac_client_impl_t *group_only_mcip;
7860 mac_impl_t *mip = mcip->mci_mip;
7861 flow_entry_t *flent = mcip->mci_flent;
7862 mac_group_t *defgrp;
7863 mac_grp_client_t *mgcp;
7864 mac_client_impl_t *gmcip;
7865 flow_entry_t *gflent;
7866
7867 defgrp = MAC_DEFAULT_TX_GROUP(mip);
7868 ASSERT(fgrp == flent->fe_tx_ring_group);
7869
7870 if (fgrp == defgrp) {
7871 /*
7872 * If this is the primary we need to find any VLANs on
7873 * the primary and move them too.
7874 */
7875 mac_group_remove_client(fgrp, mcip);
7876 mac_tx_dismantle_soft_rings(fgrp, flent);
7877 if (mac_check_macaddr_shared(mcip->mci_unicast)) {
7878 mgcp = fgrp->mrg_clients;
7879 while (mgcp != NULL) {
7880 gmcip = mgcp->mgc_client;
7881 mgcp = mgcp->mgc_next;
7882 if (mcip->mci_unicast != gmcip->mci_unicast)
7883 continue;
7884 mac_tx_client_quiesce(
7885 (mac_client_handle_t)gmcip);
7886
7887 gflent = gmcip->mci_flent;
7888 mac_group_remove_client(fgrp, gmcip);
7889 mac_tx_dismantle_soft_rings(fgrp, gflent);
7890
7891 mac_group_add_client(tgrp, gmcip);
7892 gflent->fe_tx_ring_group = tgrp;
7893 /* We could directly set this to SHARED */
7894 tgrp->mrg_state = mac_group_next_state(tgrp,
7895 &group_only_mcip, defgrp, B_FALSE);
7896
7897 mac_tx_srs_group_setup(gmcip, gflent,
7898 SRST_LINK);
7899 mac_fanout_setup(gmcip, gflent,
7900 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7901 gmcip, NULL, NULL);
7902
7903 mac_tx_client_restart(
7904 (mac_client_handle_t)gmcip);
7905 }
7906 }
7907 if (MAC_GROUP_NO_CLIENT(fgrp)) {
7908 mac_ring_t *ring;
7909 int cnt;
7910 int ringcnt;
7911
7912 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7913 /*
7914 * Additionally, we also need to stop all
7915 * the rings in the default group, except
7916 * the default ring. The reason being
7917 * this group won't be released since it is
7918 * the default group, so the rings won't
7919 * be stopped otherwise.
7920 */
7921 ringcnt = fgrp->mrg_cur_count;
7922 ring = fgrp->mrg_rings;
7923 for (cnt = 0; cnt < ringcnt; cnt++) {
7924 if (ring->mr_state == MR_INUSE &&
7925 ring !=
7926 (mac_ring_t *)mip->mi_default_tx_ring) {
7927 mac_stop_ring(ring);
7928 ring->mr_flag = 0;
7929 }
7930 ring = ring->mr_next;
7931 }
7932 } else if (MAC_GROUP_ONLY_CLIENT(fgrp) != NULL) {
7933 fgrp->mrg_state = MAC_GROUP_STATE_RESERVED;
7934 } else {
7935 ASSERT(fgrp->mrg_state == MAC_GROUP_STATE_SHARED);
7936 }
7937 } else {
7938 /*
7939 * We could have VLANs sharing the non-default group with
7940 * the primary.
7941 */
7942 mgcp = fgrp->mrg_clients;
7943 while (mgcp != NULL) {
7944 gmcip = mgcp->mgc_client;
7945 mgcp = mgcp->mgc_next;
7946 if (gmcip == mcip)
7947 continue;
7948 mac_tx_client_quiesce((mac_client_handle_t)gmcip);
7949 gflent = gmcip->mci_flent;
7950
7951 mac_group_remove_client(fgrp, gmcip);
7952 mac_tx_dismantle_soft_rings(fgrp, gflent);
7953
7954 mac_group_add_client(tgrp, gmcip);
7955 gflent->fe_tx_ring_group = tgrp;
7956 /* We could directly set this to SHARED */
7957 tgrp->mrg_state = mac_group_next_state(tgrp,
7958 &group_only_mcip, defgrp, B_FALSE);
7959 mac_tx_srs_group_setup(gmcip, gflent, SRST_LINK);
7960 mac_fanout_setup(gmcip, gflent,
7961 MCIP_RESOURCE_PROPS(gmcip), mac_rx_deliver,
7962 gmcip, NULL, NULL);
7963
7964 mac_tx_client_restart((mac_client_handle_t)gmcip);
7965 }
7966 mac_group_remove_client(fgrp, mcip);
7967 mac_release_tx_group(mcip, fgrp);
7968 fgrp->mrg_state = MAC_GROUP_STATE_REGISTERED;
7969 }
7970
7971 /* Add it to the tgroup */
7972 mac_group_add_client(tgrp, mcip);
7973 flent->fe_tx_ring_group = tgrp;
7974 tgrp->mrg_state = mac_group_next_state(tgrp, &group_only_mcip,
7975 defgrp, B_FALSE);
7976
7977 mac_tx_srs_group_setup(mcip, flent, SRST_LINK);
7978 mac_fanout_setup(mcip, flent, MCIP_RESOURCE_PROPS(mcip),
7979 mac_rx_deliver, mcip, NULL, NULL);
7980 }
7981
7982 /*
7983 * This is a 1-time control path activity initiated by the client (IP).
7984 * The mac perimeter protects against other simultaneous control activities,
7985 * for example an ioctl that attempts to change the degree of fanout and
7986 * increase or decrease the number of softrings associated with this Tx SRS.
7987 */
7988 static mac_tx_notify_cb_t *
mac_client_tx_notify_add(mac_client_impl_t * mcip,mac_tx_notify_t notify,void * arg)7989 mac_client_tx_notify_add(mac_client_impl_t *mcip,
7990 mac_tx_notify_t notify, void *arg)
7991 {
7992 mac_cb_info_t *mcbi;
7993 mac_tx_notify_cb_t *mtnfp;
7994
7995 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
7996
7997 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
7998 mtnfp->mtnf_fn = notify;
7999 mtnfp->mtnf_arg = arg;
8000 mtnfp->mtnf_link.mcb_objp = mtnfp;
8001 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
8002 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
8003
8004 mcbi = &mcip->mci_tx_notify_cb_info;
8005 mutex_enter(mcbi->mcbi_lockp);
8006 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
8007 mutex_exit(mcbi->mcbi_lockp);
8008 return (mtnfp);
8009 }
8010
8011 static void
mac_client_tx_notify_remove(mac_client_impl_t * mcip,mac_tx_notify_cb_t * mtnfp)8012 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
8013 {
8014 mac_cb_info_t *mcbi;
8015 mac_cb_t **cblist;
8016
8017 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
8018
8019 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
8020 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
8021 cmn_err(CE_WARN,
8022 "mac_client_tx_notify_remove: callback not "
8023 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
8024 return;
8025 }
8026
8027 mcbi = &mcip->mci_tx_notify_cb_info;
8028 cblist = &mcip->mci_tx_notify_cb_list;
8029 mutex_enter(mcbi->mcbi_lockp);
8030 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
8031 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
8032 else
8033 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
8034 mutex_exit(mcbi->mcbi_lockp);
8035 }
8036
8037 /*
8038 * mac_client_tx_notify():
8039 * call to add and remove flow control callback routine.
8040 */
8041 mac_tx_notify_handle_t
mac_client_tx_notify(mac_client_handle_t mch,mac_tx_notify_t callb_func,void * ptr)8042 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
8043 void *ptr)
8044 {
8045 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
8046 mac_tx_notify_cb_t *mtnfp = NULL;
8047
8048 i_mac_perim_enter(mcip->mci_mip);
8049
8050 if (callb_func != NULL) {
8051 /* Add a notify callback */
8052 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
8053 } else {
8054 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
8055 }
8056 i_mac_perim_exit(mcip->mci_mip);
8057
8058 return ((mac_tx_notify_handle_t)mtnfp);
8059 }
8060
8061 void
mac_bridge_vectors(mac_bridge_tx_t txf,mac_bridge_rx_t rxf,mac_bridge_ref_t reff,mac_bridge_ls_t lsf)8062 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf,
8063 mac_bridge_ref_t reff, mac_bridge_ls_t lsf)
8064 {
8065 mac_bridge_tx_cb = txf;
8066 mac_bridge_rx_cb = rxf;
8067 mac_bridge_ref_cb = reff;
8068 mac_bridge_ls_cb = lsf;
8069 }
8070
8071 int
mac_bridge_set(mac_handle_t mh,mac_handle_t link)8072 mac_bridge_set(mac_handle_t mh, mac_handle_t link)
8073 {
8074 mac_impl_t *mip = (mac_impl_t *)mh;
8075 int retv;
8076
8077 mutex_enter(&mip->mi_bridge_lock);
8078 if (mip->mi_bridge_link == NULL) {
8079 mip->mi_bridge_link = link;
8080 retv = 0;
8081 } else {
8082 retv = EBUSY;
8083 }
8084 mutex_exit(&mip->mi_bridge_lock);
8085 if (retv == 0) {
8086 mac_poll_state_change(mh, B_FALSE);
8087 mac_capab_update(mh);
8088 }
8089 return (retv);
8090 }
8091
8092 /*
8093 * Disable bridging on the indicated link.
8094 */
8095 void
mac_bridge_clear(mac_handle_t mh,mac_handle_t link)8096 mac_bridge_clear(mac_handle_t mh, mac_handle_t link)
8097 {
8098 mac_impl_t *mip = (mac_impl_t *)mh;
8099
8100 mutex_enter(&mip->mi_bridge_lock);
8101 ASSERT(mip->mi_bridge_link == link);
8102 mip->mi_bridge_link = NULL;
8103 mutex_exit(&mip->mi_bridge_lock);
8104 mac_poll_state_change(mh, B_TRUE);
8105 mac_capab_update(mh);
8106 }
8107
8108 void
mac_no_active(mac_handle_t mh)8109 mac_no_active(mac_handle_t mh)
8110 {
8111 mac_impl_t *mip = (mac_impl_t *)mh;
8112
8113 i_mac_perim_enter(mip);
8114 mip->mi_state_flags |= MIS_NO_ACTIVE;
8115 i_mac_perim_exit(mip);
8116 }
8117
8118 /*
8119 * Walk the primary VLAN clients whenever the primary's rings property
8120 * changes and update the mac_resource_props_t for the VLAN's client.
8121 * We need to do this since we don't support setting these properties
8122 * on the primary's VLAN clients, but the VLAN clients have to
8123 * follow the primary w.r.t the rings property.
8124 */
8125 void
mac_set_prim_vlan_rings(mac_impl_t * mip,mac_resource_props_t * mrp)8126 mac_set_prim_vlan_rings(mac_impl_t *mip, mac_resource_props_t *mrp)
8127 {
8128 mac_client_impl_t *vmcip;
8129 mac_resource_props_t *vmrp;
8130
8131 for (vmcip = mip->mi_clients_list; vmcip != NULL;
8132 vmcip = vmcip->mci_client_next) {
8133 if (!(vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) ||
8134 mac_client_vid((mac_client_handle_t)vmcip) ==
8135 VLAN_ID_NONE) {
8136 continue;
8137 }
8138 vmrp = MCIP_RESOURCE_PROPS(vmcip);
8139
8140 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
8141 if (mrp->mrp_mask & MRP_RX_RINGS)
8142 vmrp->mrp_mask |= MRP_RX_RINGS;
8143 else if (vmrp->mrp_mask & MRP_RX_RINGS)
8144 vmrp->mrp_mask &= ~MRP_RX_RINGS;
8145
8146 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
8147 if (mrp->mrp_mask & MRP_TX_RINGS)
8148 vmrp->mrp_mask |= MRP_TX_RINGS;
8149 else if (vmrp->mrp_mask & MRP_TX_RINGS)
8150 vmrp->mrp_mask &= ~MRP_TX_RINGS;
8151
8152 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
8153 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
8154 else
8155 vmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
8156
8157 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
8158 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
8159 else
8160 vmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
8161 }
8162 }
8163
8164 /*
8165 * We are adding or removing ring(s) from a group. The source for taking
8166 * rings is the default group. The destination for giving rings back is
8167 * the default group.
8168 */
8169 int
mac_group_ring_modify(mac_client_impl_t * mcip,mac_group_t * group,mac_group_t * defgrp)8170 mac_group_ring_modify(mac_client_impl_t *mcip, mac_group_t *group,
8171 mac_group_t *defgrp)
8172 {
8173 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
8174 uint_t modify;
8175 int count;
8176 mac_ring_t *ring;
8177 mac_ring_t *next;
8178 mac_impl_t *mip = mcip->mci_mip;
8179 mac_ring_t **rings;
8180 uint_t ringcnt;
8181 int i = 0;
8182 boolean_t rx_group = group->mrg_type == MAC_RING_TYPE_RX;
8183 int start;
8184 int end;
8185 mac_group_t *tgrp;
8186 int j;
8187 int rv = 0;
8188
8189 /*
8190 * If we are asked for just a group, we give 1 ring, else
8191 * the specified number of rings.
8192 */
8193 if (rx_group) {
8194 ringcnt = (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) ? 1:
8195 mrp->mrp_nrxrings;
8196 } else {
8197 ringcnt = (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) ? 1:
8198 mrp->mrp_ntxrings;
8199 }
8200
8201 /* don't allow modifying rings for a share for now. */
8202 ASSERT(mcip->mci_share == 0);
8203
8204 if (ringcnt == group->mrg_cur_count)
8205 return (0);
8206
8207 if (group->mrg_cur_count > ringcnt) {
8208 modify = group->mrg_cur_count - ringcnt;
8209 if (rx_group) {
8210 if (mip->mi_rx_donor_grp == group) {
8211 ASSERT(mac_is_primary_client(mcip));
8212 mip->mi_rx_donor_grp = defgrp;
8213 } else {
8214 defgrp = mip->mi_rx_donor_grp;
8215 }
8216 }
8217 ring = group->mrg_rings;
8218 rings = kmem_alloc(modify * sizeof (mac_ring_handle_t),
8219 KM_SLEEP);
8220 j = 0;
8221 for (count = 0; count < modify; count++) {
8222 next = ring->mr_next;
8223 rv = mac_group_mov_ring(mip, defgrp, ring);
8224 if (rv != 0) {
8225 /* cleanup on failure */
8226 for (j = 0; j < count; j++) {
8227 (void) mac_group_mov_ring(mip, group,
8228 rings[j]);
8229 }
8230 break;
8231 }
8232 rings[j++] = ring;
8233 ring = next;
8234 }
8235 kmem_free(rings, modify * sizeof (mac_ring_handle_t));
8236 return (rv);
8237 }
8238 if (ringcnt >= MAX_RINGS_PER_GROUP)
8239 return (EINVAL);
8240
8241 modify = ringcnt - group->mrg_cur_count;
8242
8243 if (rx_group) {
8244 if (group != mip->mi_rx_donor_grp)
8245 defgrp = mip->mi_rx_donor_grp;
8246 else
8247 /*
8248 * This is the donor group with all the remaining
8249 * rings. Default group now gets to be the donor
8250 */
8251 mip->mi_rx_donor_grp = defgrp;
8252 start = 1;
8253 end = mip->mi_rx_group_count;
8254 } else {
8255 start = 0;
8256 end = mip->mi_tx_group_count - 1;
8257 }
8258 /*
8259 * If the default doesn't have any rings, lets see if we can
8260 * take rings given to an h/w client that doesn't need it.
8261 * For now, we just see if there is any one client that can donate
8262 * all the required rings.
8263 */
8264 if (defgrp->mrg_cur_count < (modify + 1)) {
8265 for (i = start; i < end; i++) {
8266 if (rx_group) {
8267 tgrp = &mip->mi_rx_groups[i];
8268 if (tgrp == group || tgrp->mrg_state <
8269 MAC_GROUP_STATE_RESERVED) {
8270 continue;
8271 }
8272 if (i_mac_clients_hw(tgrp, MRP_RX_RINGS))
8273 continue;
8274 mcip = tgrp->mrg_clients->mgc_client;
8275 VERIFY3P(mcip, !=, NULL);
8276 if ((tgrp->mrg_cur_count +
8277 defgrp->mrg_cur_count) < (modify + 1)) {
8278 continue;
8279 }
8280 if (mac_rx_switch_group(mcip, tgrp,
8281 defgrp) != 0) {
8282 return (ENOSPC);
8283 }
8284 } else {
8285 tgrp = &mip->mi_tx_groups[i];
8286 if (tgrp == group || tgrp->mrg_state <
8287 MAC_GROUP_STATE_RESERVED) {
8288 continue;
8289 }
8290 if (i_mac_clients_hw(tgrp, MRP_TX_RINGS))
8291 continue;
8292 mcip = tgrp->mrg_clients->mgc_client;
8293 VERIFY3P(mcip, !=, NULL);
8294 if ((tgrp->mrg_cur_count +
8295 defgrp->mrg_cur_count) < (modify + 1)) {
8296 continue;
8297 }
8298 /* OK, we can switch this to s/w */
8299 mac_tx_client_quiesce(
8300 (mac_client_handle_t)mcip);
8301 mac_tx_switch_group(mcip, tgrp, defgrp);
8302 mac_tx_client_restart(
8303 (mac_client_handle_t)mcip);
8304 }
8305 }
8306 if (defgrp->mrg_cur_count < (modify + 1))
8307 return (ENOSPC);
8308 }
8309 if ((rv = i_mac_group_allocate_rings(mip, group->mrg_type, defgrp,
8310 group, mcip->mci_share, modify)) != 0) {
8311 return (rv);
8312 }
8313 return (0);
8314 }
8315
8316 /*
8317 * Given the poolname in mac_resource_props, find the cpupart
8318 * that is associated with this pool. The cpupart will be used
8319 * later for finding the cpus to be bound to the networking threads.
8320 *
8321 * use_default is set B_TRUE if pools are enabled and pool_default
8322 * is returned. This avoids a 2nd lookup to set the poolname
8323 * for pool-effective.
8324 *
8325 * returns:
8326 *
8327 * NULL - pools are disabled or if the 'cpus' property is set.
8328 * cpupart of pool_default - pools are enabled and the pool
8329 * is not available or poolname is blank
8330 * cpupart of named pool - pools are enabled and the pool
8331 * is available.
8332 */
8333 cpupart_t *
mac_pset_find(mac_resource_props_t * mrp,boolean_t * use_default)8334 mac_pset_find(mac_resource_props_t *mrp, boolean_t *use_default)
8335 {
8336 pool_t *pool;
8337 cpupart_t *cpupart;
8338
8339 *use_default = B_FALSE;
8340
8341 /* CPUs property is set */
8342 if (mrp->mrp_mask & MRP_CPUS)
8343 return (NULL);
8344
8345 ASSERT(pool_lock_held());
8346
8347 /* Pools are disabled, no pset */
8348 if (pool_state == POOL_DISABLED)
8349 return (NULL);
8350
8351 /* Pools property is set */
8352 if (mrp->mrp_mask & MRP_POOL) {
8353 if ((pool = pool_lookup_pool_by_name(mrp->mrp_pool)) == NULL) {
8354 /* Pool not found */
8355 DTRACE_PROBE1(mac_pset_find_no_pool, char *,
8356 mrp->mrp_pool);
8357 *use_default = B_TRUE;
8358 pool = pool_default;
8359 }
8360 /* Pools property is not set */
8361 } else {
8362 *use_default = B_TRUE;
8363 pool = pool_default;
8364 }
8365
8366 /* Find the CPU pset that corresponds to the pool */
8367 mutex_enter(&cpu_lock);
8368 if ((cpupart = cpupart_find(pool->pool_pset->pset_id)) == NULL) {
8369 DTRACE_PROBE1(mac_find_pset_no_pset, psetid_t,
8370 pool->pool_pset->pset_id);
8371 }
8372 mutex_exit(&cpu_lock);
8373
8374 return (cpupart);
8375 }
8376
8377 void
mac_set_pool_effective(boolean_t use_default,cpupart_t * cpupart,mac_resource_props_t * mrp,mac_resource_props_t * emrp)8378 mac_set_pool_effective(boolean_t use_default, cpupart_t *cpupart,
8379 mac_resource_props_t *mrp, mac_resource_props_t *emrp)
8380 {
8381 ASSERT(pool_lock_held());
8382
8383 if (cpupart != NULL) {
8384 emrp->mrp_mask |= MRP_POOL;
8385 if (use_default) {
8386 (void) strcpy(emrp->mrp_pool,
8387 "pool_default");
8388 } else {
8389 ASSERT(strlen(mrp->mrp_pool) != 0);
8390 (void) strcpy(emrp->mrp_pool,
8391 mrp->mrp_pool);
8392 }
8393 } else {
8394 emrp->mrp_mask &= ~MRP_POOL;
8395 bzero(emrp->mrp_pool, MAXPATHLEN);
8396 }
8397 }
8398
8399 struct mac_pool_arg {
8400 char mpa_poolname[MAXPATHLEN];
8401 pool_event_t mpa_what;
8402 };
8403
8404 /*ARGSUSED*/
8405 static uint_t
mac_pool_link_update(mod_hash_key_t key,mod_hash_val_t * val,void * arg)8406 mac_pool_link_update(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
8407 {
8408 struct mac_pool_arg *mpa = arg;
8409 mac_impl_t *mip = (mac_impl_t *)val;
8410 mac_client_impl_t *mcip;
8411 mac_resource_props_t *mrp, *emrp;
8412 boolean_t pool_update = B_FALSE;
8413 boolean_t pool_clear = B_FALSE;
8414 boolean_t use_default = B_FALSE;
8415 cpupart_t *cpupart = NULL;
8416
8417 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
8418 i_mac_perim_enter(mip);
8419 for (mcip = mip->mi_clients_list; mcip != NULL;
8420 mcip = mcip->mci_client_next) {
8421 pool_update = B_FALSE;
8422 pool_clear = B_FALSE;
8423 use_default = B_FALSE;
8424 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
8425 emrp = MCIP_EFFECTIVE_PROPS(mcip);
8426
8427 /*
8428 * When pools are enabled
8429 */
8430 if ((mpa->mpa_what == POOL_E_ENABLE) &&
8431 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8432 mrp->mrp_mask |= MRP_POOL;
8433 pool_update = B_TRUE;
8434 }
8435
8436 /*
8437 * When pools are disabled
8438 */
8439 if ((mpa->mpa_what == POOL_E_DISABLE) &&
8440 ((mrp->mrp_mask & MRP_CPUS) == 0)) {
8441 mrp->mrp_mask |= MRP_POOL;
8442 pool_clear = B_TRUE;
8443 }
8444
8445 /*
8446 * Look for links with the pool property set and the poolname
8447 * matching the one which is changing.
8448 */
8449 if (strcmp(mrp->mrp_pool, mpa->mpa_poolname) == 0) {
8450 /*
8451 * The pool associated with the link has changed.
8452 */
8453 if (mpa->mpa_what == POOL_E_CHANGE) {
8454 mrp->mrp_mask |= MRP_POOL;
8455 pool_update = B_TRUE;
8456 }
8457 }
8458
8459 /*
8460 * This link is associated with pool_default and
8461 * pool_default has changed.
8462 */
8463 if ((mpa->mpa_what == POOL_E_CHANGE) &&
8464 (strcmp(emrp->mrp_pool, "pool_default") == 0) &&
8465 (strcmp(mpa->mpa_poolname, "pool_default") == 0)) {
8466 mrp->mrp_mask |= MRP_POOL;
8467 pool_update = B_TRUE;
8468 }
8469
8470 /*
8471 * Get new list of cpus for the pool, bind network
8472 * threads to new list of cpus and update resources.
8473 */
8474 if (pool_update) {
8475 if (MCIP_DATAPATH_SETUP(mcip)) {
8476 pool_lock();
8477 cpupart = mac_pset_find(mrp, &use_default);
8478 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8479 mac_rx_deliver, mcip, NULL, cpupart);
8480 mac_set_pool_effective(use_default, cpupart,
8481 mrp, emrp);
8482 pool_unlock();
8483 }
8484 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8485 B_FALSE);
8486 }
8487
8488 /*
8489 * Clear the effective pool and bind network threads
8490 * to any available CPU.
8491 */
8492 if (pool_clear) {
8493 if (MCIP_DATAPATH_SETUP(mcip)) {
8494 emrp->mrp_mask &= ~MRP_POOL;
8495 bzero(emrp->mrp_pool, MAXPATHLEN);
8496 mac_fanout_setup(mcip, mcip->mci_flent, mrp,
8497 mac_rx_deliver, mcip, NULL, NULL);
8498 }
8499 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip),
8500 B_FALSE);
8501 }
8502 }
8503 i_mac_perim_exit(mip);
8504 kmem_free(mrp, sizeof (*mrp));
8505 return (MH_WALK_CONTINUE);
8506 }
8507
8508 static void
mac_pool_update(void * arg)8509 mac_pool_update(void *arg)
8510 {
8511 mod_hash_walk(i_mac_impl_hash, mac_pool_link_update, arg);
8512 kmem_free(arg, sizeof (struct mac_pool_arg));
8513 }
8514
8515 /*
8516 * Callback function to be executed when a noteworthy pool event
8517 * takes place.
8518 */
8519 /* ARGSUSED */
8520 static void
mac_pool_event_cb(pool_event_t what,poolid_t id,void * arg)8521 mac_pool_event_cb(pool_event_t what, poolid_t id, void *arg)
8522 {
8523 pool_t *pool;
8524 char *poolname = NULL;
8525 struct mac_pool_arg *mpa;
8526
8527 pool_lock();
8528 mpa = kmem_zalloc(sizeof (struct mac_pool_arg), KM_SLEEP);
8529
8530 switch (what) {
8531 case POOL_E_ENABLE:
8532 case POOL_E_DISABLE:
8533 break;
8534
8535 case POOL_E_CHANGE:
8536 pool = pool_lookup_pool_by_id(id);
8537 if (pool == NULL) {
8538 kmem_free(mpa, sizeof (struct mac_pool_arg));
8539 pool_unlock();
8540 return;
8541 }
8542 pool_get_name(pool, &poolname);
8543 (void) strlcpy(mpa->mpa_poolname, poolname,
8544 sizeof (mpa->mpa_poolname));
8545 break;
8546
8547 default:
8548 kmem_free(mpa, sizeof (struct mac_pool_arg));
8549 pool_unlock();
8550 return;
8551 }
8552 pool_unlock();
8553
8554 mpa->mpa_what = what;
8555
8556 mac_pool_update(mpa);
8557 }
8558
8559 /*
8560 * Set effective rings property. This could be called from datapath_setup/
8561 * datapath_teardown or set-linkprop.
8562 * If the group is reserved we just go ahead and set the effective rings.
8563 * Additionally, for TX this could mean the default group has lost/gained
8564 * some rings, so if the default group is reserved, we need to adjust the
8565 * effective rings for the default group clients. For RX, if we are working
8566 * with the non-default group, we just need to reset the effective props
8567 * for the default group clients.
8568 */
8569 void
mac_set_rings_effective(mac_client_impl_t * mcip)8570 mac_set_rings_effective(mac_client_impl_t *mcip)
8571 {
8572 mac_impl_t *mip = mcip->mci_mip;
8573 mac_group_t *grp;
8574 mac_group_t *defgrp;
8575 flow_entry_t *flent = mcip->mci_flent;
8576 mac_resource_props_t *emrp = MCIP_EFFECTIVE_PROPS(mcip);
8577 mac_grp_client_t *mgcp;
8578 mac_client_impl_t *gmcip;
8579
8580 grp = flent->fe_rx_ring_group;
8581 if (grp != NULL) {
8582 defgrp = MAC_DEFAULT_RX_GROUP(mip);
8583 /*
8584 * If we have reserved a group, set the effective rings
8585 * to the ring count in the group.
8586 */
8587 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8588 emrp->mrp_mask |= MRP_RX_RINGS;
8589 emrp->mrp_nrxrings = grp->mrg_cur_count;
8590 }
8591
8592 /*
8593 * We go through the clients in the shared group and
8594 * reset the effective properties. It is possible this
8595 * might have already been done for some client (i.e.
8596 * if some client is being moved to a group that is
8597 * already shared). The case where the default group is
8598 * RESERVED is taken care of above (note in the RX side if
8599 * there is a non-default group, the default group is always
8600 * SHARED).
8601 */
8602 if (grp != defgrp || grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8603 if (grp->mrg_state == MAC_GROUP_STATE_SHARED)
8604 mgcp = grp->mrg_clients;
8605 else
8606 mgcp = defgrp->mrg_clients;
8607 while (mgcp != NULL) {
8608 gmcip = mgcp->mgc_client;
8609 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8610 if (emrp->mrp_mask & MRP_RX_RINGS) {
8611 emrp->mrp_mask &= ~MRP_RX_RINGS;
8612 emrp->mrp_nrxrings = 0;
8613 }
8614 mgcp = mgcp->mgc_next;
8615 }
8616 }
8617 }
8618
8619 /* Now the TX side */
8620 grp = flent->fe_tx_ring_group;
8621 if (grp != NULL) {
8622 defgrp = MAC_DEFAULT_TX_GROUP(mip);
8623
8624 if (grp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8625 emrp->mrp_mask |= MRP_TX_RINGS;
8626 emrp->mrp_ntxrings = grp->mrg_cur_count;
8627 } else if (grp->mrg_state == MAC_GROUP_STATE_SHARED) {
8628 mgcp = grp->mrg_clients;
8629 while (mgcp != NULL) {
8630 gmcip = mgcp->mgc_client;
8631 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8632 if (emrp->mrp_mask & MRP_TX_RINGS) {
8633 emrp->mrp_mask &= ~MRP_TX_RINGS;
8634 emrp->mrp_ntxrings = 0;
8635 }
8636 mgcp = mgcp->mgc_next;
8637 }
8638 }
8639
8640 /*
8641 * If the group is not the default group and the default
8642 * group is reserved, the ring count in the default group
8643 * might have changed, update it.
8644 */
8645 if (grp != defgrp &&
8646 defgrp->mrg_state == MAC_GROUP_STATE_RESERVED) {
8647 gmcip = MAC_GROUP_ONLY_CLIENT(defgrp);
8648 emrp = MCIP_EFFECTIVE_PROPS(gmcip);
8649 emrp->mrp_ntxrings = defgrp->mrg_cur_count;
8650 }
8651 }
8652 emrp = MCIP_EFFECTIVE_PROPS(mcip);
8653 }
8654
8655 /*
8656 * Check if the primary is in the default group. If so, see if we
8657 * can give it a an exclusive group now that another client is
8658 * being configured. We take the primary out of the default group
8659 * because the multicast/broadcast packets for the all the clients
8660 * will land in the default ring in the default group which means
8661 * any client in the default group, even if it is the only on in
8662 * the group, will lose exclusive access to the rings, hence
8663 * polling.
8664 */
8665 mac_client_impl_t *
mac_check_primary_relocation(mac_client_impl_t * mcip,boolean_t rxhw)8666 mac_check_primary_relocation(mac_client_impl_t *mcip, boolean_t rxhw)
8667 {
8668 mac_impl_t *mip = mcip->mci_mip;
8669 mac_group_t *defgrp = MAC_DEFAULT_RX_GROUP(mip);
8670 flow_entry_t *flent = mcip->mci_flent;
8671 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
8672 uint8_t *mac_addr;
8673 mac_group_t *ngrp;
8674
8675 /*
8676 * Check if the primary is in the default group, if not
8677 * or if it is explicitly configured to be in the default
8678 * group OR set the RX rings property, return.
8679 */
8680 if (flent->fe_rx_ring_group != defgrp || mrp->mrp_mask & MRP_RX_RINGS)
8681 return (NULL);
8682
8683 /*
8684 * If the new client needs an exclusive group and we
8685 * don't have another for the primary, return.
8686 */
8687 if (rxhw && mip->mi_rxhwclnt_avail < 2)
8688 return (NULL);
8689
8690 mac_addr = flent->fe_flow_desc.fd_dst_mac;
8691 /*
8692 * We call this when we are setting up the datapath for
8693 * the first non-primary.
8694 */
8695 ASSERT(mip->mi_nactiveclients == 2);
8696
8697 /*
8698 * OK, now we have the primary that needs to be relocated.
8699 */
8700 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
8701 if (ngrp == NULL)
8702 return (NULL);
8703 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
8704 mac_stop_group(ngrp);
8705 return (NULL);
8706 }
8707 return (mcip);
8708 }
8709
8710 void
mac_transceiver_init(mac_impl_t * mip)8711 mac_transceiver_init(mac_impl_t *mip)
8712 {
8713 if (mac_capab_get((mac_handle_t)mip, MAC_CAPAB_TRANSCEIVER,
8714 &mip->mi_transceiver)) {
8715 /*
8716 * The driver set a flag that we don't know about. In this case,
8717 * we need to warn about that case and ignore this capability.
8718 */
8719 if (mip->mi_transceiver.mct_flags != 0) {
8720 dev_err(mip->mi_dip, CE_WARN, "driver set transceiver "
8721 "flags to invalid value: 0x%x, ignoring "
8722 "capability", mip->mi_transceiver.mct_flags);
8723 bzero(&mip->mi_transceiver,
8724 sizeof (mac_capab_transceiver_t));
8725 }
8726 } else {
8727 bzero(&mip->mi_transceiver,
8728 sizeof (mac_capab_transceiver_t));
8729 }
8730 }
8731
8732 int
mac_transceiver_count(mac_handle_t mh,uint_t * countp)8733 mac_transceiver_count(mac_handle_t mh, uint_t *countp)
8734 {
8735 mac_impl_t *mip = (mac_impl_t *)mh;
8736
8737 ASSERT(MAC_PERIM_HELD(mh));
8738
8739 if (mip->mi_transceiver.mct_ntransceivers == 0)
8740 return (ENOTSUP);
8741
8742 *countp = mip->mi_transceiver.mct_ntransceivers;
8743 return (0);
8744 }
8745
8746 int
mac_transceiver_info(mac_handle_t mh,uint_t tranid,boolean_t * present,boolean_t * usable)8747 mac_transceiver_info(mac_handle_t mh, uint_t tranid, boolean_t *present,
8748 boolean_t *usable)
8749 {
8750 int ret;
8751 mac_transceiver_info_t info;
8752
8753 mac_impl_t *mip = (mac_impl_t *)mh;
8754
8755 ASSERT(MAC_PERIM_HELD(mh));
8756
8757 if (mip->mi_transceiver.mct_info == NULL ||
8758 mip->mi_transceiver.mct_ntransceivers == 0)
8759 return (ENOTSUP);
8760
8761 if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8762 return (EINVAL);
8763
8764 bzero(&info, sizeof (mac_transceiver_info_t));
8765 if ((ret = mip->mi_transceiver.mct_info(mip->mi_driver, tranid,
8766 &info)) != 0) {
8767 return (ret);
8768 }
8769
8770 *present = info.mti_present;
8771 *usable = info.mti_usable;
8772 return (0);
8773 }
8774
8775 int
mac_transceiver_read(mac_handle_t mh,uint_t tranid,uint_t page,void * buf,size_t nbytes,off_t offset,size_t * nread)8776 mac_transceiver_read(mac_handle_t mh, uint_t tranid, uint_t page, void *buf,
8777 size_t nbytes, off_t offset, size_t *nread)
8778 {
8779 int ret;
8780 size_t nr;
8781 mac_impl_t *mip = (mac_impl_t *)mh;
8782
8783 ASSERT(MAC_PERIM_HELD(mh));
8784
8785 if (mip->mi_transceiver.mct_read == NULL)
8786 return (ENOTSUP);
8787
8788 if (tranid >= mip->mi_transceiver.mct_ntransceivers)
8789 return (EINVAL);
8790
8791 /*
8792 * All supported pages today are 256 bytes wide. Make sure offset +
8793 * nbytes never exceeds that.
8794 */
8795 if (offset < 0 || offset >= 256 || nbytes > 256 ||
8796 offset + nbytes > 256)
8797 return (EINVAL);
8798
8799 if (nread == NULL)
8800 nread = &nr;
8801 ret = mip->mi_transceiver.mct_read(mip->mi_driver, tranid, page, buf,
8802 nbytes, offset, nread);
8803 if (ret == 0 && *nread > nbytes) {
8804 dev_err(mip->mi_dip, CE_PANIC, "driver wrote %lu bytes into "
8805 "%lu byte sized buffer, possible memory corruption",
8806 *nread, nbytes);
8807 }
8808
8809 return (ret);
8810 }
8811
8812 void
mac_led_init(mac_impl_t * mip)8813 mac_led_init(mac_impl_t *mip)
8814 {
8815 mip->mi_led_modes = MAC_LED_DEFAULT;
8816
8817 if (!mac_capab_get((mac_handle_t)mip, MAC_CAPAB_LED, &mip->mi_led)) {
8818 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8819 return;
8820 }
8821
8822 if (mip->mi_led.mcl_flags != 0) {
8823 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8824 "flags to invalid value: 0x%x, ignoring "
8825 "capability", mip->mi_transceiver.mct_flags);
8826 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8827 return;
8828 }
8829
8830 if ((mip->mi_led.mcl_modes & ~MAC_LED_ALL) != 0) {
8831 dev_err(mip->mi_dip, CE_WARN, "driver set led capability "
8832 "supported modes to invalid value: 0x%x, ignoring "
8833 "capability", mip->mi_transceiver.mct_flags);
8834 bzero(&mip->mi_led, sizeof (mac_capab_led_t));
8835 return;
8836 }
8837 }
8838
8839 int
mac_led_get(mac_handle_t mh,mac_led_mode_t * supported,mac_led_mode_t * active)8840 mac_led_get(mac_handle_t mh, mac_led_mode_t *supported, mac_led_mode_t *active)
8841 {
8842 mac_impl_t *mip = (mac_impl_t *)mh;
8843
8844 ASSERT(MAC_PERIM_HELD(mh));
8845
8846 if (mip->mi_led.mcl_set == NULL)
8847 return (ENOTSUP);
8848
8849 *supported = mip->mi_led.mcl_modes;
8850 *active = mip->mi_led_modes;
8851
8852 return (0);
8853 }
8854
8855 /*
8856 * Update and multiplex the various LED requests. We only ever send one LED to
8857 * the underlying driver at a time. As such, we end up multiplexing all
8858 * requested states and picking one to send down to the driver.
8859 */
8860 int
mac_led_set(mac_handle_t mh,mac_led_mode_t desired)8861 mac_led_set(mac_handle_t mh, mac_led_mode_t desired)
8862 {
8863 int ret;
8864 mac_led_mode_t driver;
8865
8866 mac_impl_t *mip = (mac_impl_t *)mh;
8867
8868 ASSERT(MAC_PERIM_HELD(mh));
8869
8870 /*
8871 * If we've been passed a desired value of zero, that indicates that
8872 * we're basically resetting to the value of zero, which is our default
8873 * value.
8874 */
8875 if (desired == 0)
8876 desired = MAC_LED_DEFAULT;
8877
8878 if (mip->mi_led.mcl_set == NULL)
8879 return (ENOTSUP);
8880
8881 /*
8882 * Catch both values that we don't know about and those that the driver
8883 * doesn't support.
8884 */
8885 if ((desired & ~MAC_LED_ALL) != 0)
8886 return (EINVAL);
8887
8888 if ((desired & ~mip->mi_led.mcl_modes) != 0)
8889 return (ENOTSUP);
8890
8891 /*
8892 * If we have the same value, then there is nothing to do.
8893 */
8894 if (desired == mip->mi_led_modes)
8895 return (0);
8896
8897 /*
8898 * Based on the desired value, determine what to send to the driver. We
8899 * only will send a single bit to the driver at any given time. IDENT
8900 * takes priority over OFF or ON. We also let OFF take priority over the
8901 * rest.
8902 */
8903 if (desired & MAC_LED_IDENT) {
8904 driver = MAC_LED_IDENT;
8905 } else if (desired & MAC_LED_OFF) {
8906 driver = MAC_LED_OFF;
8907 } else if (desired & MAC_LED_ON) {
8908 driver = MAC_LED_ON;
8909 } else {
8910 driver = MAC_LED_DEFAULT;
8911 }
8912
8913 if ((ret = mip->mi_led.mcl_set(mip->mi_driver, driver, 0)) == 0) {
8914 mip->mi_led_modes = desired;
8915 }
8916
8917 return (ret);
8918 }
8919
8920 /*
8921 * Send packets through the Tx ring ('mrh') or through the default
8922 * handler if no ring is specified. Before passing the packet down to
8923 * the MAC provider, emulate any hardware offloads which have been
8924 * requested but are not supported by the provider.
8925 */
8926 mblk_t *
mac_ring_tx(mac_handle_t mh,mac_ring_handle_t mrh,mblk_t * mp)8927 mac_ring_tx(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp)
8928 {
8929 mac_impl_t *mip = (mac_impl_t *)mh;
8930
8931 if (mrh == NULL)
8932 mrh = mip->mi_default_tx_ring;
8933
8934 if (mrh == NULL)
8935 return (mip->mi_tx(mip->mi_driver, mp));
8936 else
8937 return (mac_hwring_tx(mrh, mp));
8938 }
8939
8940 /*
8941 * This is the final stop before reaching the underlying MAC provider.
8942 * This is also where the bridging hook is inserted. Packets that are
8943 * bridged will return through mac_bridge_tx(), with rh nulled out if
8944 * the bridge chooses to send output on a different link due to
8945 * forwarding.
8946 */
8947 mblk_t *
mac_provider_tx(mac_impl_t * mip,mac_ring_handle_t rh,mblk_t * mp,mac_client_impl_t * mcip)8948 mac_provider_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp,
8949 mac_client_impl_t *mcip)
8950 {
8951 /*
8952 * If there is a bound Hybrid I/O share, send packets through
8953 * the default tx ring. When there's a bound Hybrid I/O share,
8954 * the tx rings of this client are mapped in the guest domain
8955 * and not accessible from here.
8956 */
8957 if (mcip->mci_state_flags & MCIS_SHARE_BOUND)
8958 rh = mip->mi_default_tx_ring;
8959
8960 if (mip->mi_promisc_list != NULL)
8961 mac_promisc_dispatch(mip, mp, mcip, B_FALSE);
8962
8963 if (mip->mi_bridge_link == NULL)
8964 return (mac_ring_tx((mac_handle_t)mip, rh, mp));
8965 else
8966 return (mac_bridge_tx(mip, rh, mp));
8967 }
8968