1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 * Copyright 2017 RackTop Systems.
26 */
27
28 /*
29 * - General Introduction:
30 *
31 * This file contains the implementation of the MAC client kernel
32 * API and related code. The MAC client API allows a kernel module
33 * to gain access to a MAC instance (physical NIC, link aggregation, etc).
34 * It allows a MAC client to associate itself with a MAC address,
35 * VLANs, callback functions for data traffic and for promiscuous mode.
36 * The MAC client API is also used to specify the properties associated
37 * with a MAC client, such as bandwidth limits, priority, CPUS, etc.
38 * These properties are further used to determine the hardware resources
39 * to allocate to the various MAC clients.
40 *
41 * - Primary MAC clients:
42 *
43 * The MAC client API refers to "primary MAC clients". A primary MAC
44 * client is a client which "owns" the primary MAC address of
45 * the underlying MAC instance. The primary MAC address is called out
46 * since it is associated with specific semantics: the primary MAC
47 * address is the MAC address which is assigned to the IP interface
48 * when it is plumbed, and the primary MAC address is assigned
49 * to VLAN data-links. The primary address of a MAC instance can
50 * also change dynamically from under the MAC client, for example
51 * as a result of a change of state of a link aggregation. In that
52 * case the MAC layer automatically updates all data-structures which
53 * refer to the current value of the primary MAC address. Typical
54 * primary MAC clients are dls, aggr, and xnb. A typical non-primary
55 * MAC client is the vnic driver.
56 *
57 * - Virtual Switching:
58 *
59 * The MAC layer implements a virtual switch between the MAC clients
60 * (primary and non-primary) defined on top of the same underlying
61 * NIC (physical, link aggregation, etc). The virtual switch is
62 * VLAN-aware, i.e. it allows multiple MAC clients to be member
63 * of one or more VLANs, and the virtual switch will distribute
64 * multicast tagged packets only to the member of the corresponding
65 * VLANs.
66 *
67 * - Upper vs Lower MAC:
68 *
69 * Creating a VNIC on top of a MAC instance effectively causes
70 * two MAC instances to be layered on top of each other, one for
71 * the VNIC(s), one for the underlying MAC instance (physical NIC,
72 * link aggregation, etc). In the code below we refer to the
73 * underlying NIC as the "lower MAC", and we refer to VNICs as
74 * the "upper MAC".
75 *
76 * - Pass-through for VNICs:
77 *
78 * When VNICs are created on top of an underlying MAC, this causes
79 * a layering of two MAC instances. Since the lower MAC already
80 * does the switching and demultiplexing to its MAC clients, the
81 * upper MAC would simply have to pass packets to the layer below
82 * or above it, which would introduce overhead. In order to avoid
83 * this overhead, the MAC layer implements a pass-through mechanism
84 * for VNICs. When a VNIC opens the lower MAC instance, it saves
85 * the MAC client handle it optains from the MAC layer. When a MAC
86 * client opens a VNIC (upper MAC), the MAC layer detects that
87 * the MAC being opened is a VNIC, and gets the MAC client handle
88 * that the VNIC driver obtained from the lower MAC. This exchange
89 * is done through a private capability between the MAC layer
90 * and the VNIC driver. The upper MAC then returns that handle
91 * directly to its MAC client. Any operation done by the upper
92 * MAC client is now done on the lower MAC client handle, which
93 * allows the VNIC driver to be completely bypassed for the
94 * performance sensitive data-path.
95 *
96 * - Secondary MACs for VNICs:
97 *
98 * VNICs support multiple upper mac clients to enable support for
99 * multiple MAC addresses on the VNIC. When the VNIC is created the
100 * initial mac client is the primary upper mac. Any additional mac
101 * clients are secondary macs. These are kept in sync with the primary
102 * (for things such as the rx function and resource control settings)
103 * using the same private capability interface between the MAC layer
104 * and the VNIC layer.
105 *
106 */
107
108 #include <sys/types.h>
109 #include <sys/conf.h>
110 #include <sys/id_space.h>
111 #include <sys/esunddi.h>
112 #include <sys/stat.h>
113 #include <sys/mkdev.h>
114 #include <sys/stream.h>
115 #include <sys/strsun.h>
116 #include <sys/strsubr.h>
117 #include <sys/dlpi.h>
118 #include <sys/modhash.h>
119 #include <sys/mac_impl.h>
120 #include <sys/mac_client_impl.h>
121 #include <sys/mac_soft_ring.h>
122 #include <sys/mac_stat.h>
123 #include <sys/dls.h>
124 #include <sys/dld.h>
125 #include <sys/modctl.h>
126 #include <sys/fs/dv_node.h>
127 #include <sys/thread.h>
128 #include <sys/proc.h>
129 #include <sys/callb.h>
130 #include <sys/cpuvar.h>
131 #include <sys/atomic.h>
132 #include <sys/sdt.h>
133 #include <sys/mac_flow.h>
134 #include <sys/ddi_intr_impl.h>
135 #include <sys/disp.h>
136 #include <sys/sdt.h>
137 #include <sys/vnic.h>
138 #include <sys/vnic_impl.h>
139 #include <sys/vlan.h>
140 #include <inet/ip.h>
141 #include <inet/ip6.h>
142 #include <sys/exacct.h>
143 #include <sys/exacct_impl.h>
144 #include <inet/nd.h>
145 #include <sys/ethernet.h>
146
147 kmem_cache_t *mac_client_impl_cache;
148 kmem_cache_t *mac_promisc_impl_cache;
149
150 static boolean_t mac_client_single_rcvr(mac_client_impl_t *);
151 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *);
152 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *,
153 mac_unicast_impl_t *);
154 static void mac_client_remove_flow_from_list(mac_client_impl_t *,
155 flow_entry_t *);
156 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *);
157 static void mac_rename_flow_names(mac_client_impl_t *, const char *);
158 static void mac_virtual_link_update(mac_impl_t *);
159 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t,
160 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *);
161 static void mac_client_datapath_teardown(mac_client_handle_t,
162 mac_unicast_impl_t *, flow_entry_t *);
163 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *);
164
165 /* ARGSUSED */
166 static int
i_mac_client_impl_ctor(void * buf,void * arg,int kmflag)167 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag)
168 {
169 int i;
170 mac_client_impl_t *mcip = buf;
171
172 bzero(buf, MAC_CLIENT_IMPL_SIZE);
173 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL);
174 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock;
175
176 ASSERT(mac_tx_percpu_cnt >= 0);
177 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
178 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL,
179 MUTEX_DRIVER, NULL);
180 }
181 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL);
182
183 return (0);
184 }
185
186 /* ARGSUSED */
187 static void
i_mac_client_impl_dtor(void * buf,void * arg)188 i_mac_client_impl_dtor(void *buf, void *arg)
189 {
190 int i;
191 mac_client_impl_t *mcip = buf;
192
193 ASSERT(mcip->mci_promisc_list == NULL);
194 ASSERT(mcip->mci_unicast_list == NULL);
195 ASSERT(mcip->mci_state_flags == 0);
196 ASSERT(mcip->mci_tx_flag == 0);
197
198 mutex_destroy(&mcip->mci_tx_cb_lock);
199
200 ASSERT(mac_tx_percpu_cnt >= 0);
201 for (i = 0; i <= mac_tx_percpu_cnt; i++) {
202 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0);
203 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
204 }
205 cv_destroy(&mcip->mci_tx_cv);
206 }
207
208 /* ARGSUSED */
209 static int
i_mac_promisc_impl_ctor(void * buf,void * arg,int kmflag)210 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag)
211 {
212 mac_promisc_impl_t *mpip = buf;
213
214 bzero(buf, sizeof (mac_promisc_impl_t));
215 mpip->mpi_mci_link.mcb_objp = buf;
216 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t);
217 mpip->mpi_mi_link.mcb_objp = buf;
218 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t);
219 return (0);
220 }
221
222 /* ARGSUSED */
223 static void
i_mac_promisc_impl_dtor(void * buf,void * arg)224 i_mac_promisc_impl_dtor(void *buf, void *arg)
225 {
226 mac_promisc_impl_t *mpip = buf;
227
228 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL);
229 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t));
230 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp);
231 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t));
232
233 mpip->mpi_mci_link.mcb_objp = NULL;
234 mpip->mpi_mci_link.mcb_objsize = 0;
235 mpip->mpi_mi_link.mcb_objp = NULL;
236 mpip->mpi_mi_link.mcb_objsize = 0;
237
238 ASSERT(mpip->mpi_mci_link.mcb_flags == 0);
239 mpip->mpi_mci_link.mcb_objsize = 0;
240 }
241
242 void
mac_client_init(void)243 mac_client_init(void)
244 {
245 ASSERT(mac_tx_percpu_cnt >= 0);
246
247 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache",
248 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor,
249 i_mac_client_impl_dtor, NULL, NULL, NULL, 0);
250 ASSERT(mac_client_impl_cache != NULL);
251
252 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache",
253 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor,
254 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0);
255 ASSERT(mac_promisc_impl_cache != NULL);
256 }
257
258 void
mac_client_fini(void)259 mac_client_fini(void)
260 {
261 kmem_cache_destroy(mac_client_impl_cache);
262 kmem_cache_destroy(mac_promisc_impl_cache);
263 }
264
265 /*
266 * Return the lower MAC client handle from the VNIC driver for the
267 * specified VNIC MAC instance.
268 */
269 mac_client_impl_t *
mac_vnic_lower(mac_impl_t * mip)270 mac_vnic_lower(mac_impl_t *mip)
271 {
272 mac_capab_vnic_t cap;
273 mac_client_impl_t *mcip;
274
275 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
276 mcip = cap.mcv_mac_client_handle(cap.mcv_arg);
277
278 return (mcip);
279 }
280
281 /*
282 * Update the secondary macs
283 */
284 void
mac_vnic_secondary_update(mac_impl_t * mip)285 mac_vnic_secondary_update(mac_impl_t *mip)
286 {
287 mac_capab_vnic_t cap;
288
289 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap));
290 cap.mcv_mac_secondary_update(cap.mcv_arg);
291 }
292
293 /*
294 * Return the MAC client handle of the primary MAC client for the
295 * specified MAC instance, or NULL otherwise.
296 */
297 mac_client_impl_t *
mac_primary_client_handle(mac_impl_t * mip)298 mac_primary_client_handle(mac_impl_t *mip)
299 {
300 mac_client_impl_t *mcip;
301
302 if (mip->mi_state_flags & MIS_IS_VNIC)
303 return (mac_vnic_lower(mip));
304
305 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
306
307 for (mcip = mip->mi_clients_list; mcip != NULL;
308 mcip = mcip->mci_client_next) {
309 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip))
310 return (mcip);
311 }
312 return (NULL);
313 }
314
315 /*
316 * Open a MAC specified by its MAC name.
317 */
318 int
mac_open(const char * macname,mac_handle_t * mhp)319 mac_open(const char *macname, mac_handle_t *mhp)
320 {
321 mac_impl_t *mip;
322 int err;
323
324 /*
325 * Look up its entry in the global hash table.
326 */
327 if ((err = mac_hold(macname, &mip)) != 0)
328 return (err);
329
330 /*
331 * Hold the dip associated to the MAC to prevent it from being
332 * detached. For a softmac, its underlying dip is held by the
333 * mi_open() callback.
334 *
335 * This is done to be more tolerant with some defective drivers,
336 * which incorrectly handle mac_unregister() failure in their
337 * xxx_detach() routine. For example, some drivers ignore the
338 * failure of mac_unregister() and free all resources that
339 * that are needed for data transmition.
340 */
341 e_ddi_hold_devi(mip->mi_dip);
342
343 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) {
344 *mhp = (mac_handle_t)mip;
345 return (0);
346 }
347
348 /*
349 * The mac perimeter is used in both mac_open and mac_close by the
350 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
351 */
352 i_mac_perim_enter(mip);
353 mip->mi_oref++;
354 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) {
355 *mhp = (mac_handle_t)mip;
356 i_mac_perim_exit(mip);
357 return (0);
358 }
359 mip->mi_oref--;
360 ddi_release_devi(mip->mi_dip);
361 mac_rele(mip);
362 i_mac_perim_exit(mip);
363 return (err);
364 }
365
366 /*
367 * Open a MAC specified by its linkid.
368 */
369 int
mac_open_by_linkid(datalink_id_t linkid,mac_handle_t * mhp)370 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp)
371 {
372 dls_dl_handle_t dlh;
373 int err;
374
375 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0)
376 return (err);
377
378 dls_devnet_prop_task_wait(dlh);
379
380 err = mac_open(dls_devnet_mac(dlh), mhp);
381
382 dls_devnet_rele_tmp(dlh);
383 return (err);
384 }
385
386 /*
387 * Open a MAC specified by its link name.
388 */
389 int
mac_open_by_linkname(const char * link,mac_handle_t * mhp)390 mac_open_by_linkname(const char *link, mac_handle_t *mhp)
391 {
392 datalink_id_t linkid;
393 int err;
394
395 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0)
396 return (err);
397 return (mac_open_by_linkid(linkid, mhp));
398 }
399
400 /*
401 * Close the specified MAC.
402 */
403 void
mac_close(mac_handle_t mh)404 mac_close(mac_handle_t mh)
405 {
406 mac_impl_t *mip = (mac_impl_t *)mh;
407
408 i_mac_perim_enter(mip);
409 /*
410 * The mac perimeter is used in both mac_open and mac_close by the
411 * framework to single thread the MC_OPEN/MC_CLOSE of drivers.
412 */
413 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) {
414 ASSERT(mip->mi_oref != 0);
415 if (--mip->mi_oref == 0) {
416 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE))
417 mip->mi_close(mip->mi_driver);
418 }
419 }
420 i_mac_perim_exit(mip);
421 ddi_release_devi(mip->mi_dip);
422 mac_rele(mip);
423 }
424
425 /*
426 * Misc utility functions to retrieve various information about a MAC
427 * instance or a MAC client.
428 */
429
430 const mac_info_t *
mac_info(mac_handle_t mh)431 mac_info(mac_handle_t mh)
432 {
433 return (&((mac_impl_t *)mh)->mi_info);
434 }
435
436 dev_info_t *
mac_devinfo_get(mac_handle_t mh)437 mac_devinfo_get(mac_handle_t mh)
438 {
439 return (((mac_impl_t *)mh)->mi_dip);
440 }
441
442 void *
mac_driver(mac_handle_t mh)443 mac_driver(mac_handle_t mh)
444 {
445 return (((mac_impl_t *)mh)->mi_driver);
446 }
447
448 const char *
mac_name(mac_handle_t mh)449 mac_name(mac_handle_t mh)
450 {
451 return (((mac_impl_t *)mh)->mi_name);
452 }
453
454 int
mac_type(mac_handle_t mh)455 mac_type(mac_handle_t mh)
456 {
457 return (((mac_impl_t *)mh)->mi_type->mt_type);
458 }
459
460 int
mac_nativetype(mac_handle_t mh)461 mac_nativetype(mac_handle_t mh)
462 {
463 return (((mac_impl_t *)mh)->mi_type->mt_nativetype);
464 }
465
466 char *
mac_client_name(mac_client_handle_t mch)467 mac_client_name(mac_client_handle_t mch)
468 {
469 return (((mac_client_impl_t *)mch)->mci_name);
470 }
471
472 minor_t
mac_minor(mac_handle_t mh)473 mac_minor(mac_handle_t mh)
474 {
475 return (((mac_impl_t *)mh)->mi_minor);
476 }
477
478 /*
479 * Return the VID associated with a MAC client. This function should
480 * be called for clients which are associated with only one VID.
481 */
482 uint16_t
mac_client_vid(mac_client_handle_t mch)483 mac_client_vid(mac_client_handle_t mch)
484 {
485 uint16_t vid = VLAN_ID_NONE;
486 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
487 flow_desc_t flow_desc;
488
489 if (mcip->mci_nflents == 0)
490 return (vid);
491
492 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip));
493
494 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
495 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
496 vid = flow_desc.fd_vid;
497
498 return (vid);
499 }
500
501 /*
502 * Return whether the specified MAC client corresponds to a VLAN VNIC.
503 */
504 boolean_t
mac_client_is_vlan_vnic(mac_client_handle_t mch)505 mac_client_is_vlan_vnic(mac_client_handle_t mch)
506 {
507 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
508
509 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) &&
510 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0));
511 }
512
513 /*
514 * Return the link speed associated with the specified MAC client.
515 *
516 * The link speed of a MAC client is equal to the smallest value of
517 * 1) the current link speed of the underlying NIC, or
518 * 2) the bandwidth limit set for the MAC client.
519 *
520 * Note that the bandwidth limit can be higher than the speed
521 * of the underlying NIC. This is allowed to avoid spurious
522 * administration action failures or artifically lowering the
523 * bandwidth limit of a link that may have temporarily lowered
524 * its link speed due to hardware problem or administrator action.
525 */
526 static uint64_t
mac_client_ifspeed(mac_client_impl_t * mcip)527 mac_client_ifspeed(mac_client_impl_t *mcip)
528 {
529 mac_impl_t *mip = mcip->mci_mip;
530 uint64_t nic_speed;
531
532 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED);
533
534 if (nic_speed == 0) {
535 return (0);
536 } else {
537 uint64_t policy_limit = (uint64_t)-1;
538
539 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW)
540 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip);
541
542 return (MIN(policy_limit, nic_speed));
543 }
544 }
545
546 /*
547 * Return the link state of the specified client. If here are more
548 * than one clients of the underying mac_impl_t, the link state
549 * will always be UP regardless of the link state of the underlying
550 * mac_impl_t. This is needed to allow the MAC clients to continue
551 * to communicate with each other even when the physical link of
552 * their mac_impl_t is down.
553 */
554 static uint64_t
mac_client_link_state(mac_client_impl_t * mcip)555 mac_client_link_state(mac_client_impl_t *mcip)
556 {
557 mac_impl_t *mip = mcip->mci_mip;
558 uint16_t vid;
559 mac_client_impl_t *mci_list;
560 mac_unicast_impl_t *mui_list, *oth_mui_list;
561
562 /*
563 * Returns LINK_STATE_UP if there are other MAC clients defined on
564 * mac_impl_t which share same VLAN ID as that of mcip. Note that
565 * if 'mcip' has more than one VID's then we match ANY one of the
566 * VID's with other MAC client's VID's and return LINK_STATE_UP.
567 */
568 rw_enter(&mcip->mci_rw_lock, RW_READER);
569 for (mui_list = mcip->mci_unicast_list; mui_list != NULL;
570 mui_list = mui_list->mui_next) {
571 vid = mui_list->mui_vid;
572 for (mci_list = mip->mi_clients_list; mci_list != NULL;
573 mci_list = mci_list->mci_client_next) {
574 if (mci_list == mcip)
575 continue;
576 for (oth_mui_list = mci_list->mci_unicast_list;
577 oth_mui_list != NULL; oth_mui_list = oth_mui_list->
578 mui_next) {
579 if (vid == oth_mui_list->mui_vid) {
580 rw_exit(&mcip->mci_rw_lock);
581 return (LINK_STATE_UP);
582 }
583 }
584 }
585 }
586 rw_exit(&mcip->mci_rw_lock);
587
588 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE));
589 }
590
591 /*
592 * These statistics are consumed by dladm show-link -s <vnic>,
593 * dladm show-vnic -s and netstat. With the introduction of dlstat,
594 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while
595 * netstat will consume from kstats introduced for dlstat. This code
596 * will be removed at that time.
597 */
598
599 /*
600 * Return the statistics of a MAC client. These statistics are different
601 * then the statistics of the underlying MAC which are returned by
602 * mac_stat_get().
603 *
604 * Note that for things based on the tx and rx stats, mac will end up clobbering
605 * those stats when the underlying set of rings in the srs changes. As such, we
606 * need to source not only the current set, but also the historical set when
607 * returning to the client, lest our counters appear to go backwards.
608 */
609 uint64_t
mac_client_stat_get(mac_client_handle_t mch,uint_t stat)610 mac_client_stat_get(mac_client_handle_t mch, uint_t stat)
611 {
612 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
613 mac_impl_t *mip = mcip->mci_mip;
614 flow_entry_t *flent = mcip->mci_flent;
615 mac_soft_ring_set_t *mac_srs;
616 mac_rx_stats_t *mac_rx_stat, *old_rx_stat;
617 mac_tx_stats_t *mac_tx_stat, *old_tx_stat;
618 int i;
619 uint64_t val = 0;
620
621 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs);
622 mac_tx_stat = &mac_srs->srs_tx.st_stat;
623 old_rx_stat = &mcip->mci_misc_stat.mms_defunctrxlanestats;
624 old_tx_stat = &mcip->mci_misc_stat.mms_defuncttxlanestats;
625
626 switch (stat) {
627 case MAC_STAT_LINK_STATE:
628 val = mac_client_link_state(mcip);
629 break;
630 case MAC_STAT_LINK_UP:
631 val = (mac_client_link_state(mcip) == LINK_STATE_UP);
632 break;
633 case MAC_STAT_PROMISC:
634 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC);
635 break;
636 case MAC_STAT_LOWLINK_STATE:
637 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE);
638 break;
639 case MAC_STAT_IFSPEED:
640 val = mac_client_ifspeed(mcip);
641 break;
642 case MAC_STAT_MULTIRCV:
643 val = mcip->mci_misc_stat.mms_multircv;
644 break;
645 case MAC_STAT_BRDCSTRCV:
646 val = mcip->mci_misc_stat.mms_brdcstrcv;
647 break;
648 case MAC_STAT_MULTIXMT:
649 val = mcip->mci_misc_stat.mms_multixmt;
650 break;
651 case MAC_STAT_BRDCSTXMT:
652 val = mcip->mci_misc_stat.mms_brdcstxmt;
653 break;
654 case MAC_STAT_OBYTES:
655 val = mac_tx_stat->mts_obytes;
656 val += old_tx_stat->mts_obytes;
657 break;
658 case MAC_STAT_OPACKETS:
659 val = mac_tx_stat->mts_opackets;
660 val += old_tx_stat->mts_opackets;
661 break;
662 case MAC_STAT_OERRORS:
663 val = mac_tx_stat->mts_oerrors;
664 val += old_tx_stat->mts_oerrors;
665 break;
666 case MAC_STAT_IPACKETS:
667 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
668 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
669 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
670 val += mac_rx_stat->mrs_intrcnt +
671 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt;
672 }
673 val += old_rx_stat->mrs_intrcnt + old_rx_stat->mrs_pollcnt +
674 old_rx_stat->mrs_lclcnt;
675 break;
676 case MAC_STAT_RBYTES:
677 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
678 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
679 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
680 val += mac_rx_stat->mrs_intrbytes +
681 mac_rx_stat->mrs_pollbytes +
682 mac_rx_stat->mrs_lclbytes;
683 }
684 val += old_rx_stat->mrs_intrbytes + old_rx_stat->mrs_pollbytes +
685 old_rx_stat->mrs_lclbytes;
686 break;
687 case MAC_STAT_IERRORS:
688 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
689 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
690 mac_rx_stat = &mac_srs->srs_rx.sr_stat;
691 val += mac_rx_stat->mrs_ierrors;
692 }
693 val += old_rx_stat->mrs_ierrors;
694 break;
695 default:
696 val = mac_driver_stat_default(mip, stat);
697 break;
698 }
699
700 return (val);
701 }
702
703 /*
704 * Return the statistics of the specified MAC instance.
705 */
706 uint64_t
mac_stat_get(mac_handle_t mh,uint_t stat)707 mac_stat_get(mac_handle_t mh, uint_t stat)
708 {
709 mac_impl_t *mip = (mac_impl_t *)mh;
710 uint64_t val;
711 int ret;
712
713 /*
714 * The range of stat determines where it is maintained. Stat
715 * values from 0 up to (but not including) MAC_STAT_MIN are
716 * mainteined by the mac module itself. Everything else is
717 * maintained by the driver.
718 *
719 * If the mac_impl_t being queried corresponds to a VNIC,
720 * the stats need to be queried from the lower MAC client
721 * corresponding to the VNIC. (The mac_link_update()
722 * invoked by the driver to the lower MAC causes the *lower
723 * MAC* to update its mi_linkstate, and send a notification
724 * to its MAC clients. Due to the VNIC passthrough,
725 * these notifications are sent to the upper MAC clients
726 * of the VNIC directly, and the upper mac_impl_t of the VNIC
727 * does not have a valid mi_linkstate.
728 */
729 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) {
730 /* these stats are maintained by the mac module itself */
731 switch (stat) {
732 case MAC_STAT_LINK_STATE:
733 return (mip->mi_linkstate);
734 case MAC_STAT_LINK_UP:
735 return (mip->mi_linkstate == LINK_STATE_UP);
736 case MAC_STAT_PROMISC:
737 return (mip->mi_devpromisc != 0);
738 case MAC_STAT_LOWLINK_STATE:
739 return (mip->mi_lowlinkstate);
740 default:
741 ASSERT(B_FALSE);
742 }
743 }
744
745 /*
746 * Call the driver to get the given statistic.
747 */
748 ret = mip->mi_getstat(mip->mi_driver, stat, &val);
749 if (ret != 0) {
750 /*
751 * The driver doesn't support this statistic. Get the
752 * statistic's default value.
753 */
754 val = mac_driver_stat_default(mip, stat);
755 }
756 return (val);
757 }
758
759 /*
760 * Query hardware rx ring corresponding to the pseudo ring.
761 */
762 uint64_t
mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)763 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
764 {
765 return (mac_rx_ring_stat_get(handle, stat));
766 }
767
768 /*
769 * Query hardware tx ring corresponding to the pseudo ring.
770 */
771 uint64_t
mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle,uint_t stat)772 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat)
773 {
774 return (mac_tx_ring_stat_get(handle, stat));
775 }
776
777 /*
778 * Utility function which returns the VID associated with a flow entry.
779 */
780 uint16_t
i_mac_flow_vid(flow_entry_t * flent)781 i_mac_flow_vid(flow_entry_t *flent)
782 {
783 flow_desc_t flow_desc;
784
785 mac_flow_get_desc(flent, &flow_desc);
786
787 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0)
788 return (flow_desc.fd_vid);
789 return (VLAN_ID_NONE);
790 }
791
792 /*
793 * Verify the validity of the specified unicast MAC address. Returns B_TRUE
794 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect
795 * length.
796 */
797 boolean_t
mac_unicst_verify(mac_handle_t mh,const uint8_t * addr,uint_t len)798 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len)
799 {
800 mac_impl_t *mip = (mac_impl_t *)mh;
801
802 /*
803 * Verify the address. No lock is needed since mi_type and plugin
804 * details don't change after mac_register().
805 */
806 if ((len != mip->mi_type->mt_addr_length) ||
807 (mip->mi_type->mt_ops.mtops_unicst_verify(addr,
808 mip->mi_pdata)) != 0) {
809 return (B_FALSE);
810 } else {
811 return (B_TRUE);
812 }
813 }
814
815 void
mac_sdu_get(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu)816 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu)
817 {
818 mac_impl_t *mip = (mac_impl_t *)mh;
819
820 if (min_sdu != NULL)
821 *min_sdu = mip->mi_sdu_min;
822 if (max_sdu != NULL)
823 *max_sdu = mip->mi_sdu_max;
824 }
825
826 void
mac_sdu_get2(mac_handle_t mh,uint_t * min_sdu,uint_t * max_sdu,uint_t * multicast_sdu)827 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu,
828 uint_t *multicast_sdu)
829 {
830 mac_impl_t *mip = (mac_impl_t *)mh;
831
832 if (min_sdu != NULL)
833 *min_sdu = mip->mi_sdu_min;
834 if (max_sdu != NULL)
835 *max_sdu = mip->mi_sdu_max;
836 if (multicast_sdu != NULL)
837 *multicast_sdu = mip->mi_sdu_multicast;
838 }
839
840 /*
841 * Update the MAC unicast address of the specified client's flows. Currently
842 * only one unicast MAC unicast address is allowed per client.
843 */
844 static void
mac_unicast_update_client_flow(mac_client_impl_t * mcip)845 mac_unicast_update_client_flow(mac_client_impl_t *mcip)
846 {
847 mac_impl_t *mip = mcip->mci_mip;
848 flow_entry_t *flent = mcip->mci_flent;
849 mac_address_t *map = mcip->mci_unicast;
850 flow_desc_t flow_desc;
851
852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
853 ASSERT(flent != NULL);
854
855 mac_flow_get_desc(flent, &flow_desc);
856 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST);
857
858 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
859 mac_flow_set_desc(flent, &flow_desc);
860
861 /*
862 * The v6 local and SLAAC addrs (used by mac protection) need to be
863 * regenerated because our mac address has changed.
864 */
865 mac_protect_update_mac_token(mcip);
866
867 /*
868 * A MAC client could have one MAC address but multiple
869 * VLANs. In that case update the flow entries corresponding
870 * to all VLANs of the MAC client.
871 */
872 for (flent = mcip->mci_flent_list; flent != NULL;
873 flent = flent->fe_client_next) {
874 mac_flow_get_desc(flent, &flow_desc);
875 if (!(flent->fe_type & FLOW_PRIMARY_MAC ||
876 flent->fe_type & FLOW_VNIC_MAC))
877 continue;
878
879 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len);
880 mac_flow_set_desc(flent, &flow_desc);
881 }
882 }
883
884 /*
885 * Update all clients that share the same unicast address.
886 */
887 void
mac_unicast_update_clients(mac_impl_t * mip,mac_address_t * map)888 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map)
889 {
890 mac_client_impl_t *mcip;
891
892 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
893
894 /*
895 * Find all clients that share the same unicast MAC address and update
896 * them appropriately.
897 */
898 for (mcip = mip->mi_clients_list; mcip != NULL;
899 mcip = mcip->mci_client_next) {
900 /*
901 * Ignore clients that don't share this MAC address.
902 */
903 if (map != mcip->mci_unicast)
904 continue;
905
906 /*
907 * Update those clients with same old unicast MAC address.
908 */
909 mac_unicast_update_client_flow(mcip);
910 }
911 }
912
913 /*
914 * Update the unicast MAC address of the specified VNIC MAC client.
915 *
916 * Check whether the operation is valid. Any of following cases should fail:
917 *
918 * 1. It's a VLAN type of VNIC.
919 * 2. The new value is current "primary" MAC address.
920 * 3. The current MAC address is shared with other clients.
921 * 4. The new MAC address has been used. This case will be valid when
922 * client migration is fully supported.
923 */
924 int
mac_vnic_unicast_set(mac_client_handle_t mch,const uint8_t * addr)925 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr)
926 {
927 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
928 mac_impl_t *mip = mcip->mci_mip;
929 mac_address_t *map = mcip->mci_unicast;
930 int err;
931
932 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC));
933 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC);
934 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY);
935
936 i_mac_perim_enter(mip);
937
938 /*
939 * If this is a VLAN type of VNIC, it's using "primary" MAC address
940 * of the underlying interface. Must fail here. Refer to case 1 above.
941 */
942 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) {
943 i_mac_perim_exit(mip);
944 return (ENOTSUP);
945 }
946
947 /*
948 * If the new address is the "primary" one, must fail. Refer to
949 * case 2 above.
950 */
951 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) {
952 i_mac_perim_exit(mip);
953 return (EACCES);
954 }
955
956 /*
957 * If the address is shared by multiple clients, must fail. Refer
958 * to case 3 above.
959 */
960 if (mac_check_macaddr_shared(map)) {
961 i_mac_perim_exit(mip);
962 return (EBUSY);
963 }
964
965 /*
966 * If the new address has been used, must fail for now. Refer to
967 * case 4 above.
968 */
969 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) {
970 i_mac_perim_exit(mip);
971 return (ENOTSUP);
972 }
973
974 /*
975 * Update the MAC address.
976 */
977 err = mac_update_macaddr(map, (uint8_t *)addr);
978
979 if (err != 0) {
980 i_mac_perim_exit(mip);
981 return (err);
982 }
983
984 /*
985 * Update all flows of this MAC client.
986 */
987 mac_unicast_update_client_flow(mcip);
988
989 i_mac_perim_exit(mip);
990 return (0);
991 }
992
993 /*
994 * Program the new primary unicast address of the specified MAC.
995 *
996 * Function mac_update_macaddr() takes care different types of underlying
997 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd
998 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set()
999 * which will take care of updating the MAC address of the corresponding
1000 * MAC client.
1001 *
1002 * This is the only interface that allow the client to update the "primary"
1003 * MAC address of the underlying MAC. The new value must have not been
1004 * used by other clients.
1005 */
1006 int
mac_unicast_primary_set(mac_handle_t mh,const uint8_t * addr)1007 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr)
1008 {
1009 mac_impl_t *mip = (mac_impl_t *)mh;
1010 mac_address_t *map;
1011 int err;
1012
1013 /* verify the address validity */
1014 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length))
1015 return (EINVAL);
1016
1017 i_mac_perim_enter(mip);
1018
1019 /*
1020 * If the new value is the same as the current primary address value,
1021 * there's nothing to do.
1022 */
1023 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) {
1024 i_mac_perim_exit(mip);
1025 return (0);
1026 }
1027
1028 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) {
1029 i_mac_perim_exit(mip);
1030 return (EBUSY);
1031 }
1032
1033 map = mac_find_macaddr(mip, mip->mi_addr);
1034 ASSERT(map != NULL);
1035
1036 /*
1037 * Update the MAC address.
1038 */
1039 if (mip->mi_state_flags & MIS_IS_AGGR) {
1040 mac_capab_aggr_t aggr_cap;
1041
1042 /*
1043 * If the mac is an aggregation, other than the unicast
1044 * addresses programming, aggr must be informed about this
1045 * primary unicst address change to change its mac address
1046 * policy to be user-specified.
1047 */
1048 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED);
1049 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap));
1050 err = aggr_cap.mca_unicst(mip->mi_driver, addr);
1051 if (err == 0)
1052 bcopy(addr, map->ma_addr, map->ma_len);
1053 } else {
1054 err = mac_update_macaddr(map, (uint8_t *)addr);
1055 }
1056
1057 if (err != 0) {
1058 i_mac_perim_exit(mip);
1059 return (err);
1060 }
1061
1062 mac_unicast_update_clients(mip, map);
1063
1064 /*
1065 * Save the new primary MAC address in mac_impl_t.
1066 */
1067 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length);
1068
1069 i_mac_perim_exit(mip);
1070
1071 if (err == 0)
1072 i_mac_notify(mip, MAC_NOTE_UNICST);
1073
1074 return (err);
1075 }
1076
1077 /*
1078 * Return the current primary MAC address of the specified MAC.
1079 */
1080 void
mac_unicast_primary_get(mac_handle_t mh,uint8_t * addr)1081 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr)
1082 {
1083 mac_impl_t *mip = (mac_impl_t *)mh;
1084
1085 rw_enter(&mip->mi_rw_lock, RW_READER);
1086 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length);
1087 rw_exit(&mip->mi_rw_lock);
1088 }
1089
1090 /*
1091 * Return the secondary MAC address for the specified handle
1092 */
1093 void
mac_unicast_secondary_get(mac_client_handle_t mh,uint8_t * addr)1094 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr)
1095 {
1096 mac_client_impl_t *mcip = (mac_client_impl_t *)mh;
1097
1098 ASSERT(mcip->mci_unicast != NULL);
1099 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len);
1100 }
1101
1102 /*
1103 * Return information about the use of the primary MAC address of the
1104 * specified MAC instance:
1105 *
1106 * - if client_name is non-NULL, it must point to a string of at
1107 * least MAXNAMELEN bytes, and will be set to the name of the MAC
1108 * client which uses the primary MAC address.
1109 *
1110 * - if in_use is non-NULL, used to return whether the primary MAC
1111 * address is currently in use.
1112 */
1113 void
mac_unicast_primary_info(mac_handle_t mh,char * client_name,boolean_t * in_use)1114 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use)
1115 {
1116 mac_impl_t *mip = (mac_impl_t *)mh;
1117 mac_client_impl_t *cur_client;
1118
1119 if (in_use != NULL)
1120 *in_use = B_FALSE;
1121 if (client_name != NULL)
1122 bzero(client_name, MAXNAMELEN);
1123
1124 /*
1125 * The mi_rw_lock is used to protect threads that don't hold the
1126 * mac perimeter to get a consistent view of the mi_clients_list.
1127 * Threads that modify the list must hold both the mac perimeter and
1128 * mi_rw_lock(RW_WRITER)
1129 */
1130 rw_enter(&mip->mi_rw_lock, RW_READER);
1131 for (cur_client = mip->mi_clients_list; cur_client != NULL;
1132 cur_client = cur_client->mci_client_next) {
1133 if (mac_is_primary_client(cur_client) ||
1134 (mip->mi_state_flags & MIS_IS_VNIC)) {
1135 rw_exit(&mip->mi_rw_lock);
1136 if (in_use != NULL)
1137 *in_use = B_TRUE;
1138 if (client_name != NULL) {
1139 bcopy(cur_client->mci_name, client_name,
1140 MAXNAMELEN);
1141 }
1142 return;
1143 }
1144 }
1145 rw_exit(&mip->mi_rw_lock);
1146 }
1147
1148 /*
1149 * Return the current destination MAC address of the specified MAC.
1150 */
1151 boolean_t
mac_dst_get(mac_handle_t mh,uint8_t * addr)1152 mac_dst_get(mac_handle_t mh, uint8_t *addr)
1153 {
1154 mac_impl_t *mip = (mac_impl_t *)mh;
1155
1156 rw_enter(&mip->mi_rw_lock, RW_READER);
1157 if (mip->mi_dstaddr_set)
1158 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length);
1159 rw_exit(&mip->mi_rw_lock);
1160 return (mip->mi_dstaddr_set);
1161 }
1162
1163 /*
1164 * Add the specified MAC client to the list of clients which opened
1165 * the specified MAC.
1166 */
1167 static void
mac_client_add(mac_client_impl_t * mcip)1168 mac_client_add(mac_client_impl_t *mcip)
1169 {
1170 mac_impl_t *mip = mcip->mci_mip;
1171
1172 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1173
1174 /* add VNIC to the front of the list */
1175 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1176 mcip->mci_client_next = mip->mi_clients_list;
1177 mip->mi_clients_list = mcip;
1178 mip->mi_nclients++;
1179 rw_exit(&mip->mi_rw_lock);
1180 }
1181
1182 /*
1183 * Remove the specified MAC client from the list of clients which opened
1184 * the specified MAC.
1185 */
1186 static void
mac_client_remove(mac_client_impl_t * mcip)1187 mac_client_remove(mac_client_impl_t *mcip)
1188 {
1189 mac_impl_t *mip = mcip->mci_mip;
1190 mac_client_impl_t **prev, *cclient;
1191
1192 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1193
1194 rw_enter(&mip->mi_rw_lock, RW_WRITER);
1195 prev = &mip->mi_clients_list;
1196 cclient = *prev;
1197 while (cclient != NULL && cclient != mcip) {
1198 prev = &cclient->mci_client_next;
1199 cclient = *prev;
1200 }
1201 ASSERT(cclient != NULL);
1202 *prev = cclient->mci_client_next;
1203 mip->mi_nclients--;
1204 rw_exit(&mip->mi_rw_lock);
1205 }
1206
1207 static mac_unicast_impl_t *
mac_client_find_vid(mac_client_impl_t * mcip,uint16_t vid)1208 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid)
1209 {
1210 mac_unicast_impl_t *muip = mcip->mci_unicast_list;
1211
1212 while ((muip != NULL) && (muip->mui_vid != vid))
1213 muip = muip->mui_next;
1214
1215 return (muip);
1216 }
1217
1218 /*
1219 * Return whether the specified (MAC address, VID) tuple is already used by
1220 * one of the MAC clients associated with the specified MAC.
1221 */
1222 static boolean_t
mac_addr_in_use(mac_impl_t * mip,uint8_t * mac_addr,uint16_t vid)1223 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid)
1224 {
1225 mac_client_impl_t *client;
1226 mac_address_t *map;
1227
1228 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1229
1230 for (client = mip->mi_clients_list; client != NULL;
1231 client = client->mci_client_next) {
1232
1233 /*
1234 * Ignore clients that don't have unicast address.
1235 */
1236 if (client->mci_unicast_list == NULL)
1237 continue;
1238
1239 map = client->mci_unicast;
1240
1241 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) &&
1242 (mac_client_find_vid(client, vid) != NULL)) {
1243 return (B_TRUE);
1244 }
1245 }
1246
1247 return (B_FALSE);
1248 }
1249
1250 /*
1251 * Generate a random MAC address. The MAC address prefix is
1252 * stored in the array pointed to by mac_addr, and its length, in bytes,
1253 * is specified by prefix_len. The least significant bits
1254 * after prefix_len bytes are generated, and stored after the prefix
1255 * in the mac_addr array.
1256 */
1257 int
mac_addr_random(mac_client_handle_t mch,uint_t prefix_len,uint8_t * mac_addr,mac_diag_t * diag)1258 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len,
1259 uint8_t *mac_addr, mac_diag_t *diag)
1260 {
1261 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1262 mac_impl_t *mip = mcip->mci_mip;
1263 size_t addr_len = mip->mi_type->mt_addr_length;
1264
1265 if (prefix_len >= addr_len) {
1266 *diag = MAC_DIAG_MACPREFIXLEN_INVALID;
1267 return (EINVAL);
1268 }
1269
1270 /* check the prefix value */
1271 if (prefix_len > 0) {
1272 bzero(mac_addr + prefix_len, addr_len - prefix_len);
1273 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr,
1274 addr_len)) {
1275 *diag = MAC_DIAG_MACPREFIX_INVALID;
1276 return (EINVAL);
1277 }
1278 }
1279
1280 /* generate the MAC address */
1281 if (prefix_len < addr_len) {
1282 (void) random_get_pseudo_bytes(mac_addr +
1283 prefix_len, addr_len - prefix_len);
1284 }
1285
1286 *diag = 0;
1287 return (0);
1288 }
1289
1290 /*
1291 * Set the priority range for this MAC client. This will be used to
1292 * determine the absolute priority for the threads created for this
1293 * MAC client using the specified "low", "medium" and "high" level.
1294 * This will also be used for any subflows on this MAC client.
1295 */
1296 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \
1297 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \
1298 MAXCLSYSPRI, (pri)); \
1299 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \
1300 MAXCLSYSPRI, (mcip)->mci_min_pri); \
1301 }
1302
1303 /*
1304 * MAC client open entry point. Return a new MAC client handle. Each
1305 * MAC client is associated with a name, specified through the 'name'
1306 * argument.
1307 */
1308 int
mac_client_open(mac_handle_t mh,mac_client_handle_t * mchp,char * name,uint16_t flags)1309 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name,
1310 uint16_t flags)
1311 {
1312 mac_impl_t *mip = (mac_impl_t *)mh;
1313 mac_client_impl_t *mcip;
1314 int err = 0;
1315 boolean_t share_desired;
1316 flow_entry_t *flent = NULL;
1317
1318 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0;
1319 *mchp = NULL;
1320
1321 i_mac_perim_enter(mip);
1322
1323 if (mip->mi_state_flags & MIS_IS_VNIC) {
1324 /*
1325 * The underlying MAC is a VNIC. Return the MAC client
1326 * handle of the lower MAC which was obtained by
1327 * the VNIC driver when it did its mac_client_open().
1328 */
1329
1330 mcip = mac_vnic_lower(mip);
1331
1332 /*
1333 * Note that multiple mac clients share the same mcip in
1334 * this case.
1335 */
1336 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE)
1337 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1338
1339 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1340 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1341
1342 mip->mi_clients_list = mcip;
1343 i_mac_perim_exit(mip);
1344 *mchp = (mac_client_handle_t)mcip;
1345
1346 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *,
1347 mcip->mci_mip, mac_client_impl_t *, mcip);
1348
1349 return (err);
1350 }
1351
1352 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP);
1353
1354 mcip->mci_mip = mip;
1355 mcip->mci_upper_mip = NULL;
1356 mcip->mci_rx_fn = mac_pkt_drop;
1357 mcip->mci_rx_arg = NULL;
1358 mcip->mci_rx_p_fn = NULL;
1359 mcip->mci_rx_p_arg = NULL;
1360 mcip->mci_p_unicast_list = NULL;
1361 mcip->mci_direct_rx_fn = NULL;
1362 mcip->mci_direct_rx_arg = NULL;
1363 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
1364
1365 mcip->mci_unicast_list = NULL;
1366
1367 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0)
1368 mcip->mci_state_flags |= MCIS_IS_VNIC;
1369
1370 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0)
1371 mcip->mci_state_flags |= MCIS_EXCLUSIVE;
1372
1373 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0)
1374 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT;
1375
1376 if (mip->mi_state_flags & MIS_IS_AGGR)
1377 mcip->mci_state_flags |= MCIS_IS_AGGR;
1378
1379 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) {
1380 datalink_id_t linkid;
1381
1382 ASSERT(name == NULL);
1383 if ((err = dls_devnet_macname2linkid(mip->mi_name,
1384 &linkid)) != 0) {
1385 goto done;
1386 }
1387 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL,
1388 NULL, NULL)) != 0) {
1389 /*
1390 * Use mac name if dlmgmtd is not available.
1391 */
1392 if (err == EBADF) {
1393 (void) strlcpy(mcip->mci_name, mip->mi_name,
1394 sizeof (mcip->mci_name));
1395 err = 0;
1396 } else {
1397 goto done;
1398 }
1399 }
1400 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME;
1401 } else {
1402 ASSERT(name != NULL);
1403 if (strlen(name) > MAXNAMELEN) {
1404 err = EINVAL;
1405 goto done;
1406 }
1407 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name));
1408 }
1409
1410 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY)
1411 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY;
1412
1413 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR)
1414 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR;
1415
1416 mac_protect_init(mcip);
1417
1418 /* the subflow table will be created dynamically */
1419 mcip->mci_subflow_tab = NULL;
1420
1421 mcip->mci_misc_stat.mms_multircv = 0;
1422 mcip->mci_misc_stat.mms_brdcstrcv = 0;
1423 mcip->mci_misc_stat.mms_multixmt = 0;
1424 mcip->mci_misc_stat.mms_brdcstxmt = 0;
1425
1426 /* Create an initial flow */
1427
1428 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL,
1429 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC :
1430 FLOW_PRIMARY_MAC, &flent);
1431 if (err != 0)
1432 goto done;
1433 mcip->mci_flent = flent;
1434 FLOW_MARK(flent, FE_MC_NO_DATAPATH);
1435 flent->fe_mcip = mcip;
1436 /*
1437 * Place initial creation reference on the flow. This reference
1438 * is released in the corresponding delete action viz.
1439 * mac_unicast_remove after waiting for all transient refs to
1440 * to go away. The wait happens in mac_flow_wait.
1441 */
1442 FLOW_REFHOLD(flent);
1443
1444 /*
1445 * Do this ahead of the mac_bcast_add() below so that the mi_nclients
1446 * will have the right value for mac_rx_srs_setup().
1447 */
1448 mac_client_add(mcip);
1449
1450 mcip->mci_share = NULL;
1451 if (share_desired)
1452 i_mac_share_alloc(mcip);
1453
1454 /*
1455 * We will do mimimal datapath setup to allow a MAC client to
1456 * transmit or receive non-unicast packets without waiting
1457 * for mac_unicast_add.
1458 */
1459 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1460 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE,
1461 NULL, NULL, B_TRUE, NULL)) != 0) {
1462 goto done;
1463 }
1464 }
1465
1466 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *,
1467 mcip->mci_mip, mac_client_impl_t *, mcip);
1468
1469 *mchp = (mac_client_handle_t)mcip;
1470 i_mac_perim_exit(mip);
1471 return (0);
1472
1473 done:
1474 i_mac_perim_exit(mip);
1475 mcip->mci_state_flags = 0;
1476 mcip->mci_tx_flag = 0;
1477 kmem_cache_free(mac_client_impl_cache, mcip);
1478 return (err);
1479 }
1480
1481 /*
1482 * Close the specified MAC client handle.
1483 */
1484 void
mac_client_close(mac_client_handle_t mch,uint16_t flags)1485 mac_client_close(mac_client_handle_t mch, uint16_t flags)
1486 {
1487 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1488 mac_impl_t *mip = mcip->mci_mip;
1489 flow_entry_t *flent;
1490
1491 i_mac_perim_enter(mip);
1492
1493 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE)
1494 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE;
1495
1496 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
1497 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) {
1498 /*
1499 * This is an upper VNIC client initiated operation.
1500 * The lower MAC client will be closed by the VNIC driver
1501 * when the VNIC is deleted.
1502 */
1503
1504 i_mac_perim_exit(mip);
1505 return;
1506 }
1507
1508 /* If we have only setup up minimal datapth setup, tear it down */
1509 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) {
1510 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL,
1511 mcip->mci_flent);
1512 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR;
1513 }
1514
1515 /*
1516 * Remove the flent associated with the MAC client
1517 */
1518 flent = mcip->mci_flent;
1519 mcip->mci_flent = NULL;
1520 FLOW_FINAL_REFRELE(flent);
1521
1522 /*
1523 * MAC clients must remove the unicast addresses and promisc callbacks
1524 * they added before issuing a mac_client_close().
1525 */
1526 ASSERT(mcip->mci_unicast_list == NULL);
1527 ASSERT(mcip->mci_promisc_list == NULL);
1528 ASSERT(mcip->mci_tx_notify_cb_list == NULL);
1529
1530 i_mac_share_free(mcip);
1531 mac_protect_fini(mcip);
1532 mac_client_remove(mcip);
1533
1534 i_mac_perim_exit(mip);
1535 mcip->mci_subflow_tab = NULL;
1536 mcip->mci_state_flags = 0;
1537 mcip->mci_tx_flag = 0;
1538 kmem_cache_free(mac_client_impl_cache, mch);
1539 }
1540
1541 /*
1542 * Set the rx bypass receive callback.
1543 */
1544 boolean_t
mac_rx_bypass_set(mac_client_handle_t mch,mac_direct_rx_t rx_fn,void * arg1)1545 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1)
1546 {
1547 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1548 mac_impl_t *mip = mcip->mci_mip;
1549
1550 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1551
1552 /*
1553 * If the mac_client is a VLAN, we should not do DLS bypass and
1554 * instead let the packets come up via mac_rx_deliver so the vlan
1555 * header can be stripped.
1556 */
1557 if (mcip->mci_nvids > 0)
1558 return (B_FALSE);
1559
1560 /*
1561 * These are not accessed directly in the data path, and hence
1562 * don't need any protection
1563 */
1564 mcip->mci_direct_rx_fn = rx_fn;
1565 mcip->mci_direct_rx_arg = arg1;
1566 return (B_TRUE);
1567 }
1568
1569 /*
1570 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled.
1571 */
1572 void
mac_rx_bypass_enable(mac_client_handle_t mch)1573 mac_rx_bypass_enable(mac_client_handle_t mch)
1574 {
1575 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE;
1576 }
1577
1578 void
mac_rx_bypass_disable(mac_client_handle_t mch)1579 mac_rx_bypass_disable(mac_client_handle_t mch)
1580 {
1581 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE;
1582 }
1583
1584 /*
1585 * Set the receive callback for the specified MAC client. There can be
1586 * at most one such callback per MAC client.
1587 */
1588 void
mac_rx_set(mac_client_handle_t mch,mac_rx_t rx_fn,void * arg)1589 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg)
1590 {
1591 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1592 mac_impl_t *mip = mcip->mci_mip;
1593 mac_impl_t *umip = mcip->mci_upper_mip;
1594
1595 /*
1596 * Instead of adding an extra set of locks and refcnts in
1597 * the datapath at the mac client boundary, we temporarily quiesce
1598 * the SRS and related entities. We then change the receive function
1599 * without interference from any receive data thread and then reenable
1600 * the data flow subsequently.
1601 */
1602 i_mac_perim_enter(mip);
1603 mac_rx_client_quiesce(mch);
1604
1605 mcip->mci_rx_fn = rx_fn;
1606 mcip->mci_rx_arg = arg;
1607 mac_rx_client_restart(mch);
1608 i_mac_perim_exit(mip);
1609
1610 /*
1611 * If we're changing the rx function on the primary mac of a vnic,
1612 * make sure any secondary macs on the vnic are updated as well.
1613 */
1614 if (umip != NULL) {
1615 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
1616 mac_vnic_secondary_update(umip);
1617 }
1618 }
1619
1620 /*
1621 * Reset the receive callback for the specified MAC client.
1622 */
1623 void
mac_rx_clear(mac_client_handle_t mch)1624 mac_rx_clear(mac_client_handle_t mch)
1625 {
1626 mac_rx_set(mch, mac_pkt_drop, NULL);
1627 }
1628
1629 void
mac_secondary_dup(mac_client_handle_t smch,mac_client_handle_t dmch)1630 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch)
1631 {
1632 mac_client_impl_t *smcip = (mac_client_impl_t *)smch;
1633 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch;
1634 flow_entry_t *flent = dmcip->mci_flent;
1635
1636 /* This should only be called to setup secondary macs */
1637 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1638
1639 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg);
1640 dmcip->mci_promisc_list = smcip->mci_promisc_list;
1641
1642 /*
1643 * Duplicate the primary mac resources to the secondary.
1644 * Since we already validated the resource controls when setting
1645 * them on the primary, we can ignore errors here.
1646 */
1647 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip));
1648 }
1649
1650 /*
1651 * Called when removing a secondary MAC. Currently only clears the promisc_list
1652 * since we share the primary mac's promisc_list.
1653 */
1654 void
mac_secondary_cleanup(mac_client_handle_t mch)1655 mac_secondary_cleanup(mac_client_handle_t mch)
1656 {
1657 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1658 flow_entry_t *flent = mcip->mci_flent;
1659
1660 /* This should only be called for secondary macs */
1661 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0);
1662 mcip->mci_promisc_list = NULL;
1663 }
1664
1665 /*
1666 * Walk the MAC client subflow table and updates their priority values.
1667 */
1668 static int
mac_update_subflow_priority_cb(flow_entry_t * flent,void * arg)1669 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg)
1670 {
1671 mac_flow_update_priority(arg, flent);
1672 return (0);
1673 }
1674
1675 void
mac_update_subflow_priority(mac_client_impl_t * mcip)1676 mac_update_subflow_priority(mac_client_impl_t *mcip)
1677 {
1678 (void) mac_flow_walk(mcip->mci_subflow_tab,
1679 mac_update_subflow_priority_cb, mcip);
1680 }
1681
1682 /*
1683 * Modify the TX or RX ring properties. We could either just move around
1684 * rings, i.e add/remove rings given to a client. Or this might cause the
1685 * client to move from hardware based to software or the other way around.
1686 * If we want to reset this property, then we clear the mask, additionally
1687 * if the client was given a non-default group we remove all rings except
1688 * for 1 and give it back to the default group.
1689 */
1690 int
mac_client_set_rings_prop(mac_client_impl_t * mcip,mac_resource_props_t * mrp,mac_resource_props_t * tmrp)1691 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp,
1692 mac_resource_props_t *tmrp)
1693 {
1694 mac_impl_t *mip = mcip->mci_mip;
1695 flow_entry_t *flent = mcip->mci_flent;
1696 uint8_t *mac_addr;
1697 int err = 0;
1698 mac_group_t *defgrp;
1699 mac_group_t *group;
1700 mac_group_t *ngrp;
1701 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip);
1702 uint_t ringcnt;
1703 boolean_t unspec;
1704
1705 if (mcip->mci_share != NULL)
1706 return (EINVAL);
1707
1708 if (mrp->mrp_mask & MRP_RX_RINGS) {
1709 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC;
1710 group = flent->fe_rx_ring_group;
1711 defgrp = MAC_DEFAULT_RX_GROUP(mip);
1712 mac_addr = flent->fe_flow_desc.fd_dst_mac;
1713
1714 /*
1715 * No resulting change. If we are resetting on a client on
1716 * which there was no rx rings property. For dynamic group
1717 * if we are setting the same number of rings already set.
1718 * For static group if we are requesting a group again.
1719 */
1720 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1721 if (!(tmrp->mrp_mask & MRP_RX_RINGS))
1722 return (0);
1723 } else {
1724 if (unspec) {
1725 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
1726 return (0);
1727 } else if (mip->mi_rx_group_type ==
1728 MAC_GROUP_TYPE_DYNAMIC) {
1729 if ((tmrp->mrp_mask & MRP_RX_RINGS) &&
1730 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) &&
1731 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) {
1732 return (0);
1733 }
1734 }
1735 }
1736 /* Resetting the prop */
1737 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1738 /*
1739 * We will just keep one ring and give others back if
1740 * we are not the primary. For the primary we give
1741 * all the rings in the default group except the
1742 * default ring. If it is a static group, then
1743 * we don't do anything, but clear the MRP_RX_RINGS
1744 * flag.
1745 */
1746 if (group != defgrp) {
1747 if (mip->mi_rx_group_type ==
1748 MAC_GROUP_TYPE_DYNAMIC) {
1749 /*
1750 * This group has reserved rings
1751 * that need to be released now,
1752 * so does the group.
1753 */
1754 MAC_RX_RING_RELEASED(mip,
1755 group->mrg_cur_count);
1756 MAC_RX_GRP_RELEASED(mip);
1757 if ((flent->fe_type &
1758 FLOW_PRIMARY_MAC) != 0) {
1759 if (mip->mi_nactiveclients ==
1760 1) {
1761 (void)
1762 mac_rx_switch_group(
1763 mcip, group,
1764 defgrp);
1765 return (0);
1766 } else {
1767 cmrp->mrp_nrxrings =
1768 group->
1769 mrg_cur_count +
1770 defgrp->
1771 mrg_cur_count - 1;
1772 }
1773 } else {
1774 cmrp->mrp_nrxrings = 1;
1775 }
1776 (void) mac_group_ring_modify(mcip,
1777 group, defgrp);
1778 } else {
1779 /*
1780 * If this is a static group, we
1781 * need to release the group. The
1782 * client will remain in the same
1783 * group till some other client
1784 * needs this group.
1785 */
1786 MAC_RX_GRP_RELEASED(mip);
1787 }
1788 /* Let check if we can give this an excl group */
1789 } else if (group == defgrp) {
1790 ngrp = mac_reserve_rx_group(mcip, mac_addr,
1791 B_TRUE);
1792 /* Couldn't give it a group, that's fine */
1793 if (ngrp == NULL)
1794 return (0);
1795 /* Switch to H/W */
1796 if (mac_rx_switch_group(mcip, defgrp, ngrp) !=
1797 0) {
1798 mac_stop_group(ngrp);
1799 return (0);
1800 }
1801 }
1802 /*
1803 * If the client is in the default group, we will
1804 * just clear the MRP_RX_RINGS and leave it as
1805 * it rather than look for an exclusive group
1806 * for it.
1807 */
1808 return (0);
1809 }
1810
1811 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) {
1812 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE);
1813 if (ngrp == NULL)
1814 return (ENOSPC);
1815
1816 /* Switch to H/W */
1817 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) {
1818 mac_release_rx_group(mcip, ngrp);
1819 return (ENOSPC);
1820 }
1821 MAC_RX_GRP_RESERVED(mip);
1822 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1823 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1824 } else if (group != defgrp && !unspec &&
1825 mrp->mrp_nrxrings == 0) {
1826 /* Switch to S/W */
1827 ringcnt = group->mrg_cur_count;
1828 if (mac_rx_switch_group(mcip, group, defgrp) != 0)
1829 return (ENOSPC);
1830 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1831 MAC_RX_GRP_RELEASED(mip);
1832 if (mip->mi_rx_group_type ==
1833 MAC_GROUP_TYPE_DYNAMIC) {
1834 MAC_RX_RING_RELEASED(mip, ringcnt);
1835 }
1836 }
1837 } else if (group != defgrp && mip->mi_rx_group_type ==
1838 MAC_GROUP_TYPE_DYNAMIC) {
1839 ringcnt = group->mrg_cur_count;
1840 err = mac_group_ring_modify(mcip, group, defgrp);
1841 if (err != 0)
1842 return (err);
1843 /*
1844 * Update the accounting. If this group
1845 * already had explicitly reserved rings,
1846 * we need to update the rings based on
1847 * the new ring count. If this group
1848 * had not explicitly reserved rings,
1849 * then we just reserve the rings asked for
1850 * and reserve the group.
1851 */
1852 if (tmrp->mrp_mask & MRP_RX_RINGS) {
1853 if (ringcnt > group->mrg_cur_count) {
1854 MAC_RX_RING_RELEASED(mip,
1855 ringcnt - group->mrg_cur_count);
1856 } else {
1857 MAC_RX_RING_RESERVED(mip,
1858 group->mrg_cur_count - ringcnt);
1859 }
1860 } else {
1861 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count);
1862 MAC_RX_GRP_RESERVED(mip);
1863 }
1864 }
1865 }
1866 if (mrp->mrp_mask & MRP_TX_RINGS) {
1867 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC;
1868 group = flent->fe_tx_ring_group;
1869 defgrp = MAC_DEFAULT_TX_GROUP(mip);
1870
1871 /*
1872 * For static groups we only allow rings=0 or resetting the
1873 * rings property.
1874 */
1875 if (mrp->mrp_ntxrings > 0 &&
1876 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
1877 return (ENOTSUP);
1878 }
1879 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1880 if (!(tmrp->mrp_mask & MRP_TX_RINGS))
1881 return (0);
1882 } else {
1883 if (unspec) {
1884 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
1885 return (0);
1886 } else if (mip->mi_tx_group_type ==
1887 MAC_GROUP_TYPE_DYNAMIC) {
1888 if ((tmrp->mrp_mask & MRP_TX_RINGS) &&
1889 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) &&
1890 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) {
1891 return (0);
1892 }
1893 }
1894 }
1895 /* Resetting the prop */
1896 if (mrp->mrp_mask & MRP_RINGS_RESET) {
1897 if (group != defgrp) {
1898 if (mip->mi_tx_group_type ==
1899 MAC_GROUP_TYPE_DYNAMIC) {
1900 ringcnt = group->mrg_cur_count;
1901 if ((flent->fe_type &
1902 FLOW_PRIMARY_MAC) != 0) {
1903 mac_tx_client_quiesce(
1904 (mac_client_handle_t)
1905 mcip);
1906 mac_tx_switch_group(mcip,
1907 group, defgrp);
1908 mac_tx_client_restart(
1909 (mac_client_handle_t)
1910 mcip);
1911 MAC_TX_GRP_RELEASED(mip);
1912 MAC_TX_RING_RELEASED(mip,
1913 ringcnt);
1914 return (0);
1915 }
1916 cmrp->mrp_ntxrings = 1;
1917 (void) mac_group_ring_modify(mcip,
1918 group, defgrp);
1919 /*
1920 * This group has reserved rings
1921 * that need to be released now.
1922 */
1923 MAC_TX_RING_RELEASED(mip, ringcnt);
1924 }
1925 /*
1926 * If this is a static group, we
1927 * need to release the group. The
1928 * client will remain in the same
1929 * group till some other client
1930 * needs this group.
1931 */
1932 MAC_TX_GRP_RELEASED(mip);
1933 } else if (group == defgrp &&
1934 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) {
1935 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1936 if (ngrp == NULL)
1937 return (0);
1938 mac_tx_client_quiesce(
1939 (mac_client_handle_t)mcip);
1940 mac_tx_switch_group(mcip, defgrp, ngrp);
1941 mac_tx_client_restart(
1942 (mac_client_handle_t)mcip);
1943 }
1944 /*
1945 * If the client is in the default group, we will
1946 * just clear the MRP_TX_RINGS and leave it as
1947 * it rather than look for an exclusive group
1948 * for it.
1949 */
1950 return (0);
1951 }
1952
1953 /* Switch to H/W */
1954 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) {
1955 ngrp = mac_reserve_tx_group(mcip, B_TRUE);
1956 if (ngrp == NULL)
1957 return (ENOSPC);
1958 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1959 mac_tx_switch_group(mcip, defgrp, ngrp);
1960 mac_tx_client_restart((mac_client_handle_t)mcip);
1961 MAC_TX_GRP_RESERVED(mip);
1962 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC)
1963 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count);
1964 /* Switch to S/W */
1965 } else if (group != defgrp && !unspec &&
1966 mrp->mrp_ntxrings == 0) {
1967 /* Switch to S/W */
1968 ringcnt = group->mrg_cur_count;
1969 mac_tx_client_quiesce((mac_client_handle_t)mcip);
1970 mac_tx_switch_group(mcip, group, defgrp);
1971 mac_tx_client_restart((mac_client_handle_t)mcip);
1972 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1973 MAC_TX_GRP_RELEASED(mip);
1974 if (mip->mi_tx_group_type ==
1975 MAC_GROUP_TYPE_DYNAMIC) {
1976 MAC_TX_RING_RELEASED(mip, ringcnt);
1977 }
1978 }
1979 } else if (group != defgrp && mip->mi_tx_group_type ==
1980 MAC_GROUP_TYPE_DYNAMIC) {
1981 ringcnt = group->mrg_cur_count;
1982 err = mac_group_ring_modify(mcip, group, defgrp);
1983 if (err != 0)
1984 return (err);
1985 /*
1986 * Update the accounting. If this group
1987 * already had explicitly reserved rings,
1988 * we need to update the rings based on
1989 * the new ring count. If this group
1990 * had not explicitly reserved rings,
1991 * then we just reserve the rings asked for
1992 * and reserve the group.
1993 */
1994 if (tmrp->mrp_mask & MRP_TX_RINGS) {
1995 if (ringcnt > group->mrg_cur_count) {
1996 MAC_TX_RING_RELEASED(mip,
1997 ringcnt - group->mrg_cur_count);
1998 } else {
1999 MAC_TX_RING_RESERVED(mip,
2000 group->mrg_cur_count - ringcnt);
2001 }
2002 } else {
2003 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count);
2004 MAC_TX_GRP_RESERVED(mip);
2005 }
2006 }
2007 }
2008 return (0);
2009 }
2010
2011 /*
2012 * When the MAC client is being brought up (i.e. we do a unicast_add) we need
2013 * to initialize the cpu and resource control structure in the
2014 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached
2015 * properties before the flow entry for the unicast address was created).
2016 */
2017 static int
mac_resource_ctl_set(mac_client_handle_t mch,mac_resource_props_t * mrp)2018 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
2019 {
2020 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2021 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2022 mac_impl_t *umip = mcip->mci_upper_mip;
2023 int err = 0;
2024 flow_entry_t *flent = mcip->mci_flent;
2025 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip);
2026
2027 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2028
2029 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
2030 mcip->mci_upper_mip : mip, mrp);
2031 if (err != 0)
2032 return (err);
2033
2034 /*
2035 * Copy over the existing properties since mac_update_resources
2036 * will modify the client's mrp. Currently, the saved property
2037 * is used to determine the difference between existing and
2038 * modified rings property.
2039 */
2040 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
2041 bcopy(nmrp, omrp, sizeof (*omrp));
2042 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
2043 if (MCIP_DATAPATH_SETUP(mcip)) {
2044 /*
2045 * We support rings only for primary client when there are
2046 * multiple clients sharing the same MAC address (e.g. VLAN).
2047 */
2048 if (mrp->mrp_mask & MRP_RX_RINGS ||
2049 mrp->mrp_mask & MRP_TX_RINGS) {
2050
2051 if ((err = mac_client_set_rings_prop(mcip, mrp,
2052 omrp)) != 0) {
2053 if (omrp->mrp_mask & MRP_RX_RINGS) {
2054 nmrp->mrp_mask |= MRP_RX_RINGS;
2055 nmrp->mrp_nrxrings = omrp->mrp_nrxrings;
2056 } else {
2057 nmrp->mrp_mask &= ~MRP_RX_RINGS;
2058 nmrp->mrp_nrxrings = 0;
2059 }
2060 if (omrp->mrp_mask & MRP_TX_RINGS) {
2061 nmrp->mrp_mask |= MRP_TX_RINGS;
2062 nmrp->mrp_ntxrings = omrp->mrp_ntxrings;
2063 } else {
2064 nmrp->mrp_mask &= ~MRP_TX_RINGS;
2065 nmrp->mrp_ntxrings = 0;
2066 }
2067 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC)
2068 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
2069 else
2070 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
2071
2072 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC)
2073 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
2074 else
2075 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
2076 kmem_free(omrp, sizeof (*omrp));
2077 return (err);
2078 }
2079
2080 /*
2081 * If we modified the rings property of the primary
2082 * we need to update the property fields of its
2083 * VLANs as they inherit the primary's properites.
2084 */
2085 if (mac_is_primary_client(mcip)) {
2086 mac_set_prim_vlan_rings(mip,
2087 MCIP_RESOURCE_PROPS(mcip));
2088 }
2089 }
2090 /*
2091 * We have to set this prior to calling mac_flow_modify.
2092 */
2093 if (mrp->mrp_mask & MRP_PRIORITY) {
2094 if (mrp->mrp_priority == MPL_RESET) {
2095 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2096 MPL_LINK_DEFAULT);
2097 } else {
2098 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2099 mrp->mrp_priority);
2100 }
2101 }
2102
2103 mac_flow_modify(mip->mi_flow_tab, flent, mrp);
2104 if (mrp->mrp_mask & MRP_PRIORITY)
2105 mac_update_subflow_priority(mcip);
2106
2107 /* Apply these resource settings to any secondary macs */
2108 if (umip != NULL) {
2109 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0);
2110 mac_vnic_secondary_update(umip);
2111 }
2112 }
2113 kmem_free(omrp, sizeof (*omrp));
2114 return (0);
2115 }
2116
2117 static int
mac_unicast_flow_create(mac_client_impl_t * mcip,uint8_t * mac_addr,uint16_t vid,boolean_t is_primary,boolean_t first_flow,flow_entry_t ** flent,mac_resource_props_t * mrp)2118 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr,
2119 uint16_t vid, boolean_t is_primary, boolean_t first_flow,
2120 flow_entry_t **flent, mac_resource_props_t *mrp)
2121 {
2122 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip;
2123 flow_desc_t flow_desc;
2124 char flowname[MAXFLOWNAMELEN];
2125 int err;
2126 uint_t flent_flags;
2127
2128 /*
2129 * First unicast address being added, create a new flow
2130 * for that MAC client.
2131 */
2132 bzero(&flow_desc, sizeof (flow_desc));
2133
2134 ASSERT(mac_addr != NULL ||
2135 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR));
2136 if (mac_addr != NULL) {
2137 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length;
2138 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len);
2139 }
2140 flow_desc.fd_mask = FLOW_LINK_DST;
2141 if (vid != 0) {
2142 flow_desc.fd_vid = vid;
2143 flow_desc.fd_mask |= FLOW_LINK_VID;
2144 }
2145
2146 /*
2147 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC
2148 * and FLOW_VNIC. Even though they're a hack inherited
2149 * from the SRS code, we'll keep them for now. They're currently
2150 * consumed by mac_datapath_setup() to create the SRS.
2151 * That code should be eventually moved out of
2152 * mac_datapath_setup() and moved to a mac_srs_create()
2153 * function of some sort to keep things clean.
2154 *
2155 * Also, there's no reason why the SRS for the primary MAC
2156 * client should be different than any other MAC client. Until
2157 * this is cleaned-up, we support only one MAC unicast address
2158 * per client.
2159 *
2160 * We set FLOW_PRIMARY_MAC for the primary MAC address,
2161 * FLOW_VNIC for everything else.
2162 */
2163 if (is_primary)
2164 flent_flags = FLOW_PRIMARY_MAC;
2165 else
2166 flent_flags = FLOW_VNIC_MAC;
2167
2168 /*
2169 * For the first flow we use the mac client's name - mci_name, for
2170 * subsequent ones we just create a name with the vid. This is
2171 * so that we can add these flows to the same flow table. This is
2172 * fine as the flow name (except for the one with the mac client's
2173 * name) is not visible. When the first flow is removed, we just replace
2174 * its fdesc with another from the list, so we will still retain the
2175 * flent with the MAC client's flow name.
2176 */
2177 if (first_flow) {
2178 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN);
2179 } else {
2180 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid);
2181 flent_flags = FLOW_NO_STATS;
2182 }
2183
2184 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL,
2185 flent_flags, flent)) != 0)
2186 return (err);
2187
2188 mac_misc_stat_create(*flent);
2189 FLOW_MARK(*flent, FE_INCIPIENT);
2190 (*flent)->fe_mcip = mcip;
2191
2192 /*
2193 * Place initial creation reference on the flow. This reference
2194 * is released in the corresponding delete action viz.
2195 * mac_unicast_remove after waiting for all transient refs to
2196 * to go away. The wait happens in mac_flow_wait.
2197 * We have already held the reference in mac_client_open().
2198 */
2199 if (!first_flow)
2200 FLOW_REFHOLD(*flent);
2201 return (0);
2202 }
2203
2204 /* Refresh the multicast grouping for this VID. */
2205 int
mac_client_update_mcast(void * arg,boolean_t add,const uint8_t * addrp)2206 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp)
2207 {
2208 flow_entry_t *flent = arg;
2209 mac_client_impl_t *mcip = flent->fe_mcip;
2210 uint16_t vid;
2211 flow_desc_t flow_desc;
2212
2213 mac_flow_get_desc(flent, &flow_desc);
2214 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ?
2215 flow_desc.fd_vid : VLAN_ID_NONE;
2216
2217 /*
2218 * We don't call mac_multicast_add()/mac_multicast_remove() as
2219 * we want to add/remove for this specific vid.
2220 */
2221 if (add) {
2222 return (mac_bcast_add(mcip, addrp, vid,
2223 MAC_ADDRTYPE_MULTICAST));
2224 } else {
2225 mac_bcast_delete(mcip, addrp, vid);
2226 return (0);
2227 }
2228 }
2229
2230 static void
mac_update_single_active_client(mac_impl_t * mip)2231 mac_update_single_active_client(mac_impl_t *mip)
2232 {
2233 mac_client_impl_t *client = NULL;
2234
2235 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
2236
2237 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2238 if (mip->mi_nactiveclients == 1) {
2239 /*
2240 * Find the one active MAC client from the list of MAC
2241 * clients. The active MAC client has at least one
2242 * unicast address.
2243 */
2244 for (client = mip->mi_clients_list; client != NULL;
2245 client = client->mci_client_next) {
2246 if (client->mci_unicast_list != NULL)
2247 break;
2248 }
2249 ASSERT(client != NULL);
2250 }
2251
2252 /*
2253 * mi_single_active_client is protected by the MAC impl's read/writer
2254 * lock, which allows mac_rx() to check the value of that pointer
2255 * as a reader.
2256 */
2257 mip->mi_single_active_client = client;
2258 rw_exit(&mip->mi_rw_lock);
2259 }
2260
2261 /*
2262 * Set up the data path. Called from i_mac_unicast_add after having
2263 * done all the validations including making sure this is an active
2264 * client (i.e that is ready to process packets.)
2265 */
2266 static int
mac_client_datapath_setup(mac_client_impl_t * mcip,uint16_t vid,uint8_t * mac_addr,mac_resource_props_t * mrp,boolean_t isprimary,mac_unicast_impl_t * muip)2267 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid,
2268 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary,
2269 mac_unicast_impl_t *muip)
2270 {
2271 mac_impl_t *mip = mcip->mci_mip;
2272 boolean_t mac_started = B_FALSE;
2273 boolean_t bcast_added = B_FALSE;
2274 boolean_t nactiveclients_added = B_FALSE;
2275 flow_entry_t *flent;
2276 int err = 0;
2277 boolean_t no_unicast;
2278
2279 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2280
2281 if ((err = mac_start((mac_handle_t)mip)) != 0)
2282 goto bail;
2283
2284 mac_started = B_TRUE;
2285
2286 /* add the MAC client to the broadcast address group by default */
2287 if (mip->mi_type->mt_brdcst_addr != NULL) {
2288 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid,
2289 MAC_ADDRTYPE_BROADCAST);
2290 if (err != 0)
2291 goto bail;
2292 bcast_added = B_TRUE;
2293 }
2294
2295 /*
2296 * If this is the first unicast address addition for this
2297 * client, reuse the pre-allocated larval flow entry associated with
2298 * the MAC client.
2299 */
2300 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL;
2301
2302 /* We are configuring the unicast flow now */
2303 if (!MCIP_DATAPATH_SETUP(mcip)) {
2304
2305 if (mrp != NULL) {
2306 MAC_CLIENT_SET_PRIORITY_RANGE(mcip,
2307 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority :
2308 MPL_LINK_DEFAULT);
2309 }
2310 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2311 isprimary, B_TRUE, &flent, mrp)) != 0)
2312 goto bail;
2313
2314 mip->mi_nactiveclients++;
2315 nactiveclients_added = B_TRUE;
2316
2317 /*
2318 * This will allocate the RX ring group if possible for the
2319 * flow and program the software classifier as needed.
2320 */
2321 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0)
2322 goto bail;
2323
2324 if (no_unicast)
2325 goto done_setup;
2326 /*
2327 * The unicast MAC address must have been added successfully.
2328 */
2329 ASSERT(mcip->mci_unicast != NULL);
2330 /*
2331 * Push down the sub-flows that were defined on this link
2332 * hitherto. The flows are added to the active flow table
2333 * and SRS, softrings etc. are created as needed.
2334 */
2335 mac_link_init_flows((mac_client_handle_t)mcip);
2336 } else {
2337 mac_address_t *map = mcip->mci_unicast;
2338
2339 ASSERT(!no_unicast);
2340 /*
2341 * A unicast flow already exists for that MAC client,
2342 * this flow must be the same mac address but with
2343 * different VID. It has been checked by mac_addr_in_use().
2344 *
2345 * We will use the SRS etc. from the mci_flent. Note that
2346 * We don't need to create kstat for this as except for
2347 * the fdesc, everything will be used from in the 1st flent.
2348 */
2349
2350 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) {
2351 err = EINVAL;
2352 goto bail;
2353 }
2354
2355 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid,
2356 isprimary, B_FALSE, &flent, NULL)) != 0) {
2357 goto bail;
2358 }
2359 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) {
2360 FLOW_FINAL_REFRELE(flent);
2361 goto bail;
2362 }
2363
2364 /* update the multicast group for this vid */
2365 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
2366 (void *)flent, B_TRUE);
2367
2368 }
2369
2370 /* populate the shared MAC address */
2371 muip->mui_map = mcip->mci_unicast;
2372
2373 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
2374 muip->mui_next = mcip->mci_unicast_list;
2375 mcip->mci_unicast_list = muip;
2376 rw_exit(&mcip->mci_rw_lock);
2377
2378 done_setup:
2379 /*
2380 * First add the flent to the flow list of this mcip. Then set
2381 * the mip's mi_single_active_client if needed. The Rx path assumes
2382 * that mip->mi_single_active_client will always have an associated
2383 * flent.
2384 */
2385 mac_client_add_to_flow_list(mcip, flent);
2386 if (nactiveclients_added)
2387 mac_update_single_active_client(mip);
2388 /*
2389 * Trigger a renegotiation of the capabilities when the number of
2390 * active clients changes from 1 to 2, since some of the capabilities
2391 * might have to be disabled. Also send a MAC_NOTE_LINK notification
2392 * to all the MAC clients whenever physical link is DOWN.
2393 */
2394 if (mip->mi_nactiveclients == 2) {
2395 mac_capab_update((mac_handle_t)mip);
2396 mac_virtual_link_update(mip);
2397 }
2398 /*
2399 * Now that the setup is complete, clear the INCIPIENT flag.
2400 * The flag was set to avoid incoming packets seeing inconsistent
2401 * structures while the setup was in progress. Clear the mci_tx_flag
2402 * by calling mac_tx_client_block. It is possible that
2403 * mac_unicast_remove was called prior to this mac_unicast_add which
2404 * could have set the MCI_TX_QUIESCE flag.
2405 */
2406 if (flent->fe_rx_ring_group != NULL)
2407 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT);
2408 FLOW_UNMARK(flent, FE_INCIPIENT);
2409 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH);
2410 mac_tx_client_unblock(mcip);
2411 return (0);
2412 bail:
2413 if (bcast_added)
2414 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid);
2415
2416 if (nactiveclients_added)
2417 mip->mi_nactiveclients--;
2418
2419 if (mac_started)
2420 mac_stop((mac_handle_t)mip);
2421
2422 return (err);
2423 }
2424
2425 /*
2426 * Return the passive primary MAC client, if present. The passive client is
2427 * a stand-by client that has the same unicast address as another that is
2428 * currenly active. Once the active client goes away, the passive client
2429 * becomes active.
2430 */
2431 static mac_client_impl_t *
mac_get_passive_primary_client(mac_impl_t * mip)2432 mac_get_passive_primary_client(mac_impl_t *mip)
2433 {
2434 mac_client_impl_t *mcip;
2435
2436 for (mcip = mip->mi_clients_list; mcip != NULL;
2437 mcip = mcip->mci_client_next) {
2438 if (mac_is_primary_client(mcip) &&
2439 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2440 return (mcip);
2441 }
2442 }
2443 return (NULL);
2444 }
2445
2446 /*
2447 * Add a new unicast address to the MAC client.
2448 *
2449 * The MAC address can be specified either by value, or the MAC client
2450 * can specify that it wants to use the primary MAC address of the
2451 * underlying MAC. See the introductory comments at the beginning
2452 * of this file for more more information on primary MAC addresses.
2453 *
2454 * Note also the tuple (MAC address, VID) must be unique
2455 * for the MAC clients defined on top of the same underlying MAC
2456 * instance, unless the MAC_UNICAST_NODUPCHECK is specified.
2457 *
2458 * In no case can a client use the PVID for the MAC, if the MAC has one set.
2459 */
2460 int
i_mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2461 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2462 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2463 {
2464 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2465 mac_impl_t *mip = mcip->mci_mip;
2466 int err;
2467 uint_t mac_len = mip->mi_type->mt_addr_length;
2468 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK);
2469 boolean_t fastpath_disabled = B_FALSE;
2470 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY);
2471 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW);
2472 mac_resource_props_t *mrp;
2473 boolean_t passive_client = B_FALSE;
2474 mac_unicast_impl_t *muip;
2475 boolean_t is_vnic_primary =
2476 (flags & MAC_UNICAST_VNIC_PRIMARY);
2477
2478 /* when VID is non-zero, the underlying MAC can not be VNIC */
2479 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0)));
2480
2481 /*
2482 * Can't unicast add if the client asked only for minimal datapath
2483 * setup.
2484 */
2485 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)
2486 return (ENOTSUP);
2487
2488 /*
2489 * Check for an attempted use of the current Port VLAN ID, if enabled.
2490 * No client may use it.
2491 */
2492 if (mip->mi_pvid != 0 && vid == mip->mi_pvid)
2493 return (EBUSY);
2494
2495 /*
2496 * Check whether it's the primary client and flag it.
2497 */
2498 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0)
2499 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY;
2500
2501 /*
2502 * is_vnic_primary is true when we come here as a VLAN VNIC
2503 * which uses the primary mac client's address but with a non-zero
2504 * VID. In this case the MAC address is not specified by an upper
2505 * MAC client.
2506 */
2507 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary &&
2508 !is_vnic_primary) {
2509 /*
2510 * The address is being set by the upper MAC client
2511 * of a VNIC. The MAC address was already set by the
2512 * VNIC driver during VNIC creation.
2513 *
2514 * Note: a VNIC has only one MAC address. We return
2515 * the MAC unicast address handle of the lower MAC client
2516 * corresponding to the VNIC. We allocate a new entry
2517 * which is flagged appropriately, so that mac_unicast_remove()
2518 * doesn't attempt to free the original entry that
2519 * was allocated by the VNIC driver.
2520 */
2521 ASSERT(mcip->mci_unicast != NULL);
2522
2523 /* Check for VLAN flags, if present */
2524 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2525 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2526
2527 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2528 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2529
2530 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2531 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2532
2533 /*
2534 * Ensure that the primary unicast address of the VNIC
2535 * is added only once unless we have the
2536 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not
2537 * a passive MAC client).
2538 */
2539 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) {
2540 if ((mcip->mci_flags &
2541 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2542 (mcip->mci_flags &
2543 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2544 return (EBUSY);
2545 }
2546 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2547 passive_client = B_TRUE;
2548 }
2549
2550 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY;
2551
2552 /*
2553 * Create a handle for vid 0.
2554 */
2555 ASSERT(vid == 0);
2556 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2557 muip->mui_vid = vid;
2558 *mah = (mac_unicast_handle_t)muip;
2559 /*
2560 * This will be used by the caller to defer setting the
2561 * rx functions.
2562 */
2563 if (passive_client)
2564 return (EAGAIN);
2565 return (0);
2566 }
2567
2568 /* primary MAC clients cannot be opened on top of anchor VNICs */
2569 if ((is_vnic_primary || is_primary) &&
2570 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) {
2571 return (ENXIO);
2572 }
2573
2574 /*
2575 * If this is a VNIC/VLAN, disable softmac fast-path.
2576 */
2577 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2578 err = mac_fastpath_disable((mac_handle_t)mip);
2579 if (err != 0)
2580 return (err);
2581 fastpath_disabled = B_TRUE;
2582 }
2583
2584 /*
2585 * Return EBUSY if:
2586 * - there is an exclusively active mac client exists.
2587 * - this is an exclusive active mac client but
2588 * a. there is already active mac clients exist, or
2589 * b. fastpath streams are already plumbed on this legacy device
2590 * - the mac creator has disallowed active mac clients.
2591 */
2592 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) {
2593 if (fastpath_disabled)
2594 mac_fastpath_enable((mac_handle_t)mip);
2595 return (EBUSY);
2596 }
2597
2598 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2599 ASSERT(!fastpath_disabled);
2600 if (mip->mi_nactiveclients != 0)
2601 return (EBUSY);
2602
2603 if ((mip->mi_state_flags & MIS_LEGACY) &&
2604 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) {
2605 return (EBUSY);
2606 }
2607 mip->mi_state_flags |= MIS_EXCLUSIVE;
2608 }
2609
2610 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
2611 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC |
2612 MCIS_IS_AGGR_PORT))) {
2613 /*
2614 * Apply the property cached in the mac_impl_t to the primary
2615 * mac client. If the mac client is a VNIC or an aggregation
2616 * port, its property should be set in the mcip when the
2617 * VNIC/aggr was created.
2618 */
2619 mac_get_resources((mac_handle_t)mip, mrp);
2620 (void) mac_client_set_resources(mch, mrp);
2621 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) {
2622 /*
2623 * This is a primary VLAN client, we don't support
2624 * specifying rings property for this as it inherits the
2625 * rings property from its MAC.
2626 */
2627 if (is_vnic_primary) {
2628 mac_resource_props_t *vmrp;
2629
2630 vmrp = MCIP_RESOURCE_PROPS(mcip);
2631 if (vmrp->mrp_mask & MRP_RX_RINGS ||
2632 vmrp->mrp_mask & MRP_TX_RINGS) {
2633 if (fastpath_disabled)
2634 mac_fastpath_enable((mac_handle_t)mip);
2635 kmem_free(mrp, sizeof (*mrp));
2636 return (ENOTSUP);
2637 }
2638 /*
2639 * Additionally we also need to inherit any
2640 * rings property from the MAC.
2641 */
2642 mac_get_resources((mac_handle_t)mip, mrp);
2643 if (mrp->mrp_mask & MRP_RX_RINGS) {
2644 vmrp->mrp_mask |= MRP_RX_RINGS;
2645 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
2646 }
2647 if (mrp->mrp_mask & MRP_TX_RINGS) {
2648 vmrp->mrp_mask |= MRP_TX_RINGS;
2649 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
2650 }
2651 }
2652 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp));
2653 }
2654
2655 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP);
2656 muip->mui_vid = vid;
2657
2658 if (is_primary || is_vnic_primary) {
2659 mac_addr = mip->mi_addr;
2660 } else {
2661
2662 /*
2663 * Verify the validity of the specified MAC addresses value.
2664 */
2665 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) {
2666 *diag = MAC_DIAG_MACADDR_INVALID;
2667 err = EINVAL;
2668 goto bail_out;
2669 }
2670
2671 /*
2672 * Make sure that the specified MAC address is different
2673 * than the unicast MAC address of the underlying NIC.
2674 */
2675 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) {
2676 *diag = MAC_DIAG_MACADDR_NIC;
2677 err = EINVAL;
2678 goto bail_out;
2679 }
2680 }
2681
2682 /*
2683 * Set the flags here so that if this is a passive client, we
2684 * can return and set it when we call mac_client_datapath_setup
2685 * when this becomes the active client. If we defer to using these
2686 * flags to mac_client_datapath_setup, then for a passive client,
2687 * we'd have to store the flags somewhere (probably fe_flags)
2688 * and then use it.
2689 */
2690 if (!MCIP_DATAPATH_SETUP(mcip)) {
2691 if (is_unicast_hw) {
2692 /*
2693 * The client requires a hardware MAC address slot
2694 * for that unicast address. Since we support only
2695 * one unicast MAC address per client, flag the
2696 * MAC client itself.
2697 */
2698 mcip->mci_state_flags |= MCIS_UNICAST_HW;
2699 }
2700
2701 /* Check for VLAN flags, if present */
2702 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0)
2703 mcip->mci_state_flags |= MCIS_TAG_DISABLE;
2704
2705 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0)
2706 mcip->mci_state_flags |= MCIS_STRIP_DISABLE;
2707
2708 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0)
2709 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK;
2710 } else {
2711 /*
2712 * Assert that the specified flags are consistent with the
2713 * flags specified by previous calls to mac_unicast_add().
2714 */
2715 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 &&
2716 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) ||
2717 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 &&
2718 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0));
2719
2720 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 &&
2721 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) ||
2722 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 &&
2723 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0));
2724
2725 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 &&
2726 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) ||
2727 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 &&
2728 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0));
2729
2730 /*
2731 * Make sure the client is consistent about its requests
2732 * for MAC addresses. I.e. all requests from the clients
2733 * must have the MAC_UNICAST_HW flag set or clear.
2734 */
2735 if (((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 &&
2736 !is_unicast_hw) ||
2737 ((mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 &&
2738 is_unicast_hw)) {
2739 err = EINVAL;
2740 goto bail_out;
2741 }
2742 }
2743 /*
2744 * Make sure the MAC address is not already used by
2745 * another MAC client defined on top of the same
2746 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY
2747 * set when we allow a passive client to be present which will
2748 * be activated when the currently active client goes away - this
2749 * works only with primary addresses.
2750 */
2751 if ((check_dups || is_primary || is_vnic_primary) &&
2752 mac_addr_in_use(mip, mac_addr, vid)) {
2753 /*
2754 * Must have set the multiple primary address flag when
2755 * we did a mac_client_open AND this should be a primary
2756 * MAC client AND there should not already be a passive
2757 * primary. If all is true then we let this succeed
2758 * even if the address is a dup.
2759 */
2760 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 ||
2761 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 ||
2762 mac_get_passive_primary_client(mip) != NULL) {
2763 *diag = MAC_DIAG_MACADDR_INUSE;
2764 err = EEXIST;
2765 goto bail_out;
2766 }
2767 ASSERT((mcip->mci_flags &
2768 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0);
2769 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
2770 kmem_free(mrp, sizeof (*mrp));
2771
2772 /*
2773 * Stash the unicast address handle, we will use it when
2774 * we set up the passive client.
2775 */
2776 mcip->mci_p_unicast_list = muip;
2777 *mah = (mac_unicast_handle_t)muip;
2778 return (0);
2779 }
2780
2781 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp,
2782 is_primary || is_vnic_primary, muip);
2783 if (err != 0)
2784 goto bail_out;
2785
2786 kmem_free(mrp, sizeof (*mrp));
2787 *mah = (mac_unicast_handle_t)muip;
2788 return (0);
2789
2790 bail_out:
2791 if (fastpath_disabled)
2792 mac_fastpath_enable((mac_handle_t)mip);
2793 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2794 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2795 if (mip->mi_state_flags & MIS_LEGACY) {
2796 mip->mi_capab_legacy.ml_active_clear(
2797 mip->mi_driver);
2798 }
2799 }
2800 kmem_free(mrp, sizeof (*mrp));
2801 kmem_free(muip, sizeof (mac_unicast_impl_t));
2802 return (err);
2803 }
2804
2805 /*
2806 * Wrapper function to mac_unicast_add when we want to have the same mac
2807 * client open for two instances, one that is currently active and another
2808 * that will become active when the current one is removed. In this case
2809 * mac_unicast_add will return EGAIN and we will save the rx function and
2810 * arg which will be used when we activate the passive client in
2811 * mac_unicast_remove.
2812 */
2813 int
mac_unicast_add_set_rx(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag,mac_rx_t rx_fn,void * arg)2814 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr,
2815 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag,
2816 mac_rx_t rx_fn, void *arg)
2817 {
2818 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2819 uint_t err;
2820
2821 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2822 if (err != 0 && err != EAGAIN)
2823 return (err);
2824 if (err == EAGAIN) {
2825 if (rx_fn != NULL) {
2826 mcip->mci_rx_p_fn = rx_fn;
2827 mcip->mci_rx_p_arg = arg;
2828 }
2829 return (0);
2830 }
2831 if (rx_fn != NULL)
2832 mac_rx_set(mch, rx_fn, arg);
2833 return (err);
2834 }
2835
2836 int
mac_unicast_add(mac_client_handle_t mch,uint8_t * mac_addr,uint16_t flags,mac_unicast_handle_t * mah,uint16_t vid,mac_diag_t * diag)2837 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags,
2838 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag)
2839 {
2840 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip;
2841 uint_t err;
2842
2843 i_mac_perim_enter(mip);
2844 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag);
2845 i_mac_perim_exit(mip);
2846
2847 return (err);
2848 }
2849
2850 static void
mac_client_datapath_teardown(mac_client_handle_t mch,mac_unicast_impl_t * muip,flow_entry_t * flent)2851 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip,
2852 flow_entry_t *flent)
2853 {
2854 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2855 mac_impl_t *mip = mcip->mci_mip;
2856 boolean_t no_unicast;
2857
2858 /*
2859 * If we have not added a unicast address for this MAC client, just
2860 * teardown the datapath.
2861 */
2862 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR;
2863
2864 if (!no_unicast) {
2865 /*
2866 * We would have initialized subflows etc. only if we brought
2867 * up the primary client and set the unicast unicast address
2868 * etc. Deactivate the flows. The flow entry will be removed
2869 * from the active flow tables, and the associated SRS,
2870 * softrings etc will be deleted. But the flow entry itself
2871 * won't be destroyed, instead it will continue to be archived
2872 * off the the global flow hash list, for a possible future
2873 * activation when say IP is plumbed again.
2874 */
2875 mac_link_release_flows(mch);
2876 }
2877 mip->mi_nactiveclients--;
2878 mac_update_single_active_client(mip);
2879
2880 /* Tear down the data path */
2881 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK);
2882
2883 /*
2884 * Prevent any future access to the flow entry through the mci_flent
2885 * pointer by setting the mci_flent to NULL. Access to mci_flent in
2886 * mac_bcast_send is also under mi_rw_lock.
2887 */
2888 rw_enter(&mip->mi_rw_lock, RW_WRITER);
2889 flent = mcip->mci_flent;
2890 mac_client_remove_flow_from_list(mcip, flent);
2891
2892 if (mcip->mci_state_flags & MCIS_DESC_LOGGED)
2893 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
2894
2895 /*
2896 * This is the last unicast address being removed and there shouldn't
2897 * be any outbound data threads at this point coming down from mac
2898 * clients. We have waited for the data threads to finish before
2899 * starting dld_str_detach. Non-data threads must access TX SRS
2900 * under mi_rw_lock.
2901 */
2902 rw_exit(&mip->mi_rw_lock);
2903
2904 /*
2905 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might
2906 * contain other flags, such as FE_CONDEMNED, which we need to
2907 * cleared. We don't call mac_flow_cleanup() for this unicast
2908 * flow as we have a already cleaned up SRSs etc. (via the teadown
2909 * path). We just clear the stats and reset the initial callback
2910 * function, the rest will be set when we call mac_flow_create,
2911 * if at all.
2912 */
2913 mutex_enter(&flent->fe_lock);
2914 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL &&
2915 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0);
2916 flent->fe_flags = FE_MC_NO_DATAPATH;
2917 flow_stat_destroy(flent);
2918 mac_misc_stat_delete(flent);
2919
2920 /* Initialize the receiver function to a safe routine */
2921 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop;
2922 flent->fe_cb_arg1 = NULL;
2923 flent->fe_cb_arg2 = NULL;
2924
2925 flent->fe_index = -1;
2926 mutex_exit(&flent->fe_lock);
2927
2928 if (mip->mi_type->mt_brdcst_addr != NULL) {
2929 ASSERT(muip != NULL || no_unicast);
2930 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
2931 muip != NULL ? muip->mui_vid : VLAN_ID_NONE);
2932 }
2933
2934 if (mip->mi_nactiveclients == 1) {
2935 mac_capab_update((mac_handle_t)mip);
2936 mac_virtual_link_update(mip);
2937 }
2938
2939 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) {
2940 mip->mi_state_flags &= ~MIS_EXCLUSIVE;
2941
2942 if (mip->mi_state_flags & MIS_LEGACY)
2943 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver);
2944 }
2945
2946 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
2947
2948 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
2949 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
2950
2951 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
2952 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
2953
2954 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
2955 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
2956
2957 if (muip != NULL)
2958 kmem_free(muip, sizeof (mac_unicast_impl_t));
2959 mac_protect_cancel_timer(mcip);
2960 mac_protect_flush_dynamic(mcip);
2961
2962 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat));
2963 /*
2964 * Disable fastpath if this is a VNIC or a VLAN.
2965 */
2966 if (mcip->mci_state_flags & MCIS_IS_VNIC)
2967 mac_fastpath_enable((mac_handle_t)mip);
2968 mac_stop((mac_handle_t)mip);
2969 }
2970
2971 /*
2972 * Remove a MAC address which was previously added by mac_unicast_add().
2973 */
2974 int
mac_unicast_remove(mac_client_handle_t mch,mac_unicast_handle_t mah)2975 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah)
2976 {
2977 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
2978 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah;
2979 mac_unicast_impl_t *pre;
2980 mac_impl_t *mip = mcip->mci_mip;
2981 flow_entry_t *flent;
2982 uint16_t mui_vid;
2983
2984 i_mac_perim_enter(mip);
2985 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) {
2986 /*
2987 * Called made by the upper MAC client of a VNIC.
2988 * There's nothing much to do, the unicast address will
2989 * be removed by the VNIC driver when the VNIC is deleted,
2990 * but let's ensure that all our transmit is done before
2991 * the client does a mac_client_stop lest it trigger an
2992 * assert in the driver.
2993 */
2994 ASSERT(muip->mui_vid == 0);
2995
2996 mac_tx_client_flush(mcip);
2997
2998 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
2999 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3000 if (mcip->mci_rx_p_fn != NULL) {
3001 mac_rx_set(mch, mcip->mci_rx_p_fn,
3002 mcip->mci_rx_p_arg);
3003 mcip->mci_rx_p_fn = NULL;
3004 mcip->mci_rx_p_arg = NULL;
3005 }
3006 kmem_free(muip, sizeof (mac_unicast_impl_t));
3007 i_mac_perim_exit(mip);
3008 return (0);
3009 }
3010 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY;
3011
3012 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3013 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3014
3015 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3016 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3017
3018 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3019 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3020
3021 kmem_free(muip, sizeof (mac_unicast_impl_t));
3022 i_mac_perim_exit(mip);
3023 return (0);
3024 }
3025
3026 ASSERT(muip != NULL);
3027
3028 /*
3029 * We are removing a passive client, we haven't setup the datapath
3030 * for this yet, so nothing much to do.
3031 */
3032 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) {
3033
3034 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0);
3035 ASSERT(mcip->mci_p_unicast_list == muip);
3036
3037 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3038
3039 mcip->mci_p_unicast_list = NULL;
3040 mcip->mci_rx_p_fn = NULL;
3041 mcip->mci_rx_p_arg = NULL;
3042
3043 mcip->mci_state_flags &= ~MCIS_UNICAST_HW;
3044
3045 if (mcip->mci_state_flags & MCIS_TAG_DISABLE)
3046 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE;
3047
3048 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE)
3049 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE;
3050
3051 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK)
3052 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK;
3053
3054 kmem_free(muip, sizeof (mac_unicast_impl_t));
3055 i_mac_perim_exit(mip);
3056 return (0);
3057 }
3058 /*
3059 * Remove the VID from the list of client's VIDs.
3060 */
3061 pre = mcip->mci_unicast_list;
3062 if (muip == pre) {
3063 mcip->mci_unicast_list = muip->mui_next;
3064 } else {
3065 while ((pre->mui_next != NULL) && (pre->mui_next != muip))
3066 pre = pre->mui_next;
3067 ASSERT(pre->mui_next == muip);
3068 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
3069 pre->mui_next = muip->mui_next;
3070 rw_exit(&mcip->mci_rw_lock);
3071 }
3072
3073 if (!mac_client_single_rcvr(mcip)) {
3074 /*
3075 * This MAC client is shared by more than one unicast
3076 * addresses, so we will just remove the flent
3077 * corresponding to the address being removed. We don't invoke
3078 * mac_rx_classify_flow_rem() since the additional flow is
3079 * not associated with its own separate set of SRS and rings,
3080 * and these constructs are still needed for the remaining
3081 * flows.
3082 */
3083 flent = mac_client_get_flow(mcip, muip);
3084 ASSERT(flent != NULL);
3085
3086 /*
3087 * The first one is disappearing, need to make sure
3088 * we replace it with another from the list of
3089 * shared clients.
3090 */
3091 if (flent == mcip->mci_flent)
3092 flent = mac_client_swap_mciflent(mcip);
3093 mac_client_remove_flow_from_list(mcip, flent);
3094 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE);
3095 mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
3096
3097 /*
3098 * The multicast groups that were added by the client so
3099 * far must be removed from the brodcast domain corresponding
3100 * to the VID being removed.
3101 */
3102 mac_client_bcast_refresh(mcip, mac_client_update_mcast,
3103 (void *)flent, B_FALSE);
3104
3105 if (mip->mi_type->mt_brdcst_addr != NULL) {
3106 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr,
3107 muip->mui_vid);
3108 }
3109
3110 FLOW_FINAL_REFRELE(flent);
3111 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE));
3112 /*
3113 * Enable fastpath if this is a VNIC or a VLAN.
3114 */
3115 if (mcip->mci_state_flags & MCIS_IS_VNIC)
3116 mac_fastpath_enable((mac_handle_t)mip);
3117 mac_stop((mac_handle_t)mip);
3118 i_mac_perim_exit(mip);
3119 return (0);
3120 }
3121
3122 mui_vid = muip->mui_vid;
3123 mac_client_datapath_teardown(mch, muip, flent);
3124
3125 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && mui_vid == 0) {
3126 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY;
3127 } else {
3128 i_mac_perim_exit(mip);
3129 return (0);
3130 }
3131
3132 /*
3133 * If we are removing the primary, check if we have a passive primary
3134 * client that we need to activate now.
3135 */
3136 mcip = mac_get_passive_primary_client(mip);
3137 if (mcip != NULL) {
3138 mac_resource_props_t *mrp;
3139 mac_unicast_impl_t *muip;
3140
3141 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY;
3142 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP);
3143
3144 /*
3145 * Apply the property cached in the mac_impl_t to the
3146 * primary mac client.
3147 */
3148 mac_get_resources((mac_handle_t)mip, mrp);
3149 (void) mac_client_set_resources(mch, mrp);
3150 ASSERT(mcip->mci_p_unicast_list != NULL);
3151 muip = mcip->mci_p_unicast_list;
3152 mcip->mci_p_unicast_list = NULL;
3153 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE,
3154 mip->mi_addr, mrp, B_TRUE, muip) == 0) {
3155 if (mcip->mci_rx_p_fn != NULL) {
3156 mac_rx_set(mch, mcip->mci_rx_p_fn,
3157 mcip->mci_rx_p_arg);
3158 mcip->mci_rx_p_fn = NULL;
3159 mcip->mci_rx_p_arg = NULL;
3160 }
3161 } else {
3162 kmem_free(muip, sizeof (mac_unicast_impl_t));
3163 }
3164 kmem_free(mrp, sizeof (*mrp));
3165 }
3166 i_mac_perim_exit(mip);
3167 return (0);
3168 }
3169
3170 /*
3171 * Multicast add function invoked by MAC clients.
3172 */
3173 int
mac_multicast_add(mac_client_handle_t mch,const uint8_t * addr)3174 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr)
3175 {
3176 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3177 mac_impl_t *mip = mcip->mci_mip;
3178 flow_entry_t *flent = mcip->mci_flent_list;
3179 flow_entry_t *prev_fe = NULL;
3180 uint16_t vid;
3181 int err = 0;
3182
3183 /* Verify the address is a valid multicast address */
3184 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr,
3185 mip->mi_pdata)) != 0)
3186 return (err);
3187
3188 i_mac_perim_enter(mip);
3189 while (flent != NULL) {
3190 vid = i_mac_flow_vid(flent);
3191
3192 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid,
3193 MAC_ADDRTYPE_MULTICAST);
3194 if (err != 0)
3195 break;
3196 prev_fe = flent;
3197 flent = flent->fe_client_next;
3198 }
3199
3200 /*
3201 * If we failed adding, then undo all, rather than partial
3202 * success.
3203 */
3204 if (flent != NULL && prev_fe != NULL) {
3205 flent = mcip->mci_flent_list;
3206 while (flent != prev_fe->fe_client_next) {
3207 vid = i_mac_flow_vid(flent);
3208 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3209 flent = flent->fe_client_next;
3210 }
3211 }
3212 i_mac_perim_exit(mip);
3213 return (err);
3214 }
3215
3216 /*
3217 * Multicast delete function invoked by MAC clients.
3218 */
3219 void
mac_multicast_remove(mac_client_handle_t mch,const uint8_t * addr)3220 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr)
3221 {
3222 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3223 mac_impl_t *mip = mcip->mci_mip;
3224 flow_entry_t *flent;
3225 uint16_t vid;
3226
3227 i_mac_perim_enter(mip);
3228 for (flent = mcip->mci_flent_list; flent != NULL;
3229 flent = flent->fe_client_next) {
3230 vid = i_mac_flow_vid(flent);
3231 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid);
3232 }
3233 i_mac_perim_exit(mip);
3234 }
3235
3236 /*
3237 * When a MAC client desires to capture packets on an interface,
3238 * it registers a promiscuous call back with mac_promisc_add().
3239 * There are three types of promiscuous callbacks:
3240 *
3241 * * MAC_CLIENT_PROMISC_ALL
3242 * Captures all packets sent and received by the MAC client,
3243 * the physical interface, as well as all other MAC clients
3244 * defined on top of the same MAC.
3245 *
3246 * * MAC_CLIENT_PROMISC_FILTERED
3247 * Captures all packets sent and received by the MAC client,
3248 * plus all multicast traffic sent and received by the phyisical
3249 * interface and the other MAC clients.
3250 *
3251 * * MAC_CLIENT_PROMISC_MULTI
3252 * Captures all broadcast and multicast packets sent and
3253 * received by the MAC clients as well as the physical interface.
3254 *
3255 * In all cases, the underlying MAC is put in promiscuous mode.
3256 */
3257 int
mac_promisc_add(mac_client_handle_t mch,mac_client_promisc_type_t type,mac_rx_t fn,void * arg,mac_promisc_handle_t * mphp,uint16_t flags)3258 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type,
3259 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags)
3260 {
3261 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3262 mac_impl_t *mip = mcip->mci_mip;
3263 mac_promisc_impl_t *mpip;
3264 mac_cb_info_t *mcbi;
3265 int rc;
3266
3267 i_mac_perim_enter(mip);
3268
3269 if ((rc = mac_start((mac_handle_t)mip)) != 0) {
3270 i_mac_perim_exit(mip);
3271 return (rc);
3272 }
3273
3274 if ((mcip->mci_state_flags & MCIS_IS_VNIC) &&
3275 type == MAC_CLIENT_PROMISC_ALL &&
3276 (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED)) {
3277 /*
3278 * The function is being invoked by the upper MAC client
3279 * of a VNIC. The VNIC should only see the traffic
3280 * it is entitled to.
3281 */
3282 type = MAC_CLIENT_PROMISC_FILTERED;
3283 }
3284
3285
3286 /*
3287 * Turn on promiscuous mode for the underlying NIC.
3288 * This is needed even for filtered callbacks which
3289 * expect to receive all multicast traffic on the wire.
3290 *
3291 * Physical promiscuous mode should not be turned on if
3292 * MAC_PROMISC_FLAGS_NO_PHYS is set.
3293 */
3294 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) {
3295 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) {
3296 mac_stop((mac_handle_t)mip);
3297 i_mac_perim_exit(mip);
3298 return (rc);
3299 }
3300 }
3301
3302 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP);
3303
3304 mpip->mpi_type = type;
3305 mpip->mpi_fn = fn;
3306 mpip->mpi_arg = arg;
3307 mpip->mpi_mcip = mcip;
3308 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0);
3309 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0);
3310 mpip->mpi_strip_vlan_tag =
3311 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0);
3312 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0);
3313
3314 mcbi = &mip->mi_promisc_cb_info;
3315 mutex_enter(mcbi->mcbi_lockp);
3316
3317 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list,
3318 &mpip->mpi_mci_link);
3319 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list,
3320 &mpip->mpi_mi_link);
3321
3322 mutex_exit(mcbi->mcbi_lockp);
3323
3324 *mphp = (mac_promisc_handle_t)mpip;
3325
3326 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3327 mac_impl_t *umip = mcip->mci_upper_mip;
3328
3329 ASSERT(umip != NULL);
3330 mac_vnic_secondary_update(umip);
3331 }
3332
3333 i_mac_perim_exit(mip);
3334
3335 return (0);
3336 }
3337
3338 /*
3339 * Remove a multicast address previously aded through mac_promisc_add().
3340 */
3341 void
mac_promisc_remove(mac_promisc_handle_t mph)3342 mac_promisc_remove(mac_promisc_handle_t mph)
3343 {
3344 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph;
3345 mac_client_impl_t *mcip = mpip->mpi_mcip;
3346 mac_impl_t *mip = mcip->mci_mip;
3347 mac_cb_info_t *mcbi;
3348 int rv;
3349
3350 i_mac_perim_enter(mip);
3351
3352 /*
3353 * Even if the device can't be reset into normal mode, we still
3354 * need to clear the client promisc callbacks. The client may want
3355 * to close the mac end point and we can't have stale callbacks.
3356 */
3357 if (!(mpip->mpi_no_phys)) {
3358 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) {
3359 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous"
3360 " mode because of error 0x%x", mip->mi_name, rv);
3361 }
3362 }
3363 mcbi = &mip->mi_promisc_cb_info;
3364 mutex_enter(mcbi->mcbi_lockp);
3365 if (mac_callback_remove(mcbi, &mip->mi_promisc_list,
3366 &mpip->mpi_mi_link)) {
3367 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
3368 &mcip->mci_promisc_list, &mpip->mpi_mci_link));
3369 kmem_cache_free(mac_promisc_impl_cache, mpip);
3370 } else {
3371 mac_callback_remove_wait(&mip->mi_promisc_cb_info);
3372 }
3373
3374 if (mcip->mci_state_flags & MCIS_IS_VNIC) {
3375 mac_impl_t *umip = mcip->mci_upper_mip;
3376
3377 ASSERT(umip != NULL);
3378 mac_vnic_secondary_update(umip);
3379 }
3380
3381 mutex_exit(mcbi->mcbi_lockp);
3382 mac_stop((mac_handle_t)mip);
3383
3384 i_mac_perim_exit(mip);
3385 }
3386
3387 /*
3388 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates
3389 * that a control operation wants to quiesce the Tx data flow in which case
3390 * we return an error. Holding any of the per cpu locks ensures that the
3391 * mci_tx_flag won't change.
3392 *
3393 * 'CPU' must be accessed just once and used to compute the index into the
3394 * percpu array, and that index must be used for the entire duration of the
3395 * packet send operation. Note that the thread may be preempted and run on
3396 * another cpu any time and so we can't use 'CPU' more than once for the
3397 * operation.
3398 */
3399 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \
3400 { \
3401 (error) = 0; \
3402 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \
3403 mutex_enter(&(mytx)->pcpu_tx_lock); \
3404 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \
3405 (mytx)->pcpu_tx_refcnt++; \
3406 } else { \
3407 (error) = -1; \
3408 } \
3409 mutex_exit(&(mytx)->pcpu_tx_lock); \
3410 }
3411
3412 /*
3413 * Release the reference. If needed, signal any control operation waiting
3414 * for Tx quiescence. The wait and signal are always done using the
3415 * mci_tx_pcpu[0]'s lock
3416 */
3417 #define MAC_TX_RELE(mcip, mytx) { \
3418 mutex_enter(&(mytx)->pcpu_tx_lock); \
3419 if (--(mytx)->pcpu_tx_refcnt == 0 && \
3420 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \
3421 mutex_exit(&(mytx)->pcpu_tx_lock); \
3422 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3423 cv_signal(&(mcip)->mci_tx_cv); \
3424 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \
3425 } else { \
3426 mutex_exit(&(mytx)->pcpu_tx_lock); \
3427 } \
3428 }
3429
3430 /*
3431 * Send function invoked by MAC clients.
3432 */
3433 mac_tx_cookie_t
mac_tx(mac_client_handle_t mch,mblk_t * mp_chain,uintptr_t hint,uint16_t flag,mblk_t ** ret_mp)3434 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint,
3435 uint16_t flag, mblk_t **ret_mp)
3436 {
3437 mac_tx_cookie_t cookie = NULL;
3438 int error;
3439 mac_tx_percpu_t *mytx;
3440 mac_soft_ring_set_t *srs;
3441 flow_entry_t *flent;
3442 boolean_t is_subflow = B_FALSE;
3443 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3444 mac_impl_t *mip = mcip->mci_mip;
3445 mac_srs_tx_t *srs_tx;
3446
3447 /*
3448 * Check whether the active Tx threads count is bumped already.
3449 */
3450 if (!(flag & MAC_TX_NO_HOLD)) {
3451 MAC_TX_TRY_HOLD(mcip, mytx, error);
3452 if (error != 0) {
3453 freemsgchain(mp_chain);
3454 return (NULL);
3455 }
3456 }
3457
3458 /*
3459 * If mac protection is enabled, only the permissible packets will be
3460 * returned by mac_protect_check().
3461 */
3462 if ((mcip->mci_flent->
3463 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 &&
3464 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL)
3465 goto done;
3466
3467 if (mcip->mci_subflow_tab != NULL &&
3468 mcip->mci_subflow_tab->ft_flow_count > 0 &&
3469 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain,
3470 FLOW_OUTBOUND, &flent) == 0) {
3471 /*
3472 * The main assumption here is that if in the event
3473 * we get a chain, all the packets will be classified
3474 * to the same Flow/SRS. If this changes for any
3475 * reason, the following logic should change as well.
3476 * I suppose the fanout_hint also assumes this .
3477 */
3478 ASSERT(flent != NULL);
3479 is_subflow = B_TRUE;
3480 } else {
3481 flent = mcip->mci_flent;
3482 }
3483
3484 srs = flent->fe_tx_srs;
3485 /*
3486 * This is to avoid panics with PF_PACKET that can call mac_tx()
3487 * against an interface that is not capable of sending. A rewrite
3488 * of the mac datapath is required to remove this limitation.
3489 */
3490 if (srs == NULL) {
3491 freemsgchain(mp_chain);
3492 goto done;
3493 }
3494
3495 srs_tx = &srs->srs_tx;
3496 if (srs_tx->st_mode == SRS_TX_DEFAULT &&
3497 (srs->srs_state & SRS_ENQUEUED) == 0 &&
3498 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) {
3499 uint64_t obytes;
3500
3501 /*
3502 * Since dls always opens the underlying MAC, nclients equals
3503 * to 1 means that the only active client is dls itself acting
3504 * as a primary client of the MAC instance. Since dls will not
3505 * send tagged packets in that case, and dls is trusted to send
3506 * packets for its allowed VLAN(s), the VLAN tag insertion and
3507 * check is required only if nclients is greater than 1.
3508 */
3509 if (mip->mi_nclients > 1) {
3510 if (MAC_VID_CHECK_NEEDED(mcip)) {
3511 int err = 0;
3512
3513 MAC_VID_CHECK(mcip, mp_chain, err);
3514 if (err != 0) {
3515 freemsg(mp_chain);
3516 mcip->mci_misc_stat.mms_txerrors++;
3517 goto done;
3518 }
3519 }
3520 if (MAC_TAG_NEEDED(mcip)) {
3521 mp_chain = mac_add_vlan_tag(mp_chain, 0,
3522 mac_client_vid(mch));
3523 if (mp_chain == NULL) {
3524 mcip->mci_misc_stat.mms_txerrors++;
3525 goto done;
3526 }
3527 }
3528 }
3529
3530 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) :
3531 msgdsize(mp_chain));
3532
3533 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip);
3534 if (mp_chain == NULL) {
3535 cookie = NULL;
3536 SRS_TX_STAT_UPDATE(srs, opackets, 1);
3537 SRS_TX_STAT_UPDATE(srs, obytes, obytes);
3538 } else {
3539 mutex_enter(&srs->srs_lock);
3540 cookie = mac_tx_srs_no_desc(srs, mp_chain,
3541 flag, ret_mp);
3542 mutex_exit(&srs->srs_lock);
3543 }
3544 } else {
3545 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp);
3546 }
3547
3548 done:
3549 if (is_subflow)
3550 FLOW_REFRELE(flent);
3551
3552 if (!(flag & MAC_TX_NO_HOLD))
3553 MAC_TX_RELE(mcip, mytx);
3554
3555 return (cookie);
3556 }
3557
3558 /*
3559 * mac_tx_is_blocked
3560 *
3561 * Given a cookie, it returns if the ring identified by the cookie is
3562 * flow-controlled or not. If NULL is passed in place of a cookie,
3563 * then it finds out if any of the underlying rings belonging to the
3564 * SRS is flow controlled or not and returns that status.
3565 */
3566 /* ARGSUSED */
3567 boolean_t
mac_tx_is_flow_blocked(mac_client_handle_t mch,mac_tx_cookie_t cookie)3568 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie)
3569 {
3570 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3571 mac_soft_ring_set_t *mac_srs;
3572 mac_soft_ring_t *sringp;
3573 boolean_t blocked = B_FALSE;
3574 mac_tx_percpu_t *mytx;
3575 int err;
3576 int i;
3577
3578 /*
3579 * Bump the reference count so that mac_srs won't be deleted.
3580 * If the client is currently quiesced and we failed to bump
3581 * the reference, return B_TRUE so that flow control stays
3582 * as enabled.
3583 *
3584 * Flow control will then be disabled once the client is no
3585 * longer quiesced.
3586 */
3587 MAC_TX_TRY_HOLD(mcip, mytx, err);
3588 if (err != 0)
3589 return (B_TRUE);
3590
3591 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) {
3592 MAC_TX_RELE(mcip, mytx);
3593 return (B_FALSE);
3594 }
3595
3596 mutex_enter(&mac_srs->srs_lock);
3597 /*
3598 * Only in the case of TX_FANOUT and TX_AGGR, the underlying
3599 * softring (s_ring_state) will have the HIWAT set. This is
3600 * the multiple Tx ring flow control case. For all other
3601 * case, SRS (srs_state) will store the condition.
3602 */
3603 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3604 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) {
3605 if (cookie != NULL) {
3606 sringp = (mac_soft_ring_t *)cookie;
3607 mutex_enter(&sringp->s_ring_lock);
3608 if (sringp->s_ring_state & S_RING_TX_HIWAT)
3609 blocked = B_TRUE;
3610 mutex_exit(&sringp->s_ring_lock);
3611 } else {
3612 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3613 sringp = mac_srs->srs_tx_soft_rings[i];
3614 mutex_enter(&sringp->s_ring_lock);
3615 if (sringp->s_ring_state & S_RING_TX_HIWAT) {
3616 blocked = B_TRUE;
3617 mutex_exit(&sringp->s_ring_lock);
3618 break;
3619 }
3620 mutex_exit(&sringp->s_ring_lock);
3621 }
3622 }
3623 } else {
3624 blocked = (mac_srs->srs_state & SRS_TX_HIWAT);
3625 }
3626 mutex_exit(&mac_srs->srs_lock);
3627 MAC_TX_RELE(mcip, mytx);
3628 return (blocked);
3629 }
3630
3631 /*
3632 * Check if the MAC client is the primary MAC client.
3633 */
3634 boolean_t
mac_is_primary_client(mac_client_impl_t * mcip)3635 mac_is_primary_client(mac_client_impl_t *mcip)
3636 {
3637 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY);
3638 }
3639
3640 void
mac_ioctl(mac_handle_t mh,queue_t * wq,mblk_t * bp)3641 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp)
3642 {
3643 mac_impl_t *mip = (mac_impl_t *)mh;
3644 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd;
3645
3646 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) ||
3647 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) {
3648 /*
3649 * If ndd props were registered, call them.
3650 * Note that ndd ioctls are Obsolete
3651 */
3652 mac_ndd_ioctl(mip, wq, bp);
3653 return;
3654 }
3655
3656 /*
3657 * Call the driver to handle the ioctl. The driver may not support
3658 * any ioctls, in which case we reply with a NAK on its behalf.
3659 */
3660 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL)
3661 mip->mi_ioctl(mip->mi_driver, wq, bp);
3662 else
3663 miocnak(wq, bp, 0, EINVAL);
3664 }
3665
3666 /*
3667 * Return the link state of the specified MAC instance.
3668 */
3669 link_state_t
mac_link_get(mac_handle_t mh)3670 mac_link_get(mac_handle_t mh)
3671 {
3672 return (((mac_impl_t *)mh)->mi_linkstate);
3673 }
3674
3675 /*
3676 * Add a mac client specified notification callback. Please see the comments
3677 * above mac_callback_add() for general information about mac callback
3678 * addition/deletion in the presence of mac callback list walkers
3679 */
3680 mac_notify_handle_t
mac_notify_add(mac_handle_t mh,mac_notify_t notify_fn,void * arg)3681 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg)
3682 {
3683 mac_impl_t *mip = (mac_impl_t *)mh;
3684 mac_notify_cb_t *mncb;
3685 mac_cb_info_t *mcbi;
3686
3687 /*
3688 * Allocate a notify callback structure, fill in the details and
3689 * use the mac callback list manipulation functions to chain into
3690 * the list of callbacks.
3691 */
3692 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP);
3693 mncb->mncb_fn = notify_fn;
3694 mncb->mncb_arg = arg;
3695 mncb->mncb_mip = mip;
3696 mncb->mncb_link.mcb_objp = mncb;
3697 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t);
3698 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T;
3699
3700 mcbi = &mip->mi_notify_cb_info;
3701
3702 i_mac_perim_enter(mip);
3703 mutex_enter(mcbi->mcbi_lockp);
3704
3705 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list,
3706 &mncb->mncb_link);
3707
3708 mutex_exit(mcbi->mcbi_lockp);
3709 i_mac_perim_exit(mip);
3710 return ((mac_notify_handle_t)mncb);
3711 }
3712
3713 void
mac_notify_remove_wait(mac_handle_t mh)3714 mac_notify_remove_wait(mac_handle_t mh)
3715 {
3716 mac_impl_t *mip = (mac_impl_t *)mh;
3717 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info;
3718
3719 mutex_enter(mcbi->mcbi_lockp);
3720 mac_callback_remove_wait(&mip->mi_notify_cb_info);
3721 mutex_exit(mcbi->mcbi_lockp);
3722 }
3723
3724 /*
3725 * Remove a mac client specified notification callback
3726 */
3727 int
mac_notify_remove(mac_notify_handle_t mnh,boolean_t wait)3728 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait)
3729 {
3730 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh;
3731 mac_impl_t *mip = mncb->mncb_mip;
3732 mac_cb_info_t *mcbi;
3733 int err = 0;
3734
3735 mcbi = &mip->mi_notify_cb_info;
3736
3737 i_mac_perim_enter(mip);
3738 mutex_enter(mcbi->mcbi_lockp);
3739
3740 ASSERT(mncb->mncb_link.mcb_objp == mncb);
3741 /*
3742 * If there aren't any list walkers, the remove would succeed
3743 * inline, else we wait for the deferred remove to complete
3744 */
3745 if (mac_callback_remove(&mip->mi_notify_cb_info,
3746 &mip->mi_notify_cb_list, &mncb->mncb_link)) {
3747 kmem_free(mncb, sizeof (mac_notify_cb_t));
3748 } else {
3749 err = EBUSY;
3750 }
3751
3752 mutex_exit(mcbi->mcbi_lockp);
3753 i_mac_perim_exit(mip);
3754
3755 /*
3756 * If we failed to remove the notification callback and "wait" is set
3757 * to be B_TRUE, wait for the callback to finish after we exit the
3758 * mac perimeter.
3759 */
3760 if (err != 0 && wait) {
3761 mac_notify_remove_wait((mac_handle_t)mip);
3762 return (0);
3763 }
3764
3765 return (err);
3766 }
3767
3768 /*
3769 * Associate resource management callbacks with the specified MAC
3770 * clients.
3771 */
3772
3773 void
mac_resource_set_common(mac_client_handle_t mch,mac_resource_add_t add,mac_resource_remove_t remove,mac_resource_quiesce_t quiesce,mac_resource_restart_t restart,mac_resource_bind_t bind,void * arg)3774 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add,
3775 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce,
3776 mac_resource_restart_t restart, mac_resource_bind_t bind,
3777 void *arg)
3778 {
3779 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3780
3781 mcip->mci_resource_add = add;
3782 mcip->mci_resource_remove = remove;
3783 mcip->mci_resource_quiesce = quiesce;
3784 mcip->mci_resource_restart = restart;
3785 mcip->mci_resource_bind = bind;
3786 mcip->mci_resource_arg = arg;
3787 }
3788
3789 void
mac_resource_set(mac_client_handle_t mch,mac_resource_add_t add,void * arg)3790 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg)
3791 {
3792 /* update the 'resource_add' callback */
3793 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg);
3794 }
3795
3796 /*
3797 * Sets up the client resources and enable the polling interface over all the
3798 * SRS's and the soft rings of the client
3799 */
3800 void
mac_client_poll_enable(mac_client_handle_t mch)3801 mac_client_poll_enable(mac_client_handle_t mch)
3802 {
3803 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3804 mac_soft_ring_set_t *mac_srs;
3805 flow_entry_t *flent;
3806 int i;
3807
3808 flent = mcip->mci_flent;
3809 ASSERT(flent != NULL);
3810
3811 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE;
3812 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3813 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3814 ASSERT(mac_srs->srs_mcip == mcip);
3815 mac_srs_client_poll_enable(mcip, mac_srs);
3816 }
3817 }
3818
3819 /*
3820 * Tears down the client resources and disable the polling interface over all
3821 * the SRS's and the soft rings of the client
3822 */
3823 void
mac_client_poll_disable(mac_client_handle_t mch)3824 mac_client_poll_disable(mac_client_handle_t mch)
3825 {
3826 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3827 mac_soft_ring_set_t *mac_srs;
3828 flow_entry_t *flent;
3829 int i;
3830
3831 flent = mcip->mci_flent;
3832 ASSERT(flent != NULL);
3833
3834 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE;
3835 for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
3836 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i];
3837 ASSERT(mac_srs->srs_mcip == mcip);
3838 mac_srs_client_poll_disable(mcip, mac_srs);
3839 }
3840 }
3841
3842 /*
3843 * Associate the CPUs specified by the given property with a MAC client.
3844 */
3845 int
mac_cpu_set(mac_client_handle_t mch,mac_resource_props_t * mrp)3846 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp)
3847 {
3848 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3849 mac_impl_t *mip = mcip->mci_mip;
3850 int err = 0;
3851
3852 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3853
3854 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ?
3855 mcip->mci_upper_mip : mip, mrp)) != 0) {
3856 return (err);
3857 }
3858 if (MCIP_DATAPATH_SETUP(mcip))
3859 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp);
3860
3861 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE);
3862 return (0);
3863 }
3864
3865 /*
3866 * Apply the specified properties to the specified MAC client.
3867 */
3868 int
mac_client_set_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3869 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3870 {
3871 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3872 mac_impl_t *mip = mcip->mci_mip;
3873 int err = 0;
3874
3875 i_mac_perim_enter(mip);
3876
3877 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) {
3878 err = mac_resource_ctl_set(mch, mrp);
3879 if (err != 0)
3880 goto done;
3881 }
3882
3883 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) {
3884 err = mac_cpu_set(mch, mrp);
3885 if (err != 0)
3886 goto done;
3887 }
3888
3889 if (mrp->mrp_mask & MRP_PROTECT) {
3890 err = mac_protect_set(mch, mrp);
3891 if (err != 0)
3892 goto done;
3893 }
3894
3895 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS))
3896 err = mac_resource_ctl_set(mch, mrp);
3897
3898 done:
3899 i_mac_perim_exit(mip);
3900 return (err);
3901 }
3902
3903 /*
3904 * Return the properties currently associated with the specified MAC client.
3905 */
3906 void
mac_client_get_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3907 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp)
3908 {
3909 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3910 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip);
3911
3912 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3913 }
3914
3915 /*
3916 * Return the effective properties currently associated with the specified
3917 * MAC client.
3918 */
3919 void
mac_client_get_effective_resources(mac_client_handle_t mch,mac_resource_props_t * mrp)3920 mac_client_get_effective_resources(mac_client_handle_t mch,
3921 mac_resource_props_t *mrp)
3922 {
3923 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
3924 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip);
3925
3926 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t));
3927 }
3928
3929 /*
3930 * Pass a copy of the specified packet to the promiscuous callbacks
3931 * of the specified MAC.
3932 *
3933 * If sender is NULL, the function is being invoked for a packet chain
3934 * received from the wire. If sender is non-NULL, it points to
3935 * the MAC client from which the packet is being sent.
3936 *
3937 * The packets are distributed to the promiscuous callbacks as follows:
3938 *
3939 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks
3940 * - all broadcast and multicast packets are sent to the
3941 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI.
3942 *
3943 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched
3944 * after classification by mac_rx_deliver().
3945 */
3946
3947 static void
mac_promisc_dispatch_one(mac_promisc_impl_t * mpip,mblk_t * mp,boolean_t loopback)3948 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp,
3949 boolean_t loopback)
3950 {
3951 mblk_t *mp_copy, *mp_next;
3952
3953 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) {
3954 mp_copy = copymsg(mp);
3955 if (mp_copy == NULL)
3956 return;
3957
3958 if (mpip->mpi_strip_vlan_tag) {
3959 mp_copy = mac_strip_vlan_tag_chain(mp_copy);
3960 if (mp_copy == NULL)
3961 return;
3962 }
3963 mp_next = NULL;
3964 } else {
3965 mp_copy = mp;
3966 mp_next = mp->b_next;
3967 }
3968 mp_copy->b_next = NULL;
3969
3970 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback);
3971 if (mp_copy == mp)
3972 mp->b_next = mp_next;
3973 }
3974
3975 /*
3976 * Return the VID of a packet. Zero if the packet is not tagged.
3977 */
3978 static uint16_t
mac_ether_vid(mblk_t * mp)3979 mac_ether_vid(mblk_t *mp)
3980 {
3981 struct ether_header *eth = (struct ether_header *)mp->b_rptr;
3982
3983 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) {
3984 struct ether_vlan_header *t_evhp =
3985 (struct ether_vlan_header *)mp->b_rptr;
3986 return (VLAN_ID(ntohs(t_evhp->ether_tci)));
3987 }
3988
3989 return (0);
3990 }
3991
3992 /*
3993 * Return whether the specified packet contains a multicast or broadcast
3994 * destination MAC address.
3995 */
3996 static boolean_t
mac_is_mcast(mac_impl_t * mip,mblk_t * mp)3997 mac_is_mcast(mac_impl_t *mip, mblk_t *mp)
3998 {
3999 mac_header_info_t hdr_info;
4000
4001 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0)
4002 return (B_FALSE);
4003 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) ||
4004 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST));
4005 }
4006
4007 /*
4008 * Send a copy of an mblk chain to the MAC clients of the specified MAC.
4009 * "sender" points to the sender MAC client for outbound packets, and
4010 * is set to NULL for inbound packets.
4011 */
4012 void
mac_promisc_dispatch(mac_impl_t * mip,mblk_t * mp_chain,mac_client_impl_t * sender)4013 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain,
4014 mac_client_impl_t *sender)
4015 {
4016 mac_promisc_impl_t *mpip;
4017 mac_cb_t *mcb;
4018 mblk_t *mp;
4019 boolean_t is_mcast, is_sender;
4020
4021 MAC_PROMISC_WALKER_INC(mip);
4022 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4023 is_mcast = mac_is_mcast(mip, mp);
4024 /* send packet to interested callbacks */
4025 for (mcb = mip->mi_promisc_list; mcb != NULL;
4026 mcb = mcb->mcb_nextp) {
4027 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4028 is_sender = (mpip->mpi_mcip == sender);
4029
4030 if (is_sender && mpip->mpi_no_tx_loop)
4031 /*
4032 * The sender doesn't want to receive
4033 * copies of the packets it sends.
4034 */
4035 continue;
4036
4037 /* this client doesn't need any packets (bridge) */
4038 if (mpip->mpi_fn == NULL)
4039 continue;
4040
4041 /*
4042 * For an ethernet MAC, don't displatch a multicast
4043 * packet to a non-PROMISC_ALL callbacks unless the VID
4044 * of the packet matches the VID of the client.
4045 */
4046 if (is_mcast &&
4047 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL &&
4048 !mac_client_check_flow_vid(mpip->mpi_mcip,
4049 mac_ether_vid(mp)))
4050 continue;
4051
4052 if (is_sender ||
4053 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL ||
4054 is_mcast)
4055 mac_promisc_dispatch_one(mpip, mp, is_sender);
4056 }
4057 }
4058 MAC_PROMISC_WALKER_DCR(mip);
4059 }
4060
4061 void
mac_promisc_client_dispatch(mac_client_impl_t * mcip,mblk_t * mp_chain)4062 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain)
4063 {
4064 mac_impl_t *mip = mcip->mci_mip;
4065 mac_promisc_impl_t *mpip;
4066 boolean_t is_mcast;
4067 mblk_t *mp;
4068 mac_cb_t *mcb;
4069
4070 /*
4071 * The unicast packets for the MAC client still
4072 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED
4073 * promiscuous callbacks. The broadcast and multicast
4074 * packets were delivered from mac_rx().
4075 */
4076 MAC_PROMISC_WALKER_INC(mip);
4077 for (mp = mp_chain; mp != NULL; mp = mp->b_next) {
4078 is_mcast = mac_is_mcast(mip, mp);
4079 for (mcb = mcip->mci_promisc_list; mcb != NULL;
4080 mcb = mcb->mcb_nextp) {
4081 mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
4082 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED &&
4083 !is_mcast) {
4084 mac_promisc_dispatch_one(mpip, mp, B_FALSE);
4085 }
4086 }
4087 }
4088 MAC_PROMISC_WALKER_DCR(mip);
4089 }
4090
4091 /*
4092 * Return the margin value currently assigned to the specified MAC instance.
4093 */
4094 void
mac_margin_get(mac_handle_t mh,uint32_t * marginp)4095 mac_margin_get(mac_handle_t mh, uint32_t *marginp)
4096 {
4097 mac_impl_t *mip = (mac_impl_t *)mh;
4098
4099 rw_enter(&(mip->mi_rw_lock), RW_READER);
4100 *marginp = mip->mi_margin;
4101 rw_exit(&(mip->mi_rw_lock));
4102 }
4103
4104 /*
4105 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is
4106 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find
4107 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t
4108 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t
4109 * cannot disappear while we are accessing it.
4110 */
4111 typedef struct i_mac_info_state_s {
4112 const char *mi_name;
4113 mac_info_t *mi_infop;
4114 } i_mac_info_state_t;
4115
4116 /*ARGSUSED*/
4117 static uint_t
i_mac_info_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)4118 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4119 {
4120 i_mac_info_state_t *statep = arg;
4121 mac_impl_t *mip = (mac_impl_t *)val;
4122
4123 if (mip->mi_state_flags & MIS_DISABLED)
4124 return (MH_WALK_CONTINUE);
4125
4126 if (strcmp(statep->mi_name,
4127 ddi_driver_name(mip->mi_dip)) != 0)
4128 return (MH_WALK_CONTINUE);
4129
4130 statep->mi_infop = &mip->mi_info;
4131 return (MH_WALK_TERMINATE);
4132 }
4133
4134 boolean_t
mac_info_get(const char * name,mac_info_t * minfop)4135 mac_info_get(const char *name, mac_info_t *minfop)
4136 {
4137 i_mac_info_state_t state;
4138
4139 rw_enter(&i_mac_impl_lock, RW_READER);
4140 state.mi_name = name;
4141 state.mi_infop = NULL;
4142 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state);
4143 if (state.mi_infop == NULL) {
4144 rw_exit(&i_mac_impl_lock);
4145 return (B_FALSE);
4146 }
4147 *minfop = *state.mi_infop;
4148 rw_exit(&i_mac_impl_lock);
4149 return (B_TRUE);
4150 }
4151
4152 /*
4153 * To get the capabilities that MAC layer cares about, such as rings, factory
4154 * mac address, vnic or not, it should directly invoke this function. If the
4155 * link is part of a bridge, then the only "capability" it has is the inability
4156 * to do zero copy.
4157 */
4158 boolean_t
i_mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4159 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4160 {
4161 mac_impl_t *mip = (mac_impl_t *)mh;
4162
4163 if (mip->mi_bridge_link != NULL)
4164 return (cap == MAC_CAPAB_NO_ZCOPY);
4165 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB)
4166 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data));
4167 else
4168 return (B_FALSE);
4169 }
4170
4171 /*
4172 * Capability query function. If number of active mac clients is greater than
4173 * 1, only limited capabilities can be advertised to the caller no matter the
4174 * driver has certain capability or not. Else, we query the driver to get the
4175 * capability.
4176 */
4177 boolean_t
mac_capab_get(mac_handle_t mh,mac_capab_t cap,void * cap_data)4178 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data)
4179 {
4180 mac_impl_t *mip = (mac_impl_t *)mh;
4181
4182 /*
4183 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM,
4184 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised.
4185 */
4186 if (mip->mi_nactiveclients > 1) {
4187 switch (cap) {
4188 case MAC_CAPAB_NO_ZCOPY:
4189 return (B_TRUE);
4190 case MAC_CAPAB_LEGACY:
4191 case MAC_CAPAB_HCKSUM:
4192 case MAC_CAPAB_NO_NATIVEVLAN:
4193 break;
4194 default:
4195 return (B_FALSE);
4196 }
4197 }
4198
4199 /* else get capab from driver */
4200 return (i_mac_capab_get(mh, cap, cap_data));
4201 }
4202
4203 boolean_t
mac_sap_verify(mac_handle_t mh,uint32_t sap,uint32_t * bind_sap)4204 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap)
4205 {
4206 mac_impl_t *mip = (mac_impl_t *)mh;
4207
4208 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap,
4209 mip->mi_pdata));
4210 }
4211
4212 mblk_t *
mac_header(mac_handle_t mh,const uint8_t * daddr,uint32_t sap,mblk_t * payload,size_t extra_len)4213 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload,
4214 size_t extra_len)
4215 {
4216 mac_impl_t *mip = (mac_impl_t *)mh;
4217 const uint8_t *hdr_daddr;
4218
4219 /*
4220 * If the MAC is point-to-point with a fixed destination address, then
4221 * we must always use that destination in the MAC header.
4222 */
4223 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr);
4224 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap,
4225 mip->mi_pdata, payload, extra_len));
4226 }
4227
4228 int
mac_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4229 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4230 {
4231 mac_impl_t *mip = (mac_impl_t *)mh;
4232
4233 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata,
4234 mhip));
4235 }
4236
4237 int
mac_vlan_header_info(mac_handle_t mh,mblk_t * mp,mac_header_info_t * mhip)4238 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip)
4239 {
4240 mac_impl_t *mip = (mac_impl_t *)mh;
4241 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER);
4242 int err = 0;
4243
4244 /*
4245 * Packets should always be at least 16 bit aligned.
4246 */
4247 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t)));
4248
4249 if ((err = mac_header_info(mh, mp, mhip)) != 0)
4250 return (err);
4251
4252 /*
4253 * If this is a VLAN-tagged Ethernet packet, then the SAP in the
4254 * mac_header_info_t as returned by mac_header_info() is
4255 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header.
4256 */
4257 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) {
4258 struct ether_vlan_header *evhp;
4259 uint16_t sap;
4260 mblk_t *tmp = NULL;
4261 size_t size;
4262
4263 size = sizeof (struct ether_vlan_header);
4264 if (MBLKL(mp) < size) {
4265 /*
4266 * Pullup the message in order to get the MAC header
4267 * infomation. Note that this is a read-only function,
4268 * we keep the input packet intact.
4269 */
4270 if ((tmp = msgpullup(mp, size)) == NULL)
4271 return (EINVAL);
4272
4273 mp = tmp;
4274 }
4275 evhp = (struct ether_vlan_header *)mp->b_rptr;
4276 sap = ntohs(evhp->ether_type);
4277 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap);
4278 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header);
4279 mhip->mhi_tci = ntohs(evhp->ether_tci);
4280 mhip->mhi_istagged = B_TRUE;
4281 freemsg(tmp);
4282
4283 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI)
4284 return (EINVAL);
4285 } else {
4286 mhip->mhi_istagged = B_FALSE;
4287 mhip->mhi_tci = 0;
4288 }
4289
4290 return (0);
4291 }
4292
4293 mblk_t *
mac_header_cook(mac_handle_t mh,mblk_t * mp)4294 mac_header_cook(mac_handle_t mh, mblk_t *mp)
4295 {
4296 mac_impl_t *mip = (mac_impl_t *)mh;
4297
4298 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) {
4299 if (DB_REF(mp) > 1) {
4300 mblk_t *newmp = copymsg(mp);
4301 if (newmp == NULL)
4302 return (NULL);
4303 freemsg(mp);
4304 mp = newmp;
4305 }
4306 return (mip->mi_type->mt_ops.mtops_header_cook(mp,
4307 mip->mi_pdata));
4308 }
4309 return (mp);
4310 }
4311
4312 mblk_t *
mac_header_uncook(mac_handle_t mh,mblk_t * mp)4313 mac_header_uncook(mac_handle_t mh, mblk_t *mp)
4314 {
4315 mac_impl_t *mip = (mac_impl_t *)mh;
4316
4317 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) {
4318 if (DB_REF(mp) > 1) {
4319 mblk_t *newmp = copymsg(mp);
4320 if (newmp == NULL)
4321 return (NULL);
4322 freemsg(mp);
4323 mp = newmp;
4324 }
4325 return (mip->mi_type->mt_ops.mtops_header_uncook(mp,
4326 mip->mi_pdata));
4327 }
4328 return (mp);
4329 }
4330
4331 uint_t
mac_addr_len(mac_handle_t mh)4332 mac_addr_len(mac_handle_t mh)
4333 {
4334 mac_impl_t *mip = (mac_impl_t *)mh;
4335
4336 return (mip->mi_type->mt_addr_length);
4337 }
4338
4339 /* True if a MAC is a VNIC */
4340 boolean_t
mac_is_vnic(mac_handle_t mh)4341 mac_is_vnic(mac_handle_t mh)
4342 {
4343 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC);
4344 }
4345
4346 mac_handle_t
mac_get_lower_mac_handle(mac_handle_t mh)4347 mac_get_lower_mac_handle(mac_handle_t mh)
4348 {
4349 mac_impl_t *mip = (mac_impl_t *)mh;
4350
4351 ASSERT(mac_is_vnic(mh));
4352 return (((vnic_t *)mip->mi_driver)->vn_lower_mh);
4353 }
4354
4355 boolean_t
mac_is_vnic_primary(mac_handle_t mh)4356 mac_is_vnic_primary(mac_handle_t mh)
4357 {
4358 mac_impl_t *mip = (mac_impl_t *)mh;
4359
4360 ASSERT(mac_is_vnic(mh));
4361 return (((vnic_t *)mip->mi_driver)->vn_addr_type ==
4362 VNIC_MAC_ADDR_TYPE_PRIMARY);
4363 }
4364
4365 void
mac_update_resources(mac_resource_props_t * nmrp,mac_resource_props_t * cmrp,boolean_t is_user_flow)4366 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp,
4367 boolean_t is_user_flow)
4368 {
4369 if (nmrp != NULL && cmrp != NULL) {
4370 if (nmrp->mrp_mask & MRP_PRIORITY) {
4371 if (nmrp->mrp_priority == MPL_RESET) {
4372 cmrp->mrp_mask &= ~MRP_PRIORITY;
4373 if (is_user_flow) {
4374 cmrp->mrp_priority =
4375 MPL_SUBFLOW_DEFAULT;
4376 } else {
4377 cmrp->mrp_priority = MPL_LINK_DEFAULT;
4378 }
4379 } else {
4380 cmrp->mrp_mask |= MRP_PRIORITY;
4381 cmrp->mrp_priority = nmrp->mrp_priority;
4382 }
4383 }
4384 if (nmrp->mrp_mask & MRP_MAXBW) {
4385 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) {
4386 cmrp->mrp_mask &= ~MRP_MAXBW;
4387 cmrp->mrp_maxbw = 0;
4388 } else {
4389 cmrp->mrp_mask |= MRP_MAXBW;
4390 cmrp->mrp_maxbw = nmrp->mrp_maxbw;
4391 }
4392 }
4393 if (nmrp->mrp_mask & MRP_CPUS)
4394 MAC_COPY_CPUS(nmrp, cmrp);
4395
4396 if (nmrp->mrp_mask & MRP_POOL) {
4397 if (strlen(nmrp->mrp_pool) == 0) {
4398 cmrp->mrp_mask &= ~MRP_POOL;
4399 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool));
4400 } else {
4401 cmrp->mrp_mask |= MRP_POOL;
4402 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool,
4403 sizeof (cmrp->mrp_pool));
4404 }
4405
4406 }
4407
4408 if (nmrp->mrp_mask & MRP_PROTECT)
4409 mac_protect_update(nmrp, cmrp);
4410
4411 /*
4412 * Update the rings specified.
4413 */
4414 if (nmrp->mrp_mask & MRP_RX_RINGS) {
4415 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4416 cmrp->mrp_mask &= ~MRP_RX_RINGS;
4417 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4418 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4419 cmrp->mrp_nrxrings = 0;
4420 } else {
4421 cmrp->mrp_mask |= MRP_RX_RINGS;
4422 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings;
4423 }
4424 }
4425 if (nmrp->mrp_mask & MRP_TX_RINGS) {
4426 if (nmrp->mrp_mask & MRP_RINGS_RESET) {
4427 cmrp->mrp_mask &= ~MRP_TX_RINGS;
4428 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4429 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4430 cmrp->mrp_ntxrings = 0;
4431 } else {
4432 cmrp->mrp_mask |= MRP_TX_RINGS;
4433 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings;
4434 }
4435 }
4436 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4437 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4438 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4439 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC;
4440
4441 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4442 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4443 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4444 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC;
4445 }
4446 }
4447
4448 /*
4449 * i_mac_set_resources:
4450 *
4451 * This routine associates properties with the primary MAC client of
4452 * the specified MAC instance.
4453 * - Cache the properties in mac_impl_t
4454 * - Apply the properties to the primary MAC client if exists
4455 */
4456 int
i_mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4457 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4458 {
4459 mac_impl_t *mip = (mac_impl_t *)mh;
4460 mac_client_impl_t *mcip;
4461 int err = 0;
4462 uint32_t resmask, newresmask;
4463 mac_resource_props_t *tmrp, *umrp;
4464
4465 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4466
4467 err = mac_validate_props(mip, mrp);
4468 if (err != 0)
4469 return (err);
4470
4471 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP);
4472 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp));
4473 resmask = umrp->mrp_mask;
4474 mac_update_resources(mrp, umrp, B_FALSE);
4475 newresmask = umrp->mrp_mask;
4476
4477 if (resmask == 0 && newresmask != 0) {
4478 /*
4479 * Bandwidth, priority, cpu or pool link properties configured,
4480 * must disable fastpath.
4481 */
4482 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) {
4483 kmem_free(umrp, sizeof (*umrp));
4484 return (err);
4485 }
4486 }
4487
4488 /*
4489 * Since bind_cpu may be modified by mac_client_set_resources()
4490 * we use a copy of bind_cpu and finally cache bind_cpu in mip.
4491 * This allows us to cache only user edits in mip.
4492 */
4493 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP);
4494 bcopy(mrp, tmrp, sizeof (*tmrp));
4495 mcip = mac_primary_client_handle(mip);
4496 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) {
4497 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp);
4498 } else if ((mrp->mrp_mask & MRP_RX_RINGS ||
4499 mrp->mrp_mask & MRP_TX_RINGS)) {
4500 mac_client_impl_t *vmcip;
4501
4502 /*
4503 * If the primary is not up, we need to check if there
4504 * are any VLANs on this primary. If there are then
4505 * we need to set this property on the VLANs since
4506 * VLANs follow the primary they are based on. Just
4507 * look for the first VLAN and change its properties,
4508 * all the other VLANs should be in the same group.
4509 */
4510 for (vmcip = mip->mi_clients_list; vmcip != NULL;
4511 vmcip = vmcip->mci_client_next) {
4512 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) &&
4513 mac_client_vid((mac_client_handle_t)vmcip) !=
4514 VLAN_ID_NONE) {
4515 break;
4516 }
4517 }
4518 if (vmcip != NULL) {
4519 mac_resource_props_t *omrp;
4520 mac_resource_props_t *vmrp;
4521
4522 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP);
4523 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp));
4524 /*
4525 * We dont' call mac_update_resources since we
4526 * want to take only the ring properties and
4527 * not all the properties that may have changed.
4528 */
4529 vmrp = MCIP_RESOURCE_PROPS(vmcip);
4530 if (mrp->mrp_mask & MRP_RX_RINGS) {
4531 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4532 vmrp->mrp_mask &= ~MRP_RX_RINGS;
4533 if (vmrp->mrp_mask &
4534 MRP_RXRINGS_UNSPEC) {
4535 vmrp->mrp_mask &=
4536 ~MRP_RXRINGS_UNSPEC;
4537 }
4538 vmrp->mrp_nrxrings = 0;
4539 } else {
4540 vmrp->mrp_mask |= MRP_RX_RINGS;
4541 vmrp->mrp_nrxrings = mrp->mrp_nrxrings;
4542 }
4543 }
4544 if (mrp->mrp_mask & MRP_TX_RINGS) {
4545 if (mrp->mrp_mask & MRP_RINGS_RESET) {
4546 vmrp->mrp_mask &= ~MRP_TX_RINGS;
4547 if (vmrp->mrp_mask &
4548 MRP_TXRINGS_UNSPEC) {
4549 vmrp->mrp_mask &=
4550 ~MRP_TXRINGS_UNSPEC;
4551 }
4552 vmrp->mrp_ntxrings = 0;
4553 } else {
4554 vmrp->mrp_mask |= MRP_TX_RINGS;
4555 vmrp->mrp_ntxrings = mrp->mrp_ntxrings;
4556 }
4557 }
4558 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC)
4559 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC;
4560
4561 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC)
4562 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC;
4563
4564 if ((err = mac_client_set_rings_prop(vmcip, mrp,
4565 omrp)) != 0) {
4566 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip),
4567 sizeof (*omrp));
4568 } else {
4569 mac_set_prim_vlan_rings(mip, vmrp);
4570 }
4571 kmem_free(omrp, sizeof (*omrp));
4572 }
4573 }
4574
4575 /* Only update the values if mac_client_set_resources succeeded */
4576 if (err == 0) {
4577 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp));
4578 /*
4579 * If bandwidth, priority or cpu link properties cleared,
4580 * renable fastpath.
4581 */
4582 if (resmask != 0 && newresmask == 0)
4583 mac_fastpath_enable((mac_handle_t)mip);
4584 } else if (resmask == 0 && newresmask != 0) {
4585 mac_fastpath_enable((mac_handle_t)mip);
4586 }
4587 kmem_free(tmrp, sizeof (*tmrp));
4588 kmem_free(umrp, sizeof (*umrp));
4589 return (err);
4590 }
4591
4592 int
mac_set_resources(mac_handle_t mh,mac_resource_props_t * mrp)4593 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4594 {
4595 int err;
4596
4597 i_mac_perim_enter((mac_impl_t *)mh);
4598 err = i_mac_set_resources(mh, mrp);
4599 i_mac_perim_exit((mac_impl_t *)mh);
4600 return (err);
4601 }
4602
4603 /*
4604 * Get the properties cached for the specified MAC instance.
4605 */
4606 void
mac_get_resources(mac_handle_t mh,mac_resource_props_t * mrp)4607 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4608 {
4609 mac_impl_t *mip = (mac_impl_t *)mh;
4610 mac_client_impl_t *mcip;
4611
4612 mcip = mac_primary_client_handle(mip);
4613 if (mcip != NULL) {
4614 mac_client_get_resources((mac_client_handle_t)mcip, mrp);
4615 return;
4616 }
4617 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t));
4618 }
4619
4620 /*
4621 * Get the effective properties from the primary client of the
4622 * specified MAC instance.
4623 */
4624 void
mac_get_effective_resources(mac_handle_t mh,mac_resource_props_t * mrp)4625 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp)
4626 {
4627 mac_impl_t *mip = (mac_impl_t *)mh;
4628 mac_client_impl_t *mcip;
4629
4630 mcip = mac_primary_client_handle(mip);
4631 if (mcip != NULL) {
4632 mac_client_get_effective_resources((mac_client_handle_t)mcip,
4633 mrp);
4634 return;
4635 }
4636 bzero(mrp, sizeof (mac_resource_props_t));
4637 }
4638
4639 int
mac_set_pvid(mac_handle_t mh,uint16_t pvid)4640 mac_set_pvid(mac_handle_t mh, uint16_t pvid)
4641 {
4642 mac_impl_t *mip = (mac_impl_t *)mh;
4643 mac_client_impl_t *mcip;
4644 mac_unicast_impl_t *muip;
4645
4646 i_mac_perim_enter(mip);
4647 if (pvid != 0) {
4648 for (mcip = mip->mi_clients_list; mcip != NULL;
4649 mcip = mcip->mci_client_next) {
4650 for (muip = mcip->mci_unicast_list; muip != NULL;
4651 muip = muip->mui_next) {
4652 if (muip->mui_vid == pvid) {
4653 i_mac_perim_exit(mip);
4654 return (EBUSY);
4655 }
4656 }
4657 }
4658 }
4659 mip->mi_pvid = pvid;
4660 i_mac_perim_exit(mip);
4661 return (0);
4662 }
4663
4664 uint16_t
mac_get_pvid(mac_handle_t mh)4665 mac_get_pvid(mac_handle_t mh)
4666 {
4667 mac_impl_t *mip = (mac_impl_t *)mh;
4668
4669 return (mip->mi_pvid);
4670 }
4671
4672 uint32_t
mac_get_llimit(mac_handle_t mh)4673 mac_get_llimit(mac_handle_t mh)
4674 {
4675 mac_impl_t *mip = (mac_impl_t *)mh;
4676
4677 return (mip->mi_llimit);
4678 }
4679
4680 uint32_t
mac_get_ldecay(mac_handle_t mh)4681 mac_get_ldecay(mac_handle_t mh)
4682 {
4683 mac_impl_t *mip = (mac_impl_t *)mh;
4684
4685 return (mip->mi_ldecay);
4686 }
4687
4688 /*
4689 * Rename a mac client, its flow, and the kstat.
4690 */
4691 int
mac_rename_primary(mac_handle_t mh,const char * new_name)4692 mac_rename_primary(mac_handle_t mh, const char *new_name)
4693 {
4694 mac_impl_t *mip = (mac_impl_t *)mh;
4695 mac_client_impl_t *cur_clnt = NULL;
4696 flow_entry_t *fep;
4697
4698 i_mac_perim_enter(mip);
4699
4700 /*
4701 * VNICs: we need to change the sys flow name and
4702 * the associated flow kstat.
4703 */
4704 if (mip->mi_state_flags & MIS_IS_VNIC) {
4705 mac_client_impl_t *mcip = mac_vnic_lower(mip);
4706 ASSERT(new_name != NULL);
4707 mac_rename_flow_names(mcip, new_name);
4708 mac_stat_rename(mcip);
4709 goto done;
4710 }
4711 /*
4712 * This mac may itself be an aggr link, or it may have some client
4713 * which is an aggr port. For both cases, we need to change the
4714 * aggr port's mac client name, its flow name and the associated flow
4715 * kstat.
4716 */
4717 if (mip->mi_state_flags & MIS_IS_AGGR) {
4718 mac_capab_aggr_t aggr_cap;
4719 mac_rename_fn_t rename_fn;
4720 boolean_t ret;
4721
4722 ASSERT(new_name != NULL);
4723 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR,
4724 (void *)(&aggr_cap));
4725 ASSERT(ret == B_TRUE);
4726 rename_fn = aggr_cap.mca_rename_fn;
4727 rename_fn(new_name, mip->mi_driver);
4728 /*
4729 * The aggr's client name and kstat flow name will be
4730 * updated below, i.e. via mac_rename_flow_names.
4731 */
4732 }
4733
4734 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL;
4735 cur_clnt = cur_clnt->mci_client_next) {
4736 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) {
4737 if (new_name != NULL) {
4738 char *str_st = cur_clnt->mci_name;
4739 char *str_del = strchr(str_st, '-');
4740
4741 ASSERT(str_del != NULL);
4742 bzero(str_del + 1, MAXNAMELEN -
4743 (str_del - str_st + 1));
4744 bcopy(new_name, str_del + 1,
4745 strlen(new_name));
4746 }
4747 fep = cur_clnt->mci_flent;
4748 mac_rename_flow(fep, cur_clnt->mci_name);
4749 break;
4750 } else if (new_name != NULL &&
4751 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) {
4752 mac_rename_flow_names(cur_clnt, new_name);
4753 break;
4754 }
4755 }
4756
4757 /* Recreate kstats associated with aggr pseudo rings */
4758 if (mip->mi_state_flags & MIS_IS_AGGR)
4759 mac_pseudo_ring_stat_rename(mip);
4760
4761 done:
4762 i_mac_perim_exit(mip);
4763 return (0);
4764 }
4765
4766 /*
4767 * Rename the MAC client's flow names
4768 */
4769 static void
mac_rename_flow_names(mac_client_impl_t * mcip,const char * new_name)4770 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name)
4771 {
4772 flow_entry_t *flent;
4773 uint16_t vid;
4774 char flowname[MAXFLOWNAMELEN];
4775 mac_impl_t *mip = mcip->mci_mip;
4776
4777 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4778
4779 /*
4780 * Use mi_rw_lock to ensure that threads not in the mac perimeter
4781 * see a self-consistent value for mci_name
4782 */
4783 rw_enter(&mip->mi_rw_lock, RW_WRITER);
4784 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name));
4785 rw_exit(&mip->mi_rw_lock);
4786
4787 mac_rename_flow(mcip->mci_flent, new_name);
4788
4789 if (mcip->mci_nflents == 1)
4790 return;
4791
4792 /*
4793 * We have to rename all the others too, no stats to destroy for
4794 * these.
4795 */
4796 for (flent = mcip->mci_flent_list; flent != NULL;
4797 flent = flent->fe_client_next) {
4798 if (flent != mcip->mci_flent) {
4799 vid = i_mac_flow_vid(flent);
4800 (void) sprintf(flowname, "%s%u", new_name, vid);
4801 mac_flow_set_name(flent, flowname);
4802 }
4803 }
4804 }
4805
4806
4807 /*
4808 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples
4809 * defined for the specified MAC client.
4810 */
4811 static void
mac_client_add_to_flow_list(mac_client_impl_t * mcip,flow_entry_t * flent)4812 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4813 {
4814 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4815 /*
4816 * The promisc Rx data path walks the mci_flent_list. Protect by
4817 * using mi_rw_lock
4818 */
4819 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4820
4821 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4822
4823 /* Add it to the head */
4824 flent->fe_client_next = mcip->mci_flent_list;
4825 mcip->mci_flent_list = flent;
4826 mcip->mci_nflents++;
4827
4828 /*
4829 * Keep track of the number of non-zero VIDs addresses per MAC
4830 * client to avoid figuring it out in the data-path.
4831 */
4832 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4833 mcip->mci_nvids++;
4834
4835 rw_exit(&mcip->mci_rw_lock);
4836 }
4837
4838 /*
4839 * Remove a flow entry from the MAC client's list.
4840 */
4841 static void
mac_client_remove_flow_from_list(mac_client_impl_t * mcip,flow_entry_t * flent)4842 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent)
4843 {
4844 flow_entry_t *fe = mcip->mci_flent_list;
4845 flow_entry_t *prev_fe = NULL;
4846
4847 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4848 /*
4849 * The promisc Rx data path walks the mci_flent_list. Protect by
4850 * using mci_rw_lock
4851 */
4852 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4853 mcip->mci_vidcache = MCIP_VIDCACHE_INVALID;
4854
4855 while ((fe != NULL) && (fe != flent)) {
4856 prev_fe = fe;
4857 fe = fe->fe_client_next;
4858 }
4859
4860 ASSERT(fe != NULL);
4861 if (prev_fe == NULL) {
4862 /* Deleting the first node */
4863 mcip->mci_flent_list = fe->fe_client_next;
4864 } else {
4865 prev_fe->fe_client_next = fe->fe_client_next;
4866 }
4867 mcip->mci_nflents--;
4868
4869 if (i_mac_flow_vid(flent) != VLAN_ID_NONE)
4870 mcip->mci_nvids--;
4871
4872 rw_exit(&mcip->mci_rw_lock);
4873 }
4874
4875 /*
4876 * Check if the given VID belongs to this MAC client.
4877 */
4878 boolean_t
mac_client_check_flow_vid(mac_client_impl_t * mcip,uint16_t vid)4879 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid)
4880 {
4881 flow_entry_t *flent;
4882 uint16_t mci_vid;
4883 uint32_t cache = mcip->mci_vidcache;
4884
4885 /*
4886 * In hopes of not having to touch the mci_rw_lock, check to see if
4887 * this vid matches our cached result.
4888 */
4889 if (MCIP_VIDCACHE_ISVALID(cache) && MCIP_VIDCACHE_VID(cache) == vid)
4890 return (MCIP_VIDCACHE_BOOL(cache) ? B_TRUE : B_FALSE);
4891
4892 /* The mci_flent_list is protected by mci_rw_lock */
4893 rw_enter(&mcip->mci_rw_lock, RW_WRITER);
4894 for (flent = mcip->mci_flent_list; flent != NULL;
4895 flent = flent->fe_client_next) {
4896 mci_vid = i_mac_flow_vid(flent);
4897 if (vid == mci_vid) {
4898 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_TRUE);
4899 rw_exit(&mcip->mci_rw_lock);
4900 return (B_TRUE);
4901 }
4902 }
4903
4904 mcip->mci_vidcache = MCIP_VIDCACHE_CACHE(vid, B_FALSE);
4905 rw_exit(&mcip->mci_rw_lock);
4906 return (B_FALSE);
4907 }
4908
4909 /*
4910 * Get the flow entry for the specified <MAC addr, VID> tuple.
4911 */
4912 static flow_entry_t *
mac_client_get_flow(mac_client_impl_t * mcip,mac_unicast_impl_t * muip)4913 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip)
4914 {
4915 mac_address_t *map = mcip->mci_unicast;
4916 flow_entry_t *flent;
4917 uint16_t vid;
4918 flow_desc_t flow_desc;
4919
4920 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4921
4922 mac_flow_get_desc(mcip->mci_flent, &flow_desc);
4923 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0)
4924 return (NULL);
4925
4926 for (flent = mcip->mci_flent_list; flent != NULL;
4927 flent = flent->fe_client_next) {
4928 vid = i_mac_flow_vid(flent);
4929 if (vid == muip->mui_vid) {
4930 return (flent);
4931 }
4932 }
4933
4934 return (NULL);
4935 }
4936
4937 /*
4938 * Since mci_flent has the SRSs, when we want to remove it, we replace
4939 * the flow_desc_t in mci_flent with that of an existing flent and then
4940 * remove that flent instead of mci_flent.
4941 */
4942 static flow_entry_t *
mac_client_swap_mciflent(mac_client_impl_t * mcip)4943 mac_client_swap_mciflent(mac_client_impl_t *mcip)
4944 {
4945 flow_entry_t *flent = mcip->mci_flent;
4946 flow_tab_t *ft = flent->fe_flow_tab;
4947 flow_entry_t *flent1;
4948 flow_desc_t fl_desc;
4949 char fl_name[MAXFLOWNAMELEN];
4950 int err;
4951
4952 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
4953 ASSERT(mcip->mci_nflents > 1);
4954
4955 /* get the next flent following the primary flent */
4956 flent1 = mcip->mci_flent_list->fe_client_next;
4957 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft);
4958
4959 /*
4960 * Remove the flent from the flow table before updating the
4961 * flow descriptor as the hash depends on the flow descriptor.
4962 * This also helps incoming packet classification avoid having
4963 * to grab fe_lock. Access to fe_flow_desc of a flent not in the
4964 * flow table is done under the fe_lock so that log or stat functions
4965 * see a self-consistent fe_flow_desc. The name and desc are specific
4966 * to a flow, the rest are shared by all the clients, including
4967 * resource control etc.
4968 */
4969 mac_flow_remove(ft, flent, B_TRUE);
4970 mac_flow_remove(ft, flent1, B_TRUE);
4971
4972 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t));
4973 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN);
4974
4975 /* update the primary flow entry */
4976 mutex_enter(&flent->fe_lock);
4977 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc,
4978 sizeof (flow_desc_t));
4979 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN);
4980 mutex_exit(&flent->fe_lock);
4981
4982 /* update the flow entry that is to be freed */
4983 mutex_enter(&flent1->fe_lock);
4984 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t));
4985 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN);
4986 mutex_exit(&flent1->fe_lock);
4987
4988 /* now reinsert the flow entries in the table */
4989 err = mac_flow_add(ft, flent);
4990 ASSERT(err == 0);
4991
4992 err = mac_flow_add(ft, flent1);
4993 ASSERT(err == 0);
4994
4995 return (flent1);
4996 }
4997
4998 /*
4999 * Return whether there is only one flow entry associated with this
5000 * MAC client.
5001 */
5002 static boolean_t
mac_client_single_rcvr(mac_client_impl_t * mcip)5003 mac_client_single_rcvr(mac_client_impl_t *mcip)
5004 {
5005 return (mcip->mci_nflents == 1);
5006 }
5007
5008 int
mac_validate_props(mac_impl_t * mip,mac_resource_props_t * mrp)5009 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp)
5010 {
5011 boolean_t reset;
5012 uint32_t rings_needed;
5013 uint32_t rings_avail;
5014 mac_group_type_t gtype;
5015 mac_resource_props_t *mip_mrp;
5016
5017 if (mrp == NULL)
5018 return (0);
5019
5020 if (mrp->mrp_mask & MRP_PRIORITY) {
5021 mac_priority_level_t pri = mrp->mrp_priority;
5022
5023 if (pri < MPL_LOW || pri > MPL_RESET)
5024 return (EINVAL);
5025 }
5026
5027 if (mrp->mrp_mask & MRP_MAXBW) {
5028 uint64_t maxbw = mrp->mrp_maxbw;
5029
5030 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0)
5031 return (EINVAL);
5032 }
5033 if (mrp->mrp_mask & MRP_CPUS) {
5034 int i, j;
5035 mac_cpu_mode_t fanout;
5036
5037 if (mrp->mrp_ncpus > ncpus)
5038 return (EINVAL);
5039
5040 for (i = 0; i < mrp->mrp_ncpus; i++) {
5041 for (j = 0; j < mrp->mrp_ncpus; j++) {
5042 if (i != j &&
5043 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) {
5044 return (EINVAL);
5045 }
5046 }
5047 }
5048
5049 for (i = 0; i < mrp->mrp_ncpus; i++) {
5050 cpu_t *cp;
5051 int rv;
5052
5053 mutex_enter(&cpu_lock);
5054 cp = cpu_get(mrp->mrp_cpu[i]);
5055 if (cp != NULL)
5056 rv = cpu_is_online(cp);
5057 else
5058 rv = 0;
5059 mutex_exit(&cpu_lock);
5060 if (rv == 0)
5061 return (EINVAL);
5062 }
5063
5064 fanout = mrp->mrp_fanout_mode;
5065 if (fanout < 0 || fanout > MCM_CPUS)
5066 return (EINVAL);
5067 }
5068
5069 if (mrp->mrp_mask & MRP_PROTECT) {
5070 int err = mac_protect_validate(mrp);
5071 if (err != 0)
5072 return (err);
5073 }
5074
5075 if (!(mrp->mrp_mask & MRP_RX_RINGS) &&
5076 !(mrp->mrp_mask & MRP_TX_RINGS)) {
5077 return (0);
5078 }
5079
5080 /*
5081 * mip will be null when we come from mac_flow_create or
5082 * mac_link_flow_modify. In the latter case it is a user flow,
5083 * for which we don't support rings. In the former we would
5084 * have validated the props beforehand (i_mac_unicast_add ->
5085 * mac_client_set_resources -> validate for the primary and
5086 * vnic_dev_create -> mac_client_set_resources -> validate for
5087 * a vnic.
5088 */
5089 if (mip == NULL)
5090 return (0);
5091
5092 /*
5093 * We don't support setting rings property for a VNIC that is using a
5094 * primary address (VLAN)
5095 */
5096 if ((mip->mi_state_flags & MIS_IS_VNIC) &&
5097 mac_is_vnic_primary((mac_handle_t)mip)) {
5098 return (ENOTSUP);
5099 }
5100
5101 mip_mrp = &mip->mi_resource_props;
5102 /*
5103 * The rings property should be validated against the NICs
5104 * resources
5105 */
5106 if (mip->mi_state_flags & MIS_IS_VNIC)
5107 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip);
5108
5109 reset = mrp->mrp_mask & MRP_RINGS_RESET;
5110 /*
5111 * If groups are not supported, return error.
5112 */
5113 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) ||
5114 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) {
5115 return (EINVAL);
5116 }
5117 /*
5118 * If we are just resetting, there is no validation needed.
5119 */
5120 if (reset)
5121 return (0);
5122
5123 if (mrp->mrp_mask & MRP_RX_RINGS) {
5124 rings_needed = mrp->mrp_nrxrings;
5125 /*
5126 * We just want to check if the number of additional
5127 * rings requested is available.
5128 */
5129 if (mip_mrp->mrp_mask & MRP_RX_RINGS) {
5130 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings)
5131 /* Just check for the additional rings */
5132 rings_needed -= mip_mrp->mrp_nrxrings;
5133 else
5134 /* We are not asking for additional rings */
5135 rings_needed = 0;
5136 }
5137 rings_avail = mip->mi_rxrings_avail;
5138 gtype = mip->mi_rx_group_type;
5139 } else {
5140 rings_needed = mrp->mrp_ntxrings;
5141 /* Similarly for the TX rings */
5142 if (mip_mrp->mrp_mask & MRP_TX_RINGS) {
5143 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings)
5144 /* Just check for the additional rings */
5145 rings_needed -= mip_mrp->mrp_ntxrings;
5146 else
5147 /* We are not asking for additional rings */
5148 rings_needed = 0;
5149 }
5150 rings_avail = mip->mi_txrings_avail;
5151 gtype = mip->mi_tx_group_type;
5152 }
5153
5154 /* Error if the group is dynamic .. */
5155 if (gtype == MAC_GROUP_TYPE_DYNAMIC) {
5156 /*
5157 * .. and rings specified are more than available.
5158 */
5159 if (rings_needed > rings_avail)
5160 return (EINVAL);
5161 } else {
5162 /*
5163 * OR group is static and we have specified some rings.
5164 */
5165 if (rings_needed > 0)
5166 return (EINVAL);
5167 }
5168 return (0);
5169 }
5170
5171 /*
5172 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the
5173 * underlying physical link is down. This is to allow MAC clients to
5174 * communicate with other clients.
5175 */
5176 void
mac_virtual_link_update(mac_impl_t * mip)5177 mac_virtual_link_update(mac_impl_t *mip)
5178 {
5179 if (mip->mi_linkstate != LINK_STATE_UP)
5180 i_mac_notify(mip, MAC_NOTE_LINK);
5181 }
5182
5183 /*
5184 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's
5185 * mac handle in the client.
5186 */
5187 void
mac_set_upper_mac(mac_client_handle_t mch,mac_handle_t mh,mac_resource_props_t * mrp)5188 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh,
5189 mac_resource_props_t *mrp)
5190 {
5191 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5192 mac_impl_t *mip = (mac_impl_t *)mh;
5193
5194 mcip->mci_upper_mip = mip;
5195 /* If there are any properties, copy it over too */
5196 if (mrp != NULL) {
5197 bcopy(mrp, &mip->mi_resource_props,
5198 sizeof (mac_resource_props_t));
5199 }
5200 }
5201
5202 /*
5203 * Mark the mac as being used exclusively by the single mac client that is
5204 * doing some control operation on this mac. No further opens of this mac
5205 * will be allowed until this client calls mac_unmark_exclusive. The mac
5206 * client calling this function must already be in the mac perimeter
5207 */
5208 int
mac_mark_exclusive(mac_handle_t mh)5209 mac_mark_exclusive(mac_handle_t mh)
5210 {
5211 mac_impl_t *mip = (mac_impl_t *)mh;
5212
5213 ASSERT(MAC_PERIM_HELD(mh));
5214 /*
5215 * Look up its entry in the global hash table.
5216 */
5217 rw_enter(&i_mac_impl_lock, RW_WRITER);
5218 if (mip->mi_state_flags & MIS_DISABLED) {
5219 rw_exit(&i_mac_impl_lock);
5220 return (ENOENT);
5221 }
5222
5223 /*
5224 * A reference to mac is held even if the link is not plumbed.
5225 * In i_dls_link_create() we open the MAC interface and hold the
5226 * reference. There is an additional reference for the mac_open
5227 * done in acquiring the mac perimeter
5228 */
5229 if (mip->mi_ref != 2) {
5230 rw_exit(&i_mac_impl_lock);
5231 return (EBUSY);
5232 }
5233
5234 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5235 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD;
5236 rw_exit(&i_mac_impl_lock);
5237 return (0);
5238 }
5239
5240 void
mac_unmark_exclusive(mac_handle_t mh)5241 mac_unmark_exclusive(mac_handle_t mh)
5242 {
5243 mac_impl_t *mip = (mac_impl_t *)mh;
5244
5245 ASSERT(MAC_PERIM_HELD(mh));
5246
5247 rw_enter(&i_mac_impl_lock, RW_WRITER);
5248 /* 1 for the creation and another for the perimeter */
5249 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD));
5250 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD;
5251 rw_exit(&i_mac_impl_lock);
5252 }
5253
5254 /*
5255 * Set the MTU for the specified MAC.
5256 */
5257 int
mac_set_mtu(mac_handle_t mh,uint_t new_mtu,uint_t * old_mtu_arg)5258 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg)
5259 {
5260 mac_impl_t *mip = (mac_impl_t *)mh;
5261 uint_t old_mtu;
5262 int rv = 0;
5263
5264 i_mac_perim_enter(mip);
5265
5266 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) {
5267 rv = ENOTSUP;
5268 goto bail;
5269 }
5270
5271 old_mtu = mip->mi_sdu_max;
5272
5273 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) {
5274 rv = EINVAL;
5275 goto bail;
5276 }
5277
5278 rw_enter(&mip->mi_rw_lock, RW_READER);
5279 if (mip->mi_mtrp != NULL && new_mtu < mip->mi_mtrp->mtr_mtu) {
5280 rv = EBUSY;
5281 rw_exit(&mip->mi_rw_lock);
5282 goto bail;
5283 }
5284 rw_exit(&mip->mi_rw_lock);
5285
5286 if (old_mtu != new_mtu) {
5287 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver,
5288 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu);
5289 if (rv != 0)
5290 goto bail;
5291 rv = mac_maxsdu_update(mh, new_mtu);
5292 ASSERT(rv == 0);
5293 }
5294
5295 bail:
5296 i_mac_perim_exit(mip);
5297
5298 if (rv == 0 && old_mtu_arg != NULL)
5299 *old_mtu_arg = old_mtu;
5300 return (rv);
5301 }
5302
5303 /*
5304 * Return the RX h/w information for the group indexed by grp_num.
5305 */
5306 void
mac_get_hwrxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5307 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5308 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5309 char *clnts_name)
5310 {
5311 mac_impl_t *mip = (mac_impl_t *)mh;
5312 mac_grp_client_t *mcip;
5313 uint_t i = 0, index = 0;
5314 mac_ring_t *ring;
5315
5316 /* Revisit when we implement fully dynamic group allocation */
5317 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count);
5318
5319 rw_enter(&mip->mi_rw_lock, RW_READER);
5320 *grp_num = mip->mi_rx_groups[grp_index].mrg_index;
5321 *type = mip->mi_rx_groups[grp_index].mrg_type;
5322 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count;
5323 ring = mip->mi_rx_groups[grp_index].mrg_rings;
5324 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count;
5325 index++) {
5326 rings[index] = ring->mr_index;
5327 ring = ring->mr_next;
5328 }
5329 /* Assuming the 1st is the default group */
5330 index = 0;
5331 if (grp_index == 0) {
5332 (void) strlcpy(clnts_name, "<default,mcast>,",
5333 MAXCLIENTNAMELEN);
5334 index += strlen("<default,mcast>,");
5335 }
5336 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL;
5337 mcip = mcip->mgc_next) {
5338 int name_len = strlen(mcip->mgc_client->mci_name);
5339
5340 /*
5341 * MAXCLIENTNAMELEN is the buffer size reserved for client
5342 * names.
5343 * XXXX Formating the client name string needs to be moved
5344 * to user land when fixing the size of dhi_clnts in
5345 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5346 * dhi_clntsin instead of MAXCLIENTNAMELEN
5347 */
5348 if (index + name_len >= MAXCLIENTNAMELEN) {
5349 index = MAXCLIENTNAMELEN;
5350 break;
5351 }
5352 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5353 name_len);
5354 index += name_len;
5355 clnts_name[index++] = ',';
5356 i++;
5357 }
5358
5359 /* Get rid of the last , */
5360 if (index > 0)
5361 clnts_name[index - 1] = '\0';
5362 *n_clnts = i;
5363 rw_exit(&mip->mi_rw_lock);
5364 }
5365
5366 /*
5367 * Return the TX h/w information for the group indexed by grp_num.
5368 */
5369 void
mac_get_hwtxgrp_info(mac_handle_t mh,int grp_index,uint_t * grp_num,uint_t * n_rings,uint_t * rings,uint_t * type,uint_t * n_clnts,char * clnts_name)5370 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num,
5371 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts,
5372 char *clnts_name)
5373 {
5374 mac_impl_t *mip = (mac_impl_t *)mh;
5375 mac_grp_client_t *mcip;
5376 uint_t i = 0, index = 0;
5377 mac_ring_t *ring;
5378
5379 /* Revisit when we implement fully dynamic group allocation */
5380 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count);
5381
5382 rw_enter(&mip->mi_rw_lock, RW_READER);
5383 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ?
5384 mip->mi_tx_groups[grp_index].mrg_index : grp_index;
5385 *type = mip->mi_tx_groups[grp_index].mrg_type;
5386 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count;
5387 ring = mip->mi_tx_groups[grp_index].mrg_rings;
5388 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count;
5389 index++) {
5390 rings[index] = ring->mr_index;
5391 ring = ring->mr_next;
5392 }
5393 index = 0;
5394 /* Default group has an index of -1 */
5395 if (mip->mi_tx_groups[grp_index].mrg_index < 0) {
5396 (void) strlcpy(clnts_name, "<default>,",
5397 MAXCLIENTNAMELEN);
5398 index += strlen("<default>,");
5399 }
5400 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL;
5401 mcip = mcip->mgc_next) {
5402 int name_len = strlen(mcip->mgc_client->mci_name);
5403
5404 /*
5405 * MAXCLIENTNAMELEN is the buffer size reserved for client
5406 * names.
5407 * XXXX Formating the client name string needs to be moved
5408 * to user land when fixing the size of dhi_clnts in
5409 * dld_hwgrpinfo_t. We should use n_clients * client_name for
5410 * dhi_clntsin instead of MAXCLIENTNAMELEN
5411 */
5412 if (index + name_len >= MAXCLIENTNAMELEN) {
5413 index = MAXCLIENTNAMELEN;
5414 break;
5415 }
5416 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]),
5417 name_len);
5418 index += name_len;
5419 clnts_name[index++] = ',';
5420 i++;
5421 }
5422
5423 /* Get rid of the last , */
5424 if (index > 0)
5425 clnts_name[index - 1] = '\0';
5426 *n_clnts = i;
5427 rw_exit(&mip->mi_rw_lock);
5428 }
5429
5430 /*
5431 * Return the group count for RX or TX.
5432 */
5433 uint_t
mac_hwgrp_num(mac_handle_t mh,int type)5434 mac_hwgrp_num(mac_handle_t mh, int type)
5435 {
5436 mac_impl_t *mip = (mac_impl_t *)mh;
5437
5438 /*
5439 * Return the Rx and Tx group count; for the Tx we need to
5440 * include the default too.
5441 */
5442 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count :
5443 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0);
5444 }
5445
5446 /*
5447 * The total number of free TX rings for this MAC.
5448 */
5449 uint_t
mac_txavail_get(mac_handle_t mh)5450 mac_txavail_get(mac_handle_t mh)
5451 {
5452 mac_impl_t *mip = (mac_impl_t *)mh;
5453
5454 return (mip->mi_txrings_avail);
5455 }
5456
5457 /*
5458 * The total number of free RX rings for this MAC.
5459 */
5460 uint_t
mac_rxavail_get(mac_handle_t mh)5461 mac_rxavail_get(mac_handle_t mh)
5462 {
5463 mac_impl_t *mip = (mac_impl_t *)mh;
5464
5465 return (mip->mi_rxrings_avail);
5466 }
5467
5468 /*
5469 * The total number of reserved RX rings on this MAC.
5470 */
5471 uint_t
mac_rxrsvd_get(mac_handle_t mh)5472 mac_rxrsvd_get(mac_handle_t mh)
5473 {
5474 mac_impl_t *mip = (mac_impl_t *)mh;
5475
5476 return (mip->mi_rxrings_rsvd);
5477 }
5478
5479 /*
5480 * The total number of reserved TX rings on this MAC.
5481 */
5482 uint_t
mac_txrsvd_get(mac_handle_t mh)5483 mac_txrsvd_get(mac_handle_t mh)
5484 {
5485 mac_impl_t *mip = (mac_impl_t *)mh;
5486
5487 return (mip->mi_txrings_rsvd);
5488 }
5489
5490 /*
5491 * Total number of free RX groups on this MAC.
5492 */
5493 uint_t
mac_rxhwlnksavail_get(mac_handle_t mh)5494 mac_rxhwlnksavail_get(mac_handle_t mh)
5495 {
5496 mac_impl_t *mip = (mac_impl_t *)mh;
5497
5498 return (mip->mi_rxhwclnt_avail);
5499 }
5500
5501 /*
5502 * Total number of RX groups reserved on this MAC.
5503 */
5504 uint_t
mac_rxhwlnksrsvd_get(mac_handle_t mh)5505 mac_rxhwlnksrsvd_get(mac_handle_t mh)
5506 {
5507 mac_impl_t *mip = (mac_impl_t *)mh;
5508
5509 return (mip->mi_rxhwclnt_used);
5510 }
5511
5512 /*
5513 * Total number of free TX groups on this MAC.
5514 */
5515 uint_t
mac_txhwlnksavail_get(mac_handle_t mh)5516 mac_txhwlnksavail_get(mac_handle_t mh)
5517 {
5518 mac_impl_t *mip = (mac_impl_t *)mh;
5519
5520 return (mip->mi_txhwclnt_avail);
5521 }
5522
5523 /*
5524 * Total number of TX groups reserved on this MAC.
5525 */
5526 uint_t
mac_txhwlnksrsvd_get(mac_handle_t mh)5527 mac_txhwlnksrsvd_get(mac_handle_t mh)
5528 {
5529 mac_impl_t *mip = (mac_impl_t *)mh;
5530
5531 return (mip->mi_txhwclnt_used);
5532 }
5533
5534 /*
5535 * Initialize the rings property for a mac client. A non-0 value for
5536 * rxring or txring specifies the number of rings required, a value
5537 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need
5538 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE
5539 * means the system can decide whether it can give any rings or not.
5540 */
5541 void
mac_client_set_rings(mac_client_handle_t mch,int rxrings,int txrings)5542 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings)
5543 {
5544 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5545 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip);
5546
5547 if (rxrings != MAC_RXRINGS_DONTCARE) {
5548 mrp->mrp_mask |= MRP_RX_RINGS;
5549 mrp->mrp_nrxrings = rxrings;
5550 }
5551
5552 if (txrings != MAC_TXRINGS_DONTCARE) {
5553 mrp->mrp_mask |= MRP_TX_RINGS;
5554 mrp->mrp_ntxrings = txrings;
5555 }
5556 }
5557
5558 boolean_t
mac_get_promisc_filtered(mac_client_handle_t mch)5559 mac_get_promisc_filtered(mac_client_handle_t mch)
5560 {
5561 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5562
5563 return (mcip->mci_protect_flags & MPT_FLAG_PROMISC_FILTERED);
5564 }
5565
5566 void
mac_set_promisc_filtered(mac_client_handle_t mch,boolean_t enable)5567 mac_set_promisc_filtered(mac_client_handle_t mch, boolean_t enable)
5568 {
5569 mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
5570
5571 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5572 if (enable)
5573 mcip->mci_protect_flags |= MPT_FLAG_PROMISC_FILTERED;
5574 else
5575 mcip->mci_protect_flags &= ~MPT_FLAG_PROMISC_FILTERED;
5576 }
5577