1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 * Copyright (c) 2003 Peter Wemm
11 * All rights reserved.
12 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13 * All rights reserved.
14 *
15 * This code is derived from software contributed to Berkeley by
16 * the Systems Programming Group of the University of Utah Computer
17 * Science Department and William Jolitz of UUNET Technologies Inc.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgement:
29 * This product includes software developed by the University of
30 * California, Berkeley and its contributors.
31 * 4. Neither the name of the University nor the names of its contributors
32 * may be used to endorse or promote products derived from this software
33 * without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * SUCH DAMAGE.
46 */
47 /*-
48 * Copyright (c) 2003 Networks Associates Technology, Inc.
49 * Copyright (c) 2014-2020 The FreeBSD Foundation
50 * All rights reserved.
51 *
52 * This software was developed for the FreeBSD Project by Jake Burkholder,
53 * Safeport Network Services, and Network Associates Laboratories, the
54 * Security Research Division of Network Associates, Inc. under
55 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56 * CHATS research program.
57 *
58 * Portions of this software were developed by
59 * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60 * the FreeBSD Foundation.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81 * SUCH DAMAGE.
82 */
83
84 #define AMD64_NPT_AWARE
85
86 #include <sys/cdefs.h>
87 /*
88 * Manages physical address maps.
89 *
90 * Since the information managed by this module is
91 * also stored by the logical address mapping module,
92 * this module may throw away valid virtual-to-physical
93 * mappings at almost any time. However, invalidations
94 * of virtual-to-physical mappings must be done as
95 * requested.
96 *
97 * In order to cope with hardware architectures which
98 * make virtual-to-physical map invalidates expensive,
99 * this module may delay invalidate or reduced protection
100 * operations until such time as they are actually
101 * necessary. This module is given full information as
102 * to which processors are currently using which maps,
103 * and to when physical maps must be made correct.
104 */
105
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170
171 #ifdef NUMA
172 #define PMAP_MEMDOM MAXMEMDOM
173 #else
174 #define PMAP_MEMDOM 1
175 #endif
176
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180
181 return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187
188 return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 pt_entry_t mask;
195
196 switch (pmap->pm_type) {
197 case PT_X86:
198 case PT_RVI:
199 mask = X86_PG_V;
200 break;
201 case PT_EPT:
202 if (pmap_emulate_ad_bits(pmap))
203 mask = EPT_PG_EMUL_V;
204 else
205 mask = EPT_PG_READ;
206 break;
207 default:
208 panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 }
210
211 return (mask);
212 }
213
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 pt_entry_t mask;
218
219 switch (pmap->pm_type) {
220 case PT_X86:
221 case PT_RVI:
222 mask = X86_PG_RW;
223 break;
224 case PT_EPT:
225 if (pmap_emulate_ad_bits(pmap))
226 mask = EPT_PG_EMUL_RW;
227 else
228 mask = EPT_PG_WRITE;
229 break;
230 default:
231 panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 }
233
234 return (mask);
235 }
236
237 static pt_entry_t pg_g;
238
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 pt_entry_t mask;
243
244 switch (pmap->pm_type) {
245 case PT_X86:
246 mask = pg_g;
247 break;
248 case PT_RVI:
249 case PT_EPT:
250 mask = 0;
251 break;
252 default:
253 panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 }
255
256 return (mask);
257 }
258
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 pt_entry_t mask;
263
264 switch (pmap->pm_type) {
265 case PT_X86:
266 case PT_RVI:
267 mask = X86_PG_A;
268 break;
269 case PT_EPT:
270 if (pmap_emulate_ad_bits(pmap))
271 mask = EPT_PG_READ;
272 else
273 mask = EPT_PG_A;
274 break;
275 default:
276 panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 }
278
279 return (mask);
280 }
281
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 pt_entry_t mask;
286
287 switch (pmap->pm_type) {
288 case PT_X86:
289 case PT_RVI:
290 mask = X86_PG_M;
291 break;
292 case PT_EPT:
293 if (pmap_emulate_ad_bits(pmap))
294 mask = EPT_PG_WRITE;
295 else
296 mask = EPT_PG_M;
297 break;
298 default:
299 panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 }
301
302 return (mask);
303 }
304
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308
309 return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315
316 if (!pmap_emulate_ad_bits(pmap))
317 return (true);
318
319 KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320
321 /*
322 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 * if the EPT_PG_WRITE bit is set.
325 */
326 if ((pte & EPT_PG_WRITE) != 0)
327 return (false);
328
329 /*
330 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 */
332 if ((pte & EPT_PG_EXECUTE) == 0 ||
333 ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 return (true);
335 else
336 return (false);
337 }
338
339 #ifdef PV_STATS
340 #define PV_STAT(x) do { x ; } while (0)
341 #else
342 #define PV_STAT(x) do { } while (0)
343 #endif
344
345 #undef pa_index
346 #ifdef NUMA
347 #define pa_index(pa) ({ \
348 KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end, \
349 ("address %lx beyond the last segment", (pa))); \
350 (pa) >> PDRSHIFT; \
351 })
352 #define pa_to_pmdp(pa) (&pv_table[pa_index(pa)])
353 #define pa_to_pvh(pa) (&(pa_to_pmdp(pa)->pv_page))
354 #define PHYS_TO_PV_LIST_LOCK(pa) ({ \
355 struct rwlock *_lock; \
356 if (__predict_false((pa) > pmap_last_pa)) \
357 _lock = &pv_dummy_large.pv_lock; \
358 else \
359 _lock = &(pa_to_pmdp(pa)->pv_lock); \
360 _lock; \
361 })
362 #else
363 #define pa_index(pa) ((pa) >> PDRSHIFT)
364 #define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
365
366 #define NPV_LIST_LOCKS MAXCPU
367
368 #define PHYS_TO_PV_LIST_LOCK(pa) \
369 (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371
372 #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
373 struct rwlock **_lockp = (lockp); \
374 struct rwlock *_new_lock; \
375 \
376 _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
377 if (_new_lock != *_lockp) { \
378 if (*_lockp != NULL) \
379 rw_wunlock(*_lockp); \
380 *_lockp = _new_lock; \
381 rw_wlock(*_lockp); \
382 } \
383 } while (0)
384
385 #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
386 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387
388 #define RELEASE_PV_LIST_LOCK(lockp) do { \
389 struct rwlock **_lockp = (lockp); \
390 \
391 if (*_lockp != NULL) { \
392 rw_wunlock(*_lockp); \
393 *_lockp = NULL; \
394 } \
395 } while (0)
396
397 #define VM_PAGE_TO_PV_LIST_LOCK(m) \
398 PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399
400 /*
401 * Statically allocate kernel pmap memory. However, memory for
402 * pm_pcids is obtained after the dynamic allocator is operational.
403 * Initialize it with a non-canonical pointer to catch early accesses
404 * regardless of the active mapping.
405 */
406 struct pmap kernel_pmap_store = {
407 .pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409
410 vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
412
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415 "Number of kernel page table pages allocated on bootup");
416
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423 "VM/pmap parameters");
424
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427 &pg_ps_enabled, 0, "Are large page mappings enabled?");
428
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431 &la57, 0,
432 "5-level paging for host is enabled");
433
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 if (pmap->pm_type == PT_X86)
438 return (la57);
439 return (false); /* XXXKIB handle EPT */
440 }
441
442 #define PAT_INDEX_SIZE 8
443 static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
444
445 static u_int64_t KPTphys; /* phys addr of kernel level 1 */
446 static u_int64_t KPDphys; /* phys addr of kernel level 2 */
447 static u_int64_t KPDPphys; /* phys addr of kernel level 3 */
448 u_int64_t KPML4phys; /* phys addr of kernel level 4 */
449 u_int64_t KPML5phys; /* phys addr of kernel level 5,
450 if supported */
451
452 #ifdef KASAN
453 static uint64_t KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t KMSANSHADPDPphys;
457 static uint64_t KMSANORIGPDPphys;
458
459 /*
460 * To support systems with large amounts of memory, it is necessary to extend
461 * the maximum size of the direct map. This could eat into the space reserved
462 * for the shadow map.
463 */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466
467 static pml4_entry_t *kernel_pml4;
468 static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
469 static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
470 static int ndmpdpphys; /* number of DMPDPphys pages */
471
472 vm_paddr_t kernphys; /* phys addr of start of bootstrap data */
473 vm_paddr_t KERNend; /* and the end */
474
475 /*
476 * pmap_mapdev support pre initialization (i.e. console)
477 */
478 #define PMAP_PREINIT_MAPPING_COUNT 8
479 static struct pmap_preinit_mapping {
480 vm_paddr_t pa;
481 vm_offset_t va;
482 vm_size_t sz;
483 int mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486
487 /*
488 * Data for the pv entry allocation mechanism.
489 * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490 */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495
496 return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502
503 return (0);
504 }
505 #endif
506
507 struct pv_chunks_list {
508 struct mtx pvc_lock;
509 TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514
515 #ifdef NUMA
516 struct pmap_large_md_page {
517 struct rwlock pv_lock;
518 struct md_page pv_page;
519 u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531
532 /*
533 * All those kernel PT submaps that BSD is so fond of
534 */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539
540 static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
541
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define PMAP_ADDRESS_IN_LARGEMAP(va) ((va) >= LARGEMAP_MIN_ADDRESS && \
545 (va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549 &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552 "Is the invpcid instruction available ?");
553 int invlpgb_works;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, invlpgb_works, CTLFLAG_RD, &invlpgb_works, 0,
555 "Is the invlpgb instruction available?");
556 int invlpgb_maxcnt;
557 int pmap_pcid_invlpg_workaround = 0;
558 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
559 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
560 &pmap_pcid_invlpg_workaround, 0,
561 "Enable small core PCID/INVLPG workaround");
562 int pmap_pcid_invlpg_workaround_uena = 1;
563
564 int __read_frequently pti = 0;
565 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
566 &pti, 0,
567 "Page Table Isolation enabled");
568 static vm_object_t pti_obj;
569 static pml4_entry_t *pti_pml4;
570 static vm_pindex_t pti_pg_idx;
571 static bool pti_finalized;
572
573 struct pmap_pkru_range {
574 struct rs_el pkru_rs_el;
575 u_int pkru_keyidx;
576 int pkru_flags;
577 };
578
579 static uma_zone_t pmap_pkru_ranges_zone;
580 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
581 pt_entry_t *pte);
582 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
583 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
584 static void *pkru_dup_range(void *ctx, void *data);
585 static void pkru_free_range(void *ctx, void *node);
586 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
587 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
588 static void pmap_pkru_deassign_all(pmap_t pmap);
589
590 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
591 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
592 &pcid_save_cnt, "Count of saved TLB context on switch");
593
594 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
595 LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
596 static struct mtx invl_gen_mtx;
597 /* Fake lock object to satisfy turnstiles interface. */
598 static struct lock_object invl_gen_ts = {
599 .lo_name = "invlts",
600 };
601 static struct pmap_invl_gen pmap_invl_gen_head = {
602 .gen = 1,
603 .next = NULL,
604 };
605 static u_long pmap_invl_gen = 1;
606 static int pmap_invl_waiters;
607 static struct callout pmap_invl_callout;
608 static bool pmap_invl_callout_inited;
609
610 #define PMAP_ASSERT_NOT_IN_DI() \
611 KASSERT(pmap_not_in_di(), ("DI already started"))
612
613 static bool
pmap_di_locked(void)614 pmap_di_locked(void)
615 {
616 int tun;
617
618 if ((cpu_feature2 & CPUID2_CX16) == 0)
619 return (true);
620 tun = 0;
621 TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
622 return (tun != 0);
623 }
624
625 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)626 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
627 {
628 int locked;
629
630 locked = pmap_di_locked();
631 return (sysctl_handle_int(oidp, &locked, 0, req));
632 }
633 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
634 CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
635 "Locked delayed invalidation");
636
637 static bool pmap_not_in_di_l(void);
638 static bool pmap_not_in_di_u(void);
639 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
640 {
641
642 return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
643 }
644
645 static bool
pmap_not_in_di_l(void)646 pmap_not_in_di_l(void)
647 {
648 struct pmap_invl_gen *invl_gen;
649
650 invl_gen = &curthread->td_md.md_invl_gen;
651 return (invl_gen->gen == 0);
652 }
653
654 static void
pmap_thread_init_invl_gen_l(struct thread * td)655 pmap_thread_init_invl_gen_l(struct thread *td)
656 {
657 struct pmap_invl_gen *invl_gen;
658
659 invl_gen = &td->td_md.md_invl_gen;
660 invl_gen->gen = 0;
661 }
662
663 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)664 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
665 {
666 struct turnstile *ts;
667
668 ts = turnstile_trywait(&invl_gen_ts);
669 if (*m_gen > atomic_load_long(invl_gen))
670 turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
671 else
672 turnstile_cancel(ts);
673 }
674
675 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)676 pmap_delayed_invl_finish_unblock(u_long new_gen)
677 {
678 struct turnstile *ts;
679
680 turnstile_chain_lock(&invl_gen_ts);
681 ts = turnstile_lookup(&invl_gen_ts);
682 if (new_gen != 0)
683 pmap_invl_gen = new_gen;
684 if (ts != NULL) {
685 turnstile_broadcast(ts, TS_SHARED_QUEUE);
686 turnstile_unpend(ts);
687 }
688 turnstile_chain_unlock(&invl_gen_ts);
689 }
690
691 /*
692 * Start a new Delayed Invalidation (DI) block of code, executed by
693 * the current thread. Within a DI block, the current thread may
694 * destroy both the page table and PV list entries for a mapping and
695 * then release the corresponding PV list lock before ensuring that
696 * the mapping is flushed from the TLBs of any processors with the
697 * pmap active.
698 */
699 static void
pmap_delayed_invl_start_l(void)700 pmap_delayed_invl_start_l(void)
701 {
702 struct pmap_invl_gen *invl_gen;
703 u_long currgen;
704
705 invl_gen = &curthread->td_md.md_invl_gen;
706 PMAP_ASSERT_NOT_IN_DI();
707 mtx_lock(&invl_gen_mtx);
708 if (LIST_EMPTY(&pmap_invl_gen_tracker))
709 currgen = pmap_invl_gen;
710 else
711 currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
712 invl_gen->gen = currgen + 1;
713 LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
714 mtx_unlock(&invl_gen_mtx);
715 }
716
717 /*
718 * Finish the DI block, previously started by the current thread. All
719 * required TLB flushes for the pages marked by
720 * pmap_delayed_invl_page() must be finished before this function is
721 * called.
722 *
723 * This function works by bumping the global DI generation number to
724 * the generation number of the current thread's DI, unless there is a
725 * pending DI that started earlier. In the latter case, bumping the
726 * global DI generation number would incorrectly signal that the
727 * earlier DI had finished. Instead, this function bumps the earlier
728 * DI's generation number to match the generation number of the
729 * current thread's DI.
730 */
731 static void
pmap_delayed_invl_finish_l(void)732 pmap_delayed_invl_finish_l(void)
733 {
734 struct pmap_invl_gen *invl_gen, *next;
735
736 invl_gen = &curthread->td_md.md_invl_gen;
737 KASSERT(invl_gen->gen != 0, ("missed invl_start"));
738 mtx_lock(&invl_gen_mtx);
739 next = LIST_NEXT(invl_gen, link);
740 if (next == NULL)
741 pmap_delayed_invl_finish_unblock(invl_gen->gen);
742 else
743 next->gen = invl_gen->gen;
744 LIST_REMOVE(invl_gen, link);
745 mtx_unlock(&invl_gen_mtx);
746 invl_gen->gen = 0;
747 }
748
749 static bool
pmap_not_in_di_u(void)750 pmap_not_in_di_u(void)
751 {
752 struct pmap_invl_gen *invl_gen;
753
754 invl_gen = &curthread->td_md.md_invl_gen;
755 return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
756 }
757
758 static void
pmap_thread_init_invl_gen_u(struct thread * td)759 pmap_thread_init_invl_gen_u(struct thread *td)
760 {
761 struct pmap_invl_gen *invl_gen;
762
763 invl_gen = &td->td_md.md_invl_gen;
764 invl_gen->gen = 0;
765 invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
766 }
767
768 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)769 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
770 {
771 uint64_t new_high, new_low, old_high, old_low;
772 char res;
773
774 old_low = new_low = 0;
775 old_high = new_high = (uintptr_t)0;
776
777 __asm volatile("lock;cmpxchg16b\t%1"
778 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
779 : "b"(new_low), "c" (new_high)
780 : "memory", "cc");
781 if (res == 0) {
782 if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
783 return (false);
784 out->gen = old_low;
785 out->next = (void *)old_high;
786 } else {
787 out->gen = new_low;
788 out->next = (void *)new_high;
789 }
790 return (true);
791 }
792
793 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)794 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
795 struct pmap_invl_gen *new_val)
796 {
797 uint64_t new_high, new_low, old_high, old_low;
798 char res;
799
800 new_low = new_val->gen;
801 new_high = (uintptr_t)new_val->next;
802 old_low = old_val->gen;
803 old_high = (uintptr_t)old_val->next;
804
805 __asm volatile("lock;cmpxchg16b\t%1"
806 : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
807 : "b"(new_low), "c" (new_high)
808 : "memory", "cc");
809 return (res);
810 }
811
812 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
813 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
814 &pv_page_count, "Current number of allocated pv pages");
815
816 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
817 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
818 &user_pt_page_count,
819 "Current number of allocated page table pages for userspace");
820
821 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
822 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
823 &kernel_pt_page_count,
824 "Current number of allocated page table pages for the kernel");
825
826 #ifdef PV_STATS
827
828 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
830 CTLFLAG_RD, &invl_start_restart,
831 "Number of delayed TLB invalidation request restarts");
832
833 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
834 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
835 &invl_finish_restart,
836 "Number of delayed TLB invalidation completion restarts");
837
838 static int invl_max_qlen;
839 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
840 &invl_max_qlen, 0,
841 "Maximum delayed TLB invalidation request queue length");
842 #endif
843
844 #define di_delay locks_delay
845
846 static void
pmap_delayed_invl_start_u(void)847 pmap_delayed_invl_start_u(void)
848 {
849 struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
850 struct thread *td;
851 struct lock_delay_arg lda;
852 uintptr_t prevl;
853 u_char pri;
854 #ifdef PV_STATS
855 int i, ii;
856 #endif
857
858 td = curthread;
859 invl_gen = &td->td_md.md_invl_gen;
860 PMAP_ASSERT_NOT_IN_DI();
861 lock_delay_arg_init(&lda, &di_delay);
862 invl_gen->saved_pri = 0;
863 pri = td->td_base_pri;
864 if (pri > PVM) {
865 thread_lock(td);
866 pri = td->td_base_pri;
867 if (pri > PVM) {
868 invl_gen->saved_pri = pri;
869 sched_prio(td, PVM);
870 }
871 thread_unlock(td);
872 }
873 again:
874 PV_STAT(i = 0);
875 for (p = &pmap_invl_gen_head;; p = prev.next) {
876 PV_STAT(i++);
877 prevl = (uintptr_t)atomic_load_ptr(&p->next);
878 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
879 PV_STAT(counter_u64_add(invl_start_restart, 1));
880 lock_delay(&lda);
881 goto again;
882 }
883 if (prevl == 0)
884 break;
885 prev.next = (void *)prevl;
886 }
887 #ifdef PV_STATS
888 if ((ii = invl_max_qlen) < i)
889 atomic_cmpset_int(&invl_max_qlen, ii, i);
890 #endif
891
892 if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
893 PV_STAT(counter_u64_add(invl_start_restart, 1));
894 lock_delay(&lda);
895 goto again;
896 }
897
898 new_prev.gen = prev.gen;
899 new_prev.next = invl_gen;
900 invl_gen->gen = prev.gen + 1;
901
902 /* Formal fence between store to invl->gen and updating *p. */
903 atomic_thread_fence_rel();
904
905 /*
906 * After inserting an invl_gen element with invalid bit set,
907 * this thread blocks any other thread trying to enter the
908 * delayed invalidation block. Do not allow to remove us from
909 * the CPU, because it causes starvation for other threads.
910 */
911 critical_enter();
912
913 /*
914 * ABA for *p is not possible there, since p->gen can only
915 * increase. So if the *p thread finished its di, then
916 * started a new one and got inserted into the list at the
917 * same place, its gen will appear greater than the previously
918 * read gen.
919 */
920 if (!pmap_di_store_invl(p, &prev, &new_prev)) {
921 critical_exit();
922 PV_STAT(counter_u64_add(invl_start_restart, 1));
923 lock_delay(&lda);
924 goto again;
925 }
926
927 /*
928 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
929 * invl_gen->next, allowing other threads to iterate past us.
930 * pmap_di_store_invl() provides fence between the generation
931 * write and the update of next.
932 */
933 invl_gen->next = NULL;
934 critical_exit();
935 }
936
937 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)938 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
939 struct pmap_invl_gen *p)
940 {
941 struct pmap_invl_gen prev, new_prev;
942 u_long mygen;
943
944 /*
945 * Load invl_gen->gen after setting invl_gen->next
946 * PMAP_INVL_GEN_NEXT_INVALID. This prevents larger
947 * generations to propagate to our invl_gen->gen. Lock prefix
948 * in atomic_set_ptr() worked as seq_cst fence.
949 */
950 mygen = atomic_load_long(&invl_gen->gen);
951
952 if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
953 return (false);
954
955 KASSERT(prev.gen < mygen,
956 ("invalid di gen sequence %lu %lu", prev.gen, mygen));
957 new_prev.gen = mygen;
958 new_prev.next = (void *)((uintptr_t)invl_gen->next &
959 ~PMAP_INVL_GEN_NEXT_INVALID);
960
961 /* Formal fence between load of prev and storing update to it. */
962 atomic_thread_fence_rel();
963
964 return (pmap_di_store_invl(p, &prev, &new_prev));
965 }
966
967 static void
pmap_delayed_invl_finish_u(void)968 pmap_delayed_invl_finish_u(void)
969 {
970 struct pmap_invl_gen *invl_gen, *p;
971 struct thread *td;
972 struct lock_delay_arg lda;
973 uintptr_t prevl;
974
975 td = curthread;
976 invl_gen = &td->td_md.md_invl_gen;
977 KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
978 KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
979 ("missed invl_start: INVALID"));
980 lock_delay_arg_init(&lda, &di_delay);
981
982 again:
983 for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
984 prevl = (uintptr_t)atomic_load_ptr(&p->next);
985 if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
986 PV_STAT(counter_u64_add(invl_finish_restart, 1));
987 lock_delay(&lda);
988 goto again;
989 }
990 if ((void *)prevl == invl_gen)
991 break;
992 }
993
994 /*
995 * It is legitimate to not find ourself on the list if a
996 * thread before us finished its DI and started it again.
997 */
998 if (__predict_false(p == NULL)) {
999 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1000 lock_delay(&lda);
1001 goto again;
1002 }
1003
1004 critical_enter();
1005 atomic_set_ptr((uintptr_t *)&invl_gen->next,
1006 PMAP_INVL_GEN_NEXT_INVALID);
1007 if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1008 atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1009 PMAP_INVL_GEN_NEXT_INVALID);
1010 critical_exit();
1011 PV_STAT(counter_u64_add(invl_finish_restart, 1));
1012 lock_delay(&lda);
1013 goto again;
1014 }
1015 critical_exit();
1016 if (atomic_load_int(&pmap_invl_waiters) > 0)
1017 pmap_delayed_invl_finish_unblock(0);
1018 if (invl_gen->saved_pri != 0) {
1019 thread_lock(td);
1020 sched_prio(td, invl_gen->saved_pri);
1021 thread_unlock(td);
1022 }
1023 }
1024
1025 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1026 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1027 {
1028 struct pmap_invl_gen *p, *pn;
1029 struct thread *td;
1030 uintptr_t nextl;
1031 bool first;
1032
1033 for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1034 first = false) {
1035 nextl = (uintptr_t)atomic_load_ptr(&p->next);
1036 pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1037 td = first ? NULL : __containerof(p, struct thread,
1038 td_md.md_invl_gen);
1039 db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1040 (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1041 td != NULL ? td->td_tid : -1);
1042 }
1043 }
1044 #endif
1045
1046 #ifdef PV_STATS
1047 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1048 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1049 CTLFLAG_RD, &invl_wait,
1050 "Number of times DI invalidation blocked pmap_remove_all/write");
1051
1052 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1053 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1054 &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1055
1056 #endif
1057
1058 #ifdef NUMA
1059 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1060 pmap_delayed_invl_genp(vm_page_t m)
1061 {
1062 vm_paddr_t pa;
1063 u_long *gen;
1064
1065 pa = VM_PAGE_TO_PHYS(m);
1066 if (__predict_false((pa) > pmap_last_pa))
1067 gen = &pv_dummy_large.pv_invl_gen;
1068 else
1069 gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1070
1071 return (gen);
1072 }
1073 #else
1074 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1075 pmap_delayed_invl_genp(vm_page_t m)
1076 {
1077
1078 return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1079 }
1080 #endif
1081
1082 static void
pmap_delayed_invl_callout_func(void * arg __unused)1083 pmap_delayed_invl_callout_func(void *arg __unused)
1084 {
1085
1086 if (atomic_load_int(&pmap_invl_waiters) == 0)
1087 return;
1088 pmap_delayed_invl_finish_unblock(0);
1089 }
1090
1091 static void
pmap_delayed_invl_callout_init(void * arg __unused)1092 pmap_delayed_invl_callout_init(void *arg __unused)
1093 {
1094
1095 if (pmap_di_locked())
1096 return;
1097 callout_init(&pmap_invl_callout, 1);
1098 pmap_invl_callout_inited = true;
1099 }
1100 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1101 pmap_delayed_invl_callout_init, NULL);
1102
1103 /*
1104 * Ensure that all currently executing DI blocks, that need to flush
1105 * TLB for the given page m, actually flushed the TLB at the time the
1106 * function returned. If the page m has an empty PV list and we call
1107 * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1108 * valid mapping for the page m in either its page table or TLB.
1109 *
1110 * This function works by blocking until the global DI generation
1111 * number catches up with the generation number associated with the
1112 * given page m and its PV list. Since this function's callers
1113 * typically own an object lock and sometimes own a page lock, it
1114 * cannot sleep. Instead, it blocks on a turnstile to relinquish the
1115 * processor.
1116 */
1117 static void
pmap_delayed_invl_wait_l(vm_page_t m)1118 pmap_delayed_invl_wait_l(vm_page_t m)
1119 {
1120 u_long *m_gen;
1121 #ifdef PV_STATS
1122 bool accounted = false;
1123 #endif
1124
1125 m_gen = pmap_delayed_invl_genp(m);
1126 while (*m_gen > pmap_invl_gen) {
1127 #ifdef PV_STATS
1128 if (!accounted) {
1129 counter_u64_add(invl_wait, 1);
1130 accounted = true;
1131 }
1132 #endif
1133 pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1134 }
1135 }
1136
1137 static void
pmap_delayed_invl_wait_u(vm_page_t m)1138 pmap_delayed_invl_wait_u(vm_page_t m)
1139 {
1140 u_long *m_gen;
1141 struct lock_delay_arg lda;
1142 bool fast;
1143
1144 fast = true;
1145 m_gen = pmap_delayed_invl_genp(m);
1146 lock_delay_arg_init(&lda, &di_delay);
1147 while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1148 if (fast || !pmap_invl_callout_inited) {
1149 PV_STAT(counter_u64_add(invl_wait, 1));
1150 lock_delay(&lda);
1151 fast = false;
1152 } else {
1153 /*
1154 * The page's invalidation generation number
1155 * is still below the current thread's number.
1156 * Prepare to block so that we do not waste
1157 * CPU cycles or worse, suffer livelock.
1158 *
1159 * Since it is impossible to block without
1160 * racing with pmap_delayed_invl_finish_u(),
1161 * prepare for the race by incrementing
1162 * pmap_invl_waiters and arming a 1-tick
1163 * callout which will unblock us if we lose
1164 * the race.
1165 */
1166 atomic_add_int(&pmap_invl_waiters, 1);
1167
1168 /*
1169 * Re-check the current thread's invalidation
1170 * generation after incrementing
1171 * pmap_invl_waiters, so that there is no race
1172 * with pmap_delayed_invl_finish_u() setting
1173 * the page generation and checking
1174 * pmap_invl_waiters. The only race allowed
1175 * is for a missed unblock, which is handled
1176 * by the callout.
1177 */
1178 if (*m_gen >
1179 atomic_load_long(&pmap_invl_gen_head.gen)) {
1180 callout_reset(&pmap_invl_callout, 1,
1181 pmap_delayed_invl_callout_func, NULL);
1182 PV_STAT(counter_u64_add(invl_wait_slow, 1));
1183 pmap_delayed_invl_wait_block(m_gen,
1184 &pmap_invl_gen_head.gen);
1185 }
1186 atomic_add_int(&pmap_invl_waiters, -1);
1187 }
1188 }
1189 }
1190
1191 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1192 {
1193
1194 return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1195 pmap_thread_init_invl_gen_u);
1196 }
1197
1198 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1199 {
1200
1201 return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1202 pmap_delayed_invl_start_u);
1203 }
1204
1205 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1206 {
1207
1208 return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1209 pmap_delayed_invl_finish_u);
1210 }
1211
1212 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1213 {
1214
1215 return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1216 pmap_delayed_invl_wait_u);
1217 }
1218
1219 /*
1220 * Mark the page m's PV list as participating in the current thread's
1221 * DI block. Any threads concurrently using m's PV list to remove or
1222 * restrict all mappings to m will wait for the current thread's DI
1223 * block to complete before proceeding.
1224 *
1225 * The function works by setting the DI generation number for m's PV
1226 * list to at least the DI generation number of the current thread.
1227 * This forces a caller of pmap_delayed_invl_wait() to block until
1228 * current thread calls pmap_delayed_invl_finish().
1229 */
1230 static void
pmap_delayed_invl_page(vm_page_t m)1231 pmap_delayed_invl_page(vm_page_t m)
1232 {
1233 u_long gen, *m_gen;
1234
1235 rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1236 gen = curthread->td_md.md_invl_gen.gen;
1237 if (gen == 0)
1238 return;
1239 m_gen = pmap_delayed_invl_genp(m);
1240 if (*m_gen < gen)
1241 *m_gen = gen;
1242 }
1243
1244 /*
1245 * Crashdump maps.
1246 */
1247 static caddr_t crashdumpmap;
1248
1249 /*
1250 * Internal flags for pmap_enter()'s helper functions.
1251 */
1252 #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
1253 #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
1254
1255 /*
1256 * Internal flags for pmap_mapdev_internal() and
1257 * pmap_change_props_locked().
1258 */
1259 #define MAPDEV_FLUSHCACHE 0x00000001 /* Flush cache after mapping. */
1260 #define MAPDEV_SETATTR 0x00000002 /* Modify existing attrs. */
1261 #define MAPDEV_ASSERTVALID 0x00000004 /* Assert mapping validity. */
1262
1263 TAILQ_HEAD(pv_chunklist, pv_chunk);
1264
1265 static void free_pv_chunk(struct pv_chunk *pc);
1266 static void free_pv_chunk_batch(struct pv_chunklist *batch);
1267 static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
1268 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1269 static int popcnt_pc_map_pq(uint64_t *map);
1270 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1271 static void reserve_pv_entries(pmap_t pmap, int needed,
1272 struct rwlock **lockp);
1273 static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1274 struct rwlock **lockp);
1275 static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1276 u_int flags, struct rwlock **lockp);
1277 #if VM_NRESERVLEVEL > 0
1278 static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1279 struct rwlock **lockp);
1280 #endif
1281 static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1282 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1283 vm_offset_t va);
1284
1285 static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1286 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1287 vm_prot_t prot, int mode, int flags);
1288 static bool pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1289 static bool pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1290 vm_offset_t va, struct rwlock **lockp);
1291 static bool pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1292 vm_offset_t va);
1293 static int pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1294 vm_prot_t prot, struct rwlock **lockp);
1295 static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1296 u_int flags, vm_page_t m, struct rwlock **lockp);
1297 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1298 vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1299 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1300 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1301 bool allpte_PG_A_set);
1302 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1303 vm_offset_t eva);
1304 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1305 vm_offset_t eva);
1306 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1307 pd_entry_t pde);
1308 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1309 static vm_page_t pmap_large_map_getptp_unlocked(void);
1310 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1311 #if VM_NRESERVLEVEL > 0
1312 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1313 vm_page_t mpte, struct rwlock **lockp);
1314 #endif
1315 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1316 vm_prot_t prot);
1317 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1318 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1319 bool exec);
1320 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1321 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1322 static void pmap_pti_wire_pte(void *pte);
1323 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1324 struct spglist *free, struct rwlock **lockp);
1325 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1326 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1327 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1328 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1329 struct spglist *free);
1330 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1331 pd_entry_t *pde, struct spglist *free,
1332 struct rwlock **lockp);
1333 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1334 vm_page_t m, struct rwlock **lockp);
1335 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1336 pd_entry_t newpde);
1337 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1338
1339 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1340 struct rwlock **lockp);
1341 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1342 struct rwlock **lockp, vm_offset_t va);
1343 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1344 struct rwlock **lockp, vm_offset_t va);
1345 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1346 struct rwlock **lockp);
1347
1348 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1349 struct spglist *free);
1350 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1351
1352 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1353 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1354
1355 /********************/
1356 /* Inline functions */
1357 /********************/
1358
1359 /*
1360 * Return a non-clipped indexes for a given VA, which are page table
1361 * pages indexes at the corresponding level.
1362 */
1363 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1364 pmap_pde_pindex(vm_offset_t va)
1365 {
1366 return (va >> PDRSHIFT);
1367 }
1368
1369 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1370 pmap_pdpe_pindex(vm_offset_t va)
1371 {
1372 return (NUPDE + (va >> PDPSHIFT));
1373 }
1374
1375 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1376 pmap_pml4e_pindex(vm_offset_t va)
1377 {
1378 return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1379 }
1380
1381 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1382 pmap_pml5e_pindex(vm_offset_t va)
1383 {
1384 return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1385 }
1386
1387 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1388 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1389 {
1390
1391 MPASS(pmap_is_la57(pmap));
1392 return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1393 }
1394
1395 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1396 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1397 {
1398
1399 MPASS(pmap_is_la57(pmap));
1400 return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1401 }
1402
1403 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1404 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1405 {
1406 pml4_entry_t *pml4e;
1407
1408 /* XXX MPASS(pmap_is_la57(pmap); */
1409 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1410 return (&pml4e[pmap_pml4e_index(va)]);
1411 }
1412
1413 /* Return a pointer to the PML4 slot that corresponds to a VA */
1414 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1415 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1416 {
1417 pml5_entry_t *pml5e;
1418 pml4_entry_t *pml4e;
1419 pt_entry_t PG_V;
1420
1421 if (pmap_is_la57(pmap)) {
1422 pml5e = pmap_pml5e(pmap, va);
1423 PG_V = pmap_valid_bit(pmap);
1424 if ((*pml5e & PG_V) == 0)
1425 return (NULL);
1426 pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1427 } else {
1428 pml4e = pmap->pm_pmltop;
1429 }
1430 return (&pml4e[pmap_pml4e_index(va)]);
1431 }
1432
1433 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1434 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1435 {
1436 MPASS(!pmap_is_la57(pmap));
1437 return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1438 }
1439
1440 /* Return a pointer to the PDP slot that corresponds to a VA */
1441 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1442 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1443 {
1444 pdp_entry_t *pdpe;
1445
1446 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1447 return (&pdpe[pmap_pdpe_index(va)]);
1448 }
1449
1450 /* Return a pointer to the PDP slot that corresponds to a VA */
1451 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1452 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1453 {
1454 pml4_entry_t *pml4e;
1455 pt_entry_t PG_V;
1456
1457 PG_V = pmap_valid_bit(pmap);
1458 pml4e = pmap_pml4e(pmap, va);
1459 if (pml4e == NULL || (*pml4e & PG_V) == 0)
1460 return (NULL);
1461 return (pmap_pml4e_to_pdpe(pml4e, va));
1462 }
1463
1464 /* Return a pointer to the PD slot that corresponds to a VA */
1465 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1466 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1467 {
1468 pd_entry_t *pde;
1469
1470 KASSERT((*pdpe & PG_PS) == 0,
1471 ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1472 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1473 return (&pde[pmap_pde_index(va)]);
1474 }
1475
1476 /* Return a pointer to the PD slot that corresponds to a VA */
1477 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1478 pmap_pde(pmap_t pmap, vm_offset_t va)
1479 {
1480 pdp_entry_t *pdpe;
1481 pt_entry_t PG_V;
1482
1483 PG_V = pmap_valid_bit(pmap);
1484 pdpe = pmap_pdpe(pmap, va);
1485 if (pdpe == NULL || (*pdpe & PG_V) == 0)
1486 return (NULL);
1487 KASSERT((*pdpe & PG_PS) == 0,
1488 ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1489 return (pmap_pdpe_to_pde(pdpe, va));
1490 }
1491
1492 /* Return a pointer to the PT slot that corresponds to a VA */
1493 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1494 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1495 {
1496 pt_entry_t *pte;
1497
1498 KASSERT((*pde & PG_PS) == 0,
1499 ("%s: pde %#lx is a leaf", __func__, *pde));
1500 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1501 return (&pte[pmap_pte_index(va)]);
1502 }
1503
1504 /* Return a pointer to the PT slot that corresponds to a VA */
1505 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1506 pmap_pte(pmap_t pmap, vm_offset_t va)
1507 {
1508 pd_entry_t *pde;
1509 pt_entry_t PG_V;
1510
1511 PG_V = pmap_valid_bit(pmap);
1512 pde = pmap_pde(pmap, va);
1513 if (pde == NULL || (*pde & PG_V) == 0)
1514 return (NULL);
1515 if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
1516 return ((pt_entry_t *)pde);
1517 return (pmap_pde_to_pte(pde, va));
1518 }
1519
1520 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1521 pmap_resident_count_adj(pmap_t pmap, int count)
1522 {
1523
1524 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1525 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1526 ("pmap %p resident count underflow %ld %d", pmap,
1527 pmap->pm_stats.resident_count, count));
1528 pmap->pm_stats.resident_count += count;
1529 }
1530
1531 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1532 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1533 {
1534 KASSERT(pmap->pm_stats.resident_count + count >= 0,
1535 ("pmap %p resident count underflow %ld %d", pmap,
1536 pmap->pm_stats.resident_count, count));
1537 pmap->pm_stats.resident_count += count;
1538 }
1539
1540 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1541 pmap_pt_page_count_adj(pmap_t pmap, int count)
1542 {
1543 if (pmap == kernel_pmap)
1544 counter_u64_add(kernel_pt_page_count, count);
1545 else {
1546 if (pmap != NULL)
1547 pmap_resident_count_adj(pmap, count);
1548 counter_u64_add(user_pt_page_count, count);
1549 }
1550 }
1551
1552 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1553 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1554 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1555
1556 pt_entry_t *
vtopte(vm_offset_t va)1557 vtopte(vm_offset_t va)
1558 {
1559 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1560
1561 return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1562 }
1563
1564 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1565 NPML4EPGSHIFT)) - 1) << 3;
1566 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1567
1568 static __inline pd_entry_t *
vtopde(vm_offset_t va)1569 vtopde(vm_offset_t va)
1570 {
1571 KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1572
1573 return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1574 }
1575
1576 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1577 allocpages(vm_paddr_t *firstaddr, int n)
1578 {
1579 u_int64_t ret;
1580
1581 ret = *firstaddr;
1582 bzero((void *)ret, n * PAGE_SIZE);
1583 *firstaddr += n * PAGE_SIZE;
1584 return (ret);
1585 }
1586
1587 CTASSERT(powerof2(NDMPML4E));
1588
1589 /* number of kernel PDP slots */
1590 #define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
1591
1592 static void
nkpt_init(vm_paddr_t addr)1593 nkpt_init(vm_paddr_t addr)
1594 {
1595 int pt_pages;
1596
1597 #ifdef NKPT
1598 pt_pages = NKPT;
1599 #else
1600 pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1601 pt_pages += NKPDPE(pt_pages);
1602
1603 /*
1604 * Add some slop beyond the bare minimum required for bootstrapping
1605 * the kernel.
1606 *
1607 * This is quite important when allocating KVA for kernel modules.
1608 * The modules are required to be linked in the negative 2GB of
1609 * the address space. If we run out of KVA in this region then
1610 * pmap_growkernel() will need to allocate page table pages to map
1611 * the entire 512GB of KVA space which is an unnecessary tax on
1612 * physical memory.
1613 *
1614 * Secondly, device memory mapped as part of setting up the low-
1615 * level console(s) is taken from KVA, starting at virtual_avail.
1616 * This is because cninit() is called after pmap_bootstrap() but
1617 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1618 * is not uncommon.
1619 */
1620 pt_pages += 32; /* 64MB additional slop. */
1621 #endif
1622 nkpt = pt_pages;
1623 }
1624
1625 /*
1626 * Returns the proper write/execute permission for a physical page that is
1627 * part of the initial boot allocations.
1628 *
1629 * If the page has kernel text, it is marked as read-only. If the page has
1630 * kernel read-only data, it is marked as read-only/not-executable. If the
1631 * page has only read-write data, it is marked as read-write/not-executable.
1632 * If the page is below/above the kernel range, it is marked as read-write.
1633 *
1634 * This function operates on 2M pages, since we map the kernel space that
1635 * way.
1636 */
1637 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1638 bootaddr_rwx(vm_paddr_t pa)
1639 {
1640 /*
1641 * The kernel is loaded at a 2MB-aligned address, and memory below that
1642 * need not be executable. The .bss section is padded to a 2MB
1643 * boundary, so memory following the kernel need not be executable
1644 * either. Preloaded kernel modules have their mapping permissions
1645 * fixed up by the linker.
1646 */
1647 if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1648 pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1649 return (X86_PG_RW | pg_nx);
1650
1651 /*
1652 * The linker should ensure that the read-only and read-write
1653 * portions don't share the same 2M page, so this shouldn't
1654 * impact read-only data. However, in any case, any page with
1655 * read-write data needs to be read-write.
1656 */
1657 if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1658 return (X86_PG_RW | pg_nx);
1659
1660 /*
1661 * Mark any 2M page containing kernel text as read-only. Mark
1662 * other pages with read-only data as read-only and not executable.
1663 * (It is likely a small portion of the read-only data section will
1664 * be marked as read-only, but executable. This should be acceptable
1665 * since the read-only protection will keep the data from changing.)
1666 * Note that fixups to the .text section will still work until we
1667 * set CR0.WP.
1668 */
1669 if (pa < round_2mpage(kernphys + etext - KERNSTART))
1670 return (0);
1671 return (pg_nx);
1672 }
1673
1674 static void
create_pagetables(vm_paddr_t * firstaddr)1675 create_pagetables(vm_paddr_t *firstaddr)
1676 {
1677 pd_entry_t *pd_p;
1678 pdp_entry_t *pdp_p;
1679 pml4_entry_t *p4_p;
1680 uint64_t DMPDkernphys;
1681 vm_paddr_t pax;
1682 #ifdef KASAN
1683 pt_entry_t *pt_p;
1684 uint64_t KASANPDphys, KASANPTphys, KASANphys;
1685 vm_offset_t kasankernbase;
1686 int kasankpdpi, kasankpdi, nkasanpte;
1687 #endif
1688 int i, j, ndm1g, nkpdpe, nkdmpde;
1689
1690 TSENTER();
1691 /* Allocate page table pages for the direct map */
1692 ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1693 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
1694 ndmpdp = 4;
1695 ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1696 if (ndmpdpphys > NDMPML4E) {
1697 /*
1698 * Each NDMPML4E allows 512 GB, so limit to that,
1699 * and then readjust ndmpdp and ndmpdpphys.
1700 */
1701 printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1702 Maxmem = atop(NDMPML4E * NBPML4);
1703 ndmpdpphys = NDMPML4E;
1704 ndmpdp = NDMPML4E * NPDEPG;
1705 }
1706 DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1707 ndm1g = 0;
1708 if ((amd_feature & AMDID_PAGE1GB) != 0) {
1709 /*
1710 * Calculate the number of 1G pages that will fully fit in
1711 * Maxmem.
1712 */
1713 ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1714
1715 /*
1716 * Allocate 2M pages for the kernel. These will be used in
1717 * place of the one or more 1G pages from ndm1g that maps
1718 * kernel memory into DMAP.
1719 */
1720 nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1721 kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1722 DMPDkernphys = allocpages(firstaddr, nkdmpde);
1723 }
1724 if (ndm1g < ndmpdp)
1725 DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1726 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1727
1728 /* Allocate pages. */
1729 KPML4phys = allocpages(firstaddr, 1);
1730 KPDPphys = allocpages(firstaddr, NKPML4E);
1731 #ifdef KASAN
1732 KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1733 KASANPDphys = allocpages(firstaddr, 1);
1734 #endif
1735 #ifdef KMSAN
1736 /*
1737 * The KMSAN shadow maps are initially left unpopulated, since there is
1738 * no need to shadow memory above KERNBASE.
1739 */
1740 KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1741 KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1742 #endif
1743
1744 /*
1745 * Allocate the initial number of kernel page table pages required to
1746 * bootstrap. We defer this until after all memory-size dependent
1747 * allocations are done (e.g. direct map), so that we don't have to
1748 * build in too much slop in our estimate.
1749 *
1750 * Note that when NKPML4E > 1, we have an empty page underneath
1751 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1752 * pages. (pmap_enter requires a PD page to exist for each KPML4E.)
1753 */
1754 nkpt_init(*firstaddr);
1755 nkpdpe = NKPDPE(nkpt);
1756
1757 KPTphys = allocpages(firstaddr, nkpt);
1758 KPDphys = allocpages(firstaddr, nkpdpe);
1759
1760 #ifdef KASAN
1761 nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1762 KASANPTphys = allocpages(firstaddr, nkasanpte);
1763 KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1764 #endif
1765
1766 /*
1767 * Connect the zero-filled PT pages to their PD entries. This
1768 * implicitly maps the PT pages at their correct locations within
1769 * the PTmap.
1770 */
1771 pd_p = (pd_entry_t *)KPDphys;
1772 for (i = 0; i < nkpt; i++)
1773 pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1774
1775 /*
1776 * Map from start of the kernel in physical memory (staging
1777 * area) to the end of loader preallocated memory using 2MB
1778 * pages. This replaces some of the PD entries created above.
1779 * For compatibility, identity map 2M at the start.
1780 */
1781 pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1782 X86_PG_RW | pg_nx;
1783 for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1784 /* Preset PG_M and PG_A because demotion expects it. */
1785 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1786 X86_PG_A | bootaddr_rwx(pax);
1787 }
1788
1789 /*
1790 * Because we map the physical blocks in 2M pages, adjust firstaddr
1791 * to record the physical blocks we've actually mapped into kernel
1792 * virtual address space.
1793 */
1794 if (*firstaddr < round_2mpage(KERNend))
1795 *firstaddr = round_2mpage(KERNend);
1796
1797 /* And connect up the PD to the PDP (leaving room for L4 pages) */
1798 pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1799 for (i = 0; i < nkpdpe; i++)
1800 pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1801
1802 #ifdef KASAN
1803 kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1804 kasankpdpi = pmap_pdpe_index(kasankernbase);
1805 kasankpdi = pmap_pde_index(kasankernbase);
1806
1807 pdp_p = (pdp_entry_t *)KASANPDPphys;
1808 pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1809
1810 pd_p = (pd_entry_t *)KASANPDphys;
1811 for (i = 0; i < nkasanpte; i++)
1812 pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1813 X86_PG_V | pg_nx;
1814
1815 pt_p = (pt_entry_t *)KASANPTphys;
1816 for (i = 0; i < nkasanpte * NPTEPG; i++)
1817 pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1818 X86_PG_M | X86_PG_A | pg_nx;
1819 #endif
1820
1821 /*
1822 * Now, set up the direct map region using 2MB and/or 1GB pages. If
1823 * the end of physical memory is not aligned to a 1GB page boundary,
1824 * then the residual physical memory is mapped with 2MB pages. Later,
1825 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1826 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1827 * that are partially used.
1828 */
1829 pd_p = (pd_entry_t *)DMPDphys;
1830 for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1831 pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1832 /* Preset PG_M and PG_A because demotion expects it. */
1833 pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1834 X86_PG_M | X86_PG_A | pg_nx;
1835 }
1836 pdp_p = (pdp_entry_t *)DMPDPphys;
1837 for (i = 0; i < ndm1g; i++) {
1838 pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1839 /* Preset PG_M and PG_A because demotion expects it. */
1840 pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1841 X86_PG_M | X86_PG_A | pg_nx;
1842 }
1843 for (j = 0; i < ndmpdp; i++, j++) {
1844 pdp_p[i] = DMPDphys + ptoa(j);
1845 pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1846 }
1847
1848 /*
1849 * Instead of using a 1G page for the memory containing the kernel,
1850 * use 2M pages with read-only and no-execute permissions. (If using 1G
1851 * pages, this will partially overwrite the PDPEs above.)
1852 */
1853 if (ndm1g > 0) {
1854 pd_p = (pd_entry_t *)DMPDkernphys;
1855 for (i = 0, pax = rounddown2(kernphys, NBPDP);
1856 i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1857 pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1858 X86_PG_A | pg_nx | bootaddr_rwx(pax);
1859 }
1860 j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1861 for (i = 0; i < nkdmpde; i++) {
1862 pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1863 X86_PG_RW | X86_PG_V | pg_nx;
1864 }
1865 }
1866
1867 /* And recursively map PML4 to itself in order to get PTmap */
1868 p4_p = (pml4_entry_t *)KPML4phys;
1869 p4_p[PML4PML4I] = KPML4phys;
1870 p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1871
1872 #ifdef KASAN
1873 /* Connect the KASAN shadow map slots up to the PML4. */
1874 for (i = 0; i < NKASANPML4E; i++) {
1875 p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1876 p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1877 }
1878 #endif
1879
1880 #ifdef KMSAN
1881 /* Connect the KMSAN shadow map slots up to the PML4. */
1882 for (i = 0; i < NKMSANSHADPML4E; i++) {
1883 p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1884 p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1885 }
1886
1887 /* Connect the KMSAN origin map slots up to the PML4. */
1888 for (i = 0; i < NKMSANORIGPML4E; i++) {
1889 p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1890 p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1891 }
1892 #endif
1893
1894 /* Connect the Direct Map slots up to the PML4. */
1895 for (i = 0; i < ndmpdpphys; i++) {
1896 p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1897 p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1898 }
1899
1900 /* Connect the KVA slots up to the PML4 */
1901 for (i = 0; i < NKPML4E; i++) {
1902 p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1903 p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1904 }
1905
1906 kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1907 TSEXIT();
1908 }
1909
1910 /*
1911 * Bootstrap the system enough to run with virtual memory.
1912 *
1913 * On amd64 this is called after mapping has already been enabled
1914 * and just syncs the pmap module with what has already been done.
1915 * [We can't call it easily with mapping off since the kernel is not
1916 * mapped with PA == VA, hence we would have to relocate every address
1917 * from the linked base (virtual) address "KERNBASE" to the actual
1918 * (physical) address starting relative to 0]
1919 */
1920 void
pmap_bootstrap(vm_paddr_t * firstaddr)1921 pmap_bootstrap(vm_paddr_t *firstaddr)
1922 {
1923 vm_offset_t va;
1924 pt_entry_t *pte, *pcpu_pte;
1925 struct region_descriptor r_gdt;
1926 uint64_t cr4, pcpu0_phys;
1927 u_long res;
1928 int i;
1929
1930 TSENTER();
1931 KERNend = *firstaddr;
1932 res = atop(KERNend - (vm_paddr_t)kernphys);
1933
1934 if (!pti)
1935 pg_g = X86_PG_G;
1936
1937 /*
1938 * Create an initial set of page tables to run the kernel in.
1939 */
1940 create_pagetables(firstaddr);
1941
1942 pcpu0_phys = allocpages(firstaddr, 1);
1943
1944 /*
1945 * Add a physical memory segment (vm_phys_seg) corresponding to the
1946 * preallocated kernel page table pages so that vm_page structures
1947 * representing these pages will be created. The vm_page structures
1948 * are required for promotion of the corresponding kernel virtual
1949 * addresses to superpage mappings.
1950 */
1951 vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1952
1953 /*
1954 * Account for the virtual addresses mapped by create_pagetables().
1955 */
1956 virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1957 (vm_paddr_t)kernphys);
1958 virtual_end = VM_MAX_KERNEL_ADDRESS;
1959
1960 /*
1961 * Enable PG_G global pages, then switch to the kernel page
1962 * table from the bootstrap page table. After the switch, it
1963 * is possible to enable SMEP and SMAP since PG_U bits are
1964 * correct now.
1965 */
1966 cr4 = rcr4();
1967 cr4 |= CR4_PGE;
1968 load_cr4(cr4);
1969 load_cr3(KPML4phys);
1970 if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1971 cr4 |= CR4_SMEP;
1972 if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1973 cr4 |= CR4_SMAP;
1974 load_cr4(cr4);
1975
1976 /*
1977 * Initialize the kernel pmap (which is statically allocated).
1978 * Count bootstrap data as being resident in case any of this data is
1979 * later unmapped (using pmap_remove()) and freed.
1980 */
1981 PMAP_LOCK_INIT(kernel_pmap);
1982 kernel_pmap->pm_pmltop = kernel_pml4;
1983 kernel_pmap->pm_cr3 = KPML4phys;
1984 kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1985 TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1986 kernel_pmap->pm_stats.resident_count = res;
1987 vm_radix_init(&kernel_pmap->pm_root);
1988 kernel_pmap->pm_flags = pmap_flags;
1989 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1990 rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1991 pkru_free_range, kernel_pmap, M_NOWAIT);
1992 }
1993
1994 /*
1995 * The kernel pmap is always active on all CPUs. Once CPUs are
1996 * enumerated, the mask will be set equal to all_cpus.
1997 */
1998 CPU_FILL(&kernel_pmap->pm_active);
1999
2000 /*
2001 * Initialize the TLB invalidations generation number lock.
2002 */
2003 mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2004
2005 /*
2006 * Reserve some special page table entries/VA space for temporary
2007 * mapping of pages.
2008 */
2009 #define SYSMAP(c, p, v, n) \
2010 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2011
2012 va = virtual_avail;
2013 pte = vtopte(va);
2014
2015 /*
2016 * Crashdump maps. The first page is reused as CMAP1 for the
2017 * memory test.
2018 */
2019 SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2020 CADDR1 = crashdumpmap;
2021
2022 SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2023 virtual_avail = va;
2024
2025 /*
2026 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2027 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2028 * number of CPUs and NUMA affinity.
2029 */
2030 pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2031 X86_PG_M | X86_PG_A;
2032 for (i = 1; i < MAXCPU; i++)
2033 pcpu_pte[i] = 0;
2034
2035 /*
2036 * Re-initialize PCPU area for BSP after switching.
2037 * Make hardware use gdt and common_tss from the new PCPU.
2038 */
2039 STAILQ_INIT(&cpuhead);
2040 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2041 pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2042 amd64_bsp_pcpu_init1(&__pcpu[0]);
2043 amd64_bsp_ist_init(&__pcpu[0]);
2044 __pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2045 IOPERM_BITMAP_SIZE;
2046 memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2047 sizeof(struct user_segment_descriptor));
2048 gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2049 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2050 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2051 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2052 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2053 lgdt(&r_gdt);
2054 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2055 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2056 __pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2057 __pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2058
2059 /*
2060 * Initialize the PAT MSR.
2061 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2062 * side-effect, invalidates stale PG_G TLB entries that might
2063 * have been created in our pre-boot environment.
2064 */
2065 pmap_init_pat();
2066
2067 /* Initialize TLB Context Id. */
2068 if (pmap_pcid_enabled) {
2069 kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2070 offsetof(struct pcpu, pc_kpmap_store);
2071
2072 PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2073 PCPU_SET(kpmap_store.pm_gen, 1);
2074
2075 /*
2076 * PMAP_PCID_KERN + 1 is used for initialization of
2077 * proc0 pmap. The pmap' pcid state might be used by
2078 * EFIRT entry before first context switch, so it
2079 * needs to be valid.
2080 */
2081 PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2082 PCPU_SET(pcid_gen, 1);
2083
2084 /*
2085 * pcpu area for APs is zeroed during AP startup.
2086 * pc_pcid_next and pc_pcid_gen are initialized by AP
2087 * during pcpu setup.
2088 */
2089 load_cr4(rcr4() | CR4_PCIDE);
2090 }
2091 TSEXIT();
2092 }
2093
2094 /*
2095 * Setup the PAT MSR.
2096 */
2097 void
pmap_init_pat(void)2098 pmap_init_pat(void)
2099 {
2100 uint64_t pat_msr;
2101 u_long cr0, cr4;
2102 int i;
2103
2104 /* Bail if this CPU doesn't implement PAT. */
2105 if ((cpu_feature & CPUID_PAT) == 0)
2106 panic("no PAT??");
2107
2108 /* Set default PAT index table. */
2109 for (i = 0; i < PAT_INDEX_SIZE; i++)
2110 pat_index[i] = -1;
2111 pat_index[PAT_WRITE_BACK] = 0;
2112 pat_index[PAT_WRITE_THROUGH] = 1;
2113 pat_index[PAT_UNCACHEABLE] = 3;
2114 pat_index[PAT_WRITE_COMBINING] = 6;
2115 pat_index[PAT_WRITE_PROTECTED] = 5;
2116 pat_index[PAT_UNCACHED] = 2;
2117
2118 /*
2119 * Initialize default PAT entries.
2120 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2121 * Program 5 and 6 as WP and WC.
2122 *
2123 * Leave 4 and 7 as WB and UC. Note that a recursive page table
2124 * mapping for a 2M page uses a PAT value with the bit 3 set due
2125 * to its overload with PG_PS.
2126 */
2127 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2128 PAT_VALUE(1, PAT_WRITE_THROUGH) |
2129 PAT_VALUE(2, PAT_UNCACHED) |
2130 PAT_VALUE(3, PAT_UNCACHEABLE) |
2131 PAT_VALUE(4, PAT_WRITE_BACK) |
2132 PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2133 PAT_VALUE(6, PAT_WRITE_COMBINING) |
2134 PAT_VALUE(7, PAT_UNCACHEABLE);
2135
2136 /* Disable PGE. */
2137 cr4 = rcr4();
2138 load_cr4(cr4 & ~CR4_PGE);
2139
2140 /* Disable caches (CD = 1, NW = 0). */
2141 cr0 = rcr0();
2142 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2143
2144 /* Flushes caches and TLBs. */
2145 wbinvd();
2146 invltlb();
2147
2148 /* Update PAT and index table. */
2149 wrmsr(MSR_PAT, pat_msr);
2150
2151 /* Flush caches and TLBs again. */
2152 wbinvd();
2153 invltlb();
2154
2155 /* Restore caches and PGE. */
2156 load_cr0(cr0);
2157 load_cr4(cr4);
2158 }
2159
2160 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2161 pmap_page_alloc_below_4g(bool zeroed)
2162 {
2163 return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2164 1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2165 }
2166
2167 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2168 la57_trampoline_gdt[], la57_trampoline_end[];
2169
2170 static void
pmap_bootstrap_la57(void * arg __unused)2171 pmap_bootstrap_la57(void *arg __unused)
2172 {
2173 char *v_code;
2174 pml5_entry_t *v_pml5;
2175 pml4_entry_t *v_pml4;
2176 pdp_entry_t *v_pdp;
2177 pd_entry_t *v_pd;
2178 pt_entry_t *v_pt;
2179 vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2180 void (*la57_tramp)(uint64_t pml5);
2181 struct region_descriptor r_gdt;
2182
2183 if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2184 return;
2185 TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2186 if (!la57)
2187 return;
2188
2189 r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2190 r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2191
2192 m_code = pmap_page_alloc_below_4g(true);
2193 v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2194 m_pml5 = pmap_page_alloc_below_4g(true);
2195 KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2196 v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2197 m_pml4 = pmap_page_alloc_below_4g(true);
2198 v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2199 m_pdp = pmap_page_alloc_below_4g(true);
2200 v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2201 m_pd = pmap_page_alloc_below_4g(true);
2202 v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2203 m_pt = pmap_page_alloc_below_4g(true);
2204 v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2205
2206 /*
2207 * Map m_code 1:1, it appears below 4G in KVA due to physical
2208 * address being below 4G. Since kernel KVA is in upper half,
2209 * the pml4e should be zero and free for temporary use.
2210 */
2211 kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2212 VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2213 X86_PG_M;
2214 v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2215 VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2216 X86_PG_M;
2217 v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2218 VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2219 X86_PG_M;
2220 v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2221 VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2222 X86_PG_M;
2223
2224 /*
2225 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2226 * entering all existing kernel mappings into level 5 table.
2227 */
2228 v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2229 X86_PG_RW | X86_PG_A | X86_PG_M;
2230
2231 /*
2232 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2233 */
2234 v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2235 VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2236 X86_PG_M;
2237 v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2238 VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2239 X86_PG_M;
2240
2241 /*
2242 * Copy and call the 48->57 trampoline, hope we return there, alive.
2243 */
2244 bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2245 *(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2246 la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2247 la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2248 pmap_invalidate_all(kernel_pmap);
2249 if (bootverbose) {
2250 printf("entering LA57 trampoline at %#lx\n",
2251 (vm_offset_t)la57_tramp);
2252 }
2253 la57_tramp(KPML5phys);
2254
2255 /*
2256 * gdt was necessary reset, switch back to our gdt.
2257 */
2258 lgdt(&r_gdt);
2259 wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2260 load_ds(_udatasel);
2261 load_es(_udatasel);
2262 load_fs(_ufssel);
2263 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2264 (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2265 ltr(GSEL(GPROC0_SEL, SEL_KPL));
2266 lidt(&r_idt);
2267
2268 if (bootverbose)
2269 printf("LA57 trampoline returned, CR4 %#lx\n", rcr4());
2270
2271 /*
2272 * Now unmap the trampoline, and free the pages.
2273 * Clear pml5 entry used for 1:1 trampoline mapping.
2274 */
2275 pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2276 invlpg((vm_offset_t)v_code);
2277 vm_page_free(m_code);
2278 vm_page_free(m_pdp);
2279 vm_page_free(m_pd);
2280 vm_page_free(m_pt);
2281
2282 /*
2283 * Recursively map PML5 to itself in order to get PTmap and
2284 * PDmap.
2285 */
2286 v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2287
2288 vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2289 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2290 PTmap = (vm_offset_t)P5Tmap;
2291 vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2292 NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2293 PDmap = (vm_offset_t)P5Dmap;
2294
2295 kernel_pmap->pm_cr3 = KPML5phys;
2296 kernel_pmap->pm_pmltop = v_pml5;
2297 pmap_pt_page_count_adj(kernel_pmap, 1);
2298 }
2299 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2300
2301 /*
2302 * Initialize a vm_page's machine-dependent fields.
2303 */
2304 void
pmap_page_init(vm_page_t m)2305 pmap_page_init(vm_page_t m)
2306 {
2307
2308 TAILQ_INIT(&m->md.pv_list);
2309 m->md.pat_mode = PAT_WRITE_BACK;
2310 }
2311
2312 static int pmap_allow_2m_x_ept;
2313 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2314 &pmap_allow_2m_x_ept, 0,
2315 "Allow executable superpage mappings in EPT");
2316
2317 void
pmap_allow_2m_x_ept_recalculate(void)2318 pmap_allow_2m_x_ept_recalculate(void)
2319 {
2320 /*
2321 * SKL002, SKL012S. Since the EPT format is only used by
2322 * Intel CPUs, the vendor check is merely a formality.
2323 */
2324 if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2325 (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2326 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2327 (CPUID_TO_MODEL(cpu_id) == 0x26 || /* Atoms */
2328 CPUID_TO_MODEL(cpu_id) == 0x27 ||
2329 CPUID_TO_MODEL(cpu_id) == 0x35 ||
2330 CPUID_TO_MODEL(cpu_id) == 0x36 ||
2331 CPUID_TO_MODEL(cpu_id) == 0x37 ||
2332 CPUID_TO_MODEL(cpu_id) == 0x86 ||
2333 CPUID_TO_MODEL(cpu_id) == 0x1c ||
2334 CPUID_TO_MODEL(cpu_id) == 0x4a ||
2335 CPUID_TO_MODEL(cpu_id) == 0x4c ||
2336 CPUID_TO_MODEL(cpu_id) == 0x4d ||
2337 CPUID_TO_MODEL(cpu_id) == 0x5a ||
2338 CPUID_TO_MODEL(cpu_id) == 0x5c ||
2339 CPUID_TO_MODEL(cpu_id) == 0x5d ||
2340 CPUID_TO_MODEL(cpu_id) == 0x5f ||
2341 CPUID_TO_MODEL(cpu_id) == 0x6e ||
2342 CPUID_TO_MODEL(cpu_id) == 0x7a ||
2343 CPUID_TO_MODEL(cpu_id) == 0x57 || /* Knights */
2344 CPUID_TO_MODEL(cpu_id) == 0x85))))
2345 pmap_allow_2m_x_ept = 1;
2346 #ifndef BURN_BRIDGES
2347 TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2348 #endif
2349 TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2350 }
2351
2352 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2353 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2354 {
2355
2356 return (pmap->pm_type != PT_EPT || !executable ||
2357 !pmap_allow_2m_x_ept);
2358 }
2359
2360 #ifdef NUMA
2361 static void
pmap_init_pv_table(void)2362 pmap_init_pv_table(void)
2363 {
2364 struct pmap_large_md_page *pvd;
2365 vm_size_t s;
2366 long start, end, highest, pv_npg;
2367 int domain, i, j, pages;
2368
2369 /*
2370 * For correctness we depend on the size being evenly divisible into a
2371 * page. As a tradeoff between performance and total memory use, the
2372 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2373 * avoids false-sharing, but not being 128 bytes potentially allows for
2374 * avoidable traffic due to adjacent cacheline prefetcher.
2375 *
2376 * Assert the size so that accidental changes fail to compile.
2377 */
2378 CTASSERT((sizeof(*pvd) == 64));
2379
2380 /*
2381 * Calculate the size of the array.
2382 */
2383 pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2384 pv_npg = howmany(pmap_last_pa, NBPDR);
2385 s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2386 s = round_page(s);
2387 pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2388 if (pv_table == NULL)
2389 panic("%s: kva_alloc failed\n", __func__);
2390
2391 /*
2392 * Iterate physical segments to allocate space for respective pages.
2393 */
2394 highest = -1;
2395 s = 0;
2396 for (i = 0; i < vm_phys_nsegs; i++) {
2397 end = vm_phys_segs[i].end / NBPDR;
2398 domain = vm_phys_segs[i].domain;
2399
2400 if (highest >= end)
2401 continue;
2402
2403 start = highest + 1;
2404 pvd = &pv_table[start];
2405
2406 pages = end - start + 1;
2407 s = round_page(pages * sizeof(*pvd));
2408 highest = start + (s / sizeof(*pvd)) - 1;
2409
2410 for (j = 0; j < s; j += PAGE_SIZE) {
2411 vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2412 if (m == NULL)
2413 panic("failed to allocate PV table page");
2414 pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2415 }
2416
2417 for (j = 0; j < s / sizeof(*pvd); j++) {
2418 rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2419 TAILQ_INIT(&pvd->pv_page.pv_list);
2420 pvd->pv_page.pv_gen = 0;
2421 pvd->pv_page.pat_mode = 0;
2422 pvd->pv_invl_gen = 0;
2423 pvd++;
2424 }
2425 }
2426 pvd = &pv_dummy_large;
2427 rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2428 TAILQ_INIT(&pvd->pv_page.pv_list);
2429 pvd->pv_page.pv_gen = 0;
2430 pvd->pv_page.pat_mode = 0;
2431 pvd->pv_invl_gen = 0;
2432 }
2433 #else
2434 static void
pmap_init_pv_table(void)2435 pmap_init_pv_table(void)
2436 {
2437 vm_size_t s;
2438 long i, pv_npg;
2439
2440 /*
2441 * Initialize the pool of pv list locks.
2442 */
2443 for (i = 0; i < NPV_LIST_LOCKS; i++)
2444 rw_init(&pv_list_locks[i], "pmap pv list");
2445
2446 /*
2447 * Calculate the size of the pv head table for superpages.
2448 */
2449 pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2450
2451 /*
2452 * Allocate memory for the pv head table for superpages.
2453 */
2454 s = (vm_size_t)pv_npg * sizeof(struct md_page);
2455 s = round_page(s);
2456 pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2457 for (i = 0; i < pv_npg; i++)
2458 TAILQ_INIT(&pv_table[i].pv_list);
2459 TAILQ_INIT(&pv_dummy.pv_list);
2460 }
2461 #endif
2462
2463 /*
2464 * Initialize the pmap module.
2465 *
2466 * Called by vm_mem_init(), to initialize any structures that the pmap
2467 * system needs to map virtual memory.
2468 */
2469 void
pmap_init(void)2470 pmap_init(void)
2471 {
2472 struct pmap_preinit_mapping *ppim;
2473 vm_page_t m, mpte;
2474 int error, i, ret, skz63;
2475
2476 /* L1TF, reserve page @0 unconditionally */
2477 vm_page_blacklist_add(0, bootverbose);
2478
2479 /* Detect bare-metal Skylake Server and Skylake-X. */
2480 if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2481 CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2482 /*
2483 * Skylake-X errata SKZ63. Processor May Hang When
2484 * Executing Code In an HLE Transaction Region between
2485 * 40000000H and 403FFFFFH.
2486 *
2487 * Mark the pages in the range as preallocated. It
2488 * seems to be impossible to distinguish between
2489 * Skylake Server and Skylake X.
2490 */
2491 skz63 = 1;
2492 TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2493 if (skz63 != 0) {
2494 if (bootverbose)
2495 printf("SKZ63: skipping 4M RAM starting "
2496 "at physical 1G\n");
2497 for (i = 0; i < atop(0x400000); i++) {
2498 ret = vm_page_blacklist_add(0x40000000 +
2499 ptoa(i), false);
2500 if (!ret && bootverbose)
2501 printf("page at %#lx already used\n",
2502 0x40000000 + ptoa(i));
2503 }
2504 }
2505 }
2506
2507 /* IFU */
2508 pmap_allow_2m_x_ept_recalculate();
2509
2510 /*
2511 * Initialize the vm page array entries for the kernel pmap's
2512 * page table pages.
2513 */
2514 PMAP_LOCK(kernel_pmap);
2515 for (i = 0; i < nkpt; i++) {
2516 mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2517 KASSERT(mpte >= vm_page_array &&
2518 mpte < &vm_page_array[vm_page_array_size],
2519 ("pmap_init: page table page is out of range"));
2520 mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2521 mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2522 mpte->ref_count = 1;
2523
2524 /*
2525 * Collect the page table pages that were replaced by a 2MB
2526 * page in create_pagetables(). They are zero filled.
2527 */
2528 if ((i == 0 ||
2529 kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2530 pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2531 panic("pmap_init: pmap_insert_pt_page failed");
2532 }
2533 PMAP_UNLOCK(kernel_pmap);
2534 vm_wire_add(nkpt);
2535
2536 /*
2537 * If the kernel is running on a virtual machine, then it must assume
2538 * that MCA is enabled by the hypervisor. Moreover, the kernel must
2539 * be prepared for the hypervisor changing the vendor and family that
2540 * are reported by CPUID. Consequently, the workaround for AMD Family
2541 * 10h Erratum 383 is enabled if the processor's feature set does not
2542 * include at least one feature that is only supported by older Intel
2543 * or newer AMD processors.
2544 */
2545 if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2546 (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2547 CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2548 AMDID2_FMA4)) == 0)
2549 workaround_erratum383 = 1;
2550
2551 /*
2552 * Are large page mappings enabled?
2553 */
2554 TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2555 if (pg_ps_enabled) {
2556 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2557 ("pmap_init: can't assign to pagesizes[1]"));
2558 pagesizes[1] = NBPDR;
2559 if ((amd_feature & AMDID_PAGE1GB) != 0) {
2560 KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2561 ("pmap_init: can't assign to pagesizes[2]"));
2562 pagesizes[2] = NBPDP;
2563 }
2564 }
2565
2566 /*
2567 * Initialize pv chunk lists.
2568 */
2569 for (i = 0; i < PMAP_MEMDOM; i++) {
2570 mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2571 TAILQ_INIT(&pv_chunks[i].pvc_list);
2572 }
2573 pmap_init_pv_table();
2574
2575 pmap_initialized = 1;
2576 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2577 ppim = pmap_preinit_mapping + i;
2578 if (ppim->va == 0)
2579 continue;
2580 /* Make the direct map consistent */
2581 if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2582 (void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2583 ppim->sz, ppim->mode);
2584 }
2585 if (!bootverbose)
2586 continue;
2587 printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2588 ppim->pa, ppim->va, ppim->sz, ppim->mode);
2589 }
2590
2591 mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2592 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2593 (vmem_addr_t *)&qframe);
2594 if (error != 0)
2595 panic("qframe allocation failed");
2596
2597 lm_ents = 8;
2598 TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2599 if (lm_ents > LMEPML4I - LMSPML4I + 1)
2600 lm_ents = LMEPML4I - LMSPML4I + 1;
2601 #ifdef KMSAN
2602 if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2603 printf(
2604 "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2605 lm_ents, KMSANORIGPML4I - LMSPML4I);
2606 lm_ents = KMSANORIGPML4I - LMSPML4I;
2607 }
2608 #endif
2609 if (bootverbose)
2610 printf("pmap: large map %u PML4 slots (%lu GB)\n",
2611 lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2612 if (lm_ents != 0) {
2613 large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2614 (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2615 if (large_vmem == NULL) {
2616 printf("pmap: cannot create large map\n");
2617 lm_ents = 0;
2618 }
2619 for (i = 0; i < lm_ents; i++) {
2620 m = pmap_large_map_getptp_unlocked();
2621 /* XXXKIB la57 */
2622 kernel_pml4[LMSPML4I + i] = X86_PG_V |
2623 X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2624 VM_PAGE_TO_PHYS(m);
2625 }
2626 }
2627 }
2628
2629 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2630 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2631 "Maximum number of PML4 entries for use by large map (tunable). "
2632 "Each entry corresponds to 512GB of address space.");
2633
2634 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2635 "2MB page mapping counters");
2636
2637 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2638 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2639 CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2640
2641 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2642 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2643 &pmap_pde_mappings, "2MB page mappings");
2644
2645 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2646 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2647 &pmap_pde_p_failures, "2MB page promotion failures");
2648
2649 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2650 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2651 &pmap_pde_promotions, "2MB page promotions");
2652
2653 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2654 "1GB page mapping counters");
2655
2656 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2657 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2658 &pmap_pdpe_demotions, "1GB page demotions");
2659
2660 /***************************************************
2661 * Low level helper routines.....
2662 ***************************************************/
2663
2664 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2665 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2666 {
2667 int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2668
2669 switch (pmap->pm_type) {
2670 case PT_X86:
2671 case PT_RVI:
2672 /* Verify that both PAT bits are not set at the same time */
2673 KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2674 ("Invalid PAT bits in entry %#lx", entry));
2675
2676 /* Swap the PAT bits if one of them is set */
2677 if ((entry & x86_pat_bits) != 0)
2678 entry ^= x86_pat_bits;
2679 break;
2680 case PT_EPT:
2681 /*
2682 * Nothing to do - the memory attributes are represented
2683 * the same way for regular pages and superpages.
2684 */
2685 break;
2686 default:
2687 panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2688 }
2689
2690 return (entry);
2691 }
2692
2693 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2694 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2695 {
2696
2697 return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2698 pat_index[(int)mode] >= 0);
2699 }
2700
2701 /*
2702 * Determine the appropriate bits to set in a PTE or PDE for a specified
2703 * caching mode.
2704 */
2705 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2706 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2707 {
2708 int cache_bits, pat_flag, pat_idx;
2709
2710 if (!pmap_is_valid_memattr(pmap, mode))
2711 panic("Unknown caching mode %d\n", mode);
2712
2713 switch (pmap->pm_type) {
2714 case PT_X86:
2715 case PT_RVI:
2716 /* The PAT bit is different for PTE's and PDE's. */
2717 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2718
2719 /* Map the caching mode to a PAT index. */
2720 pat_idx = pat_index[mode];
2721
2722 /* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2723 cache_bits = 0;
2724 if (pat_idx & 0x4)
2725 cache_bits |= pat_flag;
2726 if (pat_idx & 0x2)
2727 cache_bits |= PG_NC_PCD;
2728 if (pat_idx & 0x1)
2729 cache_bits |= PG_NC_PWT;
2730 break;
2731
2732 case PT_EPT:
2733 cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2734 break;
2735
2736 default:
2737 panic("unsupported pmap type %d", pmap->pm_type);
2738 }
2739
2740 return (cache_bits);
2741 }
2742
2743 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2744 pmap_cache_mask(pmap_t pmap, bool is_pde)
2745 {
2746 int mask;
2747
2748 switch (pmap->pm_type) {
2749 case PT_X86:
2750 case PT_RVI:
2751 mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2752 break;
2753 case PT_EPT:
2754 mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2755 break;
2756 default:
2757 panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2758 }
2759
2760 return (mask);
2761 }
2762
2763 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2764 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2765 {
2766 int pat_flag, pat_idx;
2767
2768 pat_idx = 0;
2769 switch (pmap->pm_type) {
2770 case PT_X86:
2771 case PT_RVI:
2772 /* The PAT bit is different for PTE's and PDE's. */
2773 pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2774
2775 if ((pte & pat_flag) != 0)
2776 pat_idx |= 0x4;
2777 if ((pte & PG_NC_PCD) != 0)
2778 pat_idx |= 0x2;
2779 if ((pte & PG_NC_PWT) != 0)
2780 pat_idx |= 0x1;
2781 break;
2782 case PT_EPT:
2783 if ((pte & EPT_PG_IGNORE_PAT) != 0)
2784 panic("EPT PTE %#lx has no PAT memory type", pte);
2785 pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2786 break;
2787 }
2788
2789 /* See pmap_init_pat(). */
2790 if (pat_idx == 4)
2791 pat_idx = 0;
2792 if (pat_idx == 7)
2793 pat_idx = 3;
2794
2795 return (pat_idx);
2796 }
2797
2798 bool
pmap_ps_enabled(pmap_t pmap)2799 pmap_ps_enabled(pmap_t pmap)
2800 {
2801
2802 return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2803 }
2804
2805 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2806 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2807 {
2808
2809 switch (pmap->pm_type) {
2810 case PT_X86:
2811 break;
2812 case PT_RVI:
2813 case PT_EPT:
2814 /*
2815 * XXX
2816 * This is a little bogus since the generation number is
2817 * supposed to be bumped up when a region of the address
2818 * space is invalidated in the page tables.
2819 *
2820 * In this case the old PDE entry is valid but yet we want
2821 * to make sure that any mappings using the old entry are
2822 * invalidated in the TLB.
2823 *
2824 * The reason this works as expected is because we rendezvous
2825 * "all" host cpus and force any vcpu context to exit as a
2826 * side-effect.
2827 */
2828 atomic_add_long(&pmap->pm_eptgen, 1);
2829 break;
2830 default:
2831 panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2832 }
2833 pde_store(pde, newpde);
2834 }
2835
2836 /*
2837 * After changing the page size for the specified virtual address in the page
2838 * table, flush the corresponding entries from the processor's TLB. Only the
2839 * calling processor's TLB is affected.
2840 *
2841 * The calling thread must be pinned to a processor.
2842 */
2843 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2844 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2845 {
2846 pt_entry_t PG_G;
2847
2848 if (pmap_type_guest(pmap))
2849 return;
2850
2851 KASSERT(pmap->pm_type == PT_X86,
2852 ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2853
2854 PG_G = pmap_global_bit(pmap);
2855
2856 if ((newpde & PG_PS) == 0)
2857 /* Demotion: flush a specific 2MB page mapping. */
2858 pmap_invlpg(pmap, va);
2859 else if ((newpde & PG_G) == 0)
2860 /*
2861 * Promotion: flush every 4KB page mapping from the TLB
2862 * because there are too many to flush individually.
2863 */
2864 invltlb();
2865 else {
2866 /*
2867 * Promotion: flush every 4KB page mapping from the TLB,
2868 * including any global (PG_G) mappings.
2869 */
2870 invltlb_glob();
2871 }
2872 }
2873
2874 /*
2875 * The amd64 pmap uses different approaches to TLB invalidation
2876 * depending on the kernel configuration, available hardware features,
2877 * and known hardware errata. The kernel configuration option that
2878 * has the greatest operational impact on TLB invalidation is PTI,
2879 * which is enabled automatically on affected Intel CPUs. The most
2880 * impactful hardware features are first PCID, and then INVPCID
2881 * instruction presence. PCID usage is quite different for PTI
2882 * vs. non-PTI.
2883 *
2884 * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2885 * the Meltdown bug in some Intel CPUs. Under PTI, each user address
2886 * space is served by two page tables, user and kernel. The user
2887 * page table only maps user space and a kernel trampoline. The
2888 * kernel trampoline includes the entirety of the kernel text but
2889 * only the kernel data that is needed to switch from user to kernel
2890 * mode. The kernel page table maps the user and kernel address
2891 * spaces in their entirety. It is identical to the per-process
2892 * page table used in non-PTI mode.
2893 *
2894 * User page tables are only used when the CPU is in user mode.
2895 * Consequently, some TLB invalidations can be postponed until the
2896 * switch from kernel to user mode. In contrast, the user
2897 * space part of the kernel page table is used for copyout(9), so
2898 * TLB invalidations on this page table cannot be similarly postponed.
2899 *
2900 * The existence of a user mode page table for the given pmap is
2901 * indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2902 * which case pm_ucr3 contains the %cr3 register value for the user
2903 * mode page table's root.
2904 *
2905 * * The pm_active bitmask indicates which CPUs currently have the
2906 * pmap active. A CPU's bit is set on context switch to the pmap, and
2907 * cleared on switching off this CPU. For the kernel page table,
2908 * the pm_active field is immutable and contains all CPUs. The
2909 * kernel page table is always logically active on every processor,
2910 * but not necessarily in use by the hardware, e.g., in PTI mode.
2911 *
2912 * When requesting invalidation of virtual addresses with
2913 * pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2914 * all CPUs recorded as active in pm_active. Updates to and reads
2915 * from pm_active are not synchronized, and so they may race with
2916 * each other. Shootdown handlers are prepared to handle the race.
2917 *
2918 * * PCID is an optional feature of the long mode x86 MMU where TLB
2919 * entries are tagged with the 'Process ID' of the address space
2920 * they belong to. This feature provides a limited namespace for
2921 * process identifiers, 12 bits, supporting 4095 simultaneous IDs
2922 * total.
2923 *
2924 * Allocation of a PCID to a pmap is done by an algorithm described
2925 * in section 15.12, "Other TLB Consistency Algorithms", of
2926 * Vahalia's book "Unix Internals". A PCID cannot be allocated for
2927 * the whole lifetime of a pmap in pmap_pinit() due to the limited
2928 * namespace. Instead, a per-CPU, per-pmap PCID is assigned when
2929 * the CPU is about to start caching TLB entries from a pmap,
2930 * i.e., on the context switch that activates the pmap on the CPU.
2931 *
2932 * The PCID allocator maintains a per-CPU, per-pmap generation
2933 * count, pm_gen, which is incremented each time a new PCID is
2934 * allocated. On TLB invalidation, the generation counters for the
2935 * pmap are zeroed, which signals the context switch code that the
2936 * previously allocated PCID is no longer valid. Effectively,
2937 * zeroing any of these counters triggers a TLB shootdown for the
2938 * given CPU/address space, due to the allocation of a new PCID.
2939 *
2940 * Zeroing can be performed remotely. Consequently, if a pmap is
2941 * inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2942 * be initiated by an ordinary memory access to reset the target
2943 * CPU's generation count within the pmap. The CPU initiating the
2944 * TLB shootdown does not need to send an IPI to the target CPU.
2945 *
2946 * * PTI + PCID. The available PCIDs are divided into two sets: PCIDs
2947 * for complete (kernel) page tables, and PCIDs for user mode page
2948 * tables. A user PCID value is obtained from the kernel PCID value
2949 * by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2950 *
2951 * User space page tables are activated on return to user mode, by
2952 * loading pm_ucr3 into %cr3. If the PCPU(ucr3_load_mask) requests
2953 * clearing bit 63 of the loaded ucr3, this effectively causes
2954 * complete invalidation of the user mode TLB entries for the
2955 * current pmap. In which case, local invalidations of individual
2956 * pages in the user page table are skipped.
2957 *
2958 * * Local invalidation, all modes. If the requested invalidation is
2959 * for a specific address or the total invalidation of a currently
2960 * active pmap, then the TLB is flushed using INVLPG for a kernel
2961 * page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2962 * user space page table(s).
2963 *
2964 * If the INVPCID instruction is available, it is used to flush user
2965 * entries from the kernel page table.
2966 *
2967 * When PCID is enabled, the INVLPG instruction invalidates all TLB
2968 * entries for the given page that either match the current PCID or
2969 * are global. Since TLB entries for the same page under different
2970 * PCIDs are unaffected, kernel pages which reside in all address
2971 * spaces could be problematic. We avoid the problem by creating
2972 * all kernel PTEs with the global flag (PG_G) set, when PTI is
2973 * disabled.
2974 *
2975 * * mode: PTI disabled, PCID present. The kernel reserves PCID 0 for its
2976 * address space, all other 4095 PCIDs are used for user mode spaces
2977 * as described above. A context switch allocates a new PCID if
2978 * the recorded PCID is zero or the recorded generation does not match
2979 * the CPU's generation, effectively flushing the TLB for this address space.
2980 * Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2981 * local user page: INVLPG
2982 * local kernel page: INVLPG
2983 * local user total: INVPCID(CTX)
2984 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2985 * remote user page, inactive pmap: zero pm_gen
2986 * remote user page, active pmap: zero pm_gen + IPI:INVLPG
2987 * (Both actions are required to handle the aforementioned pm_active races.)
2988 * remote kernel page: IPI:INVLPG
2989 * remote user total, inactive pmap: zero pm_gen
2990 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2991 * reload %cr3)
2992 * (See note above about pm_active races.)
2993 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2994 *
2995 * PTI enabled, PCID present.
2996 * local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2997 * for upt
2998 * local kernel page: INVLPG
2999 * local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
3000 * on loading UCR3 into %cr3 for upt
3001 * local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
3002 * remote user page, inactive pmap: zero pm_gen
3003 * remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
3004 * INVPCID(ADDR) for upt)
3005 * remote kernel page: IPI:INVLPG
3006 * remote user total, inactive pmap: zero pm_gen
3007 * remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
3008 * clear PCID_SAVE on loading UCR3 into $cr3 for upt)
3009 * remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
3010 *
3011 * No PCID.
3012 * local user page: INVLPG
3013 * local kernel page: INVLPG
3014 * local user total: reload %cr3
3015 * local kernel total: invltlb_glob()
3016 * remote user page, inactive pmap: -
3017 * remote user page, active pmap: IPI:INVLPG
3018 * remote kernel page: IPI:INVLPG
3019 * remote user total, inactive pmap: -
3020 * remote user total, active pmap: IPI:(reload %cr3)
3021 * remote kernel total: IPI:invltlb_glob()
3022 * Since on return to user mode, the reload of %cr3 with ucr3 causes
3023 * TLB invalidation, no specific action is required for user page table.
3024 *
3025 * EPT. EPT pmaps do not map KVA, all mappings are userspace.
3026 * XXX TODO
3027 */
3028
3029 #ifdef SMP
3030 /*
3031 * Interrupt the cpus that are executing in the guest context.
3032 * This will force the vcpu to exit and the cached EPT mappings
3033 * will be invalidated by the host before the next vmresume.
3034 */
3035 static __inline void
pmap_invalidate_ept(pmap_t pmap)3036 pmap_invalidate_ept(pmap_t pmap)
3037 {
3038 smr_seq_t goal;
3039 int ipinum;
3040
3041 sched_pin();
3042 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3043 ("pmap_invalidate_ept: absurd pm_active"));
3044
3045 /*
3046 * The TLB mappings associated with a vcpu context are not
3047 * flushed each time a different vcpu is chosen to execute.
3048 *
3049 * This is in contrast with a process's vtop mappings that
3050 * are flushed from the TLB on each context switch.
3051 *
3052 * Therefore we need to do more than just a TLB shootdown on
3053 * the active cpus in 'pmap->pm_active'. To do this we keep
3054 * track of the number of invalidations performed on this pmap.
3055 *
3056 * Each vcpu keeps a cache of this counter and compares it
3057 * just before a vmresume. If the counter is out-of-date an
3058 * invept will be done to flush stale mappings from the TLB.
3059 *
3060 * To ensure that all vCPU threads have observed the new counter
3061 * value before returning, we use SMR. Ordering is important here:
3062 * the VMM enters an SMR read section before loading the counter
3063 * and after updating the pm_active bit set. Thus, pm_active is
3064 * a superset of active readers, and any reader that has observed
3065 * the goal has observed the new counter value.
3066 */
3067 atomic_add_long(&pmap->pm_eptgen, 1);
3068
3069 goal = smr_advance(pmap->pm_eptsmr);
3070
3071 /*
3072 * Force the vcpu to exit and trap back into the hypervisor.
3073 */
3074 ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3075 ipi_selected(pmap->pm_active, ipinum);
3076 sched_unpin();
3077
3078 /*
3079 * Ensure that all active vCPUs will observe the new generation counter
3080 * value before executing any more guest instructions.
3081 */
3082 smr_wait(pmap->pm_eptsmr, goal);
3083 }
3084
3085 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3086 pmap_invalidate_preipi_pcid(pmap_t pmap)
3087 {
3088 struct pmap_pcid *pcidp;
3089 u_int cpuid, i;
3090
3091 sched_pin();
3092
3093 cpuid = PCPU_GET(cpuid);
3094 if (pmap != PCPU_GET(curpmap))
3095 cpuid = 0xffffffff; /* An impossible value */
3096
3097 CPU_FOREACH(i) {
3098 if (cpuid != i) {
3099 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3100 pcidp->pm_gen = 0;
3101 }
3102 }
3103
3104 /*
3105 * The fence is between stores to pm_gen and the read of the
3106 * pm_active mask. We need to ensure that it is impossible
3107 * for us to miss the bit update in pm_active and
3108 * simultaneously observe a non-zero pm_gen in
3109 * pmap_activate_sw(), otherwise TLB update is missed.
3110 * Without the fence, IA32 allows such an outcome. Note that
3111 * pm_active is updated by a locked operation, which provides
3112 * the reciprocal fence.
3113 */
3114 atomic_thread_fence_seq_cst();
3115 }
3116
3117 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3118 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3119 {
3120 sched_pin();
3121 }
3122
3123 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3124 {
3125 return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3126 pmap_invalidate_preipi_nopcid);
3127 }
3128
3129 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3130 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3131 const bool invpcid_works1)
3132 {
3133 struct invpcid_descr d;
3134 uint64_t kcr3, ucr3;
3135 uint32_t pcid;
3136
3137 /*
3138 * Because pm_pcid is recalculated on a context switch, we
3139 * must ensure there is no preemption, not just pinning.
3140 * Otherwise, we might use a stale value below.
3141 */
3142 CRITICAL_ASSERT(curthread);
3143
3144 /*
3145 * No need to do anything with user page tables invalidation
3146 * if there is no user page table, or invalidation is deferred
3147 * until the return to userspace. ucr3_load_mask is stable
3148 * because we have preemption disabled.
3149 */
3150 if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3151 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3152 return;
3153
3154 pcid = pmap_get_pcid(pmap);
3155 if (invpcid_works1) {
3156 d.pcid = pcid | PMAP_PCID_USER_PT;
3157 d.pad = 0;
3158 d.addr = va;
3159 invpcid(&d, INVPCID_ADDR);
3160 } else {
3161 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3162 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3163 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3164 }
3165 }
3166
3167 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3168 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3169 {
3170 pmap_invalidate_page_pcid_cb(pmap, va, true);
3171 }
3172
3173 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3174 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3175 {
3176 pmap_invalidate_page_pcid_cb(pmap, va, false);
3177 }
3178
3179 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3180 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3181 {
3182 }
3183
3184 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3185 {
3186 if (pmap_pcid_enabled)
3187 return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3188 pmap_invalidate_page_pcid_noinvpcid_cb);
3189 return (pmap_invalidate_page_nopcid_cb);
3190 }
3191
3192 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3193 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3194 vm_offset_t addr2 __unused)
3195 {
3196 if (pmap == kernel_pmap) {
3197 pmap_invlpg(kernel_pmap, va);
3198 } else if (pmap == PCPU_GET(curpmap)) {
3199 invlpg(va);
3200 pmap_invalidate_page_cb(pmap, va);
3201 }
3202 }
3203
3204 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3205 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3206 {
3207 if (pmap_type_guest(pmap)) {
3208 pmap_invalidate_ept(pmap);
3209 return;
3210 }
3211
3212 KASSERT(pmap->pm_type == PT_X86,
3213 ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3214
3215 pmap_invalidate_preipi(pmap);
3216 smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3217 }
3218
3219 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3220 #define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
3221
3222 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3223 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3224 const bool invpcid_works1)
3225 {
3226 struct invpcid_descr d;
3227 uint64_t kcr3, ucr3;
3228 uint32_t pcid;
3229
3230 CRITICAL_ASSERT(curthread);
3231
3232 if (pmap != PCPU_GET(curpmap) ||
3233 pmap->pm_ucr3 == PMAP_NO_CR3 ||
3234 PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3235 return;
3236
3237 pcid = pmap_get_pcid(pmap);
3238 if (invpcid_works1) {
3239 d.pcid = pcid | PMAP_PCID_USER_PT;
3240 d.pad = 0;
3241 for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3242 invpcid(&d, INVPCID_ADDR);
3243 } else {
3244 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3245 ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3246 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3247 }
3248 }
3249
3250 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3251 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3252 vm_offset_t eva)
3253 {
3254 pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3255 }
3256
3257 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3258 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3259 vm_offset_t eva)
3260 {
3261 pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3262 }
3263
3264 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3265 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3266 vm_offset_t eva __unused)
3267 {
3268 }
3269
3270 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3271 vm_offset_t))
3272 {
3273 if (pmap_pcid_enabled)
3274 return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3275 pmap_invalidate_range_pcid_noinvpcid_cb);
3276 return (pmap_invalidate_range_nopcid_cb);
3277 }
3278
3279 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3280 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3281 {
3282 vm_offset_t addr;
3283
3284 if (pmap == kernel_pmap) {
3285 if (PCPU_GET(pcid_invlpg_workaround)) {
3286 struct invpcid_descr d = { 0 };
3287
3288 invpcid(&d, INVPCID_CTXGLOB);
3289 } else {
3290 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3291 invlpg(addr);
3292 }
3293 } else if (pmap == PCPU_GET(curpmap)) {
3294 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3295 invlpg(addr);
3296 pmap_invalidate_range_cb(pmap, sva, eva);
3297 }
3298 }
3299
3300 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3301 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3302 {
3303 if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3304 pmap_invalidate_all(pmap);
3305 return;
3306 }
3307
3308 if (pmap_type_guest(pmap)) {
3309 pmap_invalidate_ept(pmap);
3310 return;
3311 }
3312
3313 KASSERT(pmap->pm_type == PT_X86,
3314 ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3315
3316 pmap_invalidate_preipi(pmap);
3317 smp_masked_invlpg_range(sva, eva, pmap,
3318 pmap_invalidate_range_curcpu_cb);
3319 }
3320
3321 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3322 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3323 {
3324 struct invpcid_descr d;
3325 uint64_t kcr3;
3326 uint32_t pcid;
3327
3328 if (pmap == kernel_pmap) {
3329 if (invpcid_works1) {
3330 bzero(&d, sizeof(d));
3331 invpcid(&d, INVPCID_CTXGLOB);
3332 } else {
3333 invltlb_glob();
3334 }
3335 } else if (pmap == PCPU_GET(curpmap)) {
3336 CRITICAL_ASSERT(curthread);
3337
3338 pcid = pmap_get_pcid(pmap);
3339 if (invpcid_works1) {
3340 d.pcid = pcid;
3341 d.pad = 0;
3342 d.addr = 0;
3343 invpcid(&d, INVPCID_CTX);
3344 } else {
3345 kcr3 = pmap->pm_cr3 | pcid;
3346 load_cr3(kcr3);
3347 }
3348 if (pmap->pm_ucr3 != PMAP_NO_CR3)
3349 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3350 }
3351 }
3352
3353 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3354 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3355 {
3356 pmap_invalidate_all_pcid_cb(pmap, true);
3357 }
3358
3359 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3360 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3361 {
3362 pmap_invalidate_all_pcid_cb(pmap, false);
3363 }
3364
3365 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3366 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3367 {
3368 if (pmap == kernel_pmap)
3369 invltlb_glob();
3370 else if (pmap == PCPU_GET(curpmap))
3371 invltlb();
3372 }
3373
3374 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3375 {
3376 if (pmap_pcid_enabled)
3377 return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3378 pmap_invalidate_all_pcid_noinvpcid_cb);
3379 return (pmap_invalidate_all_nopcid_cb);
3380 }
3381
3382 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3383 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3384 vm_offset_t addr2 __unused)
3385 {
3386 pmap_invalidate_all_cb(pmap);
3387 }
3388
3389 void
pmap_invalidate_all(pmap_t pmap)3390 pmap_invalidate_all(pmap_t pmap)
3391 {
3392 if (pmap_type_guest(pmap)) {
3393 pmap_invalidate_ept(pmap);
3394 return;
3395 }
3396
3397 KASSERT(pmap->pm_type == PT_X86,
3398 ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3399
3400 pmap_invalidate_preipi(pmap);
3401 smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3402 }
3403
3404 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3405 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3406 vm_offset_t addr2 __unused)
3407 {
3408 wbinvd();
3409 }
3410
3411 void
pmap_invalidate_cache(void)3412 pmap_invalidate_cache(void)
3413 {
3414 sched_pin();
3415 smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3416 }
3417
3418 struct pde_action {
3419 cpuset_t invalidate; /* processors that invalidate their TLB */
3420 pmap_t pmap;
3421 vm_offset_t va;
3422 pd_entry_t *pde;
3423 pd_entry_t newpde;
3424 u_int store; /* processor that updates the PDE */
3425 };
3426
3427 static void
pmap_update_pde_action(void * arg)3428 pmap_update_pde_action(void *arg)
3429 {
3430 struct pde_action *act = arg;
3431
3432 if (act->store == PCPU_GET(cpuid))
3433 pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3434 }
3435
3436 static void
pmap_update_pde_teardown(void * arg)3437 pmap_update_pde_teardown(void *arg)
3438 {
3439 struct pde_action *act = arg;
3440
3441 if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3442 pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3443 }
3444
3445 /*
3446 * Change the page size for the specified virtual address in a way that
3447 * prevents any possibility of the TLB ever having two entries that map the
3448 * same virtual address using different page sizes. This is the recommended
3449 * workaround for Erratum 383 on AMD Family 10h processors. It prevents a
3450 * machine check exception for a TLB state that is improperly diagnosed as a
3451 * hardware error.
3452 */
3453 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3454 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3455 {
3456 struct pde_action act;
3457 cpuset_t active, other_cpus;
3458 u_int cpuid;
3459
3460 sched_pin();
3461 cpuid = PCPU_GET(cpuid);
3462 other_cpus = all_cpus;
3463 CPU_CLR(cpuid, &other_cpus);
3464 if (pmap == kernel_pmap || pmap_type_guest(pmap))
3465 active = all_cpus;
3466 else {
3467 active = pmap->pm_active;
3468 }
3469 if (CPU_OVERLAP(&active, &other_cpus)) {
3470 act.store = cpuid;
3471 act.invalidate = active;
3472 act.va = va;
3473 act.pmap = pmap;
3474 act.pde = pde;
3475 act.newpde = newpde;
3476 CPU_SET(cpuid, &active);
3477 smp_rendezvous_cpus(active,
3478 smp_no_rendezvous_barrier, pmap_update_pde_action,
3479 pmap_update_pde_teardown, &act);
3480 } else {
3481 pmap_update_pde_store(pmap, pde, newpde);
3482 if (CPU_ISSET(cpuid, &active))
3483 pmap_update_pde_invalidate(pmap, va, newpde);
3484 }
3485 sched_unpin();
3486 }
3487 #else /* !SMP */
3488 /*
3489 * Normal, non-SMP, invalidation functions.
3490 */
3491 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3492 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3493 {
3494 struct invpcid_descr d;
3495 struct pmap_pcid *pcidp;
3496 uint64_t kcr3, ucr3;
3497 uint32_t pcid;
3498
3499 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3500 pmap->pm_eptgen++;
3501 return;
3502 }
3503 KASSERT(pmap->pm_type == PT_X86,
3504 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3505
3506 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3507 invlpg(va);
3508 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3509 pmap->pm_ucr3 != PMAP_NO_CR3) {
3510 critical_enter();
3511 pcid = pmap_get_pcid(pmap);
3512 if (invpcid_works) {
3513 d.pcid = pcid | PMAP_PCID_USER_PT;
3514 d.pad = 0;
3515 d.addr = va;
3516 invpcid(&d, INVPCID_ADDR);
3517 } else {
3518 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3519 ucr3 = pmap->pm_ucr3 | pcid |
3520 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3521 pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3522 }
3523 critical_exit();
3524 }
3525 } else if (pmap_pcid_enabled) {
3526 pcidp = zpcpu_get(pmap->pm_pcidp);
3527 pcidp->pm_gen = 0;
3528 }
3529 }
3530
3531 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3532 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3533 {
3534 struct invpcid_descr d;
3535 struct pmap_pcid *pcidp;
3536 vm_offset_t addr;
3537 uint64_t kcr3, ucr3;
3538 uint32_t pcid;
3539
3540 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3541 pmap->pm_eptgen++;
3542 return;
3543 }
3544 KASSERT(pmap->pm_type == PT_X86,
3545 ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3546
3547 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3548 for (addr = sva; addr < eva; addr += PAGE_SIZE)
3549 invlpg(addr);
3550 if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3551 pmap->pm_ucr3 != PMAP_NO_CR3) {
3552 critical_enter();
3553 pcid = pmap_get_pcid(pmap);
3554 if (invpcid_works) {
3555 d.pcid = pcid | PMAP_PCID_USER_PT;
3556 d.pad = 0;
3557 d.addr = sva;
3558 for (; d.addr < eva; d.addr += PAGE_SIZE)
3559 invpcid(&d, INVPCID_ADDR);
3560 } else {
3561 kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3562 ucr3 = pmap->pm_ucr3 | pcid |
3563 PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3564 pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3565 }
3566 critical_exit();
3567 }
3568 } else if (pmap_pcid_enabled) {
3569 pcidp = zpcpu_get(pmap->pm_pcidp);
3570 pcidp->pm_gen = 0;
3571 }
3572 }
3573
3574 void
pmap_invalidate_all(pmap_t pmap)3575 pmap_invalidate_all(pmap_t pmap)
3576 {
3577 struct invpcid_descr d;
3578 struct pmap_pcid *pcidp;
3579 uint64_t kcr3, ucr3;
3580 uint32_t pcid;
3581
3582 if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3583 pmap->pm_eptgen++;
3584 return;
3585 }
3586 KASSERT(pmap->pm_type == PT_X86,
3587 ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3588
3589 if (pmap == kernel_pmap) {
3590 if (pmap_pcid_enabled && invpcid_works) {
3591 bzero(&d, sizeof(d));
3592 invpcid(&d, INVPCID_CTXGLOB);
3593 } else {
3594 invltlb_glob();
3595 }
3596 } else if (pmap == PCPU_GET(curpmap)) {
3597 if (pmap_pcid_enabled) {
3598 critical_enter();
3599 pcid = pmap_get_pcid(pmap);
3600 if (invpcid_works) {
3601 d.pcid = pcid;
3602 d.pad = 0;
3603 d.addr = 0;
3604 invpcid(&d, INVPCID_CTX);
3605 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3606 d.pcid |= PMAP_PCID_USER_PT;
3607 invpcid(&d, INVPCID_CTX);
3608 }
3609 } else {
3610 kcr3 = pmap->pm_cr3 | pcid;
3611 if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3612 ucr3 = pmap->pm_ucr3 | pcid |
3613 PMAP_PCID_USER_PT;
3614 pmap_pti_pcid_invalidate(ucr3, kcr3);
3615 } else
3616 load_cr3(kcr3);
3617 }
3618 critical_exit();
3619 } else {
3620 invltlb();
3621 }
3622 } else if (pmap_pcid_enabled) {
3623 pcidp = zpcpu_get(pmap->pm_pcidp);
3624 pcidp->pm_gen = 0;
3625 }
3626 }
3627
3628 void
pmap_invalidate_cache(void)3629 pmap_invalidate_cache(void)
3630 {
3631
3632 wbinvd();
3633 }
3634
3635 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3636 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3637 {
3638 struct pmap_pcid *pcidp;
3639
3640 pmap_update_pde_store(pmap, pde, newpde);
3641 if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3642 pmap_update_pde_invalidate(pmap, va, newpde);
3643 else {
3644 pcidp = zpcpu_get(pmap->pm_pcidp);
3645 pcidp->pm_gen = 0;
3646 }
3647 }
3648 #endif /* !SMP */
3649
3650 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3651 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3652 {
3653
3654 /*
3655 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3656 * by a promotion that did not invalidate the 512 4KB page mappings
3657 * that might exist in the TLB. Consequently, at this point, the TLB
3658 * may hold both 4KB and 2MB page mappings for the address range [va,
3659 * va + NBPDR). Therefore, the entire range must be invalidated here.
3660 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3661 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3662 * single INVLPG suffices to invalidate the 2MB page mapping from the
3663 * TLB.
3664 */
3665 if ((pde & PG_PROMOTED) != 0)
3666 pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3667 else
3668 pmap_invalidate_page(pmap, va);
3669 }
3670
3671 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3672 (vm_offset_t sva, vm_offset_t eva))
3673 {
3674
3675 if ((cpu_feature & CPUID_SS) != 0)
3676 return (pmap_invalidate_cache_range_selfsnoop);
3677 if ((cpu_feature & CPUID_CLFSH) != 0)
3678 return (pmap_force_invalidate_cache_range);
3679 return (pmap_invalidate_cache_range_all);
3680 }
3681
3682 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
3683
3684 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3685 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3686 {
3687
3688 KASSERT((sva & PAGE_MASK) == 0,
3689 ("pmap_invalidate_cache_range: sva not page-aligned"));
3690 KASSERT((eva & PAGE_MASK) == 0,
3691 ("pmap_invalidate_cache_range: eva not page-aligned"));
3692 }
3693
3694 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3695 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3696 {
3697
3698 pmap_invalidate_cache_range_check_align(sva, eva);
3699 }
3700
3701 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3702 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3703 {
3704
3705 sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3706
3707 /*
3708 * XXX: Some CPUs fault, hang, or trash the local APIC
3709 * registers if we use CLFLUSH on the local APIC range. The
3710 * local APIC is always uncached, so we don't need to flush
3711 * for that range anyway.
3712 */
3713 if (pmap_kextract(sva) == lapic_paddr)
3714 return;
3715
3716 if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3717 /*
3718 * Do per-cache line flush. Use a locked
3719 * instruction to insure that previous stores are
3720 * included in the write-back. The processor
3721 * propagates flush to other processors in the cache
3722 * coherence domain.
3723 */
3724 atomic_thread_fence_seq_cst();
3725 for (; sva < eva; sva += cpu_clflush_line_size)
3726 clflushopt(sva);
3727 atomic_thread_fence_seq_cst();
3728 } else {
3729 /*
3730 * Writes are ordered by CLFLUSH on Intel CPUs.
3731 */
3732 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3733 mfence();
3734 for (; sva < eva; sva += cpu_clflush_line_size)
3735 clflush(sva);
3736 if (cpu_vendor_id != CPU_VENDOR_INTEL)
3737 mfence();
3738 }
3739 }
3740
3741 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3742 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3743 {
3744
3745 pmap_invalidate_cache_range_check_align(sva, eva);
3746 pmap_invalidate_cache();
3747 }
3748
3749 /*
3750 * Remove the specified set of pages from the data and instruction caches.
3751 *
3752 * In contrast to pmap_invalidate_cache_range(), this function does not
3753 * rely on the CPU's self-snoop feature, because it is intended for use
3754 * when moving pages into a different cache domain.
3755 */
3756 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3757 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3758 {
3759 vm_offset_t daddr, eva;
3760 int i;
3761 bool useclflushopt;
3762
3763 useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3764 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3765 ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3766 pmap_invalidate_cache();
3767 else {
3768 if (useclflushopt)
3769 atomic_thread_fence_seq_cst();
3770 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3771 mfence();
3772 for (i = 0; i < count; i++) {
3773 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3774 eva = daddr + PAGE_SIZE;
3775 for (; daddr < eva; daddr += cpu_clflush_line_size) {
3776 if (useclflushopt)
3777 clflushopt(daddr);
3778 else
3779 clflush(daddr);
3780 }
3781 }
3782 if (useclflushopt)
3783 atomic_thread_fence_seq_cst();
3784 else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3785 mfence();
3786 }
3787 }
3788
3789 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3790 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3791 {
3792
3793 pmap_invalidate_cache_range_check_align(sva, eva);
3794
3795 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3796 pmap_force_invalidate_cache_range(sva, eva);
3797 return;
3798 }
3799
3800 /* See comment in pmap_force_invalidate_cache_range(). */
3801 if (pmap_kextract(sva) == lapic_paddr)
3802 return;
3803
3804 atomic_thread_fence_seq_cst();
3805 for (; sva < eva; sva += cpu_clflush_line_size)
3806 clwb(sva);
3807 atomic_thread_fence_seq_cst();
3808 }
3809
3810 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3811 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3812 {
3813 pt_entry_t *pte;
3814 vm_offset_t vaddr;
3815 int error __diagused;
3816 int pte_bits;
3817
3818 KASSERT((spa & PAGE_MASK) == 0,
3819 ("pmap_flush_cache_phys_range: spa not page-aligned"));
3820 KASSERT((epa & PAGE_MASK) == 0,
3821 ("pmap_flush_cache_phys_range: epa not page-aligned"));
3822
3823 if (spa < dmaplimit) {
3824 pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3825 dmaplimit, epa)));
3826 if (dmaplimit >= epa)
3827 return;
3828 spa = dmaplimit;
3829 }
3830
3831 pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3832 X86_PG_V;
3833 error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3834 &vaddr);
3835 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3836 pte = vtopte(vaddr);
3837 for (; spa < epa; spa += PAGE_SIZE) {
3838 sched_pin();
3839 pte_store(pte, spa | pte_bits);
3840 pmap_invlpg(kernel_pmap, vaddr);
3841 /* XXXKIB atomic inside flush_cache_range are excessive */
3842 pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3843 sched_unpin();
3844 }
3845 vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3846 }
3847
3848 /*
3849 * Routine: pmap_extract
3850 * Function:
3851 * Extract the physical page address associated
3852 * with the given map/virtual_address pair.
3853 */
3854 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3855 pmap_extract(pmap_t pmap, vm_offset_t va)
3856 {
3857 pdp_entry_t *pdpe;
3858 pd_entry_t *pde;
3859 pt_entry_t *pte, PG_V;
3860 vm_paddr_t pa;
3861
3862 pa = 0;
3863 PG_V = pmap_valid_bit(pmap);
3864 PMAP_LOCK(pmap);
3865 pdpe = pmap_pdpe(pmap, va);
3866 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3867 if ((*pdpe & PG_PS) != 0)
3868 pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3869 else {
3870 pde = pmap_pdpe_to_pde(pdpe, va);
3871 if ((*pde & PG_V) != 0) {
3872 if ((*pde & PG_PS) != 0) {
3873 pa = (*pde & PG_PS_FRAME) |
3874 (va & PDRMASK);
3875 } else {
3876 pte = pmap_pde_to_pte(pde, va);
3877 pa = (*pte & PG_FRAME) |
3878 (va & PAGE_MASK);
3879 }
3880 }
3881 }
3882 }
3883 PMAP_UNLOCK(pmap);
3884 return (pa);
3885 }
3886
3887 /*
3888 * Routine: pmap_extract_and_hold
3889 * Function:
3890 * Atomically extract and hold the physical page
3891 * with the given pmap and virtual address pair
3892 * if that mapping permits the given protection.
3893 */
3894 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3895 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3896 {
3897 pdp_entry_t pdpe, *pdpep;
3898 pd_entry_t pde, *pdep;
3899 pt_entry_t pte, PG_RW, PG_V;
3900 vm_page_t m;
3901
3902 m = NULL;
3903 PG_RW = pmap_rw_bit(pmap);
3904 PG_V = pmap_valid_bit(pmap);
3905 PMAP_LOCK(pmap);
3906
3907 pdpep = pmap_pdpe(pmap, va);
3908 if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3909 goto out;
3910 if ((pdpe & PG_PS) != 0) {
3911 if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3912 goto out;
3913 m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3914 goto check_page;
3915 }
3916
3917 pdep = pmap_pdpe_to_pde(pdpep, va);
3918 if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3919 goto out;
3920 if ((pde & PG_PS) != 0) {
3921 if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3922 goto out;
3923 m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3924 goto check_page;
3925 }
3926
3927 pte = *pmap_pde_to_pte(pdep, va);
3928 if ((pte & PG_V) == 0 ||
3929 ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3930 goto out;
3931 m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3932
3933 check_page:
3934 if (m != NULL && !vm_page_wire_mapped(m))
3935 m = NULL;
3936 out:
3937 PMAP_UNLOCK(pmap);
3938 return (m);
3939 }
3940
3941 /*
3942 * Routine: pmap_kextract
3943 * Function:
3944 * Extract the physical page address associated with the given kernel
3945 * virtual address.
3946 */
3947 vm_paddr_t
pmap_kextract(vm_offset_t va)3948 pmap_kextract(vm_offset_t va)
3949 {
3950 pd_entry_t pde;
3951 vm_paddr_t pa;
3952
3953 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3954 pa = DMAP_TO_PHYS(va);
3955 } else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3956 pa = pmap_large_map_kextract(va);
3957 } else {
3958 pde = *vtopde(va);
3959 if (pde & PG_PS) {
3960 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3961 } else {
3962 /*
3963 * Beware of a concurrent promotion that changes the
3964 * PDE at this point! For example, vtopte() must not
3965 * be used to access the PTE because it would use the
3966 * new PDE. It is, however, safe to use the old PDE
3967 * because the page table page is preserved by the
3968 * promotion.
3969 */
3970 pa = *pmap_pde_to_pte(&pde, va);
3971 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3972 }
3973 }
3974 return (pa);
3975 }
3976
3977 /***************************************************
3978 * Low level mapping routines.....
3979 ***************************************************/
3980
3981 /*
3982 * Add a wired page to the kva.
3983 * Note: not SMP coherent.
3984 */
3985 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3986 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3987 {
3988 pt_entry_t *pte;
3989
3990 pte = vtopte(va);
3991 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3992 X86_PG_RW | X86_PG_V);
3993 }
3994
3995 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3996 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3997 {
3998 pt_entry_t *pte;
3999 int cache_bits;
4000
4001 pte = vtopte(va);
4002 cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
4003 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
4004 X86_PG_RW | X86_PG_V | cache_bits);
4005 }
4006
4007 /*
4008 * Remove a page from the kernel pagetables.
4009 * Note: not SMP coherent.
4010 */
4011 void
pmap_kremove(vm_offset_t va)4012 pmap_kremove(vm_offset_t va)
4013 {
4014 pt_entry_t *pte;
4015
4016 pte = vtopte(va);
4017 pte_clear(pte);
4018 }
4019
4020 /*
4021 * Used to map a range of physical addresses into kernel
4022 * virtual address space.
4023 *
4024 * The value passed in '*virt' is a suggested virtual address for
4025 * the mapping. Architectures which can support a direct-mapped
4026 * physical to virtual region can return the appropriate address
4027 * within that region, leaving '*virt' unchanged. Other
4028 * architectures should map the pages starting at '*virt' and
4029 * update '*virt' with the first usable address after the mapped
4030 * region.
4031 */
4032 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4033 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4034 {
4035 return PHYS_TO_DMAP(start);
4036 }
4037
4038 /*
4039 * Add a list of wired pages to the kva
4040 * this routine is only used for temporary
4041 * kernel mappings that do not need to have
4042 * page modification or references recorded.
4043 * Note that old mappings are simply written
4044 * over. The page *must* be wired.
4045 * Note: SMP coherent. Uses a ranged shootdown IPI.
4046 */
4047 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4048 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4049 {
4050 pt_entry_t *endpte, oldpte, pa, *pte;
4051 vm_page_t m;
4052 int cache_bits;
4053
4054 oldpte = 0;
4055 pte = vtopte(sva);
4056 endpte = pte + count;
4057 while (pte < endpte) {
4058 m = *ma++;
4059 cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4060 pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4061 if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4062 oldpte |= *pte;
4063 pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4064 X86_PG_M | X86_PG_RW | X86_PG_V);
4065 }
4066 pte++;
4067 }
4068 if (__predict_false((oldpte & X86_PG_V) != 0))
4069 pmap_invalidate_range(kernel_pmap, sva, sva + count *
4070 PAGE_SIZE);
4071 }
4072
4073 /*
4074 * This routine tears out page mappings from the
4075 * kernel -- it is meant only for temporary mappings.
4076 * Note: SMP coherent. Uses a ranged shootdown IPI.
4077 */
4078 void
pmap_qremove(vm_offset_t sva,int count)4079 pmap_qremove(vm_offset_t sva, int count)
4080 {
4081 vm_offset_t va;
4082
4083 va = sva;
4084 while (count-- > 0) {
4085 /*
4086 * pmap_enter() calls within the kernel virtual
4087 * address space happen on virtual addresses from
4088 * subarenas that import superpage-sized and -aligned
4089 * address ranges. So, the virtual address that we
4090 * allocate to use with pmap_qenter() can't be close
4091 * enough to one of those pmap_enter() calls for it to
4092 * be caught up in a promotion.
4093 */
4094 KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4095 KASSERT((*vtopde(va) & X86_PG_PS) == 0,
4096 ("pmap_qremove on promoted va %#lx", va));
4097
4098 pmap_kremove(va);
4099 va += PAGE_SIZE;
4100 }
4101 pmap_invalidate_range(kernel_pmap, sva, va);
4102 }
4103
4104 /***************************************************
4105 * Page table page management routines.....
4106 ***************************************************/
4107 /*
4108 * Schedule the specified unused page table page to be freed. Specifically,
4109 * add the page to the specified list of pages that will be released to the
4110 * physical memory manager after the TLB has been updated.
4111 */
4112 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4113 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4114 {
4115
4116 if (set_PG_ZERO)
4117 m->flags |= PG_ZERO;
4118 else
4119 m->flags &= ~PG_ZERO;
4120 SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4121 }
4122
4123 /*
4124 * Inserts the specified page table page into the specified pmap's collection
4125 * of idle page table pages. Each of a pmap's page table pages is responsible
4126 * for mapping a distinct range of virtual addresses. The pmap's collection is
4127 * ordered by this virtual address range.
4128 *
4129 * If "promoted" is false, then the page table page "mpte" must be zero filled;
4130 * "mpte"'s valid field will be set to 0.
4131 *
4132 * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4133 * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4134 * valid field will be set to 1.
4135 *
4136 * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4137 * valid mappings with identical attributes including PG_A; "mpte"'s valid
4138 * field will be set to VM_PAGE_BITS_ALL.
4139 */
4140 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4141 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4142 bool allpte_PG_A_set)
4143 {
4144
4145 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4146 KASSERT(promoted || !allpte_PG_A_set,
4147 ("a zero-filled PTP can't have PG_A set in every PTE"));
4148 mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4149 return (vm_radix_insert(&pmap->pm_root, mpte));
4150 }
4151
4152 /*
4153 * Removes the page table page mapping the specified virtual address from the
4154 * specified pmap's collection of idle page table pages, and returns it.
4155 * Otherwise, returns NULL if there is no page table page corresponding to the
4156 * specified virtual address.
4157 */
4158 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4159 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4160 {
4161
4162 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4163 return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4164 }
4165
4166 /*
4167 * Decrements a page table page's reference count, which is used to record the
4168 * number of valid page table entries within the page. If the reference count
4169 * drops to zero, then the page table page is unmapped. Returns true if the
4170 * page table page was unmapped and false otherwise.
4171 */
4172 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4173 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4174 {
4175
4176 --m->ref_count;
4177 if (m->ref_count == 0) {
4178 _pmap_unwire_ptp(pmap, va, m, free);
4179 return (true);
4180 } else
4181 return (false);
4182 }
4183
4184 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4185 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4186 {
4187 pml5_entry_t *pml5;
4188 pml4_entry_t *pml4;
4189 pdp_entry_t *pdp;
4190 pd_entry_t *pd;
4191 vm_page_t pdpg, pdppg, pml4pg;
4192
4193 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4194
4195 /*
4196 * unmap the page table page
4197 */
4198 if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4199 /* PML4 page */
4200 MPASS(pmap_is_la57(pmap));
4201 pml5 = pmap_pml5e(pmap, va);
4202 *pml5 = 0;
4203 if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4204 pml5 = pmap_pml5e_u(pmap, va);
4205 *pml5 = 0;
4206 }
4207 } else if (m->pindex >= NUPDE + NUPDPE) {
4208 /* PDP page */
4209 pml4 = pmap_pml4e(pmap, va);
4210 *pml4 = 0;
4211 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4212 va <= VM_MAXUSER_ADDRESS) {
4213 pml4 = pmap_pml4e_u(pmap, va);
4214 *pml4 = 0;
4215 }
4216 } else if (m->pindex >= NUPDE) {
4217 /* PD page */
4218 pdp = pmap_pdpe(pmap, va);
4219 *pdp = 0;
4220 } else {
4221 /* PTE page */
4222 pd = pmap_pde(pmap, va);
4223 *pd = 0;
4224 }
4225 if (m->pindex < NUPDE) {
4226 /* We just released a PT, unhold the matching PD */
4227 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4228 pmap_unwire_ptp(pmap, va, pdpg, free);
4229 } else if (m->pindex < NUPDE + NUPDPE) {
4230 /* We just released a PD, unhold the matching PDP */
4231 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4232 pmap_unwire_ptp(pmap, va, pdppg, free);
4233 } else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4234 /* We just released a PDP, unhold the matching PML4 */
4235 pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4236 pmap_unwire_ptp(pmap, va, pml4pg, free);
4237 }
4238
4239 pmap_pt_page_count_adj(pmap, -1);
4240
4241 /*
4242 * Put page on a list so that it is released after
4243 * *ALL* TLB shootdown is done
4244 */
4245 pmap_add_delayed_free_list(m, free, true);
4246 }
4247
4248 /*
4249 * After removing a page table entry, this routine is used to
4250 * conditionally free the page, and manage the reference count.
4251 */
4252 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4253 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4254 struct spglist *free)
4255 {
4256 vm_page_t mpte;
4257
4258 if (va >= VM_MAXUSER_ADDRESS)
4259 return (0);
4260 KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4261 mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4262 return (pmap_unwire_ptp(pmap, va, mpte, free));
4263 }
4264
4265 /*
4266 * Release a page table page reference after a failed attempt to create a
4267 * mapping.
4268 */
4269 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4270 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4271 {
4272 struct spglist free;
4273
4274 SLIST_INIT(&free);
4275 if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4276 /*
4277 * Although "va" was never mapped, paging-structure caches
4278 * could nonetheless have entries that refer to the freed
4279 * page table pages. Invalidate those entries.
4280 */
4281 pmap_invalidate_page(pmap, va);
4282 vm_page_free_pages_toq(&free, true);
4283 }
4284 }
4285
4286 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4287 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4288 {
4289 struct pmap_pcid *pcidp;
4290 int i;
4291
4292 CPU_FOREACH(i) {
4293 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4294 pcidp->pm_pcid = pcid;
4295 pcidp->pm_gen = gen;
4296 }
4297 }
4298
4299 void
pmap_pinit0(pmap_t pmap)4300 pmap_pinit0(pmap_t pmap)
4301 {
4302 struct proc *p;
4303 struct thread *td;
4304
4305 PMAP_LOCK_INIT(pmap);
4306 pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4307 pmap->pm_pmltopu = NULL;
4308 pmap->pm_cr3 = kernel_pmap->pm_cr3;
4309 /* hack to keep pmap_pti_pcid_invalidate() alive */
4310 pmap->pm_ucr3 = PMAP_NO_CR3;
4311 vm_radix_init(&pmap->pm_root);
4312 CPU_ZERO(&pmap->pm_active);
4313 TAILQ_INIT(&pmap->pm_pvchunk);
4314 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4315 pmap->pm_flags = pmap_flags;
4316 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4317 pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4318 pmap_activate_boot(pmap);
4319 td = curthread;
4320 if (pti) {
4321 p = td->td_proc;
4322 PROC_LOCK(p);
4323 p->p_md.md_flags |= P_MD_KPTI;
4324 PROC_UNLOCK(p);
4325 }
4326 pmap_thread_init_invl_gen(td);
4327
4328 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4329 pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4330 sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4331 UMA_ALIGN_PTR, 0);
4332 }
4333 }
4334
4335 void
pmap_pinit_pml4(vm_page_t pml4pg)4336 pmap_pinit_pml4(vm_page_t pml4pg)
4337 {
4338 pml4_entry_t *pm_pml4;
4339 int i;
4340
4341 pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4342
4343 /* Wire in kernel global address entries. */
4344 for (i = 0; i < NKPML4E; i++) {
4345 pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4346 X86_PG_V;
4347 }
4348 #ifdef KASAN
4349 for (i = 0; i < NKASANPML4E; i++) {
4350 pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4351 X86_PG_V | pg_nx;
4352 }
4353 #endif
4354 #ifdef KMSAN
4355 for (i = 0; i < NKMSANSHADPML4E; i++) {
4356 pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4357 X86_PG_RW | X86_PG_V | pg_nx;
4358 }
4359 for (i = 0; i < NKMSANORIGPML4E; i++) {
4360 pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4361 X86_PG_RW | X86_PG_V | pg_nx;
4362 }
4363 #endif
4364 for (i = 0; i < ndmpdpphys; i++) {
4365 pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4366 X86_PG_V;
4367 }
4368
4369 /* install self-referential address mapping entry(s) */
4370 pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4371 X86_PG_A | X86_PG_M;
4372
4373 /* install large map entries if configured */
4374 for (i = 0; i < lm_ents; i++)
4375 pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4376 }
4377
4378 void
pmap_pinit_pml5(vm_page_t pml5pg)4379 pmap_pinit_pml5(vm_page_t pml5pg)
4380 {
4381 pml5_entry_t *pm_pml5;
4382
4383 pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4384
4385 /*
4386 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4387 * entering all existing kernel mappings into level 5 table.
4388 */
4389 pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4390 X86_PG_RW | X86_PG_A | X86_PG_M;
4391
4392 /*
4393 * Install self-referential address mapping entry.
4394 */
4395 pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4396 X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A;
4397 }
4398
4399 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4400 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4401 {
4402 pml4_entry_t *pm_pml4u;
4403 int i;
4404
4405 pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4406 for (i = 0; i < NPML4EPG; i++)
4407 pm_pml4u[i] = pti_pml4[i];
4408 }
4409
4410 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4411 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4412 {
4413 pml5_entry_t *pm_pml5u;
4414
4415 pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4416 pagezero(pm_pml5u);
4417
4418 /*
4419 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4420 * table, entering all kernel mappings needed for usermode
4421 * into level 5 table.
4422 */
4423 pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4424 pmap_kextract((vm_offset_t)pti_pml4) |
4425 X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
4426 }
4427
4428 /* Allocate a page table page and do related bookkeeping */
4429 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4430 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4431 {
4432 vm_page_t m;
4433
4434 m = vm_page_alloc_noobj(flags);
4435 if (__predict_false(m == NULL))
4436 return (NULL);
4437 m->pindex = pindex;
4438 pmap_pt_page_count_adj(pmap, 1);
4439 return (m);
4440 }
4441
4442 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4443 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4444 {
4445 /*
4446 * This function assumes the page will need to be unwired,
4447 * even though the counterpart allocation in pmap_alloc_pt_page()
4448 * doesn't enforce VM_ALLOC_WIRED. However, all current uses
4449 * of pmap_free_pt_page() require unwiring. The case in which
4450 * a PT page doesn't require unwiring because its ref_count has
4451 * naturally reached 0 is handled through _pmap_unwire_ptp().
4452 */
4453 vm_page_unwire_noq(m);
4454 if (zerofilled)
4455 vm_page_free_zero(m);
4456 else
4457 vm_page_free(m);
4458
4459 pmap_pt_page_count_adj(pmap, -1);
4460 }
4461
4462 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4463
4464 /*
4465 * Initialize a preallocated and zeroed pmap structure,
4466 * such as one in a vmspace structure.
4467 */
4468 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4469 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4470 {
4471 vm_page_t pmltop_pg, pmltop_pgu;
4472 vm_paddr_t pmltop_phys;
4473
4474 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4475
4476 /*
4477 * Allocate the page directory page. Pass NULL instead of a
4478 * pointer to the pmap here to avoid calling
4479 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4480 * since that requires pmap lock. Instead do the accounting
4481 * manually.
4482 *
4483 * Note that final call to pmap_remove() optimization that
4484 * checks for zero resident_count is basically disabled by
4485 * accounting for top-level page. But the optimization was
4486 * not effective since we started using non-managed mapping of
4487 * the shared page.
4488 */
4489 pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4490 VM_ALLOC_WAITOK);
4491 pmap_pt_page_count_pinit(pmap, 1);
4492
4493 pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4494 pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4495
4496 if (pmap_pcid_enabled) {
4497 if (pmap->pm_pcidp == NULL)
4498 pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4499 M_WAITOK);
4500 pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4501 }
4502 pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
4503 pmap->pm_ucr3 = PMAP_NO_CR3;
4504 pmap->pm_pmltopu = NULL;
4505
4506 pmap->pm_type = pm_type;
4507
4508 /*
4509 * Do not install the host kernel mappings in the nested page
4510 * tables. These mappings are meaningless in the guest physical
4511 * address space.
4512 * Install minimal kernel mappings in PTI case.
4513 */
4514 switch (pm_type) {
4515 case PT_X86:
4516 pmap->pm_cr3 = pmltop_phys;
4517 if (pmap_is_la57(pmap))
4518 pmap_pinit_pml5(pmltop_pg);
4519 else
4520 pmap_pinit_pml4(pmltop_pg);
4521 if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4522 /*
4523 * As with pmltop_pg, pass NULL instead of a
4524 * pointer to the pmap to ensure that the PTI
4525 * page counted explicitly.
4526 */
4527 pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4528 VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4529 pmap_pt_page_count_pinit(pmap, 1);
4530 pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4531 VM_PAGE_TO_PHYS(pmltop_pgu));
4532 if (pmap_is_la57(pmap))
4533 pmap_pinit_pml5_pti(pmltop_pgu);
4534 else
4535 pmap_pinit_pml4_pti(pmltop_pgu);
4536 pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4537 }
4538 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4539 rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4540 pkru_free_range, pmap, M_NOWAIT);
4541 }
4542 break;
4543 case PT_EPT:
4544 case PT_RVI:
4545 pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4546 break;
4547 }
4548
4549 vm_radix_init(&pmap->pm_root);
4550 CPU_ZERO(&pmap->pm_active);
4551 TAILQ_INIT(&pmap->pm_pvchunk);
4552 pmap->pm_flags = flags;
4553 pmap->pm_eptgen = 0;
4554
4555 return (1);
4556 }
4557
4558 int
pmap_pinit(pmap_t pmap)4559 pmap_pinit(pmap_t pmap)
4560 {
4561
4562 return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4563 }
4564
4565 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4566 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4567 {
4568 vm_page_t mpg;
4569 struct spglist free;
4570
4571 mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4572 if (mpg->ref_count != 0)
4573 return;
4574 SLIST_INIT(&free);
4575 _pmap_unwire_ptp(pmap, va, mpg, &free);
4576 pmap_invalidate_page(pmap, va);
4577 vm_page_free_pages_toq(&free, true);
4578 }
4579
4580 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4581 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4582 bool addref)
4583 {
4584 vm_pindex_t pml5index;
4585 pml5_entry_t *pml5;
4586 pml4_entry_t *pml4;
4587 vm_page_t pml4pg;
4588 pt_entry_t PG_V;
4589 bool allocated;
4590
4591 if (!pmap_is_la57(pmap))
4592 return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4593
4594 PG_V = pmap_valid_bit(pmap);
4595 pml5index = pmap_pml5e_index(va);
4596 pml5 = &pmap->pm_pmltop[pml5index];
4597 if ((*pml5 & PG_V) == 0) {
4598 if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4599 va) == NULL)
4600 return (NULL);
4601 allocated = true;
4602 } else {
4603 allocated = false;
4604 }
4605 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4606 pml4 = &pml4[pmap_pml4e_index(va)];
4607 if ((*pml4 & PG_V) == 0) {
4608 pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4609 if (allocated && !addref)
4610 pml4pg->ref_count--;
4611 else if (!allocated && addref)
4612 pml4pg->ref_count++;
4613 }
4614 return (pml4);
4615 }
4616
4617 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4618 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4619 bool addref)
4620 {
4621 vm_page_t pdppg;
4622 pml4_entry_t *pml4;
4623 pdp_entry_t *pdp;
4624 pt_entry_t PG_V;
4625 bool allocated;
4626
4627 PG_V = pmap_valid_bit(pmap);
4628
4629 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4630 if (pml4 == NULL)
4631 return (NULL);
4632
4633 if ((*pml4 & PG_V) == 0) {
4634 /* Have to allocate a new pdp, recurse */
4635 if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4636 va) == NULL) {
4637 if (pmap_is_la57(pmap))
4638 pmap_allocpte_free_unref(pmap, va,
4639 pmap_pml5e(pmap, va));
4640 return (NULL);
4641 }
4642 allocated = true;
4643 } else {
4644 allocated = false;
4645 }
4646 pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4647 pdp = &pdp[pmap_pdpe_index(va)];
4648 if ((*pdp & PG_V) == 0) {
4649 pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4650 if (allocated && !addref)
4651 pdppg->ref_count--;
4652 else if (!allocated && addref)
4653 pdppg->ref_count++;
4654 }
4655 return (pdp);
4656 }
4657
4658 /*
4659 * The ptepindexes, i.e. page indices, of the page table pages encountered
4660 * while translating virtual address va are defined as follows:
4661 * - for the page table page (last level),
4662 * ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4663 * in other words, it is just the index of the PDE that maps the page
4664 * table page.
4665 * - for the page directory page,
4666 * ptepindex = NUPDE (number of userland PD entries) +
4667 * (pmap_pde_index(va) >> NPDEPGSHIFT)
4668 * i.e. index of PDPE is put after the last index of PDE,
4669 * - for the page directory pointer page,
4670 * ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4671 * NPML4EPGSHIFT),
4672 * i.e. index of pml4e is put after the last index of PDPE,
4673 * - for the PML4 page (if LA57 mode is enabled),
4674 * ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4675 * (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4676 * i.e. index of pml5e is put after the last index of PML4E.
4677 *
4678 * Define an order on the paging entries, where all entries of the
4679 * same height are put together, then heights are put from deepest to
4680 * root. Then ptexpindex is the sequential number of the
4681 * corresponding paging entry in this order.
4682 *
4683 * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4684 * LA57 paging structures even in LA48 paging mode. Moreover, the
4685 * ptepindexes are calculated as if the paging structures were 5-level
4686 * regardless of the actual mode of operation.
4687 *
4688 * The root page at PML4/PML5 does not participate in this indexing scheme,
4689 * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4690 */
4691 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4692 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4693 vm_offset_t va)
4694 {
4695 vm_pindex_t pml5index, pml4index;
4696 pml5_entry_t *pml5, *pml5u;
4697 pml4_entry_t *pml4, *pml4u;
4698 pdp_entry_t *pdp;
4699 pd_entry_t *pd;
4700 vm_page_t m, pdpg;
4701 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4702
4703 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4704
4705 PG_A = pmap_accessed_bit(pmap);
4706 PG_M = pmap_modified_bit(pmap);
4707 PG_V = pmap_valid_bit(pmap);
4708 PG_RW = pmap_rw_bit(pmap);
4709
4710 /*
4711 * Allocate a page table page.
4712 */
4713 m = pmap_alloc_pt_page(pmap, ptepindex,
4714 VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4715 if (m == NULL)
4716 return (NULL);
4717
4718 /*
4719 * Map the pagetable page into the process address space, if
4720 * it isn't already there.
4721 */
4722 if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4723 MPASS(pmap_is_la57(pmap));
4724
4725 pml5index = pmap_pml5e_index(va);
4726 pml5 = &pmap->pm_pmltop[pml5index];
4727 KASSERT((*pml5 & PG_V) == 0,
4728 ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4729 *pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4730
4731 if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4732 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4733 *pml5 |= pg_nx;
4734
4735 pml5u = &pmap->pm_pmltopu[pml5index];
4736 *pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4737 PG_A | PG_M;
4738 }
4739 } else if (ptepindex >= NUPDE + NUPDPE) {
4740 pml4index = pmap_pml4e_index(va);
4741 /* Wire up a new PDPE page */
4742 pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4743 if (pml4 == NULL) {
4744 pmap_free_pt_page(pmap, m, true);
4745 return (NULL);
4746 }
4747 KASSERT((*pml4 & PG_V) == 0,
4748 ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4749 *pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4750
4751 if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4752 pml4index < NUPML4E) {
4753 MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4754
4755 /*
4756 * PTI: Make all user-space mappings in the
4757 * kernel-mode page table no-execute so that
4758 * we detect any programming errors that leave
4759 * the kernel-mode page table active on return
4760 * to user space.
4761 */
4762 *pml4 |= pg_nx;
4763
4764 pml4u = &pmap->pm_pmltopu[pml4index];
4765 *pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4766 PG_A | PG_M;
4767 }
4768 } else if (ptepindex >= NUPDE) {
4769 /* Wire up a new PDE page */
4770 pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4771 if (pdp == NULL) {
4772 pmap_free_pt_page(pmap, m, true);
4773 return (NULL);
4774 }
4775 KASSERT((*pdp & PG_V) == 0,
4776 ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4777 *pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4778 } else {
4779 /* Wire up a new PTE page */
4780 pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4781 if (pdp == NULL) {
4782 pmap_free_pt_page(pmap, m, true);
4783 return (NULL);
4784 }
4785 if ((*pdp & PG_V) == 0) {
4786 /* Have to allocate a new pd, recurse */
4787 if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4788 lockp, va) == NULL) {
4789 pmap_allocpte_free_unref(pmap, va,
4790 pmap_pml4e(pmap, va));
4791 pmap_free_pt_page(pmap, m, true);
4792 return (NULL);
4793 }
4794 } else {
4795 /* Add reference to the pd page */
4796 pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4797 pdpg->ref_count++;
4798 }
4799 pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4800
4801 /* Now we know where the page directory page is */
4802 pd = &pd[pmap_pde_index(va)];
4803 KASSERT((*pd & PG_V) == 0,
4804 ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4805 *pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4806 }
4807
4808 return (m);
4809 }
4810
4811 /*
4812 * This routine is called if the desired page table page does not exist.
4813 *
4814 * If page table page allocation fails, this routine may sleep before
4815 * returning NULL. It sleeps only if a lock pointer was given. Sleep
4816 * occurs right before returning to the caller. This way, we never
4817 * drop pmap lock to sleep while a page table page has ref_count == 0,
4818 * which prevents the page from being freed under us.
4819 */
4820 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4821 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4822 vm_offset_t va)
4823 {
4824 vm_page_t m;
4825
4826 m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4827 if (m == NULL && lockp != NULL) {
4828 RELEASE_PV_LIST_LOCK(lockp);
4829 PMAP_UNLOCK(pmap);
4830 PMAP_ASSERT_NOT_IN_DI();
4831 vm_wait(NULL);
4832 PMAP_LOCK(pmap);
4833 }
4834 return (m);
4835 }
4836
4837 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4838 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4839 struct rwlock **lockp)
4840 {
4841 pdp_entry_t *pdpe, PG_V;
4842 pd_entry_t *pde;
4843 vm_page_t pdpg;
4844 vm_pindex_t pdpindex;
4845
4846 PG_V = pmap_valid_bit(pmap);
4847
4848 retry:
4849 pdpe = pmap_pdpe(pmap, va);
4850 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4851 pde = pmap_pdpe_to_pde(pdpe, va);
4852 if (va < VM_MAXUSER_ADDRESS) {
4853 /* Add a reference to the pd page. */
4854 pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4855 pdpg->ref_count++;
4856 } else
4857 pdpg = NULL;
4858 } else if (va < VM_MAXUSER_ADDRESS) {
4859 /* Allocate a pd page. */
4860 pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4861 pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4862 if (pdpg == NULL) {
4863 if (lockp != NULL)
4864 goto retry;
4865 else
4866 return (NULL);
4867 }
4868 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4869 pde = &pde[pmap_pde_index(va)];
4870 } else
4871 panic("pmap_alloc_pde: missing page table page for va %#lx",
4872 va);
4873 *pdpgp = pdpg;
4874 return (pde);
4875 }
4876
4877 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4878 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4879 {
4880 vm_pindex_t ptepindex;
4881 pd_entry_t *pd, PG_V;
4882 vm_page_t m;
4883
4884 PG_V = pmap_valid_bit(pmap);
4885
4886 /*
4887 * Calculate pagetable page index
4888 */
4889 ptepindex = pmap_pde_pindex(va);
4890 retry:
4891 /*
4892 * Get the page directory entry
4893 */
4894 pd = pmap_pde(pmap, va);
4895
4896 /*
4897 * This supports switching from a 2MB page to a
4898 * normal 4K page.
4899 */
4900 if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4901 if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4902 /*
4903 * Invalidation of the 2MB page mapping may have caused
4904 * the deallocation of the underlying PD page.
4905 */
4906 pd = NULL;
4907 }
4908 }
4909
4910 /*
4911 * If the page table page is mapped, we just increment the
4912 * hold count, and activate it.
4913 */
4914 if (pd != NULL && (*pd & PG_V) != 0) {
4915 m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4916 m->ref_count++;
4917 } else {
4918 /*
4919 * Here if the pte page isn't mapped, or if it has been
4920 * deallocated.
4921 */
4922 m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4923 if (m == NULL && lockp != NULL)
4924 goto retry;
4925 }
4926 return (m);
4927 }
4928
4929 /***************************************************
4930 * Pmap allocation/deallocation routines.
4931 ***************************************************/
4932
4933 /*
4934 * Release any resources held by the given physical map.
4935 * Called when a pmap initialized by pmap_pinit is being released.
4936 * Should only be called if the map contains no valid mappings.
4937 */
4938 void
pmap_release(pmap_t pmap)4939 pmap_release(pmap_t pmap)
4940 {
4941 vm_page_t m;
4942 int i;
4943
4944 KASSERT(vm_radix_is_empty(&pmap->pm_root),
4945 ("pmap_release: pmap %p has reserved page table page(s)",
4946 pmap));
4947 KASSERT(CPU_EMPTY(&pmap->pm_active),
4948 ("releasing active pmap %p", pmap));
4949
4950 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4951
4952 if (pmap_is_la57(pmap)) {
4953 pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4954 pmap->pm_pmltop[PML5PML5I] = 0;
4955 } else {
4956 for (i = 0; i < NKPML4E; i++) /* KVA */
4957 pmap->pm_pmltop[KPML4BASE + i] = 0;
4958 #ifdef KASAN
4959 for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4960 pmap->pm_pmltop[KASANPML4I + i] = 0;
4961 #endif
4962 #ifdef KMSAN
4963 for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4964 pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4965 for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4966 pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4967 #endif
4968 for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4969 pmap->pm_pmltop[DMPML4I + i] = 0;
4970 pmap->pm_pmltop[PML4PML4I] = 0; /* Recursive Mapping */
4971 for (i = 0; i < lm_ents; i++) /* Large Map */
4972 pmap->pm_pmltop[LMSPML4I + i] = 0;
4973 }
4974
4975 pmap_free_pt_page(NULL, m, true);
4976 pmap_pt_page_count_pinit(pmap, -1);
4977
4978 if (pmap->pm_pmltopu != NULL) {
4979 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4980 pm_pmltopu));
4981 pmap_free_pt_page(NULL, m, false);
4982 pmap_pt_page_count_pinit(pmap, -1);
4983 }
4984 if (pmap->pm_type == PT_X86 &&
4985 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4986 rangeset_fini(&pmap->pm_pkru);
4987
4988 KASSERT(pmap->pm_stats.resident_count == 0,
4989 ("pmap_release: pmap %p resident count %ld != 0",
4990 pmap, pmap->pm_stats.resident_count));
4991 }
4992
4993 static int
kvm_size(SYSCTL_HANDLER_ARGS)4994 kvm_size(SYSCTL_HANDLER_ARGS)
4995 {
4996 unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4997
4998 return sysctl_handle_long(oidp, &ksize, 0, req);
4999 }
5000 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
5001 0, 0, kvm_size, "LU",
5002 "Size of KVM");
5003
5004 static int
kvm_free(SYSCTL_HANDLER_ARGS)5005 kvm_free(SYSCTL_HANDLER_ARGS)
5006 {
5007 unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
5008
5009 return sysctl_handle_long(oidp, &kfree, 0, req);
5010 }
5011 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
5012 0, 0, kvm_free, "LU",
5013 "Amount of KVM free");
5014
5015 #ifdef KMSAN
5016 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)5017 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
5018 {
5019 pdp_entry_t *pdpe;
5020 pd_entry_t *pde;
5021 pt_entry_t *pte;
5022 vm_paddr_t dummypa, dummypd, dummypt;
5023 int i, npde, npdpg;
5024
5025 npdpg = howmany(size, NBPDP);
5026 npde = size / NBPDR;
5027
5028 dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5029 pagezero((void *)PHYS_TO_DMAP(dummypa));
5030
5031 dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5032 pagezero((void *)PHYS_TO_DMAP(dummypt));
5033 dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5034 for (i = 0; i < npdpg; i++)
5035 pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5036
5037 pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5038 for (i = 0; i < NPTEPG; i++)
5039 pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5040 X86_PG_A | X86_PG_M | pg_nx);
5041
5042 pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5043 for (i = 0; i < npde; i++)
5044 pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5045
5046 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5047 for (i = 0; i < npdpg; i++)
5048 pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5049 X86_PG_RW | pg_nx);
5050 }
5051
5052 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5053 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5054 {
5055 vm_size_t size;
5056
5057 KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5058
5059 /*
5060 * The end of the page array's KVA region is 2MB aligned, see
5061 * kmem_init().
5062 */
5063 size = round_2mpage(end) - start;
5064 pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5065 pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5066 }
5067 #endif
5068
5069 /*
5070 * Allocate physical memory for the vm_page array and map it into KVA,
5071 * attempting to back the vm_pages with domain-local memory.
5072 */
5073 void
pmap_page_array_startup(long pages)5074 pmap_page_array_startup(long pages)
5075 {
5076 pdp_entry_t *pdpe;
5077 pd_entry_t *pde, newpdir;
5078 vm_offset_t va, start, end;
5079 vm_paddr_t pa;
5080 long pfn;
5081 int domain, i;
5082
5083 vm_page_array_size = pages;
5084
5085 start = VM_MIN_KERNEL_ADDRESS;
5086 end = start + pages * sizeof(struct vm_page);
5087 for (va = start; va < end; va += NBPDR) {
5088 pfn = first_page + (va - start) / sizeof(struct vm_page);
5089 domain = vm_phys_domain(ptoa(pfn));
5090 pdpe = pmap_pdpe(kernel_pmap, va);
5091 if ((*pdpe & X86_PG_V) == 0) {
5092 pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5093 dump_add_page(pa);
5094 pagezero((void *)PHYS_TO_DMAP(pa));
5095 *pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5096 X86_PG_A | X86_PG_M);
5097 }
5098 pde = pmap_pdpe_to_pde(pdpe, va);
5099 if ((*pde & X86_PG_V) != 0)
5100 panic("Unexpected pde");
5101 pa = vm_phys_early_alloc(domain, NBPDR);
5102 for (i = 0; i < NPDEPG; i++)
5103 dump_add_page(pa + i * PAGE_SIZE);
5104 newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5105 X86_PG_M | PG_PS | pg_g | pg_nx);
5106 pde_store(pde, newpdir);
5107 }
5108 vm_page_array = (vm_page_t)start;
5109
5110 #ifdef KMSAN
5111 pmap_kmsan_page_array_startup(start, end);
5112 #endif
5113 }
5114
5115 /*
5116 * grow the number of kernel page table entries, if needed
5117 */
5118 void
pmap_growkernel(vm_offset_t addr)5119 pmap_growkernel(vm_offset_t addr)
5120 {
5121 vm_paddr_t paddr;
5122 vm_page_t nkpg;
5123 pd_entry_t *pde, newpdir;
5124 pdp_entry_t *pdpe;
5125 vm_offset_t end;
5126
5127 TSENTER();
5128 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5129
5130 /*
5131 * The kernel map covers two distinct regions of KVA: that used
5132 * for dynamic kernel memory allocations, and the uppermost 2GB
5133 * of the virtual address space. The latter is used to map the
5134 * kernel and loadable kernel modules. This scheme enables the
5135 * use of a special code generation model for kernel code which
5136 * takes advantage of compact addressing modes in machine code.
5137 *
5138 * Both regions grow upwards; to avoid wasting memory, the gap
5139 * in between is unmapped. If "addr" is above "KERNBASE", the
5140 * kernel's region is grown, otherwise the kmem region is grown.
5141 *
5142 * The correctness of this action is based on the following
5143 * argument: vm_map_insert() allocates contiguous ranges of the
5144 * kernel virtual address space. It calls this function if a range
5145 * ends after "kernel_vm_end". If the kernel is mapped between
5146 * "kernel_vm_end" and "addr", then the range cannot begin at
5147 * "kernel_vm_end". In fact, its beginning address cannot be less
5148 * than the kernel. Thus, there is no immediate need to allocate
5149 * any new kernel page table pages between "kernel_vm_end" and
5150 * "KERNBASE".
5151 */
5152 if (KERNBASE < addr) {
5153 end = KERNBASE + nkpt * NBPDR;
5154 if (end == 0) {
5155 TSEXIT();
5156 return;
5157 }
5158 } else {
5159 end = kernel_vm_end;
5160 }
5161
5162 addr = roundup2(addr, NBPDR);
5163 if (addr - 1 >= vm_map_max(kernel_map))
5164 addr = vm_map_max(kernel_map);
5165 if (addr <= end) {
5166 /*
5167 * The grown region is already mapped, so there is
5168 * nothing to do.
5169 */
5170 TSEXIT();
5171 return;
5172 }
5173
5174 kasan_shadow_map(end, addr - end);
5175 kmsan_shadow_map(end, addr - end);
5176 while (end < addr) {
5177 pdpe = pmap_pdpe(kernel_pmap, end);
5178 if ((*pdpe & X86_PG_V) == 0) {
5179 nkpg = pmap_alloc_pt_page(kernel_pmap,
5180 pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5181 VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5182 if (nkpg == NULL)
5183 panic("pmap_growkernel: no memory to grow kernel");
5184 paddr = VM_PAGE_TO_PHYS(nkpg);
5185 *pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5186 X86_PG_A | X86_PG_M);
5187 continue; /* try again */
5188 }
5189 pde = pmap_pdpe_to_pde(pdpe, end);
5190 if ((*pde & X86_PG_V) != 0) {
5191 end = (end + NBPDR) & ~PDRMASK;
5192 if (end - 1 >= vm_map_max(kernel_map)) {
5193 end = vm_map_max(kernel_map);
5194 break;
5195 }
5196 continue;
5197 }
5198
5199 nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5200 VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5201 VM_ALLOC_ZERO);
5202 if (nkpg == NULL)
5203 panic("pmap_growkernel: no memory to grow kernel");
5204 paddr = VM_PAGE_TO_PHYS(nkpg);
5205 newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5206 pde_store(pde, newpdir);
5207
5208 end = (end + NBPDR) & ~PDRMASK;
5209 if (end - 1 >= vm_map_max(kernel_map)) {
5210 end = vm_map_max(kernel_map);
5211 break;
5212 }
5213 }
5214
5215 if (end <= KERNBASE)
5216 kernel_vm_end = end;
5217 else
5218 nkpt = howmany(end - KERNBASE, NBPDR);
5219 TSEXIT();
5220 }
5221
5222 /***************************************************
5223 * page management routines.
5224 ***************************************************/
5225
5226 static const uint64_t pc_freemask[_NPCM] = {
5227 [0 ... _NPCM - 2] = PC_FREEN,
5228 [_NPCM - 1] = PC_FREEL
5229 };
5230
5231 #ifdef PV_STATS
5232
5233 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5234 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5235 &pc_chunk_count, "Current number of pv entry cnunks");
5236
5237 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5238 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5239 &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5240
5241 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5242 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5243 &pc_chunk_frees, "Total number of pv entry chunks freed");
5244
5245 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5246 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5247 &pc_chunk_tryfail,
5248 "Number of failed attempts to get a pv entry chunk page");
5249
5250 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5251 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5252 &pv_entry_frees, "Total number of pv entries freed");
5253
5254 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5255 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5256 &pv_entry_allocs, "Total number of pv entries allocated");
5257
5258 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5259 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5260 &pv_entry_count, "Current number of pv entries");
5261
5262 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5263 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5264 &pv_entry_spare, "Current number of spare pv entries");
5265 #endif
5266
5267 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5268 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5269 {
5270
5271 if (pmap == NULL)
5272 return;
5273 pmap_invalidate_all(pmap);
5274 if (pmap != locked_pmap)
5275 PMAP_UNLOCK(pmap);
5276 if (start_di)
5277 pmap_delayed_invl_finish();
5278 }
5279
5280 /*
5281 * We are in a serious low memory condition. Resort to
5282 * drastic measures to free some pages so we can allocate
5283 * another pv entry chunk.
5284 *
5285 * Returns NULL if PV entries were reclaimed from the specified pmap.
5286 *
5287 * We do not, however, unmap 2mpages because subsequent accesses will
5288 * allocate per-page pv entries until repromotion occurs, thereby
5289 * exacerbating the shortage of free pv entries.
5290 */
5291 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5292 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5293 {
5294 struct pv_chunks_list *pvc;
5295 struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5296 struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5297 struct md_page *pvh;
5298 pd_entry_t *pde;
5299 pmap_t next_pmap, pmap;
5300 pt_entry_t *pte, tpte;
5301 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5302 pv_entry_t pv;
5303 vm_offset_t va;
5304 vm_page_t m, m_pc;
5305 struct spglist free;
5306 uint64_t inuse;
5307 int bit, field, freed;
5308 bool start_di, restart;
5309
5310 PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5311 KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5312 pmap = NULL;
5313 m_pc = NULL;
5314 PG_G = PG_A = PG_M = PG_RW = 0;
5315 SLIST_INIT(&free);
5316 bzero(&pc_marker_b, sizeof(pc_marker_b));
5317 bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5318 pc_marker = (struct pv_chunk *)&pc_marker_b;
5319 pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5320
5321 /*
5322 * A delayed invalidation block should already be active if
5323 * pmap_advise() or pmap_remove() called this function by way
5324 * of pmap_demote_pde_locked().
5325 */
5326 start_di = pmap_not_in_di();
5327
5328 pvc = &pv_chunks[domain];
5329 mtx_lock(&pvc->pvc_lock);
5330 pvc->active_reclaims++;
5331 TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5332 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5333 while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5334 SLIST_EMPTY(&free)) {
5335 next_pmap = pc->pc_pmap;
5336 if (next_pmap == NULL) {
5337 /*
5338 * The next chunk is a marker. However, it is
5339 * not our marker, so active_reclaims must be
5340 * > 1. Consequently, the next_chunk code
5341 * will not rotate the pv_chunks list.
5342 */
5343 goto next_chunk;
5344 }
5345 mtx_unlock(&pvc->pvc_lock);
5346
5347 /*
5348 * A pv_chunk can only be removed from the pc_lru list
5349 * when both pc_chunks_mutex is owned and the
5350 * corresponding pmap is locked.
5351 */
5352 if (pmap != next_pmap) {
5353 restart = false;
5354 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5355 start_di);
5356 pmap = next_pmap;
5357 /* Avoid deadlock and lock recursion. */
5358 if (pmap > locked_pmap) {
5359 RELEASE_PV_LIST_LOCK(lockp);
5360 PMAP_LOCK(pmap);
5361 if (start_di)
5362 pmap_delayed_invl_start();
5363 mtx_lock(&pvc->pvc_lock);
5364 restart = true;
5365 } else if (pmap != locked_pmap) {
5366 if (PMAP_TRYLOCK(pmap)) {
5367 if (start_di)
5368 pmap_delayed_invl_start();
5369 mtx_lock(&pvc->pvc_lock);
5370 restart = true;
5371 } else {
5372 pmap = NULL; /* pmap is not locked */
5373 mtx_lock(&pvc->pvc_lock);
5374 pc = TAILQ_NEXT(pc_marker, pc_lru);
5375 if (pc == NULL ||
5376 pc->pc_pmap != next_pmap)
5377 continue;
5378 goto next_chunk;
5379 }
5380 } else if (start_di)
5381 pmap_delayed_invl_start();
5382 PG_G = pmap_global_bit(pmap);
5383 PG_A = pmap_accessed_bit(pmap);
5384 PG_M = pmap_modified_bit(pmap);
5385 PG_RW = pmap_rw_bit(pmap);
5386 if (restart)
5387 continue;
5388 }
5389
5390 /*
5391 * Destroy every non-wired, 4 KB page mapping in the chunk.
5392 */
5393 freed = 0;
5394 for (field = 0; field < _NPCM; field++) {
5395 for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5396 inuse != 0; inuse &= ~(1UL << bit)) {
5397 bit = bsfq(inuse);
5398 pv = &pc->pc_pventry[field * 64 + bit];
5399 va = pv->pv_va;
5400 pde = pmap_pde(pmap, va);
5401 if ((*pde & PG_PS) != 0)
5402 continue;
5403 pte = pmap_pde_to_pte(pde, va);
5404 if ((*pte & PG_W) != 0)
5405 continue;
5406 tpte = pte_load_clear(pte);
5407 if ((tpte & PG_G) != 0)
5408 pmap_invalidate_page(pmap, va);
5409 m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5410 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5411 vm_page_dirty(m);
5412 if ((tpte & PG_A) != 0)
5413 vm_page_aflag_set(m, PGA_REFERENCED);
5414 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5415 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5416 m->md.pv_gen++;
5417 if (TAILQ_EMPTY(&m->md.pv_list) &&
5418 (m->flags & PG_FICTITIOUS) == 0) {
5419 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5420 if (TAILQ_EMPTY(&pvh->pv_list)) {
5421 vm_page_aflag_clear(m,
5422 PGA_WRITEABLE);
5423 }
5424 }
5425 pmap_delayed_invl_page(m);
5426 pc->pc_map[field] |= 1UL << bit;
5427 pmap_unuse_pt(pmap, va, *pde, &free);
5428 freed++;
5429 }
5430 }
5431 if (freed == 0) {
5432 mtx_lock(&pvc->pvc_lock);
5433 goto next_chunk;
5434 }
5435 /* Every freed mapping is for a 4 KB page. */
5436 pmap_resident_count_adj(pmap, -freed);
5437 PV_STAT(counter_u64_add(pv_entry_frees, freed));
5438 PV_STAT(counter_u64_add(pv_entry_spare, freed));
5439 PV_STAT(counter_u64_add(pv_entry_count, -freed));
5440 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5441 if (pc_is_free(pc)) {
5442 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5443 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5444 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5445 /* Entire chunk is free; return it. */
5446 m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5447 dump_drop_page(m_pc->phys_addr);
5448 mtx_lock(&pvc->pvc_lock);
5449 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5450 break;
5451 }
5452 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5453 mtx_lock(&pvc->pvc_lock);
5454 /* One freed pv entry in locked_pmap is sufficient. */
5455 if (pmap == locked_pmap)
5456 break;
5457 next_chunk:
5458 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5459 TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5460 if (pvc->active_reclaims == 1 && pmap != NULL) {
5461 /*
5462 * Rotate the pv chunks list so that we do not
5463 * scan the same pv chunks that could not be
5464 * freed (because they contained a wired
5465 * and/or superpage mapping) on every
5466 * invocation of reclaim_pv_chunk().
5467 */
5468 while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5469 MPASS(pc->pc_pmap != NULL);
5470 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5471 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5472 }
5473 }
5474 }
5475 TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5476 TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5477 pvc->active_reclaims--;
5478 mtx_unlock(&pvc->pvc_lock);
5479 reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5480 if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5481 m_pc = SLIST_FIRST(&free);
5482 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5483 /* Recycle a freed page table page. */
5484 m_pc->ref_count = 1;
5485 }
5486 vm_page_free_pages_toq(&free, true);
5487 return (m_pc);
5488 }
5489
5490 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5491 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5492 {
5493 vm_page_t m;
5494 int i, domain;
5495
5496 domain = PCPU_GET(domain);
5497 for (i = 0; i < vm_ndomains; i++) {
5498 m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5499 if (m != NULL)
5500 break;
5501 domain = (domain + 1) % vm_ndomains;
5502 }
5503
5504 return (m);
5505 }
5506
5507 /*
5508 * free the pv_entry back to the free list
5509 */
5510 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5511 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5512 {
5513 struct pv_chunk *pc;
5514 int idx, field, bit;
5515
5516 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5517 PV_STAT(counter_u64_add(pv_entry_frees, 1));
5518 PV_STAT(counter_u64_add(pv_entry_spare, 1));
5519 PV_STAT(counter_u64_add(pv_entry_count, -1));
5520 pc = pv_to_chunk(pv);
5521 idx = pv - &pc->pc_pventry[0];
5522 field = idx / 64;
5523 bit = idx % 64;
5524 pc->pc_map[field] |= 1ul << bit;
5525 if (!pc_is_free(pc)) {
5526 /* 98% of the time, pc is already at the head of the list. */
5527 if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5528 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5529 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5530 }
5531 return;
5532 }
5533 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5534 free_pv_chunk(pc);
5535 }
5536
5537 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5538 free_pv_chunk_dequeued(struct pv_chunk *pc)
5539 {
5540 vm_page_t m;
5541
5542 PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5543 PV_STAT(counter_u64_add(pc_chunk_count, -1));
5544 PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5545 counter_u64_add(pv_page_count, -1);
5546 /* entire chunk is free, return it */
5547 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5548 dump_drop_page(m->phys_addr);
5549 vm_page_unwire_noq(m);
5550 vm_page_free(m);
5551 }
5552
5553 static void
free_pv_chunk(struct pv_chunk * pc)5554 free_pv_chunk(struct pv_chunk *pc)
5555 {
5556 struct pv_chunks_list *pvc;
5557
5558 pvc = &pv_chunks[pc_to_domain(pc)];
5559 mtx_lock(&pvc->pvc_lock);
5560 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5561 mtx_unlock(&pvc->pvc_lock);
5562 free_pv_chunk_dequeued(pc);
5563 }
5564
5565 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5566 free_pv_chunk_batch(struct pv_chunklist *batch)
5567 {
5568 struct pv_chunks_list *pvc;
5569 struct pv_chunk *pc, *npc;
5570 int i;
5571
5572 for (i = 0; i < vm_ndomains; i++) {
5573 if (TAILQ_EMPTY(&batch[i]))
5574 continue;
5575 pvc = &pv_chunks[i];
5576 mtx_lock(&pvc->pvc_lock);
5577 TAILQ_FOREACH(pc, &batch[i], pc_list) {
5578 TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5579 }
5580 mtx_unlock(&pvc->pvc_lock);
5581 }
5582
5583 for (i = 0; i < vm_ndomains; i++) {
5584 TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5585 free_pv_chunk_dequeued(pc);
5586 }
5587 }
5588 }
5589
5590 /*
5591 * Returns a new PV entry, allocating a new PV chunk from the system when
5592 * needed. If this PV chunk allocation fails and a PV list lock pointer was
5593 * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
5594 * returned.
5595 *
5596 * The given PV list lock may be released.
5597 */
5598 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5599 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5600 {
5601 struct pv_chunks_list *pvc;
5602 int bit, field;
5603 pv_entry_t pv;
5604 struct pv_chunk *pc;
5605 vm_page_t m;
5606
5607 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5608 PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5609 retry:
5610 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5611 if (pc != NULL) {
5612 for (field = 0; field < _NPCM; field++) {
5613 if (pc->pc_map[field]) {
5614 bit = bsfq(pc->pc_map[field]);
5615 break;
5616 }
5617 }
5618 if (field < _NPCM) {
5619 pv = &pc->pc_pventry[field * 64 + bit];
5620 pc->pc_map[field] &= ~(1ul << bit);
5621 /* If this was the last item, move it to tail */
5622 if (pc_is_full(pc)) {
5623 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5624 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5625 pc_list);
5626 }
5627 PV_STAT(counter_u64_add(pv_entry_count, 1));
5628 PV_STAT(counter_u64_add(pv_entry_spare, -1));
5629 return (pv);
5630 }
5631 }
5632 /* No free items, allocate another chunk */
5633 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5634 if (m == NULL) {
5635 if (lockp == NULL) {
5636 PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5637 return (NULL);
5638 }
5639 m = reclaim_pv_chunk(pmap, lockp);
5640 if (m == NULL)
5641 goto retry;
5642 } else
5643 counter_u64_add(pv_page_count, 1);
5644 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5645 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5646 dump_add_page(m->phys_addr);
5647 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5648 pc->pc_pmap = pmap;
5649 pc->pc_map[0] = PC_FREEN & ~1ul; /* preallocated bit 0 */
5650 pc->pc_map[1] = PC_FREEN;
5651 pc->pc_map[2] = PC_FREEL;
5652 pvc = &pv_chunks[vm_page_domain(m)];
5653 mtx_lock(&pvc->pvc_lock);
5654 TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5655 mtx_unlock(&pvc->pvc_lock);
5656 pv = &pc->pc_pventry[0];
5657 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5658 PV_STAT(counter_u64_add(pv_entry_count, 1));
5659 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5660 return (pv);
5661 }
5662
5663 /*
5664 * Returns the number of one bits within the given PV chunk map.
5665 *
5666 * The erratas for Intel processors state that "POPCNT Instruction May
5667 * Take Longer to Execute Than Expected". It is believed that the
5668 * issue is the spurious dependency on the destination register.
5669 * Provide a hint to the register rename logic that the destination
5670 * value is overwritten, by clearing it, as suggested in the
5671 * optimization manual. It should be cheap for unaffected processors
5672 * as well.
5673 *
5674 * Reference numbers for erratas are
5675 * 4th Gen Core: HSD146
5676 * 5th Gen Core: BDM85
5677 * 6th Gen Core: SKL029
5678 */
5679 static int
popcnt_pc_map_pq(uint64_t * map)5680 popcnt_pc_map_pq(uint64_t *map)
5681 {
5682 u_long result, tmp;
5683
5684 __asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5685 "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5686 "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5687 : "=&r" (result), "=&r" (tmp)
5688 : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5689 return (result);
5690 }
5691
5692 /*
5693 * Ensure that the number of spare PV entries in the specified pmap meets or
5694 * exceeds the given count, "needed".
5695 *
5696 * The given PV list lock may be released.
5697 */
5698 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5699 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5700 {
5701 struct pv_chunks_list *pvc;
5702 struct pch new_tail[PMAP_MEMDOM];
5703 struct pv_chunk *pc;
5704 vm_page_t m;
5705 int avail, free, i;
5706 bool reclaimed;
5707
5708 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5709 KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5710
5711 /*
5712 * Newly allocated PV chunks must be stored in a private list until
5713 * the required number of PV chunks have been allocated. Otherwise,
5714 * reclaim_pv_chunk() could recycle one of these chunks. In
5715 * contrast, these chunks must be added to the pmap upon allocation.
5716 */
5717 for (i = 0; i < PMAP_MEMDOM; i++)
5718 TAILQ_INIT(&new_tail[i]);
5719 retry:
5720 avail = 0;
5721 TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5722 #ifndef __POPCNT__
5723 if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5724 bit_count((bitstr_t *)pc->pc_map, 0,
5725 sizeof(pc->pc_map) * NBBY, &free);
5726 else
5727 #endif
5728 free = popcnt_pc_map_pq(pc->pc_map);
5729 if (free == 0)
5730 break;
5731 avail += free;
5732 if (avail >= needed)
5733 break;
5734 }
5735 for (reclaimed = false; avail < needed; avail += _NPCPV) {
5736 m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5737 if (m == NULL) {
5738 m = reclaim_pv_chunk(pmap, lockp);
5739 if (m == NULL)
5740 goto retry;
5741 reclaimed = true;
5742 } else
5743 counter_u64_add(pv_page_count, 1);
5744 PV_STAT(counter_u64_add(pc_chunk_count, 1));
5745 PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5746 dump_add_page(m->phys_addr);
5747 pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5748 pc->pc_pmap = pmap;
5749 pc->pc_map[0] = PC_FREEN;
5750 pc->pc_map[1] = PC_FREEN;
5751 pc->pc_map[2] = PC_FREEL;
5752 TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5753 TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5754 PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5755
5756 /*
5757 * The reclaim might have freed a chunk from the current pmap.
5758 * If that chunk contained available entries, we need to
5759 * re-count the number of available entries.
5760 */
5761 if (reclaimed)
5762 goto retry;
5763 }
5764 for (i = 0; i < vm_ndomains; i++) {
5765 if (TAILQ_EMPTY(&new_tail[i]))
5766 continue;
5767 pvc = &pv_chunks[i];
5768 mtx_lock(&pvc->pvc_lock);
5769 TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5770 mtx_unlock(&pvc->pvc_lock);
5771 }
5772 }
5773
5774 /*
5775 * First find and then remove the pv entry for the specified pmap and virtual
5776 * address from the specified pv list. Returns the pv entry if found and NULL
5777 * otherwise. This operation can be performed on pv lists for either 4KB or
5778 * 2MB page mappings.
5779 */
5780 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5781 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5782 {
5783 pv_entry_t pv;
5784
5785 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5786 if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5787 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5788 pvh->pv_gen++;
5789 break;
5790 }
5791 }
5792 return (pv);
5793 }
5794
5795 /*
5796 * After demotion from a 2MB page mapping to 512 4KB page mappings,
5797 * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5798 * entries for each of the 4KB page mappings.
5799 */
5800 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5801 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5802 struct rwlock **lockp)
5803 {
5804 struct md_page *pvh;
5805 struct pv_chunk *pc;
5806 pv_entry_t pv;
5807 vm_offset_t va_last;
5808 vm_page_t m;
5809 int bit, field;
5810
5811 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5812 KASSERT((pa & PDRMASK) == 0,
5813 ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5814 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5815
5816 /*
5817 * Transfer the 2mpage's pv entry for this mapping to the first
5818 * page's pv list. Once this transfer begins, the pv list lock
5819 * must not be released until the last pv entry is reinstantiated.
5820 */
5821 pvh = pa_to_pvh(pa);
5822 va = trunc_2mpage(va);
5823 pv = pmap_pvh_remove(pvh, pmap, va);
5824 KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5825 m = PHYS_TO_VM_PAGE(pa);
5826 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5827 m->md.pv_gen++;
5828 /* Instantiate the remaining NPTEPG - 1 pv entries. */
5829 PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5830 va_last = va + NBPDR - PAGE_SIZE;
5831 for (;;) {
5832 pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5833 KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5834 for (field = 0; field < _NPCM; field++) {
5835 while (pc->pc_map[field]) {
5836 bit = bsfq(pc->pc_map[field]);
5837 pc->pc_map[field] &= ~(1ul << bit);
5838 pv = &pc->pc_pventry[field * 64 + bit];
5839 va += PAGE_SIZE;
5840 pv->pv_va = va;
5841 m++;
5842 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5843 ("pmap_pv_demote_pde: page %p is not managed", m));
5844 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5845 m->md.pv_gen++;
5846 if (va == va_last)
5847 goto out;
5848 }
5849 }
5850 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5851 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5852 }
5853 out:
5854 if (pc_is_full(pc)) {
5855 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5856 TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5857 }
5858 PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5859 PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5860 }
5861
5862 #if VM_NRESERVLEVEL > 0
5863 /*
5864 * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5865 * replace the many pv entries for the 4KB page mappings by a single pv entry
5866 * for the 2MB page mapping.
5867 */
5868 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5869 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5870 struct rwlock **lockp)
5871 {
5872 struct md_page *pvh;
5873 pv_entry_t pv;
5874 vm_offset_t va_last;
5875 vm_page_t m;
5876
5877 KASSERT((pa & PDRMASK) == 0,
5878 ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5879 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5880
5881 /*
5882 * Transfer the first page's pv entry for this mapping to the 2mpage's
5883 * pv list. Aside from avoiding the cost of a call to get_pv_entry(),
5884 * a transfer avoids the possibility that get_pv_entry() calls
5885 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5886 * mappings that is being promoted.
5887 */
5888 m = PHYS_TO_VM_PAGE(pa);
5889 va = trunc_2mpage(va);
5890 pv = pmap_pvh_remove(&m->md, pmap, va);
5891 KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5892 pvh = pa_to_pvh(pa);
5893 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5894 pvh->pv_gen++;
5895 /* Free the remaining NPTEPG - 1 pv entries. */
5896 va_last = va + NBPDR - PAGE_SIZE;
5897 do {
5898 m++;
5899 va += PAGE_SIZE;
5900 pmap_pvh_free(&m->md, pmap, va);
5901 } while (va < va_last);
5902 }
5903 #endif /* VM_NRESERVLEVEL > 0 */
5904
5905 /*
5906 * First find and then destroy the pv entry for the specified pmap and virtual
5907 * address. This operation can be performed on pv lists for either 4KB or 2MB
5908 * page mappings.
5909 */
5910 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5911 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5912 {
5913 pv_entry_t pv;
5914
5915 pv = pmap_pvh_remove(pvh, pmap, va);
5916 KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5917 free_pv_entry(pmap, pv);
5918 }
5919
5920 /*
5921 * Conditionally create the PV entry for a 4KB page mapping if the required
5922 * memory can be allocated without resorting to reclamation.
5923 */
5924 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5925 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5926 struct rwlock **lockp)
5927 {
5928 pv_entry_t pv;
5929
5930 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5931 /* Pass NULL instead of the lock pointer to disable reclamation. */
5932 if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5933 pv->pv_va = va;
5934 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5935 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5936 m->md.pv_gen++;
5937 return (true);
5938 } else
5939 return (false);
5940 }
5941
5942 /*
5943 * Create the PV entry for a 2MB page mapping. Always returns true unless the
5944 * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
5945 * false if the PV entry cannot be allocated without resorting to reclamation.
5946 */
5947 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5948 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5949 struct rwlock **lockp)
5950 {
5951 struct md_page *pvh;
5952 pv_entry_t pv;
5953 vm_paddr_t pa;
5954
5955 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5956 /* Pass NULL instead of the lock pointer to disable reclamation. */
5957 if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5958 NULL : lockp)) == NULL)
5959 return (false);
5960 pv->pv_va = va;
5961 pa = pde & PG_PS_FRAME;
5962 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5963 pvh = pa_to_pvh(pa);
5964 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5965 pvh->pv_gen++;
5966 return (true);
5967 }
5968
5969 /*
5970 * Fills a page table page with mappings to consecutive physical pages.
5971 */
5972 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5973 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5974 {
5975 pt_entry_t *pte;
5976
5977 for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5978 *pte = newpte;
5979 newpte += PAGE_SIZE;
5980 }
5981 }
5982
5983 /*
5984 * Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
5985 * mapping is invalidated.
5986 */
5987 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5988 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5989 {
5990 struct rwlock *lock;
5991 bool rv;
5992
5993 lock = NULL;
5994 rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5995 if (lock != NULL)
5996 rw_wunlock(lock);
5997 return (rv);
5998 }
5999
6000 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)6001 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
6002 {
6003 #ifdef INVARIANTS
6004 #ifdef DIAGNOSTIC
6005 pt_entry_t *xpte, *ypte;
6006
6007 for (xpte = firstpte; xpte < firstpte + NPTEPG;
6008 xpte++, newpte += PAGE_SIZE) {
6009 if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
6010 printf("pmap_demote_pde: xpte %zd and newpte map "
6011 "different pages: found %#lx, expected %#lx\n",
6012 xpte - firstpte, *xpte, newpte);
6013 printf("page table dump\n");
6014 for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
6015 printf("%zd %#lx\n", ypte - firstpte, *ypte);
6016 panic("firstpte");
6017 }
6018 }
6019 #else
6020 KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
6021 ("pmap_demote_pde: firstpte and newpte map different physical"
6022 " addresses"));
6023 #endif
6024 #endif
6025 }
6026
6027 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6028 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6029 pd_entry_t oldpde, struct rwlock **lockp)
6030 {
6031 struct spglist free;
6032 vm_offset_t sva;
6033
6034 SLIST_INIT(&free);
6035 sva = trunc_2mpage(va);
6036 pmap_remove_pde(pmap, pde, sva, &free, lockp);
6037 if ((oldpde & pmap_global_bit(pmap)) == 0)
6038 pmap_invalidate_pde_page(pmap, sva, oldpde);
6039 vm_page_free_pages_toq(&free, true);
6040 CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6041 va, pmap);
6042 }
6043
6044 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6045 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6046 struct rwlock **lockp)
6047 {
6048 pd_entry_t newpde, oldpde;
6049 pt_entry_t *firstpte, newpte;
6050 pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6051 vm_paddr_t mptepa;
6052 vm_page_t mpte;
6053 int PG_PTE_CACHE;
6054 bool in_kernel;
6055
6056 PG_A = pmap_accessed_bit(pmap);
6057 PG_G = pmap_global_bit(pmap);
6058 PG_M = pmap_modified_bit(pmap);
6059 PG_RW = pmap_rw_bit(pmap);
6060 PG_V = pmap_valid_bit(pmap);
6061 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6062 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6063
6064 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6065 in_kernel = va >= VM_MAXUSER_ADDRESS;
6066 oldpde = *pde;
6067 KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6068 ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6069
6070 /*
6071 * Invalidate the 2MB page mapping and return "failure" if the
6072 * mapping was never accessed.
6073 */
6074 if ((oldpde & PG_A) == 0) {
6075 KASSERT((oldpde & PG_W) == 0,
6076 ("pmap_demote_pde: a wired mapping is missing PG_A"));
6077 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6078 return (false);
6079 }
6080
6081 mpte = pmap_remove_pt_page(pmap, va);
6082 if (mpte == NULL) {
6083 KASSERT((oldpde & PG_W) == 0,
6084 ("pmap_demote_pde: page table page for a wired mapping"
6085 " is missing"));
6086
6087 /*
6088 * If the page table page is missing and the mapping
6089 * is for a kernel address, the mapping must belong to
6090 * the direct map. Page table pages are preallocated
6091 * for every other part of the kernel address space,
6092 * so the direct map region is the only part of the
6093 * kernel address space that must be handled here.
6094 */
6095 KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6096 va < DMAP_MAX_ADDRESS),
6097 ("pmap_demote_pde: No saved mpte for va %#lx", va));
6098
6099 /*
6100 * If the 2MB page mapping belongs to the direct map
6101 * region of the kernel's address space, then the page
6102 * allocation request specifies the highest possible
6103 * priority (VM_ALLOC_INTERRUPT). Otherwise, the
6104 * priority is normal.
6105 */
6106 mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6107 (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6108
6109 /*
6110 * If the allocation of the new page table page fails,
6111 * invalidate the 2MB page mapping and return "failure".
6112 */
6113 if (mpte == NULL) {
6114 pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6115 return (false);
6116 }
6117
6118 if (!in_kernel)
6119 mpte->ref_count = NPTEPG;
6120 }
6121 mptepa = VM_PAGE_TO_PHYS(mpte);
6122 firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6123 newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6124 KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6125 ("pmap_demote_pde: oldpde is missing PG_M"));
6126 newpte = oldpde & ~PG_PS;
6127 newpte = pmap_swap_pat(pmap, newpte);
6128
6129 /*
6130 * If the PTP is not leftover from an earlier promotion or it does not
6131 * have PG_A set in every PTE, then fill it. The new PTEs will all
6132 * have PG_A set.
6133 */
6134 if (!vm_page_all_valid(mpte))
6135 pmap_fill_ptp(firstpte, newpte);
6136
6137 pmap_demote_pde_check(firstpte, newpte);
6138
6139 /*
6140 * If the mapping has changed attributes, update the PTEs.
6141 */
6142 if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6143 pmap_fill_ptp(firstpte, newpte);
6144
6145 /*
6146 * The spare PV entries must be reserved prior to demoting the
6147 * mapping, that is, prior to changing the PDE. Otherwise, the state
6148 * of the PDE and the PV lists will be inconsistent, which can result
6149 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6150 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6151 * PV entry for the 2MB page mapping that is being demoted.
6152 */
6153 if ((oldpde & PG_MANAGED) != 0)
6154 reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6155
6156 /*
6157 * Demote the mapping. This pmap is locked. The old PDE has
6158 * PG_A set. If the old PDE has PG_RW set, it also has PG_M
6159 * set. Thus, there is no danger of a race with another
6160 * processor changing the setting of PG_A and/or PG_M between
6161 * the read above and the store below.
6162 */
6163 if (workaround_erratum383)
6164 pmap_update_pde(pmap, va, pde, newpde);
6165 else
6166 pde_store(pde, newpde);
6167
6168 /*
6169 * Invalidate a stale recursive mapping of the page table page.
6170 */
6171 if (in_kernel)
6172 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6173
6174 /*
6175 * Demote the PV entry.
6176 */
6177 if ((oldpde & PG_MANAGED) != 0)
6178 pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6179
6180 counter_u64_add(pmap_pde_demotions, 1);
6181 CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6182 va, pmap);
6183 return (true);
6184 }
6185
6186 /*
6187 * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6188 */
6189 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6190 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6191 {
6192 pd_entry_t newpde;
6193 vm_paddr_t mptepa;
6194 vm_page_t mpte;
6195
6196 KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6197 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6198 mpte = pmap_remove_pt_page(pmap, va);
6199 if (mpte == NULL)
6200 panic("pmap_remove_kernel_pde: Missing pt page.");
6201
6202 mptepa = VM_PAGE_TO_PHYS(mpte);
6203 newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6204
6205 /*
6206 * If this page table page was unmapped by a promotion, then it
6207 * contains valid mappings. Zero it to invalidate those mappings.
6208 */
6209 if (vm_page_any_valid(mpte))
6210 pagezero((void *)PHYS_TO_DMAP(mptepa));
6211
6212 /*
6213 * Demote the mapping.
6214 */
6215 if (workaround_erratum383)
6216 pmap_update_pde(pmap, va, pde, newpde);
6217 else
6218 pde_store(pde, newpde);
6219
6220 /*
6221 * Invalidate a stale recursive mapping of the page table page.
6222 */
6223 pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6224 }
6225
6226 /*
6227 * pmap_remove_pde: do the things to unmap a superpage in a process
6228 */
6229 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6230 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6231 struct spglist *free, struct rwlock **lockp)
6232 {
6233 struct md_page *pvh;
6234 pd_entry_t oldpde;
6235 vm_offset_t eva, va;
6236 vm_page_t m, mpte;
6237 pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6238
6239 PG_G = pmap_global_bit(pmap);
6240 PG_A = pmap_accessed_bit(pmap);
6241 PG_M = pmap_modified_bit(pmap);
6242 PG_RW = pmap_rw_bit(pmap);
6243
6244 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6245 KASSERT((sva & PDRMASK) == 0,
6246 ("pmap_remove_pde: sva is not 2mpage aligned"));
6247 oldpde = pte_load_clear(pdq);
6248 if (oldpde & PG_W)
6249 pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6250 if ((oldpde & PG_G) != 0)
6251 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6252 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6253 if (oldpde & PG_MANAGED) {
6254 CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6255 pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6256 pmap_pvh_free(pvh, pmap, sva);
6257 eva = sva + NBPDR;
6258 for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6259 va < eva; va += PAGE_SIZE, m++) {
6260 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6261 vm_page_dirty(m);
6262 if (oldpde & PG_A)
6263 vm_page_aflag_set(m, PGA_REFERENCED);
6264 if (TAILQ_EMPTY(&m->md.pv_list) &&
6265 TAILQ_EMPTY(&pvh->pv_list))
6266 vm_page_aflag_clear(m, PGA_WRITEABLE);
6267 pmap_delayed_invl_page(m);
6268 }
6269 }
6270 if (pmap == kernel_pmap) {
6271 pmap_remove_kernel_pde(pmap, pdq, sva);
6272 } else {
6273 mpte = pmap_remove_pt_page(pmap, sva);
6274 if (mpte != NULL) {
6275 KASSERT(vm_page_any_valid(mpte),
6276 ("pmap_remove_pde: pte page not promoted"));
6277 pmap_pt_page_count_adj(pmap, -1);
6278 KASSERT(mpte->ref_count == NPTEPG,
6279 ("pmap_remove_pde: pte page ref count error"));
6280 mpte->ref_count = 0;
6281 pmap_add_delayed_free_list(mpte, free, false);
6282 }
6283 }
6284 return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6285 }
6286
6287 /*
6288 * pmap_remove_pte: do the things to unmap a page in a process
6289 */
6290 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6291 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6292 pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6293 {
6294 struct md_page *pvh;
6295 pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6296 vm_page_t m;
6297
6298 PG_A = pmap_accessed_bit(pmap);
6299 PG_M = pmap_modified_bit(pmap);
6300 PG_RW = pmap_rw_bit(pmap);
6301
6302 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6303 oldpte = pte_load_clear(ptq);
6304 if (oldpte & PG_W)
6305 pmap->pm_stats.wired_count -= 1;
6306 pmap_resident_count_adj(pmap, -1);
6307 if (oldpte & PG_MANAGED) {
6308 m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6309 if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6310 vm_page_dirty(m);
6311 if (oldpte & PG_A)
6312 vm_page_aflag_set(m, PGA_REFERENCED);
6313 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6314 pmap_pvh_free(&m->md, pmap, va);
6315 if (TAILQ_EMPTY(&m->md.pv_list) &&
6316 (m->flags & PG_FICTITIOUS) == 0) {
6317 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6318 if (TAILQ_EMPTY(&pvh->pv_list))
6319 vm_page_aflag_clear(m, PGA_WRITEABLE);
6320 }
6321 pmap_delayed_invl_page(m);
6322 }
6323 return (pmap_unuse_pt(pmap, va, ptepde, free));
6324 }
6325
6326 /*
6327 * Remove a single page from a process address space
6328 */
6329 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6330 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6331 struct spglist *free)
6332 {
6333 struct rwlock *lock;
6334 pt_entry_t *pte, PG_V;
6335
6336 PG_V = pmap_valid_bit(pmap);
6337 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6338 if ((*pde & PG_V) == 0)
6339 return;
6340 pte = pmap_pde_to_pte(pde, va);
6341 if ((*pte & PG_V) == 0)
6342 return;
6343 lock = NULL;
6344 pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6345 if (lock != NULL)
6346 rw_wunlock(lock);
6347 pmap_invalidate_page(pmap, va);
6348 }
6349
6350 /*
6351 * Removes the specified range of addresses from the page table page.
6352 */
6353 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6354 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6355 pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6356 {
6357 pt_entry_t PG_G, *pte;
6358 vm_offset_t va;
6359 bool anyvalid;
6360
6361 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6362 PG_G = pmap_global_bit(pmap);
6363 anyvalid = false;
6364 va = eva;
6365 for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6366 sva += PAGE_SIZE) {
6367 if (*pte == 0) {
6368 if (va != eva) {
6369 pmap_invalidate_range(pmap, va, sva);
6370 va = eva;
6371 }
6372 continue;
6373 }
6374 if ((*pte & PG_G) == 0)
6375 anyvalid = true;
6376 else if (va == eva)
6377 va = sva;
6378 if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6379 sva += PAGE_SIZE;
6380 break;
6381 }
6382 }
6383 if (va != eva)
6384 pmap_invalidate_range(pmap, va, sva);
6385 return (anyvalid);
6386 }
6387
6388 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6389 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6390 {
6391 struct rwlock *lock;
6392 vm_page_t mt;
6393 vm_offset_t va_next;
6394 pml5_entry_t *pml5e;
6395 pml4_entry_t *pml4e;
6396 pdp_entry_t *pdpe;
6397 pd_entry_t ptpaddr, *pde;
6398 pt_entry_t PG_G, PG_V;
6399 struct spglist free;
6400 int anyvalid;
6401
6402 PG_G = pmap_global_bit(pmap);
6403 PG_V = pmap_valid_bit(pmap);
6404
6405 /*
6406 * If there are no resident pages besides the top level page
6407 * table page(s), there is nothing to do. Kernel pmap always
6408 * accounts whole preloaded area as resident, which makes its
6409 * resident count > 2.
6410 * Perform an unsynchronized read. This is, however, safe.
6411 */
6412 if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6413 1 : 0))
6414 return;
6415
6416 anyvalid = 0;
6417 SLIST_INIT(&free);
6418
6419 pmap_delayed_invl_start();
6420 PMAP_LOCK(pmap);
6421 if (map_delete)
6422 pmap_pkru_on_remove(pmap, sva, eva);
6423
6424 /*
6425 * special handling of removing one page. a very
6426 * common operation and easy to short circuit some
6427 * code.
6428 */
6429 if (sva + PAGE_SIZE == eva) {
6430 pde = pmap_pde(pmap, sva);
6431 if (pde && (*pde & PG_PS) == 0) {
6432 pmap_remove_page(pmap, sva, pde, &free);
6433 goto out;
6434 }
6435 }
6436
6437 lock = NULL;
6438 for (; sva < eva; sva = va_next) {
6439 if (pmap->pm_stats.resident_count == 0)
6440 break;
6441
6442 if (pmap_is_la57(pmap)) {
6443 pml5e = pmap_pml5e(pmap, sva);
6444 if ((*pml5e & PG_V) == 0) {
6445 va_next = (sva + NBPML5) & ~PML5MASK;
6446 if (va_next < sva)
6447 va_next = eva;
6448 continue;
6449 }
6450 pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6451 } else {
6452 pml4e = pmap_pml4e(pmap, sva);
6453 }
6454 if ((*pml4e & PG_V) == 0) {
6455 va_next = (sva + NBPML4) & ~PML4MASK;
6456 if (va_next < sva)
6457 va_next = eva;
6458 continue;
6459 }
6460
6461 va_next = (sva + NBPDP) & ~PDPMASK;
6462 if (va_next < sva)
6463 va_next = eva;
6464 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6465 if ((*pdpe & PG_V) == 0)
6466 continue;
6467 if ((*pdpe & PG_PS) != 0) {
6468 KASSERT(va_next <= eva,
6469 ("partial update of non-transparent 1G mapping "
6470 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6471 *pdpe, sva, eva, va_next));
6472 MPASS(pmap != kernel_pmap); /* XXXKIB */
6473 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6474 anyvalid = 1;
6475 *pdpe = 0;
6476 pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6477 mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6478 pmap_unwire_ptp(pmap, sva, mt, &free);
6479 continue;
6480 }
6481
6482 /*
6483 * Calculate index for next page table.
6484 */
6485 va_next = (sva + NBPDR) & ~PDRMASK;
6486 if (va_next < sva)
6487 va_next = eva;
6488
6489 pde = pmap_pdpe_to_pde(pdpe, sva);
6490 ptpaddr = *pde;
6491
6492 /*
6493 * Weed out invalid mappings.
6494 */
6495 if (ptpaddr == 0)
6496 continue;
6497
6498 /*
6499 * Check for large page.
6500 */
6501 if ((ptpaddr & PG_PS) != 0) {
6502 /*
6503 * Are we removing the entire large page? If not,
6504 * demote the mapping and fall through.
6505 */
6506 if (sva + NBPDR == va_next && eva >= va_next) {
6507 /*
6508 * The TLB entry for a PG_G mapping is
6509 * invalidated by pmap_remove_pde().
6510 */
6511 if ((ptpaddr & PG_G) == 0)
6512 anyvalid = 1;
6513 pmap_remove_pde(pmap, pde, sva, &free, &lock);
6514 continue;
6515 } else if (!pmap_demote_pde_locked(pmap, pde, sva,
6516 &lock)) {
6517 /* The large page mapping was destroyed. */
6518 continue;
6519 } else
6520 ptpaddr = *pde;
6521 }
6522
6523 /*
6524 * Limit our scan to either the end of the va represented
6525 * by the current page table page, or to the end of the
6526 * range being removed.
6527 */
6528 if (va_next > eva)
6529 va_next = eva;
6530
6531 if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6532 anyvalid = 1;
6533 }
6534 if (lock != NULL)
6535 rw_wunlock(lock);
6536 out:
6537 if (anyvalid)
6538 pmap_invalidate_all(pmap);
6539 PMAP_UNLOCK(pmap);
6540 pmap_delayed_invl_finish();
6541 vm_page_free_pages_toq(&free, true);
6542 }
6543
6544 /*
6545 * Remove the given range of addresses from the specified map.
6546 *
6547 * It is assumed that the start and end are properly
6548 * rounded to the page size.
6549 */
6550 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6551 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6552 {
6553 pmap_remove1(pmap, sva, eva, false);
6554 }
6555
6556 /*
6557 * Remove the given range of addresses as part of a logical unmap
6558 * operation. This has the effect of calling pmap_remove(), but
6559 * also clears any metadata that should persist for the lifetime
6560 * of a logical mapping.
6561 */
6562 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6563 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6564 {
6565 pmap_remove1(pmap, sva, eva, true);
6566 }
6567
6568 /*
6569 * Routine: pmap_remove_all
6570 * Function:
6571 * Removes this physical page from
6572 * all physical maps in which it resides.
6573 * Reflects back modify bits to the pager.
6574 *
6575 * Notes:
6576 * Original versions of this routine were very
6577 * inefficient because they iteratively called
6578 * pmap_remove (slow...)
6579 */
6580
6581 void
pmap_remove_all(vm_page_t m)6582 pmap_remove_all(vm_page_t m)
6583 {
6584 struct md_page *pvh;
6585 pv_entry_t pv;
6586 pmap_t pmap;
6587 struct rwlock *lock;
6588 pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6589 pd_entry_t *pde;
6590 vm_offset_t va;
6591 struct spglist free;
6592 int pvh_gen, md_gen;
6593
6594 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6595 ("pmap_remove_all: page %p is not managed", m));
6596 SLIST_INIT(&free);
6597 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6598 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6599 pa_to_pvh(VM_PAGE_TO_PHYS(m));
6600 rw_wlock(lock);
6601 retry:
6602 while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6603 pmap = PV_PMAP(pv);
6604 if (!PMAP_TRYLOCK(pmap)) {
6605 pvh_gen = pvh->pv_gen;
6606 rw_wunlock(lock);
6607 PMAP_LOCK(pmap);
6608 rw_wlock(lock);
6609 if (pvh_gen != pvh->pv_gen) {
6610 PMAP_UNLOCK(pmap);
6611 goto retry;
6612 }
6613 }
6614 va = pv->pv_va;
6615 pde = pmap_pde(pmap, va);
6616 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6617 PMAP_UNLOCK(pmap);
6618 }
6619 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6620 pmap = PV_PMAP(pv);
6621 if (!PMAP_TRYLOCK(pmap)) {
6622 pvh_gen = pvh->pv_gen;
6623 md_gen = m->md.pv_gen;
6624 rw_wunlock(lock);
6625 PMAP_LOCK(pmap);
6626 rw_wlock(lock);
6627 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6628 PMAP_UNLOCK(pmap);
6629 goto retry;
6630 }
6631 }
6632 PG_A = pmap_accessed_bit(pmap);
6633 PG_M = pmap_modified_bit(pmap);
6634 PG_RW = pmap_rw_bit(pmap);
6635 pmap_resident_count_adj(pmap, -1);
6636 pde = pmap_pde(pmap, pv->pv_va);
6637 KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6638 " a 2mpage in page %p's pv list", m));
6639 pte = pmap_pde_to_pte(pde, pv->pv_va);
6640 tpte = pte_load_clear(pte);
6641 if (tpte & PG_W)
6642 pmap->pm_stats.wired_count--;
6643 if (tpte & PG_A)
6644 vm_page_aflag_set(m, PGA_REFERENCED);
6645
6646 /*
6647 * Update the vm_page_t clean and reference bits.
6648 */
6649 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6650 vm_page_dirty(m);
6651 pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6652 pmap_invalidate_page(pmap, pv->pv_va);
6653 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6654 m->md.pv_gen++;
6655 free_pv_entry(pmap, pv);
6656 PMAP_UNLOCK(pmap);
6657 }
6658 vm_page_aflag_clear(m, PGA_WRITEABLE);
6659 rw_wunlock(lock);
6660 pmap_delayed_invl_wait(m);
6661 vm_page_free_pages_toq(&free, true);
6662 }
6663
6664 /*
6665 * pmap_protect_pde: do the things to protect a 2mpage in a process
6666 */
6667 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6668 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6669 {
6670 pd_entry_t newpde, oldpde;
6671 vm_page_t m, mt;
6672 bool anychanged;
6673 pt_entry_t PG_G, PG_M, PG_RW;
6674
6675 PG_G = pmap_global_bit(pmap);
6676 PG_M = pmap_modified_bit(pmap);
6677 PG_RW = pmap_rw_bit(pmap);
6678
6679 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6680 KASSERT((sva & PDRMASK) == 0,
6681 ("pmap_protect_pde: sva is not 2mpage aligned"));
6682 anychanged = false;
6683 retry:
6684 oldpde = newpde = *pde;
6685 if ((prot & VM_PROT_WRITE) == 0) {
6686 if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6687 (PG_MANAGED | PG_M | PG_RW)) {
6688 m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6689 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6690 vm_page_dirty(mt);
6691 }
6692 newpde &= ~(PG_RW | PG_M);
6693 }
6694 if ((prot & VM_PROT_EXECUTE) == 0)
6695 newpde |= pg_nx;
6696 if (newpde != oldpde) {
6697 /*
6698 * As an optimization to future operations on this PDE, clear
6699 * PG_PROMOTED. The impending invalidation will remove any
6700 * lingering 4KB page mappings from the TLB.
6701 */
6702 if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6703 goto retry;
6704 if ((oldpde & PG_G) != 0)
6705 pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6706 else
6707 anychanged = true;
6708 }
6709 return (anychanged);
6710 }
6711
6712 /*
6713 * Set the physical protection on the
6714 * specified range of this map as requested.
6715 */
6716 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6717 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6718 {
6719 vm_page_t m;
6720 vm_offset_t va_next;
6721 pml4_entry_t *pml4e;
6722 pdp_entry_t *pdpe;
6723 pd_entry_t ptpaddr, *pde;
6724 pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6725 pt_entry_t obits, pbits;
6726 bool anychanged;
6727
6728 KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6729 if (prot == VM_PROT_NONE) {
6730 pmap_remove(pmap, sva, eva);
6731 return;
6732 }
6733
6734 if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6735 (VM_PROT_WRITE|VM_PROT_EXECUTE))
6736 return;
6737
6738 PG_G = pmap_global_bit(pmap);
6739 PG_M = pmap_modified_bit(pmap);
6740 PG_V = pmap_valid_bit(pmap);
6741 PG_RW = pmap_rw_bit(pmap);
6742 anychanged = false;
6743
6744 /*
6745 * Although this function delays and batches the invalidation
6746 * of stale TLB entries, it does not need to call
6747 * pmap_delayed_invl_start() and
6748 * pmap_delayed_invl_finish(), because it does not
6749 * ordinarily destroy mappings. Stale TLB entries from
6750 * protection-only changes need only be invalidated before the
6751 * pmap lock is released, because protection-only changes do
6752 * not destroy PV entries. Even operations that iterate over
6753 * a physical page's PV list of mappings, like
6754 * pmap_remove_write(), acquire the pmap lock for each
6755 * mapping. Consequently, for protection-only changes, the
6756 * pmap lock suffices to synchronize both page table and TLB
6757 * updates.
6758 *
6759 * This function only destroys a mapping if pmap_demote_pde()
6760 * fails. In that case, stale TLB entries are immediately
6761 * invalidated.
6762 */
6763
6764 PMAP_LOCK(pmap);
6765 for (; sva < eva; sva = va_next) {
6766 pml4e = pmap_pml4e(pmap, sva);
6767 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6768 va_next = (sva + NBPML4) & ~PML4MASK;
6769 if (va_next < sva)
6770 va_next = eva;
6771 continue;
6772 }
6773
6774 va_next = (sva + NBPDP) & ~PDPMASK;
6775 if (va_next < sva)
6776 va_next = eva;
6777 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6778 if ((*pdpe & PG_V) == 0)
6779 continue;
6780 if ((*pdpe & PG_PS) != 0) {
6781 KASSERT(va_next <= eva,
6782 ("partial update of non-transparent 1G mapping "
6783 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6784 *pdpe, sva, eva, va_next));
6785 retry_pdpe:
6786 obits = pbits = *pdpe;
6787 MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6788 MPASS(pmap != kernel_pmap); /* XXXKIB */
6789 if ((prot & VM_PROT_WRITE) == 0)
6790 pbits &= ~(PG_RW | PG_M);
6791 if ((prot & VM_PROT_EXECUTE) == 0)
6792 pbits |= pg_nx;
6793
6794 if (pbits != obits) {
6795 if (!atomic_cmpset_long(pdpe, obits, pbits))
6796 /* PG_PS cannot be cleared under us, */
6797 goto retry_pdpe;
6798 anychanged = true;
6799 }
6800 continue;
6801 }
6802
6803 va_next = (sva + NBPDR) & ~PDRMASK;
6804 if (va_next < sva)
6805 va_next = eva;
6806
6807 pde = pmap_pdpe_to_pde(pdpe, sva);
6808 ptpaddr = *pde;
6809
6810 /*
6811 * Weed out invalid mappings.
6812 */
6813 if (ptpaddr == 0)
6814 continue;
6815
6816 /*
6817 * Check for large page.
6818 */
6819 if ((ptpaddr & PG_PS) != 0) {
6820 /*
6821 * Are we protecting the entire large page?
6822 */
6823 if (sva + NBPDR == va_next && eva >= va_next) {
6824 /*
6825 * The TLB entry for a PG_G mapping is
6826 * invalidated by pmap_protect_pde().
6827 */
6828 if (pmap_protect_pde(pmap, pde, sva, prot))
6829 anychanged = true;
6830 continue;
6831 }
6832
6833 /*
6834 * Does the large page mapping need to change? If so,
6835 * demote it and fall through.
6836 */
6837 pbits = ptpaddr;
6838 if ((prot & VM_PROT_WRITE) == 0)
6839 pbits &= ~(PG_RW | PG_M);
6840 if ((prot & VM_PROT_EXECUTE) == 0)
6841 pbits |= pg_nx;
6842 if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6843 sva)) {
6844 /*
6845 * Either the large page mapping doesn't need
6846 * to change, or it was destroyed during
6847 * demotion.
6848 */
6849 continue;
6850 }
6851 }
6852
6853 if (va_next > eva)
6854 va_next = eva;
6855
6856 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6857 sva += PAGE_SIZE) {
6858 retry:
6859 obits = pbits = *pte;
6860 if ((pbits & PG_V) == 0)
6861 continue;
6862
6863 if ((prot & VM_PROT_WRITE) == 0) {
6864 if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6865 (PG_MANAGED | PG_M | PG_RW)) {
6866 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6867 vm_page_dirty(m);
6868 }
6869 pbits &= ~(PG_RW | PG_M);
6870 }
6871 if ((prot & VM_PROT_EXECUTE) == 0)
6872 pbits |= pg_nx;
6873
6874 if (pbits != obits) {
6875 if (!atomic_cmpset_long(pte, obits, pbits))
6876 goto retry;
6877 if (obits & PG_G)
6878 pmap_invalidate_page(pmap, sva);
6879 else
6880 anychanged = true;
6881 }
6882 }
6883 }
6884 if (anychanged)
6885 pmap_invalidate_all(pmap);
6886 PMAP_UNLOCK(pmap);
6887 }
6888
6889 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6890 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6891 {
6892
6893 if (pmap->pm_type != PT_EPT)
6894 return (false);
6895 return ((pde & EPT_PG_EXECUTE) != 0);
6896 }
6897
6898 #if VM_NRESERVLEVEL > 0
6899 /*
6900 * Tries to promote the 512, contiguous 4KB page mappings that are within a
6901 * single page table page (PTP) to a single 2MB page mapping. For promotion
6902 * to occur, two conditions must be met: (1) the 4KB page mappings must map
6903 * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6904 * identical characteristics.
6905 */
6906 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6907 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6908 struct rwlock **lockp)
6909 {
6910 pd_entry_t newpde;
6911 pt_entry_t *firstpte, oldpte, pa, *pte;
6912 pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6913 int PG_PTE_CACHE;
6914
6915 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6916 if (!pmap_ps_enabled(pmap))
6917 return (false);
6918
6919 PG_A = pmap_accessed_bit(pmap);
6920 PG_G = pmap_global_bit(pmap);
6921 PG_M = pmap_modified_bit(pmap);
6922 PG_V = pmap_valid_bit(pmap);
6923 PG_RW = pmap_rw_bit(pmap);
6924 PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6925 PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6926
6927 /*
6928 * Examine the first PTE in the specified PTP. Abort if this PTE is
6929 * ineligible for promotion due to hardware errata, invalid, or does
6930 * not map the first 4KB physical page within a 2MB page.
6931 */
6932 firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6933 newpde = *firstpte;
6934 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6935 return (false);
6936 if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6937 counter_u64_add(pmap_pde_p_failures, 1);
6938 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6939 " in pmap %p", va, pmap);
6940 return (false);
6941 }
6942
6943 /*
6944 * Both here and in the below "for" loop, to allow for repromotion
6945 * after MADV_FREE, conditionally write protect a clean PTE before
6946 * possibly aborting the promotion due to other PTE attributes. Why?
6947 * Suppose that MADV_FREE is applied to a part of a superpage, the
6948 * address range [S, E). pmap_advise() will demote the superpage
6949 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6950 * clear PG_M and PG_A in the PTEs for the rest of [S, E). Later,
6951 * imagine that the memory in [S, E) is recycled, but the last 4KB
6952 * page in [S, E) is not the last to be rewritten, or simply accessed.
6953 * In other words, there is still a 4KB page in [S, E), call it P,
6954 * that is writeable but PG_M and PG_A are clear in P's PTE. Unless
6955 * we write protect P before aborting the promotion, if and when P is
6956 * finally rewritten, there won't be a page fault to trigger
6957 * repromotion.
6958 */
6959 setpde:
6960 if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6961 /*
6962 * When PG_M is already clear, PG_RW can be cleared without
6963 * a TLB invalidation.
6964 */
6965 if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6966 goto setpde;
6967 newpde &= ~PG_RW;
6968 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6969 " in pmap %p", va & ~PDRMASK, pmap);
6970 }
6971
6972 /*
6973 * Examine each of the other PTEs in the specified PTP. Abort if this
6974 * PTE maps an unexpected 4KB physical page or does not have identical
6975 * characteristics to the first PTE.
6976 */
6977 allpte_PG_A = newpde & PG_A;
6978 pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6979 for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6980 oldpte = *pte;
6981 if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6982 counter_u64_add(pmap_pde_p_failures, 1);
6983 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6984 " in pmap %p", va, pmap);
6985 return (false);
6986 }
6987 setpte:
6988 if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6989 /*
6990 * When PG_M is already clear, PG_RW can be cleared
6991 * without a TLB invalidation.
6992 */
6993 if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6994 goto setpte;
6995 oldpte &= ~PG_RW;
6996 CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6997 " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6998 (va & ~PDRMASK), pmap);
6999 }
7000 if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
7001 counter_u64_add(pmap_pde_p_failures, 1);
7002 CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
7003 " in pmap %p", va, pmap);
7004 return (false);
7005 }
7006 allpte_PG_A &= oldpte;
7007 pa -= PAGE_SIZE;
7008 }
7009
7010 /*
7011 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
7012 * so that promotions triggered by speculative mappings, such as
7013 * pmap_enter_quick(), don't automatically mark the underlying pages
7014 * as referenced.
7015 */
7016 newpde &= ~PG_A | allpte_PG_A;
7017
7018 /*
7019 * EPT PTEs with PG_M set and PG_A clear are not supported by early
7020 * MMUs supporting EPT.
7021 */
7022 KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
7023 ("unsupported EPT PTE"));
7024
7025 /*
7026 * Save the PTP in its current state until the PDE mapping the
7027 * superpage is demoted by pmap_demote_pde() or destroyed by
7028 * pmap_remove_pde(). If PG_A is not set in every PTE, then request
7029 * that the PTP be refilled on demotion.
7030 */
7031 if (mpte == NULL)
7032 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7033 KASSERT(mpte >= vm_page_array &&
7034 mpte < &vm_page_array[vm_page_array_size],
7035 ("pmap_promote_pde: page table page is out of range"));
7036 KASSERT(mpte->pindex == pmap_pde_pindex(va),
7037 ("pmap_promote_pde: page table page's pindex is wrong "
7038 "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7039 mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7040 if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7041 counter_u64_add(pmap_pde_p_failures, 1);
7042 CTR2(KTR_PMAP,
7043 "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7044 pmap);
7045 return (false);
7046 }
7047
7048 /*
7049 * Promote the pv entries.
7050 */
7051 if ((newpde & PG_MANAGED) != 0)
7052 pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7053
7054 /*
7055 * Propagate the PAT index to its proper position.
7056 */
7057 newpde = pmap_swap_pat(pmap, newpde);
7058
7059 /*
7060 * Map the superpage.
7061 */
7062 if (workaround_erratum383)
7063 pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7064 else
7065 pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7066
7067 counter_u64_add(pmap_pde_promotions, 1);
7068 CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7069 " in pmap %p", va, pmap);
7070 return (true);
7071 }
7072 #endif /* VM_NRESERVLEVEL > 0 */
7073
7074 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7075 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7076 int psind)
7077 {
7078 vm_page_t mp;
7079 pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7080
7081 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7082 KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7083 ("psind %d unexpected", psind));
7084 KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7085 ("unaligned phys address %#lx newpte %#lx psind %d",
7086 newpte & PG_FRAME, newpte, psind));
7087 KASSERT((va & (pagesizes[psind] - 1)) == 0,
7088 ("unaligned va %#lx psind %d", va, psind));
7089 KASSERT(va < VM_MAXUSER_ADDRESS,
7090 ("kernel mode non-transparent superpage")); /* XXXKIB */
7091 KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7092 ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7093
7094 PG_V = pmap_valid_bit(pmap);
7095
7096 restart:
7097 pten = newpte;
7098 if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7099 return (KERN_PROTECTION_FAILURE);
7100
7101 if (psind == 2) { /* 1G */
7102 pml4e = pmap_pml4e(pmap, va);
7103 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7104 mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7105 NULL, va);
7106 if (mp == NULL)
7107 goto allocf;
7108 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7109 pdpe = &pdpe[pmap_pdpe_index(va)];
7110 origpte = *pdpe;
7111 MPASS(origpte == 0);
7112 } else {
7113 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7114 KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7115 origpte = *pdpe;
7116 if ((origpte & PG_V) == 0) {
7117 mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7118 mp->ref_count++;
7119 }
7120 }
7121 *pdpe = pten;
7122 } else /* (psind == 1) */ { /* 2M */
7123 pde = pmap_pde(pmap, va);
7124 if (pde == NULL) {
7125 mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7126 NULL, va);
7127 if (mp == NULL)
7128 goto allocf;
7129 pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7130 pde = &pde[pmap_pde_index(va)];
7131 origpte = *pde;
7132 MPASS(origpte == 0);
7133 } else {
7134 origpte = *pde;
7135 if ((origpte & PG_V) == 0) {
7136 pdpe = pmap_pdpe(pmap, va);
7137 MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7138 mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7139 mp->ref_count++;
7140 }
7141 }
7142 *pde = pten;
7143 }
7144 KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7145 (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7146 ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7147 va, psind == 2 ? "1G" : "2M", origpte, pten));
7148 if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7149 pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7150 else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7151 pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7152 if ((origpte & PG_V) == 0)
7153 pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7154
7155 return (KERN_SUCCESS);
7156
7157 allocf:
7158 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7159 return (KERN_RESOURCE_SHORTAGE);
7160 PMAP_UNLOCK(pmap);
7161 vm_wait(NULL);
7162 PMAP_LOCK(pmap);
7163 goto restart;
7164 }
7165
7166 /*
7167 * Insert the given physical page (p) at
7168 * the specified virtual address (v) in the
7169 * target physical map with the protection requested.
7170 *
7171 * If specified, the page will be wired down, meaning
7172 * that the related pte can not be reclaimed.
7173 *
7174 * NB: This is the only routine which MAY NOT lazy-evaluate
7175 * or lose information. That is, this routine must actually
7176 * insert this page into the given map NOW.
7177 *
7178 * When destroying both a page table and PV entry, this function
7179 * performs the TLB invalidation before releasing the PV list
7180 * lock, so we do not need pmap_delayed_invl_page() calls here.
7181 */
7182 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7183 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7184 u_int flags, int8_t psind)
7185 {
7186 struct rwlock *lock;
7187 pd_entry_t *pde;
7188 pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7189 pt_entry_t newpte, origpte;
7190 pv_entry_t pv;
7191 vm_paddr_t opa, pa;
7192 vm_page_t mpte, om;
7193 int rv;
7194 bool nosleep;
7195
7196 PG_A = pmap_accessed_bit(pmap);
7197 PG_G = pmap_global_bit(pmap);
7198 PG_M = pmap_modified_bit(pmap);
7199 PG_V = pmap_valid_bit(pmap);
7200 PG_RW = pmap_rw_bit(pmap);
7201
7202 va = trunc_page(va);
7203 KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7204 KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7205 ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7206 va));
7207 KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7208 ("pmap_enter: managed mapping within the clean submap"));
7209 if ((m->oflags & VPO_UNMANAGED) == 0)
7210 VM_PAGE_OBJECT_BUSY_ASSERT(m);
7211 KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7212 ("pmap_enter: flags %u has reserved bits set", flags));
7213 pa = VM_PAGE_TO_PHYS(m);
7214 newpte = (pt_entry_t)(pa | PG_A | PG_V);
7215 if ((flags & VM_PROT_WRITE) != 0)
7216 newpte |= PG_M;
7217 if ((prot & VM_PROT_WRITE) != 0)
7218 newpte |= PG_RW;
7219 KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7220 ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7221 if ((prot & VM_PROT_EXECUTE) == 0)
7222 newpte |= pg_nx;
7223 if ((flags & PMAP_ENTER_WIRED) != 0)
7224 newpte |= PG_W;
7225 if (va < VM_MAXUSER_ADDRESS)
7226 newpte |= PG_U;
7227 if (pmap == kernel_pmap)
7228 newpte |= PG_G;
7229 newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7230
7231 /*
7232 * Set modified bit gratuitously for writeable mappings if
7233 * the page is unmanaged. We do not want to take a fault
7234 * to do the dirty bit accounting for these mappings.
7235 */
7236 if ((m->oflags & VPO_UNMANAGED) != 0) {
7237 if ((newpte & PG_RW) != 0)
7238 newpte |= PG_M;
7239 } else
7240 newpte |= PG_MANAGED;
7241
7242 lock = NULL;
7243 PMAP_LOCK(pmap);
7244 if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7245 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7246 ("managed largepage va %#lx flags %#x", va, flags));
7247 rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7248 psind);
7249 goto out;
7250 }
7251 if (psind == 1) {
7252 /* Assert the required virtual and physical alignment. */
7253 KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7254 KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7255 rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7256 goto out;
7257 }
7258 mpte = NULL;
7259
7260 /*
7261 * In the case that a page table page is not
7262 * resident, we are creating it here.
7263 */
7264 retry:
7265 pde = pmap_pde(pmap, va);
7266 if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7267 pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7268 pte = pmap_pde_to_pte(pde, va);
7269 if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7270 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7271 mpte->ref_count++;
7272 }
7273 } else if (va < VM_MAXUSER_ADDRESS) {
7274 /*
7275 * Here if the pte page isn't mapped, or if it has been
7276 * deallocated.
7277 */
7278 nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7279 mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7280 nosleep ? NULL : &lock, va);
7281 if (mpte == NULL && nosleep) {
7282 rv = KERN_RESOURCE_SHORTAGE;
7283 goto out;
7284 }
7285 goto retry;
7286 } else
7287 panic("pmap_enter: invalid page directory va=%#lx", va);
7288
7289 origpte = *pte;
7290 pv = NULL;
7291 if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7292 newpte |= pmap_pkru_get(pmap, va);
7293
7294 /*
7295 * Is the specified virtual address already mapped?
7296 */
7297 if ((origpte & PG_V) != 0) {
7298 /*
7299 * Wiring change, just update stats. We don't worry about
7300 * wiring PT pages as they remain resident as long as there
7301 * are valid mappings in them. Hence, if a user page is wired,
7302 * the PT page will be also.
7303 */
7304 if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7305 pmap->pm_stats.wired_count++;
7306 else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7307 pmap->pm_stats.wired_count--;
7308
7309 /*
7310 * Remove the extra PT page reference.
7311 */
7312 if (mpte != NULL) {
7313 mpte->ref_count--;
7314 KASSERT(mpte->ref_count > 0,
7315 ("pmap_enter: missing reference to page table page,"
7316 " va: 0x%lx", va));
7317 }
7318
7319 /*
7320 * Has the physical page changed?
7321 */
7322 opa = origpte & PG_FRAME;
7323 if (opa == pa) {
7324 /*
7325 * No, might be a protection or wiring change.
7326 */
7327 if ((origpte & PG_MANAGED) != 0 &&
7328 (newpte & PG_RW) != 0)
7329 vm_page_aflag_set(m, PGA_WRITEABLE);
7330 if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7331 goto unchanged;
7332 goto validate;
7333 }
7334
7335 /*
7336 * The physical page has changed. Temporarily invalidate
7337 * the mapping. This ensures that all threads sharing the
7338 * pmap keep a consistent view of the mapping, which is
7339 * necessary for the correct handling of COW faults. It
7340 * also permits reuse of the old mapping's PV entry,
7341 * avoiding an allocation.
7342 *
7343 * For consistency, handle unmanaged mappings the same way.
7344 */
7345 origpte = pte_load_clear(pte);
7346 KASSERT((origpte & PG_FRAME) == opa,
7347 ("pmap_enter: unexpected pa update for %#lx", va));
7348 if ((origpte & PG_MANAGED) != 0) {
7349 om = PHYS_TO_VM_PAGE(opa);
7350
7351 /*
7352 * The pmap lock is sufficient to synchronize with
7353 * concurrent calls to pmap_page_test_mappings() and
7354 * pmap_ts_referenced().
7355 */
7356 if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7357 vm_page_dirty(om);
7358 if ((origpte & PG_A) != 0) {
7359 pmap_invalidate_page(pmap, va);
7360 vm_page_aflag_set(om, PGA_REFERENCED);
7361 }
7362 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7363 pv = pmap_pvh_remove(&om->md, pmap, va);
7364 KASSERT(pv != NULL,
7365 ("pmap_enter: no PV entry for %#lx", va));
7366 if ((newpte & PG_MANAGED) == 0)
7367 free_pv_entry(pmap, pv);
7368 if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7369 TAILQ_EMPTY(&om->md.pv_list) &&
7370 ((om->flags & PG_FICTITIOUS) != 0 ||
7371 TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7372 vm_page_aflag_clear(om, PGA_WRITEABLE);
7373 } else {
7374 /*
7375 * Since this mapping is unmanaged, assume that PG_A
7376 * is set.
7377 */
7378 pmap_invalidate_page(pmap, va);
7379 }
7380 origpte = 0;
7381 } else {
7382 /*
7383 * Increment the counters.
7384 */
7385 if ((newpte & PG_W) != 0)
7386 pmap->pm_stats.wired_count++;
7387 pmap_resident_count_adj(pmap, 1);
7388 }
7389
7390 /*
7391 * Enter on the PV list if part of our managed memory.
7392 */
7393 if ((newpte & PG_MANAGED) != 0) {
7394 if (pv == NULL) {
7395 pv = get_pv_entry(pmap, &lock);
7396 pv->pv_va = va;
7397 }
7398 CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7399 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7400 m->md.pv_gen++;
7401 if ((newpte & PG_RW) != 0)
7402 vm_page_aflag_set(m, PGA_WRITEABLE);
7403 }
7404
7405 /*
7406 * Update the PTE.
7407 */
7408 if ((origpte & PG_V) != 0) {
7409 validate:
7410 origpte = pte_load_store(pte, newpte);
7411 KASSERT((origpte & PG_FRAME) == pa,
7412 ("pmap_enter: unexpected pa update for %#lx", va));
7413 if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7414 (PG_M | PG_RW)) {
7415 if ((origpte & PG_MANAGED) != 0)
7416 vm_page_dirty(m);
7417
7418 /*
7419 * Although the PTE may still have PG_RW set, TLB
7420 * invalidation may nonetheless be required because
7421 * the PTE no longer has PG_M set.
7422 */
7423 } else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7424 /*
7425 * This PTE change does not require TLB invalidation.
7426 */
7427 goto unchanged;
7428 }
7429 if ((origpte & PG_A) != 0)
7430 pmap_invalidate_page(pmap, va);
7431 } else
7432 pte_store(pte, newpte);
7433
7434 unchanged:
7435
7436 #if VM_NRESERVLEVEL > 0
7437 /*
7438 * If both the page table page and the reservation are fully
7439 * populated, then attempt promotion.
7440 */
7441 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7442 (m->flags & PG_FICTITIOUS) == 0 &&
7443 vm_reserv_level_iffullpop(m) == 0)
7444 (void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7445 #endif
7446
7447 rv = KERN_SUCCESS;
7448 out:
7449 if (lock != NULL)
7450 rw_wunlock(lock);
7451 PMAP_UNLOCK(pmap);
7452 return (rv);
7453 }
7454
7455 /*
7456 * Tries to create a read- and/or execute-only 2MB page mapping. Returns
7457 * KERN_SUCCESS if the mapping was created. Otherwise, returns an error
7458 * value. See pmap_enter_pde() for the possible error values when "no sleep",
7459 * "no replace", and "no reclaim" are specified.
7460 */
7461 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7462 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7463 struct rwlock **lockp)
7464 {
7465 pd_entry_t newpde;
7466 pt_entry_t PG_V;
7467
7468 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7469 PG_V = pmap_valid_bit(pmap);
7470 newpde = VM_PAGE_TO_PHYS(m) |
7471 pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7472 if ((m->oflags & VPO_UNMANAGED) == 0)
7473 newpde |= PG_MANAGED;
7474 if ((prot & VM_PROT_EXECUTE) == 0)
7475 newpde |= pg_nx;
7476 if (va < VM_MAXUSER_ADDRESS)
7477 newpde |= PG_U;
7478 return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7479 PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7480 }
7481
7482 /*
7483 * Returns true if every page table entry in the specified page table page is
7484 * zero.
7485 */
7486 static bool
pmap_every_pte_zero(vm_paddr_t pa)7487 pmap_every_pte_zero(vm_paddr_t pa)
7488 {
7489 pt_entry_t *pt_end, *pte;
7490
7491 KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7492 pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7493 for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7494 if (*pte != 0)
7495 return (false);
7496 }
7497 return (true);
7498 }
7499
7500 /*
7501 * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
7502 * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7503 * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise. Returns
7504 * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7505 * page mapping already exists within the 2MB virtual address range starting
7506 * at the specified virtual address or (2) the requested 2MB page mapping is
7507 * not supported due to hardware errata. Returns KERN_NO_SPACE if
7508 * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7509 * the specified virtual address. Returns KERN_PROTECTION_FAILURE if the PKRU
7510 * settings are not the same across the 2MB virtual address range starting at
7511 * the specified virtual address. Returns KERN_RESOURCE_SHORTAGE if either
7512 * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7513 * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7514 * failed.
7515 *
7516 * The parameter "m" is only used when creating a managed, writeable mapping.
7517 */
7518 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7519 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7520 vm_page_t m, struct rwlock **lockp)
7521 {
7522 struct spglist free;
7523 pd_entry_t oldpde, *pde;
7524 pt_entry_t PG_G, PG_RW, PG_V;
7525 vm_page_t mt, pdpg;
7526 vm_page_t uwptpg;
7527
7528 PG_G = pmap_global_bit(pmap);
7529 PG_RW = pmap_rw_bit(pmap);
7530 KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7531 ("pmap_enter_pde: newpde is missing PG_M"));
7532 PG_V = pmap_valid_bit(pmap);
7533 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7534
7535 if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7536 newpde))) {
7537 CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7538 " in pmap %p", va, pmap);
7539 return (KERN_FAILURE);
7540 }
7541 if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7542 PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7543 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7544 " in pmap %p", va, pmap);
7545 return (KERN_RESOURCE_SHORTAGE);
7546 }
7547
7548 /*
7549 * If pkru is not same for the whole pde range, return failure
7550 * and let vm_fault() cope. Check after pde allocation, since
7551 * it could sleep.
7552 */
7553 if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7554 pmap_abort_ptp(pmap, va, pdpg);
7555 return (KERN_PROTECTION_FAILURE);
7556 }
7557
7558 /*
7559 * If there are existing mappings, either abort or remove them.
7560 */
7561 oldpde = *pde;
7562 if ((oldpde & PG_V) != 0) {
7563 KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7564 ("pmap_enter_pde: pdpg's reference count is too low"));
7565 if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7566 if ((oldpde & PG_PS) != 0) {
7567 if (pdpg != NULL)
7568 pdpg->ref_count--;
7569 CTR2(KTR_PMAP,
7570 "pmap_enter_pde: no space for va %#lx"
7571 " in pmap %p", va, pmap);
7572 return (KERN_NO_SPACE);
7573 } else if (va < VM_MAXUSER_ADDRESS ||
7574 !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7575 if (pdpg != NULL)
7576 pdpg->ref_count--;
7577 CTR2(KTR_PMAP,
7578 "pmap_enter_pde: failure for va %#lx"
7579 " in pmap %p", va, pmap);
7580 return (KERN_FAILURE);
7581 }
7582 }
7583 /* Break the existing mapping(s). */
7584 SLIST_INIT(&free);
7585 if ((oldpde & PG_PS) != 0) {
7586 /*
7587 * The reference to the PD page that was acquired by
7588 * pmap_alloc_pde() ensures that it won't be freed.
7589 * However, if the PDE resulted from a promotion, then
7590 * a reserved PT page could be freed.
7591 */
7592 (void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7593 if ((oldpde & PG_G) == 0)
7594 pmap_invalidate_pde_page(pmap, va, oldpde);
7595 } else {
7596 pmap_delayed_invl_start();
7597 if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7598 lockp))
7599 pmap_invalidate_all(pmap);
7600 pmap_delayed_invl_finish();
7601 }
7602 if (va < VM_MAXUSER_ADDRESS) {
7603 vm_page_free_pages_toq(&free, true);
7604 KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7605 pde));
7606 } else {
7607 KASSERT(SLIST_EMPTY(&free),
7608 ("pmap_enter_pde: freed kernel page table page"));
7609
7610 /*
7611 * Both pmap_remove_pde() and pmap_remove_ptes() will
7612 * leave the kernel page table page zero filled.
7613 */
7614 mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7615 if (pmap_insert_pt_page(pmap, mt, false, false))
7616 panic("pmap_enter_pde: trie insert failed");
7617 }
7618 }
7619
7620 /*
7621 * Allocate leaf ptpage for wired userspace pages.
7622 */
7623 uwptpg = NULL;
7624 if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7625 uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7626 VM_ALLOC_WIRED);
7627 if (uwptpg == NULL) {
7628 pmap_abort_ptp(pmap, va, pdpg);
7629 return (KERN_RESOURCE_SHORTAGE);
7630 }
7631 if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7632 pmap_free_pt_page(pmap, uwptpg, false);
7633 pmap_abort_ptp(pmap, va, pdpg);
7634 return (KERN_RESOURCE_SHORTAGE);
7635 }
7636
7637 uwptpg->ref_count = NPTEPG;
7638 }
7639 if ((newpde & PG_MANAGED) != 0) {
7640 /*
7641 * Abort this mapping if its PV entry could not be created.
7642 */
7643 if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7644 if (pdpg != NULL)
7645 pmap_abort_ptp(pmap, va, pdpg);
7646 if (uwptpg != NULL) {
7647 mt = pmap_remove_pt_page(pmap, va);
7648 KASSERT(mt == uwptpg,
7649 ("removed pt page %p, expected %p", mt,
7650 uwptpg));
7651 uwptpg->ref_count = 1;
7652 pmap_free_pt_page(pmap, uwptpg, false);
7653 }
7654 CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7655 " in pmap %p", va, pmap);
7656 return (KERN_RESOURCE_SHORTAGE);
7657 }
7658 if ((newpde & PG_RW) != 0) {
7659 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7660 vm_page_aflag_set(mt, PGA_WRITEABLE);
7661 }
7662 }
7663
7664 /*
7665 * Increment counters.
7666 */
7667 if ((newpde & PG_W) != 0)
7668 pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7669 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7670
7671 /*
7672 * Map the superpage. (This is not a promoted mapping; there will not
7673 * be any lingering 4KB page mappings in the TLB.)
7674 */
7675 pde_store(pde, newpde);
7676
7677 counter_u64_add(pmap_pde_mappings, 1);
7678 CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7679 va, pmap);
7680 return (KERN_SUCCESS);
7681 }
7682
7683 /*
7684 * Maps a sequence of resident pages belonging to the same object.
7685 * The sequence begins with the given page m_start. This page is
7686 * mapped at the given virtual address start. Each subsequent page is
7687 * mapped at a virtual address that is offset from start by the same
7688 * amount as the page is offset from m_start within the object. The
7689 * last page in the sequence is the page with the largest offset from
7690 * m_start that can be mapped at a virtual address less than the given
7691 * virtual address end. Not every virtual page between start and end
7692 * is mapped; only those for which a resident page exists with the
7693 * corresponding offset from m_start are mapped.
7694 */
7695 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7696 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7697 vm_page_t m_start, vm_prot_t prot)
7698 {
7699 struct rwlock *lock;
7700 vm_offset_t va;
7701 vm_page_t m, mpte;
7702 vm_pindex_t diff, psize;
7703 int rv;
7704
7705 VM_OBJECT_ASSERT_LOCKED(m_start->object);
7706
7707 psize = atop(end - start);
7708 mpte = NULL;
7709 m = m_start;
7710 lock = NULL;
7711 PMAP_LOCK(pmap);
7712 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7713 va = start + ptoa(diff);
7714 if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7715 m->psind == 1 && pmap_ps_enabled(pmap) &&
7716 ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7717 KERN_SUCCESS || rv == KERN_NO_SPACE))
7718 m = &m[NBPDR / PAGE_SIZE - 1];
7719 else
7720 mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7721 mpte, &lock);
7722 m = TAILQ_NEXT(m, listq);
7723 }
7724 if (lock != NULL)
7725 rw_wunlock(lock);
7726 PMAP_UNLOCK(pmap);
7727 }
7728
7729 /*
7730 * this code makes some *MAJOR* assumptions:
7731 * 1. Current pmap & pmap exists.
7732 * 2. Not wired.
7733 * 3. Read access.
7734 * 4. No page table pages.
7735 * but is *MUCH* faster than pmap_enter...
7736 */
7737
7738 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7739 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7740 {
7741 struct rwlock *lock;
7742
7743 lock = NULL;
7744 PMAP_LOCK(pmap);
7745 (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7746 if (lock != NULL)
7747 rw_wunlock(lock);
7748 PMAP_UNLOCK(pmap);
7749 }
7750
7751 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7752 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7753 vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7754 {
7755 pd_entry_t *pde;
7756 pt_entry_t newpte, *pte, PG_V;
7757
7758 KASSERT(!VA_IS_CLEANMAP(va) ||
7759 (m->oflags & VPO_UNMANAGED) != 0,
7760 ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7761 PG_V = pmap_valid_bit(pmap);
7762 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7763 pde = NULL;
7764
7765 /*
7766 * In the case that a page table page is not
7767 * resident, we are creating it here.
7768 */
7769 if (va < VM_MAXUSER_ADDRESS) {
7770 pdp_entry_t *pdpe;
7771 vm_pindex_t ptepindex;
7772
7773 /*
7774 * Calculate pagetable page index
7775 */
7776 ptepindex = pmap_pde_pindex(va);
7777 if (mpte && (mpte->pindex == ptepindex)) {
7778 mpte->ref_count++;
7779 } else {
7780 /*
7781 * If the page table page is mapped, we just increment
7782 * the hold count, and activate it. Otherwise, we
7783 * attempt to allocate a page table page, passing NULL
7784 * instead of the PV list lock pointer because we don't
7785 * intend to sleep. If this attempt fails, we don't
7786 * retry. Instead, we give up.
7787 */
7788 pdpe = pmap_pdpe(pmap, va);
7789 if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7790 if ((*pdpe & PG_PS) != 0)
7791 return (NULL);
7792 pde = pmap_pdpe_to_pde(pdpe, va);
7793 if ((*pde & PG_V) != 0) {
7794 if ((*pde & PG_PS) != 0)
7795 return (NULL);
7796 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7797 mpte->ref_count++;
7798 } else {
7799 mpte = pmap_allocpte_alloc(pmap,
7800 ptepindex, NULL, va);
7801 if (mpte == NULL)
7802 return (NULL);
7803 }
7804 } else {
7805 mpte = pmap_allocpte_alloc(pmap, ptepindex,
7806 NULL, va);
7807 if (mpte == NULL)
7808 return (NULL);
7809 }
7810 }
7811 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7812 pte = &pte[pmap_pte_index(va)];
7813 } else {
7814 mpte = NULL;
7815 pte = vtopte(va);
7816 }
7817 if (*pte) {
7818 if (mpte != NULL)
7819 mpte->ref_count--;
7820 return (NULL);
7821 }
7822
7823 /*
7824 * Enter on the PV list if part of our managed memory.
7825 */
7826 if ((m->oflags & VPO_UNMANAGED) == 0 &&
7827 !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7828 if (mpte != NULL)
7829 pmap_abort_ptp(pmap, va, mpte);
7830 return (NULL);
7831 }
7832
7833 /*
7834 * Increment counters
7835 */
7836 pmap_resident_count_adj(pmap, 1);
7837
7838 newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7839 pmap_cache_bits(pmap, m->md.pat_mode, false);
7840 if ((m->oflags & VPO_UNMANAGED) == 0)
7841 newpte |= PG_MANAGED;
7842 if ((prot & VM_PROT_EXECUTE) == 0)
7843 newpte |= pg_nx;
7844 if (va < VM_MAXUSER_ADDRESS)
7845 newpte |= PG_U | pmap_pkru_get(pmap, va);
7846 pte_store(pte, newpte);
7847
7848 #if VM_NRESERVLEVEL > 0
7849 /*
7850 * If both the PTP and the reservation are fully populated, then
7851 * attempt promotion.
7852 */
7853 if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7854 (mpte == NULL || mpte->ref_count == NPTEPG) &&
7855 (m->flags & PG_FICTITIOUS) == 0 &&
7856 vm_reserv_level_iffullpop(m) == 0) {
7857 if (pde == NULL)
7858 pde = pmap_pde(pmap, va);
7859
7860 /*
7861 * If promotion succeeds, then the next call to this function
7862 * should not be given the unmapped PTP as a hint.
7863 */
7864 if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7865 mpte = NULL;
7866 }
7867 #endif
7868
7869 return (mpte);
7870 }
7871
7872 /*
7873 * Make a temporary mapping for a physical address. This is only intended
7874 * to be used for panic dumps.
7875 */
7876 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7877 pmap_kenter_temporary(vm_paddr_t pa, int i)
7878 {
7879 vm_offset_t va;
7880
7881 va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7882 pmap_kenter(va, pa);
7883 pmap_invlpg(kernel_pmap, va);
7884 return ((void *)crashdumpmap);
7885 }
7886
7887 /*
7888 * This code maps large physical mmap regions into the
7889 * processor address space. Note that some shortcuts
7890 * are taken, but the code works.
7891 */
7892 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7893 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7894 vm_pindex_t pindex, vm_size_t size)
7895 {
7896 pd_entry_t *pde;
7897 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7898 vm_paddr_t pa, ptepa;
7899 vm_page_t p, pdpg;
7900 int pat_mode;
7901
7902 PG_A = pmap_accessed_bit(pmap);
7903 PG_M = pmap_modified_bit(pmap);
7904 PG_V = pmap_valid_bit(pmap);
7905 PG_RW = pmap_rw_bit(pmap);
7906
7907 VM_OBJECT_ASSERT_WLOCKED(object);
7908 KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7909 ("pmap_object_init_pt: non-device object"));
7910 if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7911 if (!pmap_ps_enabled(pmap))
7912 return;
7913 if (!vm_object_populate(object, pindex, pindex + atop(size)))
7914 return;
7915 p = vm_page_lookup(object, pindex);
7916 KASSERT(vm_page_all_valid(p),
7917 ("pmap_object_init_pt: invalid page %p", p));
7918 pat_mode = p->md.pat_mode;
7919
7920 /*
7921 * Abort the mapping if the first page is not physically
7922 * aligned to a 2MB page boundary.
7923 */
7924 ptepa = VM_PAGE_TO_PHYS(p);
7925 if (ptepa & (NBPDR - 1))
7926 return;
7927
7928 /*
7929 * Skip the first page. Abort the mapping if the rest of
7930 * the pages are not physically contiguous or have differing
7931 * memory attributes.
7932 */
7933 p = TAILQ_NEXT(p, listq);
7934 for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7935 pa += PAGE_SIZE) {
7936 KASSERT(vm_page_all_valid(p),
7937 ("pmap_object_init_pt: invalid page %p", p));
7938 if (pa != VM_PAGE_TO_PHYS(p) ||
7939 pat_mode != p->md.pat_mode)
7940 return;
7941 p = TAILQ_NEXT(p, listq);
7942 }
7943
7944 /*
7945 * Map using 2MB pages. Since "ptepa" is 2M aligned and
7946 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7947 * will not affect the termination of this loop.
7948 */
7949 PMAP_LOCK(pmap);
7950 for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7951 pa < ptepa + size; pa += NBPDR) {
7952 pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7953 if (pde == NULL) {
7954 /*
7955 * The creation of mappings below is only an
7956 * optimization. If a page directory page
7957 * cannot be allocated without blocking,
7958 * continue on to the next mapping rather than
7959 * blocking.
7960 */
7961 addr += NBPDR;
7962 continue;
7963 }
7964 if ((*pde & PG_V) == 0) {
7965 pde_store(pde, pa | PG_PS | PG_M | PG_A |
7966 PG_U | PG_RW | PG_V);
7967 pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7968 counter_u64_add(pmap_pde_mappings, 1);
7969 } else {
7970 /* Continue on if the PDE is already valid. */
7971 pdpg->ref_count--;
7972 KASSERT(pdpg->ref_count > 0,
7973 ("pmap_object_init_pt: missing reference "
7974 "to page directory page, va: 0x%lx", addr));
7975 }
7976 addr += NBPDR;
7977 }
7978 PMAP_UNLOCK(pmap);
7979 }
7980 }
7981
7982 /*
7983 * Clear the wired attribute from the mappings for the specified range of
7984 * addresses in the given pmap. Every valid mapping within that range
7985 * must have the wired attribute set. In contrast, invalid mappings
7986 * cannot have the wired attribute set, so they are ignored.
7987 *
7988 * The wired attribute of the page table entry is not a hardware
7989 * feature, so there is no need to invalidate any TLB entries.
7990 * Since pmap_demote_pde() for the wired entry must never fail,
7991 * pmap_delayed_invl_start()/finish() calls around the
7992 * function are not needed.
7993 */
7994 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7995 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7996 {
7997 vm_offset_t va_next;
7998 pml4_entry_t *pml4e;
7999 pdp_entry_t *pdpe;
8000 pd_entry_t *pde;
8001 pt_entry_t *pte, PG_V, PG_G __diagused;
8002
8003 PG_V = pmap_valid_bit(pmap);
8004 PG_G = pmap_global_bit(pmap);
8005 PMAP_LOCK(pmap);
8006 for (; sva < eva; sva = va_next) {
8007 pml4e = pmap_pml4e(pmap, sva);
8008 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8009 va_next = (sva + NBPML4) & ~PML4MASK;
8010 if (va_next < sva)
8011 va_next = eva;
8012 continue;
8013 }
8014
8015 va_next = (sva + NBPDP) & ~PDPMASK;
8016 if (va_next < sva)
8017 va_next = eva;
8018 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
8019 if ((*pdpe & PG_V) == 0)
8020 continue;
8021 if ((*pdpe & PG_PS) != 0) {
8022 KASSERT(va_next <= eva,
8023 ("partial update of non-transparent 1G mapping "
8024 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8025 *pdpe, sva, eva, va_next));
8026 MPASS(pmap != kernel_pmap); /* XXXKIB */
8027 MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8028 atomic_clear_long(pdpe, PG_W);
8029 pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8030 continue;
8031 }
8032
8033 va_next = (sva + NBPDR) & ~PDRMASK;
8034 if (va_next < sva)
8035 va_next = eva;
8036 pde = pmap_pdpe_to_pde(pdpe, sva);
8037 if ((*pde & PG_V) == 0)
8038 continue;
8039 if ((*pde & PG_PS) != 0) {
8040 if ((*pde & PG_W) == 0)
8041 panic("pmap_unwire: pde %#jx is missing PG_W",
8042 (uintmax_t)*pde);
8043
8044 /*
8045 * Are we unwiring the entire large page? If not,
8046 * demote the mapping and fall through.
8047 */
8048 if (sva + NBPDR == va_next && eva >= va_next) {
8049 atomic_clear_long(pde, PG_W);
8050 pmap->pm_stats.wired_count -= NBPDR /
8051 PAGE_SIZE;
8052 continue;
8053 } else if (!pmap_demote_pde(pmap, pde, sva))
8054 panic("pmap_unwire: demotion failed");
8055 }
8056 if (va_next > eva)
8057 va_next = eva;
8058 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8059 sva += PAGE_SIZE) {
8060 if ((*pte & PG_V) == 0)
8061 continue;
8062 if ((*pte & PG_W) == 0)
8063 panic("pmap_unwire: pte %#jx is missing PG_W",
8064 (uintmax_t)*pte);
8065
8066 /*
8067 * PG_W must be cleared atomically. Although the pmap
8068 * lock synchronizes access to PG_W, another processor
8069 * could be setting PG_M and/or PG_A concurrently.
8070 */
8071 atomic_clear_long(pte, PG_W);
8072 pmap->pm_stats.wired_count--;
8073 }
8074 }
8075 PMAP_UNLOCK(pmap);
8076 }
8077
8078 /*
8079 * Copy the range specified by src_addr/len
8080 * from the source map to the range dst_addr/len
8081 * in the destination map.
8082 *
8083 * This routine is only advisory and need not do anything.
8084 */
8085 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8086 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8087 vm_offset_t src_addr)
8088 {
8089 struct rwlock *lock;
8090 pml4_entry_t *pml4e;
8091 pdp_entry_t *pdpe;
8092 pd_entry_t *pde, srcptepaddr;
8093 pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8094 vm_offset_t addr, end_addr, va_next;
8095 vm_page_t dst_pdpg, dstmpte, srcmpte;
8096
8097 if (dst_addr != src_addr)
8098 return;
8099
8100 if (dst_pmap->pm_type != src_pmap->pm_type)
8101 return;
8102
8103 /*
8104 * EPT page table entries that require emulation of A/D bits are
8105 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8106 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8107 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8108 * implementations flag an EPT misconfiguration for exec-only
8109 * mappings we skip this function entirely for emulated pmaps.
8110 */
8111 if (pmap_emulate_ad_bits(dst_pmap))
8112 return;
8113
8114 end_addr = src_addr + len;
8115 lock = NULL;
8116 if (dst_pmap < src_pmap) {
8117 PMAP_LOCK(dst_pmap);
8118 PMAP_LOCK(src_pmap);
8119 } else {
8120 PMAP_LOCK(src_pmap);
8121 PMAP_LOCK(dst_pmap);
8122 }
8123
8124 PG_A = pmap_accessed_bit(dst_pmap);
8125 PG_M = pmap_modified_bit(dst_pmap);
8126 PG_V = pmap_valid_bit(dst_pmap);
8127
8128 for (addr = src_addr; addr < end_addr; addr = va_next) {
8129 KASSERT(addr < UPT_MIN_ADDRESS,
8130 ("pmap_copy: invalid to pmap_copy page tables"));
8131
8132 pml4e = pmap_pml4e(src_pmap, addr);
8133 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8134 va_next = (addr + NBPML4) & ~PML4MASK;
8135 if (va_next < addr)
8136 va_next = end_addr;
8137 continue;
8138 }
8139
8140 va_next = (addr + NBPDP) & ~PDPMASK;
8141 if (va_next < addr)
8142 va_next = end_addr;
8143 pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8144 if ((*pdpe & PG_V) == 0)
8145 continue;
8146 if ((*pdpe & PG_PS) != 0) {
8147 KASSERT(va_next <= end_addr,
8148 ("partial update of non-transparent 1G mapping "
8149 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8150 *pdpe, addr, end_addr, va_next));
8151 MPASS((addr & PDPMASK) == 0);
8152 MPASS((*pdpe & PG_MANAGED) == 0);
8153 srcptepaddr = *pdpe;
8154 pdpe = pmap_pdpe(dst_pmap, addr);
8155 if (pdpe == NULL) {
8156 if (pmap_allocpte_alloc(dst_pmap,
8157 pmap_pml4e_pindex(addr), NULL, addr) ==
8158 NULL)
8159 break;
8160 pdpe = pmap_pdpe(dst_pmap, addr);
8161 } else {
8162 pml4e = pmap_pml4e(dst_pmap, addr);
8163 dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8164 dst_pdpg->ref_count++;
8165 }
8166 KASSERT(*pdpe == 0,
8167 ("1G mapping present in dst pmap "
8168 "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8169 *pdpe, addr, end_addr, va_next));
8170 *pdpe = srcptepaddr & ~PG_W;
8171 pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8172 continue;
8173 }
8174
8175 va_next = (addr + NBPDR) & ~PDRMASK;
8176 if (va_next < addr)
8177 va_next = end_addr;
8178
8179 pde = pmap_pdpe_to_pde(pdpe, addr);
8180 srcptepaddr = *pde;
8181 if (srcptepaddr == 0)
8182 continue;
8183
8184 if (srcptepaddr & PG_PS) {
8185 /*
8186 * We can only virtual copy whole superpages.
8187 */
8188 if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8189 continue;
8190 pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8191 if (pde == NULL)
8192 break;
8193 if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8194 pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8195 PMAP_ENTER_NORECLAIM, &lock))) {
8196 /*
8197 * We leave the dirty bit unchanged because
8198 * managed read/write superpage mappings are
8199 * required to be dirty. However, managed
8200 * superpage mappings are not required to
8201 * have their accessed bit set, so we clear
8202 * it because we don't know if this mapping
8203 * will be used.
8204 */
8205 srcptepaddr &= ~PG_W;
8206 if ((srcptepaddr & PG_MANAGED) != 0)
8207 srcptepaddr &= ~PG_A;
8208 *pde = srcptepaddr;
8209 pmap_resident_count_adj(dst_pmap, NBPDR /
8210 PAGE_SIZE);
8211 counter_u64_add(pmap_pde_mappings, 1);
8212 } else
8213 pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8214 continue;
8215 }
8216
8217 srcptepaddr &= PG_FRAME;
8218 srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8219 KASSERT(srcmpte->ref_count > 0,
8220 ("pmap_copy: source page table page is unused"));
8221
8222 if (va_next > end_addr)
8223 va_next = end_addr;
8224
8225 src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8226 src_pte = &src_pte[pmap_pte_index(addr)];
8227 dstmpte = NULL;
8228 for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8229 ptetemp = *src_pte;
8230
8231 /*
8232 * We only virtual copy managed pages.
8233 */
8234 if ((ptetemp & PG_MANAGED) == 0)
8235 continue;
8236
8237 if (dstmpte != NULL) {
8238 KASSERT(dstmpte->pindex ==
8239 pmap_pde_pindex(addr),
8240 ("dstmpte pindex/addr mismatch"));
8241 dstmpte->ref_count++;
8242 } else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8243 NULL)) == NULL)
8244 goto out;
8245 dst_pte = (pt_entry_t *)
8246 PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8247 dst_pte = &dst_pte[pmap_pte_index(addr)];
8248 if (*dst_pte == 0 &&
8249 pmap_try_insert_pv_entry(dst_pmap, addr,
8250 PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8251 /*
8252 * Clear the wired, modified, and accessed
8253 * (referenced) bits during the copy.
8254 */
8255 *dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8256 pmap_resident_count_adj(dst_pmap, 1);
8257 } else {
8258 pmap_abort_ptp(dst_pmap, addr, dstmpte);
8259 goto out;
8260 }
8261 /* Have we copied all of the valid mappings? */
8262 if (dstmpte->ref_count >= srcmpte->ref_count)
8263 break;
8264 }
8265 }
8266 out:
8267 if (lock != NULL)
8268 rw_wunlock(lock);
8269 PMAP_UNLOCK(src_pmap);
8270 PMAP_UNLOCK(dst_pmap);
8271 }
8272
8273 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8274 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8275 {
8276 int error;
8277
8278 if (dst_pmap->pm_type != src_pmap->pm_type ||
8279 dst_pmap->pm_type != PT_X86 ||
8280 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8281 return (0);
8282 for (;;) {
8283 if (dst_pmap < src_pmap) {
8284 PMAP_LOCK(dst_pmap);
8285 PMAP_LOCK(src_pmap);
8286 } else {
8287 PMAP_LOCK(src_pmap);
8288 PMAP_LOCK(dst_pmap);
8289 }
8290 error = pmap_pkru_copy(dst_pmap, src_pmap);
8291 /* Clean up partial copy on failure due to no memory. */
8292 if (error == ENOMEM)
8293 pmap_pkru_deassign_all(dst_pmap);
8294 PMAP_UNLOCK(src_pmap);
8295 PMAP_UNLOCK(dst_pmap);
8296 if (error != ENOMEM)
8297 break;
8298 vm_wait(NULL);
8299 }
8300 return (error);
8301 }
8302
8303 /*
8304 * Zero the specified hardware page.
8305 */
8306 void
pmap_zero_page(vm_page_t m)8307 pmap_zero_page(vm_page_t m)
8308 {
8309 vm_offset_t va;
8310
8311 #ifdef TSLOG_PAGEZERO
8312 TSENTER();
8313 #endif
8314 va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8315 pagezero((void *)va);
8316 #ifdef TSLOG_PAGEZERO
8317 TSEXIT();
8318 #endif
8319 }
8320
8321 /*
8322 * Zero an area within a single hardware page. off and size must not
8323 * cover an area beyond a single hardware page.
8324 */
8325 void
pmap_zero_page_area(vm_page_t m,int off,int size)8326 pmap_zero_page_area(vm_page_t m, int off, int size)
8327 {
8328 vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8329
8330 if (off == 0 && size == PAGE_SIZE)
8331 pagezero((void *)va);
8332 else
8333 bzero((char *)va + off, size);
8334 }
8335
8336 /*
8337 * Copy 1 specified hardware page to another.
8338 */
8339 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8340 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8341 {
8342 vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8343 vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8344
8345 pagecopy((void *)src, (void *)dst);
8346 }
8347
8348 int unmapped_buf_allowed = 1;
8349
8350 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8351 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8352 vm_offset_t b_offset, int xfersize)
8353 {
8354 void *a_cp, *b_cp;
8355 vm_page_t pages[2];
8356 vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8357 int cnt;
8358 bool mapped;
8359
8360 while (xfersize > 0) {
8361 a_pg_offset = a_offset & PAGE_MASK;
8362 pages[0] = ma[a_offset >> PAGE_SHIFT];
8363 b_pg_offset = b_offset & PAGE_MASK;
8364 pages[1] = mb[b_offset >> PAGE_SHIFT];
8365 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8366 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8367 mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8368 a_cp = (char *)vaddr[0] + a_pg_offset;
8369 b_cp = (char *)vaddr[1] + b_pg_offset;
8370 bcopy(a_cp, b_cp, cnt);
8371 if (__predict_false(mapped))
8372 pmap_unmap_io_transient(pages, vaddr, 2, false);
8373 a_offset += cnt;
8374 b_offset += cnt;
8375 xfersize -= cnt;
8376 }
8377 }
8378
8379 /*
8380 * Returns true if the pmap's pv is one of the first
8381 * 16 pvs linked to from this page. This count may
8382 * be changed upwards or downwards in the future; it
8383 * is only necessary that true be returned for a small
8384 * subset of pmaps for proper page aging.
8385 */
8386 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8387 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8388 {
8389 struct md_page *pvh;
8390 struct rwlock *lock;
8391 pv_entry_t pv;
8392 int loops = 0;
8393 bool rv;
8394
8395 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8396 ("pmap_page_exists_quick: page %p is not managed", m));
8397 rv = false;
8398 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8399 rw_rlock(lock);
8400 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8401 if (PV_PMAP(pv) == pmap) {
8402 rv = true;
8403 break;
8404 }
8405 loops++;
8406 if (loops >= 16)
8407 break;
8408 }
8409 if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8410 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8411 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8412 if (PV_PMAP(pv) == pmap) {
8413 rv = true;
8414 break;
8415 }
8416 loops++;
8417 if (loops >= 16)
8418 break;
8419 }
8420 }
8421 rw_runlock(lock);
8422 return (rv);
8423 }
8424
8425 /*
8426 * pmap_page_wired_mappings:
8427 *
8428 * Return the number of managed mappings to the given physical page
8429 * that are wired.
8430 */
8431 int
pmap_page_wired_mappings(vm_page_t m)8432 pmap_page_wired_mappings(vm_page_t m)
8433 {
8434 struct rwlock *lock;
8435 struct md_page *pvh;
8436 pmap_t pmap;
8437 pt_entry_t *pte;
8438 pv_entry_t pv;
8439 int count, md_gen, pvh_gen;
8440
8441 if ((m->oflags & VPO_UNMANAGED) != 0)
8442 return (0);
8443 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8444 rw_rlock(lock);
8445 restart:
8446 count = 0;
8447 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8448 pmap = PV_PMAP(pv);
8449 if (!PMAP_TRYLOCK(pmap)) {
8450 md_gen = m->md.pv_gen;
8451 rw_runlock(lock);
8452 PMAP_LOCK(pmap);
8453 rw_rlock(lock);
8454 if (md_gen != m->md.pv_gen) {
8455 PMAP_UNLOCK(pmap);
8456 goto restart;
8457 }
8458 }
8459 pte = pmap_pte(pmap, pv->pv_va);
8460 if ((*pte & PG_W) != 0)
8461 count++;
8462 PMAP_UNLOCK(pmap);
8463 }
8464 if ((m->flags & PG_FICTITIOUS) == 0) {
8465 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8466 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8467 pmap = PV_PMAP(pv);
8468 if (!PMAP_TRYLOCK(pmap)) {
8469 md_gen = m->md.pv_gen;
8470 pvh_gen = pvh->pv_gen;
8471 rw_runlock(lock);
8472 PMAP_LOCK(pmap);
8473 rw_rlock(lock);
8474 if (md_gen != m->md.pv_gen ||
8475 pvh_gen != pvh->pv_gen) {
8476 PMAP_UNLOCK(pmap);
8477 goto restart;
8478 }
8479 }
8480 pte = pmap_pde(pmap, pv->pv_va);
8481 if ((*pte & PG_W) != 0)
8482 count++;
8483 PMAP_UNLOCK(pmap);
8484 }
8485 }
8486 rw_runlock(lock);
8487 return (count);
8488 }
8489
8490 /*
8491 * Returns true if the given page is mapped individually or as part of
8492 * a 2mpage. Otherwise, returns false.
8493 */
8494 bool
pmap_page_is_mapped(vm_page_t m)8495 pmap_page_is_mapped(vm_page_t m)
8496 {
8497 struct rwlock *lock;
8498 bool rv;
8499
8500 if ((m->oflags & VPO_UNMANAGED) != 0)
8501 return (false);
8502 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8503 rw_rlock(lock);
8504 rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8505 ((m->flags & PG_FICTITIOUS) == 0 &&
8506 !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8507 rw_runlock(lock);
8508 return (rv);
8509 }
8510
8511 /*
8512 * Destroy all managed, non-wired mappings in the given user-space
8513 * pmap. This pmap cannot be active on any processor besides the
8514 * caller.
8515 *
8516 * This function cannot be applied to the kernel pmap. Moreover, it
8517 * is not intended for general use. It is only to be used during
8518 * process termination. Consequently, it can be implemented in ways
8519 * that make it faster than pmap_remove(). First, it can more quickly
8520 * destroy mappings by iterating over the pmap's collection of PV
8521 * entries, rather than searching the page table. Second, it doesn't
8522 * have to test and clear the page table entries atomically, because
8523 * no processor is currently accessing the user address space. In
8524 * particular, a page table entry's dirty bit won't change state once
8525 * this function starts.
8526 *
8527 * Although this function destroys all of the pmap's managed,
8528 * non-wired mappings, it can delay and batch the invalidation of TLB
8529 * entries without calling pmap_delayed_invl_start() and
8530 * pmap_delayed_invl_finish(). Because the pmap is not active on
8531 * any other processor, none of these TLB entries will ever be used
8532 * before their eventual invalidation. Consequently, there is no need
8533 * for either pmap_remove_all() or pmap_remove_write() to wait for
8534 * that eventual TLB invalidation.
8535 */
8536 void
pmap_remove_pages(pmap_t pmap)8537 pmap_remove_pages(pmap_t pmap)
8538 {
8539 pd_entry_t ptepde;
8540 pt_entry_t *pte, tpte;
8541 pt_entry_t PG_M, PG_RW, PG_V;
8542 struct spglist free;
8543 struct pv_chunklist free_chunks[PMAP_MEMDOM];
8544 vm_page_t m, mpte, mt;
8545 pv_entry_t pv;
8546 struct md_page *pvh;
8547 struct pv_chunk *pc, *npc;
8548 struct rwlock *lock;
8549 int64_t bit;
8550 uint64_t inuse, bitmask;
8551 int allfree, field, i, idx;
8552 #ifdef PV_STATS
8553 int freed;
8554 #endif
8555 bool superpage;
8556 vm_paddr_t pa;
8557
8558 /*
8559 * Assert that the given pmap is only active on the current
8560 * CPU. Unfortunately, we cannot block another CPU from
8561 * activating the pmap while this function is executing.
8562 */
8563 KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8564 #ifdef INVARIANTS
8565 {
8566 cpuset_t other_cpus;
8567
8568 other_cpus = all_cpus;
8569 critical_enter();
8570 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8571 CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8572 critical_exit();
8573 KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8574 }
8575 #endif
8576
8577 lock = NULL;
8578 PG_M = pmap_modified_bit(pmap);
8579 PG_V = pmap_valid_bit(pmap);
8580 PG_RW = pmap_rw_bit(pmap);
8581
8582 for (i = 0; i < PMAP_MEMDOM; i++)
8583 TAILQ_INIT(&free_chunks[i]);
8584 SLIST_INIT(&free);
8585 PMAP_LOCK(pmap);
8586 TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8587 allfree = 1;
8588 #ifdef PV_STATS
8589 freed = 0;
8590 #endif
8591 for (field = 0; field < _NPCM; field++) {
8592 inuse = ~pc->pc_map[field] & pc_freemask[field];
8593 while (inuse != 0) {
8594 bit = bsfq(inuse);
8595 bitmask = 1UL << bit;
8596 idx = field * 64 + bit;
8597 pv = &pc->pc_pventry[idx];
8598 inuse &= ~bitmask;
8599
8600 pte = pmap_pdpe(pmap, pv->pv_va);
8601 ptepde = *pte;
8602 pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8603 tpte = *pte;
8604 if ((tpte & (PG_PS | PG_V)) == PG_V) {
8605 superpage = false;
8606 ptepde = tpte;
8607 pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8608 PG_FRAME);
8609 pte = &pte[pmap_pte_index(pv->pv_va)];
8610 tpte = *pte;
8611 } else {
8612 /*
8613 * Keep track whether 'tpte' is a
8614 * superpage explicitly instead of
8615 * relying on PG_PS being set.
8616 *
8617 * This is because PG_PS is numerically
8618 * identical to PG_PTE_PAT and thus a
8619 * regular page could be mistaken for
8620 * a superpage.
8621 */
8622 superpage = true;
8623 }
8624
8625 if ((tpte & PG_V) == 0) {
8626 panic("bad pte va %lx pte %lx",
8627 pv->pv_va, tpte);
8628 }
8629
8630 /*
8631 * We cannot remove wired pages from a process' mapping at this time
8632 */
8633 if (tpte & PG_W) {
8634 allfree = 0;
8635 continue;
8636 }
8637
8638 /* Mark free */
8639 pc->pc_map[field] |= bitmask;
8640
8641 /*
8642 * Because this pmap is not active on other
8643 * processors, the dirty bit cannot have
8644 * changed state since we last loaded pte.
8645 */
8646 pte_clear(pte);
8647
8648 if (superpage)
8649 pa = tpte & PG_PS_FRAME;
8650 else
8651 pa = tpte & PG_FRAME;
8652
8653 m = PHYS_TO_VM_PAGE(pa);
8654 KASSERT(m->phys_addr == pa,
8655 ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8656 m, (uintmax_t)m->phys_addr,
8657 (uintmax_t)tpte));
8658
8659 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8660 m < &vm_page_array[vm_page_array_size],
8661 ("pmap_remove_pages: bad tpte %#jx",
8662 (uintmax_t)tpte));
8663
8664 /*
8665 * Update the vm_page_t clean/reference bits.
8666 */
8667 if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8668 if (superpage) {
8669 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8670 vm_page_dirty(mt);
8671 } else
8672 vm_page_dirty(m);
8673 }
8674
8675 CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8676
8677 if (superpage) {
8678 pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8679 pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8680 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8681 pvh->pv_gen++;
8682 if (TAILQ_EMPTY(&pvh->pv_list)) {
8683 for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8684 if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8685 TAILQ_EMPTY(&mt->md.pv_list))
8686 vm_page_aflag_clear(mt, PGA_WRITEABLE);
8687 }
8688 mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8689 if (mpte != NULL) {
8690 KASSERT(vm_page_any_valid(mpte),
8691 ("pmap_remove_pages: pte page not promoted"));
8692 pmap_pt_page_count_adj(pmap, -1);
8693 KASSERT(mpte->ref_count == NPTEPG,
8694 ("pmap_remove_pages: pte page reference count error"));
8695 mpte->ref_count = 0;
8696 pmap_add_delayed_free_list(mpte, &free, false);
8697 }
8698 } else {
8699 pmap_resident_count_adj(pmap, -1);
8700 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8701 m->md.pv_gen++;
8702 if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8703 TAILQ_EMPTY(&m->md.pv_list) &&
8704 (m->flags & PG_FICTITIOUS) == 0) {
8705 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8706 if (TAILQ_EMPTY(&pvh->pv_list))
8707 vm_page_aflag_clear(m, PGA_WRITEABLE);
8708 }
8709 }
8710 pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8711 #ifdef PV_STATS
8712 freed++;
8713 #endif
8714 }
8715 }
8716 PV_STAT(counter_u64_add(pv_entry_frees, freed));
8717 PV_STAT(counter_u64_add(pv_entry_spare, freed));
8718 PV_STAT(counter_u64_add(pv_entry_count, -freed));
8719 if (allfree) {
8720 TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8721 TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8722 }
8723 }
8724 if (lock != NULL)
8725 rw_wunlock(lock);
8726 pmap_invalidate_all(pmap);
8727 pmap_pkru_deassign_all(pmap);
8728 free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8729 PMAP_UNLOCK(pmap);
8730 vm_page_free_pages_toq(&free, true);
8731 }
8732
8733 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8734 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8735 {
8736 struct rwlock *lock;
8737 pv_entry_t pv;
8738 struct md_page *pvh;
8739 pt_entry_t *pte, mask;
8740 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8741 pmap_t pmap;
8742 int md_gen, pvh_gen;
8743 bool rv;
8744
8745 rv = false;
8746 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8747 rw_rlock(lock);
8748 restart:
8749 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8750 pmap = PV_PMAP(pv);
8751 if (!PMAP_TRYLOCK(pmap)) {
8752 md_gen = m->md.pv_gen;
8753 rw_runlock(lock);
8754 PMAP_LOCK(pmap);
8755 rw_rlock(lock);
8756 if (md_gen != m->md.pv_gen) {
8757 PMAP_UNLOCK(pmap);
8758 goto restart;
8759 }
8760 }
8761 pte = pmap_pte(pmap, pv->pv_va);
8762 mask = 0;
8763 if (modified) {
8764 PG_M = pmap_modified_bit(pmap);
8765 PG_RW = pmap_rw_bit(pmap);
8766 mask |= PG_RW | PG_M;
8767 }
8768 if (accessed) {
8769 PG_A = pmap_accessed_bit(pmap);
8770 PG_V = pmap_valid_bit(pmap);
8771 mask |= PG_V | PG_A;
8772 }
8773 rv = (*pte & mask) == mask;
8774 PMAP_UNLOCK(pmap);
8775 if (rv)
8776 goto out;
8777 }
8778 if ((m->flags & PG_FICTITIOUS) == 0) {
8779 pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8780 TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8781 pmap = PV_PMAP(pv);
8782 if (!PMAP_TRYLOCK(pmap)) {
8783 md_gen = m->md.pv_gen;
8784 pvh_gen = pvh->pv_gen;
8785 rw_runlock(lock);
8786 PMAP_LOCK(pmap);
8787 rw_rlock(lock);
8788 if (md_gen != m->md.pv_gen ||
8789 pvh_gen != pvh->pv_gen) {
8790 PMAP_UNLOCK(pmap);
8791 goto restart;
8792 }
8793 }
8794 pte = pmap_pde(pmap, pv->pv_va);
8795 mask = 0;
8796 if (modified) {
8797 PG_M = pmap_modified_bit(pmap);
8798 PG_RW = pmap_rw_bit(pmap);
8799 mask |= PG_RW | PG_M;
8800 }
8801 if (accessed) {
8802 PG_A = pmap_accessed_bit(pmap);
8803 PG_V = pmap_valid_bit(pmap);
8804 mask |= PG_V | PG_A;
8805 }
8806 rv = (*pte & mask) == mask;
8807 PMAP_UNLOCK(pmap);
8808 if (rv)
8809 goto out;
8810 }
8811 }
8812 out:
8813 rw_runlock(lock);
8814 return (rv);
8815 }
8816
8817 /*
8818 * pmap_is_modified:
8819 *
8820 * Return whether or not the specified physical page was modified
8821 * in any physical maps.
8822 */
8823 bool
pmap_is_modified(vm_page_t m)8824 pmap_is_modified(vm_page_t m)
8825 {
8826
8827 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8828 ("pmap_is_modified: page %p is not managed", m));
8829
8830 /*
8831 * If the page is not busied then this check is racy.
8832 */
8833 if (!pmap_page_is_write_mapped(m))
8834 return (false);
8835 return (pmap_page_test_mappings(m, false, true));
8836 }
8837
8838 /*
8839 * pmap_is_prefaultable:
8840 *
8841 * Return whether or not the specified virtual address is eligible
8842 * for prefault.
8843 */
8844 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8845 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8846 {
8847 pd_entry_t *pde;
8848 pt_entry_t *pte, PG_V;
8849 bool rv;
8850
8851 PG_V = pmap_valid_bit(pmap);
8852
8853 /*
8854 * Return true if and only if the PTE for the specified virtual
8855 * address is allocated but invalid.
8856 */
8857 rv = false;
8858 PMAP_LOCK(pmap);
8859 pde = pmap_pde(pmap, addr);
8860 if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8861 pte = pmap_pde_to_pte(pde, addr);
8862 rv = (*pte & PG_V) == 0;
8863 }
8864 PMAP_UNLOCK(pmap);
8865 return (rv);
8866 }
8867
8868 /*
8869 * pmap_is_referenced:
8870 *
8871 * Return whether or not the specified physical page was referenced
8872 * in any physical maps.
8873 */
8874 bool
pmap_is_referenced(vm_page_t m)8875 pmap_is_referenced(vm_page_t m)
8876 {
8877
8878 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8879 ("pmap_is_referenced: page %p is not managed", m));
8880 return (pmap_page_test_mappings(m, true, false));
8881 }
8882
8883 /*
8884 * Clear the write and modified bits in each of the given page's mappings.
8885 */
8886 void
pmap_remove_write(vm_page_t m)8887 pmap_remove_write(vm_page_t m)
8888 {
8889 struct md_page *pvh;
8890 pmap_t pmap;
8891 struct rwlock *lock;
8892 pv_entry_t next_pv, pv;
8893 pd_entry_t *pde;
8894 pt_entry_t oldpte, *pte, PG_M, PG_RW;
8895 vm_offset_t va;
8896 int pvh_gen, md_gen;
8897
8898 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8899 ("pmap_remove_write: page %p is not managed", m));
8900
8901 vm_page_assert_busied(m);
8902 if (!pmap_page_is_write_mapped(m))
8903 return;
8904
8905 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8906 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8907 pa_to_pvh(VM_PAGE_TO_PHYS(m));
8908 rw_wlock(lock);
8909 retry:
8910 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8911 pmap = PV_PMAP(pv);
8912 if (!PMAP_TRYLOCK(pmap)) {
8913 pvh_gen = pvh->pv_gen;
8914 rw_wunlock(lock);
8915 PMAP_LOCK(pmap);
8916 rw_wlock(lock);
8917 if (pvh_gen != pvh->pv_gen) {
8918 PMAP_UNLOCK(pmap);
8919 goto retry;
8920 }
8921 }
8922 PG_RW = pmap_rw_bit(pmap);
8923 va = pv->pv_va;
8924 pde = pmap_pde(pmap, va);
8925 if ((*pde & PG_RW) != 0)
8926 (void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8927 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8928 ("inconsistent pv lock %p %p for page %p",
8929 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8930 PMAP_UNLOCK(pmap);
8931 }
8932 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8933 pmap = PV_PMAP(pv);
8934 if (!PMAP_TRYLOCK(pmap)) {
8935 pvh_gen = pvh->pv_gen;
8936 md_gen = m->md.pv_gen;
8937 rw_wunlock(lock);
8938 PMAP_LOCK(pmap);
8939 rw_wlock(lock);
8940 if (pvh_gen != pvh->pv_gen ||
8941 md_gen != m->md.pv_gen) {
8942 PMAP_UNLOCK(pmap);
8943 goto retry;
8944 }
8945 }
8946 PG_M = pmap_modified_bit(pmap);
8947 PG_RW = pmap_rw_bit(pmap);
8948 pde = pmap_pde(pmap, pv->pv_va);
8949 KASSERT((*pde & PG_PS) == 0,
8950 ("pmap_remove_write: found a 2mpage in page %p's pv list",
8951 m));
8952 pte = pmap_pde_to_pte(pde, pv->pv_va);
8953 oldpte = *pte;
8954 if (oldpte & PG_RW) {
8955 while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8956 ~(PG_RW | PG_M)))
8957 cpu_spinwait();
8958 if ((oldpte & PG_M) != 0)
8959 vm_page_dirty(m);
8960 pmap_invalidate_page(pmap, pv->pv_va);
8961 }
8962 PMAP_UNLOCK(pmap);
8963 }
8964 rw_wunlock(lock);
8965 vm_page_aflag_clear(m, PGA_WRITEABLE);
8966 pmap_delayed_invl_wait(m);
8967 }
8968
8969 /*
8970 * pmap_ts_referenced:
8971 *
8972 * Return a count of reference bits for a page, clearing those bits.
8973 * It is not necessary for every reference bit to be cleared, but it
8974 * is necessary that 0 only be returned when there are truly no
8975 * reference bits set.
8976 *
8977 * As an optimization, update the page's dirty field if a modified bit is
8978 * found while counting reference bits. This opportunistic update can be
8979 * performed at low cost and can eliminate the need for some future calls
8980 * to pmap_is_modified(). However, since this function stops after
8981 * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8982 * dirty pages. Those dirty pages will only be detected by a future call
8983 * to pmap_is_modified().
8984 *
8985 * A DI block is not needed within this function, because
8986 * invalidations are performed before the PV list lock is
8987 * released.
8988 */
8989 int
pmap_ts_referenced(vm_page_t m)8990 pmap_ts_referenced(vm_page_t m)
8991 {
8992 struct md_page *pvh;
8993 pv_entry_t pv, pvf;
8994 pmap_t pmap;
8995 struct rwlock *lock;
8996 pd_entry_t oldpde, *pde;
8997 pt_entry_t *pte, PG_A, PG_M, PG_RW;
8998 vm_offset_t va;
8999 vm_paddr_t pa;
9000 int cleared, md_gen, not_cleared, pvh_gen;
9001 struct spglist free;
9002 bool demoted;
9003
9004 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9005 ("pmap_ts_referenced: page %p is not managed", m));
9006 SLIST_INIT(&free);
9007 cleared = 0;
9008 pa = VM_PAGE_TO_PHYS(m);
9009 lock = PHYS_TO_PV_LIST_LOCK(pa);
9010 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
9011 rw_wlock(lock);
9012 retry:
9013 not_cleared = 0;
9014 if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
9015 goto small_mappings;
9016 pv = pvf;
9017 do {
9018 if (pvf == NULL)
9019 pvf = pv;
9020 pmap = PV_PMAP(pv);
9021 if (!PMAP_TRYLOCK(pmap)) {
9022 pvh_gen = pvh->pv_gen;
9023 rw_wunlock(lock);
9024 PMAP_LOCK(pmap);
9025 rw_wlock(lock);
9026 if (pvh_gen != pvh->pv_gen) {
9027 PMAP_UNLOCK(pmap);
9028 goto retry;
9029 }
9030 }
9031 PG_A = pmap_accessed_bit(pmap);
9032 PG_M = pmap_modified_bit(pmap);
9033 PG_RW = pmap_rw_bit(pmap);
9034 va = pv->pv_va;
9035 pde = pmap_pde(pmap, pv->pv_va);
9036 oldpde = *pde;
9037 if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9038 /*
9039 * Although "oldpde" is mapping a 2MB page, because
9040 * this function is called at a 4KB page granularity,
9041 * we only update the 4KB page under test.
9042 */
9043 vm_page_dirty(m);
9044 }
9045 if ((oldpde & PG_A) != 0) {
9046 /*
9047 * Since this reference bit is shared by 512 4KB
9048 * pages, it should not be cleared every time it is
9049 * tested. Apply a simple "hash" function on the
9050 * physical page number, the virtual superpage number,
9051 * and the pmap address to select one 4KB page out of
9052 * the 512 on which testing the reference bit will
9053 * result in clearing that reference bit. This
9054 * function is designed to avoid the selection of the
9055 * same 4KB page for every 2MB page mapping.
9056 *
9057 * On demotion, a mapping that hasn't been referenced
9058 * is simply destroyed. To avoid the possibility of a
9059 * subsequent page fault on a demoted wired mapping,
9060 * always leave its reference bit set. Moreover,
9061 * since the superpage is wired, the current state of
9062 * its reference bit won't affect page replacement.
9063 */
9064 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9065 (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9066 (oldpde & PG_W) == 0) {
9067 if (safe_to_clear_referenced(pmap, oldpde)) {
9068 atomic_clear_long(pde, PG_A);
9069 pmap_invalidate_page(pmap, pv->pv_va);
9070 demoted = false;
9071 } else if (pmap_demote_pde_locked(pmap, pde,
9072 pv->pv_va, &lock)) {
9073 /*
9074 * Remove the mapping to a single page
9075 * so that a subsequent access may
9076 * repromote. Since the underlying
9077 * page table page is fully populated,
9078 * this removal never frees a page
9079 * table page.
9080 */
9081 demoted = true;
9082 va += VM_PAGE_TO_PHYS(m) - (oldpde &
9083 PG_PS_FRAME);
9084 pte = pmap_pde_to_pte(pde, va);
9085 pmap_remove_pte(pmap, pte, va, *pde,
9086 NULL, &lock);
9087 pmap_invalidate_page(pmap, va);
9088 } else
9089 demoted = true;
9090
9091 if (demoted) {
9092 /*
9093 * The superpage mapping was removed
9094 * entirely and therefore 'pv' is no
9095 * longer valid.
9096 */
9097 if (pvf == pv)
9098 pvf = NULL;
9099 pv = NULL;
9100 }
9101 cleared++;
9102 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9103 ("inconsistent pv lock %p %p for page %p",
9104 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9105 } else
9106 not_cleared++;
9107 }
9108 PMAP_UNLOCK(pmap);
9109 /* Rotate the PV list if it has more than one entry. */
9110 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9111 TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9112 TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9113 pvh->pv_gen++;
9114 }
9115 if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9116 goto out;
9117 } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9118 small_mappings:
9119 if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9120 goto out;
9121 pv = pvf;
9122 do {
9123 if (pvf == NULL)
9124 pvf = pv;
9125 pmap = PV_PMAP(pv);
9126 if (!PMAP_TRYLOCK(pmap)) {
9127 pvh_gen = pvh->pv_gen;
9128 md_gen = m->md.pv_gen;
9129 rw_wunlock(lock);
9130 PMAP_LOCK(pmap);
9131 rw_wlock(lock);
9132 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9133 PMAP_UNLOCK(pmap);
9134 goto retry;
9135 }
9136 }
9137 PG_A = pmap_accessed_bit(pmap);
9138 PG_M = pmap_modified_bit(pmap);
9139 PG_RW = pmap_rw_bit(pmap);
9140 pde = pmap_pde(pmap, pv->pv_va);
9141 KASSERT((*pde & PG_PS) == 0,
9142 ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9143 m));
9144 pte = pmap_pde_to_pte(pde, pv->pv_va);
9145 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9146 vm_page_dirty(m);
9147 if ((*pte & PG_A) != 0) {
9148 if (safe_to_clear_referenced(pmap, *pte)) {
9149 atomic_clear_long(pte, PG_A);
9150 pmap_invalidate_page(pmap, pv->pv_va);
9151 cleared++;
9152 } else if ((*pte & PG_W) == 0) {
9153 /*
9154 * Wired pages cannot be paged out so
9155 * doing accessed bit emulation for
9156 * them is wasted effort. We do the
9157 * hard work for unwired pages only.
9158 */
9159 pmap_remove_pte(pmap, pte, pv->pv_va,
9160 *pde, &free, &lock);
9161 pmap_invalidate_page(pmap, pv->pv_va);
9162 cleared++;
9163 if (pvf == pv)
9164 pvf = NULL;
9165 pv = NULL;
9166 KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9167 ("inconsistent pv lock %p %p for page %p",
9168 lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9169 } else
9170 not_cleared++;
9171 }
9172 PMAP_UNLOCK(pmap);
9173 /* Rotate the PV list if it has more than one entry. */
9174 if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9175 TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9176 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9177 m->md.pv_gen++;
9178 }
9179 } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9180 not_cleared < PMAP_TS_REFERENCED_MAX);
9181 out:
9182 rw_wunlock(lock);
9183 vm_page_free_pages_toq(&free, true);
9184 return (cleared + not_cleared);
9185 }
9186
9187 /*
9188 * Apply the given advice to the specified range of addresses within the
9189 * given pmap. Depending on the advice, clear the referenced and/or
9190 * modified flags in each mapping and set the mapped page's dirty field.
9191 */
9192 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9193 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9194 {
9195 struct rwlock *lock;
9196 pml4_entry_t *pml4e;
9197 pdp_entry_t *pdpe;
9198 pd_entry_t oldpde, *pde;
9199 pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9200 vm_offset_t va, va_next;
9201 vm_page_t m;
9202 bool anychanged;
9203
9204 if (advice != MADV_DONTNEED && advice != MADV_FREE)
9205 return;
9206
9207 /*
9208 * A/D bit emulation requires an alternate code path when clearing
9209 * the modified and accessed bits below. Since this function is
9210 * advisory in nature we skip it entirely for pmaps that require
9211 * A/D bit emulation.
9212 */
9213 if (pmap_emulate_ad_bits(pmap))
9214 return;
9215
9216 PG_A = pmap_accessed_bit(pmap);
9217 PG_G = pmap_global_bit(pmap);
9218 PG_M = pmap_modified_bit(pmap);
9219 PG_V = pmap_valid_bit(pmap);
9220 PG_RW = pmap_rw_bit(pmap);
9221 anychanged = false;
9222 pmap_delayed_invl_start();
9223 PMAP_LOCK(pmap);
9224 for (; sva < eva; sva = va_next) {
9225 pml4e = pmap_pml4e(pmap, sva);
9226 if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9227 va_next = (sva + NBPML4) & ~PML4MASK;
9228 if (va_next < sva)
9229 va_next = eva;
9230 continue;
9231 }
9232
9233 va_next = (sva + NBPDP) & ~PDPMASK;
9234 if (va_next < sva)
9235 va_next = eva;
9236 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9237 if ((*pdpe & PG_V) == 0)
9238 continue;
9239 if ((*pdpe & PG_PS) != 0)
9240 continue;
9241
9242 va_next = (sva + NBPDR) & ~PDRMASK;
9243 if (va_next < sva)
9244 va_next = eva;
9245 pde = pmap_pdpe_to_pde(pdpe, sva);
9246 oldpde = *pde;
9247 if ((oldpde & PG_V) == 0)
9248 continue;
9249 else if ((oldpde & PG_PS) != 0) {
9250 if ((oldpde & PG_MANAGED) == 0)
9251 continue;
9252 lock = NULL;
9253 if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9254 if (lock != NULL)
9255 rw_wunlock(lock);
9256
9257 /*
9258 * The large page mapping was destroyed.
9259 */
9260 continue;
9261 }
9262
9263 /*
9264 * Unless the page mappings are wired, remove the
9265 * mapping to a single page so that a subsequent
9266 * access may repromote. Choosing the last page
9267 * within the address range [sva, min(va_next, eva))
9268 * generally results in more repromotions. Since the
9269 * underlying page table page is fully populated, this
9270 * removal never frees a page table page.
9271 */
9272 if ((oldpde & PG_W) == 0) {
9273 va = eva;
9274 if (va > va_next)
9275 va = va_next;
9276 va -= PAGE_SIZE;
9277 KASSERT(va >= sva,
9278 ("pmap_advise: no address gap"));
9279 pte = pmap_pde_to_pte(pde, va);
9280 KASSERT((*pte & PG_V) != 0,
9281 ("pmap_advise: invalid PTE"));
9282 pmap_remove_pte(pmap, pte, va, *pde, NULL,
9283 &lock);
9284 anychanged = true;
9285 }
9286 if (lock != NULL)
9287 rw_wunlock(lock);
9288 }
9289 if (va_next > eva)
9290 va_next = eva;
9291 va = va_next;
9292 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9293 sva += PAGE_SIZE) {
9294 if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9295 goto maybe_invlrng;
9296 else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9297 if (advice == MADV_DONTNEED) {
9298 /*
9299 * Future calls to pmap_is_modified()
9300 * can be avoided by making the page
9301 * dirty now.
9302 */
9303 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9304 vm_page_dirty(m);
9305 }
9306 atomic_clear_long(pte, PG_M | PG_A);
9307 } else if ((*pte & PG_A) != 0)
9308 atomic_clear_long(pte, PG_A);
9309 else
9310 goto maybe_invlrng;
9311
9312 if ((*pte & PG_G) != 0) {
9313 if (va == va_next)
9314 va = sva;
9315 } else
9316 anychanged = true;
9317 continue;
9318 maybe_invlrng:
9319 if (va != va_next) {
9320 pmap_invalidate_range(pmap, va, sva);
9321 va = va_next;
9322 }
9323 }
9324 if (va != va_next)
9325 pmap_invalidate_range(pmap, va, sva);
9326 }
9327 if (anychanged)
9328 pmap_invalidate_all(pmap);
9329 PMAP_UNLOCK(pmap);
9330 pmap_delayed_invl_finish();
9331 }
9332
9333 /*
9334 * Clear the modify bits on the specified physical page.
9335 */
9336 void
pmap_clear_modify(vm_page_t m)9337 pmap_clear_modify(vm_page_t m)
9338 {
9339 struct md_page *pvh;
9340 pmap_t pmap;
9341 pv_entry_t next_pv, pv;
9342 pd_entry_t oldpde, *pde;
9343 pt_entry_t *pte, PG_M, PG_RW;
9344 struct rwlock *lock;
9345 vm_offset_t va;
9346 int md_gen, pvh_gen;
9347
9348 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9349 ("pmap_clear_modify: page %p is not managed", m));
9350 vm_page_assert_busied(m);
9351
9352 if (!pmap_page_is_write_mapped(m))
9353 return;
9354 pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9355 pa_to_pvh(VM_PAGE_TO_PHYS(m));
9356 lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9357 rw_wlock(lock);
9358 restart:
9359 TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9360 pmap = PV_PMAP(pv);
9361 if (!PMAP_TRYLOCK(pmap)) {
9362 pvh_gen = pvh->pv_gen;
9363 rw_wunlock(lock);
9364 PMAP_LOCK(pmap);
9365 rw_wlock(lock);
9366 if (pvh_gen != pvh->pv_gen) {
9367 PMAP_UNLOCK(pmap);
9368 goto restart;
9369 }
9370 }
9371 PG_M = pmap_modified_bit(pmap);
9372 PG_RW = pmap_rw_bit(pmap);
9373 va = pv->pv_va;
9374 pde = pmap_pde(pmap, va);
9375 oldpde = *pde;
9376 /* If oldpde has PG_RW set, then it also has PG_M set. */
9377 if ((oldpde & PG_RW) != 0 &&
9378 pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9379 (oldpde & PG_W) == 0) {
9380 /*
9381 * Write protect the mapping to a single page so that
9382 * a subsequent write access may repromote.
9383 */
9384 va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9385 pte = pmap_pde_to_pte(pde, va);
9386 atomic_clear_long(pte, PG_M | PG_RW);
9387 vm_page_dirty(m);
9388 pmap_invalidate_page(pmap, va);
9389 }
9390 PMAP_UNLOCK(pmap);
9391 }
9392 TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9393 pmap = PV_PMAP(pv);
9394 if (!PMAP_TRYLOCK(pmap)) {
9395 md_gen = m->md.pv_gen;
9396 pvh_gen = pvh->pv_gen;
9397 rw_wunlock(lock);
9398 PMAP_LOCK(pmap);
9399 rw_wlock(lock);
9400 if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9401 PMAP_UNLOCK(pmap);
9402 goto restart;
9403 }
9404 }
9405 PG_M = pmap_modified_bit(pmap);
9406 PG_RW = pmap_rw_bit(pmap);
9407 pde = pmap_pde(pmap, pv->pv_va);
9408 KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9409 " a 2mpage in page %p's pv list", m));
9410 pte = pmap_pde_to_pte(pde, pv->pv_va);
9411 if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9412 atomic_clear_long(pte, PG_M);
9413 pmap_invalidate_page(pmap, pv->pv_va);
9414 }
9415 PMAP_UNLOCK(pmap);
9416 }
9417 rw_wunlock(lock);
9418 }
9419
9420 /*
9421 * Miscellaneous support routines follow
9422 */
9423
9424 /* Adjust the properties for a leaf page table entry. */
9425 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9426 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9427 {
9428 u_long opte, npte;
9429
9430 opte = *(u_long *)pte;
9431 do {
9432 npte = opte & ~mask;
9433 npte |= bits;
9434 } while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9435 npte));
9436 }
9437
9438 /*
9439 * Map a set of physical memory pages into the kernel virtual
9440 * address space. Return a pointer to where it is mapped. This
9441 * routine is intended to be used for mapping device memory,
9442 * NOT real memory.
9443 */
9444 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9445 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9446 {
9447 struct pmap_preinit_mapping *ppim;
9448 vm_offset_t va, offset;
9449 vm_size_t tmpsize;
9450 int i;
9451
9452 offset = pa & PAGE_MASK;
9453 size = round_page(offset + size);
9454 pa = trunc_page(pa);
9455
9456 if (!pmap_initialized) {
9457 va = 0;
9458 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9459 ppim = pmap_preinit_mapping + i;
9460 if (ppim->va == 0) {
9461 ppim->pa = pa;
9462 ppim->sz = size;
9463 ppim->mode = mode;
9464 ppim->va = virtual_avail;
9465 virtual_avail += size;
9466 va = ppim->va;
9467 break;
9468 }
9469 }
9470 if (va == 0)
9471 panic("%s: too many preinit mappings", __func__);
9472 } else {
9473 /*
9474 * If we have a preinit mapping, reuse it.
9475 */
9476 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9477 ppim = pmap_preinit_mapping + i;
9478 if (ppim->pa == pa && ppim->sz == size &&
9479 (ppim->mode == mode ||
9480 (flags & MAPDEV_SETATTR) == 0))
9481 return ((void *)(ppim->va + offset));
9482 }
9483 /*
9484 * If the specified range of physical addresses fits within
9485 * the direct map window, use the direct map.
9486 */
9487 if (pa < dmaplimit && pa + size <= dmaplimit) {
9488 va = PHYS_TO_DMAP(pa);
9489 if ((flags & MAPDEV_SETATTR) != 0) {
9490 PMAP_LOCK(kernel_pmap);
9491 i = pmap_change_props_locked(va, size,
9492 PROT_NONE, mode, flags);
9493 PMAP_UNLOCK(kernel_pmap);
9494 } else
9495 i = 0;
9496 if (!i)
9497 return ((void *)(va + offset));
9498 }
9499 va = kva_alloc(size);
9500 if (va == 0)
9501 panic("%s: Couldn't allocate KVA", __func__);
9502 }
9503 for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9504 pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9505 pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9506 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9507 pmap_invalidate_cache_range(va, va + tmpsize);
9508 return ((void *)(va + offset));
9509 }
9510
9511 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9512 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9513 {
9514
9515 return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9516 MAPDEV_SETATTR));
9517 }
9518
9519 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9520 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9521 {
9522
9523 return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9524 }
9525
9526 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9527 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9528 {
9529
9530 return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9531 MAPDEV_SETATTR));
9532 }
9533
9534 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9535 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9536 {
9537
9538 return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9539 MAPDEV_FLUSHCACHE));
9540 }
9541
9542 void
pmap_unmapdev(void * p,vm_size_t size)9543 pmap_unmapdev(void *p, vm_size_t size)
9544 {
9545 struct pmap_preinit_mapping *ppim;
9546 vm_offset_t offset, va;
9547 int i;
9548
9549 va = (vm_offset_t)p;
9550
9551 /* If we gave a direct map region in pmap_mapdev, do nothing */
9552 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9553 return;
9554 offset = va & PAGE_MASK;
9555 size = round_page(offset + size);
9556 va = trunc_page(va);
9557 for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9558 ppim = pmap_preinit_mapping + i;
9559 if (ppim->va == va && ppim->sz == size) {
9560 if (pmap_initialized)
9561 return;
9562 ppim->pa = 0;
9563 ppim->va = 0;
9564 ppim->sz = 0;
9565 ppim->mode = 0;
9566 if (va + size == virtual_avail)
9567 virtual_avail = va;
9568 return;
9569 }
9570 }
9571 if (pmap_initialized) {
9572 pmap_qremove(va, atop(size));
9573 kva_free(va, size);
9574 }
9575 }
9576
9577 /*
9578 * Tries to demote a 1GB page mapping.
9579 */
9580 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9581 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9582 {
9583 pdp_entry_t newpdpe, oldpdpe;
9584 pd_entry_t *firstpde, newpde, *pde;
9585 pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9586 vm_paddr_t pdpgpa;
9587 vm_page_t pdpg;
9588
9589 PG_A = pmap_accessed_bit(pmap);
9590 PG_M = pmap_modified_bit(pmap);
9591 PG_V = pmap_valid_bit(pmap);
9592 PG_RW = pmap_rw_bit(pmap);
9593
9594 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9595 oldpdpe = *pdpe;
9596 KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9597 ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9598 pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9599 VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9600 if (pdpg == NULL) {
9601 CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9602 " in pmap %p", va, pmap);
9603 return (false);
9604 }
9605 pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9606 firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9607 newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9608 KASSERT((oldpdpe & PG_A) != 0,
9609 ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9610 KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9611 ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9612 newpde = oldpdpe;
9613
9614 /*
9615 * Initialize the page directory page.
9616 */
9617 for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9618 *pde = newpde;
9619 newpde += NBPDR;
9620 }
9621
9622 /*
9623 * Demote the mapping.
9624 */
9625 *pdpe = newpdpe;
9626
9627 /*
9628 * Invalidate a stale recursive mapping of the page directory page.
9629 */
9630 pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9631
9632 counter_u64_add(pmap_pdpe_demotions, 1);
9633 CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9634 " in pmap %p", va, pmap);
9635 return (true);
9636 }
9637
9638 /*
9639 * Sets the memory attribute for the specified page.
9640 */
9641 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9642 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9643 {
9644
9645 m->md.pat_mode = ma;
9646
9647 /*
9648 * If "m" is a normal page, update its direct mapping. This update
9649 * can be relied upon to perform any cache operations that are
9650 * required for data coherence.
9651 */
9652 if ((m->flags & PG_FICTITIOUS) == 0 &&
9653 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9654 m->md.pat_mode))
9655 panic("memory attribute change on the direct map failed");
9656 }
9657
9658 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9659 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9660 {
9661 int error;
9662
9663 m->md.pat_mode = ma;
9664
9665 if ((m->flags & PG_FICTITIOUS) != 0)
9666 return;
9667 PMAP_LOCK(kernel_pmap);
9668 error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9669 PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9670 PMAP_UNLOCK(kernel_pmap);
9671 if (error != 0)
9672 panic("memory attribute change on the direct map failed");
9673 }
9674
9675 /*
9676 * Changes the specified virtual address range's memory type to that given by
9677 * the parameter "mode". The specified virtual address range must be
9678 * completely contained within either the direct map or the kernel map. If
9679 * the virtual address range is contained within the kernel map, then the
9680 * memory type for each of the corresponding ranges of the direct map is also
9681 * changed. (The corresponding ranges of the direct map are those ranges that
9682 * map the same physical pages as the specified virtual address range.) These
9683 * changes to the direct map are necessary because Intel describes the
9684 * behavior of their processors as "undefined" if two or more mappings to the
9685 * same physical page have different memory types.
9686 *
9687 * Returns zero if the change completed successfully, and either EINVAL or
9688 * ENOMEM if the change failed. Specifically, EINVAL is returned if some part
9689 * of the virtual address range was not mapped, and ENOMEM is returned if
9690 * there was insufficient memory available to complete the change. In the
9691 * latter case, the memory type may have been changed on some part of the
9692 * virtual address range or the direct map.
9693 */
9694 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9695 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9696 {
9697 int error;
9698
9699 PMAP_LOCK(kernel_pmap);
9700 error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9701 MAPDEV_FLUSHCACHE);
9702 PMAP_UNLOCK(kernel_pmap);
9703 return (error);
9704 }
9705
9706 /*
9707 * Changes the specified virtual address range's protections to those
9708 * specified by "prot". Like pmap_change_attr(), protections for aliases
9709 * in the direct map are updated as well. Protections on aliasing mappings may
9710 * be a subset of the requested protections; for example, mappings in the direct
9711 * map are never executable.
9712 */
9713 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9714 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9715 {
9716 int error;
9717
9718 /* Only supported within the kernel map. */
9719 if (va < VM_MIN_KERNEL_ADDRESS)
9720 return (EINVAL);
9721
9722 PMAP_LOCK(kernel_pmap);
9723 error = pmap_change_props_locked(va, size, prot, -1,
9724 MAPDEV_ASSERTVALID);
9725 PMAP_UNLOCK(kernel_pmap);
9726 return (error);
9727 }
9728
9729 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9730 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9731 int mode, int flags)
9732 {
9733 vm_offset_t base, offset, tmpva;
9734 vm_paddr_t pa_start, pa_end, pa_end1;
9735 pdp_entry_t *pdpe;
9736 pd_entry_t *pde, pde_bits, pde_mask;
9737 pt_entry_t *pte, pte_bits, pte_mask;
9738 int error;
9739 bool changed;
9740
9741 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9742 base = trunc_page(va);
9743 offset = va & PAGE_MASK;
9744 size = round_page(offset + size);
9745
9746 /*
9747 * Only supported on kernel virtual addresses, including the direct
9748 * map but excluding the recursive map.
9749 */
9750 if (base < DMAP_MIN_ADDRESS)
9751 return (EINVAL);
9752
9753 /*
9754 * Construct our flag sets and masks. "bits" is the subset of
9755 * "mask" that will be set in each modified PTE.
9756 *
9757 * Mappings in the direct map are never allowed to be executable.
9758 */
9759 pde_bits = pte_bits = 0;
9760 pde_mask = pte_mask = 0;
9761 if (mode != -1) {
9762 pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9763 pde_mask |= X86_PG_PDE_CACHE;
9764 pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9765 pte_mask |= X86_PG_PTE_CACHE;
9766 }
9767 if (prot != VM_PROT_NONE) {
9768 if ((prot & VM_PROT_WRITE) != 0) {
9769 pde_bits |= X86_PG_RW;
9770 pte_bits |= X86_PG_RW;
9771 }
9772 if ((prot & VM_PROT_EXECUTE) == 0 ||
9773 va < VM_MIN_KERNEL_ADDRESS) {
9774 pde_bits |= pg_nx;
9775 pte_bits |= pg_nx;
9776 }
9777 pde_mask |= X86_PG_RW | pg_nx;
9778 pte_mask |= X86_PG_RW | pg_nx;
9779 }
9780
9781 /*
9782 * Pages that aren't mapped aren't supported. Also break down 2MB pages
9783 * into 4KB pages if required.
9784 */
9785 for (tmpva = base; tmpva < base + size; ) {
9786 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9787 if (pdpe == NULL || *pdpe == 0) {
9788 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9789 ("%s: addr %#lx is not mapped", __func__, tmpva));
9790 return (EINVAL);
9791 }
9792 if (*pdpe & PG_PS) {
9793 /*
9794 * If the current 1GB page already has the required
9795 * properties, then we need not demote this page. Just
9796 * increment tmpva to the next 1GB page frame.
9797 */
9798 if ((*pdpe & pde_mask) == pde_bits) {
9799 tmpva = trunc_1gpage(tmpva) + NBPDP;
9800 continue;
9801 }
9802
9803 /*
9804 * If the current offset aligns with a 1GB page frame
9805 * and there is at least 1GB left within the range, then
9806 * we need not break down this page into 2MB pages.
9807 */
9808 if ((tmpva & PDPMASK) == 0 &&
9809 tmpva + PDPMASK < base + size) {
9810 tmpva += NBPDP;
9811 continue;
9812 }
9813 if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9814 return (ENOMEM);
9815 }
9816 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9817 if (*pde == 0) {
9818 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9819 ("%s: addr %#lx is not mapped", __func__, tmpva));
9820 return (EINVAL);
9821 }
9822 if (*pde & PG_PS) {
9823 /*
9824 * If the current 2MB page already has the required
9825 * properties, then we need not demote this page. Just
9826 * increment tmpva to the next 2MB page frame.
9827 */
9828 if ((*pde & pde_mask) == pde_bits) {
9829 tmpva = trunc_2mpage(tmpva) + NBPDR;
9830 continue;
9831 }
9832
9833 /*
9834 * If the current offset aligns with a 2MB page frame
9835 * and there is at least 2MB left within the range, then
9836 * we need not break down this page into 4KB pages.
9837 */
9838 if ((tmpva & PDRMASK) == 0 &&
9839 tmpva + PDRMASK < base + size) {
9840 tmpva += NBPDR;
9841 continue;
9842 }
9843 if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9844 return (ENOMEM);
9845 }
9846 pte = pmap_pde_to_pte(pde, tmpva);
9847 if (*pte == 0) {
9848 KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9849 ("%s: addr %#lx is not mapped", __func__, tmpva));
9850 return (EINVAL);
9851 }
9852 tmpva += PAGE_SIZE;
9853 }
9854 error = 0;
9855
9856 /*
9857 * Ok, all the pages exist, so run through them updating their
9858 * properties if required.
9859 */
9860 changed = false;
9861 pa_start = pa_end = 0;
9862 for (tmpva = base; tmpva < base + size; ) {
9863 pdpe = pmap_pdpe(kernel_pmap, tmpva);
9864 if (*pdpe & PG_PS) {
9865 if ((*pdpe & pde_mask) != pde_bits) {
9866 pmap_pte_props(pdpe, pde_bits, pde_mask);
9867 changed = true;
9868 }
9869 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9870 (*pdpe & PG_PS_FRAME) < dmaplimit) {
9871 if (pa_start == pa_end) {
9872 /* Start physical address run. */
9873 pa_start = *pdpe & PG_PS_FRAME;
9874 pa_end = pa_start + NBPDP;
9875 } else if (pa_end == (*pdpe & PG_PS_FRAME))
9876 pa_end += NBPDP;
9877 else {
9878 /* Run ended, update direct map. */
9879 error = pmap_change_props_locked(
9880 PHYS_TO_DMAP(pa_start),
9881 pa_end - pa_start, prot, mode,
9882 flags);
9883 if (error != 0)
9884 break;
9885 /* Start physical address run. */
9886 pa_start = *pdpe & PG_PS_FRAME;
9887 pa_end = pa_start + NBPDP;
9888 }
9889 }
9890 tmpva = trunc_1gpage(tmpva) + NBPDP;
9891 continue;
9892 }
9893 pde = pmap_pdpe_to_pde(pdpe, tmpva);
9894 if (*pde & PG_PS) {
9895 if ((*pde & pde_mask) != pde_bits) {
9896 pmap_pte_props(pde, pde_bits, pde_mask);
9897 changed = true;
9898 }
9899 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9900 (*pde & PG_PS_FRAME) < dmaplimit) {
9901 if (pa_start == pa_end) {
9902 /* Start physical address run. */
9903 pa_start = *pde & PG_PS_FRAME;
9904 pa_end = pa_start + NBPDR;
9905 } else if (pa_end == (*pde & PG_PS_FRAME))
9906 pa_end += NBPDR;
9907 else {
9908 /* Run ended, update direct map. */
9909 error = pmap_change_props_locked(
9910 PHYS_TO_DMAP(pa_start),
9911 pa_end - pa_start, prot, mode,
9912 flags);
9913 if (error != 0)
9914 break;
9915 /* Start physical address run. */
9916 pa_start = *pde & PG_PS_FRAME;
9917 pa_end = pa_start + NBPDR;
9918 }
9919 }
9920 tmpva = trunc_2mpage(tmpva) + NBPDR;
9921 } else {
9922 pte = pmap_pde_to_pte(pde, tmpva);
9923 if ((*pte & pte_mask) != pte_bits) {
9924 pmap_pte_props(pte, pte_bits, pte_mask);
9925 changed = true;
9926 }
9927 if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9928 (*pte & PG_FRAME) < dmaplimit) {
9929 if (pa_start == pa_end) {
9930 /* Start physical address run. */
9931 pa_start = *pte & PG_FRAME;
9932 pa_end = pa_start + PAGE_SIZE;
9933 } else if (pa_end == (*pte & PG_FRAME))
9934 pa_end += PAGE_SIZE;
9935 else {
9936 /* Run ended, update direct map. */
9937 error = pmap_change_props_locked(
9938 PHYS_TO_DMAP(pa_start),
9939 pa_end - pa_start, prot, mode,
9940 flags);
9941 if (error != 0)
9942 break;
9943 /* Start physical address run. */
9944 pa_start = *pte & PG_FRAME;
9945 pa_end = pa_start + PAGE_SIZE;
9946 }
9947 }
9948 tmpva += PAGE_SIZE;
9949 }
9950 }
9951 if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9952 pa_end1 = MIN(pa_end, dmaplimit);
9953 if (pa_start != pa_end1)
9954 error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9955 pa_end1 - pa_start, prot, mode, flags);
9956 }
9957
9958 /*
9959 * Flush CPU caches if required to make sure any data isn't cached that
9960 * shouldn't be, etc.
9961 */
9962 if (changed) {
9963 pmap_invalidate_range(kernel_pmap, base, tmpva);
9964 if ((flags & MAPDEV_FLUSHCACHE) != 0)
9965 pmap_invalidate_cache_range(base, tmpva);
9966 }
9967 return (error);
9968 }
9969
9970 /*
9971 * Demotes any mapping within the direct map region that covers more than the
9972 * specified range of physical addresses. This range's size must be a power
9973 * of two and its starting address must be a multiple of its size. Since the
9974 * demotion does not change any attributes of the mapping, a TLB invalidation
9975 * is not mandatory. The caller may, however, request a TLB invalidation.
9976 */
9977 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9978 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9979 {
9980 pdp_entry_t *pdpe;
9981 pd_entry_t *pde;
9982 vm_offset_t va;
9983 bool changed;
9984
9985 if (len == 0)
9986 return;
9987 KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9988 KASSERT((base & (len - 1)) == 0,
9989 ("pmap_demote_DMAP: base is not a multiple of len"));
9990 if (len < NBPDP && base < dmaplimit) {
9991 va = PHYS_TO_DMAP(base);
9992 changed = false;
9993 PMAP_LOCK(kernel_pmap);
9994 pdpe = pmap_pdpe(kernel_pmap, va);
9995 if ((*pdpe & X86_PG_V) == 0)
9996 panic("pmap_demote_DMAP: invalid PDPE");
9997 if ((*pdpe & PG_PS) != 0) {
9998 if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9999 panic("pmap_demote_DMAP: PDPE failed");
10000 changed = true;
10001 }
10002 if (len < NBPDR) {
10003 pde = pmap_pdpe_to_pde(pdpe, va);
10004 if ((*pde & X86_PG_V) == 0)
10005 panic("pmap_demote_DMAP: invalid PDE");
10006 if ((*pde & PG_PS) != 0) {
10007 if (!pmap_demote_pde(kernel_pmap, pde, va))
10008 panic("pmap_demote_DMAP: PDE failed");
10009 changed = true;
10010 }
10011 }
10012 if (changed && invalidate)
10013 pmap_invalidate_page(kernel_pmap, va);
10014 PMAP_UNLOCK(kernel_pmap);
10015 }
10016 }
10017
10018 /*
10019 * Perform the pmap work for mincore(2). If the page is not both referenced and
10020 * modified by this pmap, returns its physical address so that the caller can
10021 * find other mappings.
10022 */
10023 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10024 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10025 {
10026 pdp_entry_t *pdpe;
10027 pd_entry_t *pdep;
10028 pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10029 vm_paddr_t pa;
10030 int val;
10031
10032 PG_A = pmap_accessed_bit(pmap);
10033 PG_M = pmap_modified_bit(pmap);
10034 PG_V = pmap_valid_bit(pmap);
10035 PG_RW = pmap_rw_bit(pmap);
10036
10037 PMAP_LOCK(pmap);
10038 pte = 0;
10039 pa = 0;
10040 val = 0;
10041 pdpe = pmap_pdpe(pmap, addr);
10042 if (pdpe == NULL)
10043 goto out;
10044 if ((*pdpe & PG_V) != 0) {
10045 if ((*pdpe & PG_PS) != 0) {
10046 pte = *pdpe;
10047 pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10048 PG_FRAME;
10049 val = MINCORE_PSIND(2);
10050 } else {
10051 pdep = pmap_pde(pmap, addr);
10052 if (pdep != NULL && (*pdep & PG_V) != 0) {
10053 if ((*pdep & PG_PS) != 0) {
10054 pte = *pdep;
10055 /* Compute the physical address of the 4KB page. */
10056 pa = ((pte & PG_PS_FRAME) | (addr &
10057 PDRMASK)) & PG_FRAME;
10058 val = MINCORE_PSIND(1);
10059 } else {
10060 pte = *pmap_pde_to_pte(pdep, addr);
10061 pa = pte & PG_FRAME;
10062 val = 0;
10063 }
10064 }
10065 }
10066 }
10067 if ((pte & PG_V) != 0) {
10068 val |= MINCORE_INCORE;
10069 if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10070 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10071 if ((pte & PG_A) != 0)
10072 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10073 }
10074 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10075 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10076 (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10077 *pap = pa;
10078 }
10079 out:
10080 PMAP_UNLOCK(pmap);
10081 return (val);
10082 }
10083
10084 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10085 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10086 {
10087 uint32_t gen, new_gen, pcid_next;
10088
10089 CRITICAL_ASSERT(curthread);
10090 gen = PCPU_GET(pcid_gen);
10091 if (pcidp->pm_pcid == PMAP_PCID_KERN)
10092 return (pti ? 0 : CR3_PCID_SAVE);
10093 if (pcidp->pm_gen == gen)
10094 return (CR3_PCID_SAVE);
10095 pcid_next = PCPU_GET(pcid_next);
10096 KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10097 (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10098 ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10099 if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10100 (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10101 new_gen = gen + 1;
10102 if (new_gen == 0)
10103 new_gen = 1;
10104 PCPU_SET(pcid_gen, new_gen);
10105 pcid_next = PMAP_PCID_KERN + 1;
10106 } else {
10107 new_gen = gen;
10108 }
10109 pcidp->pm_pcid = pcid_next;
10110 pcidp->pm_gen = new_gen;
10111 PCPU_SET(pcid_next, pcid_next + 1);
10112 return (0);
10113 }
10114
10115 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10116 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10117 {
10118 uint64_t cached;
10119
10120 cached = pmap_pcid_alloc(pmap, pcidp);
10121 KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10122 ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10123 KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10124 ("non-kernel pmap pmap %p cpu %d pcid %#x",
10125 pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10126 return (cached);
10127 }
10128
10129 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10130 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10131 {
10132
10133 PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10134 PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10135 }
10136
10137 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10138 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10139 {
10140 pmap_t old_pmap;
10141 struct pmap_pcid *pcidp, *old_pcidp;
10142 uint64_t cached, cr3, kcr3, ucr3;
10143
10144 KASSERT((read_rflags() & PSL_I) == 0,
10145 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10146
10147 /* See the comment in pmap_invalidate_page_pcid(). */
10148 if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10149 PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10150 old_pmap = PCPU_GET(curpmap);
10151 MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10152 old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10153 old_pcidp->pm_gen = 0;
10154 }
10155
10156 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10157 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10158 cr3 = rcr3();
10159 if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10160 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10161 PCPU_SET(curpmap, pmap);
10162 kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10163 ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10164
10165 if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10166 PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10167
10168 PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10169 PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10170 if (cached)
10171 counter_u64_add(pcid_save_cnt, 1);
10172
10173 pmap_activate_sw_pti_post(td, pmap);
10174 }
10175
10176 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10177 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10178 u_int cpuid)
10179 {
10180 struct pmap_pcid *pcidp;
10181 uint64_t cached, cr3;
10182
10183 KASSERT((read_rflags() & PSL_I) == 0,
10184 ("PCID needs interrupts disabled in pmap_activate_sw()"));
10185
10186 pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10187 cached = pmap_pcid_alloc_checked(pmap, pcidp);
10188 cr3 = rcr3();
10189 if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10190 load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10191 PCPU_SET(curpmap, pmap);
10192 if (cached)
10193 counter_u64_add(pcid_save_cnt, 1);
10194 }
10195
10196 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10197 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10198 u_int cpuid __unused)
10199 {
10200
10201 load_cr3(pmap->pm_cr3);
10202 PCPU_SET(curpmap, pmap);
10203 }
10204
10205 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10206 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10207 u_int cpuid __unused)
10208 {
10209
10210 pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10211 PCPU_SET(kcr3, pmap->pm_cr3);
10212 PCPU_SET(ucr3, pmap->pm_ucr3);
10213 pmap_activate_sw_pti_post(td, pmap);
10214 }
10215
10216 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10217 u_int))
10218 {
10219
10220 if (pmap_pcid_enabled && pti)
10221 return (pmap_activate_sw_pcid_pti);
10222 else if (pmap_pcid_enabled && !pti)
10223 return (pmap_activate_sw_pcid_nopti);
10224 else if (!pmap_pcid_enabled && pti)
10225 return (pmap_activate_sw_nopcid_pti);
10226 else /* if (!pmap_pcid_enabled && !pti) */
10227 return (pmap_activate_sw_nopcid_nopti);
10228 }
10229
10230 void
pmap_activate_sw(struct thread * td)10231 pmap_activate_sw(struct thread *td)
10232 {
10233 pmap_t oldpmap, pmap;
10234 u_int cpuid;
10235
10236 oldpmap = PCPU_GET(curpmap);
10237 pmap = vmspace_pmap(td->td_proc->p_vmspace);
10238 if (oldpmap == pmap) {
10239 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10240 mfence();
10241 return;
10242 }
10243 cpuid = PCPU_GET(cpuid);
10244 #ifdef SMP
10245 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10246 #else
10247 CPU_SET(cpuid, &pmap->pm_active);
10248 #endif
10249 pmap_activate_sw_mode(td, pmap, cpuid);
10250 #ifdef SMP
10251 CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10252 #else
10253 CPU_CLR(cpuid, &oldpmap->pm_active);
10254 #endif
10255 }
10256
10257 void
pmap_activate(struct thread * td)10258 pmap_activate(struct thread *td)
10259 {
10260 /*
10261 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10262 * invalidate_all IPI, which checks for curpmap ==
10263 * smp_tlb_pmap. The below sequence of operations has a
10264 * window where %CR3 is loaded with the new pmap's PML4
10265 * address, but the curpmap value has not yet been updated.
10266 * This causes the invltlb IPI handler, which is called
10267 * between the updates, to execute as a NOP, which leaves
10268 * stale TLB entries.
10269 *
10270 * Note that the most common use of pmap_activate_sw(), from
10271 * a context switch, is immune to this race, because
10272 * interrupts are disabled (while the thread lock is owned),
10273 * so the IPI is delayed until after curpmap is updated. Protect
10274 * other callers in a similar way, by disabling interrupts
10275 * around the %cr3 register reload and curpmap assignment.
10276 */
10277 spinlock_enter();
10278 pmap_activate_sw(td);
10279 spinlock_exit();
10280 }
10281
10282 void
pmap_activate_boot(pmap_t pmap)10283 pmap_activate_boot(pmap_t pmap)
10284 {
10285 uint64_t kcr3;
10286 u_int cpuid;
10287
10288 /*
10289 * kernel_pmap must be never deactivated, and we ensure that
10290 * by never activating it at all.
10291 */
10292 MPASS(pmap != kernel_pmap);
10293
10294 cpuid = PCPU_GET(cpuid);
10295 #ifdef SMP
10296 CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10297 #else
10298 CPU_SET(cpuid, &pmap->pm_active);
10299 #endif
10300 PCPU_SET(curpmap, pmap);
10301 if (pti) {
10302 kcr3 = pmap->pm_cr3;
10303 if (pmap_pcid_enabled)
10304 kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10305 } else {
10306 kcr3 = PMAP_NO_CR3;
10307 }
10308 PCPU_SET(kcr3, kcr3);
10309 PCPU_SET(ucr3, PMAP_NO_CR3);
10310 }
10311
10312 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10313 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10314 {
10315 *res = pmap->pm_active;
10316 }
10317
10318 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10319 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10320 {
10321 }
10322
10323 /*
10324 * Increase the starting virtual address of the given mapping if a
10325 * different alignment might result in more superpage mappings.
10326 */
10327 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10328 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10329 vm_offset_t *addr, vm_size_t size)
10330 {
10331 vm_offset_t superpage_offset;
10332
10333 if (size < NBPDR)
10334 return;
10335 if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10336 offset += ptoa(object->pg_color);
10337 superpage_offset = offset & PDRMASK;
10338 if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10339 (*addr & PDRMASK) == superpage_offset)
10340 return;
10341 if ((*addr & PDRMASK) < superpage_offset)
10342 *addr = (*addr & ~PDRMASK) + superpage_offset;
10343 else
10344 *addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10345 }
10346
10347 #ifdef INVARIANTS
10348 static unsigned long num_dirty_emulations;
10349 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10350 &num_dirty_emulations, 0, NULL);
10351
10352 static unsigned long num_accessed_emulations;
10353 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10354 &num_accessed_emulations, 0, NULL);
10355
10356 static unsigned long num_superpage_accessed_emulations;
10357 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10358 &num_superpage_accessed_emulations, 0, NULL);
10359
10360 static unsigned long ad_emulation_superpage_promotions;
10361 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10362 &ad_emulation_superpage_promotions, 0, NULL);
10363 #endif /* INVARIANTS */
10364
10365 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10366 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10367 {
10368 int rv;
10369 struct rwlock *lock;
10370 #if VM_NRESERVLEVEL > 0
10371 vm_page_t m, mpte;
10372 #endif
10373 pd_entry_t *pde;
10374 pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10375
10376 KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10377 ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10378
10379 if (!pmap_emulate_ad_bits(pmap))
10380 return (-1);
10381
10382 PG_A = pmap_accessed_bit(pmap);
10383 PG_M = pmap_modified_bit(pmap);
10384 PG_V = pmap_valid_bit(pmap);
10385 PG_RW = pmap_rw_bit(pmap);
10386
10387 rv = -1;
10388 lock = NULL;
10389 PMAP_LOCK(pmap);
10390
10391 pde = pmap_pde(pmap, va);
10392 if (pde == NULL || (*pde & PG_V) == 0)
10393 goto done;
10394
10395 if ((*pde & PG_PS) != 0) {
10396 if (ftype == VM_PROT_READ) {
10397 #ifdef INVARIANTS
10398 atomic_add_long(&num_superpage_accessed_emulations, 1);
10399 #endif
10400 *pde |= PG_A;
10401 rv = 0;
10402 }
10403 goto done;
10404 }
10405
10406 pte = pmap_pde_to_pte(pde, va);
10407 if ((*pte & PG_V) == 0)
10408 goto done;
10409
10410 if (ftype == VM_PROT_WRITE) {
10411 if ((*pte & PG_RW) == 0)
10412 goto done;
10413 /*
10414 * Set the modified and accessed bits simultaneously.
10415 *
10416 * Intel EPT PTEs that do software emulation of A/D bits map
10417 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10418 * An EPT misconfiguration is triggered if the PTE is writable
10419 * but not readable (WR=10). This is avoided by setting PG_A
10420 * and PG_M simultaneously.
10421 */
10422 *pte |= PG_M | PG_A;
10423 } else {
10424 *pte |= PG_A;
10425 }
10426
10427 #if VM_NRESERVLEVEL > 0
10428 /* try to promote the mapping */
10429 if (va < VM_MAXUSER_ADDRESS)
10430 mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10431 else
10432 mpte = NULL;
10433
10434 m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10435
10436 if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10437 (m->flags & PG_FICTITIOUS) == 0 &&
10438 vm_reserv_level_iffullpop(m) == 0 &&
10439 pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10440 #ifdef INVARIANTS
10441 atomic_add_long(&ad_emulation_superpage_promotions, 1);
10442 #endif
10443 }
10444 #endif
10445
10446 #ifdef INVARIANTS
10447 if (ftype == VM_PROT_WRITE)
10448 atomic_add_long(&num_dirty_emulations, 1);
10449 else
10450 atomic_add_long(&num_accessed_emulations, 1);
10451 #endif
10452 rv = 0; /* success */
10453 done:
10454 if (lock != NULL)
10455 rw_wunlock(lock);
10456 PMAP_UNLOCK(pmap);
10457 return (rv);
10458 }
10459
10460 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10461 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10462 {
10463 pml4_entry_t *pml4;
10464 pdp_entry_t *pdp;
10465 pd_entry_t *pde;
10466 pt_entry_t *pte, PG_V;
10467 int idx;
10468
10469 idx = 0;
10470 PG_V = pmap_valid_bit(pmap);
10471 PMAP_LOCK(pmap);
10472
10473 pml4 = pmap_pml4e(pmap, va);
10474 if (pml4 == NULL)
10475 goto done;
10476 ptr[idx++] = *pml4;
10477 if ((*pml4 & PG_V) == 0)
10478 goto done;
10479
10480 pdp = pmap_pml4e_to_pdpe(pml4, va);
10481 ptr[idx++] = *pdp;
10482 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10483 goto done;
10484
10485 pde = pmap_pdpe_to_pde(pdp, va);
10486 ptr[idx++] = *pde;
10487 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10488 goto done;
10489
10490 pte = pmap_pde_to_pte(pde, va);
10491 ptr[idx++] = *pte;
10492
10493 done:
10494 PMAP_UNLOCK(pmap);
10495 *num = idx;
10496 }
10497
10498 /**
10499 * Get the kernel virtual address of a set of physical pages. If there are
10500 * physical addresses not covered by the DMAP perform a transient mapping
10501 * that will be removed when calling pmap_unmap_io_transient.
10502 *
10503 * \param page The pages the caller wishes to obtain the virtual
10504 * address on the kernel memory map.
10505 * \param vaddr On return contains the kernel virtual memory address
10506 * of the pages passed in the page parameter.
10507 * \param count Number of pages passed in.
10508 * \param can_fault true if the thread using the mapped pages can take
10509 * page faults, false otherwise.
10510 *
10511 * \returns true if the caller must call pmap_unmap_io_transient when
10512 * finished or false otherwise.
10513 *
10514 */
10515 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10516 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10517 bool can_fault)
10518 {
10519 vm_paddr_t paddr;
10520 bool needs_mapping;
10521 int error __unused, i;
10522
10523 /*
10524 * Allocate any KVA space that we need, this is done in a separate
10525 * loop to prevent calling vmem_alloc while pinned.
10526 */
10527 needs_mapping = false;
10528 for (i = 0; i < count; i++) {
10529 paddr = VM_PAGE_TO_PHYS(page[i]);
10530 if (__predict_false(paddr >= dmaplimit)) {
10531 error = vmem_alloc(kernel_arena, PAGE_SIZE,
10532 M_BESTFIT | M_WAITOK, &vaddr[i]);
10533 KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10534 needs_mapping = true;
10535 } else {
10536 vaddr[i] = PHYS_TO_DMAP(paddr);
10537 }
10538 }
10539
10540 /* Exit early if everything is covered by the DMAP */
10541 if (!needs_mapping)
10542 return (false);
10543
10544 /*
10545 * NB: The sequence of updating a page table followed by accesses
10546 * to the corresponding pages used in the !DMAP case is subject to
10547 * the situation described in the "AMD64 Architecture Programmer's
10548 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10549 * Coherency Considerations". Therefore, issuing the INVLPG right
10550 * after modifying the PTE bits is crucial.
10551 */
10552 if (!can_fault)
10553 sched_pin();
10554 for (i = 0; i < count; i++) {
10555 paddr = VM_PAGE_TO_PHYS(page[i]);
10556 if (paddr >= dmaplimit) {
10557 if (can_fault) {
10558 /*
10559 * Slow path, since we can get page faults
10560 * while mappings are active don't pin the
10561 * thread to the CPU and instead add a global
10562 * mapping visible to all CPUs.
10563 */
10564 pmap_qenter(vaddr[i], &page[i], 1);
10565 } else {
10566 pmap_kenter_attr(vaddr[i], paddr,
10567 page[i]->md.pat_mode);
10568 pmap_invlpg(kernel_pmap, vaddr[i]);
10569 }
10570 }
10571 }
10572
10573 return (needs_mapping);
10574 }
10575
10576 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10577 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10578 bool can_fault)
10579 {
10580 vm_paddr_t paddr;
10581 int i;
10582
10583 if (!can_fault)
10584 sched_unpin();
10585 for (i = 0; i < count; i++) {
10586 paddr = VM_PAGE_TO_PHYS(page[i]);
10587 if (paddr >= dmaplimit) {
10588 if (can_fault)
10589 pmap_qremove(vaddr[i], 1);
10590 vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10591 }
10592 }
10593 }
10594
10595 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10596 pmap_quick_enter_page(vm_page_t m)
10597 {
10598 vm_paddr_t paddr;
10599
10600 paddr = VM_PAGE_TO_PHYS(m);
10601 if (paddr < dmaplimit)
10602 return (PHYS_TO_DMAP(paddr));
10603 mtx_lock_spin(&qframe_mtx);
10604 KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10605
10606 /*
10607 * Since qframe is exclusively mapped by us, and we do not set
10608 * PG_G, we can use INVLPG here.
10609 */
10610 invlpg(qframe);
10611
10612 pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10613 X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10614 return (qframe);
10615 }
10616
10617 void
pmap_quick_remove_page(vm_offset_t addr)10618 pmap_quick_remove_page(vm_offset_t addr)
10619 {
10620
10621 if (addr != qframe)
10622 return;
10623 pte_store(vtopte(qframe), 0);
10624 mtx_unlock_spin(&qframe_mtx);
10625 }
10626
10627 /*
10628 * Pdp pages from the large map are managed differently from either
10629 * kernel or user page table pages. They are permanently allocated at
10630 * initialization time, and their reference count is permanently set to
10631 * zero. The pml4 entries pointing to those pages are copied into
10632 * each allocated pmap.
10633 *
10634 * In contrast, pd and pt pages are managed like user page table
10635 * pages. They are dynamically allocated, and their reference count
10636 * represents the number of valid entries within the page.
10637 */
10638 static vm_page_t
pmap_large_map_getptp_unlocked(void)10639 pmap_large_map_getptp_unlocked(void)
10640 {
10641 return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10642 }
10643
10644 static vm_page_t
pmap_large_map_getptp(void)10645 pmap_large_map_getptp(void)
10646 {
10647 vm_page_t m;
10648
10649 PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10650 m = pmap_large_map_getptp_unlocked();
10651 if (m == NULL) {
10652 PMAP_UNLOCK(kernel_pmap);
10653 vm_wait(NULL);
10654 PMAP_LOCK(kernel_pmap);
10655 /* Callers retry. */
10656 }
10657 return (m);
10658 }
10659
10660 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10661 pmap_large_map_pdpe(vm_offset_t va)
10662 {
10663 vm_pindex_t pml4_idx;
10664 vm_paddr_t mphys;
10665
10666 pml4_idx = pmap_pml4e_index(va);
10667 KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10668 ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10669 "%#jx lm_ents %d",
10670 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10671 KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10672 ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10673 "LMSPML4I %#jx lm_ents %d",
10674 (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10675 mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10676 return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10677 }
10678
10679 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10680 pmap_large_map_pde(vm_offset_t va)
10681 {
10682 pdp_entry_t *pdpe;
10683 vm_page_t m;
10684 vm_paddr_t mphys;
10685
10686 retry:
10687 pdpe = pmap_large_map_pdpe(va);
10688 if (*pdpe == 0) {
10689 m = pmap_large_map_getptp();
10690 if (m == NULL)
10691 goto retry;
10692 mphys = VM_PAGE_TO_PHYS(m);
10693 *pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10694 } else {
10695 MPASS((*pdpe & X86_PG_PS) == 0);
10696 mphys = *pdpe & PG_FRAME;
10697 }
10698 return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10699 }
10700
10701 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10702 pmap_large_map_pte(vm_offset_t va)
10703 {
10704 pd_entry_t *pde;
10705 vm_page_t m;
10706 vm_paddr_t mphys;
10707
10708 retry:
10709 pde = pmap_large_map_pde(va);
10710 if (*pde == 0) {
10711 m = pmap_large_map_getptp();
10712 if (m == NULL)
10713 goto retry;
10714 mphys = VM_PAGE_TO_PHYS(m);
10715 *pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10716 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10717 } else {
10718 MPASS((*pde & X86_PG_PS) == 0);
10719 mphys = *pde & PG_FRAME;
10720 }
10721 return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10722 }
10723
10724 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10725 pmap_large_map_kextract(vm_offset_t va)
10726 {
10727 pdp_entry_t *pdpe, pdp;
10728 pd_entry_t *pde, pd;
10729 pt_entry_t *pte, pt;
10730
10731 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10732 ("not largemap range %#lx", (u_long)va));
10733 pdpe = pmap_large_map_pdpe(va);
10734 pdp = *pdpe;
10735 KASSERT((pdp & X86_PG_V) != 0,
10736 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10737 (u_long)pdpe, pdp));
10738 if ((pdp & X86_PG_PS) != 0) {
10739 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10740 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10741 (u_long)pdpe, pdp));
10742 return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10743 }
10744 pde = pmap_pdpe_to_pde(pdpe, va);
10745 pd = *pde;
10746 KASSERT((pd & X86_PG_V) != 0,
10747 ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10748 if ((pd & X86_PG_PS) != 0)
10749 return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10750 pte = pmap_pde_to_pte(pde, va);
10751 pt = *pte;
10752 KASSERT((pt & X86_PG_V) != 0,
10753 ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10754 return ((pt & PG_FRAME) | (va & PAGE_MASK));
10755 }
10756
10757 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10758 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10759 vmem_addr_t *vmem_res)
10760 {
10761
10762 /*
10763 * Large mappings are all but static. Consequently, there
10764 * is no point in waiting for an earlier allocation to be
10765 * freed.
10766 */
10767 return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10768 VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10769 }
10770
10771 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10772 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10773 vm_memattr_t mattr)
10774 {
10775 pdp_entry_t *pdpe;
10776 pd_entry_t *pde;
10777 pt_entry_t *pte;
10778 vm_offset_t va, inc;
10779 vmem_addr_t vmem_res;
10780 vm_paddr_t pa;
10781 int error;
10782
10783 if (len == 0 || spa + len < spa)
10784 return (EINVAL);
10785
10786 /* See if DMAP can serve. */
10787 if (spa + len <= dmaplimit) {
10788 va = PHYS_TO_DMAP(spa);
10789 *addr = (void *)va;
10790 return (pmap_change_attr(va, len, mattr));
10791 }
10792
10793 /*
10794 * No, allocate KVA. Fit the address with best possible
10795 * alignment for superpages. Fall back to worse align if
10796 * failed.
10797 */
10798 error = ENOMEM;
10799 if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10800 NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10801 error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10802 &vmem_res);
10803 if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10804 NBPDR) + NBPDR)
10805 error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10806 &vmem_res);
10807 if (error != 0)
10808 error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10809 if (error != 0)
10810 return (error);
10811
10812 /*
10813 * Fill pagetable. PG_M is not pre-set, we scan modified bits
10814 * in the pagetable to minimize flushing. No need to
10815 * invalidate TLB, since we only update invalid entries.
10816 */
10817 PMAP_LOCK(kernel_pmap);
10818 for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10819 len -= inc) {
10820 if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10821 (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10822 pdpe = pmap_large_map_pdpe(va);
10823 MPASS(*pdpe == 0);
10824 *pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10825 X86_PG_V | X86_PG_A | pg_nx |
10826 pmap_cache_bits(kernel_pmap, mattr, true);
10827 inc = NBPDP;
10828 } else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10829 (va & PDRMASK) == 0) {
10830 pde = pmap_large_map_pde(va);
10831 MPASS(*pde == 0);
10832 *pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10833 X86_PG_V | X86_PG_A | pg_nx |
10834 pmap_cache_bits(kernel_pmap, mattr, true);
10835 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10836 ref_count++;
10837 inc = NBPDR;
10838 } else {
10839 pte = pmap_large_map_pte(va);
10840 MPASS(*pte == 0);
10841 *pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10842 X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10843 mattr, false);
10844 PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10845 ref_count++;
10846 inc = PAGE_SIZE;
10847 }
10848 }
10849 PMAP_UNLOCK(kernel_pmap);
10850 MPASS(len == 0);
10851
10852 *addr = (void *)vmem_res;
10853 return (0);
10854 }
10855
10856 void
pmap_large_unmap(void * svaa,vm_size_t len)10857 pmap_large_unmap(void *svaa, vm_size_t len)
10858 {
10859 vm_offset_t sva, va;
10860 vm_size_t inc;
10861 pdp_entry_t *pdpe, pdp;
10862 pd_entry_t *pde, pd;
10863 pt_entry_t *pte;
10864 vm_page_t m;
10865 struct spglist spgf;
10866
10867 sva = (vm_offset_t)svaa;
10868 if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10869 sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10870 return;
10871
10872 SLIST_INIT(&spgf);
10873 KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10874 PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10875 ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10876 PMAP_LOCK(kernel_pmap);
10877 for (va = sva; va < sva + len; va += inc) {
10878 pdpe = pmap_large_map_pdpe(va);
10879 pdp = *pdpe;
10880 KASSERT((pdp & X86_PG_V) != 0,
10881 ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10882 (u_long)pdpe, pdp));
10883 if ((pdp & X86_PG_PS) != 0) {
10884 KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10885 ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10886 (u_long)pdpe, pdp));
10887 KASSERT((va & PDPMASK) == 0,
10888 ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10889 (u_long)pdpe, pdp));
10890 KASSERT(va + NBPDP <= sva + len,
10891 ("unmap covers partial 1GB page, sva %#lx va %#lx "
10892 "pdpe %#lx pdp %#lx len %#lx", sva, va,
10893 (u_long)pdpe, pdp, len));
10894 *pdpe = 0;
10895 inc = NBPDP;
10896 continue;
10897 }
10898 pde = pmap_pdpe_to_pde(pdpe, va);
10899 pd = *pde;
10900 KASSERT((pd & X86_PG_V) != 0,
10901 ("invalid pd va %#lx pde %#lx pd %#lx", va,
10902 (u_long)pde, pd));
10903 if ((pd & X86_PG_PS) != 0) {
10904 KASSERT((va & PDRMASK) == 0,
10905 ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10906 (u_long)pde, pd));
10907 KASSERT(va + NBPDR <= sva + len,
10908 ("unmap covers partial 2MB page, sva %#lx va %#lx "
10909 "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10910 pd, len));
10911 pde_store(pde, 0);
10912 inc = NBPDR;
10913 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10914 m->ref_count--;
10915 if (m->ref_count == 0) {
10916 *pdpe = 0;
10917 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10918 }
10919 continue;
10920 }
10921 pte = pmap_pde_to_pte(pde, va);
10922 KASSERT((*pte & X86_PG_V) != 0,
10923 ("invalid pte va %#lx pte %#lx pt %#lx", va,
10924 (u_long)pte, *pte));
10925 pte_clear(pte);
10926 inc = PAGE_SIZE;
10927 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10928 m->ref_count--;
10929 if (m->ref_count == 0) {
10930 *pde = 0;
10931 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10932 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10933 m->ref_count--;
10934 if (m->ref_count == 0) {
10935 *pdpe = 0;
10936 SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10937 }
10938 }
10939 }
10940 pmap_invalidate_range(kernel_pmap, sva, sva + len);
10941 PMAP_UNLOCK(kernel_pmap);
10942 vm_page_free_pages_toq(&spgf, false);
10943 vmem_free(large_vmem, sva, len);
10944 }
10945
10946 static void
pmap_large_map_wb_fence_mfence(void)10947 pmap_large_map_wb_fence_mfence(void)
10948 {
10949
10950 mfence();
10951 }
10952
10953 static void
pmap_large_map_wb_fence_atomic(void)10954 pmap_large_map_wb_fence_atomic(void)
10955 {
10956
10957 atomic_thread_fence_seq_cst();
10958 }
10959
10960 static void
pmap_large_map_wb_fence_nop(void)10961 pmap_large_map_wb_fence_nop(void)
10962 {
10963 }
10964
10965 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10966 {
10967
10968 if (cpu_vendor_id != CPU_VENDOR_INTEL)
10969 return (pmap_large_map_wb_fence_mfence);
10970 else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10971 CPUID_STDEXT_CLFLUSHOPT)) == 0)
10972 return (pmap_large_map_wb_fence_atomic);
10973 else
10974 /* clflush is strongly enough ordered */
10975 return (pmap_large_map_wb_fence_nop);
10976 }
10977
10978 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10979 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10980 {
10981
10982 for (; len > 0; len -= cpu_clflush_line_size,
10983 va += cpu_clflush_line_size)
10984 clwb(va);
10985 }
10986
10987 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10988 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10989 {
10990
10991 for (; len > 0; len -= cpu_clflush_line_size,
10992 va += cpu_clflush_line_size)
10993 clflushopt(va);
10994 }
10995
10996 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10997 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10998 {
10999
11000 for (; len > 0; len -= cpu_clflush_line_size,
11001 va += cpu_clflush_line_size)
11002 clflush(va);
11003 }
11004
11005 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)11006 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
11007 {
11008 }
11009
11010 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
11011 {
11012
11013 if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
11014 return (pmap_large_map_flush_range_clwb);
11015 else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
11016 return (pmap_large_map_flush_range_clflushopt);
11017 else if ((cpu_feature & CPUID_CLFSH) != 0)
11018 return (pmap_large_map_flush_range_clflush);
11019 else
11020 return (pmap_large_map_flush_range_nop);
11021 }
11022
11023 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11024 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11025 {
11026 volatile u_long *pe;
11027 u_long p;
11028 vm_offset_t va;
11029 vm_size_t inc;
11030 bool seen_other;
11031
11032 for (va = sva; va < eva; va += inc) {
11033 inc = 0;
11034 if ((amd_feature & AMDID_PAGE1GB) != 0) {
11035 pe = (volatile u_long *)pmap_large_map_pdpe(va);
11036 p = *pe;
11037 if ((p & X86_PG_PS) != 0)
11038 inc = NBPDP;
11039 }
11040 if (inc == 0) {
11041 pe = (volatile u_long *)pmap_large_map_pde(va);
11042 p = *pe;
11043 if ((p & X86_PG_PS) != 0)
11044 inc = NBPDR;
11045 }
11046 if (inc == 0) {
11047 pe = (volatile u_long *)pmap_large_map_pte(va);
11048 p = *pe;
11049 inc = PAGE_SIZE;
11050 }
11051 seen_other = false;
11052 for (;;) {
11053 if ((p & X86_PG_AVAIL1) != 0) {
11054 /*
11055 * Spin-wait for the end of a parallel
11056 * write-back.
11057 */
11058 cpu_spinwait();
11059 p = *pe;
11060
11061 /*
11062 * If we saw other write-back
11063 * occurring, we cannot rely on PG_M to
11064 * indicate state of the cache. The
11065 * PG_M bit is cleared before the
11066 * flush to avoid ignoring new writes,
11067 * and writes which are relevant for
11068 * us might happen after.
11069 */
11070 seen_other = true;
11071 continue;
11072 }
11073
11074 if ((p & X86_PG_M) != 0 || seen_other) {
11075 if (!atomic_fcmpset_long(pe, &p,
11076 (p & ~X86_PG_M) | X86_PG_AVAIL1))
11077 /*
11078 * If we saw PG_M without
11079 * PG_AVAIL1, and then on the
11080 * next attempt we do not
11081 * observe either PG_M or
11082 * PG_AVAIL1, the other
11083 * write-back started after us
11084 * and finished before us. We
11085 * can rely on it doing our
11086 * work.
11087 */
11088 continue;
11089 pmap_large_map_flush_range(va, inc);
11090 atomic_clear_long(pe, X86_PG_AVAIL1);
11091 }
11092 break;
11093 }
11094 maybe_yield();
11095 }
11096 }
11097
11098 /*
11099 * Write-back cache lines for the given address range.
11100 *
11101 * Must be called only on the range or sub-range returned from
11102 * pmap_large_map(). Must not be called on the coalesced ranges.
11103 *
11104 * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11105 * instructions support.
11106 */
11107 void
pmap_large_map_wb(void * svap,vm_size_t len)11108 pmap_large_map_wb(void *svap, vm_size_t len)
11109 {
11110 vm_offset_t eva, sva;
11111
11112 sva = (vm_offset_t)svap;
11113 eva = sva + len;
11114 pmap_large_map_wb_fence();
11115 if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11116 pmap_large_map_flush_range(sva, len);
11117 } else {
11118 KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11119 eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11120 ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11121 pmap_large_map_wb_large(sva, eva);
11122 }
11123 pmap_large_map_wb_fence();
11124 }
11125
11126 static vm_page_t
pmap_pti_alloc_page(void)11127 pmap_pti_alloc_page(void)
11128 {
11129 vm_page_t m;
11130
11131 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11132 m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11133 return (m);
11134 }
11135
11136 static bool
pmap_pti_free_page(vm_page_t m)11137 pmap_pti_free_page(vm_page_t m)
11138 {
11139 if (!vm_page_unwire_noq(m))
11140 return (false);
11141 vm_page_xbusy_claim(m);
11142 vm_page_free_zero(m);
11143 return (true);
11144 }
11145
11146 static void
pmap_pti_init(void)11147 pmap_pti_init(void)
11148 {
11149 vm_page_t pml4_pg;
11150 pdp_entry_t *pdpe;
11151 vm_offset_t va;
11152 int i;
11153
11154 if (!pti)
11155 return;
11156 pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11157 VM_OBJECT_WLOCK(pti_obj);
11158 pml4_pg = pmap_pti_alloc_page();
11159 pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11160 for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11161 va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11162 pdpe = pmap_pti_pdpe(va);
11163 pmap_pti_wire_pte(pdpe);
11164 }
11165 pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11166 (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11167 pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11168 sizeof(struct gate_descriptor) * NIDT, false);
11169 CPU_FOREACH(i) {
11170 /* Doublefault stack IST 1 */
11171 va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11172 pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11173 /* NMI stack IST 2 */
11174 va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11175 pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11176 /* MC# stack IST 3 */
11177 va = __pcpu[i].pc_common_tss.tss_ist3 +
11178 sizeof(struct nmi_pcpu);
11179 pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11180 /* DB# stack IST 4 */
11181 va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11182 pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11183 }
11184 pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11185 true);
11186 pti_finalized = true;
11187 VM_OBJECT_WUNLOCK(pti_obj);
11188 }
11189
11190 static void
pmap_cpu_init(void * arg __unused)11191 pmap_cpu_init(void *arg __unused)
11192 {
11193 CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11194 pmap_pti_init();
11195 }
11196 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11197
11198 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11199 pmap_pti_pdpe(vm_offset_t va)
11200 {
11201 pml4_entry_t *pml4e;
11202 pdp_entry_t *pdpe;
11203 vm_page_t m;
11204 vm_pindex_t pml4_idx;
11205 vm_paddr_t mphys;
11206
11207 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11208
11209 pml4_idx = pmap_pml4e_index(va);
11210 pml4e = &pti_pml4[pml4_idx];
11211 m = NULL;
11212 if (*pml4e == 0) {
11213 if (pti_finalized)
11214 panic("pml4 alloc after finalization\n");
11215 m = pmap_pti_alloc_page();
11216 if (*pml4e != 0) {
11217 pmap_pti_free_page(m);
11218 mphys = *pml4e & ~PAGE_MASK;
11219 } else {
11220 mphys = VM_PAGE_TO_PHYS(m);
11221 *pml4e = mphys | X86_PG_RW | X86_PG_V;
11222 }
11223 } else {
11224 mphys = *pml4e & ~PAGE_MASK;
11225 }
11226 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11227 return (pdpe);
11228 }
11229
11230 static void
pmap_pti_wire_pte(void * pte)11231 pmap_pti_wire_pte(void *pte)
11232 {
11233 vm_page_t m;
11234
11235 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11236 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11237 m->ref_count++;
11238 }
11239
11240 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11241 pmap_pti_unwire_pde(void *pde, bool only_ref)
11242 {
11243 vm_page_t m;
11244
11245 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11246 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11247 MPASS(only_ref || m->ref_count > 1);
11248 pmap_pti_free_page(m);
11249 }
11250
11251 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11252 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11253 {
11254 vm_page_t m;
11255 pd_entry_t *pde;
11256
11257 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11258 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11259 if (pmap_pti_free_page(m)) {
11260 pde = pmap_pti_pde(va);
11261 MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11262 *pde = 0;
11263 pmap_pti_unwire_pde(pde, false);
11264 }
11265 }
11266
11267 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11268 pmap_pti_pde(vm_offset_t va)
11269 {
11270 pdp_entry_t *pdpe;
11271 pd_entry_t *pde;
11272 vm_page_t m;
11273 vm_pindex_t pd_idx;
11274 vm_paddr_t mphys;
11275
11276 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11277
11278 pdpe = pmap_pti_pdpe(va);
11279 if (*pdpe == 0) {
11280 m = pmap_pti_alloc_page();
11281 if (*pdpe != 0) {
11282 pmap_pti_free_page(m);
11283 MPASS((*pdpe & X86_PG_PS) == 0);
11284 mphys = *pdpe & ~PAGE_MASK;
11285 } else {
11286 mphys = VM_PAGE_TO_PHYS(m);
11287 *pdpe = mphys | X86_PG_RW | X86_PG_V;
11288 }
11289 } else {
11290 MPASS((*pdpe & X86_PG_PS) == 0);
11291 mphys = *pdpe & ~PAGE_MASK;
11292 }
11293
11294 pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11295 pd_idx = pmap_pde_index(va);
11296 pde += pd_idx;
11297 return (pde);
11298 }
11299
11300 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11301 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11302 {
11303 pd_entry_t *pde;
11304 pt_entry_t *pte;
11305 vm_page_t m;
11306 vm_paddr_t mphys;
11307
11308 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11309
11310 pde = pmap_pti_pde(va);
11311 if (unwire_pde != NULL) {
11312 *unwire_pde = true;
11313 pmap_pti_wire_pte(pde);
11314 }
11315 if (*pde == 0) {
11316 m = pmap_pti_alloc_page();
11317 if (*pde != 0) {
11318 pmap_pti_free_page(m);
11319 MPASS((*pde & X86_PG_PS) == 0);
11320 mphys = *pde & ~(PAGE_MASK | pg_nx);
11321 } else {
11322 mphys = VM_PAGE_TO_PHYS(m);
11323 *pde = mphys | X86_PG_RW | X86_PG_V;
11324 if (unwire_pde != NULL)
11325 *unwire_pde = false;
11326 }
11327 } else {
11328 MPASS((*pde & X86_PG_PS) == 0);
11329 mphys = *pde & ~(PAGE_MASK | pg_nx);
11330 }
11331
11332 pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11333 pte += pmap_pte_index(va);
11334
11335 return (pte);
11336 }
11337
11338 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11339 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11340 {
11341 vm_paddr_t pa;
11342 pd_entry_t *pde;
11343 pt_entry_t *pte, ptev;
11344 bool unwire_pde;
11345
11346 VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11347
11348 sva = trunc_page(sva);
11349 MPASS(sva > VM_MAXUSER_ADDRESS);
11350 eva = round_page(eva);
11351 MPASS(sva < eva);
11352 for (; sva < eva; sva += PAGE_SIZE) {
11353 pte = pmap_pti_pte(sva, &unwire_pde);
11354 pa = pmap_kextract(sva);
11355 ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11356 (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11357 VM_MEMATTR_DEFAULT, false);
11358 if (*pte == 0) {
11359 pte_store(pte, ptev);
11360 pmap_pti_wire_pte(pte);
11361 } else {
11362 KASSERT(!pti_finalized,
11363 ("pti overlap after fin %#lx %#lx %#lx",
11364 sva, *pte, ptev));
11365 KASSERT(*pte == ptev,
11366 ("pti non-identical pte after fin %#lx %#lx %#lx",
11367 sva, *pte, ptev));
11368 }
11369 if (unwire_pde) {
11370 pde = pmap_pti_pde(sva);
11371 pmap_pti_unwire_pde(pde, true);
11372 }
11373 }
11374 }
11375
11376 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11377 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11378 {
11379
11380 if (!pti)
11381 return;
11382 VM_OBJECT_WLOCK(pti_obj);
11383 pmap_pti_add_kva_locked(sva, eva, exec);
11384 VM_OBJECT_WUNLOCK(pti_obj);
11385 }
11386
11387 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11388 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11389 {
11390 pt_entry_t *pte;
11391 vm_offset_t va;
11392
11393 if (!pti)
11394 return;
11395 sva = rounddown2(sva, PAGE_SIZE);
11396 MPASS(sva > VM_MAXUSER_ADDRESS);
11397 eva = roundup2(eva, PAGE_SIZE);
11398 MPASS(sva < eva);
11399 VM_OBJECT_WLOCK(pti_obj);
11400 for (va = sva; va < eva; va += PAGE_SIZE) {
11401 pte = pmap_pti_pte(va, NULL);
11402 KASSERT((*pte & X86_PG_V) != 0,
11403 ("invalid pte va %#lx pte %#lx pt %#lx", va,
11404 (u_long)pte, *pte));
11405 pte_clear(pte);
11406 pmap_pti_unwire_pte(pte, va);
11407 }
11408 pmap_invalidate_range(kernel_pmap, sva, eva);
11409 VM_OBJECT_WUNLOCK(pti_obj);
11410 }
11411
11412 static void *
pkru_dup_range(void * ctx __unused,void * data)11413 pkru_dup_range(void *ctx __unused, void *data)
11414 {
11415 struct pmap_pkru_range *node, *new_node;
11416
11417 new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11418 if (new_node == NULL)
11419 return (NULL);
11420 node = data;
11421 memcpy(new_node, node, sizeof(*node));
11422 return (new_node);
11423 }
11424
11425 static void
pkru_free_range(void * ctx __unused,void * node)11426 pkru_free_range(void *ctx __unused, void *node)
11427 {
11428
11429 uma_zfree(pmap_pkru_ranges_zone, node);
11430 }
11431
11432 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11433 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11434 int flags)
11435 {
11436 struct pmap_pkru_range *ppr;
11437 int error;
11438
11439 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11440 MPASS(pmap->pm_type == PT_X86);
11441 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11442 if ((flags & AMD64_PKRU_EXCL) != 0 &&
11443 !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11444 return (EBUSY);
11445 ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11446 if (ppr == NULL)
11447 return (ENOMEM);
11448 ppr->pkru_keyidx = keyidx;
11449 ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11450 error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11451 if (error != 0)
11452 uma_zfree(pmap_pkru_ranges_zone, ppr);
11453 return (error);
11454 }
11455
11456 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11457 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11458 {
11459
11460 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11461 MPASS(pmap->pm_type == PT_X86);
11462 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11463 return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11464 }
11465
11466 static void
pmap_pkru_deassign_all(pmap_t pmap)11467 pmap_pkru_deassign_all(pmap_t pmap)
11468 {
11469
11470 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11471 if (pmap->pm_type == PT_X86 &&
11472 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11473 rangeset_remove_all(&pmap->pm_pkru);
11474 }
11475
11476 /*
11477 * Returns true if the PKU setting is the same across the specified address
11478 * range, and false otherwise. When returning true, updates the referenced PTE
11479 * to reflect the PKU setting.
11480 */
11481 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11482 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11483 {
11484 struct pmap_pkru_range *ppr;
11485 vm_offset_t va;
11486 u_int keyidx;
11487
11488 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11489 KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11490 ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11491 if (pmap->pm_type != PT_X86 ||
11492 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11493 sva >= VM_MAXUSER_ADDRESS)
11494 return (true);
11495 MPASS(eva <= VM_MAXUSER_ADDRESS);
11496 ppr = rangeset_containing(&pmap->pm_pkru, sva);
11497 if (ppr == NULL)
11498 return (rangeset_empty(&pmap->pm_pkru, sva, eva));
11499 keyidx = ppr->pkru_keyidx;
11500 while ((va = ppr->pkru_rs_el.re_end) < eva) {
11501 if ((ppr = rangeset_beginning(&pmap->pm_pkru, va)) == NULL ||
11502 keyidx != ppr->pkru_keyidx)
11503 return (false);
11504 }
11505 *pte |= X86_PG_PKU(keyidx);
11506 return (true);
11507 }
11508
11509 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11510 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11511 {
11512 struct pmap_pkru_range *ppr;
11513
11514 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11515 if (pmap->pm_type != PT_X86 ||
11516 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11517 va >= VM_MAXUSER_ADDRESS)
11518 return (0);
11519 ppr = rangeset_containing(&pmap->pm_pkru, va);
11520 if (ppr != NULL)
11521 return (X86_PG_PKU(ppr->pkru_keyidx));
11522 return (0);
11523 }
11524
11525 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11526 pred_pkru_on_remove(void *ctx __unused, void *r)
11527 {
11528 struct pmap_pkru_range *ppr;
11529
11530 ppr = r;
11531 return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11532 }
11533
11534 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11535 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11536 {
11537
11538 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11539 if (pmap->pm_type == PT_X86 &&
11540 (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11541 rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11542 pred_pkru_on_remove);
11543 }
11544 }
11545
11546 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11547 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11548 {
11549
11550 PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11551 PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11552 MPASS(dst_pmap->pm_type == PT_X86);
11553 MPASS(src_pmap->pm_type == PT_X86);
11554 MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11555 if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11556 return (0);
11557 return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11558 }
11559
11560 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11561 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11562 u_int keyidx)
11563 {
11564 pml4_entry_t *pml4e;
11565 pdp_entry_t *pdpe;
11566 pd_entry_t newpde, ptpaddr, *pde;
11567 pt_entry_t newpte, *ptep, pte;
11568 vm_offset_t va, va_next;
11569 bool changed;
11570
11571 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11572 MPASS(pmap->pm_type == PT_X86);
11573 MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11574
11575 for (changed = false, va = sva; va < eva; va = va_next) {
11576 pml4e = pmap_pml4e(pmap, va);
11577 if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11578 va_next = (va + NBPML4) & ~PML4MASK;
11579 if (va_next < va)
11580 va_next = eva;
11581 continue;
11582 }
11583
11584 pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11585 if ((*pdpe & X86_PG_V) == 0) {
11586 va_next = (va + NBPDP) & ~PDPMASK;
11587 if (va_next < va)
11588 va_next = eva;
11589 continue;
11590 }
11591
11592 va_next = (va + NBPDR) & ~PDRMASK;
11593 if (va_next < va)
11594 va_next = eva;
11595
11596 pde = pmap_pdpe_to_pde(pdpe, va);
11597 ptpaddr = *pde;
11598 if (ptpaddr == 0)
11599 continue;
11600
11601 MPASS((ptpaddr & X86_PG_V) != 0);
11602 if ((ptpaddr & PG_PS) != 0) {
11603 if (va + NBPDR == va_next && eva >= va_next) {
11604 newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11605 X86_PG_PKU(keyidx);
11606 if (newpde != ptpaddr) {
11607 *pde = newpde;
11608 changed = true;
11609 }
11610 continue;
11611 } else if (!pmap_demote_pde(pmap, pde, va)) {
11612 continue;
11613 }
11614 }
11615
11616 if (va_next > eva)
11617 va_next = eva;
11618
11619 for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11620 ptep++, va += PAGE_SIZE) {
11621 pte = *ptep;
11622 if ((pte & X86_PG_V) == 0)
11623 continue;
11624 newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11625 if (newpte != pte) {
11626 *ptep = newpte;
11627 changed = true;
11628 }
11629 }
11630 }
11631 if (changed)
11632 pmap_invalidate_range(pmap, sva, eva);
11633 }
11634
11635 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11636 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11637 u_int keyidx, int flags)
11638 {
11639
11640 if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11641 (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11642 return (EINVAL);
11643 if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11644 return (EFAULT);
11645 if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11646 return (ENOTSUP);
11647 return (0);
11648 }
11649
11650 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11651 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11652 int flags)
11653 {
11654 int error;
11655
11656 sva = trunc_page(sva);
11657 eva = round_page(eva);
11658 error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11659 if (error != 0)
11660 return (error);
11661 for (;;) {
11662 PMAP_LOCK(pmap);
11663 error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11664 if (error == 0)
11665 pmap_pkru_update_range(pmap, sva, eva, keyidx);
11666 PMAP_UNLOCK(pmap);
11667 if (error != ENOMEM)
11668 break;
11669 vm_wait(NULL);
11670 }
11671 return (error);
11672 }
11673
11674 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11675 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11676 {
11677 int error;
11678
11679 sva = trunc_page(sva);
11680 eva = round_page(eva);
11681 error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11682 if (error != 0)
11683 return (error);
11684 for (;;) {
11685 PMAP_LOCK(pmap);
11686 error = pmap_pkru_deassign(pmap, sva, eva);
11687 if (error == 0)
11688 pmap_pkru_update_range(pmap, sva, eva, 0);
11689 PMAP_UNLOCK(pmap);
11690 if (error != ENOMEM)
11691 break;
11692 vm_wait(NULL);
11693 }
11694 return (error);
11695 }
11696
11697 #if defined(KASAN) || defined(KMSAN)
11698
11699 /*
11700 * Reserve enough memory to:
11701 * 1) allocate PDP pages for the shadow map(s),
11702 * 2) shadow the boot stack of KSTACK_PAGES pages,
11703 * 3) assuming that the kernel stack does not cross a 1GB boundary,
11704 * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11705 * pages per shadow map.
11706 */
11707 #ifdef KASAN
11708 #define SAN_EARLY_PAGES \
11709 (NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11710 #else
11711 #define SAN_EARLY_PAGES \
11712 (NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11713 #endif
11714
11715 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11716 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11717 {
11718 static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11719 static size_t offset = 0;
11720 uint64_t pa;
11721
11722 if (offset == sizeof(data)) {
11723 panic("%s: ran out of memory for the bootstrap shadow map",
11724 __func__);
11725 }
11726
11727 pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11728 offset += PAGE_SIZE;
11729 return (pa);
11730 }
11731
11732 /*
11733 * Map a shadow page, before the kernel has bootstrapped its page tables. This
11734 * is currently only used to shadow the temporary boot stack set up by locore.
11735 */
11736 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11737 pmap_san_enter_early(vm_offset_t va)
11738 {
11739 static bool first = true;
11740 pml4_entry_t *pml4e;
11741 pdp_entry_t *pdpe;
11742 pd_entry_t *pde;
11743 pt_entry_t *pte;
11744 uint64_t cr3, pa, base;
11745 int i;
11746
11747 base = amd64_loadaddr();
11748 cr3 = rcr3();
11749
11750 if (first) {
11751 /*
11752 * If this the first call, we need to allocate new PML4Es for
11753 * the bootstrap shadow map(s). We don't know how the PML4 page
11754 * was initialized by the boot loader, so we can't simply test
11755 * whether the shadow map's PML4Es are zero.
11756 */
11757 first = false;
11758 #ifdef KASAN
11759 for (i = 0; i < NKASANPML4E; i++) {
11760 pa = pmap_san_enter_early_alloc_4k(base);
11761
11762 pml4e = (pml4_entry_t *)cr3 +
11763 pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11764 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11765 }
11766 #else
11767 for (i = 0; i < NKMSANORIGPML4E; i++) {
11768 pa = pmap_san_enter_early_alloc_4k(base);
11769
11770 pml4e = (pml4_entry_t *)cr3 +
11771 pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11772 i * NBPML4);
11773 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11774 }
11775 for (i = 0; i < NKMSANSHADPML4E; i++) {
11776 pa = pmap_san_enter_early_alloc_4k(base);
11777
11778 pml4e = (pml4_entry_t *)cr3 +
11779 pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11780 i * NBPML4);
11781 *pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11782 }
11783 #endif
11784 }
11785 pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11786 pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11787 if (*pdpe == 0) {
11788 pa = pmap_san_enter_early_alloc_4k(base);
11789 *pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11790 }
11791 pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11792 if (*pde == 0) {
11793 pa = pmap_san_enter_early_alloc_4k(base);
11794 *pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11795 }
11796 pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11797 if (*pte != 0)
11798 panic("%s: PTE for %#lx is already initialized", __func__, va);
11799 pa = pmap_san_enter_early_alloc_4k(base);
11800 *pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11801 }
11802
11803 static vm_page_t
pmap_san_enter_alloc_4k(void)11804 pmap_san_enter_alloc_4k(void)
11805 {
11806 vm_page_t m;
11807
11808 m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11809 VM_ALLOC_ZERO);
11810 if (m == NULL)
11811 panic("%s: no memory to grow shadow map", __func__);
11812 return (m);
11813 }
11814
11815 static vm_page_t
pmap_san_enter_alloc_2m(void)11816 pmap_san_enter_alloc_2m(void)
11817 {
11818 return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11819 NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11820 }
11821
11822 /*
11823 * Grow a shadow map by at least one 4KB page at the specified address. Use 2MB
11824 * pages when possible.
11825 */
11826 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11827 pmap_san_enter(vm_offset_t va)
11828 {
11829 pdp_entry_t *pdpe;
11830 pd_entry_t *pde;
11831 pt_entry_t *pte;
11832 vm_page_t m;
11833
11834 if (kernphys == 0) {
11835 /*
11836 * We're creating a temporary shadow map for the boot stack.
11837 */
11838 pmap_san_enter_early(va);
11839 return;
11840 }
11841
11842 mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11843
11844 pdpe = pmap_pdpe(kernel_pmap, va);
11845 if ((*pdpe & X86_PG_V) == 0) {
11846 m = pmap_san_enter_alloc_4k();
11847 *pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11848 X86_PG_V | pg_nx);
11849 }
11850 pde = pmap_pdpe_to_pde(pdpe, va);
11851 if ((*pde & X86_PG_V) == 0) {
11852 m = pmap_san_enter_alloc_2m();
11853 if (m != NULL) {
11854 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11855 X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11856 } else {
11857 m = pmap_san_enter_alloc_4k();
11858 *pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11859 X86_PG_V | pg_nx);
11860 }
11861 }
11862 if ((*pde & X86_PG_PS) != 0)
11863 return;
11864 pte = pmap_pde_to_pte(pde, va);
11865 if ((*pte & X86_PG_V) != 0)
11866 return;
11867 m = pmap_san_enter_alloc_4k();
11868 *pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11869 X86_PG_M | X86_PG_A | pg_nx);
11870 }
11871 #endif
11872
11873 /*
11874 * Track a range of the kernel's virtual address space that is contiguous
11875 * in various mapping attributes.
11876 */
11877 struct pmap_kernel_map_range {
11878 vm_offset_t sva;
11879 pt_entry_t attrs;
11880 int ptes;
11881 int pdes;
11882 int pdpes;
11883 };
11884
11885 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11886 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11887 vm_offset_t eva)
11888 {
11889 const char *mode;
11890 int i, pat_idx;
11891
11892 if (eva <= range->sva)
11893 return;
11894
11895 pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11896 for (i = 0; i < PAT_INDEX_SIZE; i++)
11897 if (pat_index[i] == pat_idx)
11898 break;
11899
11900 switch (i) {
11901 case PAT_WRITE_BACK:
11902 mode = "WB";
11903 break;
11904 case PAT_WRITE_THROUGH:
11905 mode = "WT";
11906 break;
11907 case PAT_UNCACHEABLE:
11908 mode = "UC";
11909 break;
11910 case PAT_UNCACHED:
11911 mode = "U-";
11912 break;
11913 case PAT_WRITE_PROTECTED:
11914 mode = "WP";
11915 break;
11916 case PAT_WRITE_COMBINING:
11917 mode = "WC";
11918 break;
11919 default:
11920 printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11921 __func__, pat_idx, range->sva, eva);
11922 mode = "??";
11923 break;
11924 }
11925
11926 sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11927 range->sva, eva,
11928 (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11929 (range->attrs & pg_nx) != 0 ? '-' : 'x',
11930 (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11931 (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11932 mode, range->pdpes, range->pdes, range->ptes);
11933
11934 /* Reset to sentinel value. */
11935 range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11936 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11937 NPDEPG - 1, NPTEPG - 1);
11938 }
11939
11940 /*
11941 * Determine whether the attributes specified by a page table entry match those
11942 * being tracked by the current range. This is not quite as simple as a direct
11943 * flag comparison since some PAT modes have multiple representations.
11944 */
11945 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11946 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11947 {
11948 pt_entry_t diff, mask;
11949
11950 mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11951 diff = (range->attrs ^ attrs) & mask;
11952 if (diff == 0)
11953 return (true);
11954 if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11955 pmap_pat_index(kernel_pmap, range->attrs, true) ==
11956 pmap_pat_index(kernel_pmap, attrs, true))
11957 return (true);
11958 return (false);
11959 }
11960
11961 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11962 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11963 pt_entry_t attrs)
11964 {
11965
11966 memset(range, 0, sizeof(*range));
11967 range->sva = va;
11968 range->attrs = attrs;
11969 }
11970
11971 /*
11972 * Given a leaf PTE, derive the mapping's attributes. If they do not match
11973 * those of the current run, dump the address range and its attributes, and
11974 * begin a new run.
11975 */
11976 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11977 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11978 vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11979 pt_entry_t pte)
11980 {
11981 pt_entry_t attrs;
11982
11983 attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11984
11985 attrs |= pdpe & pg_nx;
11986 attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11987 if ((pdpe & PG_PS) != 0) {
11988 attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11989 } else if (pde != 0) {
11990 attrs |= pde & pg_nx;
11991 attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11992 }
11993 if ((pde & PG_PS) != 0) {
11994 attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11995 } else if (pte != 0) {
11996 attrs |= pte & pg_nx;
11997 attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11998 attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11999
12000 /* Canonicalize by always using the PDE PAT bit. */
12001 if ((attrs & X86_PG_PTE_PAT) != 0)
12002 attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
12003 }
12004
12005 if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
12006 sysctl_kmaps_dump(sb, range, va);
12007 sysctl_kmaps_reinit(range, va, attrs);
12008 }
12009 }
12010
12011 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12012 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12013 {
12014 struct pmap_kernel_map_range range;
12015 struct sbuf sbuf, *sb;
12016 pml4_entry_t pml4e;
12017 pdp_entry_t *pdp, pdpe;
12018 pd_entry_t *pd, pde;
12019 pt_entry_t *pt, pte;
12020 vm_offset_t sva;
12021 vm_paddr_t pa;
12022 int error, i, j, k, l;
12023
12024 error = sysctl_wire_old_buffer(req, 0);
12025 if (error != 0)
12026 return (error);
12027 sb = &sbuf;
12028 sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12029
12030 /* Sentinel value. */
12031 range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12032 NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12033 NPDEPG - 1, NPTEPG - 1);
12034
12035 /*
12036 * Iterate over the kernel page tables without holding the kernel pmap
12037 * lock. Outside of the large map, kernel page table pages are never
12038 * freed, so at worst we will observe inconsistencies in the output.
12039 * Within the large map, ensure that PDP and PD page addresses are
12040 * valid before descending.
12041 */
12042 for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12043 switch (i) {
12044 case PML4PML4I:
12045 sbuf_printf(sb, "\nRecursive map:\n");
12046 break;
12047 case DMPML4I:
12048 sbuf_printf(sb, "\nDirect map:\n");
12049 break;
12050 #ifdef KASAN
12051 case KASANPML4I:
12052 sbuf_printf(sb, "\nKASAN shadow map:\n");
12053 break;
12054 #endif
12055 #ifdef KMSAN
12056 case KMSANSHADPML4I:
12057 sbuf_printf(sb, "\nKMSAN shadow map:\n");
12058 break;
12059 case KMSANORIGPML4I:
12060 sbuf_printf(sb, "\nKMSAN origin map:\n");
12061 break;
12062 #endif
12063 case KPML4BASE:
12064 sbuf_printf(sb, "\nKernel map:\n");
12065 break;
12066 case LMSPML4I:
12067 sbuf_printf(sb, "\nLarge map:\n");
12068 break;
12069 }
12070
12071 /* Convert to canonical form. */
12072 if (sva == 1ul << 47)
12073 sva |= -1ul << 48;
12074
12075 restart:
12076 pml4e = kernel_pml4[i];
12077 if ((pml4e & X86_PG_V) == 0) {
12078 sva = rounddown2(sva, NBPML4);
12079 sysctl_kmaps_dump(sb, &range, sva);
12080 sva += NBPML4;
12081 continue;
12082 }
12083 pa = pml4e & PG_FRAME;
12084 pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12085
12086 for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12087 pdpe = pdp[j];
12088 if ((pdpe & X86_PG_V) == 0) {
12089 sva = rounddown2(sva, NBPDP);
12090 sysctl_kmaps_dump(sb, &range, sva);
12091 sva += NBPDP;
12092 continue;
12093 }
12094 pa = pdpe & PG_FRAME;
12095 if ((pdpe & PG_PS) != 0) {
12096 sva = rounddown2(sva, NBPDP);
12097 sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12098 0, 0);
12099 range.pdpes++;
12100 sva += NBPDP;
12101 continue;
12102 }
12103 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12104 vm_phys_paddr_to_vm_page(pa) == NULL) {
12105 /*
12106 * Page table pages for the large map may be
12107 * freed. Validate the next-level address
12108 * before descending.
12109 */
12110 goto restart;
12111 }
12112 pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12113
12114 for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12115 pde = pd[k];
12116 if ((pde & X86_PG_V) == 0) {
12117 sva = rounddown2(sva, NBPDR);
12118 sysctl_kmaps_dump(sb, &range, sva);
12119 sva += NBPDR;
12120 continue;
12121 }
12122 pa = pde & PG_FRAME;
12123 if ((pde & PG_PS) != 0) {
12124 sva = rounddown2(sva, NBPDR);
12125 sysctl_kmaps_check(sb, &range, sva,
12126 pml4e, pdpe, pde, 0);
12127 range.pdes++;
12128 sva += NBPDR;
12129 continue;
12130 }
12131 if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12132 vm_phys_paddr_to_vm_page(pa) == NULL) {
12133 /*
12134 * Page table pages for the large map
12135 * may be freed. Validate the
12136 * next-level address before descending.
12137 */
12138 goto restart;
12139 }
12140 pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12141
12142 for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12143 sva += PAGE_SIZE) {
12144 pte = pt[l];
12145 if ((pte & X86_PG_V) == 0) {
12146 sysctl_kmaps_dump(sb, &range,
12147 sva);
12148 continue;
12149 }
12150 sysctl_kmaps_check(sb, &range, sva,
12151 pml4e, pdpe, pde, pte);
12152 range.ptes++;
12153 }
12154 }
12155 }
12156 }
12157
12158 error = sbuf_finish(sb);
12159 sbuf_delete(sb);
12160 return (error);
12161 }
12162 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12163 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12164 NULL, 0, sysctl_kmaps, "A",
12165 "Dump kernel address layout");
12166
12167 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12168 DB_SHOW_COMMAND(pte, pmap_print_pte)
12169 {
12170 pmap_t pmap;
12171 pml5_entry_t *pml5;
12172 pml4_entry_t *pml4;
12173 pdp_entry_t *pdp;
12174 pd_entry_t *pde;
12175 pt_entry_t *pte, PG_V;
12176 vm_offset_t va;
12177
12178 if (!have_addr) {
12179 db_printf("show pte addr\n");
12180 return;
12181 }
12182 va = (vm_offset_t)addr;
12183
12184 if (kdb_thread != NULL)
12185 pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12186 else
12187 pmap = PCPU_GET(curpmap);
12188
12189 PG_V = pmap_valid_bit(pmap);
12190 db_printf("VA 0x%016lx", va);
12191
12192 if (pmap_is_la57(pmap)) {
12193 pml5 = pmap_pml5e(pmap, va);
12194 db_printf(" pml5e 0x%016lx", *pml5);
12195 if ((*pml5 & PG_V) == 0) {
12196 db_printf("\n");
12197 return;
12198 }
12199 pml4 = pmap_pml5e_to_pml4e(pml5, va);
12200 } else {
12201 pml4 = pmap_pml4e(pmap, va);
12202 }
12203 db_printf(" pml4e 0x%016lx", *pml4);
12204 if ((*pml4 & PG_V) == 0) {
12205 db_printf("\n");
12206 return;
12207 }
12208 pdp = pmap_pml4e_to_pdpe(pml4, va);
12209 db_printf(" pdpe 0x%016lx", *pdp);
12210 if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12211 db_printf("\n");
12212 return;
12213 }
12214 pde = pmap_pdpe_to_pde(pdp, va);
12215 db_printf(" pde 0x%016lx", *pde);
12216 if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12217 db_printf("\n");
12218 return;
12219 }
12220 pte = pmap_pde_to_pte(pde, va);
12221 db_printf(" pte 0x%016lx\n", *pte);
12222 }
12223
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12224 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12225 {
12226 vm_paddr_t a;
12227
12228 if (have_addr) {
12229 a = (vm_paddr_t)addr;
12230 db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12231 } else {
12232 db_printf("show phys2dmap addr\n");
12233 }
12234 }
12235
12236 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12237 ptpages_show_page(int level, int idx, vm_page_t pg)
12238 {
12239 db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12240 level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12241 }
12242
12243 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12244 ptpages_show_complain(int level, int idx, uint64_t pte)
12245 {
12246 db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12247 }
12248
12249 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12250 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12251 {
12252 vm_page_t pg3, pg2, pg1;
12253 pml4_entry_t *pml4;
12254 pdp_entry_t *pdp;
12255 pd_entry_t *pd;
12256 int i4, i3, i2;
12257
12258 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12259 for (i4 = 0; i4 < num_entries; i4++) {
12260 if ((pml4[i4] & PG_V) == 0)
12261 continue;
12262 pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12263 if (pg3 == NULL) {
12264 ptpages_show_complain(3, i4, pml4[i4]);
12265 continue;
12266 }
12267 ptpages_show_page(3, i4, pg3);
12268 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12269 for (i3 = 0; i3 < NPDPEPG; i3++) {
12270 if ((pdp[i3] & PG_V) == 0)
12271 continue;
12272 pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12273 if (pg3 == NULL) {
12274 ptpages_show_complain(2, i3, pdp[i3]);
12275 continue;
12276 }
12277 ptpages_show_page(2, i3, pg2);
12278 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12279 for (i2 = 0; i2 < NPDEPG; i2++) {
12280 if ((pd[i2] & PG_V) == 0)
12281 continue;
12282 pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12283 if (pg1 == NULL) {
12284 ptpages_show_complain(1, i2, pd[i2]);
12285 continue;
12286 }
12287 ptpages_show_page(1, i2, pg1);
12288 }
12289 }
12290 }
12291 }
12292
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12293 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12294 {
12295 pmap_t pmap;
12296 vm_page_t pg;
12297 pml5_entry_t *pml5;
12298 uint64_t PG_V;
12299 int i5;
12300
12301 if (have_addr)
12302 pmap = (pmap_t)addr;
12303 else
12304 pmap = PCPU_GET(curpmap);
12305
12306 PG_V = pmap_valid_bit(pmap);
12307
12308 if (pmap_is_la57(pmap)) {
12309 pml5 = pmap->pm_pmltop;
12310 for (i5 = 0; i5 < NUPML5E; i5++) {
12311 if ((pml5[i5] & PG_V) == 0)
12312 continue;
12313 pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12314 if (pg == NULL) {
12315 ptpages_show_complain(4, i5, pml5[i5]);
12316 continue;
12317 }
12318 ptpages_show_page(4, i5, pg);
12319 ptpages_show_pml4(pg, NPML4EPG, PG_V);
12320 }
12321 } else {
12322 ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12323 (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12324 }
12325 }
12326 #endif
12327