1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14 * Copyright 2019 Joyent, Inc.
15 * Copyright 2017 Tegile Systems, Inc. All rights reserved.
16 */
17
18 /*
19 * i40e - Intel 10/40 Gb Ethernet driver
20 *
21 * The i40e driver is the main software device driver for the Intel 40 Gb family
22 * of devices. Note that these devices come in many flavors with both 40 GbE
23 * ports and 10 GbE ports. This device is the successor to the 82599 family of
24 * devices (ixgbe).
25 *
26 * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
27 * devices defined in the XL710 controller (previously known as Fortville) are a
28 * rather different beast and have a small switch embedded inside of them. In
29 * addition, the way that most of the programming is done has been overhauled.
30 * As opposed to just using PCIe memory mapped registers, it also has an
31 * administrative queue which is used to communicate with firmware running on
32 * the chip.
33 *
34 * Each physical function in the hardware shows up as a device that this driver
35 * will bind to. The hardware splits many resources evenly across all of the
36 * physical functions present on the device, while other resources are instead
37 * shared across the entire card and its up to the device driver to
38 * intelligently partition them.
39 *
40 * ------------
41 * Organization
42 * ------------
43 *
44 * This driver is made up of several files which have their own theory
45 * statements spread across them. We'll touch on the high level purpose of each
46 * file here, and then we'll get into more discussion on how the device is
47 * generally modelled with respect to the interfaces in illumos.
48 *
49 * i40e_gld.c: This file contains all of the bindings to MAC and the networking
50 * stack.
51 *
52 * i40e_intr.c: This file contains all of the interrupt service routines and
53 * contains logic to enable and disable interrupts on the hardware.
54 * It also contains the logic to map hardware resources such as the
55 * rings to and from interrupts and controls their ability to fire.
56 *
57 * There is a big theory statement on interrupts present there.
58 *
59 * i40e_main.c: The file that you're currently in. It interfaces with the
60 * traditional OS DDI interfaces and is in charge of configuring
61 * the device.
62 *
63 * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
64 * work with Intel's common code for the device.
65 *
66 * i40e_stats.c: This file contains the general work and logic around our
67 * kstats. A theory statement on their organization and use of the
68 * hardware exists there.
69 *
70 * i40e_sw.h: This header file contains all of the primary structure definitions
71 * and constants that are used across the entire driver.
72 *
73 * i40e_transceiver.c: This file contains all of the logic for sending and
74 * receiving data. It contains all of the ring and DMA
75 * allocation logic, as well as, the actual interfaces to
76 * send and receive data.
77 *
78 * A big theory statement on ring management, descriptors,
79 * and how it ties into the OS is present there.
80 *
81 * --------------
82 * General Design
83 * --------------
84 *
85 * Before we go too far into the general way we've laid out data structures and
86 * the like, it's worth taking some time to explain how the hardware is
87 * organized. This organization informs a lot of how we do things at this time
88 * in the driver.
89 *
90 * Each physical device consists of a number of one or more ports, which are
91 * considered physical functions in the PCI sense and thus each get enumerated
92 * by the system, resulting in an instance being created and attached to. While
93 * there are many resources that are unique to each physical function eg.
94 * instance of the device, there are many that are shared across all of them.
95 * Several resources have an amount reserved for each Virtual Station Interface
96 * (VSI) and then a static pool of resources, available for all functions on the
97 * card.
98 *
99 * The most important resource in hardware are its transmit and receive queue
100 * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
101 * parlance. There are a set number of these on each device; however, they are
102 * statically partitioned among all of the different physical functions.
103 *
104 * 'Fortville' (the code name for this device family) is basically a switch. To
105 * map MAC addresses and other things to queues, we end up having to create
106 * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
107 * traffic to a queue. A VSI owns a collection of queues and has a series of
108 * forwarding rules that point to it. One way to think of this is to treat it
109 * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
110 * classification resources, that is a VSI in i40e.
111 *
112 * The sets of VSIs is shared across the entire device, though there may be some
113 * amount that are reserved to each PF. Because the GLDv3 does not let us change
114 * the number of groups dynamically, we instead statically divide this amount
115 * evenly between all the functions that exist. In addition, we have the same
116 * problem with the mac address forwarding rules. There are a static number that
117 * exist shared across all the functions.
118 *
119 * To handle both of these resources, what we end up doing is going through and
120 * determining which functions belong to the same device. Nominally one might do
121 * this by having a nexus driver; however, a prime requirement for a nexus
122 * driver is identifying the various children and activating them. While it is
123 * possible to get this information from NVRAM, we would end up duplicating a
124 * lot of the PCI enumeration logic. Really, at the end of the day, the device
125 * doesn't give us the traditional identification properties we want from a
126 * nexus driver.
127 *
128 * Instead, we rely on some properties that are guaranteed to be unique. While
129 * it might be tempting to leverage the PBA or serial number of the device from
130 * NVRAM, there is nothing that says that two devices can't be mis-programmed to
131 * have the same values in NVRAM. Instead, we uniquely identify a group of
132 * functions based on their parent in the /devices tree, their PCI bus and PCI
133 * function identifiers. Using either on their own may not be sufficient.
134 *
135 * For each unique PCI device that we encounter, we'll create a i40e_device_t.
136 * From there, because we don't have a good way to tell the GLDv3 about sharing
137 * resources between everything, we'll end up just dividing the resources
138 * evenly between all of the functions. Longer term, if we don't have to declare
139 * to the GLDv3 that these resources are shared, then we'll maintain a pool and
140 * have each PF allocate from the pool in the device, thus if only two of four
141 * ports are being used, for example, then all of the resources can still be
142 * used.
143 *
144 * -------------------------------------------
145 * Transmit and Receive Queue Pair Allocations
146 * -------------------------------------------
147 *
148 * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
149 * queue pairs, we have no way of modifying it, only observing it. From there,
150 * it's up to us to map these queues to VSIs and VFs. Since we don't support any
151 * VFs at this time, we only focus on assignments to VSIs.
152 *
153 * At the moment, we used a static mapping of transmit/receive queue pairs to a
154 * given VSI (eg. rings to a group). Though in the fullness of time, we want to
155 * make this something which is fully dynamic and take advantage of documented,
156 * but not yet available functionality for adding filters based on VXLAN and
157 * other encapsulation technologies.
158 *
159 * -------------------------------------
160 * Broadcast, Multicast, and Promiscuous
161 * -------------------------------------
162 *
163 * As part of the GLDv3, we need to make sure that we can handle receiving
164 * broadcast and multicast traffic. As well as enabling promiscuous mode when
165 * requested. GLDv3 requires that all broadcast and multicast traffic be
166 * retrieved by the default group, eg. the first one. This is the same thing as
167 * the default VSI.
168 *
169 * To receieve broadcast traffic, we enable it through the admin queue, rather
170 * than use one of our filters for it. For multicast traffic, we reserve a
171 * certain number of the hash filters and assign them to a given PF. When we
172 * exceed those, we then switch to using promiscuous mode for multicast traffic.
173 *
174 * More specifically, once we exceed the number of filters (indicated because
175 * the i40e_t`i40e_resources.ifr_nmcastfilt ==
176 * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
177 * promiscuous mode. If promiscuous mode is toggled then we keep track of the
178 * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
179 * That will stay enabled until that count reaches zero indicating that we have
180 * only added multicast addresses that we have a corresponding entry for.
181 *
182 * Because MAC itself wants to toggle promiscuous mode, which includes both
183 * unicast and multicast traffic, we go through and keep track of that
184 * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
185 * member.
186 *
187 * --------------
188 * VSI Management
189 * --------------
190 *
191 * The PFs share 384 VSIs. The firmware creates one VSI per PF by default.
192 * During chip start we retrieve the SEID of this VSI and assign it as the
193 * default VSI for our VEB (one VEB per PF). We then add additional VSIs to
194 * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups.
195 * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can
196 * allocate the same number of VSIs, and b) to keep the interrupt multiplexing
197 * under control. In the future, when we improve the interrupt allocation, we
198 * may want to revisit this cap to make better use of the available VSIs. The
199 * VSI allocation and configuration can be found in i40e_chip_start().
200 *
201 * ----------------
202 * Structure Layout
203 * ----------------
204 *
205 * The following images relates the core data structures together. The primary
206 * structure in the system is the i40e_t. It itself contains multiple rings,
207 * i40e_trqpair_t's which contain the various transmit and receive data. The
208 * receive data is stored outside of the i40e_trqpair_t and instead in the
209 * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
210 * track of per-physical device state. Finally, for every active descriptor,
211 * there is a corresponding control block, which is where the
212 * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
213 *
214 * +-----------------------+ +-----------------------+
215 * | Global i40e_t list | | Global Device list |
216 * | | +--| |
217 * | i40e_glist | | | i40e_dlist |
218 * +-----------------------+ | +-----------------------+
219 * | v
220 * | +------------------------+ +-----------------------+
221 * | | Device-wide Structure |----->| Device-wide Structure |--> ...
222 * | | i40e_device_t | | i40e_device_t |
223 * | | | +-----------------------+
224 * | | dev_info_t * ------+--> Parent in devices tree.
225 * | | uint_t ------+--> PCI bus number
226 * | | uint_t ------+--> PCI device number
227 * | | uint_t ------+--> Number of functions
228 * | | i40e_switch_rsrcs_t ---+--> Captured total switch resources
229 * | | list_t ------+-------------+
230 * | +------------------------+ |
231 * | ^ |
232 * | +--------+ |
233 * | | v
234 * | +---------------------------+ | +-------------------+
235 * +->| GLDv3 Device, per PF |-----|-->| GLDv3 Device (PF) |--> ...
236 * | i40e_t | | | i40e_t |
237 * | **Primary Structure** | | +-------------------+
238 * | | |
239 * | i40e_device_t * --+-----+
240 * | i40e_state_t --+---> Device State
241 * | i40e_hw_t --+---> Intel common code structure
242 * | mac_handle_t --+---> GLDv3 handle to MAC
243 * | ddi_periodic_t --+---> Link activity timer
244 * | i40e_vsi_t * --+---> Array of VSIs
245 * | i40e_func_rsrc_t --+---> Available hardware resources
246 * | i40e_switch_rsrc_t * --+---> Switch resource snapshot
247 * | i40e_sdu --+---> Current MTU
248 * | i40e_frame_max --+---> Current HW frame size
249 * | i40e_uaddr_t * --+---> Array of assigned unicast MACs
250 * | i40e_maddr_t * --+---> Array of assigned multicast MACs
251 * | i40e_mcast_promisccount --+---> Active multicast state
252 * | i40e_promisc_on --+---> Current promiscuous mode state
253 * | uint_t --+---> Number of transmit/receive pairs
254 * | i40e_rx_group_t * --+---> Array of Rx groups
255 * | kstat_t * --+---> PF kstats
256 * | i40e_pf_stats_t --+---> PF kstat backing data
257 * | i40e_trqpair_t * --+---------+
258 * +---------------------------+ |
259 * |
260 * v
261 * +-------------------------------+ +-----------------------------+
262 * | Transmit/Receive Queue Pair |-------| Transmit/Receive Queue Pair |->...
263 * | i40e_trqpair_t | | i40e_trqpair_t |
264 * + Ring Data Structure | +-----------------------------+
265 * | |
266 * | mac_ring_handle_t +--> MAC RX ring handle
267 * | mac_ring_handle_t +--> MAC TX ring handle
268 * | i40e_rxq_stat_t --+--> RX Queue stats
269 * | i40e_txq_stat_t --+--> TX Queue stats
270 * | uint32_t (tx ring size) +--> TX Ring Size
271 * | uint32_t (tx free list size) +--> TX Free List Size
272 * | i40e_dma_buffer_t --------+--> TX Descriptor ring DMA
273 * | i40e_tx_desc_t * --------+--> TX descriptor ring
274 * | volatile unt32_t * +--> TX Write back head
275 * | uint32_t -------+--> TX ring head
276 * | uint32_t -------+--> TX ring tail
277 * | uint32_t -------+--> Num TX desc free
278 * | i40e_tx_control_block_t * --+--> TX control block array ---+
279 * | i40e_tx_control_block_t ** --+--> TCB work list ----+
280 * | i40e_tx_control_block_t ** --+--> TCB free list ---+
281 * | uint32_t -------+--> Free TCB count |
282 * | i40e_rx_data_t * -------+--+ v
283 * +-------------------------------+ | +---------------------------+
284 * | | Per-TX Frame Metadata |
285 * | | i40e_tx_control_block_t |
286 * +--------------------+ | |
287 * | mblk to transmit <--+--- mblk_t * |
288 * | type of transmit <--+--- i40e_tx_type_t |
289 * | TX DMA handle <--+--- ddi_dma_handle_t |
290 * v TX DMA buffer <--+--- i40e_dma_buffer_t |
291 * +------------------------------+ +---------------------------+
292 * | Core Receive Data |
293 * | i40e_rx_data_t |
294 * | |
295 * | i40e_dma_buffer_t --+--> RX descriptor DMA Data
296 * | i40e_rx_desc_t --+--> RX descriptor ring
297 * | uint32_t --+--> Next free desc.
298 * | i40e_rx_control_block_t * --+--> RX Control Block Array ---+
299 * | i40e_rx_control_block_t ** --+--> RCB work list ---+
300 * | i40e_rx_control_block_t ** --+--> RCB free list ---+
301 * +------------------------------+ |
302 * ^ |
303 * | +---------------------------+ |
304 * | | Per-RX Frame Metadata |<---------------+
305 * | | i40e_rx_control_block_t |
306 * | | |
307 * | | mblk_t * ----+--> Received mblk_t data
308 * | | uint32_t ----+--> Reference count
309 * | | i40e_dma_buffer_t ----+--> Receive data DMA info
310 * | | frtn_t ----+--> mblk free function info
311 * +-----+-- i40e_rx_data_t * |
312 * +---------------------------+
313 *
314 * -------------
315 * Lock Ordering
316 * -------------
317 *
318 * In order to ensure that we don't deadlock, the following represents the
319 * lock order being used. When grabbing locks, follow the following order. Lower
320 * numbers are more important. Thus, the i40e_glock which is number 0, must be
321 * taken before any other locks in the driver. On the other hand, the
322 * i40e_t`i40e_stat_lock, has the highest number because it's the least
323 * important lock. Note, that just because one lock is higher than another does
324 * not mean that all intermediary locks are required.
325 *
326 * 0) i40e_glock
327 * 1) i40e_t`i40e_general_lock
328 *
329 * 2) i40e_trqpair_t`itrq_rx_lock
330 * 3) i40e_trqpair_t`itrq_tx_lock
331 * 4) i40e_t`i40e_rx_pending_lock
332 * 5) i40e_trqpair_t`itrq_tcb_lock
333 *
334 * 6) i40e_t`i40e_stat_lock
335 *
336 * Rules and expectations:
337 *
338 * 1) A thread holding locks belong to one PF should not hold locks belonging to
339 * a second. If for some reason this becomes necessary, locks should be grabbed
340 * based on the list order in the i40e_device_t, which implies that the
341 * i40e_glock is held.
342 *
343 * 2) When grabbing locks between multiple transmit and receive queues, the
344 * locks for the lowest number transmit/receive queue should be grabbed first.
345 *
346 * 3) When grabbing both the transmit and receive lock for a given queue, always
347 * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
348 *
349 * 4) The following pairs of locks are not expected to be held at the same time:
350 *
351 * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
352 *
353 * -----------
354 * Future Work
355 * -----------
356 *
357 * At the moment the i40e_t driver is rather bare bones, allowing us to start
358 * getting data flowing and folks using it while we develop additional features.
359 * While bugs have been filed to cover this future work, the following gives an
360 * overview of expected work:
361 *
362 * o DMA binding and breaking up the locking in ring recycling.
363 * o Enhanced detection of device errors
364 * o Participation in IRM
365 * o FMA device reset
366 * o Stall detection, temperature error detection, etc.
367 * o More dynamic resource pools
368 */
369
370 #include "i40e_sw.h"
371
372 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3";
373
374 /*
375 * The i40e_glock primarily protects the lists below and the i40e_device_t
376 * structures.
377 */
378 static kmutex_t i40e_glock;
379 static list_t i40e_glist;
380 static list_t i40e_dlist;
381
382 /*
383 * Access attributes for register mapping.
384 */
385 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
386 DDI_DEVICE_ATTR_V1,
387 DDI_STRUCTURE_LE_ACC,
388 DDI_STRICTORDER_ACC,
389 DDI_FLAGERR_ACC
390 };
391
392 /*
393 * Logging function for this driver.
394 */
395 static void
i40e_dev_err(i40e_t * i40e,int level,boolean_t console,const char * fmt,va_list ap)396 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
397 va_list ap)
398 {
399 char buf[1024];
400
401 (void) vsnprintf(buf, sizeof (buf), fmt, ap);
402
403 if (i40e == NULL) {
404 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
405 I40E_MODULE_NAME, buf);
406 } else {
407 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
408 buf);
409 }
410 }
411
412 /*
413 * Because there's the stupid trailing-comma problem with the C preprocessor
414 * and variable arguments, I need to instantiate these. Pardon the redundant
415 * code.
416 */
417 /*PRINTFLIKE2*/
418 void
i40e_error(i40e_t * i40e,const char * fmt,...)419 i40e_error(i40e_t *i40e, const char *fmt, ...)
420 {
421 va_list ap;
422
423 va_start(ap, fmt);
424 i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
425 va_end(ap);
426 }
427
428 /*PRINTFLIKE2*/
429 void
i40e_log(i40e_t * i40e,const char * fmt,...)430 i40e_log(i40e_t *i40e, const char *fmt, ...)
431 {
432 va_list ap;
433
434 va_start(ap, fmt);
435 i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
436 va_end(ap);
437 }
438
439 /*PRINTFLIKE2*/
440 void
i40e_notice(i40e_t * i40e,const char * fmt,...)441 i40e_notice(i40e_t *i40e, const char *fmt, ...)
442 {
443 va_list ap;
444
445 va_start(ap, fmt);
446 i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
447 va_end(ap);
448 }
449
450 /*
451 * Various parts of the driver need to know if the controller is from the X722
452 * family, which has a few additional capabilities and different programming
453 * means. We don't consider virtual functions as part of this as they are quite
454 * different and will require substantially more work.
455 */
456 static boolean_t
i40e_is_x722(i40e_t * i40e)457 i40e_is_x722(i40e_t *i40e)
458 {
459 return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
460 }
461
462 static void
i40e_device_rele(i40e_t * i40e)463 i40e_device_rele(i40e_t *i40e)
464 {
465 i40e_device_t *idp = i40e->i40e_device;
466
467 if (idp == NULL)
468 return;
469
470 mutex_enter(&i40e_glock);
471 VERIFY(idp->id_nreg > 0);
472 list_remove(&idp->id_i40e_list, i40e);
473 idp->id_nreg--;
474 if (idp->id_nreg == 0) {
475 list_remove(&i40e_dlist, idp);
476 list_destroy(&idp->id_i40e_list);
477 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
478 idp->id_rsrcs_alloc);
479 kmem_free(idp, sizeof (i40e_device_t));
480 }
481 i40e->i40e_device = NULL;
482 mutex_exit(&i40e_glock);
483 }
484
485 static i40e_device_t *
i40e_device_find(i40e_t * i40e,dev_info_t * parent,uint_t bus,uint_t device)486 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
487 {
488 i40e_device_t *idp;
489 mutex_enter(&i40e_glock);
490 for (idp = list_head(&i40e_dlist); idp != NULL;
491 idp = list_next(&i40e_dlist, idp)) {
492 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
493 idp->id_pci_device == device) {
494 break;
495 }
496 }
497
498 if (idp != NULL) {
499 VERIFY(idp->id_nreg < idp->id_nfuncs);
500 idp->id_nreg++;
501 } else {
502 i40e_hw_t *hw = &i40e->i40e_hw_space;
503 ASSERT(hw->num_ports > 0);
504 ASSERT(hw->num_partitions > 0);
505
506 /*
507 * The Intel common code doesn't exactly keep the number of PCI
508 * functions. But it calculates it during discovery of
509 * partitions and ports. So what we do is undo the calculation
510 * that it does originally, as functions are evenly spread
511 * across ports in the rare case of partitions.
512 */
513 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
514 idp->id_parent = parent;
515 idp->id_pci_bus = bus;
516 idp->id_pci_device = device;
517 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
518 idp->id_nreg = 1;
519 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
520 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
521 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
522 idp->id_rsrcs_alloc, KM_SLEEP);
523 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
524 sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
525 list_create(&idp->id_i40e_list, sizeof (i40e_t),
526 offsetof(i40e_t, i40e_dlink));
527
528 list_insert_tail(&i40e_dlist, idp);
529 }
530
531 list_insert_tail(&idp->id_i40e_list, i40e);
532 mutex_exit(&i40e_glock);
533
534 return (idp);
535 }
536
537 static void
i40e_link_state_set(i40e_t * i40e,link_state_t state)538 i40e_link_state_set(i40e_t *i40e, link_state_t state)
539 {
540 if (i40e->i40e_link_state == state)
541 return;
542
543 i40e->i40e_link_state = state;
544 mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
545 }
546
547 /*
548 * This is a basic link check routine. Mostly we're using this just to see
549 * if we can get any accurate information about the state of the link being
550 * up or down, as well as updating the link state, speed, etc. information.
551 */
552 void
i40e_link_check(i40e_t * i40e)553 i40e_link_check(i40e_t *i40e)
554 {
555 i40e_hw_t *hw = &i40e->i40e_hw_space;
556 boolean_t ls;
557 int ret;
558
559 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
560
561 hw->phy.get_link_info = B_TRUE;
562 if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
563 i40e->i40e_s_link_status_errs++;
564 i40e->i40e_s_link_status_lasterr = ret;
565 return;
566 }
567
568 /*
569 * Firmware abstracts all of the mac and phy information for us, so we
570 * can use i40e_get_link_status to determine the current state.
571 */
572 if (ls == B_TRUE) {
573 enum i40e_aq_link_speed speed;
574
575 speed = i40e_get_link_speed(hw);
576
577 /*
578 * Translate from an i40e value to a value in Mbits/s.
579 */
580 switch (speed) {
581 case I40E_LINK_SPEED_100MB:
582 i40e->i40e_link_speed = 100;
583 break;
584 case I40E_LINK_SPEED_1GB:
585 i40e->i40e_link_speed = 1000;
586 break;
587 case I40E_LINK_SPEED_10GB:
588 i40e->i40e_link_speed = 10000;
589 break;
590 case I40E_LINK_SPEED_20GB:
591 i40e->i40e_link_speed = 20000;
592 break;
593 case I40E_LINK_SPEED_40GB:
594 i40e->i40e_link_speed = 40000;
595 break;
596 case I40E_LINK_SPEED_25GB:
597 i40e->i40e_link_speed = 25000;
598 break;
599 default:
600 i40e->i40e_link_speed = 0;
601 break;
602 }
603
604 /*
605 * At this time, hardware does not support half-duplex
606 * operation, hence why we don't ask the hardware about our
607 * current speed.
608 */
609 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
610 i40e_link_state_set(i40e, LINK_STATE_UP);
611 } else {
612 i40e->i40e_link_speed = 0;
613 i40e->i40e_link_duplex = 0;
614 i40e_link_state_set(i40e, LINK_STATE_DOWN);
615 }
616 }
617
618 static void
i40e_rem_intrs(i40e_t * i40e)619 i40e_rem_intrs(i40e_t *i40e)
620 {
621 int i, rc;
622
623 for (i = 0; i < i40e->i40e_intr_count; i++) {
624 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
625 if (rc != DDI_SUCCESS) {
626 i40e_log(i40e, "failed to free interrupt %d: %d",
627 i, rc);
628 }
629 }
630
631 kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
632 i40e->i40e_intr_handles = NULL;
633 }
634
635 static void
i40e_rem_intr_handlers(i40e_t * i40e)636 i40e_rem_intr_handlers(i40e_t *i40e)
637 {
638 int i, rc;
639
640 for (i = 0; i < i40e->i40e_intr_count; i++) {
641 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
642 if (rc != DDI_SUCCESS) {
643 i40e_log(i40e, "failed to remove interrupt %d: %d",
644 i, rc);
645 }
646 }
647 }
648
649 /*
650 * illumos Fault Management Architecture (FMA) support.
651 */
652
653 int
i40e_check_acc_handle(ddi_acc_handle_t handle)654 i40e_check_acc_handle(ddi_acc_handle_t handle)
655 {
656 ddi_fm_error_t de;
657
658 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
659 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
660 return (de.fme_status);
661 }
662
663 int
i40e_check_dma_handle(ddi_dma_handle_t handle)664 i40e_check_dma_handle(ddi_dma_handle_t handle)
665 {
666 ddi_fm_error_t de;
667
668 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
669 return (de.fme_status);
670 }
671
672 /*
673 * Fault service error handling callback function.
674 */
675 /* ARGSUSED */
676 static int
i40e_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)677 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
678 {
679 pci_ereport_post(dip, err, NULL);
680 return (err->fme_status);
681 }
682
683 static void
i40e_fm_init(i40e_t * i40e)684 i40e_fm_init(i40e_t *i40e)
685 {
686 ddi_iblock_cookie_t iblk;
687
688 i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
689 i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
690 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
691 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
692
693 if (i40e->i40e_fm_capabilities < 0) {
694 i40e->i40e_fm_capabilities = 0;
695 } else if (i40e->i40e_fm_capabilities > 0xf) {
696 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
697 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
698 DDI_FM_ERRCB_CAPABLE;
699 }
700
701 /*
702 * Only register with IO Fault Services if we have some capability
703 */
704 if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
705 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
706 } else {
707 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
708 }
709
710 if (i40e->i40e_fm_capabilities) {
711 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
712
713 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
714 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
715 pci_ereport_setup(i40e->i40e_dip);
716 }
717
718 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
719 ddi_fm_handler_register(i40e->i40e_dip,
720 i40e_fm_error_cb, (void*)i40e);
721 }
722 }
723
724 if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
725 i40e_init_dma_attrs(i40e, B_TRUE);
726 } else {
727 i40e_init_dma_attrs(i40e, B_FALSE);
728 }
729 }
730
731 static void
i40e_fm_fini(i40e_t * i40e)732 i40e_fm_fini(i40e_t *i40e)
733 {
734 if (i40e->i40e_fm_capabilities) {
735
736 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
737 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
738 pci_ereport_teardown(i40e->i40e_dip);
739
740 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
741 ddi_fm_handler_unregister(i40e->i40e_dip);
742
743 ddi_fm_fini(i40e->i40e_dip);
744 }
745 }
746
747 void
i40e_fm_ereport(i40e_t * i40e,char * detail)748 i40e_fm_ereport(i40e_t *i40e, char *detail)
749 {
750 uint64_t ena;
751 char buf[FM_MAX_CLASS];
752
753 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
754 ena = fm_ena_generate(0, FM_ENA_FMT1);
755 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
756 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
757 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
758 }
759 }
760
761 /*
762 * Here we're trying to set the SEID of the default VSI. In general,
763 * when we come through and look at this shortly after attach, we
764 * expect there to only be a single element present, which is the
765 * default VSI. Importantly, each PF seems to not see any other
766 * devices, in part because of the simple switch mode that we're
767 * using. If for some reason, we see more artifacts, we'll need to
768 * revisit what we're doing here.
769 */
770 static boolean_t
i40e_set_def_vsi_seid(i40e_t * i40e)771 i40e_set_def_vsi_seid(i40e_t *i40e)
772 {
773 i40e_hw_t *hw = &i40e->i40e_hw_space;
774 struct i40e_aqc_get_switch_config_resp *sw_config;
775 uint8_t aq_buf[I40E_AQ_LARGE_BUF];
776 uint16_t next = 0;
777 int rc;
778
779 /* LINTED: E_BAD_PTR_CAST_ALIGN */
780 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
781 rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
782 NULL);
783 if (rc != I40E_SUCCESS) {
784 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
785 rc, hw->aq.asq_last_status);
786 return (B_FALSE);
787 }
788
789 if (LE_16(sw_config->header.num_reported) != 1) {
790 i40e_error(i40e, "encountered multiple (%d) switching units "
791 "during attach, not proceeding",
792 LE_16(sw_config->header.num_reported));
793 return (B_FALSE);
794 }
795
796 I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid;
797 return (B_TRUE);
798 }
799
800 /*
801 * Get the SEID of the uplink MAC.
802 */
803 static int
i40e_get_mac_seid(i40e_t * i40e)804 i40e_get_mac_seid(i40e_t *i40e)
805 {
806 i40e_hw_t *hw = &i40e->i40e_hw_space;
807 struct i40e_aqc_get_switch_config_resp *sw_config;
808 uint8_t aq_buf[I40E_AQ_LARGE_BUF];
809 uint16_t next = 0;
810 int rc;
811
812 /* LINTED: E_BAD_PTR_CAST_ALIGN */
813 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
814 rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
815 NULL);
816 if (rc != I40E_SUCCESS) {
817 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
818 rc, hw->aq.asq_last_status);
819 return (-1);
820 }
821
822 return (LE_16(sw_config->element[0].uplink_seid));
823 }
824
825 /*
826 * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
827 * must also provide the memory for it; however, we don't need to keep it around
828 * to the call to the common code. It takes it and parses it into an internal
829 * structure.
830 */
831 static boolean_t
i40e_get_hw_capabilities(i40e_t * i40e,i40e_hw_t * hw)832 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
833 {
834 struct i40e_aqc_list_capabilities_element_resp *buf;
835 int rc;
836 size_t len;
837 uint16_t needed;
838 int nelems = I40E_HW_CAP_DEFAULT;
839
840 len = nelems * sizeof (*buf);
841
842 for (;;) {
843 ASSERT(len > 0);
844 buf = kmem_alloc(len, KM_SLEEP);
845 rc = i40e_aq_discover_capabilities(hw, buf, len,
846 &needed, i40e_aqc_opc_list_func_capabilities, NULL);
847 kmem_free(buf, len);
848
849 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
850 nelems == I40E_HW_CAP_DEFAULT) {
851 if (nelems == needed) {
852 i40e_error(i40e, "Capability discovery failed "
853 "due to byzantine common code");
854 return (B_FALSE);
855 }
856 len = needed;
857 continue;
858 } else if (rc != I40E_SUCCESS ||
859 hw->aq.asq_last_status != I40E_AQ_RC_OK) {
860 i40e_error(i40e, "Capability discovery failed: %d", rc);
861 return (B_FALSE);
862 }
863
864 break;
865 }
866
867 return (B_TRUE);
868 }
869
870 /*
871 * Obtain the switch's capabilities as seen by this PF and keep it around for
872 * our later use.
873 */
874 static boolean_t
i40e_get_switch_resources(i40e_t * i40e)875 i40e_get_switch_resources(i40e_t *i40e)
876 {
877 i40e_hw_t *hw = &i40e->i40e_hw_space;
878 uint8_t cnt = 2;
879 uint8_t act;
880 size_t size;
881 i40e_switch_rsrc_t *buf;
882
883 for (;;) {
884 enum i40e_status_code ret;
885 size = cnt * sizeof (i40e_switch_rsrc_t);
886 ASSERT(size > 0);
887 if (size > UINT16_MAX)
888 return (B_FALSE);
889 buf = kmem_alloc(size, KM_SLEEP);
890
891 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
892 cnt, NULL);
893 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
894 hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
895 kmem_free(buf, size);
896 cnt += I40E_SWITCH_CAP_DEFAULT;
897 continue;
898 } else if (ret != I40E_SUCCESS) {
899 kmem_free(buf, size);
900 i40e_error(i40e,
901 "failed to retrieve switch statistics: %d", ret);
902 return (B_FALSE);
903 }
904
905 break;
906 }
907
908 i40e->i40e_switch_rsrc_alloc = cnt;
909 i40e->i40e_switch_rsrc_actual = act;
910 i40e->i40e_switch_rsrcs = buf;
911
912 return (B_TRUE);
913 }
914
915 static void
i40e_cleanup_resources(i40e_t * i40e)916 i40e_cleanup_resources(i40e_t *i40e)
917 {
918 if (i40e->i40e_uaddrs != NULL) {
919 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
920 i40e->i40e_resources.ifr_nmacfilt);
921 i40e->i40e_uaddrs = NULL;
922 }
923
924 if (i40e->i40e_maddrs != NULL) {
925 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
926 i40e->i40e_resources.ifr_nmcastfilt);
927 i40e->i40e_maddrs = NULL;
928 }
929
930 if (i40e->i40e_switch_rsrcs != NULL) {
931 size_t sz = sizeof (i40e_switch_rsrc_t) *
932 i40e->i40e_switch_rsrc_alloc;
933 ASSERT(sz > 0);
934 kmem_free(i40e->i40e_switch_rsrcs, sz);
935 i40e->i40e_switch_rsrcs = NULL;
936 }
937
938 if (i40e->i40e_device != NULL)
939 i40e_device_rele(i40e);
940 }
941
942 static boolean_t
i40e_get_available_resources(i40e_t * i40e)943 i40e_get_available_resources(i40e_t *i40e)
944 {
945 dev_info_t *parent;
946 uint16_t bus, device, func;
947 uint_t nregs;
948 int *regs, i;
949 i40e_device_t *idp;
950 i40e_hw_t *hw = &i40e->i40e_hw_space;
951
952 parent = ddi_get_parent(i40e->i40e_dip);
953
954 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
955 ®s, &nregs) != DDI_PROP_SUCCESS) {
956 return (B_FALSE);
957 }
958
959 if (nregs < 1) {
960 ddi_prop_free(regs);
961 return (B_FALSE);
962 }
963
964 bus = PCI_REG_BUS_G(regs[0]);
965 device = PCI_REG_DEV_G(regs[0]);
966 func = PCI_REG_FUNC_G(regs[0]);
967 ddi_prop_free(regs);
968
969 i40e->i40e_hw_space.bus.func = func;
970 i40e->i40e_hw_space.bus.device = device;
971
972 if (i40e_get_switch_resources(i40e) == B_FALSE) {
973 return (B_FALSE);
974 }
975
976 /*
977 * To calculate the total amount of a resource we have available, we
978 * need to add how many our i40e_t thinks it has guaranteed, if any, and
979 * then we need to go through and divide the number of available on the
980 * device, which was snapshotted before anyone should have allocated
981 * anything, and use that to derive how many are available from the
982 * pool. Longer term, we may want to turn this into something that's
983 * more of a pool-like resource that everything can share (though that
984 * may require some more assistance from MAC).
985 *
986 * Though for transmit and receive queue pairs, we just have to ask
987 * firmware instead.
988 */
989 idp = i40e_device_find(i40e, parent, bus, device);
990 i40e->i40e_device = idp;
991 i40e->i40e_resources.ifr_nvsis = 0;
992 i40e->i40e_resources.ifr_nvsis_used = 0;
993 i40e->i40e_resources.ifr_nmacfilt = 0;
994 i40e->i40e_resources.ifr_nmacfilt_used = 0;
995 i40e->i40e_resources.ifr_nmcastfilt = 0;
996 i40e->i40e_resources.ifr_nmcastfilt_used = 0;
997
998 for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
999 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1000
1001 switch (srp->resource_type) {
1002 case I40E_AQ_RESOURCE_TYPE_VSI:
1003 i40e->i40e_resources.ifr_nvsis +=
1004 LE_16(srp->guaranteed);
1005 i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
1006 break;
1007 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1008 i40e->i40e_resources.ifr_nmacfilt +=
1009 LE_16(srp->guaranteed);
1010 i40e->i40e_resources.ifr_nmacfilt_used =
1011 LE_16(srp->used);
1012 break;
1013 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1014 i40e->i40e_resources.ifr_nmcastfilt +=
1015 LE_16(srp->guaranteed);
1016 i40e->i40e_resources.ifr_nmcastfilt_used =
1017 LE_16(srp->used);
1018 break;
1019 default:
1020 break;
1021 }
1022 }
1023
1024 for (i = 0; i < idp->id_rsrcs_act; i++) {
1025 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1026 switch (srp->resource_type) {
1027 case I40E_AQ_RESOURCE_TYPE_VSI:
1028 i40e->i40e_resources.ifr_nvsis +=
1029 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1030 break;
1031 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1032 i40e->i40e_resources.ifr_nmacfilt +=
1033 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1034 break;
1035 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1036 i40e->i40e_resources.ifr_nmcastfilt +=
1037 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1038 default:
1039 break;
1040 }
1041 }
1042
1043 i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1044 i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1045
1046 i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1047 i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1048 i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1049 i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1050
1051 /*
1052 * Initialize these as multicast addresses to indicate it's invalid for
1053 * sanity purposes. Think of it like 0xdeadbeef.
1054 */
1055 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1056 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1057
1058 return (B_TRUE);
1059 }
1060
1061 static boolean_t
i40e_enable_interrupts(i40e_t * i40e)1062 i40e_enable_interrupts(i40e_t *i40e)
1063 {
1064 int i, rc;
1065
1066 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1067 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1068 i40e->i40e_intr_count);
1069 if (rc != DDI_SUCCESS) {
1070 i40e_error(i40e, "Interrupt block-enable failed: %d",
1071 rc);
1072 return (B_FALSE);
1073 }
1074 } else {
1075 for (i = 0; i < i40e->i40e_intr_count; i++) {
1076 rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1077 if (rc != DDI_SUCCESS) {
1078 i40e_error(i40e,
1079 "Failed to enable interrupt %d: %d", i, rc);
1080 while (--i >= 0) {
1081 (void) ddi_intr_disable(
1082 i40e->i40e_intr_handles[i]);
1083 }
1084 return (B_FALSE);
1085 }
1086 }
1087 }
1088
1089 return (B_TRUE);
1090 }
1091
1092 static boolean_t
i40e_disable_interrupts(i40e_t * i40e)1093 i40e_disable_interrupts(i40e_t *i40e)
1094 {
1095 int i, rc;
1096
1097 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1098 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1099 i40e->i40e_intr_count);
1100 if (rc != DDI_SUCCESS) {
1101 i40e_error(i40e,
1102 "Interrupt block-disabled failed: %d", rc);
1103 return (B_FALSE);
1104 }
1105 } else {
1106 for (i = 0; i < i40e->i40e_intr_count; i++) {
1107 rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1108 if (rc != DDI_SUCCESS) {
1109 i40e_error(i40e,
1110 "Failed to disable interrupt %d: %d",
1111 i, rc);
1112 return (B_FALSE);
1113 }
1114 }
1115 }
1116
1117 return (B_TRUE);
1118 }
1119
1120 /*
1121 * Free receive & transmit rings.
1122 */
1123 static void
i40e_free_trqpairs(i40e_t * i40e)1124 i40e_free_trqpairs(i40e_t *i40e)
1125 {
1126 i40e_trqpair_t *itrq;
1127
1128 if (i40e->i40e_rx_groups != NULL) {
1129 kmem_free(i40e->i40e_rx_groups,
1130 sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups);
1131 i40e->i40e_rx_groups = NULL;
1132 }
1133
1134 if (i40e->i40e_trqpairs != NULL) {
1135 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1136 itrq = &i40e->i40e_trqpairs[i];
1137 mutex_destroy(&itrq->itrq_rx_lock);
1138 mutex_destroy(&itrq->itrq_tx_lock);
1139 mutex_destroy(&itrq->itrq_tcb_lock);
1140
1141 /*
1142 * Should have already been cleaned up by start/stop,
1143 * etc.
1144 */
1145 ASSERT(itrq->itrq_txkstat == NULL);
1146 ASSERT(itrq->itrq_rxkstat == NULL);
1147 }
1148
1149 kmem_free(i40e->i40e_trqpairs,
1150 sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1151 i40e->i40e_trqpairs = NULL;
1152 }
1153
1154 cv_destroy(&i40e->i40e_rx_pending_cv);
1155 mutex_destroy(&i40e->i40e_rx_pending_lock);
1156 mutex_destroy(&i40e->i40e_general_lock);
1157 }
1158
1159 /*
1160 * Allocate transmit and receive rings, as well as other data structures that we
1161 * need.
1162 */
1163 static boolean_t
i40e_alloc_trqpairs(i40e_t * i40e)1164 i40e_alloc_trqpairs(i40e_t *i40e)
1165 {
1166 void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1167
1168 /*
1169 * Now that we have the priority for the interrupts, initialize
1170 * all relevant locks.
1171 */
1172 mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1173 mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1174 cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1175
1176 i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1177 i40e->i40e_num_trqpairs, KM_SLEEP);
1178 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1179 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1180
1181 itrq->itrq_i40e = i40e;
1182 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1183 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1184 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1185 itrq->itrq_index = i;
1186 }
1187
1188 i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) *
1189 i40e->i40e_num_rx_groups, KM_SLEEP);
1190
1191 for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
1192 i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i];
1193
1194 rxg->irg_index = i;
1195 rxg->irg_i40e = i40e;
1196 }
1197
1198 return (B_TRUE);
1199 }
1200
1201
1202
1203 /*
1204 * Unless a .conf file already overrode i40e_t structure values, they will
1205 * be 0, and need to be set in conjunction with the now-available HW report.
1206 */
1207 /* ARGSUSED */
1208 static void
i40e_hw_to_instance(i40e_t * i40e,i40e_hw_t * hw)1209 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1210 {
1211 if (i40e->i40e_num_trqpairs_per_vsi == 0) {
1212 if (i40e_is_x722(i40e)) {
1213 i40e->i40e_num_trqpairs_per_vsi =
1214 I40E_722_MAX_TC_QUEUES;
1215 } else {
1216 i40e->i40e_num_trqpairs_per_vsi =
1217 I40E_710_MAX_TC_QUEUES;
1218 }
1219 }
1220
1221 if (i40e->i40e_num_rx_groups == 0) {
1222 i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1223 }
1224 }
1225
1226 /*
1227 * Free any resources required by, or setup by, the Intel common code.
1228 */
1229 static void
i40e_common_code_fini(i40e_t * i40e)1230 i40e_common_code_fini(i40e_t *i40e)
1231 {
1232 i40e_hw_t *hw = &i40e->i40e_hw_space;
1233 int rc;
1234
1235 rc = i40e_shutdown_lan_hmc(hw);
1236 if (rc != I40E_SUCCESS)
1237 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1238
1239 rc = i40e_shutdown_adminq(hw);
1240 if (rc != I40E_SUCCESS)
1241 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1242 }
1243
1244 /*
1245 * Initialize and call Intel common-code routines, includes some setup
1246 * the common code expects from the driver. Also prints on failure, so
1247 * the caller doesn't have to.
1248 */
1249 static boolean_t
i40e_common_code_init(i40e_t * i40e,i40e_hw_t * hw)1250 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1251 {
1252 int rc;
1253
1254 i40e_clear_hw(hw);
1255 rc = i40e_pf_reset(hw);
1256 if (rc != 0) {
1257 i40e_error(i40e, "failed to reset hardware: %d", rc);
1258 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1259 return (B_FALSE);
1260 }
1261
1262 rc = i40e_init_shared_code(hw);
1263 if (rc != 0) {
1264 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1265 return (B_FALSE);
1266 }
1267
1268 hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1269 hw->aq.num_asq_entries = I40E_DEF_ADMINQ_SIZE;
1270 hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1271 hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1272
1273 rc = i40e_init_adminq(hw);
1274 if (rc != 0) {
1275 i40e_error(i40e, "failed to initialize firmware admin queue: "
1276 "%d, potential firmware version mismatch", rc);
1277 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1278 return (B_FALSE);
1279 }
1280
1281 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1282 hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) {
1283 i40e_log(i40e, "The driver for the device detected a newer "
1284 "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1285 "Please install the most recent version of the network "
1286 "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1287 I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
1288 } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1289 hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) {
1290 i40e_log(i40e, "The driver for the device detected an older"
1291 " version of the NVM image (%d.%d) than expected (%d.%d)."
1292 "\nPlease update the NVM image.\n",
1293 hw->aq.api_maj_ver, hw->aq.api_min_ver,
1294 I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR - 1);
1295 }
1296
1297 i40e_clear_pxe_mode(hw);
1298
1299 /*
1300 * We need to call this so that the common code can discover
1301 * capabilities of the hardware, which it uses throughout the rest.
1302 */
1303 if (!i40e_get_hw_capabilities(i40e, hw)) {
1304 i40e_error(i40e, "failed to obtain hardware capabilities");
1305 return (B_FALSE);
1306 }
1307
1308 if (i40e_get_available_resources(i40e) == B_FALSE) {
1309 i40e_error(i40e, "failed to obtain hardware resources");
1310 return (B_FALSE);
1311 }
1312
1313 i40e_hw_to_instance(i40e, hw);
1314
1315 rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1316 hw->func_caps.num_rx_qp, 0, 0);
1317 if (rc != 0) {
1318 i40e_error(i40e, "failed to initialize hardware memory cache: "
1319 "%d", rc);
1320 return (B_FALSE);
1321 }
1322
1323 rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1324 if (rc != 0) {
1325 i40e_error(i40e, "failed to configure hardware memory cache: "
1326 "%d", rc);
1327 return (B_FALSE);
1328 }
1329
1330 (void) i40e_aq_stop_lldp(hw, TRUE, NULL);
1331
1332 rc = i40e_get_mac_addr(hw, hw->mac.addr);
1333 if (rc != I40E_SUCCESS) {
1334 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1335 rc);
1336 return (B_FALSE);
1337 }
1338
1339 rc = i40e_validate_mac_addr(hw->mac.addr);
1340 if (rc != 0) {
1341 i40e_error(i40e, "failed to validate internal mac address: "
1342 "%d", rc);
1343 return (B_FALSE);
1344 }
1345 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1346 if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1347 I40E_SUCCESS) {
1348 i40e_error(i40e, "failed to retrieve port mac address: %d",
1349 rc);
1350 return (B_FALSE);
1351 }
1352
1353 /*
1354 * We need to obtain the Default Virtual Station SEID (VSI)
1355 * before we can perform other operations on the device.
1356 */
1357 if (!i40e_set_def_vsi_seid(i40e)) {
1358 i40e_error(i40e, "failed to obtain Default VSI SEID");
1359 return (B_FALSE);
1360 }
1361
1362 return (B_TRUE);
1363 }
1364
1365 static void
i40e_unconfigure(dev_info_t * devinfo,i40e_t * i40e)1366 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1367 {
1368 int rc;
1369
1370 if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1371 (void) i40e_disable_interrupts(i40e);
1372
1373 if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1374 i40e->i40e_periodic_id != 0) {
1375 ddi_periodic_delete(i40e->i40e_periodic_id);
1376 i40e->i40e_periodic_id = 0;
1377 }
1378
1379 if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1380 rc = mac_unregister(i40e->i40e_mac_hdl);
1381 if (rc != 0) {
1382 i40e_error(i40e, "failed to unregister from mac: %d",
1383 rc);
1384 }
1385 }
1386
1387 if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1388 i40e_stats_fini(i40e);
1389 }
1390
1391 if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1392 i40e_rem_intr_handlers(i40e);
1393
1394 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1395 i40e_free_trqpairs(i40e);
1396
1397 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1398 i40e_rem_intrs(i40e);
1399
1400 if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1401 i40e_common_code_fini(i40e);
1402
1403 i40e_cleanup_resources(i40e);
1404
1405 if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1406 (void) ddi_prop_remove_all(devinfo);
1407
1408 if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1409 i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1410 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1411 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1412 }
1413
1414 if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1415 i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1416 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1417 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1418 }
1419
1420 if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1421 i40e_fm_fini(i40e);
1422
1423 kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1424 kmem_free(i40e, sizeof (i40e_t));
1425
1426 ddi_set_driver_private(devinfo, NULL);
1427 }
1428
1429 static boolean_t
i40e_final_init(i40e_t * i40e)1430 i40e_final_init(i40e_t *i40e)
1431 {
1432 i40e_hw_t *hw = &i40e->i40e_hw_space;
1433 struct i40e_osdep *osdep = OS_DEP(hw);
1434 uint8_t pbanum[I40E_PBANUM_STRLEN];
1435 enum i40e_status_code irc;
1436 char buf[I40E_DDI_PROP_LEN];
1437
1438 pbanum[0] = '\0';
1439 irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1440 if (irc != I40E_SUCCESS) {
1441 i40e_log(i40e, "failed to read PBA string: %d", irc);
1442 } else {
1443 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1444 "printed-board-assembly", (char *)pbanum);
1445 }
1446
1447 #ifdef DEBUG
1448 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1449 hw->aq.fw_min_ver) < sizeof (buf));
1450 ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1451 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1452 hw->aq.api_min_ver) < sizeof (buf));
1453 #endif
1454
1455 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1456 hw->aq.fw_min_ver);
1457 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1458 "firmware-version", buf);
1459 (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1460 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1461 "firmware-build", buf);
1462 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1463 hw->aq.api_min_ver);
1464 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1465 "api-version", buf);
1466
1467 if (!i40e_set_hw_bus_info(hw))
1468 return (B_FALSE);
1469
1470 if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1471 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1472 return (B_FALSE);
1473 }
1474
1475 return (B_TRUE);
1476 }
1477
1478 static void
i40e_identify_hardware(i40e_t * i40e)1479 i40e_identify_hardware(i40e_t *i40e)
1480 {
1481 i40e_hw_t *hw = &i40e->i40e_hw_space;
1482 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1483
1484 hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1485 hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1486 hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1487 PCI_CONF_REVID);
1488 hw->subsystem_device_id =
1489 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1490 hw->subsystem_vendor_id =
1491 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1492
1493 /*
1494 * Note that we set the hardware's bus information later on, in
1495 * i40e_get_available_resources(). The common code doesn't seem to
1496 * require that it be set in any ways, it seems to be mostly for
1497 * book-keeping.
1498 */
1499 }
1500
1501 static boolean_t
i40e_regs_map(i40e_t * i40e)1502 i40e_regs_map(i40e_t *i40e)
1503 {
1504 dev_info_t *devinfo = i40e->i40e_dip;
1505 i40e_hw_t *hw = &i40e->i40e_hw_space;
1506 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1507 off_t memsize;
1508 int ret;
1509
1510 if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1511 DDI_SUCCESS) {
1512 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1513 return (B_FALSE);
1514 }
1515
1516 if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1517 (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1518 &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1519 i40e_error(i40e, "failed to map device registers: %d", ret);
1520 return (B_FALSE);
1521 }
1522
1523 osdep->ios_reg_size = memsize;
1524 return (B_TRUE);
1525 }
1526
1527 /*
1528 * Update parameters required when a new MTU has been configured. Calculate the
1529 * maximum frame size, as well as, size our DMA buffers which we size in
1530 * increments of 1K.
1531 */
1532 void
i40e_update_mtu(i40e_t * i40e)1533 i40e_update_mtu(i40e_t *i40e)
1534 {
1535 uint32_t rx, tx;
1536
1537 i40e->i40e_frame_max = i40e->i40e_sdu +
1538 sizeof (struct ether_vlan_header) + ETHERFCSL;
1539
1540 rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1541 i40e->i40e_rx_buf_size = ((rx >> 10) +
1542 ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1543
1544 tx = i40e->i40e_frame_max;
1545 i40e->i40e_tx_buf_size = ((tx >> 10) +
1546 ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1547 }
1548
1549 static int
i40e_get_prop(i40e_t * i40e,char * prop,int min,int max,int def)1550 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1551 {
1552 int val;
1553
1554 val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1555 prop, def);
1556 if (val > max)
1557 val = max;
1558 if (val < min)
1559 val = min;
1560 return (val);
1561 }
1562
1563 static void
i40e_init_properties(i40e_t * i40e)1564 i40e_init_properties(i40e_t *i40e)
1565 {
1566 i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1567 I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1568
1569 i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1570 I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1571
1572 i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1573 B_FALSE, B_TRUE, B_TRUE);
1574
1575 i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1576 I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1577 I40E_DEF_TX_RING_SIZE);
1578 if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1579 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1580 I40E_DESC_ALIGN);
1581 }
1582
1583 i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1584 I40E_MIN_TX_BLOCK_THRESH,
1585 i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1586 I40E_DEF_TX_BLOCK_THRESH);
1587
1588 i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1589 I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1590 I40E_DEF_RX_RING_SIZE);
1591 if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1592 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1593 I40E_DESC_ALIGN);
1594 }
1595
1596 i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1597 I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1598 I40E_DEF_RX_LIMIT_PER_INTR);
1599
1600 i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1601 B_FALSE, B_TRUE, B_TRUE);
1602
1603 i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable",
1604 B_FALSE, B_TRUE, B_TRUE);
1605
1606 i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1607 B_FALSE, B_TRUE, B_TRUE);
1608
1609 i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1610 I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1611 I40E_DEF_RX_DMA_THRESH);
1612
1613 i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1614 I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1615 I40E_DEF_TX_DMA_THRESH);
1616
1617 i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1618 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1619
1620 i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1621 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1622
1623 i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1624 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1625
1626 if (!i40e->i40e_mr_enable) {
1627 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1628 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1629 }
1630
1631 i40e_update_mtu(i40e);
1632 }
1633
1634 /*
1635 * There are a few constraints on interrupts that we're currently imposing, some
1636 * of which are restrictions from hardware. For a fuller treatment, see
1637 * i40e_intr.c.
1638 *
1639 * Currently, to use MSI-X we require two interrupts be available though in
1640 * theory we should participate in IRM and happily use more interrupts.
1641 *
1642 * Hardware only supports a single MSI being programmed and therefore if we
1643 * don't have MSI-X interrupts available at this time, then we ratchet down the
1644 * number of rings and groups available. Obviously, we only bother with a single
1645 * fixed interrupt.
1646 */
1647 static boolean_t
i40e_alloc_intr_handles(i40e_t * i40e,dev_info_t * devinfo,int intr_type)1648 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1649 {
1650 i40e_hw_t *hw = &i40e->i40e_hw_space;
1651 ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1652 int request, count, actual, rc, min;
1653 uint32_t reg;
1654
1655 switch (intr_type) {
1656 case DDI_INTR_TYPE_FIXED:
1657 case DDI_INTR_TYPE_MSI:
1658 request = 1;
1659 min = 1;
1660 break;
1661 case DDI_INTR_TYPE_MSIX:
1662 min = 2;
1663 if (!i40e->i40e_mr_enable) {
1664 request = 2;
1665 break;
1666 }
1667 reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1668 /*
1669 * Should this read fail, we will drop back to using
1670 * MSI or fixed interrupts.
1671 */
1672 if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1673 ddi_fm_service_impact(i40e->i40e_dip,
1674 DDI_SERVICE_DEGRADED);
1675 return (B_FALSE);
1676 }
1677 request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1678 I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1679 request++; /* the register value is n - 1 */
1680 break;
1681 default:
1682 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1683 "%d", intr_type);
1684 return (B_FALSE);
1685 }
1686
1687 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1688 if (rc != DDI_SUCCESS || count < min) {
1689 i40e_log(i40e, "Get interrupt number failed, "
1690 "returned %d, count %d", rc, count);
1691 return (B_FALSE);
1692 }
1693
1694 rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1695 if (rc != DDI_SUCCESS || count < min) {
1696 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1697 "returned %d, count %d", rc, count);
1698 return (B_FALSE);
1699 }
1700
1701 actual = 0;
1702 i40e->i40e_intr_count = 0;
1703 i40e->i40e_intr_count_max = 0;
1704 i40e->i40e_intr_count_min = 0;
1705
1706 i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1707 ASSERT(i40e->i40e_intr_size != 0);
1708 i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1709
1710 rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1711 min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1712 if (rc != DDI_SUCCESS) {
1713 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1714 goto alloc_handle_fail;
1715 }
1716
1717 i40e->i40e_intr_count = actual;
1718 i40e->i40e_intr_count_max = request;
1719 i40e->i40e_intr_count_min = min;
1720
1721 if (actual < min) {
1722 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1723 actual, min);
1724 goto alloc_handle_fail;
1725 }
1726
1727 /*
1728 * Record the priority and capabilities for our first vector. Once
1729 * we have it, that's our priority until detach time. Even if we
1730 * eventually participate in IRM, our priority shouldn't change.
1731 */
1732 rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1733 if (rc != DDI_SUCCESS) {
1734 i40e_log(i40e,
1735 "Getting interrupt priority failed with %d.", rc);
1736 goto alloc_handle_fail;
1737 }
1738
1739 rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1740 if (rc != DDI_SUCCESS) {
1741 i40e_log(i40e,
1742 "Getting interrupt capabilities failed with %d.", rc);
1743 goto alloc_handle_fail;
1744 }
1745
1746 i40e->i40e_intr_type = intr_type;
1747 return (B_TRUE);
1748
1749 alloc_handle_fail:
1750
1751 i40e_rem_intrs(i40e);
1752 return (B_FALSE);
1753 }
1754
1755 static boolean_t
i40e_alloc_intrs(i40e_t * i40e,dev_info_t * devinfo)1756 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1757 {
1758 int intr_types, rc;
1759 uint_t max_trqpairs;
1760
1761 if (i40e_is_x722(i40e)) {
1762 max_trqpairs = I40E_722_MAX_TC_QUEUES;
1763 } else {
1764 max_trqpairs = I40E_710_MAX_TC_QUEUES;
1765 }
1766
1767 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1768 if (rc != DDI_SUCCESS) {
1769 i40e_error(i40e, "failed to get supported interrupt types: %d",
1770 rc);
1771 return (B_FALSE);
1772 }
1773
1774 i40e->i40e_intr_type = 0;
1775 i40e->i40e_num_rx_groups = I40E_GROUP_MAX;
1776
1777 /*
1778 * We need to determine the number of queue pairs per traffic
1779 * class. We only have one traffic class (TC0), so we'll base
1780 * this off the number of interrupts provided. Furthermore,
1781 * since we only use one traffic class, the number of queues
1782 * per traffic class and per VSI are the same.
1783 */
1784 if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1785 (i40e->i40e_intr_force <= I40E_INTR_MSIX) &&
1786 (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) {
1787 uint32_t n;
1788
1789 /*
1790 * While we want the number of queue pairs to match
1791 * the number of interrupts, we must keep stay in
1792 * bounds of the maximum number of queues per traffic
1793 * class. We subtract one from i40e_intr_count to
1794 * account for interrupt zero; which is currently
1795 * restricted to admin queue commands and other
1796 * interrupt causes.
1797 */
1798 n = MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1799 ASSERT3U(n, >, 0);
1800
1801 /*
1802 * Round up to the nearest power of two to ensure that
1803 * the QBASE aligns with the TC size which must be
1804 * programmed as a power of two. See the queue mapping
1805 * description in section 7.4.9.5.5.1.
1806 *
1807 * If i40e_intr_count - 1 is not a power of two then
1808 * some queue pairs on the same VSI will have to share
1809 * an interrupt.
1810 *
1811 * We may want to revisit this logic in a future where
1812 * we have more interrupts and more VSIs. Otherwise,
1813 * each VSI will use as many interrupts as possible.
1814 * Using more QPs per VSI means better RSS for each
1815 * group, but at the same time may require more
1816 * sharing of interrupts across VSIs. This may be a
1817 * good candidate for a .conf tunable.
1818 */
1819 n = 0x1 << ddi_fls(n);
1820 i40e->i40e_num_trqpairs_per_vsi = n;
1821 ASSERT3U(i40e->i40e_num_rx_groups, >, 0);
1822 i40e->i40e_num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1823 i40e->i40e_num_rx_groups;
1824 return (B_TRUE);
1825 }
1826
1827 /*
1828 * We only use multiple transmit/receive pairs when MSI-X interrupts are
1829 * available due to the fact that the device basically only supports a
1830 * single MSI interrupt.
1831 */
1832 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1833 i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs;
1834 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1835
1836 if ((intr_types & DDI_INTR_TYPE_MSI) &&
1837 (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1838 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1839 return (B_TRUE);
1840 }
1841
1842 if (intr_types & DDI_INTR_TYPE_FIXED) {
1843 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1844 return (B_TRUE);
1845 }
1846
1847 return (B_FALSE);
1848 }
1849
1850 /*
1851 * Map different interrupts to MSI-X vectors.
1852 */
1853 static boolean_t
i40e_map_intrs_to_vectors(i40e_t * i40e)1854 i40e_map_intrs_to_vectors(i40e_t *i40e)
1855 {
1856 if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1857 return (B_TRUE);
1858 }
1859
1860 /*
1861 * Each queue pair is mapped to a single interrupt, so
1862 * transmit and receive interrupts for a given queue share the
1863 * same vector. Vector zero is reserved for the admin queue.
1864 */
1865 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1866 uint_t vector = i % (i40e->i40e_intr_count - 1);
1867
1868 i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1;
1869 i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1;
1870 }
1871
1872 return (B_TRUE);
1873 }
1874
1875 static boolean_t
i40e_add_intr_handlers(i40e_t * i40e)1876 i40e_add_intr_handlers(i40e_t *i40e)
1877 {
1878 int rc, vector;
1879
1880 switch (i40e->i40e_intr_type) {
1881 case DDI_INTR_TYPE_MSIX:
1882 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1883 rc = ddi_intr_add_handler(
1884 i40e->i40e_intr_handles[vector],
1885 (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1886 (void *)(uintptr_t)vector);
1887 if (rc != DDI_SUCCESS) {
1888 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1889 "failed: return %d, vector %d", rc, vector);
1890 for (vector--; vector >= 0; vector--) {
1891 (void) ddi_intr_remove_handler(
1892 i40e->i40e_intr_handles[vector]);
1893 }
1894 return (B_FALSE);
1895 }
1896 }
1897 break;
1898 case DDI_INTR_TYPE_MSI:
1899 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1900 (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1901 if (rc != DDI_SUCCESS) {
1902 i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1903 "return %d", rc);
1904 return (B_FALSE);
1905 }
1906 break;
1907 case DDI_INTR_TYPE_FIXED:
1908 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1909 (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1910 if (rc != DDI_SUCCESS) {
1911 i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1912 " return %d", rc);
1913 return (B_FALSE);
1914 }
1915 break;
1916 default:
1917 /* Cast to pacify lint */
1918 panic("i40e_intr_type %p contains an unknown type: %d",
1919 (void *)i40e, i40e->i40e_intr_type);
1920 }
1921
1922 return (B_TRUE);
1923 }
1924
1925 /*
1926 * Perform periodic checks. Longer term, we should be thinking about additional
1927 * things here:
1928 *
1929 * o Stall Detection
1930 * o Temperature sensor detection
1931 * o Device resetting
1932 * o Statistics updating to avoid wraparound
1933 */
1934 static void
i40e_timer(void * arg)1935 i40e_timer(void *arg)
1936 {
1937 i40e_t *i40e = arg;
1938
1939 mutex_enter(&i40e->i40e_general_lock);
1940 i40e_link_check(i40e);
1941 mutex_exit(&i40e->i40e_general_lock);
1942 }
1943
1944 /*
1945 * Get the hardware state, and scribble away anything that needs scribbling.
1946 */
1947 static void
i40e_get_hw_state(i40e_t * i40e,i40e_hw_t * hw)1948 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1949 {
1950 int rc;
1951
1952 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
1953
1954 (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
1955 i40e_link_check(i40e);
1956
1957 /*
1958 * Try and determine our PHY. Note that we may have to retry to and
1959 * delay to detect fiber correctly.
1960 */
1961 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
1962 NULL);
1963 if (rc == I40E_ERR_UNKNOWN_PHY) {
1964 i40e_msec_delay(200);
1965 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
1966 &i40e->i40e_phy, NULL);
1967 }
1968
1969 if (rc != I40E_SUCCESS) {
1970 if (rc == I40E_ERR_UNKNOWN_PHY) {
1971 i40e_error(i40e, "encountered unknown PHY type, "
1972 "not attaching.");
1973 } else {
1974 i40e_error(i40e, "error getting physical capabilities: "
1975 "%d, %d", rc, hw->aq.asq_last_status);
1976 }
1977 }
1978
1979 rc = i40e_update_link_info(hw);
1980 if (rc != I40E_SUCCESS) {
1981 i40e_error(i40e, "failed to update link information: %d", rc);
1982 }
1983
1984 /*
1985 * In general, we don't want to mask off (as in stop from being a cause)
1986 * any of the interrupts that the phy might be able to generate.
1987 */
1988 rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
1989 if (rc != I40E_SUCCESS) {
1990 i40e_error(i40e, "failed to update phy link mask: %d", rc);
1991 }
1992 }
1993
1994 /*
1995 * Go through and re-initialize any existing filters that we may have set up for
1996 * this device. Note that we would only expect them to exist if hardware had
1997 * already been initialized and we had just reset it. While we're not
1998 * implementing this yet, we're keeping this around for when we add reset
1999 * capabilities, so this isn't forgotten.
2000 */
2001 /* ARGSUSED */
2002 static void
i40e_init_macaddrs(i40e_t * i40e,i40e_hw_t * hw)2003 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
2004 {
2005 }
2006
2007 /*
2008 * Set the properties which have common values across all the VSIs.
2009 * Consult the "Add VSI" command section (7.4.9.5.5.1) for a
2010 * complete description of these properties.
2011 */
2012 static void
i40e_set_shared_vsi_props(i40e_t * i40e,struct i40e_aqc_vsi_properties_data * info,uint_t vsi_idx)2013 i40e_set_shared_vsi_props(i40e_t *i40e,
2014 struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx)
2015 {
2016 uint_t tc_queues;
2017 uint16_t vsi_qp_base;
2018
2019 /*
2020 * It's important that we use bitwise-OR here; callers to this
2021 * function might enable other sections before calling this
2022 * function.
2023 */
2024 info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID |
2025 I40E_AQ_VSI_PROP_VLAN_VALID);
2026
2027 /*
2028 * Calculate the starting QP index for this VSI. This base is
2029 * relative to the PF queue space; so a value of 0 for PF#1
2030 * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1.
2031 */
2032 vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi;
2033 info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2034 info->queue_mapping[0] =
2035 LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) &
2036 I40E_AQ_VSI_QUEUE_MASK);
2037
2038 /*
2039 * tc_queues determines the size of the traffic class, where
2040 * the size is 2^^tc_queues to a maximum of 64 for the X710
2041 * and 128 for the X722.
2042 *
2043 * Some examples:
2044 * i40e_num_trqpairs_per_vsi == 1 => tc_queues = 0, 2^^0 = 1.
2045 * i40e_num_trqpairs_per_vsi == 7 => tc_queues = 3, 2^^3 = 8.
2046 * i40e_num_trqpairs_per_vsi == 8 => tc_queues = 3, 2^^3 = 8.
2047 * i40e_num_trqpairs_per_vsi == 9 => tc_queues = 4, 2^^4 = 16.
2048 * i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32.
2049 * i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64.
2050 */
2051 tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1);
2052
2053 /*
2054 * The TC queue mapping is in relation to the VSI queue space.
2055 * Since we are only using one traffic class (TC0) we always
2056 * start at queue offset 0.
2057 */
2058 info->tc_mapping[0] =
2059 LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
2060 I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
2061 ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
2062 I40E_AQ_VSI_TC_QUE_NUMBER_MASK));
2063
2064 /*
2065 * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode")
2066 *
2067 * Allow tagged and untagged packets to be sent to this
2068 * VSI from the host.
2069 *
2070 * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode")
2071 *
2072 * Leave the tag on the frame and place no VLAN
2073 * information in the descriptor. We want this mode
2074 * because our MAC layer will take care of the VLAN tag,
2075 * if there is one.
2076 */
2077 info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2078 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2079 }
2080
2081 /*
2082 * Delete the VSI at this index, if one exists. We assume there is no
2083 * action we can take if this command fails but to log the failure.
2084 */
2085 static void
i40e_delete_vsi(i40e_t * i40e,uint_t idx)2086 i40e_delete_vsi(i40e_t *i40e, uint_t idx)
2087 {
2088 i40e_hw_t *hw = &i40e->i40e_hw_space;
2089 uint16_t seid = i40e->i40e_vsis[idx].iv_seid;
2090
2091 if (seid != 0) {
2092 int rc;
2093
2094 rc = i40e_aq_delete_element(hw, seid, NULL);
2095
2096 if (rc != I40E_SUCCESS) {
2097 i40e_error(i40e, "Failed to delete VSI %d: %d",
2098 rc, hw->aq.asq_last_status);
2099 }
2100
2101 i40e->i40e_vsis[idx].iv_seid = 0;
2102 }
2103 }
2104
2105 /*
2106 * Add a new VSI.
2107 */
2108 static boolean_t
i40e_add_vsi(i40e_t * i40e,i40e_hw_t * hw,uint_t idx)2109 i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx)
2110 {
2111 struct i40e_vsi_context ctx;
2112 i40e_rx_group_t *rxg;
2113 int rc;
2114
2115 /*
2116 * The default VSI is created by the controller. This function
2117 * creates new, non-defualt VSIs only.
2118 */
2119 ASSERT3U(idx, !=, 0);
2120
2121 bzero(&ctx, sizeof (struct i40e_vsi_context));
2122 ctx.uplink_seid = i40e->i40e_veb_seid;
2123 ctx.pf_num = hw->pf_id;
2124 ctx.flags = I40E_AQ_VSI_TYPE_PF;
2125 ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
2126 i40e_set_shared_vsi_props(i40e, &ctx.info, idx);
2127
2128 rc = i40e_aq_add_vsi(hw, &ctx, NULL);
2129 if (rc != I40E_SUCCESS) {
2130 i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc,
2131 hw->aq.asq_last_status);
2132 return (B_FALSE);
2133 }
2134
2135 rxg = &i40e->i40e_rx_groups[idx];
2136 rxg->irg_vsi_seid = ctx.seid;
2137 i40e->i40e_vsis[idx].iv_number = ctx.vsi_number;
2138 i40e->i40e_vsis[idx].iv_seid = ctx.seid;
2139 i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2140
2141 if (i40e_stat_vsi_init(i40e, idx) == B_FALSE)
2142 return (B_FALSE);
2143
2144 return (B_TRUE);
2145 }
2146
2147 /*
2148 * Configure the hardware for the Default Virtual Station Interface (VSI).
2149 */
2150 static boolean_t
i40e_config_def_vsi(i40e_t * i40e,i40e_hw_t * hw)2151 i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw)
2152 {
2153 struct i40e_vsi_context ctx;
2154 i40e_rx_group_t *def_rxg;
2155 int err;
2156 struct i40e_aqc_remove_macvlan_element_data filt;
2157
2158 bzero(&ctx, sizeof (struct i40e_vsi_context));
2159 ctx.seid = I40E_DEF_VSI_SEID(i40e);
2160 ctx.pf_num = hw->pf_id;
2161 err = i40e_aq_get_vsi_params(hw, &ctx, NULL);
2162 if (err != I40E_SUCCESS) {
2163 i40e_error(i40e, "get VSI params failed with %d", err);
2164 return (B_FALSE);
2165 }
2166
2167 ctx.info.valid_sections = 0;
2168 i40e->i40e_vsis[0].iv_number = ctx.vsi_number;
2169 i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2170 if (i40e_stat_vsi_init(i40e, 0) == B_FALSE)
2171 return (B_FALSE);
2172
2173 i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX);
2174
2175 err = i40e_aq_update_vsi_params(hw, &ctx, NULL);
2176 if (err != I40E_SUCCESS) {
2177 i40e_error(i40e, "Update VSI params failed with %d", err);
2178 return (B_FALSE);
2179 }
2180
2181 def_rxg = &i40e->i40e_rx_groups[0];
2182 def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e);
2183
2184 /*
2185 * We have seen three different behaviors in regards to the
2186 * Default VSI and its implicit L2 MAC+VLAN filter.
2187 *
2188 * 1. It has an implicit filter for the factory MAC address
2189 * and this filter counts against 'ifr_nmacfilt_used'.
2190 *
2191 * 2. It has an implicit filter for the factory MAC address
2192 * and this filter DOES NOT count against 'ifr_nmacfilt_used'.
2193 *
2194 * 3. It DOES NOT have an implicit filter.
2195 *
2196 * All three of these cases are accounted for below. If we
2197 * fail to remove the L2 filter (ENOENT) then we assume there
2198 * wasn't one. Otherwise, if we successfully remove the
2199 * filter, we make sure to update the 'ifr_nmacfilt_used'
2200 * count accordingly.
2201 *
2202 * We remove this filter to prevent duplicate delivery of
2203 * packets destined for the primary MAC address as DLS will
2204 * create the same filter on a non-default VSI for the primary
2205 * MAC client.
2206 *
2207 * If you change the following code please test it across as
2208 * many X700 series controllers and firmware revisions as you
2209 * can.
2210 */
2211 bzero(&filt, sizeof (filt));
2212 bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL);
2213 filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2214 filt.vlan_tag = 0;
2215
2216 ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1);
2217 i40e_log(i40e, "Num L2 filters: %u",
2218 i40e->i40e_resources.ifr_nmacfilt_used);
2219
2220 err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
2221 NULL);
2222 if (err == I40E_SUCCESS) {
2223 i40e_log(i40e,
2224 "Removed L2 filter from Default VSI with SEID %u",
2225 I40E_DEF_VSI_SEID(i40e));
2226 } else if (hw->aq.asq_last_status == ENOENT) {
2227 i40e_log(i40e,
2228 "No L2 filter for Default VSI with SEID %u",
2229 I40E_DEF_VSI_SEID(i40e));
2230 } else {
2231 i40e_error(i40e, "Failed to remove L2 filter from"
2232 " Default VSI with SEID %u: %d (%d)",
2233 I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status);
2234
2235 return (B_FALSE);
2236 }
2237
2238 /*
2239 * As mentioned above, the controller created an implicit L2
2240 * filter for the primary MAC. We want to remove both the
2241 * filter and decrement the filter count. However, not all
2242 * controllers count this implicit filter against the total
2243 * MAC filter count. So here we are making sure it is either
2244 * one or zero. If it is one, then we know it is for the
2245 * implicit filter and we should decrement since we just
2246 * removed the filter above. If it is zero then we know the
2247 * controller that does not count the implicit filter, and it
2248 * was enough to just remove it; we leave the count alone.
2249 * But if it is neither, then we have never seen a controller
2250 * like this before and we should fail to attach.
2251 *
2252 * It is unfortunate that this code must exist but the
2253 * behavior of this implicit L2 filter and its corresponding
2254 * count were dicovered through empirical testing. The
2255 * programming manuals hint at this filter but do not
2256 * explicitly call out the exact behavior.
2257 */
2258 if (i40e->i40e_resources.ifr_nmacfilt_used == 1) {
2259 i40e->i40e_resources.ifr_nmacfilt_used--;
2260 } else {
2261 if (i40e->i40e_resources.ifr_nmacfilt_used != 0) {
2262 i40e_error(i40e, "Unexpected L2 filter count: %u"
2263 " (expected 0)",
2264 i40e->i40e_resources.ifr_nmacfilt_used);
2265 return (B_FALSE);
2266 }
2267 }
2268
2269 return (B_TRUE);
2270 }
2271
2272 static boolean_t
i40e_config_rss_key_x722(i40e_t * i40e,i40e_hw_t * hw)2273 i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw)
2274 {
2275 for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
2276 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2277 struct i40e_aqc_get_set_rss_key_data key;
2278 const char *u8seed;
2279 enum i40e_status_code status;
2280 uint16_t vsi_number = i40e->i40e_vsis[i].iv_number;
2281
2282 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2283 u8seed = (char *)seed;
2284
2285 CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2286 sizeof (key.extended_hash_key)));
2287
2288 bcopy(u8seed, key.standard_rss_key,
2289 sizeof (key.standard_rss_key));
2290 bcopy(&u8seed[sizeof (key.standard_rss_key)],
2291 key.extended_hash_key, sizeof (key.extended_hash_key));
2292
2293 ASSERT3U(vsi_number, !=, 0);
2294 status = i40e_aq_set_rss_key(hw, vsi_number, &key);
2295
2296 if (status != I40E_SUCCESS) {
2297 i40e_error(i40e, "failed to set RSS key for VSI %u: %d",
2298 vsi_number, status);
2299 return (B_FALSE);
2300 }
2301 }
2302
2303 return (B_TRUE);
2304 }
2305
2306 /*
2307 * Configure the RSS key. For the X710 controller family, this is set on a
2308 * per-PF basis via registers. For the X722, this is done on a per-VSI basis
2309 * through the admin queue.
2310 */
2311 static boolean_t
i40e_config_rss_key(i40e_t * i40e,i40e_hw_t * hw)2312 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2313 {
2314 if (i40e_is_x722(i40e)) {
2315 if (!i40e_config_rss_key_x722(i40e, hw))
2316 return (B_FALSE);
2317 } else {
2318 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2319
2320 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2321 for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2322 i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2323 }
2324
2325 return (B_TRUE);
2326 }
2327
2328 /*
2329 * Populate the LUT. The size of each entry in the LUT depends on the controller
2330 * family, with the X722 using a known 7-bit width. On the X710 controller, this
2331 * is programmed through its control registers where as on the X722 this is
2332 * configured through the admin queue. Also of note, the X722 allows the LUT to
2333 * be set on a per-PF or VSI basis. At this time we use the PF setting. If we
2334 * decide to use the per-VSI LUT in the future, then we will need to modify the
2335 * i40e_add_vsi() function to set the RSS LUT bits in the queueing section.
2336 *
2337 * We populate the LUT in a round robin fashion with the rx queue indices from 0
2338 * to i40e_num_trqpairs_per_vsi - 1.
2339 */
2340 static boolean_t
i40e_config_rss_hlut(i40e_t * i40e,i40e_hw_t * hw)2341 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2342 {
2343 uint32_t *hlut;
2344 uint8_t lut_mask;
2345 uint_t i;
2346 boolean_t ret = B_FALSE;
2347
2348 /*
2349 * We always configure the PF with a table size of 512 bytes in
2350 * i40e_chip_start().
2351 */
2352 hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2353 if (hlut == NULL) {
2354 i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2355 return (B_FALSE);
2356 }
2357
2358 /*
2359 * The width of the X722 is apparently defined to be 7 bits, regardless
2360 * of the capability.
2361 */
2362 if (i40e_is_x722(i40e)) {
2363 lut_mask = (1 << 7) - 1;
2364 } else {
2365 lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2366 }
2367
2368 for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) {
2369 ((uint8_t *)hlut)[i] =
2370 (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask;
2371 }
2372
2373 if (i40e_is_x722(i40e)) {
2374 enum i40e_status_code status;
2375
2376 status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut,
2377 I40E_HLUT_TABLE_SIZE);
2378
2379 if (status != I40E_SUCCESS) {
2380 i40e_error(i40e, "failed to set RSS LUT %d: %d",
2381 status, hw->aq.asq_last_status);
2382 goto out;
2383 }
2384 } else {
2385 for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2386 I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2387 }
2388 }
2389 ret = B_TRUE;
2390 out:
2391 kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2392 return (ret);
2393 }
2394
2395 /*
2396 * Set up RSS.
2397 * 1. Seed the hash key.
2398 * 2. Enable PCTYPEs for the hash filter.
2399 * 3. Populate the LUT.
2400 */
2401 static boolean_t
i40e_config_rss(i40e_t * i40e,i40e_hw_t * hw)2402 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2403 {
2404 uint64_t hena;
2405
2406 /*
2407 * 1. Seed the hash key
2408 */
2409 if (!i40e_config_rss_key(i40e, hw))
2410 return (B_FALSE);
2411
2412 /*
2413 * 2. Configure PCTYPES
2414 */
2415 hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2416 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2417 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2418 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2419 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2420 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2421 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2422 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2423 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2424 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2425 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2426
2427 /*
2428 * Add additional types supported by the X722 controller.
2429 */
2430 if (i40e_is_x722(i40e)) {
2431 hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2432 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2433 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2434 (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2435 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2436 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2437 }
2438
2439 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2440 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2441
2442 /*
2443 * 3. Populate LUT
2444 */
2445 return (i40e_config_rss_hlut(i40e, hw));
2446 }
2447
2448 /*
2449 * Wrapper to kick the chipset on.
2450 */
2451 static boolean_t
i40e_chip_start(i40e_t * i40e)2452 i40e_chip_start(i40e_t *i40e)
2453 {
2454 i40e_hw_t *hw = &i40e->i40e_hw_space;
2455 struct i40e_filter_control_settings filter;
2456 int rc;
2457 uint8_t err;
2458
2459 if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2460 (hw->aq.fw_maj_ver < 4)) {
2461 i40e_msec_delay(75);
2462 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2463 I40E_SUCCESS) {
2464 i40e_error(i40e, "failed to restart link: admin queue "
2465 "error: %d", hw->aq.asq_last_status);
2466 return (B_FALSE);
2467 }
2468 }
2469
2470 /* Determine hardware state */
2471 i40e_get_hw_state(i40e, hw);
2472
2473 /* For now, we always disable Ethernet Flow Control. */
2474 hw->fc.requested_mode = I40E_FC_NONE;
2475 rc = i40e_set_fc(hw, &err, B_TRUE);
2476 if (rc != I40E_SUCCESS) {
2477 i40e_error(i40e, "Setting flow control failed, returned %d"
2478 " with error: 0x%x", rc, err);
2479 return (B_FALSE);
2480 }
2481
2482 /* Initialize mac addresses. */
2483 i40e_init_macaddrs(i40e, hw);
2484
2485 /*
2486 * Set up the filter control. If the hash lut size is changed from
2487 * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2488 * i40e_config_rss_hlut() will need to be updated.
2489 */
2490 bzero(&filter, sizeof (filter));
2491 filter.enable_ethtype = TRUE;
2492 filter.enable_macvlan = TRUE;
2493 filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2494
2495 rc = i40e_set_filter_control(hw, &filter);
2496 if (rc != I40E_SUCCESS) {
2497 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2498 return (B_FALSE);
2499 }
2500
2501 i40e_intr_chip_init(i40e);
2502
2503 rc = i40e_get_mac_seid(i40e);
2504 if (rc == -1) {
2505 i40e_error(i40e, "failed to obtain MAC Uplink SEID");
2506 return (B_FALSE);
2507 }
2508 i40e->i40e_mac_seid = (uint16_t)rc;
2509
2510 /*
2511 * Create a VEB in order to support multiple VSIs. Each VSI
2512 * functions as a MAC group. This call sets the PF's MAC as
2513 * the uplink port and the PF's default VSI as the default
2514 * downlink port.
2515 */
2516 rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e),
2517 0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL);
2518 if (rc != I40E_SUCCESS) {
2519 i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc,
2520 hw->aq.asq_last_status);
2521 return (B_FALSE);
2522 }
2523
2524 if (!i40e_config_def_vsi(i40e, hw))
2525 return (B_FALSE);
2526
2527 for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) {
2528 if (!i40e_add_vsi(i40e, hw, i))
2529 return (B_FALSE);
2530 }
2531
2532 if (!i40e_config_rss(i40e, hw))
2533 return (B_FALSE);
2534
2535 i40e_flush(hw);
2536
2537 return (B_TRUE);
2538 }
2539
2540 /*
2541 * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2542 */
2543 static void
i40e_shutdown_rx_rings(i40e_t * i40e)2544 i40e_shutdown_rx_rings(i40e_t *i40e)
2545 {
2546 int i;
2547 uint32_t reg;
2548
2549 i40e_hw_t *hw = &i40e->i40e_hw_space;
2550
2551 /*
2552 * Step 1. The interrupt linked list (see i40e_intr.c for more
2553 * information) should have already been cleared before calling this
2554 * function.
2555 */
2556 #ifdef DEBUG
2557 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2558 for (i = 1; i < i40e->i40e_intr_count; i++) {
2559 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2560 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2561 }
2562 } else {
2563 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2564 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2565 }
2566
2567 #endif /* DEBUG */
2568
2569 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2570 /*
2571 * Step 1. Request the queue by clearing QENA_REQ. It may not be
2572 * set due to unwinding from failures and a partially enabled
2573 * ring set.
2574 */
2575 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2576 if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2577 continue;
2578 VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2579 I40E_QRX_ENA_QENA_REQ_MASK);
2580 reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2581 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2582 }
2583
2584 /*
2585 * Step 2. Wait for the disable to take, by having QENA_STAT in the FPM
2586 * be cleared. Note that we could still receive data in the queue during
2587 * this time. We don't actually wait for this now and instead defer this
2588 * to i40e_shutdown_rings_wait(), after we've interleaved disabling the
2589 * TX queues as well.
2590 */
2591 }
2592
2593 static void
i40e_shutdown_tx_rings(i40e_t * i40e)2594 i40e_shutdown_tx_rings(i40e_t *i40e)
2595 {
2596 int i;
2597 uint32_t reg;
2598
2599 i40e_hw_t *hw = &i40e->i40e_hw_space;
2600
2601 /*
2602 * Step 1. The interrupt linked list should already have been cleared.
2603 */
2604 #ifdef DEBUG
2605 if (i40e->i40e_intr_type == DDI_INTR_TYPE_MSIX) {
2606 for (i = 1; i < i40e->i40e_intr_count; i++) {
2607 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLSTN(i - 1));
2608 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2609 }
2610 } else {
2611 reg = I40E_READ_REG(hw, I40E_PFINT_LNKLST0);
2612 VERIFY3U(reg, ==, I40E_QUEUE_TYPE_EOL);
2613
2614 }
2615 #endif /* DEBUG */
2616
2617 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2618 /*
2619 * Step 2. Set the SET_QDIS flag for every queue.
2620 */
2621 i40e_pre_tx_queue_cfg(hw, i, B_FALSE);
2622 }
2623
2624 /*
2625 * Step 3. Wait at least 400 usec (can be done once for all queues).
2626 */
2627 drv_usecwait(500);
2628
2629 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2630 /*
2631 * Step 4. Clear the QENA_REQ flag which tells hardware to
2632 * quiesce. If QENA_REQ is not already set then that means that
2633 * we likely already tried to disable this queue.
2634 */
2635 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2636 if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK))
2637 continue;
2638 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2639 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2640 }
2641
2642 /*
2643 * Step 5. Wait for all drains to finish. This will be done by the
2644 * hardware removing the QENA_STAT flag from the queue. Rather than
2645 * waiting here, we interleave it with all the others in
2646 * i40e_shutdown_rings_wait().
2647 */
2648 }
2649
2650 /*
2651 * Wait for all the rings to be shut down. e.g. Steps 2 and 5 from the above
2652 * functions.
2653 */
2654 static boolean_t
i40e_shutdown_rings_wait(i40e_t * i40e)2655 i40e_shutdown_rings_wait(i40e_t *i40e)
2656 {
2657 int i, try;
2658 i40e_hw_t *hw = &i40e->i40e_hw_space;
2659
2660 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2661 uint32_t reg;
2662
2663 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2664 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2665 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2666 break;
2667 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2668 }
2669
2670 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2671 i40e_error(i40e, "timed out disabling rx queue %d",
2672 i);
2673 return (B_FALSE);
2674 }
2675
2676 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2677 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2678 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2679 break;
2680 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2681 }
2682
2683 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2684 i40e_error(i40e, "timed out disabling tx queue %d",
2685 i);
2686 return (B_FALSE);
2687 }
2688 }
2689
2690 return (B_TRUE);
2691 }
2692
2693 static boolean_t
i40e_shutdown_rings(i40e_t * i40e)2694 i40e_shutdown_rings(i40e_t *i40e)
2695 {
2696 i40e_shutdown_rx_rings(i40e);
2697 i40e_shutdown_tx_rings(i40e);
2698 return (i40e_shutdown_rings_wait(i40e));
2699 }
2700
2701 static void
i40e_setup_rx_descs(i40e_trqpair_t * itrq)2702 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2703 {
2704 int i;
2705 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2706
2707 for (i = 0; i < rxd->rxd_ring_size; i++) {
2708 i40e_rx_control_block_t *rcb;
2709 i40e_rx_desc_t *rdesc;
2710
2711 rcb = rxd->rxd_work_list[i];
2712 rdesc = &rxd->rxd_desc_ring[i];
2713
2714 rdesc->read.pkt_addr =
2715 CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2716 rdesc->read.hdr_addr = 0;
2717 }
2718 }
2719
2720 static boolean_t
i40e_setup_rx_hmc(i40e_trqpair_t * itrq)2721 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2722 {
2723 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2724 i40e_t *i40e = itrq->itrq_i40e;
2725 i40e_hw_t *hw = &i40e->i40e_hw_space;
2726
2727 struct i40e_hmc_obj_rxq rctx;
2728 int err;
2729
2730 bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2731 rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2732 I40E_HMC_RX_CTX_UNIT;
2733 rctx.qlen = rxd->rxd_ring_size;
2734 VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2735 VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2736 rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2737 rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2738 rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2739 rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2740 rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2741 rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2742 rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2743 rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2744 rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2745 rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2746 rctx.rxmax = i40e->i40e_frame_max;
2747 rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2748 rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2749 rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2750 rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2751 rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2752
2753 /*
2754 * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2755 */
2756 rctx.prefena = I40E_HMC_RX_PREFENA;
2757
2758 err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2759 if (err != I40E_SUCCESS) {
2760 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2761 itrq->itrq_index, err);
2762 return (B_FALSE);
2763 }
2764
2765 err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2766 if (err != I40E_SUCCESS) {
2767 i40e_error(i40e, "failed to set rx queue %d context: %d",
2768 itrq->itrq_index, err);
2769 return (B_FALSE);
2770 }
2771
2772 return (B_TRUE);
2773 }
2774
2775 /*
2776 * Take care of setting up the descriptor rings and actually programming the
2777 * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2778 * rx rings.
2779 */
2780 static boolean_t
i40e_setup_rx_rings(i40e_t * i40e)2781 i40e_setup_rx_rings(i40e_t *i40e)
2782 {
2783 int i;
2784 i40e_hw_t *hw = &i40e->i40e_hw_space;
2785
2786 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2787 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2788 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2789 uint32_t reg;
2790
2791 /*
2792 * Step 1. Program all receive ring descriptors.
2793 */
2794 i40e_setup_rx_descs(itrq);
2795
2796 /*
2797 * Step 2. Program the queue's FPM/HMC context.
2798 */
2799 if (i40e_setup_rx_hmc(itrq) == B_FALSE)
2800 return (B_FALSE);
2801
2802 /*
2803 * Step 3. Clear the queue's tail pointer and set it to the end
2804 * of the space.
2805 */
2806 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), 0);
2807 I40E_WRITE_REG(hw, I40E_QRX_TAIL(i), rxd->rxd_ring_size - 1);
2808
2809 /*
2810 * Step 4. Enable the queue via the QENA_REQ.
2811 */
2812 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2813 VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2814 I40E_QRX_ENA_QENA_STAT_MASK));
2815 reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2816 I40E_WRITE_REG(hw, I40E_QRX_ENA(i), reg);
2817 }
2818
2819 /*
2820 * Note, we wait for every queue to be enabled before we start checking.
2821 * This will hopefully cause most queues to be enabled at this point.
2822 */
2823 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2824 uint32_t j, reg;
2825
2826 /*
2827 * Step 5. Verify that QENA_STAT has been set. It's promised
2828 * that this should occur within about 10 us, but like other
2829 * systems, we give the card a bit more time.
2830 */
2831 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2832 reg = I40E_READ_REG(hw, I40E_QRX_ENA(i));
2833
2834 if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2835 break;
2836 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2837 }
2838
2839 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2840 i40e_error(i40e, "failed to enable rx queue %d, timed "
2841 "out.", i);
2842 return (B_FALSE);
2843 }
2844 }
2845
2846 return (B_TRUE);
2847 }
2848
2849 static boolean_t
i40e_setup_tx_hmc(i40e_trqpair_t * itrq)2850 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2851 {
2852 i40e_t *i40e = itrq->itrq_i40e;
2853 i40e_hw_t *hw = &i40e->i40e_hw_space;
2854
2855 struct i40e_hmc_obj_txq tctx;
2856 struct i40e_vsi_context context;
2857 int err;
2858
2859 bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2860 tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2861 tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2862 I40E_HMC_TX_CTX_UNIT;
2863 tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2864 tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2865 tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2866 tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2867 tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2868 tctx.qlen = itrq->itrq_tx_ring_size;
2869 tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2870 tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2871 tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2872 tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2873 sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2874
2875 /*
2876 * This field isn't actually documented, like crc, but it suggests that
2877 * it should be zeroed. We leave both of these here because of that for
2878 * now. We should check with Intel on why these are here even.
2879 */
2880 tctx.crc = 0;
2881 tctx.rdylist_act = 0;
2882
2883 /*
2884 * We're supposed to assign the rdylist field with the value of the
2885 * traffic class index for the first device. We query the VSI parameters
2886 * again to get what the handle is. Note that every queue is always
2887 * assigned to traffic class zero, because we don't actually use them.
2888 */
2889 bzero(&context, sizeof (struct i40e_vsi_context));
2890 context.seid = I40E_DEF_VSI_SEID(i40e);
2891 context.pf_num = hw->pf_id;
2892 err = i40e_aq_get_vsi_params(hw, &context, NULL);
2893 if (err != I40E_SUCCESS) {
2894 i40e_error(i40e, "get VSI params failed with %d", err);
2895 return (B_FALSE);
2896 }
2897 tctx.rdylist = LE_16(context.info.qs_handle[0]);
2898
2899 err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2900 if (err != I40E_SUCCESS) {
2901 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2902 itrq->itrq_index, err);
2903 return (B_FALSE);
2904 }
2905
2906 err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2907 if (err != I40E_SUCCESS) {
2908 i40e_error(i40e, "failed to set tx queue %d context: %d",
2909 itrq->itrq_index, err);
2910 return (B_FALSE);
2911 }
2912
2913 return (B_TRUE);
2914 }
2915
2916 /*
2917 * Take care of setting up the descriptor rings and actually programming the
2918 * device. See 8.4.3.1.1 for what we need to do here.
2919 */
2920 static boolean_t
i40e_setup_tx_rings(i40e_t * i40e)2921 i40e_setup_tx_rings(i40e_t *i40e)
2922 {
2923 int i;
2924 i40e_hw_t *hw = &i40e->i40e_hw_space;
2925
2926 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2927 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
2928 uint32_t reg;
2929
2930 /*
2931 * Step 1. Clear the queue disable flag and verify that the
2932 * index is set correctly.
2933 */
2934 i40e_pre_tx_queue_cfg(hw, i, B_TRUE);
2935
2936 /*
2937 * Step 2. Prepare the queue's FPM/HMC context.
2938 */
2939 if (i40e_setup_tx_hmc(itrq) == B_FALSE)
2940 return (B_FALSE);
2941
2942 /*
2943 * Step 3. Verify that it's clear that this PF owns this queue.
2944 */
2945 reg = I40E_QTX_CTL_PF_QUEUE;
2946 reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2947 I40E_QTX_CTL_PF_INDX_MASK;
2948 I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
2949 i40e_flush(hw);
2950
2951 /*
2952 * Step 4. Set the QENA_REQ flag.
2953 */
2954 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2955 VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
2956 I40E_QTX_ENA_QENA_STAT_MASK));
2957 reg |= I40E_QTX_ENA_QENA_REQ_MASK;
2958 I40E_WRITE_REG(hw, I40E_QTX_ENA(i), reg);
2959 }
2960
2961 /*
2962 * Note, we wait for every queue to be enabled before we start checking.
2963 * This will hopefully cause most queues to be enabled at this point.
2964 */
2965 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2966 uint32_t j, reg;
2967
2968 /*
2969 * Step 5. Verify that QENA_STAT has been set. It's promised
2970 * that this should occur within about 10 us, but like BSD,
2971 * we'll try for up to 100 ms for this queue.
2972 */
2973 for (j = 0; j < I40E_RING_WAIT_NTRIES; j++) {
2974 reg = I40E_READ_REG(hw, I40E_QTX_ENA(i));
2975
2976 if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
2977 break;
2978 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2979 }
2980
2981 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
2982 i40e_error(i40e, "failed to enable tx queue %d, timed "
2983 "out", i);
2984 return (B_FALSE);
2985 }
2986 }
2987
2988 return (B_TRUE);
2989 }
2990
2991 void
i40e_stop(i40e_t * i40e,boolean_t free_allocations)2992 i40e_stop(i40e_t *i40e, boolean_t free_allocations)
2993 {
2994 uint_t i;
2995 i40e_hw_t *hw = &i40e->i40e_hw_space;
2996
2997 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2998
2999 /*
3000 * Shutdown and drain the tx and rx pipeline. We do this using the
3001 * following steps.
3002 *
3003 * 1) Shutdown interrupts to all the queues (trying to keep the admin
3004 * queue alive).
3005 *
3006 * 2) Remove all of the interrupt tx and rx causes by setting the
3007 * interrupt linked lists to zero.
3008 *
3009 * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
3010 * wait for all the queues to be disabled, once we reach that point
3011 * it should be safe to free associated data.
3012 *
3013 * 4) Wait 50ms after all that is done. This ensures that the rings are
3014 * ready for programming again and we don't have to think about this
3015 * in other parts of the driver.
3016 *
3017 * 5) Disable remaining chip interrupts, (admin queue, etc.)
3018 *
3019 * 6) Verify that FM is happy with all the register accesses we
3020 * performed.
3021 */
3022 i40e_intr_io_disable_all(i40e);
3023 i40e_intr_io_clear_cause(i40e);
3024
3025 if (i40e_shutdown_rings(i40e) == B_FALSE) {
3026 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3027 }
3028
3029 delay(50 * drv_usectohz(1000));
3030
3031 /*
3032 * We don't delete the default VSI because it replaces the VEB
3033 * after VEB deletion (see the "Delete Element" section).
3034 * Furthermore, since the default VSI is provided by the
3035 * firmware, we never attempt to delete it.
3036 */
3037 for (i = 1; i < i40e->i40e_num_rx_groups; i++) {
3038 i40e_delete_vsi(i40e, i);
3039 }
3040
3041 if (i40e->i40e_veb_seid != 0) {
3042 int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL);
3043
3044 if (rc != I40E_SUCCESS) {
3045 i40e_error(i40e, "Failed to delete VEB %d: %d", rc,
3046 hw->aq.asq_last_status);
3047 }
3048
3049 i40e->i40e_veb_seid = 0;
3050 }
3051
3052 i40e_intr_chip_fini(i40e);
3053
3054 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3055 mutex_enter(&i40e->i40e_trqpairs[i].itrq_rx_lock);
3056 mutex_enter(&i40e->i40e_trqpairs[i].itrq_tx_lock);
3057 }
3058
3059 /*
3060 * We should consider refactoring this to be part of the ring start /
3061 * stop routines at some point.
3062 */
3063 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3064 i40e_stats_trqpair_fini(&i40e->i40e_trqpairs[i]);
3065 }
3066
3067 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3068 DDI_FM_OK) {
3069 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3070 }
3071
3072 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3073 i40e_tx_cleanup_ring(&i40e->i40e_trqpairs[i]);
3074 }
3075
3076 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3077 mutex_exit(&i40e->i40e_trqpairs[i].itrq_rx_lock);
3078 mutex_exit(&i40e->i40e_trqpairs[i].itrq_tx_lock);
3079 }
3080
3081 for (i = 0; i < i40e->i40e_num_rx_groups; i++) {
3082 i40e_stat_vsi_fini(i40e, i);
3083 }
3084
3085 i40e->i40e_link_speed = 0;
3086 i40e->i40e_link_duplex = 0;
3087 i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
3088
3089 if (free_allocations) {
3090 i40e_free_ring_mem(i40e, B_FALSE);
3091 }
3092 }
3093
3094 boolean_t
i40e_start(i40e_t * i40e,boolean_t alloc)3095 i40e_start(i40e_t *i40e, boolean_t alloc)
3096 {
3097 i40e_hw_t *hw = &i40e->i40e_hw_space;
3098 boolean_t rc = B_TRUE;
3099 int i, err;
3100
3101 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3102
3103 if (alloc) {
3104 if (i40e_alloc_ring_mem(i40e) == B_FALSE) {
3105 i40e_error(i40e,
3106 "Failed to allocate ring memory");
3107 return (B_FALSE);
3108 }
3109 }
3110
3111 /*
3112 * This should get refactored to be part of ring start and stop at
3113 * some point, along with most of the logic here.
3114 */
3115 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
3116 if (i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i]) ==
3117 B_FALSE) {
3118 int j;
3119
3120 for (j = 0; j < i; j++) {
3121 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[j];
3122 i40e_stats_trqpair_fini(itrq);
3123 }
3124 return (B_FALSE);
3125 }
3126 }
3127
3128 if (!i40e_chip_start(i40e)) {
3129 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
3130 rc = B_FALSE;
3131 goto done;
3132 }
3133
3134 if (i40e_setup_rx_rings(i40e) == B_FALSE) {
3135 rc = B_FALSE;
3136 goto done;
3137 }
3138
3139 if (i40e_setup_tx_rings(i40e) == B_FALSE) {
3140 rc = B_FALSE;
3141 goto done;
3142 }
3143
3144 /*
3145 * Enable broadcast traffic; however, do not enable multicast traffic.
3146 * That's handle exclusively through MAC's mc_multicst routines.
3147 */
3148 err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE,
3149 NULL);
3150 if (err != I40E_SUCCESS) {
3151 i40e_error(i40e, "failed to set default VSI: %d", err);
3152 rc = B_FALSE;
3153 goto done;
3154 }
3155
3156 err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL);
3157 if (err != I40E_SUCCESS) {
3158 i40e_error(i40e, "failed to set MAC config: %d", err);
3159 rc = B_FALSE;
3160 goto done;
3161 }
3162
3163 /*
3164 * Finally, make sure that we're happy from an FM perspective.
3165 */
3166 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3167 DDI_FM_OK) {
3168 rc = B_FALSE;
3169 goto done;
3170 }
3171
3172 /* Clear state bits prior to final interrupt enabling. */
3173 atomic_and_32(&i40e->i40e_state,
3174 ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
3175
3176 i40e_intr_io_enable_all(i40e);
3177
3178 done:
3179 if (rc == B_FALSE) {
3180 i40e_stop(i40e, B_FALSE);
3181 if (alloc == B_TRUE) {
3182 i40e_free_ring_mem(i40e, B_TRUE);
3183 }
3184 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3185 }
3186
3187 return (rc);
3188 }
3189
3190 /*
3191 * We may have loaned up descriptors to the stack. As such, if we still have
3192 * them outstanding, then we will not continue with detach.
3193 */
3194 static boolean_t
i40e_drain_rx(i40e_t * i40e)3195 i40e_drain_rx(i40e_t *i40e)
3196 {
3197 mutex_enter(&i40e->i40e_rx_pending_lock);
3198 while (i40e->i40e_rx_pending > 0) {
3199 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
3200 &i40e->i40e_rx_pending_lock,
3201 drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
3202 mutex_exit(&i40e->i40e_rx_pending_lock);
3203 return (B_FALSE);
3204 }
3205 }
3206 mutex_exit(&i40e->i40e_rx_pending_lock);
3207
3208 return (B_TRUE);
3209 }
3210
3211 static int
i40e_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)3212 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3213 {
3214 i40e_t *i40e;
3215 struct i40e_osdep *osdep;
3216 i40e_hw_t *hw;
3217 int instance;
3218
3219 if (cmd != DDI_ATTACH)
3220 return (DDI_FAILURE);
3221
3222 instance = ddi_get_instance(devinfo);
3223 i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
3224
3225 i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
3226 i40e->i40e_instance = instance;
3227 i40e->i40e_dip = devinfo;
3228
3229 hw = &i40e->i40e_hw_space;
3230 osdep = &i40e->i40e_osdep_space;
3231 hw->back = osdep;
3232 osdep->ios_i40e = i40e;
3233
3234 ddi_set_driver_private(devinfo, i40e);
3235
3236 i40e_fm_init(i40e);
3237 i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
3238
3239 if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
3240 i40e_error(i40e, "Failed to map PCI configurations.");
3241 goto attach_fail;
3242 }
3243 i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
3244
3245 i40e_identify_hardware(i40e);
3246
3247 if (!i40e_regs_map(i40e)) {
3248 i40e_error(i40e, "Failed to map device registers.");
3249 goto attach_fail;
3250 }
3251 i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
3252
3253 i40e_init_properties(i40e);
3254 i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
3255
3256 if (!i40e_common_code_init(i40e, hw))
3257 goto attach_fail;
3258 i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
3259
3260 /*
3261 * When we participate in IRM, we should make sure that we register
3262 * ourselves with it before callbacks.
3263 */
3264 if (!i40e_alloc_intrs(i40e, devinfo)) {
3265 i40e_error(i40e, "Failed to allocate interrupts.");
3266 goto attach_fail;
3267 }
3268 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
3269
3270 if (!i40e_alloc_trqpairs(i40e)) {
3271 i40e_error(i40e,
3272 "Failed to allocate receive & transmit rings.");
3273 goto attach_fail;
3274 }
3275 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
3276
3277 if (!i40e_map_intrs_to_vectors(i40e)) {
3278 i40e_error(i40e, "Failed to map interrupts to vectors.");
3279 goto attach_fail;
3280 }
3281
3282 if (!i40e_add_intr_handlers(i40e)) {
3283 i40e_error(i40e, "Failed to add the interrupt handlers.");
3284 goto attach_fail;
3285 }
3286 i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
3287
3288 if (!i40e_final_init(i40e)) {
3289 i40e_error(i40e, "Final initialization failed.");
3290 goto attach_fail;
3291 }
3292 i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
3293
3294 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3295 DDI_FM_OK) {
3296 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3297 goto attach_fail;
3298 }
3299
3300 if (!i40e_stats_init(i40e)) {
3301 i40e_error(i40e, "Stats initialization failed.");
3302 goto attach_fail;
3303 }
3304 i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
3305
3306 if (!i40e_register_mac(i40e)) {
3307 i40e_error(i40e, "Failed to register to MAC/GLDv3");
3308 goto attach_fail;
3309 }
3310 i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
3311
3312 i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
3313 I40E_CYCLIC_PERIOD, DDI_IPL_0);
3314 if (i40e->i40e_periodic_id == 0) {
3315 i40e_error(i40e, "Failed to add the link-check timer");
3316 goto attach_fail;
3317 }
3318 i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
3319
3320 if (!i40e_enable_interrupts(i40e)) {
3321 i40e_error(i40e, "Failed to enable DDI interrupts");
3322 goto attach_fail;
3323 }
3324 i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
3325
3326 atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
3327
3328 mutex_enter(&i40e_glock);
3329 list_insert_tail(&i40e_glist, i40e);
3330 mutex_exit(&i40e_glock);
3331
3332 return (DDI_SUCCESS);
3333
3334 attach_fail:
3335 i40e_unconfigure(devinfo, i40e);
3336 return (DDI_FAILURE);
3337 }
3338
3339 static int
i40e_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)3340 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3341 {
3342 i40e_t *i40e;
3343
3344 if (cmd != DDI_DETACH)
3345 return (DDI_FAILURE);
3346
3347 i40e = (i40e_t *)ddi_get_driver_private(devinfo);
3348 if (i40e == NULL) {
3349 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
3350 return (DDI_FAILURE);
3351 }
3352
3353 if (i40e_drain_rx(i40e) == B_FALSE) {
3354 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
3355 "remain", i40e->i40e_rx_pending);
3356 return (DDI_FAILURE);
3357 }
3358
3359 mutex_enter(&i40e_glock);
3360 list_remove(&i40e_glist, i40e);
3361 mutex_exit(&i40e_glock);
3362
3363 i40e_unconfigure(devinfo, i40e);
3364
3365 return (DDI_SUCCESS);
3366 }
3367
3368 static struct cb_ops i40e_cb_ops = {
3369 nulldev, /* cb_open */
3370 nulldev, /* cb_close */
3371 nodev, /* cb_strategy */
3372 nodev, /* cb_print */
3373 nodev, /* cb_dump */
3374 nodev, /* cb_read */
3375 nodev, /* cb_write */
3376 nodev, /* cb_ioctl */
3377 nodev, /* cb_devmap */
3378 nodev, /* cb_mmap */
3379 nodev, /* cb_segmap */
3380 nochpoll, /* cb_chpoll */
3381 ddi_prop_op, /* cb_prop_op */
3382 NULL, /* cb_stream */
3383 D_MP | D_HOTPLUG, /* cb_flag */
3384 CB_REV, /* cb_rev */
3385 nodev, /* cb_aread */
3386 nodev /* cb_awrite */
3387 };
3388
3389 static struct dev_ops i40e_dev_ops = {
3390 DEVO_REV, /* devo_rev */
3391 0, /* devo_refcnt */
3392 NULL, /* devo_getinfo */
3393 nulldev, /* devo_identify */
3394 nulldev, /* devo_probe */
3395 i40e_attach, /* devo_attach */
3396 i40e_detach, /* devo_detach */
3397 nodev, /* devo_reset */
3398 &i40e_cb_ops, /* devo_cb_ops */
3399 NULL, /* devo_bus_ops */
3400 ddi_power, /* devo_power */
3401 ddi_quiesce_not_supported /* devo_quiesce */
3402 };
3403
3404 static struct modldrv i40e_modldrv = {
3405 &mod_driverops,
3406 i40e_ident,
3407 &i40e_dev_ops
3408 };
3409
3410 static struct modlinkage i40e_modlinkage = {
3411 MODREV_1,
3412 &i40e_modldrv,
3413 NULL
3414 };
3415
3416 /*
3417 * Module Initialization Functions.
3418 */
3419 int
_init(void)3420 _init(void)
3421 {
3422 int status;
3423
3424 list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3425 list_create(&i40e_dlist, sizeof (i40e_device_t),
3426 offsetof(i40e_device_t, id_link));
3427 mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3428 mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3429
3430 status = mod_install(&i40e_modlinkage);
3431 if (status != DDI_SUCCESS) {
3432 mac_fini_ops(&i40e_dev_ops);
3433 mutex_destroy(&i40e_glock);
3434 list_destroy(&i40e_dlist);
3435 list_destroy(&i40e_glist);
3436 }
3437
3438 return (status);
3439 }
3440
3441 int
_info(struct modinfo * modinfop)3442 _info(struct modinfo *modinfop)
3443 {
3444 return (mod_info(&i40e_modlinkage, modinfop));
3445 }
3446
3447 int
_fini(void)3448 _fini(void)
3449 {
3450 int status;
3451
3452 status = mod_remove(&i40e_modlinkage);
3453 if (status == DDI_SUCCESS) {
3454 mac_fini_ops(&i40e_dev_ops);
3455 mutex_destroy(&i40e_glock);
3456 list_destroy(&i40e_dlist);
3457 list_destroy(&i40e_glist);
3458 }
3459
3460 return (status);
3461 }
3462