1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved.
14 * Copyright 2019 Joyent, Inc.
15 * Copyright 2017 Tegile Systems, Inc. All rights reserved.
16 * Copyright 2020 RackTop Systems, Inc.
17 * Copyright 2020 Ryan Zezeski
18 * Copyright 2021 Oxide Computer Company
19 */
20
21 /*
22 * i40e - Intel 10/40 Gb Ethernet driver
23 *
24 * The i40e driver is the main software device driver for the Intel 40 Gb family
25 * of devices. Note that these devices come in many flavors with both 40 GbE
26 * ports and 10 GbE ports. This device is the successor to the 82599 family of
27 * devices (ixgbe).
28 *
29 * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE
30 * devices defined in the XL710 controller (previously known as Fortville) are a
31 * rather different beast and have a small switch embedded inside of them. In
32 * addition, the way that most of the programming is done has been overhauled.
33 * As opposed to just using PCIe memory mapped registers, it also has an
34 * administrative queue which is used to communicate with firmware running on
35 * the chip.
36 *
37 * Each physical function in the hardware shows up as a device that this driver
38 * will bind to. The hardware splits many resources evenly across all of the
39 * physical functions present on the device, while other resources are instead
40 * shared across the entire card and its up to the device driver to
41 * intelligently partition them.
42 *
43 * ------------
44 * Organization
45 * ------------
46 *
47 * This driver is made up of several files which have their own theory
48 * statements spread across them. We'll touch on the high level purpose of each
49 * file here, and then we'll get into more discussion on how the device is
50 * generally modelled with respect to the interfaces in illumos.
51 *
52 * i40e_gld.c: This file contains all of the bindings to MAC and the networking
53 * stack.
54 *
55 * i40e_intr.c: This file contains all of the interrupt service routines and
56 * contains logic to enable and disable interrupts on the hardware.
57 * It also contains the logic to map hardware resources such as the
58 * rings to and from interrupts and controls their ability to fire.
59 *
60 * There is a big theory statement on interrupts present there.
61 *
62 * i40e_main.c: The file that you're currently in. It interfaces with the
63 * traditional OS DDI interfaces and is in charge of configuring
64 * the device.
65 *
66 * i40e_osdep.[ch]: These files contain interfaces and definitions needed to
67 * work with Intel's common code for the device.
68 *
69 * i40e_stats.c: This file contains the general work and logic around our
70 * kstats. A theory statement on their organization and use of the
71 * hardware exists there.
72 *
73 * i40e_sw.h: This header file contains all of the primary structure definitions
74 * and constants that are used across the entire driver.
75 *
76 * i40e_transceiver.c: This file contains all of the logic for sending and
77 * receiving data. It contains all of the ring and DMA
78 * allocation logic, as well as, the actual interfaces to
79 * send and receive data.
80 *
81 * A big theory statement on ring management, descriptors,
82 * and how it ties into the OS is present there.
83 *
84 * --------------
85 * General Design
86 * --------------
87 *
88 * Before we go too far into the general way we've laid out data structures and
89 * the like, it's worth taking some time to explain how the hardware is
90 * organized. This organization informs a lot of how we do things at this time
91 * in the driver.
92 *
93 * Each physical device consists of a number of one or more ports, which are
94 * considered physical functions in the PCI sense and thus each get enumerated
95 * by the system, resulting in an instance being created and attached to. While
96 * there are many resources that are unique to each physical function eg.
97 * instance of the device, there are many that are shared across all of them.
98 * Several resources have an amount reserved for each Virtual Station Interface
99 * (VSI) and then a static pool of resources, available for all functions on the
100 * card.
101 *
102 * The most important resource in hardware are its transmit and receive queue
103 * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3
104 * parlance. There are a set number of these on each device; however, they are
105 * statically partitioned among all of the different physical functions.
106 *
107 * 'Fortville' (the code name for this device family) is basically a switch. To
108 * map MAC addresses and other things to queues, we end up having to create
109 * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct
110 * traffic to a queue. A VSI owns a collection of queues and has a series of
111 * forwarding rules that point to it. One way to think of this is to treat it
112 * like MAC does a VNIC. When MAC refers to a group, a collection of rings and
113 * classification resources, that is a VSI in i40e.
114 *
115 * The sets of VSIs is shared across the entire device, though there may be some
116 * amount that are reserved to each PF. Because the GLDv3 does not let us change
117 * the number of groups dynamically, we instead statically divide this amount
118 * evenly between all the functions that exist. In addition, we have the same
119 * problem with the mac address forwarding rules. There are a static number that
120 * exist shared across all the functions.
121 *
122 * To handle both of these resources, what we end up doing is going through and
123 * determining which functions belong to the same device. Nominally one might do
124 * this by having a nexus driver; however, a prime requirement for a nexus
125 * driver is identifying the various children and activating them. While it is
126 * possible to get this information from NVRAM, we would end up duplicating a
127 * lot of the PCI enumeration logic. Really, at the end of the day, the device
128 * doesn't give us the traditional identification properties we want from a
129 * nexus driver.
130 *
131 * Instead, we rely on some properties that are guaranteed to be unique. While
132 * it might be tempting to leverage the PBA or serial number of the device from
133 * NVRAM, there is nothing that says that two devices can't be mis-programmed to
134 * have the same values in NVRAM. Instead, we uniquely identify a group of
135 * functions based on their parent in the /devices tree, their PCI bus and PCI
136 * function identifiers. Using either on their own may not be sufficient.
137 *
138 * For each unique PCI device that we encounter, we'll create a i40e_device_t.
139 * From there, because we don't have a good way to tell the GLDv3 about sharing
140 * resources between everything, we'll end up just dividing the resources
141 * evenly between all of the functions. Longer term, if we don't have to declare
142 * to the GLDv3 that these resources are shared, then we'll maintain a pool and
143 * have each PF allocate from the pool in the device, thus if only two of four
144 * ports are being used, for example, then all of the resources can still be
145 * used.
146 *
147 * -------------------------------------------
148 * Transmit and Receive Queue Pair Allocations
149 * -------------------------------------------
150 *
151 * NVRAM ends up assigning each PF its own share of the transmit and receive LAN
152 * queue pairs, we have no way of modifying it, only observing it. From there,
153 * it's up to us to map these queues to VSIs and VFs. Since we don't support any
154 * VFs at this time, we only focus on assignments to VSIs.
155 *
156 * At the moment, we used a static mapping of transmit/receive queue pairs to a
157 * given VSI (eg. rings to a group). Though in the fullness of time, we want to
158 * make this something which is fully dynamic and take advantage of documented,
159 * but not yet available functionality for adding filters based on VXLAN and
160 * other encapsulation technologies.
161 *
162 * -------------------------------------
163 * Broadcast, Multicast, and Promiscuous
164 * -------------------------------------
165 *
166 * As part of the GLDv3, we need to make sure that we can handle receiving
167 * broadcast and multicast traffic. As well as enabling promiscuous mode when
168 * requested. GLDv3 requires that all broadcast and multicast traffic be
169 * retrieved by the default group, eg. the first one. This is the same thing as
170 * the default VSI.
171 *
172 * To receieve broadcast traffic, we enable it through the admin queue, rather
173 * than use one of our filters for it. For multicast traffic, we reserve a
174 * certain number of the hash filters and assign them to a given PF. When we
175 * exceed those, we then switch to using promiscuous mode for multicast traffic.
176 *
177 * More specifically, once we exceed the number of filters (indicated because
178 * the i40e_t`i40e_resources.ifr_nmcastfilt ==
179 * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle
180 * promiscuous mode. If promiscuous mode is toggled then we keep track of the
181 * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count.
182 * That will stay enabled until that count reaches zero indicating that we have
183 * only added multicast addresses that we have a corresponding entry for.
184 *
185 * Because MAC itself wants to toggle promiscuous mode, which includes both
186 * unicast and multicast traffic, we go through and keep track of that
187 * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on
188 * member.
189 *
190 * --------------
191 * VSI Management
192 * --------------
193 *
194 * The PFs share 384 VSIs. The firmware creates one VSI per PF by default.
195 * During chip start we retrieve the SEID of this VSI and assign it as the
196 * default VSI for our VEB (one VEB per PF). We then add additional VSIs to
197 * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups.
198 * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can
199 * allocate the same number of VSIs, and b) to keep the interrupt multiplexing
200 * under control. In the future, when we improve the interrupt allocation, we
201 * may want to revisit this cap to make better use of the available VSIs. The
202 * VSI allocation and configuration can be found in i40e_chip_start().
203 *
204 * ----------------
205 * Structure Layout
206 * ----------------
207 *
208 * The following images relates the core data structures together. The primary
209 * structure in the system is the i40e_t. It itself contains multiple rings,
210 * i40e_trqpair_t's which contain the various transmit and receive data. The
211 * receive data is stored outside of the i40e_trqpair_t and instead in the
212 * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps
213 * track of per-physical device state. Finally, for every active descriptor,
214 * there is a corresponding control block, which is where the
215 * i40e_rx_control_block_t and the i40e_tx_control_block_t come from.
216 *
217 * +-----------------------+ +-----------------------+
218 * | Global i40e_t list | | Global Device list |
219 * | | +--| |
220 * | i40e_glist | | | i40e_dlist |
221 * +-----------------------+ | +-----------------------+
222 * | v
223 * | +------------------------+ +-----------------------+
224 * | | Device-wide Structure |----->| Device-wide Structure |--> ...
225 * | | i40e_device_t | | i40e_device_t |
226 * | | | +-----------------------+
227 * | | dev_info_t * ------+--> Parent in devices tree.
228 * | | uint_t ------+--> PCI bus number
229 * | | uint_t ------+--> PCI device number
230 * | | uint_t ------+--> Number of functions
231 * | | i40e_switch_rsrcs_t ---+--> Captured total switch resources
232 * | | list_t ------+-------------+
233 * | +------------------------+ |
234 * | ^ |
235 * | +--------+ |
236 * | | v
237 * | +---------------------------+ | +-------------------+
238 * +->| GLDv3 Device, per PF |-----|-->| GLDv3 Device (PF) |--> ...
239 * | i40e_t | | | i40e_t |
240 * | **Primary Structure** | | +-------------------+
241 * | | |
242 * | i40e_device_t * --+-----+
243 * | i40e_state_t --+---> Device State
244 * | i40e_hw_t --+---> Intel common code structure
245 * | mac_handle_t --+---> GLDv3 handle to MAC
246 * | ddi_periodic_t --+---> Link activity timer
247 * | i40e_vsi_t * --+---> Array of VSIs
248 * | i40e_func_rsrc_t --+---> Available hardware resources
249 * | i40e_switch_rsrc_t * --+---> Switch resource snapshot
250 * | i40e_sdu --+---> Current MTU
251 * | i40e_frame_max --+---> Current HW frame size
252 * | i40e_uaddr_t * --+---> Array of assigned unicast MACs
253 * | i40e_maddr_t * --+---> Array of assigned multicast MACs
254 * | i40e_mcast_promisccount --+---> Active multicast state
255 * | i40e_promisc_on --+---> Current promiscuous mode state
256 * | uint_t --+---> Number of transmit/receive pairs
257 * | i40e_rx_group_t * --+---> Array of Rx groups
258 * | kstat_t * --+---> PF kstats
259 * | i40e_pf_stats_t --+---> PF kstat backing data
260 * | i40e_trqpair_t * --+---------+
261 * +---------------------------+ |
262 * |
263 * v
264 * +-------------------------------+ +-----------------------------+
265 * | Transmit/Receive Queue Pair |-------| Transmit/Receive Queue Pair |->...
266 * | i40e_trqpair_t | | i40e_trqpair_t |
267 * + Ring Data Structure | +-----------------------------+
268 * | |
269 * | mac_ring_handle_t +--> MAC RX ring handle
270 * | mac_ring_handle_t +--> MAC TX ring handle
271 * | i40e_rxq_stat_t --+--> RX Queue stats
272 * | i40e_txq_stat_t --+--> TX Queue stats
273 * | uint32_t (tx ring size) +--> TX Ring Size
274 * | uint32_t (tx free list size) +--> TX Free List Size
275 * | i40e_dma_buffer_t --------+--> TX Descriptor ring DMA
276 * | i40e_tx_desc_t * --------+--> TX descriptor ring
277 * | volatile unt32_t * +--> TX Write back head
278 * | uint32_t -------+--> TX ring head
279 * | uint32_t -------+--> TX ring tail
280 * | uint32_t -------+--> Num TX desc free
281 * | i40e_tx_control_block_t * --+--> TX control block array ---+
282 * | i40e_tx_control_block_t ** --+--> TCB work list ----+
283 * | i40e_tx_control_block_t ** --+--> TCB free list ---+
284 * | uint32_t -------+--> Free TCB count |
285 * | i40e_rx_data_t * -------+--+ v
286 * +-------------------------------+ | +---------------------------+
287 * | | Per-TX Frame Metadata |
288 * | | i40e_tx_control_block_t |
289 * +--------------------+ | |
290 * | mblk to transmit <--+--- mblk_t * |
291 * | type of transmit <--+--- i40e_tx_type_t |
292 * | TX DMA handle <--+--- ddi_dma_handle_t |
293 * v TX DMA buffer <--+--- i40e_dma_buffer_t |
294 * +------------------------------+ +---------------------------+
295 * | Core Receive Data |
296 * | i40e_rx_data_t |
297 * | |
298 * | i40e_dma_buffer_t --+--> RX descriptor DMA Data
299 * | i40e_rx_desc_t --+--> RX descriptor ring
300 * | uint32_t --+--> Next free desc.
301 * | i40e_rx_control_block_t * --+--> RX Control Block Array ---+
302 * | i40e_rx_control_block_t ** --+--> RCB work list ---+
303 * | i40e_rx_control_block_t ** --+--> RCB free list ---+
304 * +------------------------------+ |
305 * ^ |
306 * | +---------------------------+ |
307 * | | Per-RX Frame Metadata |<---------------+
308 * | | i40e_rx_control_block_t |
309 * | | |
310 * | | mblk_t * ----+--> Received mblk_t data
311 * | | uint32_t ----+--> Reference count
312 * | | i40e_dma_buffer_t ----+--> Receive data DMA info
313 * | | frtn_t ----+--> mblk free function info
314 * +-----+-- i40e_rx_data_t * |
315 * +---------------------------+
316 *
317 * -------------
318 * Lock Ordering
319 * -------------
320 *
321 * In order to ensure that we don't deadlock, the following represents the
322 * lock order being used. When grabbing locks, follow the following order. Lower
323 * numbers are more important. Thus, the i40e_glock which is number 0, must be
324 * taken before any other locks in the driver. On the other hand, the
325 * i40e_t`i40e_stat_lock, has the highest number because it's the least
326 * important lock. Note, that just because one lock is higher than another does
327 * not mean that all intermediary locks are required.
328 *
329 * 0) i40e_glock
330 * 1) i40e_t`i40e_general_lock
331 *
332 * 2) i40e_trqpair_t`itrq_rx_lock
333 * 3) i40e_trqpair_t`itrq_tx_lock
334 * 4) i40e_trqpair_t`itrq_intr_lock
335 * 5) i40e_t`i40e_rx_pending_lock
336 * 6) i40e_trqpair_t`itrq_tcb_lock
337 *
338 * 7) i40e_t`i40e_stat_lock
339 *
340 * Rules and expectations:
341 *
342 * 1) A thread holding locks belong to one PF should not hold locks belonging to
343 * a second. If for some reason this becomes necessary, locks should be grabbed
344 * based on the list order in the i40e_device_t, which implies that the
345 * i40e_glock is held.
346 *
347 * 2) When grabbing locks between multiple transmit and receive queues, the
348 * locks for the lowest number transmit/receive queue should be grabbed first.
349 *
350 * 3) When grabbing both the transmit and receive lock for a given queue, always
351 * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock.
352 *
353 * 4) The following pairs of locks are not expected to be held at the same time:
354 *
355 * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock
356 * o i40e_trqpair_t`itrq_intr_lock is not expected to be held with any
357 * other lock except i40e_t`i40e_general_lock in mc_start(9E) and
358 * mc_stop(9e).
359 *
360 * -----------
361 * Future Work
362 * -----------
363 *
364 * At the moment the i40e_t driver is rather bare bones, allowing us to start
365 * getting data flowing and folks using it while we develop additional features.
366 * While bugs have been filed to cover this future work, the following gives an
367 * overview of expected work:
368 *
369 * o DMA binding and breaking up the locking in ring recycling.
370 * o Enhanced detection of device errors
371 * o Participation in IRM
372 * o FMA device reset
373 * o Stall detection, temperature error detection, etc.
374 * o More dynamic resource pools
375 */
376
377 #include "i40e_sw.h"
378
379 static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3";
380
381 /*
382 * The i40e_glock primarily protects the lists below and the i40e_device_t
383 * structures.
384 */
385 static kmutex_t i40e_glock;
386 static list_t i40e_glist;
387 static list_t i40e_dlist;
388
389 /*
390 * Access attributes for register mapping.
391 */
392 static ddi_device_acc_attr_t i40e_regs_acc_attr = {
393 DDI_DEVICE_ATTR_V1,
394 DDI_STRUCTURE_LE_ACC,
395 DDI_STRICTORDER_ACC,
396 DDI_FLAGERR_ACC
397 };
398
399 /*
400 * Logging function for this driver.
401 */
402 static void
i40e_dev_err(i40e_t * i40e,int level,boolean_t console,const char * fmt,va_list ap)403 i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt,
404 va_list ap)
405 {
406 char buf[1024];
407
408 (void) vsnprintf(buf, sizeof (buf), fmt, ap);
409
410 if (i40e == NULL) {
411 cmn_err(level, (console) ? "%s: %s" : "!%s: %s",
412 I40E_MODULE_NAME, buf);
413 } else {
414 dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s",
415 buf);
416 }
417 }
418
419 /*
420 * Because there's the stupid trailing-comma problem with the C preprocessor
421 * and variable arguments, I need to instantiate these. Pardon the redundant
422 * code.
423 */
424 /*PRINTFLIKE2*/
425 void
i40e_error(i40e_t * i40e,const char * fmt,...)426 i40e_error(i40e_t *i40e, const char *fmt, ...)
427 {
428 va_list ap;
429
430 va_start(ap, fmt);
431 i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap);
432 va_end(ap);
433 }
434
435 /*PRINTFLIKE2*/
436 void
i40e_log(i40e_t * i40e,const char * fmt,...)437 i40e_log(i40e_t *i40e, const char *fmt, ...)
438 {
439 va_list ap;
440
441 va_start(ap, fmt);
442 i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap);
443 va_end(ap);
444 }
445
446 /*PRINTFLIKE2*/
447 void
i40e_notice(i40e_t * i40e,const char * fmt,...)448 i40e_notice(i40e_t *i40e, const char *fmt, ...)
449 {
450 va_list ap;
451
452 va_start(ap, fmt);
453 i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap);
454 va_end(ap);
455 }
456
457 /*
458 * Various parts of the driver need to know if the controller is from the X722
459 * family, which has a few additional capabilities and different programming
460 * means. We don't consider virtual functions as part of this as they are quite
461 * different and will require substantially more work.
462 */
463 static boolean_t
i40e_is_x722(i40e_t * i40e)464 i40e_is_x722(i40e_t *i40e)
465 {
466 return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722);
467 }
468
469 static void
i40e_device_rele(i40e_t * i40e)470 i40e_device_rele(i40e_t *i40e)
471 {
472 i40e_device_t *idp = i40e->i40e_device;
473
474 if (idp == NULL)
475 return;
476
477 mutex_enter(&i40e_glock);
478 VERIFY(idp->id_nreg > 0);
479 list_remove(&idp->id_i40e_list, i40e);
480 idp->id_nreg--;
481 if (idp->id_nreg == 0) {
482 list_remove(&i40e_dlist, idp);
483 list_destroy(&idp->id_i40e_list);
484 kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) *
485 idp->id_rsrcs_alloc);
486 kmem_free(idp, sizeof (i40e_device_t));
487 }
488 i40e->i40e_device = NULL;
489 mutex_exit(&i40e_glock);
490 }
491
492 static i40e_device_t *
i40e_device_find(i40e_t * i40e,dev_info_t * parent,uint_t bus,uint_t device)493 i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device)
494 {
495 i40e_device_t *idp;
496 mutex_enter(&i40e_glock);
497 for (idp = list_head(&i40e_dlist); idp != NULL;
498 idp = list_next(&i40e_dlist, idp)) {
499 if (idp->id_parent == parent && idp->id_pci_bus == bus &&
500 idp->id_pci_device == device) {
501 break;
502 }
503 }
504
505 if (idp != NULL) {
506 VERIFY(idp->id_nreg < idp->id_nfuncs);
507 idp->id_nreg++;
508 } else {
509 i40e_hw_t *hw = &i40e->i40e_hw_space;
510 ASSERT(hw->num_ports > 0);
511 ASSERT(hw->num_partitions > 0);
512
513 /*
514 * The Intel common code doesn't exactly keep the number of PCI
515 * functions. But it calculates it during discovery of
516 * partitions and ports. So what we do is undo the calculation
517 * that it does originally, as functions are evenly spread
518 * across ports in the rare case of partitions.
519 */
520 idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP);
521 idp->id_parent = parent;
522 idp->id_pci_bus = bus;
523 idp->id_pci_device = device;
524 idp->id_nfuncs = hw->num_ports * hw->num_partitions;
525 idp->id_nreg = 1;
526 idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc;
527 idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual;
528 idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) *
529 idp->id_rsrcs_alloc, KM_SLEEP);
530 bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs,
531 sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc);
532 list_create(&idp->id_i40e_list, sizeof (i40e_t),
533 offsetof(i40e_t, i40e_dlink));
534
535 list_insert_tail(&i40e_dlist, idp);
536 }
537
538 list_insert_tail(&idp->id_i40e_list, i40e);
539 mutex_exit(&i40e_glock);
540
541 return (idp);
542 }
543
544 static void
i40e_link_state_set(i40e_t * i40e,link_state_t state)545 i40e_link_state_set(i40e_t *i40e, link_state_t state)
546 {
547 if (i40e->i40e_link_state == state)
548 return;
549
550 i40e->i40e_link_state = state;
551 mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state);
552 }
553
554 /*
555 * This is a basic link check routine. Mostly we're using this just to see
556 * if we can get any accurate information about the state of the link being
557 * up or down, as well as updating the link state, speed, etc. information.
558 */
559 void
i40e_link_check(i40e_t * i40e)560 i40e_link_check(i40e_t *i40e)
561 {
562 i40e_hw_t *hw = &i40e->i40e_hw_space;
563 boolean_t ls;
564 int ret;
565
566 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
567
568 hw->phy.get_link_info = B_TRUE;
569 if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) {
570 i40e->i40e_s_link_status_errs++;
571 i40e->i40e_s_link_status_lasterr = ret;
572 return;
573 }
574
575 /*
576 * Firmware abstracts all of the mac and phy information for us, so we
577 * can use i40e_get_link_status to determine the current state.
578 */
579 if (ls == B_TRUE) {
580 enum i40e_aq_link_speed speed;
581
582 speed = i40e_get_link_speed(hw);
583
584 /*
585 * Translate from an i40e value to a value in Mbits/s.
586 */
587 switch (speed) {
588 case I40E_LINK_SPEED_100MB:
589 i40e->i40e_link_speed = 100;
590 break;
591 case I40E_LINK_SPEED_1GB:
592 i40e->i40e_link_speed = 1000;
593 break;
594 case I40E_LINK_SPEED_2_5GB:
595 i40e->i40e_link_speed = 2500;
596 break;
597 case I40E_LINK_SPEED_5GB:
598 i40e->i40e_link_speed = 5000;
599 break;
600 case I40E_LINK_SPEED_10GB:
601 i40e->i40e_link_speed = 10000;
602 break;
603 case I40E_LINK_SPEED_20GB:
604 i40e->i40e_link_speed = 20000;
605 break;
606 case I40E_LINK_SPEED_40GB:
607 i40e->i40e_link_speed = 40000;
608 break;
609 case I40E_LINK_SPEED_25GB:
610 i40e->i40e_link_speed = 25000;
611 break;
612 default:
613 i40e->i40e_link_speed = 0;
614 break;
615 }
616
617 /*
618 * At this time, hardware does not support half-duplex
619 * operation, hence why we don't ask the hardware about our
620 * current speed.
621 */
622 i40e->i40e_link_duplex = LINK_DUPLEX_FULL;
623 i40e_link_state_set(i40e, LINK_STATE_UP);
624 } else {
625 i40e->i40e_link_speed = 0;
626 i40e->i40e_link_duplex = 0;
627 i40e_link_state_set(i40e, LINK_STATE_DOWN);
628 }
629 }
630
631 static void
i40e_rem_intrs(i40e_t * i40e)632 i40e_rem_intrs(i40e_t *i40e)
633 {
634 int i, rc;
635
636 for (i = 0; i < i40e->i40e_intr_count; i++) {
637 rc = ddi_intr_free(i40e->i40e_intr_handles[i]);
638 if (rc != DDI_SUCCESS) {
639 i40e_log(i40e, "failed to free interrupt %d: %d",
640 i, rc);
641 }
642 }
643
644 kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size);
645 i40e->i40e_intr_handles = NULL;
646 }
647
648 static void
i40e_rem_intr_handlers(i40e_t * i40e)649 i40e_rem_intr_handlers(i40e_t *i40e)
650 {
651 int i, rc;
652
653 for (i = 0; i < i40e->i40e_intr_count; i++) {
654 rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]);
655 if (rc != DDI_SUCCESS) {
656 i40e_log(i40e, "failed to remove interrupt %d: %d",
657 i, rc);
658 }
659 }
660 }
661
662 /*
663 * illumos Fault Management Architecture (FMA) support.
664 */
665
666 int
i40e_check_acc_handle(ddi_acc_handle_t handle)667 i40e_check_acc_handle(ddi_acc_handle_t handle)
668 {
669 ddi_fm_error_t de;
670
671 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
672 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
673 return (de.fme_status);
674 }
675
676 int
i40e_check_dma_handle(ddi_dma_handle_t handle)677 i40e_check_dma_handle(ddi_dma_handle_t handle)
678 {
679 ddi_fm_error_t de;
680
681 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
682 return (de.fme_status);
683 }
684
685 /*
686 * Fault service error handling callback function.
687 */
688 /* ARGSUSED */
689 static int
i40e_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)690 i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
691 {
692 pci_ereport_post(dip, err, NULL);
693 return (err->fme_status);
694 }
695
696 static void
i40e_fm_init(i40e_t * i40e)697 i40e_fm_init(i40e_t *i40e)
698 {
699 ddi_iblock_cookie_t iblk;
700
701 i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY,
702 i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable",
703 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
704 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
705
706 if (i40e->i40e_fm_capabilities < 0) {
707 i40e->i40e_fm_capabilities = 0;
708 } else if (i40e->i40e_fm_capabilities > 0xf) {
709 i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE |
710 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE |
711 DDI_FM_ERRCB_CAPABLE;
712 }
713
714 /*
715 * Only register with IO Fault Services if we have some capability
716 */
717 if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
718 i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
719 } else {
720 i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
721 }
722
723 if (i40e->i40e_fm_capabilities) {
724 ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk);
725
726 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
727 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
728 pci_ereport_setup(i40e->i40e_dip);
729 }
730
731 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) {
732 ddi_fm_handler_register(i40e->i40e_dip,
733 i40e_fm_error_cb, (void*)i40e);
734 }
735 }
736
737 if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
738 i40e_init_dma_attrs(i40e, B_TRUE);
739 } else {
740 i40e_init_dma_attrs(i40e, B_FALSE);
741 }
742 }
743
744 static void
i40e_fm_fini(i40e_t * i40e)745 i40e_fm_fini(i40e_t *i40e)
746 {
747 if (i40e->i40e_fm_capabilities) {
748
749 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) ||
750 DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
751 pci_ereport_teardown(i40e->i40e_dip);
752
753 if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities))
754 ddi_fm_handler_unregister(i40e->i40e_dip);
755
756 ddi_fm_fini(i40e->i40e_dip);
757 }
758 }
759
760 void
i40e_fm_ereport(i40e_t * i40e,char * detail)761 i40e_fm_ereport(i40e_t *i40e, char *detail)
762 {
763 uint64_t ena;
764 char buf[FM_MAX_CLASS];
765
766 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
767 ena = fm_ena_generate(0, FM_ENA_FMT1);
768 if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) {
769 ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP,
770 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
771 }
772 }
773
774 /*
775 * Here we're trying to set the SEID of the default VSI. In general,
776 * when we come through and look at this shortly after attach, we
777 * expect there to only be a single element present, which is the
778 * default VSI. Importantly, each PF seems to not see any other
779 * devices, in part because of the simple switch mode that we're
780 * using. If for some reason, we see more artifacts, we'll need to
781 * revisit what we're doing here.
782 */
783 static boolean_t
i40e_set_def_vsi_seid(i40e_t * i40e)784 i40e_set_def_vsi_seid(i40e_t *i40e)
785 {
786 i40e_hw_t *hw = &i40e->i40e_hw_space;
787 struct i40e_aqc_get_switch_config_resp *sw_config;
788 uint8_t aq_buf[I40E_AQ_LARGE_BUF];
789 uint16_t next = 0;
790 int rc;
791
792 /* LINTED: E_BAD_PTR_CAST_ALIGN */
793 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
794 rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
795 NULL);
796 if (rc != I40E_SUCCESS) {
797 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
798 rc, hw->aq.asq_last_status);
799 return (B_FALSE);
800 }
801
802 if (LE_16(sw_config->header.num_reported) != 1) {
803 i40e_error(i40e, "encountered multiple (%d) switching units "
804 "during attach, not proceeding",
805 LE_16(sw_config->header.num_reported));
806 return (B_FALSE);
807 }
808
809 I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid;
810 return (B_TRUE);
811 }
812
813 /*
814 * Get the SEID of the uplink MAC.
815 */
816 static int
i40e_get_mac_seid(i40e_t * i40e)817 i40e_get_mac_seid(i40e_t *i40e)
818 {
819 i40e_hw_t *hw = &i40e->i40e_hw_space;
820 struct i40e_aqc_get_switch_config_resp *sw_config;
821 uint8_t aq_buf[I40E_AQ_LARGE_BUF];
822 uint16_t next = 0;
823 int rc;
824
825 /* LINTED: E_BAD_PTR_CAST_ALIGN */
826 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
827 rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next,
828 NULL);
829 if (rc != I40E_SUCCESS) {
830 i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d",
831 rc, hw->aq.asq_last_status);
832 return (-1);
833 }
834
835 return (LE_16(sw_config->element[0].uplink_seid));
836 }
837
838 /*
839 * We need to fill the i40e_hw_t structure with the capabilities of this PF. We
840 * must also provide the memory for it; however, we don't need to keep it around
841 * to the call to the common code. It takes it and parses it into an internal
842 * structure.
843 */
844 static boolean_t
i40e_get_hw_capabilities(i40e_t * i40e,i40e_hw_t * hw)845 i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw)
846 {
847 struct i40e_aqc_list_capabilities_element_resp *buf;
848 int rc;
849 size_t len;
850 uint16_t needed;
851 int nelems = I40E_HW_CAP_DEFAULT;
852
853 len = nelems * sizeof (*buf);
854
855 for (;;) {
856 ASSERT(len > 0);
857 buf = kmem_alloc(len, KM_SLEEP);
858 rc = i40e_aq_discover_capabilities(hw, buf, len,
859 &needed, i40e_aqc_opc_list_func_capabilities, NULL);
860 kmem_free(buf, len);
861
862 if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM &&
863 nelems == I40E_HW_CAP_DEFAULT) {
864 if (nelems == needed) {
865 i40e_error(i40e, "Capability discovery failed "
866 "due to byzantine common code");
867 return (B_FALSE);
868 }
869 len = needed;
870 continue;
871 } else if (rc != I40E_SUCCESS ||
872 hw->aq.asq_last_status != I40E_AQ_RC_OK) {
873 i40e_error(i40e, "Capability discovery failed: %d", rc);
874 return (B_FALSE);
875 }
876
877 break;
878 }
879
880 return (B_TRUE);
881 }
882
883 /*
884 * Obtain the switch's capabilities as seen by this PF and keep it around for
885 * our later use.
886 */
887 static boolean_t
i40e_get_switch_resources(i40e_t * i40e)888 i40e_get_switch_resources(i40e_t *i40e)
889 {
890 i40e_hw_t *hw = &i40e->i40e_hw_space;
891 uint8_t cnt = 2;
892 uint8_t act;
893 size_t size;
894 i40e_switch_rsrc_t *buf;
895
896 for (;;) {
897 enum i40e_status_code ret;
898 size = cnt * sizeof (i40e_switch_rsrc_t);
899 ASSERT(size > 0);
900 if (size > UINT16_MAX)
901 return (B_FALSE);
902 buf = kmem_alloc(size, KM_SLEEP);
903
904 ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf,
905 cnt, NULL);
906 if (ret == I40E_ERR_ADMIN_QUEUE_ERROR &&
907 hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) {
908 kmem_free(buf, size);
909 cnt += I40E_SWITCH_CAP_DEFAULT;
910 continue;
911 } else if (ret != I40E_SUCCESS) {
912 kmem_free(buf, size);
913 i40e_error(i40e,
914 "failed to retrieve switch statistics: %d", ret);
915 return (B_FALSE);
916 }
917
918 break;
919 }
920
921 i40e->i40e_switch_rsrc_alloc = cnt;
922 i40e->i40e_switch_rsrc_actual = act;
923 i40e->i40e_switch_rsrcs = buf;
924
925 return (B_TRUE);
926 }
927
928 static void
i40e_cleanup_resources(i40e_t * i40e)929 i40e_cleanup_resources(i40e_t *i40e)
930 {
931 if (i40e->i40e_uaddrs != NULL) {
932 kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) *
933 i40e->i40e_resources.ifr_nmacfilt);
934 i40e->i40e_uaddrs = NULL;
935 }
936
937 if (i40e->i40e_maddrs != NULL) {
938 kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) *
939 i40e->i40e_resources.ifr_nmcastfilt);
940 i40e->i40e_maddrs = NULL;
941 }
942
943 if (i40e->i40e_switch_rsrcs != NULL) {
944 size_t sz = sizeof (i40e_switch_rsrc_t) *
945 i40e->i40e_switch_rsrc_alloc;
946 ASSERT(sz > 0);
947 kmem_free(i40e->i40e_switch_rsrcs, sz);
948 i40e->i40e_switch_rsrcs = NULL;
949 }
950
951 if (i40e->i40e_device != NULL)
952 i40e_device_rele(i40e);
953 }
954
955 static boolean_t
i40e_get_available_resources(i40e_t * i40e)956 i40e_get_available_resources(i40e_t *i40e)
957 {
958 dev_info_t *parent;
959 uint16_t bus, device, func;
960 uint_t nregs;
961 int *regs, i;
962 i40e_device_t *idp;
963 i40e_hw_t *hw = &i40e->i40e_hw_space;
964
965 parent = ddi_get_parent(i40e->i40e_dip);
966
967 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg",
968 ®s, &nregs) != DDI_PROP_SUCCESS) {
969 return (B_FALSE);
970 }
971
972 if (nregs < 1) {
973 ddi_prop_free(regs);
974 return (B_FALSE);
975 }
976
977 bus = PCI_REG_BUS_G(regs[0]);
978 device = PCI_REG_DEV_G(regs[0]);
979 func = PCI_REG_FUNC_G(regs[0]);
980 ddi_prop_free(regs);
981
982 i40e->i40e_hw_space.bus.func = func;
983 i40e->i40e_hw_space.bus.device = device;
984
985 if (i40e_get_switch_resources(i40e) == B_FALSE) {
986 return (B_FALSE);
987 }
988
989 /*
990 * To calculate the total amount of a resource we have available, we
991 * need to add how many our i40e_t thinks it has guaranteed, if any, and
992 * then we need to go through and divide the number of available on the
993 * device, which was snapshotted before anyone should have allocated
994 * anything, and use that to derive how many are available from the
995 * pool. Longer term, we may want to turn this into something that's
996 * more of a pool-like resource that everything can share (though that
997 * may require some more assistance from MAC).
998 *
999 * Though for transmit and receive queue pairs, we just have to ask
1000 * firmware instead.
1001 */
1002 idp = i40e_device_find(i40e, parent, bus, device);
1003 i40e->i40e_device = idp;
1004 i40e->i40e_resources.ifr_nvsis = 0;
1005 i40e->i40e_resources.ifr_nvsis_used = 0;
1006 i40e->i40e_resources.ifr_nmacfilt = 0;
1007 i40e->i40e_resources.ifr_nmacfilt_used = 0;
1008 i40e->i40e_resources.ifr_nmcastfilt = 0;
1009 i40e->i40e_resources.ifr_nmcastfilt_used = 0;
1010
1011 for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) {
1012 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1013
1014 switch (srp->resource_type) {
1015 case I40E_AQ_RESOURCE_TYPE_VSI:
1016 i40e->i40e_resources.ifr_nvsis +=
1017 LE_16(srp->guaranteed);
1018 i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used);
1019 break;
1020 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1021 i40e->i40e_resources.ifr_nmacfilt +=
1022 LE_16(srp->guaranteed);
1023 i40e->i40e_resources.ifr_nmacfilt_used =
1024 LE_16(srp->used);
1025 break;
1026 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1027 i40e->i40e_resources.ifr_nmcastfilt +=
1028 LE_16(srp->guaranteed);
1029 i40e->i40e_resources.ifr_nmcastfilt_used =
1030 LE_16(srp->used);
1031 break;
1032 default:
1033 break;
1034 }
1035 }
1036
1037 for (i = 0; i < idp->id_rsrcs_act; i++) {
1038 i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i];
1039 switch (srp->resource_type) {
1040 case I40E_AQ_RESOURCE_TYPE_VSI:
1041 i40e->i40e_resources.ifr_nvsis +=
1042 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1043 break;
1044 case I40E_AQ_RESOURCE_TYPE_MACADDR:
1045 i40e->i40e_resources.ifr_nmacfilt +=
1046 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1047 break;
1048 case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH:
1049 i40e->i40e_resources.ifr_nmcastfilt +=
1050 LE_16(srp->total_unalloced) / idp->id_nfuncs;
1051 default:
1052 break;
1053 }
1054 }
1055
1056 i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp;
1057 i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp;
1058
1059 i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) *
1060 i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP);
1061 i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) *
1062 i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP);
1063
1064 /*
1065 * Initialize these as multicast addresses to indicate it's invalid for
1066 * sanity purposes. Think of it like 0xdeadbeef.
1067 */
1068 for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++)
1069 i40e->i40e_uaddrs[i].iua_mac[0] = 0x01;
1070
1071 return (B_TRUE);
1072 }
1073
1074 static boolean_t
i40e_enable_interrupts(i40e_t * i40e)1075 i40e_enable_interrupts(i40e_t *i40e)
1076 {
1077 int i, rc;
1078
1079 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1080 rc = ddi_intr_block_enable(i40e->i40e_intr_handles,
1081 i40e->i40e_intr_count);
1082 if (rc != DDI_SUCCESS) {
1083 i40e_error(i40e, "Interrupt block-enable failed: %d",
1084 rc);
1085 return (B_FALSE);
1086 }
1087 } else {
1088 for (i = 0; i < i40e->i40e_intr_count; i++) {
1089 rc = ddi_intr_enable(i40e->i40e_intr_handles[i]);
1090 if (rc != DDI_SUCCESS) {
1091 i40e_error(i40e,
1092 "Failed to enable interrupt %d: %d", i, rc);
1093 while (--i >= 0) {
1094 (void) ddi_intr_disable(
1095 i40e->i40e_intr_handles[i]);
1096 }
1097 return (B_FALSE);
1098 }
1099 }
1100 }
1101
1102 return (B_TRUE);
1103 }
1104
1105 static boolean_t
i40e_disable_interrupts(i40e_t * i40e)1106 i40e_disable_interrupts(i40e_t *i40e)
1107 {
1108 int i, rc;
1109
1110 if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) {
1111 rc = ddi_intr_block_disable(i40e->i40e_intr_handles,
1112 i40e->i40e_intr_count);
1113 if (rc != DDI_SUCCESS) {
1114 i40e_error(i40e,
1115 "Interrupt block-disabled failed: %d", rc);
1116 return (B_FALSE);
1117 }
1118 } else {
1119 for (i = 0; i < i40e->i40e_intr_count; i++) {
1120 rc = ddi_intr_disable(i40e->i40e_intr_handles[i]);
1121 if (rc != DDI_SUCCESS) {
1122 i40e_error(i40e,
1123 "Failed to disable interrupt %d: %d",
1124 i, rc);
1125 return (B_FALSE);
1126 }
1127 }
1128 }
1129
1130 return (B_TRUE);
1131 }
1132
1133 /*
1134 * Free receive & transmit rings.
1135 */
1136 static void
i40e_free_trqpairs(i40e_t * i40e)1137 i40e_free_trqpairs(i40e_t *i40e)
1138 {
1139 i40e_trqpair_t *itrq;
1140
1141 if (i40e->i40e_rx_groups != NULL) {
1142 kmem_free(i40e->i40e_rx_groups,
1143 sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups);
1144 i40e->i40e_rx_groups = NULL;
1145 }
1146
1147 if (i40e->i40e_trqpairs != NULL) {
1148 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1149 itrq = &i40e->i40e_trqpairs[i];
1150 mutex_destroy(&itrq->itrq_intr_lock);
1151 mutex_destroy(&itrq->itrq_rx_lock);
1152 mutex_destroy(&itrq->itrq_tx_lock);
1153 mutex_destroy(&itrq->itrq_tcb_lock);
1154 cv_destroy(&itrq->itrq_intr_cv);
1155 cv_destroy(&itrq->itrq_tx_cv);
1156
1157 i40e_stats_trqpair_fini(itrq);
1158 }
1159
1160 kmem_free(i40e->i40e_trqpairs,
1161 sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs);
1162 i40e->i40e_trqpairs = NULL;
1163 }
1164
1165 cv_destroy(&i40e->i40e_rx_pending_cv);
1166 mutex_destroy(&i40e->i40e_rx_pending_lock);
1167 mutex_destroy(&i40e->i40e_general_lock);
1168 }
1169
1170 /*
1171 * Allocate transmit and receive rings, as well as other data structures that we
1172 * need.
1173 */
1174 static boolean_t
i40e_alloc_trqpairs(i40e_t * i40e)1175 i40e_alloc_trqpairs(i40e_t *i40e)
1176 {
1177 void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri);
1178
1179 /*
1180 * Now that we have the priority for the interrupts, initialize
1181 * all relevant locks.
1182 */
1183 mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri);
1184 mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri);
1185 cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL);
1186
1187 i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) *
1188 i40e->i40e_num_trqpairs, KM_SLEEP);
1189 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1190 i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i];
1191
1192 itrq->itrq_i40e = i40e;
1193 mutex_init(&itrq->itrq_intr_lock, NULL, MUTEX_DRIVER, mutexpri);
1194 mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri);
1195 mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri);
1196 mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri);
1197 cv_init(&itrq->itrq_intr_cv, NULL, CV_DRIVER, NULL);
1198 cv_init(&itrq->itrq_tx_cv, NULL, CV_DRIVER, NULL);
1199 itrq->itrq_index = i;
1200 itrq->itrq_intr_quiesce = B_TRUE;
1201 itrq->itrq_tx_quiesce = B_TRUE;
1202 }
1203
1204 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1205 /*
1206 * Keeping this in a separate iteration makes the
1207 * clean up path safe.
1208 */
1209 if (!i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i])) {
1210 i40e_free_trqpairs(i40e);
1211 return (B_FALSE);
1212 }
1213 }
1214
1215 i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) *
1216 i40e->i40e_num_rx_groups, KM_SLEEP);
1217
1218 for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
1219 i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i];
1220
1221 rxg->irg_index = i;
1222 rxg->irg_i40e = i40e;
1223 }
1224
1225 return (B_TRUE);
1226 }
1227
1228
1229
1230 /*
1231 * Unless a .conf file already overrode i40e_t structure values, they will
1232 * be 0, and need to be set in conjunction with the now-available HW report.
1233 */
1234 /* ARGSUSED */
1235 static void
i40e_hw_to_instance(i40e_t * i40e,i40e_hw_t * hw)1236 i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw)
1237 {
1238 if (i40e->i40e_num_trqpairs_per_vsi == 0) {
1239 if (i40e_is_x722(i40e)) {
1240 i40e->i40e_num_trqpairs_per_vsi =
1241 I40E_722_MAX_TC_QUEUES;
1242 } else {
1243 i40e->i40e_num_trqpairs_per_vsi =
1244 I40E_710_MAX_TC_QUEUES;
1245 }
1246 }
1247
1248 if (i40e->i40e_num_rx_groups == 0) {
1249 i40e->i40e_num_rx_groups = I40E_DEF_NUM_RX_GROUPS;
1250 }
1251 }
1252
1253 /*
1254 * Free any resources required by, or setup by, the Intel common code.
1255 */
1256 static void
i40e_common_code_fini(i40e_t * i40e)1257 i40e_common_code_fini(i40e_t *i40e)
1258 {
1259 i40e_hw_t *hw = &i40e->i40e_hw_space;
1260 int rc;
1261
1262 rc = i40e_shutdown_lan_hmc(hw);
1263 if (rc != I40E_SUCCESS)
1264 i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc);
1265
1266 rc = i40e_shutdown_adminq(hw);
1267 if (rc != I40E_SUCCESS)
1268 i40e_error(i40e, "failed to shutdown admin queue: %d", rc);
1269 }
1270
1271 /*
1272 * Initialize and call Intel common-code routines, includes some setup
1273 * the common code expects from the driver. Also prints on failure, so
1274 * the caller doesn't have to.
1275 */
1276 static boolean_t
i40e_common_code_init(i40e_t * i40e,i40e_hw_t * hw)1277 i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw)
1278 {
1279 int rc;
1280
1281 i40e_clear_hw(hw);
1282 rc = i40e_pf_reset(hw);
1283 if (rc != 0) {
1284 i40e_error(i40e, "failed to reset hardware: %d", rc);
1285 i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE);
1286 return (B_FALSE);
1287 }
1288
1289 rc = i40e_init_shared_code(hw);
1290 if (rc != 0) {
1291 i40e_error(i40e, "failed to initialize i40e core: %d", rc);
1292 return (B_FALSE);
1293 }
1294
1295 hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE;
1296 hw->aq.num_asq_entries = I40E_DEF_ADMINQ_SIZE;
1297 hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ;
1298 hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ;
1299
1300 rc = i40e_init_adminq(hw);
1301 if (rc != 0) {
1302 i40e_error(i40e, "failed to initialize firmware admin queue: "
1303 "%d, potential firmware version mismatch", rc);
1304 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
1305 return (B_FALSE);
1306 }
1307
1308 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
1309 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) {
1310 i40e_log(i40e, "The driver for the device detected a newer "
1311 "version of the NVM image (%d.%d) than expected (%d.%d).\n"
1312 "Please install the most recent version of the network "
1313 "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver,
1314 I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw));
1315 } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR ||
1316 hw->aq.api_min_ver < (I40E_FW_MINOR_VERSION(hw) - 1)) {
1317 i40e_log(i40e, "The driver for the device detected an older"
1318 " version of the NVM image (%d.%d) than expected (%d.%d)."
1319 "\nPlease update the NVM image.\n",
1320 hw->aq.api_maj_ver, hw->aq.api_min_ver,
1321 I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw) - 1);
1322 }
1323
1324 i40e_clear_pxe_mode(hw);
1325
1326 /*
1327 * We need to call this so that the common code can discover
1328 * capabilities of the hardware, which it uses throughout the rest.
1329 */
1330 if (!i40e_get_hw_capabilities(i40e, hw)) {
1331 i40e_error(i40e, "failed to obtain hardware capabilities");
1332 return (B_FALSE);
1333 }
1334
1335 if (i40e_get_available_resources(i40e) == B_FALSE) {
1336 i40e_error(i40e, "failed to obtain hardware resources");
1337 return (B_FALSE);
1338 }
1339
1340 i40e_hw_to_instance(i40e, hw);
1341
1342 rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
1343 hw->func_caps.num_rx_qp, 0, 0);
1344 if (rc != 0) {
1345 i40e_error(i40e, "failed to initialize hardware memory cache: "
1346 "%d", rc);
1347 return (B_FALSE);
1348 }
1349
1350 rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
1351 if (rc != 0) {
1352 i40e_error(i40e, "failed to configure hardware memory cache: "
1353 "%d", rc);
1354 return (B_FALSE);
1355 }
1356
1357 (void) i40e_aq_stop_lldp(hw, TRUE, FALSE, NULL);
1358
1359 rc = i40e_get_mac_addr(hw, hw->mac.addr);
1360 if (rc != I40E_SUCCESS) {
1361 i40e_error(i40e, "failed to retrieve hardware mac address: %d",
1362 rc);
1363 return (B_FALSE);
1364 }
1365
1366 rc = i40e_validate_mac_addr(hw->mac.addr);
1367 if (rc != 0) {
1368 i40e_error(i40e, "failed to validate internal mac address: "
1369 "%d", rc);
1370 return (B_FALSE);
1371 }
1372 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
1373 if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) !=
1374 I40E_SUCCESS) {
1375 i40e_error(i40e, "failed to retrieve port mac address: %d",
1376 rc);
1377 return (B_FALSE);
1378 }
1379
1380 /*
1381 * We need to obtain the Default Virtual Station SEID (VSI)
1382 * before we can perform other operations on the device.
1383 */
1384 if (!i40e_set_def_vsi_seid(i40e)) {
1385 i40e_error(i40e, "failed to obtain Default VSI SEID");
1386 return (B_FALSE);
1387 }
1388
1389 return (B_TRUE);
1390 }
1391
1392 static void
i40e_unconfigure(dev_info_t * devinfo,i40e_t * i40e)1393 i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e)
1394 {
1395 int rc;
1396
1397 if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR)
1398 (void) i40e_disable_interrupts(i40e);
1399
1400 if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) &&
1401 i40e->i40e_periodic_id != 0) {
1402 ddi_periodic_delete(i40e->i40e_periodic_id);
1403 i40e->i40e_periodic_id = 0;
1404 }
1405
1406 if (i40e->i40e_attach_progress & I40E_ATTACH_UFM_INIT)
1407 ddi_ufm_fini(i40e->i40e_ufmh);
1408
1409 if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) {
1410 rc = mac_unregister(i40e->i40e_mac_hdl);
1411 if (rc != 0) {
1412 i40e_error(i40e, "failed to unregister from mac: %d",
1413 rc);
1414 }
1415 }
1416
1417 if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) {
1418 i40e_stats_fini(i40e);
1419 }
1420
1421 if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR)
1422 i40e_rem_intr_handlers(i40e);
1423
1424 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS)
1425 i40e_free_trqpairs(i40e);
1426
1427 if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR)
1428 i40e_rem_intrs(i40e);
1429
1430 if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE)
1431 i40e_common_code_fini(i40e);
1432
1433 i40e_cleanup_resources(i40e);
1434
1435 if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS)
1436 (void) ddi_prop_remove_all(devinfo);
1437
1438 if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP &&
1439 i40e->i40e_osdep_space.ios_reg_handle != NULL) {
1440 ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle);
1441 i40e->i40e_osdep_space.ios_reg_handle = NULL;
1442 }
1443
1444 if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) &&
1445 i40e->i40e_osdep_space.ios_cfg_handle != NULL) {
1446 pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle);
1447 i40e->i40e_osdep_space.ios_cfg_handle = NULL;
1448 }
1449
1450 if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT)
1451 i40e_fm_fini(i40e);
1452
1453 kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ);
1454 kmem_free(i40e, sizeof (i40e_t));
1455
1456 ddi_set_driver_private(devinfo, NULL);
1457 }
1458
1459 static boolean_t
i40e_final_init(i40e_t * i40e)1460 i40e_final_init(i40e_t *i40e)
1461 {
1462 i40e_hw_t *hw = &i40e->i40e_hw_space;
1463 struct i40e_osdep *osdep = OS_DEP(hw);
1464 uint8_t pbanum[I40E_PBANUM_STRLEN];
1465 enum i40e_status_code irc;
1466 char buf[I40E_DDI_PROP_LEN];
1467
1468 pbanum[0] = '\0';
1469 irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum));
1470 if (irc != I40E_SUCCESS) {
1471 i40e_log(i40e, "failed to read PBA string: %d", irc);
1472 } else {
1473 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1474 "printed-board-assembly", (char *)pbanum);
1475 }
1476
1477 #ifdef DEBUG
1478 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver,
1479 hw->aq.fw_min_ver) < sizeof (buf));
1480 ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf));
1481 ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver,
1482 hw->aq.api_min_ver) < sizeof (buf));
1483 #endif
1484
1485 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver,
1486 hw->aq.fw_min_ver);
1487 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1488 "firmware-version", buf);
1489 (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build);
1490 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1491 "firmware-build", buf);
1492 (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver,
1493 hw->aq.api_min_ver);
1494 (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip,
1495 "api-version", buf);
1496
1497 if (!i40e_set_hw_bus_info(hw))
1498 return (B_FALSE);
1499
1500 if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) {
1501 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
1502 return (B_FALSE);
1503 }
1504
1505 return (B_TRUE);
1506 }
1507
1508 static void
i40e_identify_hardware(i40e_t * i40e)1509 i40e_identify_hardware(i40e_t *i40e)
1510 {
1511 i40e_hw_t *hw = &i40e->i40e_hw_space;
1512 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1513
1514 hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID);
1515 hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID);
1516 hw->revision_id = pci_config_get8(osdep->ios_cfg_handle,
1517 PCI_CONF_REVID);
1518 hw->subsystem_device_id =
1519 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID);
1520 hw->subsystem_vendor_id =
1521 pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID);
1522
1523 /*
1524 * Note that we set the hardware's bus information later on, in
1525 * i40e_get_available_resources(). The common code doesn't seem to
1526 * require that it be set in any ways, it seems to be mostly for
1527 * book-keeping.
1528 */
1529 }
1530
1531 static boolean_t
i40e_regs_map(i40e_t * i40e)1532 i40e_regs_map(i40e_t *i40e)
1533 {
1534 dev_info_t *devinfo = i40e->i40e_dip;
1535 i40e_hw_t *hw = &i40e->i40e_hw_space;
1536 struct i40e_osdep *osdep = &i40e->i40e_osdep_space;
1537 off_t memsize;
1538 int ret;
1539
1540 if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) !=
1541 DDI_SUCCESS) {
1542 i40e_error(i40e, "Used invalid register set to map PCIe regs");
1543 return (B_FALSE);
1544 }
1545
1546 if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET,
1547 (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr,
1548 &osdep->ios_reg_handle)) != DDI_SUCCESS) {
1549 i40e_error(i40e, "failed to map device registers: %d", ret);
1550 return (B_FALSE);
1551 }
1552
1553 osdep->ios_reg_size = memsize;
1554 return (B_TRUE);
1555 }
1556
1557 /*
1558 * Update parameters required when a new MTU has been configured. Calculate the
1559 * maximum frame size, as well as, size our DMA buffers which we size in
1560 * increments of 1K.
1561 */
1562 void
i40e_update_mtu(i40e_t * i40e)1563 i40e_update_mtu(i40e_t *i40e)
1564 {
1565 uint32_t rx, tx;
1566
1567 i40e->i40e_frame_max = i40e->i40e_sdu +
1568 sizeof (struct ether_vlan_header) + ETHERFCSL;
1569
1570 rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT;
1571 i40e->i40e_rx_buf_size = ((rx >> 10) +
1572 ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1573
1574 tx = i40e->i40e_frame_max;
1575 i40e->i40e_tx_buf_size = ((tx >> 10) +
1576 ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10;
1577 }
1578
1579 static int
i40e_get_prop(i40e_t * i40e,char * prop,int min,int max,int def)1580 i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def)
1581 {
1582 int val;
1583
1584 val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS,
1585 prop, def);
1586 if (val > max)
1587 val = max;
1588 if (val < min)
1589 val = min;
1590 return (val);
1591 }
1592
1593 static void
i40e_init_properties(i40e_t * i40e)1594 i40e_init_properties(i40e_t *i40e)
1595 {
1596 i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu",
1597 I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU);
1598
1599 i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force",
1600 I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE);
1601
1602 i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable",
1603 B_FALSE, B_TRUE, B_TRUE);
1604
1605 i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size",
1606 I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE,
1607 I40E_DEF_TX_RING_SIZE);
1608 if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) {
1609 i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size,
1610 I40E_DESC_ALIGN);
1611 }
1612
1613 i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold",
1614 I40E_MIN_TX_BLOCK_THRESH,
1615 i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE,
1616 I40E_DEF_TX_BLOCK_THRESH);
1617
1618 i40e->i40e_num_rx_groups = i40e_get_prop(i40e, "rx_num_groups",
1619 I40E_MIN_NUM_RX_GROUPS, I40E_MAX_NUM_RX_GROUPS,
1620 I40E_DEF_NUM_RX_GROUPS);
1621
1622 i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size",
1623 I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE,
1624 I40E_DEF_RX_RING_SIZE);
1625 if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) {
1626 i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size,
1627 I40E_DESC_ALIGN);
1628 }
1629
1630 i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr",
1631 I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR,
1632 I40E_DEF_RX_LIMIT_PER_INTR);
1633
1634 i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable",
1635 B_FALSE, B_TRUE, B_TRUE);
1636
1637 i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable",
1638 B_FALSE, B_TRUE, B_TRUE);
1639
1640 i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable",
1641 B_FALSE, B_TRUE, B_TRUE);
1642
1643 i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold",
1644 I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH,
1645 I40E_DEF_RX_DMA_THRESH);
1646
1647 i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold",
1648 I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH,
1649 I40E_DEF_TX_DMA_THRESH);
1650
1651 i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle",
1652 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR);
1653
1654 i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle",
1655 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR);
1656
1657 i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle",
1658 I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR);
1659
1660 if (!i40e->i40e_mr_enable) {
1661 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1662 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1663 }
1664
1665 i40e_update_mtu(i40e);
1666 }
1667
1668 /*
1669 * There are a few constraints on interrupts that we're currently imposing, some
1670 * of which are restrictions from hardware. For a fuller treatment, see
1671 * i40e_intr.c.
1672 *
1673 * Currently, to use MSI-X we require two interrupts be available though in
1674 * theory we should participate in IRM and happily use more interrupts.
1675 *
1676 * Hardware only supports a single MSI being programmed and therefore if we
1677 * don't have MSI-X interrupts available at this time, then we ratchet down the
1678 * number of rings and groups available. Obviously, we only bother with a single
1679 * fixed interrupt.
1680 */
1681 static boolean_t
i40e_alloc_intr_handles(i40e_t * i40e,dev_info_t * devinfo,int intr_type)1682 i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type)
1683 {
1684 i40e_hw_t *hw = &i40e->i40e_hw_space;
1685 ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle;
1686 int request, count, actual, rc, min;
1687 uint32_t reg;
1688
1689 switch (intr_type) {
1690 case DDI_INTR_TYPE_FIXED:
1691 case DDI_INTR_TYPE_MSI:
1692 request = 1;
1693 min = 1;
1694 break;
1695 case DDI_INTR_TYPE_MSIX:
1696 min = 2;
1697 if (!i40e->i40e_mr_enable) {
1698 request = 2;
1699 break;
1700 }
1701 reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2);
1702 /*
1703 * Should this read fail, we will drop back to using
1704 * MSI or fixed interrupts.
1705 */
1706 if (i40e_check_acc_handle(rh) != DDI_FM_OK) {
1707 ddi_fm_service_impact(i40e->i40e_dip,
1708 DDI_SERVICE_DEGRADED);
1709 return (B_FALSE);
1710 }
1711 request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >>
1712 I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT;
1713 request++; /* the register value is n - 1 */
1714 break;
1715 default:
1716 panic("bad interrupt type passed to i40e_alloc_intr_handles: "
1717 "%d", intr_type);
1718 }
1719
1720 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
1721 if (rc != DDI_SUCCESS || count < min) {
1722 i40e_log(i40e, "Get interrupt number failed, "
1723 "returned %d, count %d", rc, count);
1724 return (B_FALSE);
1725 }
1726
1727 rc = ddi_intr_get_navail(devinfo, intr_type, &count);
1728 if (rc != DDI_SUCCESS || count < min) {
1729 i40e_log(i40e, "Get AVAILABLE interrupt number failed, "
1730 "returned %d, count %d", rc, count);
1731 return (B_FALSE);
1732 }
1733
1734 actual = 0;
1735 i40e->i40e_intr_count = 0;
1736 i40e->i40e_intr_count_max = 0;
1737 i40e->i40e_intr_count_min = 0;
1738
1739 i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t);
1740 ASSERT(i40e->i40e_intr_size != 0);
1741 i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP);
1742
1743 rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0,
1744 min(request, count), &actual, DDI_INTR_ALLOC_NORMAL);
1745 if (rc != DDI_SUCCESS) {
1746 i40e_log(i40e, "Interrupt allocation failed with %d.", rc);
1747 goto alloc_handle_fail;
1748 }
1749
1750 i40e->i40e_intr_count = actual;
1751 i40e->i40e_intr_count_max = request;
1752 i40e->i40e_intr_count_min = min;
1753
1754 if (actual < min) {
1755 i40e_log(i40e, "actual (%d) is less than minimum (%d).",
1756 actual, min);
1757 goto alloc_handle_fail;
1758 }
1759
1760 /*
1761 * Record the priority and capabilities for our first vector. Once
1762 * we have it, that's our priority until detach time. Even if we
1763 * eventually participate in IRM, our priority shouldn't change.
1764 */
1765 rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri);
1766 if (rc != DDI_SUCCESS) {
1767 i40e_log(i40e,
1768 "Getting interrupt priority failed with %d.", rc);
1769 goto alloc_handle_fail;
1770 }
1771
1772 rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap);
1773 if (rc != DDI_SUCCESS) {
1774 i40e_log(i40e,
1775 "Getting interrupt capabilities failed with %d.", rc);
1776 goto alloc_handle_fail;
1777 }
1778
1779 i40e->i40e_intr_type = intr_type;
1780 return (B_TRUE);
1781
1782 alloc_handle_fail:
1783
1784 i40e_rem_intrs(i40e);
1785 return (B_FALSE);
1786 }
1787
1788 static boolean_t
i40e_alloc_intrs(i40e_t * i40e,dev_info_t * devinfo)1789 i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo)
1790 {
1791 i40e_hw_t *hw = &i40e->i40e_hw_space;
1792 int intr_types, rc;
1793 uint_t max_trqpairs;
1794
1795 if (i40e_is_x722(i40e)) {
1796 max_trqpairs = I40E_722_MAX_TC_QUEUES;
1797 } else {
1798 max_trqpairs = I40E_710_MAX_TC_QUEUES;
1799 }
1800
1801 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
1802 if (rc != DDI_SUCCESS) {
1803 i40e_error(i40e, "failed to get supported interrupt types: %d",
1804 rc);
1805 return (B_FALSE);
1806 }
1807
1808 i40e->i40e_intr_type = 0;
1809
1810 /*
1811 * We need to determine the number of queue pairs per traffic
1812 * class. We only have one traffic class (TC0), so we'll base
1813 * this off the number of interrupts provided. Furthermore,
1814 * since we only use one traffic class, the number of queues
1815 * per traffic class and per VSI are the same.
1816 */
1817 if ((intr_types & DDI_INTR_TYPE_MSIX) &&
1818 (i40e->i40e_intr_force <= I40E_INTR_MSIX) &&
1819 (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) {
1820 uint32_t n, qp_cap, num_trqpairs;
1821
1822 /*
1823 * While we want the number of queue pairs to match
1824 * the number of interrupts, we must keep stay in
1825 * bounds of the maximum number of queues per traffic
1826 * class. We subtract one from i40e_intr_count to
1827 * account for interrupt zero; which is currently
1828 * restricted to admin queue commands and other
1829 * interrupt causes.
1830 */
1831 n = MIN(i40e->i40e_intr_count - 1, max_trqpairs);
1832 ASSERT3U(n, >, 0);
1833
1834 /*
1835 * Round up to the nearest power of two to ensure that
1836 * the QBASE aligns with the TC size which must be
1837 * programmed as a power of two. See the queue mapping
1838 * description in section 7.4.9.5.5.1.
1839 *
1840 * If i40e_intr_count - 1 is not a power of two then
1841 * some queue pairs on the same VSI will have to share
1842 * an interrupt.
1843 *
1844 * We may want to revisit this logic in a future where
1845 * we have more interrupts and more VSIs. Otherwise,
1846 * each VSI will use as many interrupts as possible.
1847 * Using more QPs per VSI means better RSS for each
1848 * group, but at the same time may require more
1849 * sharing of interrupts across VSIs. This may be a
1850 * good candidate for a .conf tunable.
1851 */
1852 n = 0x1 << ddi_fls(n);
1853 i40e->i40e_num_trqpairs_per_vsi = n;
1854
1855 /*
1856 * Make sure the number of tx/rx qpairs does not exceed
1857 * the device's capabilities.
1858 */
1859 ASSERT3U(i40e->i40e_num_rx_groups, >, 0);
1860 qp_cap = MIN(hw->func_caps.num_rx_qp, hw->func_caps.num_tx_qp);
1861 num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1862 i40e->i40e_num_rx_groups;
1863 if (num_trqpairs > qp_cap) {
1864 i40e->i40e_num_rx_groups = MAX(1, qp_cap /
1865 i40e->i40e_num_trqpairs_per_vsi);
1866 num_trqpairs = i40e->i40e_num_trqpairs_per_vsi *
1867 i40e->i40e_num_rx_groups;
1868 i40e_log(i40e, "Rx groups restricted to %u",
1869 i40e->i40e_num_rx_groups);
1870 }
1871 ASSERT3U(num_trqpairs, >, 0);
1872 i40e->i40e_num_trqpairs = num_trqpairs;
1873 return (B_TRUE);
1874 }
1875
1876 /*
1877 * We only use multiple transmit/receive pairs when MSI-X interrupts are
1878 * available due to the fact that the device basically only supports a
1879 * single MSI interrupt.
1880 */
1881 i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX;
1882 i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs;
1883 i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX;
1884
1885 if ((intr_types & DDI_INTR_TYPE_MSI) &&
1886 (i40e->i40e_intr_force <= I40E_INTR_MSI)) {
1887 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI))
1888 return (B_TRUE);
1889 }
1890
1891 if (intr_types & DDI_INTR_TYPE_FIXED) {
1892 if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED))
1893 return (B_TRUE);
1894 }
1895
1896 return (B_FALSE);
1897 }
1898
1899 /*
1900 * Map different interrupts to MSI-X vectors.
1901 */
1902 static boolean_t
i40e_map_intrs_to_vectors(i40e_t * i40e)1903 i40e_map_intrs_to_vectors(i40e_t *i40e)
1904 {
1905 if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) {
1906 return (B_TRUE);
1907 }
1908
1909 /*
1910 * Each queue pair is mapped to a single interrupt, so
1911 * transmit and receive interrupts for a given queue share the
1912 * same vector. Vector zero is reserved for the admin queue.
1913 */
1914 for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) {
1915 uint_t vector = i % (i40e->i40e_intr_count - 1);
1916
1917 i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1;
1918 i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1;
1919 }
1920
1921 return (B_TRUE);
1922 }
1923
1924 static boolean_t
i40e_add_intr_handlers(i40e_t * i40e)1925 i40e_add_intr_handlers(i40e_t *i40e)
1926 {
1927 int rc, vector;
1928
1929 switch (i40e->i40e_intr_type) {
1930 case DDI_INTR_TYPE_MSIX:
1931 for (vector = 0; vector < i40e->i40e_intr_count; vector++) {
1932 rc = ddi_intr_add_handler(
1933 i40e->i40e_intr_handles[vector],
1934 (ddi_intr_handler_t *)i40e_intr_msix, i40e,
1935 (void *)(uintptr_t)vector);
1936 if (rc != DDI_SUCCESS) {
1937 i40e_log(i40e, "Add interrupt handler (MSI-X) "
1938 "failed: return %d, vector %d", rc, vector);
1939 for (vector--; vector >= 0; vector--) {
1940 (void) ddi_intr_remove_handler(
1941 i40e->i40e_intr_handles[vector]);
1942 }
1943 return (B_FALSE);
1944 }
1945 }
1946 break;
1947 case DDI_INTR_TYPE_MSI:
1948 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1949 (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL);
1950 if (rc != DDI_SUCCESS) {
1951 i40e_log(i40e, "Add interrupt handler (MSI) failed: "
1952 "return %d", rc);
1953 return (B_FALSE);
1954 }
1955 break;
1956 case DDI_INTR_TYPE_FIXED:
1957 rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0],
1958 (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL);
1959 if (rc != DDI_SUCCESS) {
1960 i40e_log(i40e, "Add interrupt handler (legacy) failed:"
1961 " return %d", rc);
1962 return (B_FALSE);
1963 }
1964 break;
1965 default:
1966 /* Cast to pacify lint */
1967 panic("i40e_intr_type %p contains an unknown type: %d",
1968 (void *)i40e, i40e->i40e_intr_type);
1969 }
1970
1971 return (B_TRUE);
1972 }
1973
1974 /*
1975 * Perform periodic checks. Longer term, we should be thinking about additional
1976 * things here:
1977 *
1978 * o Stall Detection
1979 * o Temperature sensor detection
1980 * o Device resetting
1981 * o Statistics updating to avoid wraparound
1982 */
1983 static void
i40e_timer(void * arg)1984 i40e_timer(void *arg)
1985 {
1986 i40e_t *i40e = arg;
1987
1988 mutex_enter(&i40e->i40e_general_lock);
1989 i40e_link_check(i40e);
1990 mutex_exit(&i40e->i40e_general_lock);
1991 }
1992
1993 /*
1994 * Get the hardware state, and scribble away anything that needs scribbling.
1995 */
1996 static void
i40e_get_hw_state(i40e_t * i40e,i40e_hw_t * hw)1997 i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw)
1998 {
1999 int rc;
2000
2001 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
2002
2003 (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL);
2004 i40e_link_check(i40e);
2005
2006 /*
2007 * Try and determine our PHY. Note that we may have to retry to and
2008 * delay to detect fiber correctly.
2009 */
2010 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy,
2011 NULL);
2012 if (rc == I40E_ERR_UNKNOWN_PHY) {
2013 i40e_msec_delay(200);
2014 rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE,
2015 &i40e->i40e_phy, NULL);
2016 }
2017
2018 if (rc != I40E_SUCCESS) {
2019 if (rc == I40E_ERR_UNKNOWN_PHY) {
2020 i40e_error(i40e, "encountered unknown PHY type, "
2021 "not attaching.");
2022 } else {
2023 i40e_error(i40e, "error getting physical capabilities: "
2024 "%d, %d", rc, hw->aq.asq_last_status);
2025 }
2026 }
2027
2028 rc = i40e_update_link_info(hw);
2029 if (rc != I40E_SUCCESS) {
2030 i40e_error(i40e, "failed to update link information: %d", rc);
2031 }
2032
2033 /*
2034 * In general, we don't want to mask off (as in stop from being a cause)
2035 * any of the interrupts that the phy might be able to generate.
2036 */
2037 rc = i40e_aq_set_phy_int_mask(hw, 0, NULL);
2038 if (rc != I40E_SUCCESS) {
2039 i40e_error(i40e, "failed to update phy link mask: %d", rc);
2040 }
2041 }
2042
2043 /*
2044 * Go through and re-initialize any existing filters that we may have set up for
2045 * this device. Note that we would only expect them to exist if hardware had
2046 * already been initialized and we had just reset it. While we're not
2047 * implementing this yet, we're keeping this around for when we add reset
2048 * capabilities, so this isn't forgotten.
2049 */
2050 /* ARGSUSED */
2051 static void
i40e_init_macaddrs(i40e_t * i40e,i40e_hw_t * hw)2052 i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw)
2053 {
2054 }
2055
2056 /*
2057 * Set the properties which have common values across all the VSIs.
2058 * Consult the "Add VSI" command section (7.4.9.5.5.1) for a
2059 * complete description of these properties.
2060 */
2061 static void
i40e_set_shared_vsi_props(i40e_t * i40e,struct i40e_aqc_vsi_properties_data * info,uint_t vsi_idx)2062 i40e_set_shared_vsi_props(i40e_t *i40e,
2063 struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx)
2064 {
2065 uint_t tc_queues;
2066 uint16_t vsi_qp_base;
2067
2068 /*
2069 * It's important that we use bitwise-OR here; callers to this
2070 * function might enable other sections before calling this
2071 * function.
2072 */
2073 info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID |
2074 I40E_AQ_VSI_PROP_VLAN_VALID);
2075
2076 /*
2077 * Calculate the starting QP index for this VSI. This base is
2078 * relative to the PF queue space; so a value of 0 for PF#1
2079 * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1.
2080 */
2081 vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi;
2082 info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2083 info->queue_mapping[0] =
2084 LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) &
2085 I40E_AQ_VSI_QUEUE_MASK);
2086
2087 /*
2088 * tc_queues determines the size of the traffic class, where
2089 * the size is 2^^tc_queues to a maximum of 64 for the X710
2090 * and 128 for the X722.
2091 *
2092 * Some examples:
2093 * i40e_num_trqpairs_per_vsi == 1 => tc_queues = 0, 2^^0 = 1.
2094 * i40e_num_trqpairs_per_vsi == 7 => tc_queues = 3, 2^^3 = 8.
2095 * i40e_num_trqpairs_per_vsi == 8 => tc_queues = 3, 2^^3 = 8.
2096 * i40e_num_trqpairs_per_vsi == 9 => tc_queues = 4, 2^^4 = 16.
2097 * i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32.
2098 * i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64.
2099 */
2100 tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1);
2101
2102 /*
2103 * The TC queue mapping is in relation to the VSI queue space.
2104 * Since we are only using one traffic class (TC0) we always
2105 * start at queue offset 0.
2106 */
2107 info->tc_mapping[0] =
2108 LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) &
2109 I40E_AQ_VSI_TC_QUE_OFFSET_MASK) |
2110 ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) &
2111 I40E_AQ_VSI_TC_QUE_NUMBER_MASK));
2112
2113 /*
2114 * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode")
2115 *
2116 * Allow tagged and untagged packets to be sent to this
2117 * VSI from the host.
2118 *
2119 * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode")
2120 *
2121 * Leave the tag on the frame and place no VLAN
2122 * information in the descriptor. We want this mode
2123 * because our MAC layer will take care of the VLAN tag,
2124 * if there is one.
2125 */
2126 info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2127 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2128 }
2129
2130 /*
2131 * Delete the VSI at this index, if one exists. We assume there is no
2132 * action we can take if this command fails but to log the failure.
2133 */
2134 static void
i40e_delete_vsi(i40e_t * i40e,uint_t idx)2135 i40e_delete_vsi(i40e_t *i40e, uint_t idx)
2136 {
2137 i40e_hw_t *hw = &i40e->i40e_hw_space;
2138 uint16_t seid = i40e->i40e_vsis[idx].iv_seid;
2139
2140 if (seid != 0) {
2141 int rc;
2142
2143 rc = i40e_aq_delete_element(hw, seid, NULL);
2144
2145 if (rc != I40E_SUCCESS) {
2146 i40e_error(i40e, "Failed to delete VSI %d: %d",
2147 rc, hw->aq.asq_last_status);
2148 }
2149
2150 i40e->i40e_vsis[idx].iv_seid = 0;
2151 }
2152 }
2153
2154 /*
2155 * Add a new VSI.
2156 */
2157 static boolean_t
i40e_add_vsi(i40e_t * i40e,i40e_hw_t * hw,uint_t idx)2158 i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx)
2159 {
2160 struct i40e_vsi_context ctx;
2161 i40e_rx_group_t *rxg;
2162 int rc;
2163
2164 /*
2165 * The default VSI is created by the controller. This function
2166 * creates new, non-default VSIs only.
2167 */
2168 ASSERT3U(idx, !=, 0);
2169
2170 bzero(&ctx, sizeof (struct i40e_vsi_context));
2171 ctx.uplink_seid = i40e->i40e_veb_seid;
2172 ctx.pf_num = hw->pf_id;
2173 ctx.flags = I40E_AQ_VSI_TYPE_PF;
2174 ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
2175 i40e_set_shared_vsi_props(i40e, &ctx.info, idx);
2176
2177 rc = i40e_aq_add_vsi(hw, &ctx, NULL);
2178 if (rc != I40E_SUCCESS) {
2179 i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc,
2180 hw->aq.asq_last_status);
2181 return (B_FALSE);
2182 }
2183
2184 rxg = &i40e->i40e_rx_groups[idx];
2185 rxg->irg_vsi_seid = ctx.seid;
2186 i40e->i40e_vsis[idx].iv_number = ctx.vsi_number;
2187 i40e->i40e_vsis[idx].iv_seid = ctx.seid;
2188 i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2189
2190 if (i40e_stat_vsi_init(i40e, idx) == B_FALSE)
2191 return (B_FALSE);
2192
2193 return (B_TRUE);
2194 }
2195
2196 /*
2197 * Configure the hardware for the Default Virtual Station Interface (VSI).
2198 */
2199 static boolean_t
i40e_config_def_vsi(i40e_t * i40e,i40e_hw_t * hw)2200 i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw)
2201 {
2202 struct i40e_vsi_context ctx;
2203 i40e_rx_group_t *def_rxg;
2204 int err;
2205 struct i40e_aqc_remove_macvlan_element_data filt;
2206
2207 bzero(&ctx, sizeof (struct i40e_vsi_context));
2208 ctx.seid = I40E_DEF_VSI_SEID(i40e);
2209 ctx.pf_num = hw->pf_id;
2210 err = i40e_aq_get_vsi_params(hw, &ctx, NULL);
2211 if (err != I40E_SUCCESS) {
2212 i40e_error(i40e, "get VSI params failed with %d", err);
2213 return (B_FALSE);
2214 }
2215
2216 ctx.info.valid_sections = 0;
2217 i40e->i40e_vsis[0].iv_number = ctx.vsi_number;
2218 i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx);
2219 if (i40e_stat_vsi_init(i40e, 0) == B_FALSE)
2220 return (B_FALSE);
2221
2222 i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX);
2223
2224 err = i40e_aq_update_vsi_params(hw, &ctx, NULL);
2225 if (err != I40E_SUCCESS) {
2226 i40e_error(i40e, "Update VSI params failed with %d", err);
2227 return (B_FALSE);
2228 }
2229
2230 def_rxg = &i40e->i40e_rx_groups[0];
2231 def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e);
2232
2233 /*
2234 * We have seen three different behaviors in regards to the
2235 * Default VSI and its implicit L2 MAC+VLAN filter.
2236 *
2237 * 1. It has an implicit filter for the factory MAC address
2238 * and this filter counts against 'ifr_nmacfilt_used'.
2239 *
2240 * 2. It has an implicit filter for the factory MAC address
2241 * and this filter DOES NOT count against 'ifr_nmacfilt_used'.
2242 *
2243 * 3. It DOES NOT have an implicit filter.
2244 *
2245 * All three of these cases are accounted for below. If we
2246 * fail to remove the L2 filter (ENOENT) then we assume there
2247 * wasn't one. Otherwise, if we successfully remove the
2248 * filter, we make sure to update the 'ifr_nmacfilt_used'
2249 * count accordingly.
2250 *
2251 * We remove this filter to prevent duplicate delivery of
2252 * packets destined for the primary MAC address as DLS will
2253 * create the same filter on a non-default VSI for the primary
2254 * MAC client.
2255 *
2256 * If you change the following code please test it across as
2257 * many X700 series controllers and firmware revisions as you
2258 * can.
2259 */
2260 bzero(&filt, sizeof (filt));
2261 bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL);
2262 filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2263 filt.vlan_tag = 0;
2264
2265 ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1);
2266 i40e_log(i40e, "Num L2 filters: %u",
2267 i40e->i40e_resources.ifr_nmacfilt_used);
2268
2269 err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1,
2270 NULL);
2271 if (err == I40E_SUCCESS) {
2272 i40e_log(i40e,
2273 "Removed L2 filter from Default VSI with SEID %u",
2274 I40E_DEF_VSI_SEID(i40e));
2275 } else if (hw->aq.asq_last_status == ENOENT) {
2276 i40e_log(i40e,
2277 "No L2 filter for Default VSI with SEID %u",
2278 I40E_DEF_VSI_SEID(i40e));
2279 } else {
2280 i40e_error(i40e, "Failed to remove L2 filter from"
2281 " Default VSI with SEID %u: %d (%d)",
2282 I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status);
2283
2284 return (B_FALSE);
2285 }
2286
2287 /*
2288 * As mentioned above, the controller created an implicit L2
2289 * filter for the primary MAC. We want to remove both the
2290 * filter and decrement the filter count. However, not all
2291 * controllers count this implicit filter against the total
2292 * MAC filter count. So here we are making sure it is either
2293 * one or zero. If it is one, then we know it is for the
2294 * implicit filter and we should decrement since we just
2295 * removed the filter above. If it is zero then we know the
2296 * controller that does not count the implicit filter, and it
2297 * was enough to just remove it; we leave the count alone.
2298 * But if it is neither, then we have never seen a controller
2299 * like this before and we should fail to attach.
2300 *
2301 * It is unfortunate that this code must exist but the
2302 * behavior of this implicit L2 filter and its corresponding
2303 * count were dicovered through empirical testing. The
2304 * programming manuals hint at this filter but do not
2305 * explicitly call out the exact behavior.
2306 */
2307 if (i40e->i40e_resources.ifr_nmacfilt_used == 1) {
2308 i40e->i40e_resources.ifr_nmacfilt_used--;
2309 } else {
2310 if (i40e->i40e_resources.ifr_nmacfilt_used != 0) {
2311 i40e_error(i40e, "Unexpected L2 filter count: %u"
2312 " (expected 0)",
2313 i40e->i40e_resources.ifr_nmacfilt_used);
2314 return (B_FALSE);
2315 }
2316 }
2317
2318 return (B_TRUE);
2319 }
2320
2321 static boolean_t
i40e_config_rss_key_x722(i40e_t * i40e,i40e_hw_t * hw)2322 i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw)
2323 {
2324 for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) {
2325 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2326 struct i40e_aqc_get_set_rss_key_data key;
2327 const char *u8seed;
2328 enum i40e_status_code status;
2329 uint16_t vsi_number = i40e->i40e_vsis[i].iv_number;
2330
2331 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2332 u8seed = (char *)seed;
2333
2334 CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) +
2335 sizeof (key.extended_hash_key)));
2336
2337 bcopy(u8seed, key.standard_rss_key,
2338 sizeof (key.standard_rss_key));
2339 bcopy(&u8seed[sizeof (key.standard_rss_key)],
2340 key.extended_hash_key, sizeof (key.extended_hash_key));
2341
2342 ASSERT3U(vsi_number, !=, 0);
2343 status = i40e_aq_set_rss_key(hw, vsi_number, &key);
2344
2345 if (status != I40E_SUCCESS) {
2346 i40e_error(i40e, "failed to set RSS key for VSI %u: %d",
2347 vsi_number, status);
2348 return (B_FALSE);
2349 }
2350 }
2351
2352 return (B_TRUE);
2353 }
2354
2355 /*
2356 * Configure the RSS key. For the X710 controller family, this is set on a
2357 * per-PF basis via registers. For the X722, this is done on a per-VSI basis
2358 * through the admin queue.
2359 */
2360 static boolean_t
i40e_config_rss_key(i40e_t * i40e,i40e_hw_t * hw)2361 i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw)
2362 {
2363 if (i40e_is_x722(i40e)) {
2364 if (!i40e_config_rss_key_x722(i40e, hw))
2365 return (B_FALSE);
2366 } else {
2367 uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1];
2368
2369 (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed));
2370 for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
2371 i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]);
2372 }
2373
2374 return (B_TRUE);
2375 }
2376
2377 /*
2378 * Populate the LUT. The size of each entry in the LUT depends on the controller
2379 * family, with the X722 using a known 7-bit width. On the X710 controller, this
2380 * is programmed through its control registers where as on the X722 this is
2381 * configured through the admin queue. Also of note, the X722 allows the LUT to
2382 * be set on a per-PF or VSI basis. At this time we use the PF setting. If we
2383 * decide to use the per-VSI LUT in the future, then we will need to modify the
2384 * i40e_add_vsi() function to set the RSS LUT bits in the queueing section.
2385 *
2386 * We populate the LUT in a round robin fashion with the rx queue indices from 0
2387 * to i40e_num_trqpairs_per_vsi - 1.
2388 */
2389 static boolean_t
i40e_config_rss_hlut(i40e_t * i40e,i40e_hw_t * hw)2390 i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw)
2391 {
2392 uint32_t *hlut;
2393 uint8_t lut_mask;
2394 uint_t i;
2395 boolean_t ret = B_FALSE;
2396
2397 /*
2398 * We always configure the PF with a table size of 512 bytes in
2399 * i40e_chip_start().
2400 */
2401 hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP);
2402 if (hlut == NULL) {
2403 i40e_error(i40e, "i40e_config_rss() buffer allocation failed");
2404 return (B_FALSE);
2405 }
2406
2407 /*
2408 * The width of the X722 is apparently defined to be 7 bits, regardless
2409 * of the capability.
2410 */
2411 if (i40e_is_x722(i40e)) {
2412 lut_mask = (1 << 7) - 1;
2413 } else {
2414 lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1;
2415 }
2416
2417 for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) {
2418 ((uint8_t *)hlut)[i] =
2419 (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask;
2420 }
2421
2422 if (i40e_is_x722(i40e)) {
2423 enum i40e_status_code status;
2424
2425 status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut,
2426 I40E_HLUT_TABLE_SIZE);
2427
2428 if (status != I40E_SUCCESS) {
2429 i40e_error(i40e, "failed to set RSS LUT %d: %d",
2430 status, hw->aq.asq_last_status);
2431 goto out;
2432 }
2433 } else {
2434 for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) {
2435 I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]);
2436 }
2437 }
2438 ret = B_TRUE;
2439 out:
2440 kmem_free(hlut, I40E_HLUT_TABLE_SIZE);
2441 return (ret);
2442 }
2443
2444 /*
2445 * Set up RSS.
2446 * 1. Seed the hash key.
2447 * 2. Enable PCTYPEs for the hash filter.
2448 * 3. Populate the LUT.
2449 */
2450 static boolean_t
i40e_config_rss(i40e_t * i40e,i40e_hw_t * hw)2451 i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw)
2452 {
2453 uint64_t hena;
2454
2455 /*
2456 * 1. Seed the hash key
2457 */
2458 if (!i40e_config_rss_key(i40e, hw))
2459 return (B_FALSE);
2460
2461 /*
2462 * 2. Configure PCTYPES
2463 */
2464 hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) |
2465 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
2466 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) |
2467 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
2468 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) |
2469 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) |
2470 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
2471 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) |
2472 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
2473 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) |
2474 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
2475
2476 /*
2477 * Add additional types supported by the X722 controller.
2478 */
2479 if (i40e_is_x722(i40e)) {
2480 hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
2481 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
2482 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) |
2483 (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
2484 (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
2485 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
2486 }
2487
2488 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
2489 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
2490
2491 /*
2492 * 3. Populate LUT
2493 */
2494 return (i40e_config_rss_hlut(i40e, hw));
2495 }
2496
2497 /*
2498 * Wrapper to kick the chipset on.
2499 */
2500 static boolean_t
i40e_chip_start(i40e_t * i40e)2501 i40e_chip_start(i40e_t *i40e)
2502 {
2503 i40e_hw_t *hw = &i40e->i40e_hw_space;
2504 struct i40e_filter_control_settings filter;
2505 int rc;
2506 uint8_t err;
2507
2508 if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) ||
2509 (hw->aq.fw_maj_ver < 4)) {
2510 i40e_msec_delay(75);
2511 if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) !=
2512 I40E_SUCCESS) {
2513 i40e_error(i40e, "failed to restart link: admin queue "
2514 "error: %d", hw->aq.asq_last_status);
2515 return (B_FALSE);
2516 }
2517 }
2518
2519 /* Determine hardware state */
2520 i40e_get_hw_state(i40e, hw);
2521
2522 /* For now, we always disable Ethernet Flow Control. */
2523 hw->fc.requested_mode = I40E_FC_NONE;
2524 rc = i40e_set_fc(hw, &err, B_TRUE);
2525 if (rc != I40E_SUCCESS) {
2526 i40e_error(i40e, "Setting flow control failed, returned %d"
2527 " with error: 0x%x", rc, err);
2528 return (B_FALSE);
2529 }
2530
2531 /* Initialize mac addresses. */
2532 i40e_init_macaddrs(i40e, hw);
2533
2534 /*
2535 * Set up the filter control. If the hash lut size is changed from
2536 * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and
2537 * i40e_config_rss_hlut() will need to be updated.
2538 */
2539 bzero(&filter, sizeof (filter));
2540 filter.enable_ethtype = TRUE;
2541 filter.enable_macvlan = TRUE;
2542 filter.hash_lut_size = I40E_HASH_LUT_SIZE_512;
2543
2544 rc = i40e_set_filter_control(hw, &filter);
2545 if (rc != I40E_SUCCESS) {
2546 i40e_error(i40e, "i40e_set_filter_control() returned %d", rc);
2547 return (B_FALSE);
2548 }
2549
2550 i40e_intr_chip_init(i40e);
2551
2552 rc = i40e_get_mac_seid(i40e);
2553 if (rc == -1) {
2554 i40e_error(i40e, "failed to obtain MAC Uplink SEID");
2555 return (B_FALSE);
2556 }
2557 i40e->i40e_mac_seid = (uint16_t)rc;
2558
2559 /*
2560 * Create a VEB in order to support multiple VSIs. Each VSI
2561 * functions as a MAC group. This call sets the PF's MAC as
2562 * the uplink port and the PF's default VSI as the default
2563 * downlink port.
2564 */
2565 rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e),
2566 0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL);
2567 if (rc != I40E_SUCCESS) {
2568 i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc,
2569 hw->aq.asq_last_status);
2570 return (B_FALSE);
2571 }
2572
2573 if (!i40e_config_def_vsi(i40e, hw))
2574 return (B_FALSE);
2575
2576 for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) {
2577 if (!i40e_add_vsi(i40e, hw, i))
2578 return (B_FALSE);
2579 }
2580
2581 if (!i40e_config_rss(i40e, hw))
2582 return (B_FALSE);
2583
2584 i40e_flush(hw);
2585
2586 return (B_TRUE);
2587 }
2588
2589 /*
2590 * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information.
2591 */
2592 static void
i40e_shutdown_rx_ring(i40e_trqpair_t * itrq)2593 i40e_shutdown_rx_ring(i40e_trqpair_t *itrq)
2594 {
2595 i40e_t *i40e = itrq->itrq_i40e;
2596 i40e_hw_t *hw = &i40e->i40e_hw_space;
2597 uint32_t reg;
2598
2599 /*
2600 * Step 1. 8.3.3.1.2 suggests the interrupt is removed from the
2601 * hardware interrupt linked list (see i40e_intr.c) but for
2602 * simplicity we keep this list immutable until the device
2603 * (distinct from an individual ring) is stopped.
2604 */
2605
2606 /*
2607 * Step 2. Request the queue by clearing QENA_REQ. It may not be
2608 * set due to unwinding from failures and a partially enabled
2609 * ring set.
2610 */
2611 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2612 if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK))
2613 return;
2614 VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) ==
2615 I40E_QRX_ENA_QENA_REQ_MASK);
2616 reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
2617 I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2618
2619 /*
2620 * Step 3. Wait for the disable to take, by having QENA_STAT in the FPM
2621 * be cleared. Note that we could still receive data in the queue during
2622 * this time. We don't actually wait for this now and instead defer this
2623 * to i40e_shutdown_ring_wait(), after we've interleaved disabling the
2624 * TX queue as well.
2625 */
2626 }
2627
2628 static void
i40e_shutdown_tx_ring(i40e_trqpair_t * itrq)2629 i40e_shutdown_tx_ring(i40e_trqpair_t *itrq)
2630 {
2631 i40e_t *i40e = itrq->itrq_i40e;
2632 i40e_hw_t *hw = &i40e->i40e_hw_space;
2633 uint32_t reg;
2634
2635 /*
2636 * Step 2. Set the SET_QDIS flag for the queue.
2637 */
2638 i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_FALSE);
2639
2640 /*
2641 * Step 3. Wait at least 400 usec.
2642 */
2643 drv_usecwait(500);
2644
2645 /*
2646 * Step 4. Clear the QENA_REQ flag which tells hardware to
2647 * quiesce. If QENA_REQ is not already set then that means that
2648 * we likely already tried to disable this queue.
2649 */
2650 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2651 if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) != 0) {
2652 reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2653 I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
2654 }
2655
2656 /*
2657 * Step 5. Wait for the drain to finish. This will be done by the
2658 * hardware removing the QENA_STAT flag from the queue. Rather than
2659 * waiting here, we interleave it with the receive shutdown in
2660 * i40e_shutdown_ring_wait().
2661 */
2662 }
2663
2664 /*
2665 * Wait for a ring to be shut down. e.g. Steps 2 and 5 from the above
2666 * functions.
2667 */
2668 static boolean_t
i40e_shutdown_ring_wait(i40e_trqpair_t * itrq)2669 i40e_shutdown_ring_wait(i40e_trqpair_t *itrq)
2670 {
2671 i40e_t *i40e = itrq->itrq_i40e;
2672 i40e_hw_t *hw = &i40e->i40e_hw_space;
2673 uint32_t reg;
2674 int try;
2675
2676 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2677 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2678 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0)
2679 break;
2680 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2681 }
2682
2683 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) {
2684 i40e_error(i40e, "timed out disabling rx queue %d",
2685 itrq->itrq_index);
2686 return (B_FALSE);
2687 }
2688
2689 for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) {
2690 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
2691 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0)
2692 break;
2693 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2694 }
2695
2696 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) {
2697 i40e_error(i40e, "timed out disabling tx queue %d",
2698 itrq->itrq_index);
2699 return (B_FALSE);
2700 }
2701
2702 return (B_TRUE);
2703 }
2704
2705
2706 /*
2707 * Shutdown an individual ring and release any memory.
2708 */
2709 boolean_t
i40e_shutdown_ring(i40e_trqpair_t * itrq)2710 i40e_shutdown_ring(i40e_trqpair_t *itrq)
2711 {
2712 boolean_t rv = B_TRUE;
2713
2714 /*
2715 * Tell transmit path to quiesce, and wait until done.
2716 */
2717 if (i40e_ring_tx_quiesce(itrq)) {
2718 /* Already quiesced. */
2719 return (B_TRUE);
2720 }
2721
2722 i40e_shutdown_rx_ring(itrq);
2723 i40e_shutdown_tx_ring(itrq);
2724 if (!i40e_shutdown_ring_wait(itrq))
2725 rv = B_FALSE;
2726
2727 /*
2728 * After the ring has stopped, we need to wait 50ms before
2729 * programming it again. Rather than wait here, we'll record
2730 * the time the ring was stopped. When the ring is started, we'll
2731 * check if enough time has expired and then wait if necessary.
2732 */
2733 itrq->irtq_time_stopped = gethrtime();
2734
2735 /*
2736 * The rings have been stopped in the hardware, now wait for
2737 * a possibly active interrupt thread.
2738 */
2739 i40e_intr_quiesce(itrq);
2740
2741 mutex_enter(&itrq->itrq_tx_lock);
2742 i40e_tx_cleanup_ring(itrq);
2743 mutex_exit(&itrq->itrq_tx_lock);
2744
2745 i40e_free_ring_mem(itrq, B_FALSE);
2746
2747 return (rv);
2748 }
2749
2750 /*
2751 * Shutdown all the rings.
2752 * Called from i40e_stop(), and hopefully the mac layer has already
2753 * called ring stop for each ring, which would make this almost a no-op.
2754 */
2755 static boolean_t
i40e_shutdown_rings(i40e_t * i40e)2756 i40e_shutdown_rings(i40e_t *i40e)
2757 {
2758 boolean_t rv = B_TRUE;
2759 int i;
2760
2761 for (i = 0; i < i40e->i40e_num_trqpairs; i++) {
2762 if (!i40e_shutdown_ring(&i40e->i40e_trqpairs[i]))
2763 rv = B_FALSE;
2764 }
2765
2766 return (rv);
2767 }
2768
2769 static void
i40e_setup_rx_descs(i40e_trqpair_t * itrq)2770 i40e_setup_rx_descs(i40e_trqpair_t *itrq)
2771 {
2772 int i;
2773 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2774
2775 for (i = 0; i < rxd->rxd_ring_size; i++) {
2776 i40e_rx_control_block_t *rcb;
2777 i40e_rx_desc_t *rdesc;
2778
2779 rcb = rxd->rxd_work_list[i];
2780 rdesc = &rxd->rxd_desc_ring[i];
2781
2782 rdesc->read.pkt_addr =
2783 CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address);
2784 rdesc->read.hdr_addr = 0;
2785 }
2786 }
2787
2788 static boolean_t
i40e_setup_rx_hmc(i40e_trqpair_t * itrq)2789 i40e_setup_rx_hmc(i40e_trqpair_t *itrq)
2790 {
2791 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2792 i40e_t *i40e = itrq->itrq_i40e;
2793 i40e_hw_t *hw = &i40e->i40e_hw_space;
2794
2795 struct i40e_hmc_obj_rxq rctx;
2796 int err;
2797
2798 bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq));
2799 rctx.base = rxd->rxd_desc_area.dmab_dma_address /
2800 I40E_HMC_RX_CTX_UNIT;
2801 rctx.qlen = rxd->rxd_ring_size;
2802 VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN);
2803 VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX);
2804 rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT;
2805 rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT;
2806 rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT;
2807 rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE;
2808 rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE;
2809 rctx.fc_ena = I40E_HMC_RX_FC_DISABLE;
2810 rctx.l2tsel = I40E_HMC_RX_L2TAGORDER;
2811 rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2812 rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE;
2813 rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP;
2814 rctx.rxmax = i40e->i40e_frame_max;
2815 rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2816 rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE;
2817 rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE;
2818 rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE;
2819 rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR;
2820
2821 /*
2822 * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2.
2823 */
2824 rctx.prefena = I40E_HMC_RX_PREFENA;
2825
2826 err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index);
2827 if (err != I40E_SUCCESS) {
2828 i40e_error(i40e, "failed to clear rx queue %d context: %d",
2829 itrq->itrq_index, err);
2830 return (B_FALSE);
2831 }
2832
2833 err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx);
2834 if (err != I40E_SUCCESS) {
2835 i40e_error(i40e, "failed to set rx queue %d context: %d",
2836 itrq->itrq_index, err);
2837 return (B_FALSE);
2838 }
2839
2840 return (B_TRUE);
2841 }
2842
2843 /*
2844 * Take care of setting up the descriptor ring and actually programming the
2845 * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the
2846 * rx rings.
2847 */
2848 static boolean_t
i40e_setup_rx_ring(i40e_trqpair_t * itrq)2849 i40e_setup_rx_ring(i40e_trqpair_t *itrq)
2850 {
2851 i40e_t *i40e = itrq->itrq_i40e;
2852 i40e_hw_t *hw = &i40e->i40e_hw_space;
2853 i40e_rx_data_t *rxd = itrq->itrq_rxdata;
2854 uint32_t reg;
2855 int i;
2856
2857 /*
2858 * Step 1. Program all receive ring descriptors.
2859 */
2860 i40e_setup_rx_descs(itrq);
2861
2862 /*
2863 * Step 2. Program the queue's FPM/HMC context.
2864 */
2865 if (!i40e_setup_rx_hmc(itrq))
2866 return (B_FALSE);
2867
2868 /*
2869 * Step 3. Clear the queue's tail pointer and set it to the end
2870 * of the space.
2871 */
2872 I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index), 0);
2873 I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index),
2874 rxd->rxd_ring_size - 1);
2875
2876 /*
2877 * Step 4. Enable the queue via the QENA_REQ.
2878 */
2879 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2880 VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK |
2881 I40E_QRX_ENA_QENA_STAT_MASK));
2882 reg |= I40E_QRX_ENA_QENA_REQ_MASK;
2883 I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg);
2884
2885 /*
2886 * Step 5. Verify that QENA_STAT has been set. It's promised
2887 * that this should occur within about 10 us, but like other
2888 * systems, we give the card a bit more time.
2889 */
2890 for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
2891 reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index));
2892
2893 if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
2894 break;
2895 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
2896 }
2897
2898 if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) {
2899 i40e_error(i40e, "failed to enable rx queue %d, timed "
2900 "out.", itrq->itrq_index);
2901 return (B_FALSE);
2902 }
2903
2904 return (B_TRUE);
2905 }
2906
2907 static boolean_t
i40e_setup_tx_hmc(i40e_trqpair_t * itrq)2908 i40e_setup_tx_hmc(i40e_trqpair_t *itrq)
2909 {
2910 i40e_t *i40e = itrq->itrq_i40e;
2911 i40e_hw_t *hw = &i40e->i40e_hw_space;
2912
2913 struct i40e_hmc_obj_txq tctx;
2914 struct i40e_vsi_context context;
2915 int err;
2916
2917 bzero(&tctx, sizeof (struct i40e_hmc_obj_txq));
2918 tctx.new_context = I40E_HMC_TX_NEW_CONTEXT;
2919 tctx.base = itrq->itrq_desc_area.dmab_dma_address /
2920 I40E_HMC_TX_CTX_UNIT;
2921 tctx.fc_ena = I40E_HMC_TX_FC_DISABLE;
2922 tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE;
2923 tctx.fd_ena = I40E_HMC_TX_FD_DISABLE;
2924 tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE;
2925 tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE;
2926 tctx.qlen = itrq->itrq_tx_ring_size;
2927 tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2928 tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE;
2929 tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE;
2930 tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address +
2931 sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size;
2932
2933 /*
2934 * This field isn't actually documented, like crc, but it suggests that
2935 * it should be zeroed. We leave both of these here because of that for
2936 * now. We should check with Intel on why these are here even.
2937 */
2938 tctx.crc = 0;
2939 tctx.rdylist_act = 0;
2940
2941 /*
2942 * We're supposed to assign the rdylist field with the value of the
2943 * traffic class index for the first device. We query the VSI parameters
2944 * again to get what the handle is. Note that every queue is always
2945 * assigned to traffic class zero, because we don't actually use them.
2946 */
2947 bzero(&context, sizeof (struct i40e_vsi_context));
2948 context.seid = I40E_DEF_VSI_SEID(i40e);
2949 context.pf_num = hw->pf_id;
2950 err = i40e_aq_get_vsi_params(hw, &context, NULL);
2951 if (err != I40E_SUCCESS) {
2952 i40e_error(i40e, "get VSI params failed with %d", err);
2953 return (B_FALSE);
2954 }
2955 tctx.rdylist = LE_16(context.info.qs_handle[0]);
2956
2957 err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index);
2958 if (err != I40E_SUCCESS) {
2959 i40e_error(i40e, "failed to clear tx queue %d context: %d",
2960 itrq->itrq_index, err);
2961 return (B_FALSE);
2962 }
2963
2964 err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx);
2965 if (err != I40E_SUCCESS) {
2966 i40e_error(i40e, "failed to set tx queue %d context: %d",
2967 itrq->itrq_index, err);
2968 return (B_FALSE);
2969 }
2970
2971 return (B_TRUE);
2972 }
2973
2974 /*
2975 * Take care of setting up the descriptor ring and actually programming the
2976 * device. See 8.4.3.1.1 for what we need to do here.
2977 */
2978 static boolean_t
i40e_setup_tx_ring(i40e_trqpair_t * itrq)2979 i40e_setup_tx_ring(i40e_trqpair_t *itrq)
2980 {
2981 i40e_t *i40e = itrq->itrq_i40e;
2982 i40e_hw_t *hw = &i40e->i40e_hw_space;
2983 uint32_t reg;
2984 int i;
2985
2986 /*
2987 * Step 1. Clear the queue disable flag and verify that the
2988 * index is set correctly.
2989 */
2990 i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_TRUE);
2991
2992 /*
2993 * Step 2. Prepare the queue's FPM/HMC context.
2994 */
2995 if (!i40e_setup_tx_hmc(itrq))
2996 return (B_FALSE);
2997
2998 /*
2999 * Step 3. Verify that it's clear that this PF owns this queue.
3000 */
3001 reg = I40E_QTX_CTL_PF_QUEUE;
3002 reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
3003 I40E_QTX_CTL_PF_INDX_MASK;
3004 I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg);
3005 i40e_flush(hw);
3006
3007 /*
3008 * Step 4. Set the QENA_REQ flag.
3009 */
3010 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3011 VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK |
3012 I40E_QTX_ENA_QENA_STAT_MASK));
3013 reg |= I40E_QTX_ENA_QENA_REQ_MASK;
3014 I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg);
3015
3016 /*
3017 * Step 5. Verify that QENA_STAT has been set. It's promised
3018 * that this should occur within about 10 us, but like BSD,
3019 * we'll try for up to 100 ms for this queue.
3020 */
3021 for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) {
3022 reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index));
3023
3024 if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
3025 break;
3026 i40e_msec_delay(I40E_RING_WAIT_PAUSE);
3027 }
3028
3029 if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) {
3030 i40e_error(i40e, "failed to enable tx queue %d, timed "
3031 "out", itrq->itrq_index);
3032 return (B_FALSE);
3033 }
3034
3035 return (B_TRUE);
3036 }
3037
3038 int
i40e_setup_ring(i40e_trqpair_t * itrq)3039 i40e_setup_ring(i40e_trqpair_t *itrq)
3040 {
3041 i40e_t *i40e = itrq->itrq_i40e;
3042 hrtime_t now, gap;
3043
3044 if (!i40e_alloc_ring_mem(itrq)) {
3045 i40e_error(i40e, "Failed to allocate ring memory");
3046 return (ENOMEM);
3047 }
3048
3049 /*
3050 * 8.3.3.1.1 Receive Queue Enable Flow states software should
3051 * wait at least 50ms between ring disable and enable. See how
3052 * long we need to wait, and wait only if required.
3053 */
3054 now = gethrtime();
3055 gap = NSEC2MSEC(now - itrq->irtq_time_stopped);
3056 if (gap < I40E_RING_ENABLE_GAP && gap != 0)
3057 delay(drv_usectohz(gap * 1000));
3058
3059 mutex_enter(&itrq->itrq_intr_lock);
3060 if (!i40e_setup_rx_ring(itrq))
3061 goto failed;
3062
3063 if (!i40e_setup_tx_ring(itrq))
3064 goto failed;
3065
3066 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3067 DDI_FM_OK)
3068 goto failed;
3069
3070 itrq->itrq_intr_quiesce = B_FALSE;
3071 mutex_exit(&itrq->itrq_intr_lock);
3072
3073 mutex_enter(&itrq->itrq_tx_lock);
3074 itrq->itrq_tx_quiesce = B_FALSE;
3075 mutex_exit(&itrq->itrq_tx_lock);
3076
3077 return (0);
3078
3079 failed:
3080 mutex_exit(&itrq->itrq_intr_lock);
3081 i40e_free_ring_mem(itrq, B_TRUE);
3082 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3083
3084 return (EIO);
3085 }
3086
3087 void
i40e_stop(i40e_t * i40e)3088 i40e_stop(i40e_t *i40e)
3089 {
3090 uint_t i;
3091 i40e_hw_t *hw = &i40e->i40e_hw_space;
3092
3093 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3094
3095 /*
3096 * Shutdown and drain the tx and rx pipeline. We do this using the
3097 * following steps.
3098 *
3099 * 1) Shutdown interrupts to all the queues (trying to keep the admin
3100 * queue alive).
3101 *
3102 * 2) Remove all of the interrupt tx and rx causes by setting the
3103 * interrupt linked lists to zero.
3104 *
3105 * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should
3106 * wait for all the queues to be disabled, once we reach that point
3107 * it should be safe to free associated data.
3108 *
3109 * 4) Wait 50ms after all that is done. This ensures that the rings are
3110 * ready for programming again and we don't have to think about this
3111 * in other parts of the driver.
3112 *
3113 * 5) Disable remaining chip interrupts, (admin queue, etc.)
3114 *
3115 * 6) Verify that FM is happy with all the register accesses we
3116 * performed.
3117 */
3118 i40e_intr_io_disable_all(i40e);
3119 i40e_intr_io_clear_cause(i40e);
3120
3121 if (!i40e_shutdown_rings(i40e))
3122 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3123
3124 /*
3125 * We don't delete the default VSI because it replaces the VEB
3126 * after VEB deletion (see the "Delete Element" section).
3127 * Furthermore, since the default VSI is provided by the
3128 * firmware, we never attempt to delete it.
3129 */
3130 for (i = 1; i < i40e->i40e_num_rx_groups; i++) {
3131 i40e_delete_vsi(i40e, i);
3132 }
3133
3134 if (i40e->i40e_veb_seid != 0) {
3135 int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL);
3136
3137 if (rc != I40E_SUCCESS) {
3138 i40e_error(i40e, "Failed to delete VEB %d: %d", rc,
3139 hw->aq.asq_last_status);
3140 }
3141
3142 i40e->i40e_veb_seid = 0;
3143 }
3144
3145 i40e_intr_chip_fini(i40e);
3146
3147 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3148 DDI_FM_OK) {
3149 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3150 }
3151
3152 for (i = 0; i < i40e->i40e_num_rx_groups; i++) {
3153 i40e_stat_vsi_fini(i40e, i);
3154 }
3155
3156 i40e->i40e_link_speed = 0;
3157 i40e->i40e_link_duplex = 0;
3158 i40e_link_state_set(i40e, LINK_STATE_UNKNOWN);
3159 }
3160
3161 boolean_t
i40e_start(i40e_t * i40e)3162 i40e_start(i40e_t *i40e)
3163 {
3164 i40e_hw_t *hw = &i40e->i40e_hw_space;
3165 boolean_t rc = B_TRUE;
3166 int err;
3167
3168 ASSERT(MUTEX_HELD(&i40e->i40e_general_lock));
3169
3170 if (!i40e_chip_start(i40e)) {
3171 i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE);
3172 rc = B_FALSE;
3173 goto done;
3174 }
3175
3176 /*
3177 * Enable broadcast traffic; however, do not enable multicast traffic.
3178 * That's handle exclusively through MAC's mc_multicst routines.
3179 */
3180 err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE,
3181 NULL);
3182 if (err != I40E_SUCCESS) {
3183 i40e_error(i40e, "failed to set default VSI: %d", err);
3184 rc = B_FALSE;
3185 goto done;
3186 }
3187
3188 err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0,
3189 B_FALSE, NULL);
3190 if (err != I40E_SUCCESS) {
3191 i40e_error(i40e, "failed to set MAC config: %d", err);
3192 rc = B_FALSE;
3193 goto done;
3194 }
3195
3196 /*
3197 * Finally, make sure that we're happy from an FM perspective.
3198 */
3199 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) !=
3200 DDI_FM_OK) {
3201 rc = B_FALSE;
3202 goto done;
3203 }
3204
3205 /* Clear state bits prior to final interrupt enabling. */
3206 atomic_and_32(&i40e->i40e_state,
3207 ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP));
3208
3209 i40e_intr_io_enable_all(i40e);
3210
3211 done:
3212 if (rc == B_FALSE) {
3213 i40e_stop(i40e);
3214 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3215 }
3216
3217 return (rc);
3218 }
3219
3220 /*
3221 * We may have loaned up descriptors to the stack. As such, if we still have
3222 * them outstanding, then we will not continue with detach.
3223 */
3224 static boolean_t
i40e_drain_rx(i40e_t * i40e)3225 i40e_drain_rx(i40e_t *i40e)
3226 {
3227 mutex_enter(&i40e->i40e_rx_pending_lock);
3228 while (i40e->i40e_rx_pending > 0) {
3229 if (cv_reltimedwait(&i40e->i40e_rx_pending_cv,
3230 &i40e->i40e_rx_pending_lock,
3231 drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) {
3232 mutex_exit(&i40e->i40e_rx_pending_lock);
3233 return (B_FALSE);
3234 }
3235 }
3236 mutex_exit(&i40e->i40e_rx_pending_lock);
3237
3238 return (B_TRUE);
3239 }
3240
3241 /*
3242 * DDI UFM Callbacks
3243 */
3244 static int
i40e_ufm_fill_image(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,ddi_ufm_image_t * img)3245 i40e_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3246 ddi_ufm_image_t *img)
3247 {
3248 if (imgno != 0)
3249 return (EINVAL);
3250
3251 ddi_ufm_image_set_desc(img, "Firmware");
3252 ddi_ufm_image_set_nslots(img, 1);
3253
3254 return (0);
3255 }
3256
3257 static int
i40e_ufm_fill_slot(ddi_ufm_handle_t * ufmh,void * arg,uint_t imgno,uint_t slotno,ddi_ufm_slot_t * slot)3258 i40e_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
3259 uint_t slotno, ddi_ufm_slot_t *slot)
3260 {
3261 i40e_t *i40e = (i40e_t *)arg;
3262 char *fw_ver = NULL, *fw_bld = NULL, *api_ver = NULL;
3263 nvlist_t *misc = NULL;
3264 uint_t flags = DDI_PROP_DONTPASS;
3265 int err;
3266
3267 if (imgno != 0 || slotno != 0 ||
3268 ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3269 "firmware-version", &fw_ver) != DDI_PROP_SUCCESS ||
3270 ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3271 "firmware-build", &fw_bld) != DDI_PROP_SUCCESS ||
3272 ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags,
3273 "api-version", &api_ver) != DDI_PROP_SUCCESS) {
3274 err = EINVAL;
3275 goto err;
3276 }
3277
3278 ddi_ufm_slot_set_attrs(slot, DDI_UFM_ATTR_ACTIVE);
3279 ddi_ufm_slot_set_version(slot, fw_ver);
3280
3281 (void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP);
3282 if ((err = nvlist_add_string(misc, "firmware-build", fw_bld)) != 0 ||
3283 (err = nvlist_add_string(misc, "api-version", api_ver)) != 0) {
3284 goto err;
3285 }
3286 ddi_ufm_slot_set_misc(slot, misc);
3287
3288 ddi_prop_free(fw_ver);
3289 ddi_prop_free(fw_bld);
3290 ddi_prop_free(api_ver);
3291
3292 return (0);
3293 err:
3294 nvlist_free(misc);
3295 if (fw_ver != NULL)
3296 ddi_prop_free(fw_ver);
3297 if (fw_bld != NULL)
3298 ddi_prop_free(fw_bld);
3299 if (api_ver != NULL)
3300 ddi_prop_free(api_ver);
3301
3302 return (err);
3303 }
3304
3305 static int
i40e_ufm_getcaps(ddi_ufm_handle_t * ufmh,void * arg,ddi_ufm_cap_t * caps)3306 i40e_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
3307 {
3308 *caps = DDI_UFM_CAP_REPORT;
3309
3310 return (0);
3311 }
3312
3313 static ddi_ufm_ops_t i40e_ufm_ops = {
3314 NULL,
3315 i40e_ufm_fill_image,
3316 i40e_ufm_fill_slot,
3317 i40e_ufm_getcaps
3318 };
3319
3320 static int
i40e_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)3321 i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3322 {
3323 i40e_t *i40e;
3324 struct i40e_osdep *osdep;
3325 i40e_hw_t *hw;
3326 int instance;
3327
3328 if (cmd != DDI_ATTACH)
3329 return (DDI_FAILURE);
3330
3331 instance = ddi_get_instance(devinfo);
3332 i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP);
3333
3334 i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP);
3335 i40e->i40e_instance = instance;
3336 i40e->i40e_dip = devinfo;
3337
3338 hw = &i40e->i40e_hw_space;
3339 osdep = &i40e->i40e_osdep_space;
3340 hw->back = osdep;
3341 osdep->ios_i40e = i40e;
3342
3343 ddi_set_driver_private(devinfo, i40e);
3344
3345 i40e_fm_init(i40e);
3346 i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT;
3347
3348 if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) {
3349 i40e_error(i40e, "Failed to map PCI configurations.");
3350 goto attach_fail;
3351 }
3352 i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG;
3353
3354 i40e_identify_hardware(i40e);
3355
3356 if (!i40e_regs_map(i40e)) {
3357 i40e_error(i40e, "Failed to map device registers.");
3358 goto attach_fail;
3359 }
3360 i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP;
3361
3362 i40e_init_properties(i40e);
3363 i40e->i40e_attach_progress |= I40E_ATTACH_PROPS;
3364
3365 if (!i40e_common_code_init(i40e, hw))
3366 goto attach_fail;
3367 i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE;
3368
3369 /*
3370 * When we participate in IRM, we should make sure that we register
3371 * ourselves with it before callbacks.
3372 */
3373 if (!i40e_alloc_intrs(i40e, devinfo)) {
3374 i40e_error(i40e, "Failed to allocate interrupts.");
3375 goto attach_fail;
3376 }
3377 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR;
3378
3379 if (!i40e_alloc_trqpairs(i40e)) {
3380 i40e_error(i40e,
3381 "Failed to allocate receive & transmit rings.");
3382 goto attach_fail;
3383 }
3384 i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS;
3385
3386 if (!i40e_map_intrs_to_vectors(i40e)) {
3387 i40e_error(i40e, "Failed to map interrupts to vectors.");
3388 goto attach_fail;
3389 }
3390
3391 if (!i40e_add_intr_handlers(i40e)) {
3392 i40e_error(i40e, "Failed to add the interrupt handlers.");
3393 goto attach_fail;
3394 }
3395 i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR;
3396
3397 if (!i40e_final_init(i40e)) {
3398 i40e_error(i40e, "Final initialization failed.");
3399 goto attach_fail;
3400 }
3401 i40e->i40e_attach_progress |= I40E_ATTACH_INIT;
3402
3403 if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) !=
3404 DDI_FM_OK) {
3405 ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST);
3406 goto attach_fail;
3407 }
3408
3409 if (!i40e_stats_init(i40e)) {
3410 i40e_error(i40e, "Stats initialization failed.");
3411 goto attach_fail;
3412 }
3413 i40e->i40e_attach_progress |= I40E_ATTACH_STATS;
3414
3415 if (!i40e_register_mac(i40e)) {
3416 i40e_error(i40e, "Failed to register to MAC/GLDv3");
3417 goto attach_fail;
3418 }
3419 i40e->i40e_attach_progress |= I40E_ATTACH_MAC;
3420
3421 i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e,
3422 I40E_CYCLIC_PERIOD, DDI_IPL_0);
3423 if (i40e->i40e_periodic_id == 0) {
3424 i40e_error(i40e, "Failed to add the link-check timer");
3425 goto attach_fail;
3426 }
3427 i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER;
3428
3429 if (!i40e_enable_interrupts(i40e)) {
3430 i40e_error(i40e, "Failed to enable DDI interrupts");
3431 goto attach_fail;
3432 }
3433 i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR;
3434
3435 if (i40e->i40e_hw_space.bus.func == 0) {
3436 if (ddi_ufm_init(i40e->i40e_dip, DDI_UFM_CURRENT_VERSION,
3437 &i40e_ufm_ops, &i40e->i40e_ufmh, i40e) != 0) {
3438 i40e_error(i40e, "failed to initialize UFM subsystem");
3439 goto attach_fail;
3440 }
3441 ddi_ufm_update(i40e->i40e_ufmh);
3442 i40e->i40e_attach_progress |= I40E_ATTACH_UFM_INIT;
3443 }
3444
3445 atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED);
3446
3447 mutex_enter(&i40e_glock);
3448 list_insert_tail(&i40e_glist, i40e);
3449 mutex_exit(&i40e_glock);
3450
3451 return (DDI_SUCCESS);
3452
3453 attach_fail:
3454 i40e_unconfigure(devinfo, i40e);
3455 return (DDI_FAILURE);
3456 }
3457
3458 static int
i40e_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)3459 i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3460 {
3461 i40e_t *i40e;
3462
3463 if (cmd != DDI_DETACH)
3464 return (DDI_FAILURE);
3465
3466 i40e = (i40e_t *)ddi_get_driver_private(devinfo);
3467 if (i40e == NULL) {
3468 i40e_log(NULL, "i40e_detach() called with no i40e pointer!");
3469 return (DDI_FAILURE);
3470 }
3471
3472 if (i40e_drain_rx(i40e) == B_FALSE) {
3473 i40e_log(i40e, "timed out draining DMA resources, %d buffers "
3474 "remain", i40e->i40e_rx_pending);
3475 return (DDI_FAILURE);
3476 }
3477
3478 mutex_enter(&i40e_glock);
3479 list_remove(&i40e_glist, i40e);
3480 mutex_exit(&i40e_glock);
3481
3482 i40e_unconfigure(devinfo, i40e);
3483
3484 return (DDI_SUCCESS);
3485 }
3486
3487 static struct cb_ops i40e_cb_ops = {
3488 nulldev, /* cb_open */
3489 nulldev, /* cb_close */
3490 nodev, /* cb_strategy */
3491 nodev, /* cb_print */
3492 nodev, /* cb_dump */
3493 nodev, /* cb_read */
3494 nodev, /* cb_write */
3495 nodev, /* cb_ioctl */
3496 nodev, /* cb_devmap */
3497 nodev, /* cb_mmap */
3498 nodev, /* cb_segmap */
3499 nochpoll, /* cb_chpoll */
3500 ddi_prop_op, /* cb_prop_op */
3501 NULL, /* cb_stream */
3502 D_MP | D_HOTPLUG, /* cb_flag */
3503 CB_REV, /* cb_rev */
3504 nodev, /* cb_aread */
3505 nodev /* cb_awrite */
3506 };
3507
3508 static struct dev_ops i40e_dev_ops = {
3509 DEVO_REV, /* devo_rev */
3510 0, /* devo_refcnt */
3511 NULL, /* devo_getinfo */
3512 nulldev, /* devo_identify */
3513 nulldev, /* devo_probe */
3514 i40e_attach, /* devo_attach */
3515 i40e_detach, /* devo_detach */
3516 nodev, /* devo_reset */
3517 &i40e_cb_ops, /* devo_cb_ops */
3518 NULL, /* devo_bus_ops */
3519 nulldev, /* devo_power */
3520 ddi_quiesce_not_supported /* devo_quiesce */
3521 };
3522
3523 static struct modldrv i40e_modldrv = {
3524 &mod_driverops,
3525 i40e_ident,
3526 &i40e_dev_ops
3527 };
3528
3529 static struct modlinkage i40e_modlinkage = {
3530 MODREV_1,
3531 &i40e_modldrv,
3532 NULL
3533 };
3534
3535 /*
3536 * Module Initialization Functions.
3537 */
3538 int
_init(void)3539 _init(void)
3540 {
3541 int status;
3542
3543 list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink));
3544 list_create(&i40e_dlist, sizeof (i40e_device_t),
3545 offsetof(i40e_device_t, id_link));
3546 mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL);
3547 mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME);
3548
3549 status = mod_install(&i40e_modlinkage);
3550 if (status != DDI_SUCCESS) {
3551 mac_fini_ops(&i40e_dev_ops);
3552 mutex_destroy(&i40e_glock);
3553 list_destroy(&i40e_dlist);
3554 list_destroy(&i40e_glist);
3555 }
3556
3557 return (status);
3558 }
3559
3560 int
_info(struct modinfo * modinfop)3561 _info(struct modinfo *modinfop)
3562 {
3563 return (mod_info(&i40e_modlinkage, modinfop));
3564 }
3565
3566 int
_fini(void)3567 _fini(void)
3568 {
3569 int status;
3570
3571 status = mod_remove(&i40e_modlinkage);
3572 if (status == DDI_SUCCESS) {
3573 mac_fini_ops(&i40e_dev_ops);
3574 mutex_destroy(&i40e_glock);
3575 list_destroy(&i40e_dlist);
3576 list_destroy(&i40e_glist);
3577 }
3578
3579 return (status);
3580 }
3581