xref: /linux/drivers/i3c/master/mipi-i3c-hci/core.c (revision e70140ba0d2b1a30467d4af6bcfe761327b9ec95)
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright (c) 2020, MIPI Alliance, Inc.
4  *
5  * Author: Nicolas Pitre <npitre@baylibre.com>
6  *
7  * Core driver code with main interface to the I3C subsystem.
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/i3c/master.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 
19 #include "hci.h"
20 #include "ext_caps.h"
21 #include "cmd.h"
22 #include "dat.h"
23 
24 
25 /*
26  * Host Controller Capabilities and Operation Registers
27  */
28 
29 #define HCI_VERSION			0x00	/* HCI Version (in BCD) */
30 
31 #define HC_CONTROL			0x04
32 #define HC_CONTROL_BUS_ENABLE		BIT(31)
33 #define HC_CONTROL_RESUME		BIT(30)
34 #define HC_CONTROL_ABORT		BIT(29)
35 #define HC_CONTROL_HALT_ON_CMD_TIMEOUT	BIT(12)
36 #define HC_CONTROL_HOT_JOIN_CTRL	BIT(8)	/* Hot-Join ACK/NACK Control */
37 #define HC_CONTROL_I2C_TARGET_PRESENT	BIT(7)
38 #define HC_CONTROL_PIO_MODE		BIT(6)	/* DMA/PIO Mode Selector */
39 #define HC_CONTROL_DATA_BIG_ENDIAN	BIT(4)
40 #define HC_CONTROL_IBA_INCLUDE		BIT(0)	/* Include I3C Broadcast Address */
41 
42 #define MASTER_DEVICE_ADDR		0x08	/* Master Device Address */
43 #define MASTER_DYNAMIC_ADDR_VALID	BIT(31)	/* Dynamic Address is Valid */
44 #define MASTER_DYNAMIC_ADDR(v)		FIELD_PREP(GENMASK(22, 16), v)
45 
46 #define HC_CAPABILITIES			0x0c
47 #define HC_CAP_SG_DC_EN			BIT(30)
48 #define HC_CAP_SG_IBI_EN		BIT(29)
49 #define HC_CAP_SG_CR_EN			BIT(28)
50 #define HC_CAP_MAX_DATA_LENGTH		GENMASK(24, 22)
51 #define HC_CAP_CMD_SIZE			GENMASK(21, 20)
52 #define HC_CAP_DIRECT_COMMANDS_EN	BIT(18)
53 #define HC_CAP_MULTI_LANE_EN		BIT(15)
54 #define HC_CAP_CMD_CCC_DEFBYTE		BIT(10)
55 #define HC_CAP_HDR_BT_EN		BIT(8)
56 #define HC_CAP_HDR_TS_EN		BIT(7)
57 #define HC_CAP_HDR_DDR_EN		BIT(6)
58 #define HC_CAP_NON_CURRENT_MASTER_CAP	BIT(5)	/* master handoff capable */
59 #define HC_CAP_DATA_BYTE_CFG_EN		BIT(4)	/* endian selection possible */
60 #define HC_CAP_AUTO_COMMAND		BIT(3)
61 #define HC_CAP_COMBO_COMMAND		BIT(2)
62 
63 #define RESET_CONTROL			0x10
64 #define BUS_RESET			BIT(31)
65 #define BUS_RESET_TYPE			GENMASK(30, 29)
66 #define IBI_QUEUE_RST			BIT(5)
67 #define RX_FIFO_RST			BIT(4)
68 #define TX_FIFO_RST			BIT(3)
69 #define RESP_QUEUE_RST			BIT(2)
70 #define CMD_QUEUE_RST			BIT(1)
71 #define SOFT_RST			BIT(0)	/* Core Reset */
72 
73 #define PRESENT_STATE			0x14
74 #define STATE_CURRENT_MASTER		BIT(2)
75 
76 #define INTR_STATUS			0x20
77 #define INTR_STATUS_ENABLE		0x24
78 #define INTR_SIGNAL_ENABLE		0x28
79 #define INTR_FORCE			0x2c
80 #define INTR_HC_CMD_SEQ_UFLOW_STAT	BIT(12)	/* Cmd Sequence Underflow */
81 #define INTR_HC_RESET_CANCEL		BIT(11)	/* HC Cancelled Reset */
82 #define INTR_HC_INTERNAL_ERR		BIT(10)	/* HC Internal Error */
83 
84 #define DAT_SECTION			0x30	/* Device Address Table */
85 #define DAT_ENTRY_SIZE			GENMASK(31, 28)
86 #define DAT_TABLE_SIZE			GENMASK(18, 12)
87 #define DAT_TABLE_OFFSET		GENMASK(11, 0)
88 
89 #define DCT_SECTION			0x34	/* Device Characteristics Table */
90 #define DCT_ENTRY_SIZE			GENMASK(31, 28)
91 #define DCT_TABLE_INDEX			GENMASK(23, 19)
92 #define DCT_TABLE_SIZE			GENMASK(18, 12)
93 #define DCT_TABLE_OFFSET		GENMASK(11, 0)
94 
95 #define RING_HEADERS_SECTION		0x38
96 #define RING_HEADERS_OFFSET		GENMASK(15, 0)
97 
98 #define PIO_SECTION			0x3c
99 #define PIO_REGS_OFFSET			GENMASK(15, 0)	/* PIO Offset */
100 
101 #define EXT_CAPS_SECTION		0x40
102 #define EXT_CAPS_OFFSET			GENMASK(15, 0)
103 
104 #define IBI_NOTIFY_CTRL			0x58	/* IBI Notify Control */
105 #define IBI_NOTIFY_SIR_REJECTED		BIT(3)	/* Rejected Target Interrupt Request */
106 #define IBI_NOTIFY_MR_REJECTED		BIT(1)	/* Rejected Master Request Control */
107 #define IBI_NOTIFY_HJ_REJECTED		BIT(0)	/* Rejected Hot-Join Control */
108 
109 #define DEV_CTX_BASE_LO			0x60
110 #define DEV_CTX_BASE_HI			0x64
111 
112 
to_i3c_hci(struct i3c_master_controller * m)113 static inline struct i3c_hci *to_i3c_hci(struct i3c_master_controller *m)
114 {
115 	return container_of(m, struct i3c_hci, master);
116 }
117 
i3c_hci_bus_init(struct i3c_master_controller * m)118 static int i3c_hci_bus_init(struct i3c_master_controller *m)
119 {
120 	struct i3c_hci *hci = to_i3c_hci(m);
121 	struct i3c_device_info info;
122 	int ret;
123 
124 	DBG("");
125 
126 	if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
127 		ret = mipi_i3c_hci_dat_v1.init(hci);
128 		if (ret)
129 			return ret;
130 	}
131 
132 	ret = i3c_master_get_free_addr(m, 0);
133 	if (ret < 0)
134 		return ret;
135 	reg_write(MASTER_DEVICE_ADDR,
136 		  MASTER_DYNAMIC_ADDR(ret) | MASTER_DYNAMIC_ADDR_VALID);
137 	memset(&info, 0, sizeof(info));
138 	info.dyn_addr = ret;
139 	ret = i3c_master_set_info(m, &info);
140 	if (ret)
141 		return ret;
142 
143 	ret = hci->io->init(hci);
144 	if (ret)
145 		return ret;
146 
147 	/* Set RESP_BUF_THLD to 0(n) to get 1(n+1) response */
148 	if (hci->quirks & HCI_QUIRK_RESP_BUF_THLD)
149 		amd_set_resp_buf_thld(hci);
150 
151 	reg_set(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
152 	DBG("HC_CONTROL = %#x", reg_read(HC_CONTROL));
153 
154 	return 0;
155 }
156 
i3c_hci_bus_cleanup(struct i3c_master_controller * m)157 static void i3c_hci_bus_cleanup(struct i3c_master_controller *m)
158 {
159 	struct i3c_hci *hci = to_i3c_hci(m);
160 	struct platform_device *pdev = to_platform_device(m->dev.parent);
161 
162 	DBG("");
163 
164 	reg_clear(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
165 	synchronize_irq(platform_get_irq(pdev, 0));
166 	hci->io->cleanup(hci);
167 	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
168 		mipi_i3c_hci_dat_v1.cleanup(hci);
169 }
170 
mipi_i3c_hci_resume(struct i3c_hci * hci)171 void mipi_i3c_hci_resume(struct i3c_hci *hci)
172 {
173 	reg_set(HC_CONTROL, HC_CONTROL_RESUME);
174 }
175 
176 /* located here rather than pio.c because needed bits are in core reg space */
mipi_i3c_hci_pio_reset(struct i3c_hci * hci)177 void mipi_i3c_hci_pio_reset(struct i3c_hci *hci)
178 {
179 	reg_write(RESET_CONTROL, RX_FIFO_RST | TX_FIFO_RST | RESP_QUEUE_RST);
180 }
181 
182 /* located here rather than dct.c because needed bits are in core reg space */
mipi_i3c_hci_dct_index_reset(struct i3c_hci * hci)183 void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci)
184 {
185 	reg_write(DCT_SECTION, FIELD_PREP(DCT_TABLE_INDEX, 0));
186 }
187 
i3c_hci_send_ccc_cmd(struct i3c_master_controller * m,struct i3c_ccc_cmd * ccc)188 static int i3c_hci_send_ccc_cmd(struct i3c_master_controller *m,
189 				struct i3c_ccc_cmd *ccc)
190 {
191 	struct i3c_hci *hci = to_i3c_hci(m);
192 	struct hci_xfer *xfer;
193 	bool raw = !!(hci->quirks & HCI_QUIRK_RAW_CCC);
194 	bool prefixed = raw && !!(ccc->id & I3C_CCC_DIRECT);
195 	unsigned int nxfers = ccc->ndests + prefixed;
196 	DECLARE_COMPLETION_ONSTACK(done);
197 	int i, last, ret = 0;
198 
199 	DBG("cmd=%#x rnw=%d ndests=%d data[0].len=%d",
200 	    ccc->id, ccc->rnw, ccc->ndests, ccc->dests[0].payload.len);
201 
202 	xfer = hci_alloc_xfer(nxfers);
203 	if (!xfer)
204 		return -ENOMEM;
205 
206 	if (prefixed) {
207 		xfer->data = NULL;
208 		xfer->data_len = 0;
209 		xfer->rnw = false;
210 		hci->cmd->prep_ccc(hci, xfer, I3C_BROADCAST_ADDR,
211 				   ccc->id, true);
212 		xfer++;
213 	}
214 
215 	for (i = 0; i < nxfers - prefixed; i++) {
216 		xfer[i].data = ccc->dests[i].payload.data;
217 		xfer[i].data_len = ccc->dests[i].payload.len;
218 		xfer[i].rnw = ccc->rnw;
219 		ret = hci->cmd->prep_ccc(hci, &xfer[i], ccc->dests[i].addr,
220 					 ccc->id, raw);
221 		if (ret)
222 			goto out;
223 		xfer[i].cmd_desc[0] |= CMD_0_ROC;
224 	}
225 	last = i - 1;
226 	xfer[last].cmd_desc[0] |= CMD_0_TOC;
227 	xfer[last].completion = &done;
228 
229 	if (prefixed)
230 		xfer--;
231 
232 	ret = hci->io->queue_xfer(hci, xfer, nxfers);
233 	if (ret)
234 		goto out;
235 	if (!wait_for_completion_timeout(&done, HZ) &&
236 	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
237 		ret = -ETIME;
238 		goto out;
239 	}
240 	for (i = prefixed; i < nxfers; i++) {
241 		if (ccc->rnw)
242 			ccc->dests[i - prefixed].payload.len =
243 				RESP_DATA_LENGTH(xfer[i].response);
244 		switch (RESP_STATUS(xfer[i].response)) {
245 		case RESP_SUCCESS:
246 			continue;
247 		case RESP_ERR_ADDR_HEADER:
248 		case RESP_ERR_NACK:
249 			ccc->err = I3C_ERROR_M2;
250 			fallthrough;
251 		default:
252 			ret = -EIO;
253 			goto out;
254 		}
255 	}
256 
257 	if (ccc->rnw)
258 		DBG("got: %*ph",
259 		    ccc->dests[0].payload.len, ccc->dests[0].payload.data);
260 
261 out:
262 	hci_free_xfer(xfer, nxfers);
263 	return ret;
264 }
265 
i3c_hci_daa(struct i3c_master_controller * m)266 static int i3c_hci_daa(struct i3c_master_controller *m)
267 {
268 	struct i3c_hci *hci = to_i3c_hci(m);
269 
270 	DBG("");
271 
272 	return hci->cmd->perform_daa(hci);
273 }
274 
i3c_hci_alloc_safe_xfer_buf(struct i3c_hci * hci,struct hci_xfer * xfer)275 static int i3c_hci_alloc_safe_xfer_buf(struct i3c_hci *hci,
276 				       struct hci_xfer *xfer)
277 {
278 	if (hci->io != &mipi_i3c_hci_dma ||
279 	    xfer->data == NULL || !is_vmalloc_addr(xfer->data))
280 		return 0;
281 
282 	if (xfer->rnw)
283 		xfer->bounce_buf = kzalloc(xfer->data_len, GFP_KERNEL);
284 	else
285 		xfer->bounce_buf = kmemdup(xfer->data,
286 					   xfer->data_len, GFP_KERNEL);
287 
288 	return xfer->bounce_buf == NULL ? -ENOMEM : 0;
289 }
290 
i3c_hci_free_safe_xfer_buf(struct i3c_hci * hci,struct hci_xfer * xfer)291 static void i3c_hci_free_safe_xfer_buf(struct i3c_hci *hci,
292 				       struct hci_xfer *xfer)
293 {
294 	if (hci->io != &mipi_i3c_hci_dma || xfer->bounce_buf == NULL)
295 		return;
296 
297 	if (xfer->rnw)
298 		memcpy(xfer->data, xfer->bounce_buf, xfer->data_len);
299 
300 	kfree(xfer->bounce_buf);
301 }
302 
i3c_hci_priv_xfers(struct i3c_dev_desc * dev,struct i3c_priv_xfer * i3c_xfers,int nxfers)303 static int i3c_hci_priv_xfers(struct i3c_dev_desc *dev,
304 			      struct i3c_priv_xfer *i3c_xfers,
305 			      int nxfers)
306 {
307 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
308 	struct i3c_hci *hci = to_i3c_hci(m);
309 	struct hci_xfer *xfer;
310 	DECLARE_COMPLETION_ONSTACK(done);
311 	unsigned int size_limit;
312 	int i, last, ret = 0;
313 
314 	DBG("nxfers = %d", nxfers);
315 
316 	xfer = hci_alloc_xfer(nxfers);
317 	if (!xfer)
318 		return -ENOMEM;
319 
320 	size_limit = 1U << (16 + FIELD_GET(HC_CAP_MAX_DATA_LENGTH, hci->caps));
321 
322 	for (i = 0; i < nxfers; i++) {
323 		xfer[i].data_len = i3c_xfers[i].len;
324 		ret = -EFBIG;
325 		if (xfer[i].data_len >= size_limit)
326 			goto out;
327 		xfer[i].rnw = i3c_xfers[i].rnw;
328 		if (i3c_xfers[i].rnw) {
329 			xfer[i].data = i3c_xfers[i].data.in;
330 		} else {
331 			/* silence the const qualifier warning with a cast */
332 			xfer[i].data = (void *) i3c_xfers[i].data.out;
333 		}
334 		hci->cmd->prep_i3c_xfer(hci, dev, &xfer[i]);
335 		xfer[i].cmd_desc[0] |= CMD_0_ROC;
336 		ret = i3c_hci_alloc_safe_xfer_buf(hci, &xfer[i]);
337 		if (ret)
338 			goto out;
339 	}
340 	last = i - 1;
341 	xfer[last].cmd_desc[0] |= CMD_0_TOC;
342 	xfer[last].completion = &done;
343 
344 	ret = hci->io->queue_xfer(hci, xfer, nxfers);
345 	if (ret)
346 		goto out;
347 	if (!wait_for_completion_timeout(&done, HZ) &&
348 	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
349 		ret = -ETIME;
350 		goto out;
351 	}
352 	for (i = 0; i < nxfers; i++) {
353 		if (i3c_xfers[i].rnw)
354 			i3c_xfers[i].len = RESP_DATA_LENGTH(xfer[i].response);
355 		if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
356 			ret = -EIO;
357 			goto out;
358 		}
359 	}
360 
361 out:
362 	for (i = 0; i < nxfers; i++)
363 		i3c_hci_free_safe_xfer_buf(hci, &xfer[i]);
364 
365 	hci_free_xfer(xfer, nxfers);
366 	return ret;
367 }
368 
i3c_hci_i2c_xfers(struct i2c_dev_desc * dev,const struct i2c_msg * i2c_xfers,int nxfers)369 static int i3c_hci_i2c_xfers(struct i2c_dev_desc *dev,
370 			     const struct i2c_msg *i2c_xfers, int nxfers)
371 {
372 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
373 	struct i3c_hci *hci = to_i3c_hci(m);
374 	struct hci_xfer *xfer;
375 	DECLARE_COMPLETION_ONSTACK(done);
376 	int i, last, ret = 0;
377 
378 	DBG("nxfers = %d", nxfers);
379 
380 	xfer = hci_alloc_xfer(nxfers);
381 	if (!xfer)
382 		return -ENOMEM;
383 
384 	for (i = 0; i < nxfers; i++) {
385 		xfer[i].data = i2c_xfers[i].buf;
386 		xfer[i].data_len = i2c_xfers[i].len;
387 		xfer[i].rnw = i2c_xfers[i].flags & I2C_M_RD;
388 		hci->cmd->prep_i2c_xfer(hci, dev, &xfer[i]);
389 		xfer[i].cmd_desc[0] |= CMD_0_ROC;
390 		ret = i3c_hci_alloc_safe_xfer_buf(hci, &xfer[i]);
391 		if (ret)
392 			goto out;
393 	}
394 	last = i - 1;
395 	xfer[last].cmd_desc[0] |= CMD_0_TOC;
396 	xfer[last].completion = &done;
397 
398 	ret = hci->io->queue_xfer(hci, xfer, nxfers);
399 	if (ret)
400 		goto out;
401 	if (!wait_for_completion_timeout(&done, HZ) &&
402 	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
403 		ret = -ETIME;
404 		goto out;
405 	}
406 	for (i = 0; i < nxfers; i++) {
407 		if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
408 			ret = -EIO;
409 			goto out;
410 		}
411 	}
412 
413 out:
414 	for (i = 0; i < nxfers; i++)
415 		i3c_hci_free_safe_xfer_buf(hci, &xfer[i]);
416 
417 	hci_free_xfer(xfer, nxfers);
418 	return ret;
419 }
420 
i3c_hci_attach_i3c_dev(struct i3c_dev_desc * dev)421 static int i3c_hci_attach_i3c_dev(struct i3c_dev_desc *dev)
422 {
423 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
424 	struct i3c_hci *hci = to_i3c_hci(m);
425 	struct i3c_hci_dev_data *dev_data;
426 	int ret;
427 
428 	DBG("");
429 
430 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
431 	if (!dev_data)
432 		return -ENOMEM;
433 	if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
434 		ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
435 		if (ret < 0) {
436 			kfree(dev_data);
437 			return ret;
438 		}
439 		mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, ret,
440 						     dev->info.dyn_addr ?: dev->info.static_addr);
441 		dev_data->dat_idx = ret;
442 	}
443 	i3c_dev_set_master_data(dev, dev_data);
444 	return 0;
445 }
446 
i3c_hci_reattach_i3c_dev(struct i3c_dev_desc * dev,u8 old_dyn_addr)447 static int i3c_hci_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr)
448 {
449 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
450 	struct i3c_hci *hci = to_i3c_hci(m);
451 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
452 
453 	DBG("");
454 
455 	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
456 		mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dev_data->dat_idx,
457 					     dev->info.dyn_addr);
458 	return 0;
459 }
460 
i3c_hci_detach_i3c_dev(struct i3c_dev_desc * dev)461 static void i3c_hci_detach_i3c_dev(struct i3c_dev_desc *dev)
462 {
463 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
464 	struct i3c_hci *hci = to_i3c_hci(m);
465 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
466 
467 	DBG("");
468 
469 	i3c_dev_set_master_data(dev, NULL);
470 	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
471 		mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
472 	kfree(dev_data);
473 }
474 
i3c_hci_attach_i2c_dev(struct i2c_dev_desc * dev)475 static int i3c_hci_attach_i2c_dev(struct i2c_dev_desc *dev)
476 {
477 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
478 	struct i3c_hci *hci = to_i3c_hci(m);
479 	struct i3c_hci_dev_data *dev_data;
480 	int ret;
481 
482 	DBG("");
483 
484 	if (hci->cmd != &mipi_i3c_hci_cmd_v1)
485 		return 0;
486 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
487 	if (!dev_data)
488 		return -ENOMEM;
489 	ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
490 	if (ret < 0) {
491 		kfree(dev_data);
492 		return ret;
493 	}
494 	mipi_i3c_hci_dat_v1.set_static_addr(hci, ret, dev->addr);
495 	mipi_i3c_hci_dat_v1.set_flags(hci, ret, DAT_0_I2C_DEVICE, 0);
496 	dev_data->dat_idx = ret;
497 	i2c_dev_set_master_data(dev, dev_data);
498 	return 0;
499 }
500 
i3c_hci_detach_i2c_dev(struct i2c_dev_desc * dev)501 static void i3c_hci_detach_i2c_dev(struct i2c_dev_desc *dev)
502 {
503 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
504 	struct i3c_hci *hci = to_i3c_hci(m);
505 	struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev);
506 
507 	DBG("");
508 
509 	if (dev_data) {
510 		i2c_dev_set_master_data(dev, NULL);
511 		if (hci->cmd == &mipi_i3c_hci_cmd_v1)
512 			mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
513 		kfree(dev_data);
514 	}
515 }
516 
i3c_hci_request_ibi(struct i3c_dev_desc * dev,const struct i3c_ibi_setup * req)517 static int i3c_hci_request_ibi(struct i3c_dev_desc *dev,
518 			       const struct i3c_ibi_setup *req)
519 {
520 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
521 	struct i3c_hci *hci = to_i3c_hci(m);
522 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
523 	unsigned int dat_idx = dev_data->dat_idx;
524 
525 	if (req->max_payload_len != 0)
526 		mipi_i3c_hci_dat_v1.set_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
527 	else
528 		mipi_i3c_hci_dat_v1.clear_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
529 	return hci->io->request_ibi(hci, dev, req);
530 }
531 
i3c_hci_free_ibi(struct i3c_dev_desc * dev)532 static void i3c_hci_free_ibi(struct i3c_dev_desc *dev)
533 {
534 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
535 	struct i3c_hci *hci = to_i3c_hci(m);
536 
537 	hci->io->free_ibi(hci, dev);
538 }
539 
i3c_hci_enable_ibi(struct i3c_dev_desc * dev)540 static int i3c_hci_enable_ibi(struct i3c_dev_desc *dev)
541 {
542 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
543 	struct i3c_hci *hci = to_i3c_hci(m);
544 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
545 
546 	mipi_i3c_hci_dat_v1.clear_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
547 	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
548 }
549 
i3c_hci_disable_ibi(struct i3c_dev_desc * dev)550 static int i3c_hci_disable_ibi(struct i3c_dev_desc *dev)
551 {
552 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
553 	struct i3c_hci *hci = to_i3c_hci(m);
554 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
555 
556 	mipi_i3c_hci_dat_v1.set_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
557 	return i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
558 }
559 
i3c_hci_recycle_ibi_slot(struct i3c_dev_desc * dev,struct i3c_ibi_slot * slot)560 static void i3c_hci_recycle_ibi_slot(struct i3c_dev_desc *dev,
561 				     struct i3c_ibi_slot *slot)
562 {
563 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
564 	struct i3c_hci *hci = to_i3c_hci(m);
565 
566 	hci->io->recycle_ibi_slot(hci, dev, slot);
567 }
568 
569 static const struct i3c_master_controller_ops i3c_hci_ops = {
570 	.bus_init		= i3c_hci_bus_init,
571 	.bus_cleanup		= i3c_hci_bus_cleanup,
572 	.do_daa			= i3c_hci_daa,
573 	.send_ccc_cmd		= i3c_hci_send_ccc_cmd,
574 	.priv_xfers		= i3c_hci_priv_xfers,
575 	.i2c_xfers		= i3c_hci_i2c_xfers,
576 	.attach_i3c_dev		= i3c_hci_attach_i3c_dev,
577 	.reattach_i3c_dev	= i3c_hci_reattach_i3c_dev,
578 	.detach_i3c_dev		= i3c_hci_detach_i3c_dev,
579 	.attach_i2c_dev		= i3c_hci_attach_i2c_dev,
580 	.detach_i2c_dev		= i3c_hci_detach_i2c_dev,
581 	.request_ibi		= i3c_hci_request_ibi,
582 	.free_ibi		= i3c_hci_free_ibi,
583 	.enable_ibi		= i3c_hci_enable_ibi,
584 	.disable_ibi		= i3c_hci_disable_ibi,
585 	.recycle_ibi_slot	= i3c_hci_recycle_ibi_slot,
586 };
587 
i3c_hci_irq_handler(int irq,void * dev_id)588 static irqreturn_t i3c_hci_irq_handler(int irq, void *dev_id)
589 {
590 	struct i3c_hci *hci = dev_id;
591 	irqreturn_t result = IRQ_NONE;
592 	u32 val;
593 
594 	val = reg_read(INTR_STATUS);
595 	DBG("INTR_STATUS = %#x", val);
596 
597 	if (val) {
598 		reg_write(INTR_STATUS, val);
599 	}
600 
601 	if (val & INTR_HC_RESET_CANCEL) {
602 		DBG("cancelled reset");
603 		val &= ~INTR_HC_RESET_CANCEL;
604 	}
605 	if (val & INTR_HC_INTERNAL_ERR) {
606 		dev_err(&hci->master.dev, "Host Controller Internal Error\n");
607 		val &= ~INTR_HC_INTERNAL_ERR;
608 	}
609 
610 	hci->io->irq_handler(hci);
611 
612 	if (val)
613 		dev_err(&hci->master.dev, "unexpected INTR_STATUS %#x\n", val);
614 	else
615 		result = IRQ_HANDLED;
616 
617 	return result;
618 }
619 
i3c_hci_init(struct i3c_hci * hci)620 static int i3c_hci_init(struct i3c_hci *hci)
621 {
622 	bool size_in_dwords, mode_selector;
623 	u32 regval, offset;
624 	int ret;
625 
626 	/* Validate HCI hardware version */
627 	regval = reg_read(HCI_VERSION);
628 	hci->version_major = (regval >> 8) & 0xf;
629 	hci->version_minor = (regval >> 4) & 0xf;
630 	hci->revision = regval & 0xf;
631 	dev_notice(&hci->master.dev, "MIPI I3C HCI v%u.%u r%02u\n",
632 		   hci->version_major, hci->version_minor, hci->revision);
633 	/* known versions */
634 	switch (regval & ~0xf) {
635 	case 0x100:	/* version 1.0 */
636 	case 0x110:	/* version 1.1 */
637 	case 0x200:	/* version 2.0 */
638 		break;
639 	default:
640 		dev_err(&hci->master.dev, "unsupported HCI version\n");
641 		return -EPROTONOSUPPORT;
642 	}
643 
644 	hci->caps = reg_read(HC_CAPABILITIES);
645 	DBG("caps = %#x", hci->caps);
646 
647 	size_in_dwords = hci->version_major < 1 ||
648 			 (hci->version_major == 1 && hci->version_minor < 1);
649 
650 	regval = reg_read(DAT_SECTION);
651 	offset = FIELD_GET(DAT_TABLE_OFFSET, regval);
652 	hci->DAT_regs = offset ? hci->base_regs + offset : NULL;
653 	hci->DAT_entries = FIELD_GET(DAT_TABLE_SIZE, regval);
654 	hci->DAT_entry_size = FIELD_GET(DAT_ENTRY_SIZE, regval) ? 0 : 8;
655 	if (size_in_dwords)
656 		hci->DAT_entries = 4 * hci->DAT_entries / hci->DAT_entry_size;
657 	dev_info(&hci->master.dev, "DAT: %u %u-bytes entries at offset %#x\n",
658 		 hci->DAT_entries, hci->DAT_entry_size, offset);
659 
660 	regval = reg_read(DCT_SECTION);
661 	offset = FIELD_GET(DCT_TABLE_OFFSET, regval);
662 	hci->DCT_regs = offset ? hci->base_regs + offset : NULL;
663 	hci->DCT_entries = FIELD_GET(DCT_TABLE_SIZE, regval);
664 	hci->DCT_entry_size = FIELD_GET(DCT_ENTRY_SIZE, regval) ? 0 : 16;
665 	if (size_in_dwords)
666 		hci->DCT_entries = 4 * hci->DCT_entries / hci->DCT_entry_size;
667 	dev_info(&hci->master.dev, "DCT: %u %u-bytes entries at offset %#x\n",
668 		 hci->DCT_entries, hci->DCT_entry_size, offset);
669 
670 	regval = reg_read(RING_HEADERS_SECTION);
671 	offset = FIELD_GET(RING_HEADERS_OFFSET, regval);
672 	hci->RHS_regs = offset ? hci->base_regs + offset : NULL;
673 	dev_info(&hci->master.dev, "Ring Headers at offset %#x\n", offset);
674 
675 	regval = reg_read(PIO_SECTION);
676 	offset = FIELD_GET(PIO_REGS_OFFSET, regval);
677 	hci->PIO_regs = offset ? hci->base_regs + offset : NULL;
678 	dev_info(&hci->master.dev, "PIO section at offset %#x\n", offset);
679 
680 	regval = reg_read(EXT_CAPS_SECTION);
681 	offset = FIELD_GET(EXT_CAPS_OFFSET, regval);
682 	hci->EXTCAPS_regs = offset ? hci->base_regs + offset : NULL;
683 	dev_info(&hci->master.dev, "Extended Caps at offset %#x\n", offset);
684 
685 	ret = i3c_hci_parse_ext_caps(hci);
686 	if (ret)
687 		return ret;
688 
689 	/*
690 	 * Now let's reset the hardware.
691 	 * SOFT_RST must be clear before we write to it.
692 	 * Then we must wait until it clears again.
693 	 */
694 	ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
695 				 !(regval & SOFT_RST), 1, 10000);
696 	if (ret)
697 		return -ENXIO;
698 	reg_write(RESET_CONTROL, SOFT_RST);
699 	ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
700 				 !(regval & SOFT_RST), 1, 10000);
701 	if (ret)
702 		return -ENXIO;
703 
704 	/* Disable all interrupts and allow all signal updates */
705 	reg_write(INTR_SIGNAL_ENABLE, 0x0);
706 	reg_write(INTR_STATUS_ENABLE, 0xffffffff);
707 
708 	/* Make sure our data ordering fits the host's */
709 	regval = reg_read(HC_CONTROL);
710 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) {
711 		if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
712 			regval |= HC_CONTROL_DATA_BIG_ENDIAN;
713 			reg_write(HC_CONTROL, regval);
714 			regval = reg_read(HC_CONTROL);
715 			if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
716 				dev_err(&hci->master.dev, "cannot set BE mode\n");
717 				return -EOPNOTSUPP;
718 			}
719 		}
720 	} else {
721 		if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
722 			regval &= ~HC_CONTROL_DATA_BIG_ENDIAN;
723 			reg_write(HC_CONTROL, regval);
724 			regval = reg_read(HC_CONTROL);
725 			if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
726 				dev_err(&hci->master.dev, "cannot clear BE mode\n");
727 				return -EOPNOTSUPP;
728 			}
729 		}
730 	}
731 
732 	/* Select our command descriptor model */
733 	switch (FIELD_GET(HC_CAP_CMD_SIZE, hci->caps)) {
734 	case 0:
735 		hci->cmd = &mipi_i3c_hci_cmd_v1;
736 		break;
737 	case 1:
738 		hci->cmd = &mipi_i3c_hci_cmd_v2;
739 		break;
740 	default:
741 		dev_err(&hci->master.dev, "wrong CMD_SIZE capability value\n");
742 		return -EINVAL;
743 	}
744 
745 	mode_selector = hci->version_major > 1 ||
746 				(hci->version_major == 1 && hci->version_minor > 0);
747 
748 	/* Quirk for HCI_QUIRK_PIO_MODE on AMD platforms */
749 	if (hci->quirks & HCI_QUIRK_PIO_MODE)
750 		hci->RHS_regs = NULL;
751 
752 	/* Try activating DMA operations first */
753 	if (hci->RHS_regs) {
754 		reg_clear(HC_CONTROL, HC_CONTROL_PIO_MODE);
755 		if (mode_selector && (reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) {
756 			dev_err(&hci->master.dev, "PIO mode is stuck\n");
757 			ret = -EIO;
758 		} else {
759 			hci->io = &mipi_i3c_hci_dma;
760 			dev_info(&hci->master.dev, "Using DMA\n");
761 		}
762 	}
763 
764 	/* If no DMA, try PIO */
765 	if (!hci->io && hci->PIO_regs) {
766 		reg_set(HC_CONTROL, HC_CONTROL_PIO_MODE);
767 		if (mode_selector && !(reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) {
768 			dev_err(&hci->master.dev, "DMA mode is stuck\n");
769 			ret = -EIO;
770 		} else {
771 			hci->io = &mipi_i3c_hci_pio;
772 			dev_info(&hci->master.dev, "Using PIO\n");
773 		}
774 	}
775 
776 	if (!hci->io) {
777 		dev_err(&hci->master.dev, "neither DMA nor PIO can be used\n");
778 		if (!ret)
779 			ret = -EINVAL;
780 		return ret;
781 	}
782 
783 	/* Configure OD and PP timings for AMD platforms */
784 	if (hci->quirks & HCI_QUIRK_OD_PP_TIMING)
785 		amd_set_od_pp_timing(hci);
786 
787 	return 0;
788 }
789 
i3c_hci_probe(struct platform_device * pdev)790 static int i3c_hci_probe(struct platform_device *pdev)
791 {
792 	struct i3c_hci *hci;
793 	int irq, ret;
794 
795 	hci = devm_kzalloc(&pdev->dev, sizeof(*hci), GFP_KERNEL);
796 	if (!hci)
797 		return -ENOMEM;
798 	hci->base_regs = devm_platform_ioremap_resource(pdev, 0);
799 	if (IS_ERR(hci->base_regs))
800 		return PTR_ERR(hci->base_regs);
801 
802 	platform_set_drvdata(pdev, hci);
803 	/* temporary for dev_printk's, to be replaced in i3c_master_register */
804 	hci->master.dev.init_name = dev_name(&pdev->dev);
805 
806 	hci->quirks = (unsigned long)device_get_match_data(&pdev->dev);
807 
808 	ret = i3c_hci_init(hci);
809 	if (ret)
810 		return ret;
811 
812 	irq = platform_get_irq(pdev, 0);
813 	ret = devm_request_irq(&pdev->dev, irq, i3c_hci_irq_handler,
814 			       0, NULL, hci);
815 	if (ret)
816 		return ret;
817 
818 	ret = i3c_master_register(&hci->master, &pdev->dev,
819 				  &i3c_hci_ops, false);
820 	if (ret)
821 		return ret;
822 
823 	return 0;
824 }
825 
i3c_hci_remove(struct platform_device * pdev)826 static void i3c_hci_remove(struct platform_device *pdev)
827 {
828 	struct i3c_hci *hci = platform_get_drvdata(pdev);
829 
830 	i3c_master_unregister(&hci->master);
831 }
832 
833 static const __maybe_unused struct of_device_id i3c_hci_of_match[] = {
834 	{ .compatible = "mipi-i3c-hci", },
835 	{},
836 };
837 MODULE_DEVICE_TABLE(of, i3c_hci_of_match);
838 
839 static const struct acpi_device_id i3c_hci_acpi_match[] = {
840 	{ "AMDI5017", HCI_QUIRK_PIO_MODE | HCI_QUIRK_OD_PP_TIMING | HCI_QUIRK_RESP_BUF_THLD },
841 	{}
842 };
843 MODULE_DEVICE_TABLE(acpi, i3c_hci_acpi_match);
844 
845 static struct platform_driver i3c_hci_driver = {
846 	.probe = i3c_hci_probe,
847 	.remove = i3c_hci_remove,
848 	.driver = {
849 		.name = "mipi-i3c-hci",
850 		.of_match_table = of_match_ptr(i3c_hci_of_match),
851 		.acpi_match_table = i3c_hci_acpi_match,
852 	},
853 };
854 module_platform_driver(i3c_hci_driver);
855 MODULE_ALIAS("platform:mipi-i3c-hci");
856 
857 MODULE_AUTHOR("Nicolas Pitre <npitre@baylibre.com>");
858 MODULE_DESCRIPTION("MIPI I3C HCI driver");
859 MODULE_LICENSE("Dual BSD/GPL");
860