1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 Google LLC
4 * Author: Quentin Perret <qperret@google.com>
5 */
6
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14
15 #include <hyp/fault.h>
16
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23
24 struct host_mmu host_mmu;
25
26 static struct hyp_pool host_s2_pool;
27
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30
guest_lock_component(struct pkvm_hyp_vm * vm)31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 hyp_spin_lock(&vm->lock);
34 current_vm = vm;
35 }
36
guest_unlock_component(struct pkvm_hyp_vm * vm)37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 current_vm = NULL;
40 hyp_spin_unlock(&vm->lock);
41 }
42
host_lock_component(void)43 static void host_lock_component(void)
44 {
45 hyp_spin_lock(&host_mmu.lock);
46 }
47
host_unlock_component(void)48 static void host_unlock_component(void)
49 {
50 hyp_spin_unlock(&host_mmu.lock);
51 }
52
hyp_lock_component(void)53 static void hyp_lock_component(void)
54 {
55 hyp_spin_lock(&pkvm_pgd_lock);
56 }
57
hyp_unlock_component(void)58 static void hyp_unlock_component(void)
59 {
60 hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62
63 #define for_each_hyp_page(__p, __st, __sz) \
64 for (struct hyp_page *__p = hyp_phys_to_page(__st), \
65 *__e = __p + ((__sz) >> PAGE_SHIFT); \
66 __p < __e; __p++)
67
host_s2_zalloc_pages_exact(size_t size)68 static void *host_s2_zalloc_pages_exact(size_t size)
69 {
70 void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
71
72 hyp_split_page(hyp_virt_to_page(addr));
73
74 /*
75 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
76 * so there should be no need to free any of the tail pages to make the
77 * allocation exact.
78 */
79 WARN_ON(size != (PAGE_SIZE << get_order(size)));
80
81 return addr;
82 }
83
host_s2_zalloc_page(void * pool)84 static void *host_s2_zalloc_page(void *pool)
85 {
86 return hyp_alloc_pages(pool, 0);
87 }
88
host_s2_get_page(void * addr)89 static void host_s2_get_page(void *addr)
90 {
91 hyp_get_page(&host_s2_pool, addr);
92 }
93
host_s2_put_page(void * addr)94 static void host_s2_put_page(void *addr)
95 {
96 hyp_put_page(&host_s2_pool, addr);
97 }
98
host_s2_free_unlinked_table(void * addr,s8 level)99 static void host_s2_free_unlinked_table(void *addr, s8 level)
100 {
101 kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
102 }
103
prepare_s2_pool(void * pgt_pool_base)104 static int prepare_s2_pool(void *pgt_pool_base)
105 {
106 unsigned long nr_pages, pfn;
107 int ret;
108
109 pfn = hyp_virt_to_pfn(pgt_pool_base);
110 nr_pages = host_s2_pgtable_pages();
111 ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
112 if (ret)
113 return ret;
114
115 host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
116 .zalloc_pages_exact = host_s2_zalloc_pages_exact,
117 .zalloc_page = host_s2_zalloc_page,
118 .free_unlinked_table = host_s2_free_unlinked_table,
119 .phys_to_virt = hyp_phys_to_virt,
120 .virt_to_phys = hyp_virt_to_phys,
121 .page_count = hyp_page_count,
122 .get_page = host_s2_get_page,
123 .put_page = host_s2_put_page,
124 };
125
126 return 0;
127 }
128
prepare_host_vtcr(void)129 static void prepare_host_vtcr(void)
130 {
131 u32 parange, phys_shift;
132
133 /* The host stage 2 is id-mapped, so use parange for T0SZ */
134 parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
135 phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
136
137 host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
138 id_aa64mmfr1_el1_sys_val, phys_shift);
139 }
140
141 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
142
kvm_host_prepare_stage2(void * pgt_pool_base)143 int kvm_host_prepare_stage2(void *pgt_pool_base)
144 {
145 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
146 int ret;
147
148 prepare_host_vtcr();
149 hyp_spin_lock_init(&host_mmu.lock);
150 mmu->arch = &host_mmu.arch;
151
152 ret = prepare_s2_pool(pgt_pool_base);
153 if (ret)
154 return ret;
155
156 ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
157 &host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
158 host_stage2_force_pte_cb);
159 if (ret)
160 return ret;
161
162 mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
163 mmu->pgt = &host_mmu.pgt;
164 atomic64_set(&mmu->vmid.id, 0);
165
166 return 0;
167 }
168
guest_s2_zalloc_pages_exact(size_t size)169 static void *guest_s2_zalloc_pages_exact(size_t size)
170 {
171 void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size));
172
173 WARN_ON(size != (PAGE_SIZE << get_order(size)));
174 hyp_split_page(hyp_virt_to_page(addr));
175
176 return addr;
177 }
178
guest_s2_free_pages_exact(void * addr,unsigned long size)179 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
180 {
181 u8 order = get_order(size);
182 unsigned int i;
183
184 for (i = 0; i < (1 << order); i++)
185 hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE));
186 }
187
guest_s2_zalloc_page(void * mc)188 static void *guest_s2_zalloc_page(void *mc)
189 {
190 struct hyp_page *p;
191 void *addr;
192
193 addr = hyp_alloc_pages(¤t_vm->pool, 0);
194 if (addr)
195 return addr;
196
197 addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
198 if (!addr)
199 return addr;
200
201 memset(addr, 0, PAGE_SIZE);
202 p = hyp_virt_to_page(addr);
203 p->refcount = 1;
204 p->order = 0;
205
206 return addr;
207 }
208
guest_s2_get_page(void * addr)209 static void guest_s2_get_page(void *addr)
210 {
211 hyp_get_page(¤t_vm->pool, addr);
212 }
213
guest_s2_put_page(void * addr)214 static void guest_s2_put_page(void *addr)
215 {
216 hyp_put_page(¤t_vm->pool, addr);
217 }
218
__apply_guest_page(void * va,size_t size,void (* func)(void * addr,size_t size))219 static void __apply_guest_page(void *va, size_t size,
220 void (*func)(void *addr, size_t size))
221 {
222 size += va - PTR_ALIGN_DOWN(va, PAGE_SIZE);
223 va = PTR_ALIGN_DOWN(va, PAGE_SIZE);
224 size = PAGE_ALIGN(size);
225
226 while (size) {
227 size_t map_size = PAGE_SIZE;
228 void *map;
229
230 if (IS_ALIGNED((unsigned long)va, PMD_SIZE) && size >= PMD_SIZE)
231 map = hyp_fixblock_map(__hyp_pa(va), &map_size);
232 else
233 map = hyp_fixmap_map(__hyp_pa(va));
234
235 func(map, map_size);
236
237 if (map_size == PMD_SIZE)
238 hyp_fixblock_unmap();
239 else
240 hyp_fixmap_unmap();
241
242 size -= map_size;
243 va += map_size;
244 }
245 }
246
clean_dcache_guest_page(void * va,size_t size)247 static void clean_dcache_guest_page(void *va, size_t size)
248 {
249 __apply_guest_page(va, size, __clean_dcache_guest_page);
250 }
251
invalidate_icache_guest_page(void * va,size_t size)252 static void invalidate_icache_guest_page(void *va, size_t size)
253 {
254 __apply_guest_page(va, size, __invalidate_icache_guest_page);
255 }
256
kvm_guest_prepare_stage2(struct pkvm_hyp_vm * vm,void * pgd)257 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
258 {
259 struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
260 unsigned long nr_pages;
261 int ret;
262
263 nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT;
264 ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
265 if (ret)
266 return ret;
267
268 hyp_spin_lock_init(&vm->lock);
269 vm->mm_ops = (struct kvm_pgtable_mm_ops) {
270 .zalloc_pages_exact = guest_s2_zalloc_pages_exact,
271 .free_pages_exact = guest_s2_free_pages_exact,
272 .zalloc_page = guest_s2_zalloc_page,
273 .phys_to_virt = hyp_phys_to_virt,
274 .virt_to_phys = hyp_virt_to_phys,
275 .page_count = hyp_page_count,
276 .get_page = guest_s2_get_page,
277 .put_page = guest_s2_put_page,
278 .dcache_clean_inval_poc = clean_dcache_guest_page,
279 .icache_inval_pou = invalidate_icache_guest_page,
280 };
281
282 guest_lock_component(vm);
283 ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, NULL);
284 guest_unlock_component(vm);
285 if (ret)
286 return ret;
287
288 vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
289
290 return 0;
291 }
292
reclaim_pgtable_pages(struct pkvm_hyp_vm * vm,struct kvm_hyp_memcache * mc)293 void reclaim_pgtable_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
294 {
295 struct hyp_page *page;
296 void *addr;
297
298 /* Dump all pgtable pages in the hyp_pool */
299 guest_lock_component(vm);
300 kvm_pgtable_stage2_destroy(&vm->pgt);
301 vm->kvm.arch.mmu.pgd_phys = 0ULL;
302 guest_unlock_component(vm);
303
304 /* Drain the hyp_pool into the memcache */
305 addr = hyp_alloc_pages(&vm->pool, 0);
306 while (addr) {
307 page = hyp_virt_to_page(addr);
308 page->refcount = 0;
309 page->order = 0;
310 push_hyp_memcache(mc, addr, hyp_virt_to_phys);
311 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
312 addr = hyp_alloc_pages(&vm->pool, 0);
313 }
314 }
315
__pkvm_prot_finalize(void)316 int __pkvm_prot_finalize(void)
317 {
318 struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
319 struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
320
321 if (params->hcr_el2 & HCR_VM)
322 return -EPERM;
323
324 params->vttbr = kvm_get_vttbr(mmu);
325 params->vtcr = mmu->vtcr;
326 params->hcr_el2 |= HCR_VM;
327
328 /*
329 * The CMO below not only cleans the updated params to the
330 * PoC, but also provides the DSB that ensures ongoing
331 * page-table walks that have started before we trapped to EL2
332 * have completed.
333 */
334 kvm_flush_dcache_to_poc(params, sizeof(*params));
335
336 write_sysreg_hcr(params->hcr_el2);
337 __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
338
339 /*
340 * Make sure to have an ISB before the TLB maintenance below but only
341 * when __load_stage2() doesn't include one already.
342 */
343 asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
344
345 /* Invalidate stale HCR bits that may be cached in TLBs */
346 __tlbi(vmalls12e1);
347 dsb(nsh);
348 isb();
349
350 return 0;
351 }
352
host_stage2_unmap_dev_all(void)353 static int host_stage2_unmap_dev_all(void)
354 {
355 struct kvm_pgtable *pgt = &host_mmu.pgt;
356 struct memblock_region *reg;
357 u64 addr = 0;
358 int i, ret;
359
360 /* Unmap all non-memory regions to recycle the pages */
361 for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
362 reg = &hyp_memory[i];
363 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
364 if (ret)
365 return ret;
366 }
367 return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
368 }
369
370 struct kvm_mem_range {
371 u64 start;
372 u64 end;
373 };
374
find_mem_range(phys_addr_t addr,struct kvm_mem_range * range)375 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
376 {
377 int cur, left = 0, right = hyp_memblock_nr;
378 struct memblock_region *reg;
379 phys_addr_t end;
380
381 range->start = 0;
382 range->end = ULONG_MAX;
383
384 /* The list of memblock regions is sorted, binary search it */
385 while (left < right) {
386 cur = (left + right) >> 1;
387 reg = &hyp_memory[cur];
388 end = reg->base + reg->size;
389 if (addr < reg->base) {
390 right = cur;
391 range->end = reg->base;
392 } else if (addr >= end) {
393 left = cur + 1;
394 range->start = end;
395 } else {
396 range->start = reg->base;
397 range->end = end;
398 return reg;
399 }
400 }
401
402 return NULL;
403 }
404
addr_is_memory(phys_addr_t phys)405 bool addr_is_memory(phys_addr_t phys)
406 {
407 struct kvm_mem_range range;
408
409 return !!find_mem_range(phys, &range);
410 }
411
is_in_mem_range(u64 addr,struct kvm_mem_range * range)412 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
413 {
414 return range->start <= addr && addr < range->end;
415 }
416
check_range_allowed_memory(u64 start,u64 end)417 static int check_range_allowed_memory(u64 start, u64 end)
418 {
419 struct memblock_region *reg;
420 struct kvm_mem_range range;
421
422 /*
423 * Callers can't check the state of a range that overlaps memory and
424 * MMIO regions, so ensure [start, end[ is in the same kvm_mem_range.
425 */
426 reg = find_mem_range(start, &range);
427 if (!is_in_mem_range(end - 1, &range))
428 return -EINVAL;
429
430 if (!reg || reg->flags & MEMBLOCK_NOMAP)
431 return -EPERM;
432
433 return 0;
434 }
435
range_is_memory(u64 start,u64 end)436 static bool range_is_memory(u64 start, u64 end)
437 {
438 struct kvm_mem_range r;
439
440 if (!find_mem_range(start, &r))
441 return false;
442
443 return is_in_mem_range(end - 1, &r);
444 }
445
__host_stage2_idmap(u64 start,u64 end,enum kvm_pgtable_prot prot)446 static inline int __host_stage2_idmap(u64 start, u64 end,
447 enum kvm_pgtable_prot prot)
448 {
449 return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
450 prot, &host_s2_pool, 0);
451 }
452
453 /*
454 * The pool has been provided with enough pages to cover all of memory with
455 * page granularity, but it is difficult to know how much of the MMIO range
456 * we will need to cover upfront, so we may need to 'recycle' the pages if we
457 * run out.
458 */
459 #define host_stage2_try(fn, ...) \
460 ({ \
461 int __ret; \
462 hyp_assert_lock_held(&host_mmu.lock); \
463 __ret = fn(__VA_ARGS__); \
464 if (__ret == -ENOMEM) { \
465 __ret = host_stage2_unmap_dev_all(); \
466 if (!__ret) \
467 __ret = fn(__VA_ARGS__); \
468 } \
469 __ret; \
470 })
471
range_included(struct kvm_mem_range * child,struct kvm_mem_range * parent)472 static inline bool range_included(struct kvm_mem_range *child,
473 struct kvm_mem_range *parent)
474 {
475 return parent->start <= child->start && child->end <= parent->end;
476 }
477
host_stage2_adjust_range(u64 addr,struct kvm_mem_range * range)478 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
479 {
480 struct kvm_mem_range cur;
481 kvm_pte_t pte;
482 s8 level;
483 int ret;
484
485 hyp_assert_lock_held(&host_mmu.lock);
486 ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
487 if (ret)
488 return ret;
489
490 if (kvm_pte_valid(pte))
491 return -EAGAIN;
492
493 if (pte) {
494 WARN_ON(addr_is_memory(addr) &&
495 get_host_state(hyp_phys_to_page(addr)) != PKVM_NOPAGE);
496 return -EPERM;
497 }
498
499 do {
500 u64 granule = kvm_granule_size(level);
501 cur.start = ALIGN_DOWN(addr, granule);
502 cur.end = cur.start + granule;
503 level++;
504 } while ((level <= KVM_PGTABLE_LAST_LEVEL) &&
505 !(kvm_level_supports_block_mapping(level) &&
506 range_included(&cur, range)));
507
508 *range = cur;
509
510 return 0;
511 }
512
host_stage2_idmap_locked(phys_addr_t addr,u64 size,enum kvm_pgtable_prot prot)513 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
514 enum kvm_pgtable_prot prot)
515 {
516 return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
517 }
518
__host_update_page_state(phys_addr_t addr,u64 size,enum pkvm_page_state state)519 static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state)
520 {
521 for_each_hyp_page(page, addr, size)
522 set_host_state(page, state);
523 }
524
host_stage2_set_owner_locked(phys_addr_t addr,u64 size,u8 owner_id)525 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
526 {
527 int ret;
528
529 if (!range_is_memory(addr, addr + size))
530 return -EPERM;
531
532 ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
533 addr, size, &host_s2_pool, owner_id);
534 if (ret)
535 return ret;
536
537 /* Don't forget to update the vmemmap tracking for the host */
538 if (owner_id == PKVM_ID_HOST)
539 __host_update_page_state(addr, size, PKVM_PAGE_OWNED);
540 else
541 __host_update_page_state(addr, size, PKVM_NOPAGE);
542
543 return 0;
544 }
545
host_stage2_force_pte_cb(u64 addr,u64 end,enum kvm_pgtable_prot prot)546 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
547 {
548 /*
549 * Block mappings must be used with care in the host stage-2 as a
550 * kvm_pgtable_stage2_map() operation targeting a page in the range of
551 * an existing block will delete the block under the assumption that
552 * mappings in the rest of the block range can always be rebuilt lazily.
553 * That assumption is correct for the host stage-2 with RWX mappings
554 * targeting memory or RW mappings targeting MMIO ranges (see
555 * host_stage2_idmap() below which implements some of the host memory
556 * abort logic). However, this is not safe for any other mappings where
557 * the host stage-2 page-table is in fact the only place where this
558 * state is stored. In all those cases, it is safer to use page-level
559 * mappings, hence avoiding to lose the state because of side-effects in
560 * kvm_pgtable_stage2_map().
561 */
562 if (range_is_memory(addr, end))
563 return prot != PKVM_HOST_MEM_PROT;
564 else
565 return prot != PKVM_HOST_MMIO_PROT;
566 }
567
host_stage2_idmap(u64 addr)568 static int host_stage2_idmap(u64 addr)
569 {
570 struct kvm_mem_range range;
571 bool is_memory = !!find_mem_range(addr, &range);
572 enum kvm_pgtable_prot prot;
573 int ret;
574
575 prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
576
577 host_lock_component();
578 ret = host_stage2_adjust_range(addr, &range);
579 if (ret)
580 goto unlock;
581
582 ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
583 unlock:
584 host_unlock_component();
585
586 return ret;
587 }
588
handle_host_mem_abort(struct kvm_cpu_context * host_ctxt)589 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
590 {
591 struct kvm_vcpu_fault_info fault;
592 u64 esr, addr;
593 int ret = 0;
594
595 esr = read_sysreg_el2(SYS_ESR);
596 if (!__get_fault_info(esr, &fault)) {
597 /*
598 * We've presumably raced with a page-table change which caused
599 * AT to fail, try again.
600 */
601 return;
602 }
603
604
605 /*
606 * Yikes, we couldn't resolve the fault IPA. This should reinject an
607 * abort into the host when we figure out how to do that.
608 */
609 BUG_ON(!(fault.hpfar_el2 & HPFAR_EL2_NS));
610 addr = FIELD_GET(HPFAR_EL2_FIPA, fault.hpfar_el2) << 12;
611
612 ret = host_stage2_idmap(addr);
613 BUG_ON(ret && ret != -EAGAIN);
614 }
615
616 struct check_walk_data {
617 enum pkvm_page_state desired;
618 enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr);
619 };
620
__check_page_state_visitor(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)621 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
622 enum kvm_pgtable_walk_flags visit)
623 {
624 struct check_walk_data *d = ctx->arg;
625
626 return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
627 }
628
check_page_state_range(struct kvm_pgtable * pgt,u64 addr,u64 size,struct check_walk_data * data)629 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
630 struct check_walk_data *data)
631 {
632 struct kvm_pgtable_walker walker = {
633 .cb = __check_page_state_visitor,
634 .arg = data,
635 .flags = KVM_PGTABLE_WALK_LEAF,
636 };
637
638 return kvm_pgtable_walk(pgt, addr, size, &walker);
639 }
640
__host_check_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)641 static int __host_check_page_state_range(u64 addr, u64 size,
642 enum pkvm_page_state state)
643 {
644 int ret;
645
646 ret = check_range_allowed_memory(addr, addr + size);
647 if (ret)
648 return ret;
649
650 hyp_assert_lock_held(&host_mmu.lock);
651
652 for_each_hyp_page(page, addr, size) {
653 if (get_host_state(page) != state)
654 return -EPERM;
655 }
656
657 return 0;
658 }
659
__host_set_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)660 static int __host_set_page_state_range(u64 addr, u64 size,
661 enum pkvm_page_state state)
662 {
663 if (get_host_state(hyp_phys_to_page(addr)) == PKVM_NOPAGE) {
664 int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT);
665
666 if (ret)
667 return ret;
668 }
669
670 __host_update_page_state(addr, size, state);
671
672 return 0;
673 }
674
__hyp_set_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)675 static void __hyp_set_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
676 {
677 for_each_hyp_page(page, phys, size)
678 set_hyp_state(page, state);
679 }
680
__hyp_check_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)681 static int __hyp_check_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
682 {
683 for_each_hyp_page(page, phys, size) {
684 if (get_hyp_state(page) != state)
685 return -EPERM;
686 }
687
688 return 0;
689 }
690
guest_get_page_state(kvm_pte_t pte,u64 addr)691 static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
692 {
693 if (!kvm_pte_valid(pte))
694 return PKVM_NOPAGE;
695
696 return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
697 }
698
__guest_check_page_state_range(struct pkvm_hyp_vm * vm,u64 addr,u64 size,enum pkvm_page_state state)699 static int __guest_check_page_state_range(struct pkvm_hyp_vm *vm, u64 addr,
700 u64 size, enum pkvm_page_state state)
701 {
702 struct check_walk_data d = {
703 .desired = state,
704 .get_page_state = guest_get_page_state,
705 };
706
707 hyp_assert_lock_held(&vm->lock);
708 return check_page_state_range(&vm->pgt, addr, size, &d);
709 }
710
__pkvm_host_share_hyp(u64 pfn)711 int __pkvm_host_share_hyp(u64 pfn)
712 {
713 u64 phys = hyp_pfn_to_phys(pfn);
714 u64 size = PAGE_SIZE;
715 int ret;
716
717 host_lock_component();
718 hyp_lock_component();
719
720 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
721 if (ret)
722 goto unlock;
723 ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
724 if (ret)
725 goto unlock;
726
727 __hyp_set_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
728 WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED));
729
730 unlock:
731 hyp_unlock_component();
732 host_unlock_component();
733
734 return ret;
735 }
736
__pkvm_host_unshare_hyp(u64 pfn)737 int __pkvm_host_unshare_hyp(u64 pfn)
738 {
739 u64 phys = hyp_pfn_to_phys(pfn);
740 u64 virt = (u64)__hyp_va(phys);
741 u64 size = PAGE_SIZE;
742 int ret;
743
744 host_lock_component();
745 hyp_lock_component();
746
747 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
748 if (ret)
749 goto unlock;
750 ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
751 if (ret)
752 goto unlock;
753 if (hyp_page_count((void *)virt)) {
754 ret = -EBUSY;
755 goto unlock;
756 }
757
758 __hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
759 WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED));
760
761 unlock:
762 hyp_unlock_component();
763 host_unlock_component();
764
765 return ret;
766 }
767
__pkvm_host_donate_hyp(u64 pfn,u64 nr_pages)768 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
769 {
770 u64 phys = hyp_pfn_to_phys(pfn);
771 u64 size = PAGE_SIZE * nr_pages;
772 void *virt = __hyp_va(phys);
773 int ret;
774
775 host_lock_component();
776 hyp_lock_component();
777
778 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
779 if (ret)
780 goto unlock;
781 ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
782 if (ret)
783 goto unlock;
784
785 __hyp_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
786 WARN_ON(pkvm_create_mappings_locked(virt, virt + size, PAGE_HYP));
787 WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP));
788
789 unlock:
790 hyp_unlock_component();
791 host_unlock_component();
792
793 return ret;
794 }
795
__pkvm_hyp_donate_host(u64 pfn,u64 nr_pages)796 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
797 {
798 u64 phys = hyp_pfn_to_phys(pfn);
799 u64 size = PAGE_SIZE * nr_pages;
800 u64 virt = (u64)__hyp_va(phys);
801 int ret;
802
803 host_lock_component();
804 hyp_lock_component();
805
806 ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
807 if (ret)
808 goto unlock;
809 ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE);
810 if (ret)
811 goto unlock;
812
813 __hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
814 WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size);
815 WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST));
816
817 unlock:
818 hyp_unlock_component();
819 host_unlock_component();
820
821 return ret;
822 }
823
hyp_pin_shared_mem(void * from,void * to)824 int hyp_pin_shared_mem(void *from, void *to)
825 {
826 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
827 u64 end = PAGE_ALIGN((u64)to);
828 u64 phys = __hyp_pa(start);
829 u64 size = end - start;
830 struct hyp_page *p;
831 int ret;
832
833 host_lock_component();
834 hyp_lock_component();
835
836 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
837 if (ret)
838 goto unlock;
839
840 ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
841 if (ret)
842 goto unlock;
843
844 for (cur = start; cur < end; cur += PAGE_SIZE) {
845 p = hyp_virt_to_page(cur);
846 hyp_page_ref_inc(p);
847 if (p->refcount == 1)
848 WARN_ON(pkvm_create_mappings_locked((void *)cur,
849 (void *)cur + PAGE_SIZE,
850 PAGE_HYP));
851 }
852
853 unlock:
854 hyp_unlock_component();
855 host_unlock_component();
856
857 return ret;
858 }
859
hyp_unpin_shared_mem(void * from,void * to)860 void hyp_unpin_shared_mem(void *from, void *to)
861 {
862 u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
863 u64 end = PAGE_ALIGN((u64)to);
864 struct hyp_page *p;
865
866 host_lock_component();
867 hyp_lock_component();
868
869 for (cur = start; cur < end; cur += PAGE_SIZE) {
870 p = hyp_virt_to_page(cur);
871 if (p->refcount == 1)
872 WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, cur, PAGE_SIZE) != PAGE_SIZE);
873 hyp_page_ref_dec(p);
874 }
875
876 hyp_unlock_component();
877 host_unlock_component();
878 }
879
__pkvm_host_share_ffa(u64 pfn,u64 nr_pages)880 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
881 {
882 u64 phys = hyp_pfn_to_phys(pfn);
883 u64 size = PAGE_SIZE * nr_pages;
884 int ret;
885
886 host_lock_component();
887 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
888 if (!ret)
889 ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
890 host_unlock_component();
891
892 return ret;
893 }
894
__pkvm_host_unshare_ffa(u64 pfn,u64 nr_pages)895 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
896 {
897 u64 phys = hyp_pfn_to_phys(pfn);
898 u64 size = PAGE_SIZE * nr_pages;
899 int ret;
900
901 host_lock_component();
902 ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
903 if (!ret)
904 ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
905 host_unlock_component();
906
907 return ret;
908 }
909
__guest_check_transition_size(u64 phys,u64 ipa,u64 nr_pages,u64 * size)910 static int __guest_check_transition_size(u64 phys, u64 ipa, u64 nr_pages, u64 *size)
911 {
912 size_t block_size;
913
914 if (nr_pages == 1) {
915 *size = PAGE_SIZE;
916 return 0;
917 }
918
919 /* We solely support second to last level huge mapping */
920 block_size = kvm_granule_size(KVM_PGTABLE_LAST_LEVEL - 1);
921
922 if (nr_pages != block_size >> PAGE_SHIFT)
923 return -EINVAL;
924
925 if (!IS_ALIGNED(phys | ipa, block_size))
926 return -EINVAL;
927
928 *size = block_size;
929 return 0;
930 }
931
__pkvm_host_share_guest(u64 pfn,u64 gfn,u64 nr_pages,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)932 int __pkvm_host_share_guest(u64 pfn, u64 gfn, u64 nr_pages, struct pkvm_hyp_vcpu *vcpu,
933 enum kvm_pgtable_prot prot)
934 {
935 struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
936 u64 phys = hyp_pfn_to_phys(pfn);
937 u64 ipa = hyp_pfn_to_phys(gfn);
938 u64 size;
939 int ret;
940
941 if (prot & ~KVM_PGTABLE_PROT_RWX)
942 return -EINVAL;
943
944 ret = __guest_check_transition_size(phys, ipa, nr_pages, &size);
945 if (ret)
946 return ret;
947
948 ret = check_range_allowed_memory(phys, phys + size);
949 if (ret)
950 return ret;
951
952 host_lock_component();
953 guest_lock_component(vm);
954
955 ret = __guest_check_page_state_range(vm, ipa, size, PKVM_NOPAGE);
956 if (ret)
957 goto unlock;
958
959 for_each_hyp_page(page, phys, size) {
960 switch (get_host_state(page)) {
961 case PKVM_PAGE_OWNED:
962 continue;
963 case PKVM_PAGE_SHARED_OWNED:
964 if (page->host_share_guest_count == U32_MAX) {
965 ret = -EBUSY;
966 goto unlock;
967 }
968
969 /* Only host to np-guest multi-sharing is tolerated */
970 if (page->host_share_guest_count)
971 continue;
972
973 fallthrough;
974 default:
975 ret = -EPERM;
976 goto unlock;
977 }
978 }
979
980 for_each_hyp_page(page, phys, size) {
981 set_host_state(page, PKVM_PAGE_SHARED_OWNED);
982 page->host_share_guest_count++;
983 }
984
985 WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, size, phys,
986 pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED),
987 &vcpu->vcpu.arch.pkvm_memcache, 0));
988
989 unlock:
990 guest_unlock_component(vm);
991 host_unlock_component();
992
993 return ret;
994 }
995
__check_host_shared_guest(struct pkvm_hyp_vm * vm,u64 * __phys,u64 ipa,u64 size)996 static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa, u64 size)
997 {
998 enum pkvm_page_state state;
999 kvm_pte_t pte;
1000 u64 phys;
1001 s8 level;
1002 int ret;
1003
1004 ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
1005 if (ret)
1006 return ret;
1007 if (!kvm_pte_valid(pte))
1008 return -ENOENT;
1009 if (kvm_granule_size(level) != size)
1010 return -E2BIG;
1011
1012 state = guest_get_page_state(pte, ipa);
1013 if (state != PKVM_PAGE_SHARED_BORROWED)
1014 return -EPERM;
1015
1016 phys = kvm_pte_to_phys(pte);
1017 ret = check_range_allowed_memory(phys, phys + size);
1018 if (WARN_ON(ret))
1019 return ret;
1020
1021 for_each_hyp_page(page, phys, size) {
1022 if (get_host_state(page) != PKVM_PAGE_SHARED_OWNED)
1023 return -EPERM;
1024 if (WARN_ON(!page->host_share_guest_count))
1025 return -EINVAL;
1026 }
1027
1028 *__phys = phys;
1029
1030 return 0;
1031 }
1032
__pkvm_host_unshare_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1033 int __pkvm_host_unshare_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1034 {
1035 u64 ipa = hyp_pfn_to_phys(gfn);
1036 u64 size, phys;
1037 int ret;
1038
1039 ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1040 if (ret)
1041 return ret;
1042
1043 host_lock_component();
1044 guest_lock_component(vm);
1045
1046 ret = __check_host_shared_guest(vm, &phys, ipa, size);
1047 if (ret)
1048 goto unlock;
1049
1050 ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, size);
1051 if (ret)
1052 goto unlock;
1053
1054 for_each_hyp_page(page, phys, size) {
1055 /* __check_host_shared_guest() protects against underflow */
1056 page->host_share_guest_count--;
1057 if (!page->host_share_guest_count)
1058 set_host_state(page, PKVM_PAGE_OWNED);
1059 }
1060
1061 unlock:
1062 guest_unlock_component(vm);
1063 host_unlock_component();
1064
1065 return ret;
1066 }
1067
assert_host_shared_guest(struct pkvm_hyp_vm * vm,u64 ipa,u64 size)1068 static void assert_host_shared_guest(struct pkvm_hyp_vm *vm, u64 ipa, u64 size)
1069 {
1070 u64 phys;
1071 int ret;
1072
1073 if (!IS_ENABLED(CONFIG_NVHE_EL2_DEBUG))
1074 return;
1075
1076 host_lock_component();
1077 guest_lock_component(vm);
1078
1079 ret = __check_host_shared_guest(vm, &phys, ipa, size);
1080
1081 guest_unlock_component(vm);
1082 host_unlock_component();
1083
1084 WARN_ON(ret && ret != -ENOENT);
1085 }
1086
__pkvm_host_relax_perms_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)1087 int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot)
1088 {
1089 struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1090 u64 ipa = hyp_pfn_to_phys(gfn);
1091 int ret;
1092
1093 if (pkvm_hyp_vm_is_protected(vm))
1094 return -EPERM;
1095
1096 if (prot & ~KVM_PGTABLE_PROT_RWX)
1097 return -EINVAL;
1098
1099 assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1100 guest_lock_component(vm);
1101 ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0);
1102 guest_unlock_component(vm);
1103
1104 return ret;
1105 }
1106
__pkvm_host_wrprotect_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1107 int __pkvm_host_wrprotect_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1108 {
1109 u64 size, ipa = hyp_pfn_to_phys(gfn);
1110 int ret;
1111
1112 if (pkvm_hyp_vm_is_protected(vm))
1113 return -EPERM;
1114
1115 ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1116 if (ret)
1117 return ret;
1118
1119 assert_host_shared_guest(vm, ipa, size);
1120 guest_lock_component(vm);
1121 ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, size);
1122 guest_unlock_component(vm);
1123
1124 return ret;
1125 }
1126
__pkvm_host_test_clear_young_guest(u64 gfn,u64 nr_pages,bool mkold,struct pkvm_hyp_vm * vm)1127 int __pkvm_host_test_clear_young_guest(u64 gfn, u64 nr_pages, bool mkold, struct pkvm_hyp_vm *vm)
1128 {
1129 u64 size, ipa = hyp_pfn_to_phys(gfn);
1130 int ret;
1131
1132 if (pkvm_hyp_vm_is_protected(vm))
1133 return -EPERM;
1134
1135 ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1136 if (ret)
1137 return ret;
1138
1139 assert_host_shared_guest(vm, ipa, size);
1140 guest_lock_component(vm);
1141 ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, size, mkold);
1142 guest_unlock_component(vm);
1143
1144 return ret;
1145 }
1146
__pkvm_host_mkyoung_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu)1147 int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu)
1148 {
1149 struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1150 u64 ipa = hyp_pfn_to_phys(gfn);
1151
1152 if (pkvm_hyp_vm_is_protected(vm))
1153 return -EPERM;
1154
1155 assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1156 guest_lock_component(vm);
1157 kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0);
1158 guest_unlock_component(vm);
1159
1160 return 0;
1161 }
1162
1163 #ifdef CONFIG_NVHE_EL2_DEBUG
1164 struct pkvm_expected_state {
1165 enum pkvm_page_state host;
1166 enum pkvm_page_state hyp;
1167 enum pkvm_page_state guest[2]; /* [ gfn, gfn + 1 ] */
1168 };
1169
1170 static struct pkvm_expected_state selftest_state;
1171 static struct hyp_page *selftest_page;
1172
1173 static struct pkvm_hyp_vm selftest_vm = {
1174 .kvm = {
1175 .arch = {
1176 .mmu = {
1177 .arch = &selftest_vm.kvm.arch,
1178 .pgt = &selftest_vm.pgt,
1179 },
1180 },
1181 },
1182 };
1183
1184 static struct pkvm_hyp_vcpu selftest_vcpu = {
1185 .vcpu = {
1186 .arch = {
1187 .hw_mmu = &selftest_vm.kvm.arch.mmu,
1188 },
1189 .kvm = &selftest_vm.kvm,
1190 },
1191 };
1192
init_selftest_vm(void * virt)1193 static void init_selftest_vm(void *virt)
1194 {
1195 struct hyp_page *p = hyp_virt_to_page(virt);
1196 int i;
1197
1198 selftest_vm.kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
1199 WARN_ON(kvm_guest_prepare_stage2(&selftest_vm, virt));
1200
1201 for (i = 0; i < pkvm_selftest_pages(); i++) {
1202 if (p[i].refcount)
1203 continue;
1204 p[i].refcount = 1;
1205 hyp_put_page(&selftest_vm.pool, hyp_page_to_virt(&p[i]));
1206 }
1207 }
1208
selftest_ipa(void)1209 static u64 selftest_ipa(void)
1210 {
1211 return BIT(selftest_vm.pgt.ia_bits - 1);
1212 }
1213
assert_page_state(void)1214 static void assert_page_state(void)
1215 {
1216 void *virt = hyp_page_to_virt(selftest_page);
1217 u64 size = PAGE_SIZE << selftest_page->order;
1218 struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1219 u64 phys = hyp_virt_to_phys(virt);
1220 u64 ipa[2] = { selftest_ipa(), selftest_ipa() + PAGE_SIZE };
1221 struct pkvm_hyp_vm *vm;
1222
1223 vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1224
1225 host_lock_component();
1226 WARN_ON(__host_check_page_state_range(phys, size, selftest_state.host));
1227 host_unlock_component();
1228
1229 hyp_lock_component();
1230 WARN_ON(__hyp_check_page_state_range(phys, size, selftest_state.hyp));
1231 hyp_unlock_component();
1232
1233 guest_lock_component(&selftest_vm);
1234 WARN_ON(__guest_check_page_state_range(vm, ipa[0], size, selftest_state.guest[0]));
1235 WARN_ON(__guest_check_page_state_range(vm, ipa[1], size, selftest_state.guest[1]));
1236 guest_unlock_component(&selftest_vm);
1237 }
1238
1239 #define assert_transition_res(res, fn, ...) \
1240 do { \
1241 WARN_ON(fn(__VA_ARGS__) != res); \
1242 assert_page_state(); \
1243 } while (0)
1244
pkvm_ownership_selftest(void * base)1245 void pkvm_ownership_selftest(void *base)
1246 {
1247 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_RWX;
1248 void *virt = hyp_alloc_pages(&host_s2_pool, 0);
1249 struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1250 struct pkvm_hyp_vm *vm = &selftest_vm;
1251 u64 phys, size, pfn, gfn;
1252
1253 WARN_ON(!virt);
1254 selftest_page = hyp_virt_to_page(virt);
1255 selftest_page->refcount = 0;
1256 init_selftest_vm(base);
1257
1258 size = PAGE_SIZE << selftest_page->order;
1259 phys = hyp_virt_to_phys(virt);
1260 pfn = hyp_phys_to_pfn(phys);
1261 gfn = hyp_phys_to_pfn(selftest_ipa());
1262
1263 selftest_state.host = PKVM_NOPAGE;
1264 selftest_state.hyp = PKVM_PAGE_OWNED;
1265 selftest_state.guest[0] = selftest_state.guest[1] = PKVM_NOPAGE;
1266 assert_page_state();
1267 assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1268 assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1269 assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1270 assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1271 assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1272 assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1273 assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1274 assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1275
1276 selftest_state.host = PKVM_PAGE_OWNED;
1277 selftest_state.hyp = PKVM_NOPAGE;
1278 assert_transition_res(0, __pkvm_hyp_donate_host, pfn, 1);
1279 assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1280 assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1281 assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1282 assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1283 assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1284
1285 selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1286 selftest_state.hyp = PKVM_PAGE_SHARED_BORROWED;
1287 assert_transition_res(0, __pkvm_host_share_hyp, pfn);
1288 assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1289 assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1290 assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1291 assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1292 assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1293 assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1294
1295 assert_transition_res(0, hyp_pin_shared_mem, virt, virt + size);
1296 assert_transition_res(0, hyp_pin_shared_mem, virt, virt + size);
1297 hyp_unpin_shared_mem(virt, virt + size);
1298 WARN_ON(hyp_page_count(virt) != 1);
1299 assert_transition_res(-EBUSY, __pkvm_host_unshare_hyp, pfn);
1300 assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1301 assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1302 assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1303 assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1304 assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1305 assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1306
1307 hyp_unpin_shared_mem(virt, virt + size);
1308 assert_page_state();
1309 WARN_ON(hyp_page_count(virt));
1310
1311 selftest_state.host = PKVM_PAGE_OWNED;
1312 selftest_state.hyp = PKVM_NOPAGE;
1313 assert_transition_res(0, __pkvm_host_unshare_hyp, pfn);
1314
1315 selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1316 selftest_state.hyp = PKVM_NOPAGE;
1317 assert_transition_res(0, __pkvm_host_share_ffa, pfn, 1);
1318 assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1319 assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1320 assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1321 assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1322 assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1323 assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1324 assert_transition_res(-ENOENT, __pkvm_host_unshare_guest, gfn, 1, vm);
1325 assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1326
1327 selftest_state.host = PKVM_PAGE_OWNED;
1328 selftest_state.hyp = PKVM_NOPAGE;
1329 assert_transition_res(0, __pkvm_host_unshare_ffa, pfn, 1);
1330 assert_transition_res(-EPERM, __pkvm_host_unshare_ffa, pfn, 1);
1331
1332 selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1333 selftest_state.guest[0] = PKVM_PAGE_SHARED_BORROWED;
1334 assert_transition_res(0, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1335 assert_transition_res(-EPERM, __pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1336 assert_transition_res(-EPERM, __pkvm_host_share_ffa, pfn, 1);
1337 assert_transition_res(-EPERM, __pkvm_host_donate_hyp, pfn, 1);
1338 assert_transition_res(-EPERM, __pkvm_host_share_hyp, pfn);
1339 assert_transition_res(-EPERM, __pkvm_host_unshare_hyp, pfn);
1340 assert_transition_res(-EPERM, __pkvm_hyp_donate_host, pfn, 1);
1341 assert_transition_res(-EPERM, hyp_pin_shared_mem, virt, virt + size);
1342
1343 selftest_state.guest[1] = PKVM_PAGE_SHARED_BORROWED;
1344 assert_transition_res(0, __pkvm_host_share_guest, pfn, gfn + 1, 1, vcpu, prot);
1345 WARN_ON(hyp_virt_to_page(virt)->host_share_guest_count != 2);
1346
1347 selftest_state.guest[0] = PKVM_NOPAGE;
1348 assert_transition_res(0, __pkvm_host_unshare_guest, gfn, 1, vm);
1349
1350 selftest_state.guest[1] = PKVM_NOPAGE;
1351 selftest_state.host = PKVM_PAGE_OWNED;
1352 assert_transition_res(0, __pkvm_host_unshare_guest, gfn + 1, 1, vm);
1353
1354 selftest_state.host = PKVM_NOPAGE;
1355 selftest_state.hyp = PKVM_PAGE_OWNED;
1356 assert_transition_res(0, __pkvm_host_donate_hyp, pfn, 1);
1357
1358 selftest_page->refcount = 1;
1359 hyp_put_page(&host_s2_pool, virt);
1360 }
1361 #endif
1362