xref: /freebsd/contrib/wpa/src/utils/common.c (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 /*
2  * wpa_supplicant/hostapd / common helper functions, etc.
3  * Copyright (c) 2002-2019, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <limits.h>
11 
12 #include "common/ieee802_11_defs.h"
13 #include "common.h"
14 
15 
hex2num(char c)16 int hex2num(char c)
17 {
18 	if (c >= '0' && c <= '9')
19 		return c - '0';
20 	if (c >= 'a' && c <= 'f')
21 		return c - 'a' + 10;
22 	if (c >= 'A' && c <= 'F')
23 		return c - 'A' + 10;
24 	return -1;
25 }
26 
27 
hex2byte(const char * hex)28 int hex2byte(const char *hex)
29 {
30 	int a, b;
31 	a = hex2num(*hex++);
32 	if (a < 0)
33 		return -1;
34 	b = hex2num(*hex++);
35 	if (b < 0)
36 		return -1;
37 	return (a << 4) | b;
38 }
39 
40 
hwaddr_parse(const char * txt,u8 * addr)41 static const char * hwaddr_parse(const char *txt, u8 *addr)
42 {
43 	size_t i;
44 
45 	for (i = 0; i < ETH_ALEN; i++) {
46 		int a;
47 
48 		a = hex2byte(txt);
49 		if (a < 0)
50 			return NULL;
51 		txt += 2;
52 		addr[i] = a;
53 		if (i < ETH_ALEN - 1 && *txt++ != ':')
54 			return NULL;
55 	}
56 	return txt;
57 }
58 
59 
60 /**
61  * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
62  * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
63  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
64  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
65  */
hwaddr_aton(const char * txt,u8 * addr)66 int hwaddr_aton(const char *txt, u8 *addr)
67 {
68 	return hwaddr_parse(txt, addr) ? 0 : -1;
69 }
70 
71 
72 /**
73  * hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
74  * @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
75  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
76  * @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
77  * @maskable: Flag to indicate whether a mask is allowed
78  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
79  */
hwaddr_masked_aton(const char * txt,u8 * addr,u8 * mask,u8 maskable)80 int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
81 {
82 	const char *r;
83 
84 	/* parse address part */
85 	r = hwaddr_parse(txt, addr);
86 	if (!r)
87 		return -1;
88 
89 	/* check for optional mask */
90 	if (*r == '\0' || isspace((unsigned char) *r)) {
91 		/* no mask specified, assume default */
92 		os_memset(mask, 0xff, ETH_ALEN);
93 	} else if (maskable && *r == '/') {
94 		/* mask specified and allowed */
95 		r = hwaddr_parse(r + 1, mask);
96 		/* parser error? */
97 		if (!r)
98 			return -1;
99 	} else {
100 		/* mask specified but not allowed or trailing garbage */
101 		return -1;
102 	}
103 
104 	return 0;
105 }
106 
107 
108 /**
109  * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
110  * @txt: MAC address as a string (e.g., "001122334455")
111  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
112  * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
113  */
hwaddr_compact_aton(const char * txt,u8 * addr)114 int hwaddr_compact_aton(const char *txt, u8 *addr)
115 {
116 	int i;
117 
118 	for (i = 0; i < 6; i++) {
119 		int a, b;
120 
121 		a = hex2num(*txt++);
122 		if (a < 0)
123 			return -1;
124 		b = hex2num(*txt++);
125 		if (b < 0)
126 			return -1;
127 		*addr++ = (a << 4) | b;
128 	}
129 
130 	return 0;
131 }
132 
133 /**
134  * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
135  * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
136  * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
137  * Returns: Characters used (> 0) on success, -1 on failure
138  */
hwaddr_aton2(const char * txt,u8 * addr)139 int hwaddr_aton2(const char *txt, u8 *addr)
140 {
141 	int i;
142 	const char *pos = txt;
143 
144 	for (i = 0; i < 6; i++) {
145 		int a, b;
146 
147 		while (*pos == ':' || *pos == '.' || *pos == '-')
148 			pos++;
149 
150 		a = hex2num(*pos++);
151 		if (a < 0)
152 			return -1;
153 		b = hex2num(*pos++);
154 		if (b < 0)
155 			return -1;
156 		*addr++ = (a << 4) | b;
157 	}
158 
159 	return pos - txt;
160 }
161 
162 
163 /**
164  * hexstr2bin - Convert ASCII hex string into binary data
165  * @hex: ASCII hex string (e.g., "01ab")
166  * @buf: Buffer for the binary data
167  * @len: Length of the text to convert in bytes (of buf); hex will be double
168  * this size
169  * Returns: 0 on success, -1 on failure (invalid hex string)
170  */
hexstr2bin(const char * hex,u8 * buf,size_t len)171 int hexstr2bin(const char *hex, u8 *buf, size_t len)
172 {
173 	size_t i;
174 	int a;
175 	const char *ipos = hex;
176 	u8 *opos = buf;
177 
178 	for (i = 0; i < len; i++) {
179 		a = hex2byte(ipos);
180 		if (a < 0)
181 			return -1;
182 		*opos++ = a;
183 		ipos += 2;
184 	}
185 	return 0;
186 }
187 
188 
hwaddr_mask_txt(char * buf,size_t len,const u8 * addr,const u8 * mask)189 int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
190 {
191 	size_t i;
192 	int print_mask = 0;
193 	int res;
194 
195 	for (i = 0; i < ETH_ALEN; i++) {
196 		if (mask[i] != 0xff) {
197 			print_mask = 1;
198 			break;
199 		}
200 	}
201 
202 	if (print_mask)
203 		res = os_snprintf(buf, len, MACSTR "/" MACSTR,
204 				  MAC2STR(addr), MAC2STR(mask));
205 	else
206 		res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
207 	if (os_snprintf_error(len, res))
208 		return -1;
209 	return res;
210 }
211 
212 
213 /**
214  * inc_byte_array - Increment arbitrary length byte array by one
215  * @counter: Pointer to byte array
216  * @len: Length of the counter in bytes
217  *
218  * This function increments the last byte of the counter by one and continues
219  * rolling over to more significant bytes if the byte was incremented from
220  * 0xff to 0x00.
221  */
inc_byte_array(u8 * counter,size_t len)222 void inc_byte_array(u8 *counter, size_t len)
223 {
224 	int pos = len - 1;
225 	while (pos >= 0) {
226 		counter[pos]++;
227 		if (counter[pos] != 0)
228 			break;
229 		pos--;
230 	}
231 }
232 
233 
buf_shift_right(u8 * buf,size_t len,size_t bits)234 void buf_shift_right(u8 *buf, size_t len, size_t bits)
235 {
236 	size_t i;
237 
238 	for (i = len - 1; i > 0; i--)
239 		buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
240 	buf[0] >>= bits;
241 }
242 
243 
wpa_get_ntp_timestamp(u8 * buf)244 void wpa_get_ntp_timestamp(u8 *buf)
245 {
246 	struct os_time now;
247 	u32 sec, usec;
248 	be32 tmp;
249 
250 	/* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
251 	os_get_time(&now);
252 	sec = now.sec + 2208988800U; /* Epoch to 1900 */
253 	/* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
254 	usec = now.usec;
255 	usec = 4295 * usec - (usec >> 5) - (usec >> 9);
256 	tmp = host_to_be32(sec);
257 	os_memcpy(buf, (u8 *) &tmp, 4);
258 	tmp = host_to_be32(usec);
259 	os_memcpy(buf + 4, (u8 *) &tmp, 4);
260 }
261 
262 /**
263  * wpa_scnprintf - Simpler-to-use snprintf function
264  * @buf: Output buffer
265  * @size: Buffer size
266  * @fmt: format
267  *
268  * Simpler snprintf version that doesn't require further error checks - the
269  * return value only indicates how many bytes were actually written, excluding
270  * the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
271  */
wpa_scnprintf(char * buf,size_t size,const char * fmt,...)272 int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
273 {
274 	va_list ap;
275 	int ret;
276 
277 	if (!size)
278 		return 0;
279 
280 	va_start(ap, fmt);
281 	ret = vsnprintf(buf, size, fmt, ap);
282 	va_end(ap);
283 
284 	if (ret < 0)
285 		return 0;
286 	if ((size_t) ret >= size)
287 		return size - 1;
288 
289 	return ret;
290 }
291 
292 
wpa_snprintf_hex_sep(char * buf,size_t buf_size,const u8 * data,size_t len,char sep)293 int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
294 			 char sep)
295 {
296 	size_t i;
297 	char *pos = buf, *end = buf + buf_size;
298 	int ret;
299 
300 	if (buf_size == 0)
301 		return 0;
302 
303 	for (i = 0; i < len; i++) {
304 		ret = os_snprintf(pos, end - pos, "%02x%c",
305 				  data[i], sep);
306 		if (os_snprintf_error(end - pos, ret)) {
307 			end[-1] = '\0';
308 			return pos - buf;
309 		}
310 		pos += ret;
311 	}
312 	pos[-1] = '\0';
313 	return pos - buf;
314 }
315 
316 
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)317 static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
318 				    size_t len, int uppercase)
319 {
320 	size_t i;
321 	char *pos = buf, *end = buf + buf_size;
322 	int ret;
323 	if (buf_size == 0)
324 		return 0;
325 	for (i = 0; i < len; i++) {
326 		ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
327 				  data[i]);
328 		if (os_snprintf_error(end - pos, ret)) {
329 			end[-1] = '\0';
330 			return pos - buf;
331 		}
332 		pos += ret;
333 	}
334 	end[-1] = '\0';
335 	return pos - buf;
336 }
337 
338 /**
339  * wpa_snprintf_hex - Print data as a hex string into a buffer
340  * @buf: Memory area to use as the output buffer
341  * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
342  * @data: Data to be printed
343  * @len: Length of data in bytes
344  * Returns: Number of bytes written
345  */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)346 int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
347 {
348 	return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
349 }
350 
351 
352 /**
353  * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
354  * @buf: Memory area to use as the output buffer
355  * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
356  * @data: Data to be printed
357  * @len: Length of data in bytes
358  * Returns: Number of bytes written
359  */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)360 int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
361 			       size_t len)
362 {
363 	return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
364 }
365 
366 
367 #ifdef CONFIG_ANSI_C_EXTRA
368 
369 #ifdef _WIN32_WCE
perror(const char * s)370 void perror(const char *s)
371 {
372 	wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
373 		   s, (int) GetLastError());
374 }
375 #endif /* _WIN32_WCE */
376 
377 
378 int optind = 1;
379 int optopt;
380 char *optarg;
381 
getopt(int argc,char * const argv[],const char * optstring)382 int getopt(int argc, char *const argv[], const char *optstring)
383 {
384 	static int optchr = 1;
385 	char *cp;
386 
387 	if (optchr == 1) {
388 		if (optind >= argc) {
389 			/* all arguments processed */
390 			return EOF;
391 		}
392 
393 		if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
394 			/* no option characters */
395 			return EOF;
396 		}
397 	}
398 
399 	if (os_strcmp(argv[optind], "--") == 0) {
400 		/* no more options */
401 		optind++;
402 		return EOF;
403 	}
404 
405 	optopt = argv[optind][optchr];
406 	cp = os_strchr(optstring, optopt);
407 	if (cp == NULL || optopt == ':') {
408 		if (argv[optind][++optchr] == '\0') {
409 			optchr = 1;
410 			optind++;
411 		}
412 		return '?';
413 	}
414 
415 	if (cp[1] == ':') {
416 		/* Argument required */
417 		optchr = 1;
418 		if (argv[optind][optchr + 1]) {
419 			/* No space between option and argument */
420 			optarg = &argv[optind++][optchr + 1];
421 		} else if (++optind >= argc) {
422 			/* option requires an argument */
423 			return '?';
424 		} else {
425 			/* Argument in the next argv */
426 			optarg = argv[optind++];
427 		}
428 	} else {
429 		/* No argument */
430 		if (argv[optind][++optchr] == '\0') {
431 			optchr = 1;
432 			optind++;
433 		}
434 		optarg = NULL;
435 	}
436 	return *cp;
437 }
438 #endif /* CONFIG_ANSI_C_EXTRA */
439 
440 
441 #ifdef CONFIG_NATIVE_WINDOWS
442 /**
443  * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
444  * @str: Pointer to string to convert
445  *
446  * This function converts a unicode string to ASCII using the same
447  * buffer for output. If UNICODE is not set, the buffer is not
448  * modified.
449  */
wpa_unicode2ascii_inplace(TCHAR * str)450 void wpa_unicode2ascii_inplace(TCHAR *str)
451 {
452 #ifdef UNICODE
453 	char *dst = (char *) str;
454 	while (*str)
455 		*dst++ = (char) *str++;
456 	*dst = '\0';
457 #endif /* UNICODE */
458 }
459 
460 
wpa_strdup_tchar(const char * str)461 TCHAR * wpa_strdup_tchar(const char *str)
462 {
463 #ifdef UNICODE
464 	TCHAR *buf;
465 	buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
466 	if (buf == NULL)
467 		return NULL;
468 	wsprintf(buf, L"%S", str);
469 	return buf;
470 #else /* UNICODE */
471 	return os_strdup(str);
472 #endif /* UNICODE */
473 }
474 #endif /* CONFIG_NATIVE_WINDOWS */
475 
476 
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)477 void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
478 {
479 	char *end = txt + maxlen;
480 	size_t i;
481 
482 	for (i = 0; i < len; i++) {
483 		if (txt + 4 >= end)
484 			break;
485 
486 		switch (data[i]) {
487 		case '\"':
488 			*txt++ = '\\';
489 			*txt++ = '\"';
490 			break;
491 		case '\\':
492 			*txt++ = '\\';
493 			*txt++ = '\\';
494 			break;
495 		case '\033':
496 			*txt++ = '\\';
497 			*txt++ = 'e';
498 			break;
499 		case '\n':
500 			*txt++ = '\\';
501 			*txt++ = 'n';
502 			break;
503 		case '\r':
504 			*txt++ = '\\';
505 			*txt++ = 'r';
506 			break;
507 		case '\t':
508 			*txt++ = '\\';
509 			*txt++ = 't';
510 			break;
511 		default:
512 			if (data[i] >= 32 && data[i] <= 126) {
513 				*txt++ = data[i];
514 			} else {
515 				txt += os_snprintf(txt, end - txt, "\\x%02x",
516 						   data[i]);
517 			}
518 			break;
519 		}
520 	}
521 
522 	*txt = '\0';
523 }
524 
525 
printf_decode(u8 * buf,size_t maxlen,const char * str)526 size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
527 {
528 	const char *pos = str;
529 	size_t len = 0;
530 	int val;
531 
532 	while (*pos) {
533 		if (len + 1 >= maxlen)
534 			break;
535 		switch (*pos) {
536 		case '\\':
537 			pos++;
538 			switch (*pos) {
539 			case '\\':
540 				buf[len++] = '\\';
541 				pos++;
542 				break;
543 			case '"':
544 				buf[len++] = '"';
545 				pos++;
546 				break;
547 			case 'n':
548 				buf[len++] = '\n';
549 				pos++;
550 				break;
551 			case 'r':
552 				buf[len++] = '\r';
553 				pos++;
554 				break;
555 			case 't':
556 				buf[len++] = '\t';
557 				pos++;
558 				break;
559 			case 'e':
560 				buf[len++] = '\033';
561 				pos++;
562 				break;
563 			case 'x':
564 				pos++;
565 				val = hex2byte(pos);
566 				if (val < 0) {
567 					val = hex2num(*pos);
568 					if (val < 0)
569 						break;
570 					buf[len++] = val;
571 					pos++;
572 				} else {
573 					buf[len++] = val;
574 					pos += 2;
575 				}
576 				break;
577 			case '0':
578 			case '1':
579 			case '2':
580 			case '3':
581 			case '4':
582 			case '5':
583 			case '6':
584 			case '7':
585 				val = *pos++ - '0';
586 				if (*pos >= '0' && *pos <= '7')
587 					val = val * 8 + (*pos++ - '0');
588 				if (*pos >= '0' && *pos <= '7')
589 					val = val * 8 + (*pos++ - '0');
590 				buf[len++] = val;
591 				break;
592 			default:
593 				break;
594 			}
595 			break;
596 		default:
597 			buf[len++] = *pos++;
598 			break;
599 		}
600 	}
601 	if (maxlen > len)
602 		buf[len] = '\0';
603 
604 	return len;
605 }
606 
607 
608 /**
609  * wpa_ssid_txt - Convert SSID to a printable string
610  * @ssid: SSID (32-octet string)
611  * @ssid_len: Length of ssid in octets
612  * Returns: Pointer to a printable string
613  *
614  * This function can be used to convert SSIDs into printable form. In most
615  * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
616  * does not limit the used character set, so anything could be used in an SSID.
617  *
618  * This function uses a static buffer, so only one call can be used at the
619  * time, i.e., this is not re-entrant and the returned buffer must be used
620  * before calling this again.
621  */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)622 const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
623 {
624 	static char ssid_txt[SSID_MAX_LEN * 4 + 1];
625 
626 	if (ssid == NULL) {
627 		ssid_txt[0] = '\0';
628 		return ssid_txt;
629 	}
630 
631 	printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
632 	return ssid_txt;
633 }
634 
635 
__hide_aliasing_typecast(void * foo)636 void * __hide_aliasing_typecast(void *foo)
637 {
638 	return foo;
639 }
640 
641 
wpa_config_parse_string(const char * value,size_t * len)642 char * wpa_config_parse_string(const char *value, size_t *len)
643 {
644 	if (*value == '"') {
645 		const char *pos;
646 		char *str;
647 		value++;
648 		pos = os_strrchr(value, '"');
649 		if (pos == NULL || pos[1] != '\0')
650 			return NULL;
651 		*len = pos - value;
652 		str = dup_binstr(value, *len);
653 		if (str == NULL)
654 			return NULL;
655 		return str;
656 	} else if (*value == 'P' && value[1] == '"') {
657 		const char *pos;
658 		char *tstr, *str;
659 		size_t tlen;
660 		value += 2;
661 		pos = os_strrchr(value, '"');
662 		if (pos == NULL || pos[1] != '\0')
663 			return NULL;
664 		tlen = pos - value;
665 		tstr = dup_binstr(value, tlen);
666 		if (tstr == NULL)
667 			return NULL;
668 
669 		str = os_malloc(tlen + 1);
670 		if (str == NULL) {
671 			os_free(tstr);
672 			return NULL;
673 		}
674 
675 		*len = printf_decode((u8 *) str, tlen + 1, tstr);
676 		os_free(tstr);
677 
678 		return str;
679 	} else {
680 		u8 *str;
681 		size_t tlen, hlen = os_strlen(value);
682 		if (hlen & 1)
683 			return NULL;
684 		tlen = hlen / 2;
685 		str = os_malloc(tlen + 1);
686 		if (str == NULL)
687 			return NULL;
688 		if (hexstr2bin(value, str, tlen)) {
689 			os_free(str);
690 			return NULL;
691 		}
692 		str[tlen] = '\0';
693 		*len = tlen;
694 		return (char *) str;
695 	}
696 }
697 
698 
is_hex(const u8 * data,size_t len)699 int is_hex(const u8 *data, size_t len)
700 {
701 	size_t i;
702 
703 	for (i = 0; i < len; i++) {
704 		if (data[i] < 32 || data[i] >= 127)
705 			return 1;
706 	}
707 	return 0;
708 }
709 
710 
has_ctrl_char(const u8 * data,size_t len)711 int has_ctrl_char(const u8 *data, size_t len)
712 {
713 	size_t i;
714 
715 	for (i = 0; i < len; i++) {
716 		if (data[i] < 32 || data[i] == 127)
717 			return 1;
718 	}
719 	return 0;
720 }
721 
722 
has_newline(const char * str)723 int has_newline(const char *str)
724 {
725 	while (*str) {
726 		if (*str == '\n' || *str == '\r')
727 			return 1;
728 		str++;
729 	}
730 	return 0;
731 }
732 
733 
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)734 size_t merge_byte_arrays(u8 *res, size_t res_len,
735 			 const u8 *src1, size_t src1_len,
736 			 const u8 *src2, size_t src2_len)
737 {
738 	size_t len = 0;
739 
740 	os_memset(res, 0, res_len);
741 
742 	if (src1) {
743 		if (src1_len >= res_len) {
744 			os_memcpy(res, src1, res_len);
745 			return res_len;
746 		}
747 
748 		os_memcpy(res, src1, src1_len);
749 		len += src1_len;
750 	}
751 
752 	if (src2) {
753 		if (len + src2_len >= res_len) {
754 			os_memcpy(res + len, src2, res_len - len);
755 			return res_len;
756 		}
757 
758 		os_memcpy(res + len, src2, src2_len);
759 		len += src2_len;
760 	}
761 
762 	return len;
763 }
764 
765 
dup_binstr(const void * src,size_t len)766 char * dup_binstr(const void *src, size_t len)
767 {
768 	char *res;
769 
770 	if (src == NULL)
771 		return NULL;
772 	res = os_malloc(len + 1);
773 	if (res == NULL)
774 		return NULL;
775 	os_memcpy(res, src, len);
776 	res[len] = '\0';
777 
778 	return res;
779 }
780 
781 
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)782 int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
783 {
784 	struct wpa_freq_range *freq = NULL, *n;
785 	unsigned int count = 0;
786 	const char *pos, *pos2, *pos3;
787 
788 	/*
789 	 * Comma separated list of frequency ranges.
790 	 * For example: 2412-2432,2462,5000-6000
791 	 */
792 	pos = value;
793 	while (pos && pos[0]) {
794 		if (count == UINT_MAX) {
795 			os_free(freq);
796 			return -1;
797 		}
798 		n = os_realloc_array(freq, count + 1,
799 				     sizeof(struct wpa_freq_range));
800 		if (n == NULL) {
801 			os_free(freq);
802 			return -1;
803 		}
804 		freq = n;
805 		freq[count].min = atoi(pos);
806 		pos2 = os_strchr(pos, '-');
807 		pos3 = os_strchr(pos, ',');
808 		if (pos2 && (!pos3 || pos2 < pos3)) {
809 			pos2++;
810 			freq[count].max = atoi(pos2);
811 		} else
812 			freq[count].max = freq[count].min;
813 		pos = pos3;
814 		if (pos)
815 			pos++;
816 		count++;
817 	}
818 
819 	os_free(res->range);
820 	res->range = freq;
821 	res->num = count;
822 
823 	return 0;
824 }
825 
826 
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)827 int freq_range_list_includes(const struct wpa_freq_range_list *list,
828 			     unsigned int freq)
829 {
830 	unsigned int i;
831 
832 	if (list == NULL)
833 		return 0;
834 
835 	for (i = 0; i < list->num; i++) {
836 		if (freq >= list->range[i].min && freq <= list->range[i].max)
837 			return 1;
838 	}
839 
840 	return 0;
841 }
842 
843 
freq_range_list_str(const struct wpa_freq_range_list * list)844 char * freq_range_list_str(const struct wpa_freq_range_list *list)
845 {
846 	char *buf, *pos, *end;
847 	size_t maxlen;
848 	unsigned int i;
849 	int res;
850 
851 	if (list->num == 0)
852 		return NULL;
853 
854 	maxlen = list->num * 30;
855 	buf = os_malloc(maxlen);
856 	if (buf == NULL)
857 		return NULL;
858 	pos = buf;
859 	end = buf + maxlen;
860 
861 	for (i = 0; i < list->num; i++) {
862 		struct wpa_freq_range *range = &list->range[i];
863 
864 		if (range->min == range->max)
865 			res = os_snprintf(pos, end - pos, "%s%u",
866 					  i == 0 ? "" : ",", range->min);
867 		else
868 			res = os_snprintf(pos, end - pos, "%s%u-%u",
869 					  i == 0 ? "" : ",",
870 					  range->min, range->max);
871 		if (os_snprintf_error(end - pos, res)) {
872 			os_free(buf);
873 			return NULL;
874 		}
875 		pos += res;
876 	}
877 
878 	return buf;
879 }
880 
881 
int_array_len(const int * a)882 size_t int_array_len(const int *a)
883 {
884 	size_t i;
885 
886 	for (i = 0; a && a[i]; i++)
887 		;
888 	return i;
889 }
890 
891 
int_array_concat(int ** res,const int * a)892 void int_array_concat(int **res, const int *a)
893 {
894 	size_t reslen, alen, i, max_size;
895 	int *n;
896 
897 	reslen = int_array_len(*res);
898 	alen = int_array_len(a);
899 	max_size = (size_t) -1;
900 	if (alen >= max_size - reslen) {
901 		/* This should not really happen, but if it did, something
902 		 * would overflow. Do not try to merge the arrays; instead, make
903 		 * this behave like memory allocation failure to avoid messing
904 		 * up memory. */
905 		os_free(*res);
906 		*res = NULL;
907 		return;
908 	}
909 	n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
910 	if (n == NULL) {
911 		os_free(*res);
912 		*res = NULL;
913 		return;
914 	}
915 	for (i = 0; i <= alen; i++)
916 		n[reslen + i] = a[i];
917 	*res = n;
918 }
919 
920 
freq_cmp(const void * a,const void * b)921 static int freq_cmp(const void *a, const void *b)
922 {
923 	int _a = *(int *) a;
924 	int _b = *(int *) b;
925 
926 	if (_a == 0)
927 		return 1;
928 	if (_b == 0)
929 		return -1;
930 	return _a - _b;
931 }
932 
933 
int_array_sort_unique(int * a)934 void int_array_sort_unique(int *a)
935 {
936 	size_t alen, i, j;
937 
938 	if (a == NULL)
939 		return;
940 
941 	alen = int_array_len(a);
942 	qsort(a, alen, sizeof(int), freq_cmp);
943 
944 	i = 0;
945 	j = 1;
946 	while (a[i] && a[j]) {
947 		if (a[i] == a[j]) {
948 			j++;
949 			continue;
950 		}
951 		a[++i] = a[j++];
952 	}
953 	if (a[i])
954 		i++;
955 	a[i] = 0;
956 }
957 
958 
int_array_add_unique(int ** res,int a)959 void int_array_add_unique(int **res, int a)
960 {
961 	size_t reslen, max_size;
962 	int *n;
963 
964 	for (reslen = 0; *res && (*res)[reslen]; reslen++) {
965 		if ((*res)[reslen] == a)
966 			return; /* already in the list */
967 	}
968 
969 	max_size = (size_t) -1;
970 	if (reslen > max_size - 2) {
971 		/* This should not really happen in practice, but if it did,
972 		 * something would overflow. Do not try to add the new value;
973 		 * instead, make this behave like memory allocation failure to
974 		 * avoid messing up memory. */
975 		os_free(*res);
976 		*res = NULL;
977 		return;
978 	}
979 	n = os_realloc_array(*res, reslen + 2, sizeof(int));
980 	if (n == NULL) {
981 		os_free(*res);
982 		*res = NULL;
983 		return;
984 	}
985 
986 	n[reslen] = a;
987 	n[reslen + 1] = 0;
988 
989 	*res = n;
990 }
991 
992 
int_array_includes(int * arr,int val)993 bool int_array_includes(int *arr, int val)
994 {
995 	int i;
996 
997 	for (i = 0; arr && arr[i]; i++) {
998 		if (val == arr[i])
999 			return true;
1000 	}
1001 
1002 	return false;
1003 }
1004 
1005 
str_clear_free(char * str)1006 void str_clear_free(char *str)
1007 {
1008 	if (str) {
1009 		size_t len = os_strlen(str);
1010 		forced_memzero(str, len);
1011 		os_free(str);
1012 	}
1013 }
1014 
1015 
bin_clear_free(void * bin,size_t len)1016 void bin_clear_free(void *bin, size_t len)
1017 {
1018 	if (bin) {
1019 		forced_memzero(bin, len);
1020 		os_free(bin);
1021 	}
1022 }
1023 
1024 
random_mac_addr(u8 * addr)1025 int random_mac_addr(u8 *addr)
1026 {
1027 	if (os_get_random(addr, ETH_ALEN) < 0)
1028 		return -1;
1029 	addr[0] &= 0xfe; /* unicast */
1030 	addr[0] |= 0x02; /* locally administered */
1031 	return 0;
1032 }
1033 
1034 
random_mac_addr_keep_oui(u8 * addr)1035 int random_mac_addr_keep_oui(u8 *addr)
1036 {
1037 	if (os_get_random(addr + 3, 3) < 0)
1038 		return -1;
1039 	addr[0] &= 0xfe; /* unicast */
1040 	addr[0] |= 0x02; /* locally administered */
1041 	return 0;
1042 }
1043 
1044 
1045 /**
1046  * cstr_token - Get next token from const char string
1047  * @str: a constant string to tokenize
1048  * @delim: a string of delimiters
1049  * @last: a pointer to a character following the returned token
1050  *      It has to be set to NULL for the first call and passed for any
1051  *      further call.
1052  * Returns: a pointer to token position in str or NULL
1053  *
1054  * This function is similar to str_token, but it can be used with both
1055  * char and const char strings. Differences:
1056  * - The str buffer remains unmodified
1057  * - The returned token is not a NULL terminated string, but a token
1058  *   position in str buffer. If a return value is not NULL a size
1059  *   of the returned token could be calculated as (last - token).
1060  */
cstr_token(const char * str,const char * delim,const char ** last)1061 const char * cstr_token(const char *str, const char *delim, const char **last)
1062 {
1063 	const char *end, *token = str;
1064 
1065 	if (!str || !delim || !last)
1066 		return NULL;
1067 
1068 	if (*last)
1069 		token = *last;
1070 
1071 	while (*token && os_strchr(delim, *token))
1072 		token++;
1073 
1074 	if (!*token)
1075 		return NULL;
1076 
1077 	end = token + 1;
1078 
1079 	while (*end && !os_strchr(delim, *end))
1080 		end++;
1081 
1082 	*last = end;
1083 	return token;
1084 }
1085 
1086 
1087 /**
1088  * str_token - Get next token from a string
1089  * @buf: String to tokenize. Note that the string might be modified.
1090  * @delim: String of delimiters
1091  * @context: Pointer to save our context. Should be initialized with
1092  *	NULL on the first call, and passed for any further call.
1093  * Returns: The next token, NULL if there are no more valid tokens.
1094  */
str_token(char * str,const char * delim,char ** context)1095 char * str_token(char *str, const char *delim, char **context)
1096 {
1097 	char *token = (char *) cstr_token(str, delim, (const char **) context);
1098 
1099 	if (token && **context)
1100 		*(*context)++ = '\0';
1101 
1102 	return token;
1103 }
1104 
1105 
utf8_unescape(const char * inp,size_t in_size,char * outp,size_t out_size)1106 size_t utf8_unescape(const char *inp, size_t in_size,
1107 		     char *outp, size_t out_size)
1108 {
1109 	size_t res_size = 0;
1110 
1111 	if (!inp || !outp)
1112 		return 0;
1113 
1114 	if (!in_size)
1115 		in_size = os_strlen(inp);
1116 
1117 	/* Advance past leading single quote */
1118 	if (*inp == '\'' && in_size) {
1119 		inp++;
1120 		in_size--;
1121 	}
1122 
1123 	while (in_size) {
1124 		in_size--;
1125 		if (res_size >= out_size)
1126 			return 0;
1127 
1128 		switch (*inp) {
1129 		case '\'':
1130 			/* Terminate on bare single quote */
1131 			*outp = '\0';
1132 			return res_size;
1133 
1134 		case '\\':
1135 			if (!in_size)
1136 				return 0;
1137 			in_size--;
1138 			inp++;
1139 			/* fall through */
1140 
1141 		default:
1142 			*outp++ = *inp++;
1143 			res_size++;
1144 		}
1145 	}
1146 
1147 	/* NUL terminate if space allows */
1148 	if (res_size < out_size)
1149 		*outp = '\0';
1150 
1151 	return res_size;
1152 }
1153 
1154 
utf8_escape(const char * inp,size_t in_size,char * outp,size_t out_size)1155 size_t utf8_escape(const char *inp, size_t in_size,
1156 		   char *outp, size_t out_size)
1157 {
1158 	size_t res_size = 0;
1159 
1160 	if (!inp || !outp)
1161 		return 0;
1162 
1163 	/* inp may or may not be NUL terminated, but must be if 0 size
1164 	 * is specified */
1165 	if (!in_size)
1166 		in_size = os_strlen(inp);
1167 
1168 	while (in_size) {
1169 		in_size--;
1170 		if (res_size++ >= out_size)
1171 			return 0;
1172 
1173 		switch (*inp) {
1174 		case '\\':
1175 		case '\'':
1176 			if (res_size++ >= out_size)
1177 				return 0;
1178 			*outp++ = '\\';
1179 			/* fall through */
1180 
1181 		default:
1182 			*outp++ = *inp++;
1183 			break;
1184 		}
1185 	}
1186 
1187 	/* NUL terminate if space allows */
1188 	if (res_size < out_size)
1189 		*outp = '\0';
1190 
1191 	return res_size;
1192 }
1193 
1194 
is_ctrl_char(char c)1195 int is_ctrl_char(char c)
1196 {
1197 	return c > 0 && c < 32;
1198 }
1199 
1200 
1201 /**
1202  * ssid_parse - Parse a string that contains SSID in hex or text format
1203  * @buf: Input NULL terminated string that contains the SSID
1204  * @ssid: Output SSID
1205  * Returns: 0 on success, -1 otherwise
1206  *
1207  * The SSID has to be enclosed in double quotes for the text format or space
1208  * or NULL terminated string of hex digits for the hex format. buf can include
1209  * additional arguments after the SSID.
1210  */
ssid_parse(const char * buf,struct wpa_ssid_value * ssid)1211 int ssid_parse(const char *buf, struct wpa_ssid_value *ssid)
1212 {
1213 	char *tmp, *res, *end;
1214 	size_t len;
1215 
1216 	ssid->ssid_len = 0;
1217 
1218 	tmp = os_strdup(buf);
1219 	if (!tmp)
1220 		return -1;
1221 
1222 	if (*tmp != '"') {
1223 		end = os_strchr(tmp, ' ');
1224 		if (end)
1225 			*end = '\0';
1226 	} else {
1227 		end = os_strchr(tmp + 1, '"');
1228 		if (!end) {
1229 			os_free(tmp);
1230 			return -1;
1231 		}
1232 
1233 		end[1] = '\0';
1234 	}
1235 
1236 	res = wpa_config_parse_string(tmp, &len);
1237 	if (res && len <= SSID_MAX_LEN) {
1238 		ssid->ssid_len = len;
1239 		os_memcpy(ssid->ssid, res, len);
1240 	}
1241 
1242 	os_free(tmp);
1243 	os_free(res);
1244 
1245 	return ssid->ssid_len ? 0 : -1;
1246 }
1247 
1248 
str_starts(const char * str,const char * start)1249 int str_starts(const char *str, const char *start)
1250 {
1251 	return os_strncmp(str, start, os_strlen(start)) == 0;
1252 }
1253 
1254 
1255 /**
1256  * rssi_to_rcpi - Convert RSSI to RCPI
1257  * @rssi: RSSI to convert
1258  * Returns: RCPI corresponding to the given RSSI value, or 255 if not available.
1259  *
1260  * It's possible to estimate RCPI based on RSSI in dBm. This calculation will
1261  * not reflect the correct value for high rates, but it's good enough for Action
1262  * frames which are transmitted with up to 24 Mbps rates.
1263  */
rssi_to_rcpi(int rssi)1264 u8 rssi_to_rcpi(int rssi)
1265 {
1266 	if (!rssi)
1267 		return 255; /* not available */
1268 	if (rssi < -110)
1269 		return 0;
1270 	if (rssi > 0)
1271 		return 220;
1272 	return (rssi + 110) * 2;
1273 }
1274 
1275 
get_param(const char * cmd,const char * param)1276 char * get_param(const char *cmd, const char *param)
1277 {
1278 	const char *pos, *end;
1279 	char *val;
1280 	size_t len;
1281 
1282 	pos = os_strstr(cmd, param);
1283 	if (!pos)
1284 		return NULL;
1285 
1286 	pos += os_strlen(param);
1287 	end = os_strchr(pos, ' ');
1288 	if (end)
1289 		len = end - pos;
1290 	else
1291 		len = os_strlen(pos);
1292 	val = os_malloc(len + 1);
1293 	if (!val)
1294 		return NULL;
1295 	os_memcpy(val, pos, len);
1296 	val[len] = '\0';
1297 	return val;
1298 }
1299 
1300 
1301 /* Try to prevent most compilers from optimizing out clearing of memory that
1302  * becomes unaccessible after this function is called. This is mostly the case
1303  * for clearing local stack variables at the end of a function. This is not
1304  * exactly perfect, i.e., someone could come up with a compiler that figures out
1305  * the pointer is pointing to memset and then end up optimizing the call out, so
1306  * try go a bit further by storing the first octet (now zero) to make this even
1307  * a bit more difficult to optimize out. Once memset_s() is available, that
1308  * could be used here instead. */
1309 static void * (* const volatile memset_func)(void *, int, size_t) = memset;
1310 static u8 forced_memzero_val;
1311 
forced_memzero(void * ptr,size_t len)1312 void forced_memzero(void *ptr, size_t len)
1313 {
1314 	memset_func(ptr, 0, len);
1315 	if (len)
1316 		forced_memzero_val = ((u8 *) ptr)[0];
1317 }
1318