xref: /linux/include/linux/hugetlb.h (revision d3c82f618a9c2b764b7651afe16594ffeb50ade9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/nodemask.h>
18 
19 struct ctl_table;
20 struct user_struct;
21 struct mmu_gather;
22 struct node;
23 
24 void free_huge_folio(struct folio *folio);
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #include <linux/pagemap.h>
29 #include <linux/shm.h>
30 #include <asm/tlbflush.h>
31 
32 /*
33  * For HugeTLB page, there are more metadata to save in the struct page. But
34  * the head struct page cannot meet our needs, so we have to abuse other tail
35  * struct page to store the metadata.
36  */
37 #define __NR_USED_SUBPAGE 3
38 
39 struct hugepage_subpool {
40 	spinlock_t lock;
41 	long count;
42 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
43 	long used_hpages;	/* Used count against maximum, includes */
44 				/* both allocated and reserved pages. */
45 	struct hstate *hstate;
46 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
47 	long rsv_hpages;	/* Pages reserved against global pool to */
48 				/* satisfy minimum size. */
49 };
50 
51 struct resv_map {
52 	struct kref refs;
53 	spinlock_t lock;
54 	struct list_head regions;
55 	long adds_in_progress;
56 	struct list_head region_cache;
57 	long region_cache_count;
58 	struct rw_semaphore rw_sema;
59 #ifdef CONFIG_CGROUP_HUGETLB
60 	/*
61 	 * On private mappings, the counter to uncharge reservations is stored
62 	 * here. If these fields are 0, then either the mapping is shared, or
63 	 * cgroup accounting is disabled for this resv_map.
64 	 */
65 	struct page_counter *reservation_counter;
66 	unsigned long pages_per_hpage;
67 	struct cgroup_subsys_state *css;
68 #endif
69 };
70 
71 /*
72  * Region tracking -- allows tracking of reservations and instantiated pages
73  *                    across the pages in a mapping.
74  *
75  * The region data structures are embedded into a resv_map and protected
76  * by a resv_map's lock.  The set of regions within the resv_map represent
77  * reservations for huge pages, or huge pages that have already been
78  * instantiated within the map.  The from and to elements are huge page
79  * indices into the associated mapping.  from indicates the starting index
80  * of the region.  to represents the first index past the end of  the region.
81  *
82  * For example, a file region structure with from == 0 and to == 4 represents
83  * four huge pages in a mapping.  It is important to note that the to element
84  * represents the first element past the end of the region. This is used in
85  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86  *
87  * Interval notation of the form [from, to) will be used to indicate that
88  * the endpoint from is inclusive and to is exclusive.
89  */
90 struct file_region {
91 	struct list_head link;
92 	long from;
93 	long to;
94 #ifdef CONFIG_CGROUP_HUGETLB
95 	/*
96 	 * On shared mappings, each reserved region appears as a struct
97 	 * file_region in resv_map. These fields hold the info needed to
98 	 * uncharge each reservation.
99 	 */
100 	struct page_counter *reservation_counter;
101 	struct cgroup_subsys_state *css;
102 #endif
103 };
104 
105 struct hugetlb_vma_lock {
106 	struct kref refs;
107 	struct rw_semaphore rw_sema;
108 	struct vm_area_struct *vma;
109 };
110 
111 extern struct resv_map *resv_map_alloc(void);
112 void resv_map_release(struct kref *ref);
113 
114 extern spinlock_t hugetlb_lock;
115 extern int hugetlb_max_hstate __read_mostly;
116 #define for_each_hstate(h) \
117 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118 
119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 						long min_hpages);
121 void hugepage_put_subpool(struct hugepage_subpool *spool);
122 
123 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125 int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 			     struct vm_area_struct *new_vma,
127 			     unsigned long old_addr, unsigned long new_addr,
128 			     unsigned long len);
129 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 			    struct vm_area_struct *, struct vm_area_struct *);
131 void unmap_hugepage_range(struct vm_area_struct *,
132 			  unsigned long start, unsigned long end,
133 			  struct folio *, zap_flags_t);
134 void __unmap_hugepage_range(struct mmu_gather *tlb,
135 			  struct vm_area_struct *vma,
136 			  unsigned long start, unsigned long end,
137 			  struct folio *, zap_flags_t zap_flags);
138 void hugetlb_report_meminfo(struct seq_file *);
139 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140 void hugetlb_show_meminfo_node(int nid);
141 unsigned long hugetlb_total_pages(void);
142 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 			unsigned long address, unsigned int flags);
144 #ifdef CONFIG_USERFAULTFD
145 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 			     struct vm_area_struct *dst_vma,
147 			     unsigned long dst_addr,
148 			     unsigned long src_addr,
149 			     uffd_flags_t flags,
150 			     struct folio **foliop);
151 #endif /* CONFIG_USERFAULTFD */
152 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 						struct vm_area_struct *vma,
154 						vm_flags_t vm_flags);
155 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
156 						long freed);
157 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
158 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
159 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
160 				bool *migratable_cleared);
161 void folio_putback_hugetlb(struct folio *folio);
162 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
163 void hugetlb_fix_reserve_counts(struct inode *inode);
164 extern struct mutex *hugetlb_fault_mutex_table;
165 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
166 
167 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
168 		      unsigned long addr, pud_t *pud);
169 bool hugetlbfs_pagecache_present(struct hstate *h,
170 				 struct vm_area_struct *vma,
171 				 unsigned long address);
172 
173 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
174 
175 extern int sysctl_hugetlb_shm_group;
176 extern struct list_head huge_boot_pages[MAX_NUMNODES];
177 
178 void hugetlb_bootmem_alloc(void);
179 bool hugetlb_bootmem_allocated(void);
180 extern nodemask_t hugetlb_bootmem_nodes;
181 void hugetlb_bootmem_set_nodes(void);
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 long hugetlb_change_protection(struct vm_area_struct *vma,
276 		unsigned long address, unsigned long end, pgprot_t newprot,
277 		unsigned long cp_flags);
278 bool is_hugetlb_entry_migration(pte_t pte);
279 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
280 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
281 void fixup_hugetlb_reservations(struct vm_area_struct *vma);
282 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
283 
284 #else /* !CONFIG_HUGETLB_PAGE */
285 
hugetlb_dup_vma_private(struct vm_area_struct * vma)286 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
287 {
288 }
289 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)290 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
291 {
292 }
293 
hugetlb_total_pages(void)294 static inline unsigned long hugetlb_total_pages(void)
295 {
296 	return 0;
297 }
298 
hugetlb_folio_mapping_lock_write(struct folio * folio)299 static inline struct address_space *hugetlb_folio_mapping_lock_write(
300 							struct folio *folio)
301 {
302 	return NULL;
303 }
304 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)305 static inline int huge_pmd_unshare(struct mm_struct *mm,
306 					struct vm_area_struct *vma,
307 					unsigned long addr, pte_t *ptep)
308 {
309 	return 0;
310 }
311 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)312 static inline void adjust_range_if_pmd_sharing_possible(
313 				struct vm_area_struct *vma,
314 				unsigned long *start, unsigned long *end)
315 {
316 }
317 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)318 static inline void hugetlb_zap_begin(
319 				struct vm_area_struct *vma,
320 				unsigned long *start, unsigned long *end)
321 {
322 }
323 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)324 static inline void hugetlb_zap_end(
325 				struct vm_area_struct *vma,
326 				struct zap_details *details)
327 {
328 }
329 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)330 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
331 					  struct mm_struct *src,
332 					  struct vm_area_struct *dst_vma,
333 					  struct vm_area_struct *src_vma)
334 {
335 	BUG();
336 	return 0;
337 }
338 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)339 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
340 					   struct vm_area_struct *new_vma,
341 					   unsigned long old_addr,
342 					   unsigned long new_addr,
343 					   unsigned long len)
344 {
345 	BUG();
346 	return 0;
347 }
348 
hugetlb_report_meminfo(struct seq_file * m)349 static inline void hugetlb_report_meminfo(struct seq_file *m)
350 {
351 }
352 
hugetlb_report_node_meminfo(char * buf,int len,int nid)353 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
354 {
355 	return 0;
356 }
357 
hugetlb_show_meminfo_node(int nid)358 static inline void hugetlb_show_meminfo_node(int nid)
359 {
360 }
361 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)362 static inline int prepare_hugepage_range(struct file *file,
363 				unsigned long addr, unsigned long len)
364 {
365 	return -EINVAL;
366 }
367 
hugetlb_vma_lock_read(struct vm_area_struct * vma)368 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
369 {
370 }
371 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)372 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
373 {
374 }
375 
hugetlb_vma_lock_write(struct vm_area_struct * vma)376 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
377 {
378 }
379 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)380 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
381 {
382 }
383 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)384 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
385 {
386 	return 1;
387 }
388 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)389 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
390 {
391 }
392 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)393 static inline int is_hugepage_only_range(struct mm_struct *mm,
394 					unsigned long addr, unsigned long len)
395 {
396 	return 0;
397 }
398 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)399 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
400 				unsigned long addr, unsigned long end,
401 				unsigned long floor, unsigned long ceiling)
402 {
403 	BUG();
404 }
405 
406 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)407 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
408 					   struct vm_area_struct *dst_vma,
409 					   unsigned long dst_addr,
410 					   unsigned long src_addr,
411 					   uffd_flags_t flags,
412 					   struct folio **foliop)
413 {
414 	BUG();
415 	return 0;
416 }
417 #endif /* CONFIG_USERFAULTFD */
418 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)419 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
420 					unsigned long sz)
421 {
422 	return NULL;
423 }
424 
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)425 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
426 {
427 	return false;
428 }
429 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)430 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
431 {
432 	return 0;
433 }
434 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)435 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
436 					bool *migratable_cleared)
437 {
438 	return 0;
439 }
440 
folio_putback_hugetlb(struct folio * folio)441 static inline void folio_putback_hugetlb(struct folio *folio)
442 {
443 }
444 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)445 static inline void move_hugetlb_state(struct folio *old_folio,
446 					struct folio *new_folio, int reason)
447 {
448 }
449 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)450 static inline long hugetlb_change_protection(
451 			struct vm_area_struct *vma, unsigned long address,
452 			unsigned long end, pgprot_t newprot,
453 			unsigned long cp_flags)
454 {
455 	return 0;
456 }
457 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)458 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
459 			struct vm_area_struct *vma, unsigned long start,
460 			unsigned long end, struct folio *folio,
461 			zap_flags_t zap_flags)
462 {
463 	BUG();
464 }
465 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)466 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
467 			struct vm_area_struct *vma, unsigned long address,
468 			unsigned int flags)
469 {
470 	BUG();
471 	return 0;
472 }
473 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)474 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
475 
fixup_hugetlb_reservations(struct vm_area_struct * vma)476 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
477 {
478 }
479 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)480 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
481 
482 #endif /* !CONFIG_HUGETLB_PAGE */
483 
484 #ifndef pgd_write
pgd_write(pgd_t pgd)485 static inline int pgd_write(pgd_t pgd)
486 {
487 	BUG();
488 	return 0;
489 }
490 #endif
491 
492 #define HUGETLB_ANON_FILE "anon_hugepage"
493 
494 enum {
495 	/*
496 	 * The file will be used as an shm file so shmfs accounting rules
497 	 * apply
498 	 */
499 	HUGETLB_SHMFS_INODE     = 1,
500 	/*
501 	 * The file is being created on the internal vfs mount and shmfs
502 	 * accounting rules do not apply
503 	 */
504 	HUGETLB_ANONHUGE_INODE  = 2,
505 };
506 
507 #ifdef CONFIG_HUGETLBFS
508 struct hugetlbfs_sb_info {
509 	long	max_inodes;   /* inodes allowed */
510 	long	free_inodes;  /* inodes free */
511 	spinlock_t	stat_lock;
512 	struct hstate *hstate;
513 	struct hugepage_subpool *spool;
514 	kuid_t	uid;
515 	kgid_t	gid;
516 	umode_t mode;
517 };
518 
HUGETLBFS_SB(struct super_block * sb)519 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
520 {
521 	return sb->s_fs_info;
522 }
523 
524 struct hugetlbfs_inode_info {
525 	struct inode vfs_inode;
526 	unsigned int seals;
527 };
528 
HUGETLBFS_I(struct inode * inode)529 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
530 {
531 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
532 }
533 
534 extern const struct vm_operations_struct hugetlb_vm_ops;
535 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
536 				int creat_flags, int page_size_log);
537 
is_file_hugepages(const struct file * file)538 static inline bool is_file_hugepages(const struct file *file)
539 {
540 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
541 }
542 
hstate_inode(struct inode * i)543 static inline struct hstate *hstate_inode(struct inode *i)
544 {
545 	return HUGETLBFS_SB(i->i_sb)->hstate;
546 }
547 #else /* !CONFIG_HUGETLBFS */
548 
549 #define is_file_hugepages(file)			false
550 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)551 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
552 		int creat_flags, int page_size_log)
553 {
554 	return ERR_PTR(-ENOSYS);
555 }
556 
hstate_inode(struct inode * i)557 static inline struct hstate *hstate_inode(struct inode *i)
558 {
559 	return NULL;
560 }
561 #endif /* !CONFIG_HUGETLBFS */
562 
563 unsigned long
564 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
565 				    unsigned long len, unsigned long pgoff,
566 				    unsigned long flags);
567 
568 /*
569  * huegtlb page specific state flags.  These flags are located in page.private
570  * of the hugetlb head page.  Functions created via the below macros should be
571  * used to manipulate these flags.
572  *
573  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
574  *	allocation time.  Cleared when page is fully instantiated.  Free
575  *	routine checks flag to restore a reservation on error paths.
576  *	Synchronization:  Examined or modified by code that knows it has
577  *	the only reference to page.  i.e. After allocation but before use
578  *	or when the page is being freed.
579  * HPG_migratable  - Set after a newly allocated page is added to the page
580  *	cache and/or page tables.  Indicates the page is a candidate for
581  *	migration.
582  *	Synchronization:  Initially set after new page allocation with no
583  *	locking.  When examined and modified during migration processing
584  *	(isolate, migrate, putback) the hugetlb_lock is held.
585  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
586  *	allocator.  Typically used for migration target pages when no pages
587  *	are available in the pool.  The hugetlb free page path will
588  *	immediately free pages with this flag set to the buddy allocator.
589  *	Synchronization: Can be set after huge page allocation from buddy when
590  *	code knows it has only reference.  All other examinations and
591  *	modifications require hugetlb_lock.
592  * HPG_freed - Set when page is on the free lists.
593  *	Synchronization: hugetlb_lock held for examination and modification.
594  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
595  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
596  *     that is not tracked by raw_hwp_page list.
597  */
598 enum hugetlb_page_flags {
599 	HPG_restore_reserve = 0,
600 	HPG_migratable,
601 	HPG_temporary,
602 	HPG_freed,
603 	HPG_vmemmap_optimized,
604 	HPG_raw_hwp_unreliable,
605 	HPG_cma,
606 	__NR_HPAGEFLAGS,
607 };
608 
609 /*
610  * Macros to create test, set and clear function definitions for
611  * hugetlb specific page flags.
612  */
613 #ifdef CONFIG_HUGETLB_PAGE
614 #define TESTHPAGEFLAG(uname, flname)				\
615 static __always_inline						\
616 bool folio_test_hugetlb_##flname(struct folio *folio)		\
617 	{	void *private = &folio->private;		\
618 		return test_bit(HPG_##flname, private);		\
619 	}
620 
621 #define SETHPAGEFLAG(uname, flname)				\
622 static __always_inline						\
623 void folio_set_hugetlb_##flname(struct folio *folio)		\
624 	{	void *private = &folio->private;		\
625 		set_bit(HPG_##flname, private);			\
626 	}
627 
628 #define CLEARHPAGEFLAG(uname, flname)				\
629 static __always_inline						\
630 void folio_clear_hugetlb_##flname(struct folio *folio)		\
631 	{	void *private = &folio->private;		\
632 		clear_bit(HPG_##flname, private);		\
633 	}
634 #else
635 #define TESTHPAGEFLAG(uname, flname)				\
636 static inline bool						\
637 folio_test_hugetlb_##flname(struct folio *folio)		\
638 	{ return 0; }
639 
640 #define SETHPAGEFLAG(uname, flname)				\
641 static inline void						\
642 folio_set_hugetlb_##flname(struct folio *folio) 		\
643 	{ }
644 
645 #define CLEARHPAGEFLAG(uname, flname)				\
646 static inline void						\
647 folio_clear_hugetlb_##flname(struct folio *folio)		\
648 	{ }
649 #endif
650 
651 #define HPAGEFLAG(uname, flname)				\
652 	TESTHPAGEFLAG(uname, flname)				\
653 	SETHPAGEFLAG(uname, flname)				\
654 	CLEARHPAGEFLAG(uname, flname)				\
655 
656 /*
657  * Create functions associated with hugetlb page flags
658  */
659 HPAGEFLAG(RestoreReserve, restore_reserve)
660 HPAGEFLAG(Migratable, migratable)
661 HPAGEFLAG(Temporary, temporary)
662 HPAGEFLAG(Freed, freed)
663 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
664 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
665 HPAGEFLAG(Cma, cma)
666 
667 #ifdef CONFIG_HUGETLB_PAGE
668 
669 #define HSTATE_NAME_LEN 32
670 /* Defines one hugetlb page size */
671 struct hstate {
672 	struct mutex resize_lock;
673 	struct lock_class_key resize_key;
674 	int next_nid_to_alloc;
675 	int next_nid_to_free;
676 	unsigned int order;
677 	unsigned int demote_order;
678 	unsigned long mask;
679 	unsigned long max_huge_pages;
680 	unsigned long nr_huge_pages;
681 	unsigned long free_huge_pages;
682 	unsigned long resv_huge_pages;
683 	unsigned long surplus_huge_pages;
684 	unsigned long nr_overcommit_huge_pages;
685 	struct list_head hugepage_activelist;
686 	struct list_head hugepage_freelists[MAX_NUMNODES];
687 	unsigned int max_huge_pages_node[MAX_NUMNODES];
688 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
689 	unsigned int free_huge_pages_node[MAX_NUMNODES];
690 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
691 	char name[HSTATE_NAME_LEN];
692 };
693 
694 struct cma;
695 
696 struct huge_bootmem_page {
697 	struct list_head list;
698 	struct hstate *hstate;
699 	unsigned long flags;
700 	struct cma *cma;
701 };
702 
703 #define HUGE_BOOTMEM_HVO		0x0001
704 #define HUGE_BOOTMEM_ZONES_VALID	0x0002
705 #define HUGE_BOOTMEM_CMA		0x0004
706 
707 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
708 
709 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
710 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
711 void wait_for_freed_hugetlb_folios(void);
712 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
713 				unsigned long addr, bool cow_from_owner);
714 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
715 				nodemask_t *nmask, gfp_t gfp_mask,
716 				bool allow_alloc_fallback);
717 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
718 					  nodemask_t *nmask, gfp_t gfp_mask);
719 
720 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
721 			pgoff_t idx);
722 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
723 				unsigned long address, struct folio *folio);
724 
725 /* arch callback */
726 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
727 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
728 bool __init hugetlb_node_alloc_supported(void);
729 
730 void __init hugetlb_add_hstate(unsigned order);
731 bool __init arch_hugetlb_valid_size(unsigned long size);
732 struct hstate *size_to_hstate(unsigned long size);
733 
734 #ifndef HUGE_MAX_HSTATE
735 #define HUGE_MAX_HSTATE 1
736 #endif
737 
738 extern struct hstate hstates[HUGE_MAX_HSTATE];
739 extern unsigned int default_hstate_idx;
740 
741 #define default_hstate (hstates[default_hstate_idx])
742 
hugetlb_folio_subpool(struct folio * folio)743 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744 {
745 	return folio->_hugetlb_subpool;
746 }
747 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)748 static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 					struct hugepage_subpool *subpool)
750 {
751 	folio->_hugetlb_subpool = subpool;
752 }
753 
hstate_file(struct file * f)754 static inline struct hstate *hstate_file(struct file *f)
755 {
756 	return hstate_inode(file_inode(f));
757 }
758 
hstate_sizelog(int page_size_log)759 static inline struct hstate *hstate_sizelog(int page_size_log)
760 {
761 	if (!page_size_log)
762 		return &default_hstate;
763 
764 	if (page_size_log < BITS_PER_LONG)
765 		return size_to_hstate(1UL << page_size_log);
766 
767 	return NULL;
768 }
769 
hstate_vma(struct vm_area_struct * vma)770 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
771 {
772 	return hstate_file(vma->vm_file);
773 }
774 
huge_page_size(const struct hstate * h)775 static inline unsigned long huge_page_size(const struct hstate *h)
776 {
777 	return (unsigned long)PAGE_SIZE << h->order;
778 }
779 
780 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781 
782 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783 
huge_page_mask(struct hstate * h)784 static inline unsigned long huge_page_mask(struct hstate *h)
785 {
786 	return h->mask;
787 }
788 
huge_page_order(struct hstate * h)789 static inline unsigned int huge_page_order(struct hstate *h)
790 {
791 	return h->order;
792 }
793 
huge_page_shift(struct hstate * h)794 static inline unsigned huge_page_shift(struct hstate *h)
795 {
796 	return h->order + PAGE_SHIFT;
797 }
798 
hstate_is_gigantic(struct hstate * h)799 static inline bool hstate_is_gigantic(struct hstate *h)
800 {
801 	return huge_page_order(h) > MAX_PAGE_ORDER;
802 }
803 
pages_per_huge_page(const struct hstate * h)804 static inline unsigned int pages_per_huge_page(const struct hstate *h)
805 {
806 	return 1 << h->order;
807 }
808 
blocks_per_huge_page(struct hstate * h)809 static inline unsigned int blocks_per_huge_page(struct hstate *h)
810 {
811 	return huge_page_size(h) / 512;
812 }
813 
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)814 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
815 				struct address_space *mapping, pgoff_t idx)
816 {
817 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
818 }
819 
820 #include <asm/hugetlb.h>
821 
822 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)823 static inline int is_hugepage_only_range(struct mm_struct *mm,
824 					unsigned long addr, unsigned long len)
825 {
826 	return 0;
827 }
828 #define is_hugepage_only_range is_hugepage_only_range
829 #endif
830 
831 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)832 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
833 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
834 #endif
835 
836 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)837 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
838 				       vm_flags_t flags)
839 {
840 	return pte_mkhuge(entry);
841 }
842 #endif
843 
844 #ifndef arch_has_huge_bootmem_alloc
845 /*
846  * Some architectures do their own bootmem allocation, so they can't use
847  * early CMA allocation.
848  */
arch_has_huge_bootmem_alloc(void)849 static inline bool arch_has_huge_bootmem_alloc(void)
850 {
851 	return false;
852 }
853 #endif
854 
folio_hstate(struct folio * folio)855 static inline struct hstate *folio_hstate(struct folio *folio)
856 {
857 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
858 	return size_to_hstate(folio_size(folio));
859 }
860 
hstate_index_to_shift(unsigned index)861 static inline unsigned hstate_index_to_shift(unsigned index)
862 {
863 	return hstates[index].order + PAGE_SHIFT;
864 }
865 
hstate_index(struct hstate * h)866 static inline int hstate_index(struct hstate *h)
867 {
868 	return h - hstates;
869 }
870 
871 int dissolve_free_hugetlb_folio(struct folio *folio);
872 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
873 				    unsigned long end_pfn);
874 
875 #ifdef CONFIG_MEMORY_FAILURE
876 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
877 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)878 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
879 {
880 }
881 #endif
882 
883 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
884 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)885 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886 {
887 	if ((huge_page_shift(h) == PMD_SHIFT) ||
888 		(huge_page_shift(h) == PUD_SHIFT) ||
889 			(huge_page_shift(h) == PGDIR_SHIFT))
890 		return true;
891 	else
892 		return false;
893 }
894 #endif
895 #else
arch_hugetlb_migration_supported(struct hstate * h)896 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
897 {
898 	return false;
899 }
900 #endif
901 
hugepage_migration_supported(struct hstate * h)902 static inline bool hugepage_migration_supported(struct hstate *h)
903 {
904 	return arch_hugetlb_migration_supported(h);
905 }
906 
907 /*
908  * Movability check is different as compared to migration check.
909  * It determines whether or not a huge page should be placed on
910  * movable zone or not. Movability of any huge page should be
911  * required only if huge page size is supported for migration.
912  * There won't be any reason for the huge page to be movable if
913  * it is not migratable to start with. Also the size of the huge
914  * page should be large enough to be placed under a movable zone
915  * and still feasible enough to be migratable. Just the presence
916  * in movable zone does not make the migration feasible.
917  *
918  * So even though large huge page sizes like the gigantic ones
919  * are migratable they should not be movable because its not
920  * feasible to migrate them from movable zone.
921  */
hugepage_movable_supported(struct hstate * h)922 static inline bool hugepage_movable_supported(struct hstate *h)
923 {
924 	if (!hugepage_migration_supported(h))
925 		return false;
926 
927 	if (hstate_is_gigantic(h))
928 		return false;
929 	return true;
930 }
931 
932 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)933 static inline gfp_t htlb_alloc_mask(struct hstate *h)
934 {
935 	gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
936 
937 	gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
938 
939 	return gfp;
940 }
941 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)942 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
943 {
944 	gfp_t modified_mask = htlb_alloc_mask(h);
945 
946 	/* Some callers might want to enforce node */
947 	modified_mask |= (gfp_mask & __GFP_THISNODE);
948 
949 	modified_mask |= (gfp_mask & __GFP_NOWARN);
950 
951 	return modified_mask;
952 }
953 
htlb_allow_alloc_fallback(int reason)954 static inline bool htlb_allow_alloc_fallback(int reason)
955 {
956 	bool allowed_fallback = false;
957 
958 	/*
959 	 * Note: the memory offline, memory failure and migration syscalls will
960 	 * be allowed to fallback to other nodes due to lack of a better chioce,
961 	 * that might break the per-node hugetlb pool. While other cases will
962 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
963 	 */
964 	switch (reason) {
965 	case MR_MEMORY_HOTPLUG:
966 	case MR_MEMORY_FAILURE:
967 	case MR_SYSCALL:
968 	case MR_MEMPOLICY_MBIND:
969 		allowed_fallback = true;
970 		break;
971 	default:
972 		break;
973 	}
974 
975 	return allowed_fallback;
976 }
977 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)978 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
979 					   struct mm_struct *mm, pte_t *pte)
980 {
981 	const unsigned long size = huge_page_size(h);
982 
983 	VM_WARN_ON(size == PAGE_SIZE);
984 
985 	/*
986 	 * hugetlb must use the exact same PT locks as core-mm page table
987 	 * walkers would. When modifying a PTE table, hugetlb must take the
988 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
989 	 * PT lock etc.
990 	 *
991 	 * The expectation is that any hugetlb folio smaller than a PMD is
992 	 * always mapped into a single PTE table and that any hugetlb folio
993 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
994 	 * into a single PMD table.
995 	 *
996 	 * If that does not hold for an architecture, then that architecture
997 	 * must disable split PT locks such that all *_lockptr() functions
998 	 * will give us the same result: the per-MM PT lock.
999 	 *
1000 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1001 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1002 	 * and core-mm would use pmd_lockptr(). However, in such configurations
1003 	 * split PMD locks are disabled -- they don't make sense on a single
1004 	 * PGDIR page table -- and the end result is the same.
1005 	 */
1006 	if (size >= PUD_SIZE)
1007 		return pud_lockptr(mm, (pud_t *) pte);
1008 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1009 		return pmd_lockptr(mm, (pmd_t *) pte);
1010 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1011 	return ptep_lockptr(mm, pte);
1012 }
1013 
1014 #ifndef hugepages_supported
1015 /*
1016  * Some platform decide whether they support huge pages at boot
1017  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1018  * when there is no such support
1019  */
1020 #define hugepages_supported() (HPAGE_SHIFT != 0)
1021 #endif
1022 
1023 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1024 
hugetlb_count_init(struct mm_struct * mm)1025 static inline void hugetlb_count_init(struct mm_struct *mm)
1026 {
1027 	atomic_long_set(&mm->hugetlb_usage, 0);
1028 }
1029 
hugetlb_count_add(long l,struct mm_struct * mm)1030 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1031 {
1032 	atomic_long_add(l, &mm->hugetlb_usage);
1033 }
1034 
hugetlb_count_sub(long l,struct mm_struct * mm)1035 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1036 {
1037 	atomic_long_sub(l, &mm->hugetlb_usage);
1038 }
1039 
1040 #ifndef huge_ptep_modify_prot_start
1041 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1042 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1043 						unsigned long addr, pte_t *ptep)
1044 {
1045 	unsigned long psize = huge_page_size(hstate_vma(vma));
1046 
1047 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1048 }
1049 #endif
1050 
1051 #ifndef huge_ptep_modify_prot_commit
1052 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1053 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1054 						unsigned long addr, pte_t *ptep,
1055 						pte_t old_pte, pte_t pte)
1056 {
1057 	unsigned long psize = huge_page_size(hstate_vma(vma));
1058 
1059 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1060 }
1061 #endif
1062 
1063 #ifdef CONFIG_NUMA
1064 void hugetlb_register_node(struct node *node);
1065 void hugetlb_unregister_node(struct node *node);
1066 #endif
1067 
1068 /*
1069  * Check if a given raw @page in a hugepage is HWPOISON.
1070  */
1071 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1072 
huge_page_mask_align(struct file * file)1073 static inline unsigned long huge_page_mask_align(struct file *file)
1074 {
1075 	return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1076 }
1077 
1078 #else	/* CONFIG_HUGETLB_PAGE */
1079 struct hstate {};
1080 
1081 static inline unsigned long huge_page_mask_align(struct file *file)
1082 {
1083 	return 0;
1084 }
1085 
1086 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1092 				struct address_space *mapping, pgoff_t idx)
1093 {
1094 	return NULL;
1095 }
1096 
1097 static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1098 						struct list_head *list)
1099 {
1100 	return -ENOMEM;
1101 }
1102 
1103 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1104 		unsigned long end_pfn)
1105 {
1106 	return 0;
1107 }
1108 
1109 static inline void wait_for_freed_hugetlb_folios(void)
1110 {
1111 }
1112 
1113 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1114 					   unsigned long addr,
1115 					   bool cow_from_owner)
1116 {
1117 	return NULL;
1118 }
1119 
1120 static inline struct folio *
1121 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1122 			    nodemask_t *nmask, gfp_t gfp_mask)
1123 {
1124 	return NULL;
1125 }
1126 
1127 static inline struct folio *
1128 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1129 			nodemask_t *nmask, gfp_t gfp_mask,
1130 			bool allow_alloc_fallback)
1131 {
1132 	return NULL;
1133 }
1134 
1135 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1136 {
1137 	return 0;
1138 }
1139 
1140 static inline struct hstate *hstate_file(struct file *f)
1141 {
1142 	return NULL;
1143 }
1144 
1145 static inline struct hstate *hstate_sizelog(int page_size_log)
1146 {
1147 	return NULL;
1148 }
1149 
1150 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1151 {
1152 	return NULL;
1153 }
1154 
1155 static inline struct hstate *folio_hstate(struct folio *folio)
1156 {
1157 	return NULL;
1158 }
1159 
1160 static inline struct hstate *size_to_hstate(unsigned long size)
1161 {
1162 	return NULL;
1163 }
1164 
1165 static inline unsigned long huge_page_size(struct hstate *h)
1166 {
1167 	return PAGE_SIZE;
1168 }
1169 
1170 static inline unsigned long huge_page_mask(struct hstate *h)
1171 {
1172 	return PAGE_MASK;
1173 }
1174 
1175 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1176 {
1177 	return PAGE_SIZE;
1178 }
1179 
1180 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1181 {
1182 	return PAGE_SIZE;
1183 }
1184 
1185 static inline unsigned int huge_page_order(struct hstate *h)
1186 {
1187 	return 0;
1188 }
1189 
1190 static inline unsigned int huge_page_shift(struct hstate *h)
1191 {
1192 	return PAGE_SHIFT;
1193 }
1194 
1195 static inline bool hstate_is_gigantic(struct hstate *h)
1196 {
1197 	return false;
1198 }
1199 
1200 static inline unsigned int pages_per_huge_page(struct hstate *h)
1201 {
1202 	return 1;
1203 }
1204 
1205 static inline unsigned hstate_index_to_shift(unsigned index)
1206 {
1207 	return 0;
1208 }
1209 
1210 static inline int hstate_index(struct hstate *h)
1211 {
1212 	return 0;
1213 }
1214 
1215 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1216 {
1217 	return 0;
1218 }
1219 
1220 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1221 					   unsigned long end_pfn)
1222 {
1223 	return 0;
1224 }
1225 
1226 static inline bool hugepage_migration_supported(struct hstate *h)
1227 {
1228 	return false;
1229 }
1230 
1231 static inline bool hugepage_movable_supported(struct hstate *h)
1232 {
1233 	return false;
1234 }
1235 
1236 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1237 {
1238 	return 0;
1239 }
1240 
1241 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1242 {
1243 	return 0;
1244 }
1245 
1246 static inline bool htlb_allow_alloc_fallback(int reason)
1247 {
1248 	return false;
1249 }
1250 
1251 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1252 					   struct mm_struct *mm, pte_t *pte)
1253 {
1254 	return &mm->page_table_lock;
1255 }
1256 
1257 static inline void hugetlb_count_init(struct mm_struct *mm)
1258 {
1259 }
1260 
1261 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1262 {
1263 }
1264 
1265 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1266 {
1267 }
1268 
1269 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1270 					  unsigned long addr, pte_t *ptep)
1271 {
1272 #ifdef CONFIG_MMU
1273 	return ptep_get(ptep);
1274 #else
1275 	return *ptep;
1276 #endif
1277 }
1278 
1279 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1280 				   pte_t *ptep, pte_t pte, unsigned long sz)
1281 {
1282 }
1283 
1284 static inline void hugetlb_register_node(struct node *node)
1285 {
1286 }
1287 
1288 static inline void hugetlb_unregister_node(struct node *node)
1289 {
1290 }
1291 
1292 static inline bool hugetlbfs_pagecache_present(
1293     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1294 {
1295 	return false;
1296 }
1297 
1298 static inline void hugetlb_bootmem_alloc(void)
1299 {
1300 }
1301 
1302 static inline bool hugetlb_bootmem_allocated(void)
1303 {
1304 	return false;
1305 }
1306 #endif	/* CONFIG_HUGETLB_PAGE */
1307 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1308 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1309 					struct mm_struct *mm, pte_t *pte)
1310 {
1311 	spinlock_t *ptl;
1312 
1313 	ptl = huge_pte_lockptr(h, mm, pte);
1314 	spin_lock(ptl);
1315 	return ptl;
1316 }
1317 
1318 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1319 extern void __init hugetlb_cma_reserve(int order);
1320 #else
hugetlb_cma_reserve(int order)1321 static inline __init void hugetlb_cma_reserve(int order)
1322 {
1323 }
1324 #endif
1325 
1326 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1327 static inline bool hugetlb_pmd_shared(pte_t *pte)
1328 {
1329 	return page_count(virt_to_page(pte)) > 1;
1330 }
1331 #else
hugetlb_pmd_shared(pte_t * pte)1332 static inline bool hugetlb_pmd_shared(pte_t *pte)
1333 {
1334 	return false;
1335 }
1336 #endif
1337 
1338 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1339 
1340 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1341 /*
1342  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1343  * implement this.
1344  */
1345 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1346 #endif
1347 
__vma_shareable_lock(struct vm_area_struct * vma)1348 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1349 {
1350 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1351 }
1352 
1353 bool __vma_private_lock(struct vm_area_struct *vma);
1354 
1355 /*
1356  * Safe version of huge_pte_offset() to check the locks.  See comments
1357  * above huge_pte_offset().
1358  */
1359 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1360 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1361 {
1362 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1363 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1364 
1365 	/*
1366 	 * If pmd sharing possible, locking needed to safely walk the
1367 	 * hugetlb pgtables.  More information can be found at the comment
1368 	 * above huge_pte_offset() in the same file.
1369 	 *
1370 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1371 	 */
1372 	if (__vma_shareable_lock(vma))
1373 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1374 			     !lockdep_is_held(
1375 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1376 #endif
1377 	return huge_pte_offset(vma->vm_mm, addr, sz);
1378 }
1379 
1380 #endif /* _LINUX_HUGETLB_H */
1381