1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/nodemask.h>
18
19 struct ctl_table;
20 struct user_struct;
21 struct mmu_gather;
22 struct node;
23
24 void free_huge_folio(struct folio *folio);
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #include <linux/pagemap.h>
29 #include <linux/shm.h>
30 #include <asm/tlbflush.h>
31
32 /*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
35 * struct page to store the metadata.
36 */
37 #define __NR_USED_SUBPAGE 3
38
39 struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
44 /* both allocated and reserved pages. */
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
48 /* satisfy minimum size. */
49 };
50
51 struct resv_map {
52 struct kref refs;
53 spinlock_t lock;
54 struct list_head regions;
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
58 struct rw_semaphore rw_sema;
59 #ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68 #endif
69 };
70
71 /*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
79 * indices into the associated mapping. from indicates the starting index
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90 struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94 #ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102 #endif
103 };
104
105 struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109 };
110
111 extern struct resv_map *resv_map_alloc(void);
112 void resv_map_release(struct kref *ref);
113
114 extern spinlock_t hugetlb_lock;
115 extern int hugetlb_max_hstate __read_mostly;
116 #define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
121 void hugepage_put_subpool(struct hugepage_subpool *spool);
122
123 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125 int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
129 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
131 void unmap_hugepage_range(struct vm_area_struct *,
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
134 void __unmap_hugepage_range(struct mmu_gather *tlb,
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
137 struct folio *, zap_flags_t zap_flags);
138 void hugetlb_report_meminfo(struct seq_file *);
139 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140 void hugetlb_show_meminfo_node(int nid);
141 unsigned long hugetlb_total_pages(void);
142 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 unsigned long address, unsigned int flags);
144 #ifdef CONFIG_USERFAULTFD
145 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
149 uffd_flags_t flags,
150 struct folio **foliop);
151 #endif /* CONFIG_USERFAULTFD */
152 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 struct vm_area_struct *vma,
154 vm_flags_t vm_flags);
155 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
156 long freed);
157 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
158 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
159 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
160 bool *migratable_cleared);
161 void folio_putback_hugetlb(struct folio *folio);
162 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
163 void hugetlb_fix_reserve_counts(struct inode *inode);
164 extern struct mutex *hugetlb_fault_mutex_table;
165 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
166
167 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
168 unsigned long addr, pud_t *pud);
169 bool hugetlbfs_pagecache_present(struct hstate *h,
170 struct vm_area_struct *vma,
171 unsigned long address);
172
173 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
174
175 extern int sysctl_hugetlb_shm_group;
176 extern struct list_head huge_boot_pages[MAX_NUMNODES];
177
178 void hugetlb_bootmem_alloc(void);
179 bool hugetlb_bootmem_allocated(void);
180 extern nodemask_t hugetlb_bootmem_nodes;
181 void hugetlb_bootmem_set_nodes(void);
182
183 /* arch callbacks */
184
185 #ifndef CONFIG_HIGHPTE
186 /*
187 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188 * which may go down to the lowest PTE level in their huge_pte_offset() and
189 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190 */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 unsigned long address)
197 {
198 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 unsigned long addr, unsigned long sz);
204 /*
205 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206 * Returns the pte_t* if found, or NULL if the address is not mapped.
207 *
208 * IMPORTANT: we should normally not directly call this function, instead
209 * this is only a common interface to implement arch-specific
210 * walker. Please use hugetlb_walk() instead, because that will attempt to
211 * verify the locking for you.
212 *
213 * Since this function will walk all the pgtable pages (including not only
214 * high-level pgtable page, but also PUD entry that can be unshared
215 * concurrently for VM_SHARED), the caller of this function should be
216 * responsible of its thread safety. One can follow this rule:
217 *
218 * (1) For private mappings: pmd unsharing is not possible, so holding the
219 * mmap_lock for either read or write is sufficient. Most callers
220 * already hold the mmap_lock, so normally, no special action is
221 * required.
222 *
223 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224 * pgtable page can go away from under us! It can be done by a pmd
225 * unshare with a follow up munmap() on the other process), then we
226 * need either:
227 *
228 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229 * won't happen upon the range (it also makes sure the pte_t we
230 * read is the right and stable one), or,
231 *
232 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233 * sure even if unshare happened the racy unmap() will wait until
234 * i_mmap_rwsem is released.
235 *
236 * Option (2.1) is the safest, which guarantees pte stability from pmd
237 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
238 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239 * access.
240 */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 unsigned long *start, unsigned long *end);
248
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 struct zap_details *details);
253
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 unsigned long *start, unsigned long *end)
256 {
257 if (is_vm_hugetlb_page(vma))
258 __hugetlb_zap_begin(vma, start, end);
259 }
260
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 struct zap_details *details)
263 {
264 if (is_vm_hugetlb_page(vma))
265 __hugetlb_zap_end(vma, details);
266 }
267
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 long hugetlb_change_protection(struct vm_area_struct *vma,
276 unsigned long address, unsigned long end, pgprot_t newprot,
277 unsigned long cp_flags);
278 bool is_hugetlb_entry_migration(pte_t pte);
279 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
280 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
281 void fixup_hugetlb_reservations(struct vm_area_struct *vma);
282 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
283
284 #else /* !CONFIG_HUGETLB_PAGE */
285
hugetlb_dup_vma_private(struct vm_area_struct * vma)286 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
287 {
288 }
289
clear_vma_resv_huge_pages(struct vm_area_struct * vma)290 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
291 {
292 }
293
hugetlb_total_pages(void)294 static inline unsigned long hugetlb_total_pages(void)
295 {
296 return 0;
297 }
298
hugetlb_folio_mapping_lock_write(struct folio * folio)299 static inline struct address_space *hugetlb_folio_mapping_lock_write(
300 struct folio *folio)
301 {
302 return NULL;
303 }
304
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)305 static inline int huge_pmd_unshare(struct mm_struct *mm,
306 struct vm_area_struct *vma,
307 unsigned long addr, pte_t *ptep)
308 {
309 return 0;
310 }
311
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)312 static inline void adjust_range_if_pmd_sharing_possible(
313 struct vm_area_struct *vma,
314 unsigned long *start, unsigned long *end)
315 {
316 }
317
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)318 static inline void hugetlb_zap_begin(
319 struct vm_area_struct *vma,
320 unsigned long *start, unsigned long *end)
321 {
322 }
323
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)324 static inline void hugetlb_zap_end(
325 struct vm_area_struct *vma,
326 struct zap_details *details)
327 {
328 }
329
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)330 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
331 struct mm_struct *src,
332 struct vm_area_struct *dst_vma,
333 struct vm_area_struct *src_vma)
334 {
335 BUG();
336 return 0;
337 }
338
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)339 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
340 struct vm_area_struct *new_vma,
341 unsigned long old_addr,
342 unsigned long new_addr,
343 unsigned long len)
344 {
345 BUG();
346 return 0;
347 }
348
hugetlb_report_meminfo(struct seq_file * m)349 static inline void hugetlb_report_meminfo(struct seq_file *m)
350 {
351 }
352
hugetlb_report_node_meminfo(char * buf,int len,int nid)353 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
354 {
355 return 0;
356 }
357
hugetlb_show_meminfo_node(int nid)358 static inline void hugetlb_show_meminfo_node(int nid)
359 {
360 }
361
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)362 static inline int prepare_hugepage_range(struct file *file,
363 unsigned long addr, unsigned long len)
364 {
365 return -EINVAL;
366 }
367
hugetlb_vma_lock_read(struct vm_area_struct * vma)368 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
369 {
370 }
371
hugetlb_vma_unlock_read(struct vm_area_struct * vma)372 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
373 {
374 }
375
hugetlb_vma_lock_write(struct vm_area_struct * vma)376 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
377 {
378 }
379
hugetlb_vma_unlock_write(struct vm_area_struct * vma)380 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
381 {
382 }
383
hugetlb_vma_trylock_write(struct vm_area_struct * vma)384 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
385 {
386 return 1;
387 }
388
hugetlb_vma_assert_locked(struct vm_area_struct * vma)389 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
390 {
391 }
392
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)393 static inline int is_hugepage_only_range(struct mm_struct *mm,
394 unsigned long addr, unsigned long len)
395 {
396 return 0;
397 }
398
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)399 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
402 {
403 BUG();
404 }
405
406 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)407 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
408 struct vm_area_struct *dst_vma,
409 unsigned long dst_addr,
410 unsigned long src_addr,
411 uffd_flags_t flags,
412 struct folio **foliop)
413 {
414 BUG();
415 return 0;
416 }
417 #endif /* CONFIG_USERFAULTFD */
418
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)419 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
420 unsigned long sz)
421 {
422 return NULL;
423 }
424
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)425 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
426 {
427 return false;
428 }
429
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)430 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
431 {
432 return 0;
433 }
434
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)435 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
436 bool *migratable_cleared)
437 {
438 return 0;
439 }
440
folio_putback_hugetlb(struct folio * folio)441 static inline void folio_putback_hugetlb(struct folio *folio)
442 {
443 }
444
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)445 static inline void move_hugetlb_state(struct folio *old_folio,
446 struct folio *new_folio, int reason)
447 {
448 }
449
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)450 static inline long hugetlb_change_protection(
451 struct vm_area_struct *vma, unsigned long address,
452 unsigned long end, pgprot_t newprot,
453 unsigned long cp_flags)
454 {
455 return 0;
456 }
457
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)458 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
459 struct vm_area_struct *vma, unsigned long start,
460 unsigned long end, struct folio *folio,
461 zap_flags_t zap_flags)
462 {
463 BUG();
464 }
465
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)466 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
467 struct vm_area_struct *vma, unsigned long address,
468 unsigned int flags)
469 {
470 BUG();
471 return 0;
472 }
473
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)474 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
475
fixup_hugetlb_reservations(struct vm_area_struct * vma)476 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
477 {
478 }
479
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)480 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
481
482 #endif /* !CONFIG_HUGETLB_PAGE */
483
484 #ifndef pgd_write
pgd_write(pgd_t pgd)485 static inline int pgd_write(pgd_t pgd)
486 {
487 BUG();
488 return 0;
489 }
490 #endif
491
492 #define HUGETLB_ANON_FILE "anon_hugepage"
493
494 enum {
495 /*
496 * The file will be used as an shm file so shmfs accounting rules
497 * apply
498 */
499 HUGETLB_SHMFS_INODE = 1,
500 /*
501 * The file is being created on the internal vfs mount and shmfs
502 * accounting rules do not apply
503 */
504 HUGETLB_ANONHUGE_INODE = 2,
505 };
506
507 #ifdef CONFIG_HUGETLBFS
508 struct hugetlbfs_sb_info {
509 long max_inodes; /* inodes allowed */
510 long free_inodes; /* inodes free */
511 spinlock_t stat_lock;
512 struct hstate *hstate;
513 struct hugepage_subpool *spool;
514 kuid_t uid;
515 kgid_t gid;
516 umode_t mode;
517 };
518
HUGETLBFS_SB(struct super_block * sb)519 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
520 {
521 return sb->s_fs_info;
522 }
523
524 struct hugetlbfs_inode_info {
525 struct inode vfs_inode;
526 unsigned int seals;
527 };
528
HUGETLBFS_I(struct inode * inode)529 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
530 {
531 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
532 }
533
534 extern const struct vm_operations_struct hugetlb_vm_ops;
535 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
536 int creat_flags, int page_size_log);
537
is_file_hugepages(const struct file * file)538 static inline bool is_file_hugepages(const struct file *file)
539 {
540 return file->f_op->fop_flags & FOP_HUGE_PAGES;
541 }
542
hstate_inode(struct inode * i)543 static inline struct hstate *hstate_inode(struct inode *i)
544 {
545 return HUGETLBFS_SB(i->i_sb)->hstate;
546 }
547 #else /* !CONFIG_HUGETLBFS */
548
549 #define is_file_hugepages(file) false
550 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)551 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
552 int creat_flags, int page_size_log)
553 {
554 return ERR_PTR(-ENOSYS);
555 }
556
hstate_inode(struct inode * i)557 static inline struct hstate *hstate_inode(struct inode *i)
558 {
559 return NULL;
560 }
561 #endif /* !CONFIG_HUGETLBFS */
562
563 unsigned long
564 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
565 unsigned long len, unsigned long pgoff,
566 unsigned long flags);
567
568 /*
569 * huegtlb page specific state flags. These flags are located in page.private
570 * of the hugetlb head page. Functions created via the below macros should be
571 * used to manipulate these flags.
572 *
573 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
574 * allocation time. Cleared when page is fully instantiated. Free
575 * routine checks flag to restore a reservation on error paths.
576 * Synchronization: Examined or modified by code that knows it has
577 * the only reference to page. i.e. After allocation but before use
578 * or when the page is being freed.
579 * HPG_migratable - Set after a newly allocated page is added to the page
580 * cache and/or page tables. Indicates the page is a candidate for
581 * migration.
582 * Synchronization: Initially set after new page allocation with no
583 * locking. When examined and modified during migration processing
584 * (isolate, migrate, putback) the hugetlb_lock is held.
585 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
586 * allocator. Typically used for migration target pages when no pages
587 * are available in the pool. The hugetlb free page path will
588 * immediately free pages with this flag set to the buddy allocator.
589 * Synchronization: Can be set after huge page allocation from buddy when
590 * code knows it has only reference. All other examinations and
591 * modifications require hugetlb_lock.
592 * HPG_freed - Set when page is on the free lists.
593 * Synchronization: hugetlb_lock held for examination and modification.
594 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
595 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
596 * that is not tracked by raw_hwp_page list.
597 */
598 enum hugetlb_page_flags {
599 HPG_restore_reserve = 0,
600 HPG_migratable,
601 HPG_temporary,
602 HPG_freed,
603 HPG_vmemmap_optimized,
604 HPG_raw_hwp_unreliable,
605 HPG_cma,
606 __NR_HPAGEFLAGS,
607 };
608
609 /*
610 * Macros to create test, set and clear function definitions for
611 * hugetlb specific page flags.
612 */
613 #ifdef CONFIG_HUGETLB_PAGE
614 #define TESTHPAGEFLAG(uname, flname) \
615 static __always_inline \
616 bool folio_test_hugetlb_##flname(struct folio *folio) \
617 { void *private = &folio->private; \
618 return test_bit(HPG_##flname, private); \
619 }
620
621 #define SETHPAGEFLAG(uname, flname) \
622 static __always_inline \
623 void folio_set_hugetlb_##flname(struct folio *folio) \
624 { void *private = &folio->private; \
625 set_bit(HPG_##flname, private); \
626 }
627
628 #define CLEARHPAGEFLAG(uname, flname) \
629 static __always_inline \
630 void folio_clear_hugetlb_##flname(struct folio *folio) \
631 { void *private = &folio->private; \
632 clear_bit(HPG_##flname, private); \
633 }
634 #else
635 #define TESTHPAGEFLAG(uname, flname) \
636 static inline bool \
637 folio_test_hugetlb_##flname(struct folio *folio) \
638 { return 0; }
639
640 #define SETHPAGEFLAG(uname, flname) \
641 static inline void \
642 folio_set_hugetlb_##flname(struct folio *folio) \
643 { }
644
645 #define CLEARHPAGEFLAG(uname, flname) \
646 static inline void \
647 folio_clear_hugetlb_##flname(struct folio *folio) \
648 { }
649 #endif
650
651 #define HPAGEFLAG(uname, flname) \
652 TESTHPAGEFLAG(uname, flname) \
653 SETHPAGEFLAG(uname, flname) \
654 CLEARHPAGEFLAG(uname, flname) \
655
656 /*
657 * Create functions associated with hugetlb page flags
658 */
659 HPAGEFLAG(RestoreReserve, restore_reserve)
660 HPAGEFLAG(Migratable, migratable)
661 HPAGEFLAG(Temporary, temporary)
662 HPAGEFLAG(Freed, freed)
663 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
664 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
665 HPAGEFLAG(Cma, cma)
666
667 #ifdef CONFIG_HUGETLB_PAGE
668
669 #define HSTATE_NAME_LEN 32
670 /* Defines one hugetlb page size */
671 struct hstate {
672 struct mutex resize_lock;
673 struct lock_class_key resize_key;
674 int next_nid_to_alloc;
675 int next_nid_to_free;
676 unsigned int order;
677 unsigned int demote_order;
678 unsigned long mask;
679 unsigned long max_huge_pages;
680 unsigned long nr_huge_pages;
681 unsigned long free_huge_pages;
682 unsigned long resv_huge_pages;
683 unsigned long surplus_huge_pages;
684 unsigned long nr_overcommit_huge_pages;
685 struct list_head hugepage_activelist;
686 struct list_head hugepage_freelists[MAX_NUMNODES];
687 unsigned int max_huge_pages_node[MAX_NUMNODES];
688 unsigned int nr_huge_pages_node[MAX_NUMNODES];
689 unsigned int free_huge_pages_node[MAX_NUMNODES];
690 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
691 char name[HSTATE_NAME_LEN];
692 };
693
694 struct cma;
695
696 struct huge_bootmem_page {
697 struct list_head list;
698 struct hstate *hstate;
699 unsigned long flags;
700 struct cma *cma;
701 };
702
703 #define HUGE_BOOTMEM_HVO 0x0001
704 #define HUGE_BOOTMEM_ZONES_VALID 0x0002
705 #define HUGE_BOOTMEM_CMA 0x0004
706
707 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
708
709 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
710 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
711 void wait_for_freed_hugetlb_folios(void);
712 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
713 unsigned long addr, bool cow_from_owner);
714 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
715 nodemask_t *nmask, gfp_t gfp_mask,
716 bool allow_alloc_fallback);
717 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
718 nodemask_t *nmask, gfp_t gfp_mask);
719
720 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
721 pgoff_t idx);
722 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
723 unsigned long address, struct folio *folio);
724
725 /* arch callback */
726 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
727 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
728 bool __init hugetlb_node_alloc_supported(void);
729
730 void __init hugetlb_add_hstate(unsigned order);
731 bool __init arch_hugetlb_valid_size(unsigned long size);
732 struct hstate *size_to_hstate(unsigned long size);
733
734 #ifndef HUGE_MAX_HSTATE
735 #define HUGE_MAX_HSTATE 1
736 #endif
737
738 extern struct hstate hstates[HUGE_MAX_HSTATE];
739 extern unsigned int default_hstate_idx;
740
741 #define default_hstate (hstates[default_hstate_idx])
742
hugetlb_folio_subpool(struct folio * folio)743 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744 {
745 return folio->_hugetlb_subpool;
746 }
747
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)748 static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 struct hugepage_subpool *subpool)
750 {
751 folio->_hugetlb_subpool = subpool;
752 }
753
hstate_file(struct file * f)754 static inline struct hstate *hstate_file(struct file *f)
755 {
756 return hstate_inode(file_inode(f));
757 }
758
hstate_sizelog(int page_size_log)759 static inline struct hstate *hstate_sizelog(int page_size_log)
760 {
761 if (!page_size_log)
762 return &default_hstate;
763
764 if (page_size_log < BITS_PER_LONG)
765 return size_to_hstate(1UL << page_size_log);
766
767 return NULL;
768 }
769
hstate_vma(struct vm_area_struct * vma)770 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
771 {
772 return hstate_file(vma->vm_file);
773 }
774
huge_page_size(const struct hstate * h)775 static inline unsigned long huge_page_size(const struct hstate *h)
776 {
777 return (unsigned long)PAGE_SIZE << h->order;
778 }
779
780 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781
782 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783
huge_page_mask(struct hstate * h)784 static inline unsigned long huge_page_mask(struct hstate *h)
785 {
786 return h->mask;
787 }
788
huge_page_order(struct hstate * h)789 static inline unsigned int huge_page_order(struct hstate *h)
790 {
791 return h->order;
792 }
793
huge_page_shift(struct hstate * h)794 static inline unsigned huge_page_shift(struct hstate *h)
795 {
796 return h->order + PAGE_SHIFT;
797 }
798
hstate_is_gigantic(struct hstate * h)799 static inline bool hstate_is_gigantic(struct hstate *h)
800 {
801 return huge_page_order(h) > MAX_PAGE_ORDER;
802 }
803
pages_per_huge_page(const struct hstate * h)804 static inline unsigned int pages_per_huge_page(const struct hstate *h)
805 {
806 return 1 << h->order;
807 }
808
blocks_per_huge_page(struct hstate * h)809 static inline unsigned int blocks_per_huge_page(struct hstate *h)
810 {
811 return huge_page_size(h) / 512;
812 }
813
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)814 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
815 struct address_space *mapping, pgoff_t idx)
816 {
817 return filemap_lock_folio(mapping, idx << huge_page_order(h));
818 }
819
820 #include <asm/hugetlb.h>
821
822 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)823 static inline int is_hugepage_only_range(struct mm_struct *mm,
824 unsigned long addr, unsigned long len)
825 {
826 return 0;
827 }
828 #define is_hugepage_only_range is_hugepage_only_range
829 #endif
830
831 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)832 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
833 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
834 #endif
835
836 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)837 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
838 vm_flags_t flags)
839 {
840 return pte_mkhuge(entry);
841 }
842 #endif
843
844 #ifndef arch_has_huge_bootmem_alloc
845 /*
846 * Some architectures do their own bootmem allocation, so they can't use
847 * early CMA allocation.
848 */
arch_has_huge_bootmem_alloc(void)849 static inline bool arch_has_huge_bootmem_alloc(void)
850 {
851 return false;
852 }
853 #endif
854
folio_hstate(struct folio * folio)855 static inline struct hstate *folio_hstate(struct folio *folio)
856 {
857 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
858 return size_to_hstate(folio_size(folio));
859 }
860
hstate_index_to_shift(unsigned index)861 static inline unsigned hstate_index_to_shift(unsigned index)
862 {
863 return hstates[index].order + PAGE_SHIFT;
864 }
865
hstate_index(struct hstate * h)866 static inline int hstate_index(struct hstate *h)
867 {
868 return h - hstates;
869 }
870
871 int dissolve_free_hugetlb_folio(struct folio *folio);
872 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
873 unsigned long end_pfn);
874
875 #ifdef CONFIG_MEMORY_FAILURE
876 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
877 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)878 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
879 {
880 }
881 #endif
882
883 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
884 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)885 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886 {
887 if ((huge_page_shift(h) == PMD_SHIFT) ||
888 (huge_page_shift(h) == PUD_SHIFT) ||
889 (huge_page_shift(h) == PGDIR_SHIFT))
890 return true;
891 else
892 return false;
893 }
894 #endif
895 #else
arch_hugetlb_migration_supported(struct hstate * h)896 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
897 {
898 return false;
899 }
900 #endif
901
hugepage_migration_supported(struct hstate * h)902 static inline bool hugepage_migration_supported(struct hstate *h)
903 {
904 return arch_hugetlb_migration_supported(h);
905 }
906
907 /*
908 * Movability check is different as compared to migration check.
909 * It determines whether or not a huge page should be placed on
910 * movable zone or not. Movability of any huge page should be
911 * required only if huge page size is supported for migration.
912 * There won't be any reason for the huge page to be movable if
913 * it is not migratable to start with. Also the size of the huge
914 * page should be large enough to be placed under a movable zone
915 * and still feasible enough to be migratable. Just the presence
916 * in movable zone does not make the migration feasible.
917 *
918 * So even though large huge page sizes like the gigantic ones
919 * are migratable they should not be movable because its not
920 * feasible to migrate them from movable zone.
921 */
hugepage_movable_supported(struct hstate * h)922 static inline bool hugepage_movable_supported(struct hstate *h)
923 {
924 if (!hugepage_migration_supported(h))
925 return false;
926
927 if (hstate_is_gigantic(h))
928 return false;
929 return true;
930 }
931
932 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)933 static inline gfp_t htlb_alloc_mask(struct hstate *h)
934 {
935 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
936
937 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
938
939 return gfp;
940 }
941
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)942 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
943 {
944 gfp_t modified_mask = htlb_alloc_mask(h);
945
946 /* Some callers might want to enforce node */
947 modified_mask |= (gfp_mask & __GFP_THISNODE);
948
949 modified_mask |= (gfp_mask & __GFP_NOWARN);
950
951 return modified_mask;
952 }
953
htlb_allow_alloc_fallback(int reason)954 static inline bool htlb_allow_alloc_fallback(int reason)
955 {
956 bool allowed_fallback = false;
957
958 /*
959 * Note: the memory offline, memory failure and migration syscalls will
960 * be allowed to fallback to other nodes due to lack of a better chioce,
961 * that might break the per-node hugetlb pool. While other cases will
962 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
963 */
964 switch (reason) {
965 case MR_MEMORY_HOTPLUG:
966 case MR_MEMORY_FAILURE:
967 case MR_SYSCALL:
968 case MR_MEMPOLICY_MBIND:
969 allowed_fallback = true;
970 break;
971 default:
972 break;
973 }
974
975 return allowed_fallback;
976 }
977
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)978 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
979 struct mm_struct *mm, pte_t *pte)
980 {
981 const unsigned long size = huge_page_size(h);
982
983 VM_WARN_ON(size == PAGE_SIZE);
984
985 /*
986 * hugetlb must use the exact same PT locks as core-mm page table
987 * walkers would. When modifying a PTE table, hugetlb must take the
988 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
989 * PT lock etc.
990 *
991 * The expectation is that any hugetlb folio smaller than a PMD is
992 * always mapped into a single PTE table and that any hugetlb folio
993 * smaller than a PUD (but at least as big as a PMD) is always mapped
994 * into a single PMD table.
995 *
996 * If that does not hold for an architecture, then that architecture
997 * must disable split PT locks such that all *_lockptr() functions
998 * will give us the same result: the per-MM PT lock.
999 *
1000 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1001 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1002 * and core-mm would use pmd_lockptr(). However, in such configurations
1003 * split PMD locks are disabled -- they don't make sense on a single
1004 * PGDIR page table -- and the end result is the same.
1005 */
1006 if (size >= PUD_SIZE)
1007 return pud_lockptr(mm, (pud_t *) pte);
1008 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1009 return pmd_lockptr(mm, (pmd_t *) pte);
1010 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1011 return ptep_lockptr(mm, pte);
1012 }
1013
1014 #ifndef hugepages_supported
1015 /*
1016 * Some platform decide whether they support huge pages at boot
1017 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1018 * when there is no such support
1019 */
1020 #define hugepages_supported() (HPAGE_SHIFT != 0)
1021 #endif
1022
1023 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1024
hugetlb_count_init(struct mm_struct * mm)1025 static inline void hugetlb_count_init(struct mm_struct *mm)
1026 {
1027 atomic_long_set(&mm->hugetlb_usage, 0);
1028 }
1029
hugetlb_count_add(long l,struct mm_struct * mm)1030 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1031 {
1032 atomic_long_add(l, &mm->hugetlb_usage);
1033 }
1034
hugetlb_count_sub(long l,struct mm_struct * mm)1035 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1036 {
1037 atomic_long_sub(l, &mm->hugetlb_usage);
1038 }
1039
1040 #ifndef huge_ptep_modify_prot_start
1041 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1042 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1044 {
1045 unsigned long psize = huge_page_size(hstate_vma(vma));
1046
1047 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1048 }
1049 #endif
1050
1051 #ifndef huge_ptep_modify_prot_commit
1052 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1053 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1054 unsigned long addr, pte_t *ptep,
1055 pte_t old_pte, pte_t pte)
1056 {
1057 unsigned long psize = huge_page_size(hstate_vma(vma));
1058
1059 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1060 }
1061 #endif
1062
1063 #ifdef CONFIG_NUMA
1064 void hugetlb_register_node(struct node *node);
1065 void hugetlb_unregister_node(struct node *node);
1066 #endif
1067
1068 /*
1069 * Check if a given raw @page in a hugepage is HWPOISON.
1070 */
1071 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1072
huge_page_mask_align(struct file * file)1073 static inline unsigned long huge_page_mask_align(struct file *file)
1074 {
1075 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1076 }
1077
1078 #else /* CONFIG_HUGETLB_PAGE */
1079 struct hstate {};
1080
1081 static inline unsigned long huge_page_mask_align(struct file *file)
1082 {
1083 return 0;
1084 }
1085
1086 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1087 {
1088 return NULL;
1089 }
1090
1091 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1092 struct address_space *mapping, pgoff_t idx)
1093 {
1094 return NULL;
1095 }
1096
1097 static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1098 struct list_head *list)
1099 {
1100 return -ENOMEM;
1101 }
1102
1103 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1104 unsigned long end_pfn)
1105 {
1106 return 0;
1107 }
1108
1109 static inline void wait_for_freed_hugetlb_folios(void)
1110 {
1111 }
1112
1113 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1114 unsigned long addr,
1115 bool cow_from_owner)
1116 {
1117 return NULL;
1118 }
1119
1120 static inline struct folio *
1121 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1122 nodemask_t *nmask, gfp_t gfp_mask)
1123 {
1124 return NULL;
1125 }
1126
1127 static inline struct folio *
1128 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1129 nodemask_t *nmask, gfp_t gfp_mask,
1130 bool allow_alloc_fallback)
1131 {
1132 return NULL;
1133 }
1134
1135 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1136 {
1137 return 0;
1138 }
1139
1140 static inline struct hstate *hstate_file(struct file *f)
1141 {
1142 return NULL;
1143 }
1144
1145 static inline struct hstate *hstate_sizelog(int page_size_log)
1146 {
1147 return NULL;
1148 }
1149
1150 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1151 {
1152 return NULL;
1153 }
1154
1155 static inline struct hstate *folio_hstate(struct folio *folio)
1156 {
1157 return NULL;
1158 }
1159
1160 static inline struct hstate *size_to_hstate(unsigned long size)
1161 {
1162 return NULL;
1163 }
1164
1165 static inline unsigned long huge_page_size(struct hstate *h)
1166 {
1167 return PAGE_SIZE;
1168 }
1169
1170 static inline unsigned long huge_page_mask(struct hstate *h)
1171 {
1172 return PAGE_MASK;
1173 }
1174
1175 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1176 {
1177 return PAGE_SIZE;
1178 }
1179
1180 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1181 {
1182 return PAGE_SIZE;
1183 }
1184
1185 static inline unsigned int huge_page_order(struct hstate *h)
1186 {
1187 return 0;
1188 }
1189
1190 static inline unsigned int huge_page_shift(struct hstate *h)
1191 {
1192 return PAGE_SHIFT;
1193 }
1194
1195 static inline bool hstate_is_gigantic(struct hstate *h)
1196 {
1197 return false;
1198 }
1199
1200 static inline unsigned int pages_per_huge_page(struct hstate *h)
1201 {
1202 return 1;
1203 }
1204
1205 static inline unsigned hstate_index_to_shift(unsigned index)
1206 {
1207 return 0;
1208 }
1209
1210 static inline int hstate_index(struct hstate *h)
1211 {
1212 return 0;
1213 }
1214
1215 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1216 {
1217 return 0;
1218 }
1219
1220 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1221 unsigned long end_pfn)
1222 {
1223 return 0;
1224 }
1225
1226 static inline bool hugepage_migration_supported(struct hstate *h)
1227 {
1228 return false;
1229 }
1230
1231 static inline bool hugepage_movable_supported(struct hstate *h)
1232 {
1233 return false;
1234 }
1235
1236 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1237 {
1238 return 0;
1239 }
1240
1241 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1242 {
1243 return 0;
1244 }
1245
1246 static inline bool htlb_allow_alloc_fallback(int reason)
1247 {
1248 return false;
1249 }
1250
1251 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1252 struct mm_struct *mm, pte_t *pte)
1253 {
1254 return &mm->page_table_lock;
1255 }
1256
1257 static inline void hugetlb_count_init(struct mm_struct *mm)
1258 {
1259 }
1260
1261 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1262 {
1263 }
1264
1265 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1266 {
1267 }
1268
1269 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1270 unsigned long addr, pte_t *ptep)
1271 {
1272 #ifdef CONFIG_MMU
1273 return ptep_get(ptep);
1274 #else
1275 return *ptep;
1276 #endif
1277 }
1278
1279 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1280 pte_t *ptep, pte_t pte, unsigned long sz)
1281 {
1282 }
1283
1284 static inline void hugetlb_register_node(struct node *node)
1285 {
1286 }
1287
1288 static inline void hugetlb_unregister_node(struct node *node)
1289 {
1290 }
1291
1292 static inline bool hugetlbfs_pagecache_present(
1293 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1294 {
1295 return false;
1296 }
1297
1298 static inline void hugetlb_bootmem_alloc(void)
1299 {
1300 }
1301
1302 static inline bool hugetlb_bootmem_allocated(void)
1303 {
1304 return false;
1305 }
1306 #endif /* CONFIG_HUGETLB_PAGE */
1307
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1308 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1309 struct mm_struct *mm, pte_t *pte)
1310 {
1311 spinlock_t *ptl;
1312
1313 ptl = huge_pte_lockptr(h, mm, pte);
1314 spin_lock(ptl);
1315 return ptl;
1316 }
1317
1318 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1319 extern void __init hugetlb_cma_reserve(int order);
1320 #else
hugetlb_cma_reserve(int order)1321 static inline __init void hugetlb_cma_reserve(int order)
1322 {
1323 }
1324 #endif
1325
1326 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1327 static inline bool hugetlb_pmd_shared(pte_t *pte)
1328 {
1329 return page_count(virt_to_page(pte)) > 1;
1330 }
1331 #else
hugetlb_pmd_shared(pte_t * pte)1332 static inline bool hugetlb_pmd_shared(pte_t *pte)
1333 {
1334 return false;
1335 }
1336 #endif
1337
1338 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1339
1340 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1341 /*
1342 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1343 * implement this.
1344 */
1345 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1346 #endif
1347
__vma_shareable_lock(struct vm_area_struct * vma)1348 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1349 {
1350 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1351 }
1352
1353 bool __vma_private_lock(struct vm_area_struct *vma);
1354
1355 /*
1356 * Safe version of huge_pte_offset() to check the locks. See comments
1357 * above huge_pte_offset().
1358 */
1359 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1360 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1361 {
1362 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1364
1365 /*
1366 * If pmd sharing possible, locking needed to safely walk the
1367 * hugetlb pgtables. More information can be found at the comment
1368 * above huge_pte_offset() in the same file.
1369 *
1370 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1371 */
1372 if (__vma_shareable_lock(vma))
1373 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1374 !lockdep_is_held(
1375 &vma->vm_file->f_mapping->i_mmap_rwsem));
1376 #endif
1377 return huge_pte_offset(vma->vm_mm, addr, sz);
1378 }
1379
1380 #endif /* _LINUX_HUGETLB_H */
1381